TW201712864A - Cell grid architecture for FinFET technology - Google Patents

Cell grid architecture for FinFET technology Download PDF

Info

Publication number
TW201712864A
TW201712864A TW105141862A TW105141862A TW201712864A TW 201712864 A TW201712864 A TW 201712864A TW 105141862 A TW105141862 A TW 105141862A TW 105141862 A TW105141862 A TW 105141862A TW 201712864 A TW201712864 A TW 201712864A
Authority
TW
Taiwan
Prior art keywords
pmos
fin
cell
nmos
poly
Prior art date
Application number
TW105141862A
Other languages
Chinese (zh)
Other versions
TWI700833B (en
Inventor
莊惠中
江庭瑋
林仲德
田麗鈞
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Priority to TW105141862A priority Critical patent/TWI700833B/en
Publication of TW201712864A publication Critical patent/TW201712864A/en
Application granted granted Critical
Publication of TWI700833B publication Critical patent/TWI700833B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

A structure of a cell grid comprises a plurality of polycrystalline silicon (POLY) lines in the cell gird, and a plurality of fin-shaped oxide diffused (OD) regions in the cell gird. The POLY lines are arranged horizontally and evenly spaced with a pitch X. The fin-shaped OD regions are arranged vertically and evenly spaced with a pitch Y. The pitch Y of the fin-shaped OD regions defines width of the cell grid. The structure of the cell grid further comprises a plurality of PMOS transistors and NMOS transistors in the cell grid. The PMOS transistors and NMOS transistors have their source nodes and drain nodes formed in the fin-shaped OD regions and their gates connected to the POLY lines. The plurality of PMOS transistors and NMOS transistors are connected together to form one or more CMOS devices in the cell grid.

Description

鰭式場效電晶體的元件格結構 Component lattice structure of fin field effect transistor

本揭示內容一般是有關於一種半導體製程,且特別是有關於鰭式場效電晶體(FinFETs)的元件格結構。 The present disclosure is generally directed to a semiconductor process, and more particularly to a component cell structure for fin field effect transistors (FinFETs).

隨著半導體製造工業的快速進展,互補式金屬氧化物半導體(complementary metal oxide semiconductor;CMOS)鰭式場效電晶體(fin field-effect transistor;FinFET)裝置在許多邏輯及其他應用中受到歡迎。因此,鰭式場效電晶體(FinFET)裝置現今被集成在各種形式且被製造的半導體裝置中。鰭式場效電晶體裝置一般包含複數個高開口率的鰭形氧化擴散(oxide diffused;OD)區域。鰭形氧化擴散區域垂直於基板的上表面形成。鰭形氧化擴散區域定義出主動區。主動區形成有CMOS電晶體的通道以及源極/汲極區域。一般而言,鰭形氧化擴散區域為絕緣且凸起的三維(3D)結構。CMOS FinFET裝置的閘極形成於鰭的上方並沿著鰭的邊形成,以利用通道與源極/閘極區域表面積增加之優點,生產出更快速、更可靠以及更好控制的半導體電晶體裝置。多晶矽 (Polycrystalline silicon;POLY)線被用以攜帶控制訊號至CMOS電晶體的閘極。在一些實施例中,閘極亦可以以POLY製造。 With the rapid advancement of the semiconductor manufacturing industry, complementary metal oxide semiconductor (CMOS) fin field-effect transistor (FinFET) devices are popular in many logic and other applications. Therefore, fin field effect transistor (FinFET) devices are nowadays incorporated in various forms and fabricated semiconductor devices. Fin field effect transistor devices generally comprise a plurality of fin-shaped oxide diffused (OD) regions of high aperture ratio. The fin-shaped oxidized diffusion region is formed perpendicular to the upper surface of the substrate. The fin-shaped oxidized diffusion region defines an active region. The active region is formed with a channel of a CMOS transistor and a source/drain region. In general, the fin-shaped oxidized diffusion region is an insulated and raised three-dimensional (3D) structure. A gate of a CMOS FinFET device is formed over the fin and along the sides of the fin to take advantage of the increased surface area of the channel and source/gate regions to produce a faster, more reliable, and better controlled semiconductor transistor device. . Polycrystalline germanium A (Polycrystalline silicon; POLY) line is used to carry the control signal to the gate of the CMOS transistor. In some embodiments, the gate can also be fabricated in POLY.

元件格是一種元件結構,其利用鰭形OD區域以及POLY線實現電路中的各種CMOS電晶體。鰭形OD區域與POLY線以正交方向形成於半導體基板上的不同層。在電路設計的過程中,元件格的高度依據電路適當地被選擇,而元件格的寬度依據元件格中的CMOS裝置的數量被決定。CMOS裝置的數量越多,元件格的寬度越大,從而元件格的面積越大。 The component cell is an element structure that implements various CMOS transistors in the circuit using the fin OD region and the POLY line. The fin-shaped OD region and the POLY line are formed in different layers on the semiconductor substrate in an orthogonal direction. In the process of circuit design, the height of the component grid is appropriately selected according to the circuit, and the width of the component cell is determined according to the number of CMOS devices in the component cell. The larger the number of CMOS devices, the larger the width of the component grid, and the larger the area of the component grid.

本揭示內容的一實施例是關於一種元件格結構,其包含複數條在元件格中的多晶矽線、複數個在元件格中的鰭形氧化擴散區域、以及複數個在元件格中的P型金屬氧化物半導體電晶體與N型金屬氧化物半導體電晶體。多晶矽線以第一方向被配置且以第一節距平均地間隔。鰭形氧化擴散區域以第二方向被配置且以第二節距平均地間隔。鰭形氧化擴散區域的第二節距定義出元件格的寬度。該些P型金屬氧化物半導體電晶體與N型金屬氧化物半導體電晶體具有形成在相應之鰭形氧化擴散區域的源極節點以及汲極節點,以及連接至相應之多晶矽線的閘極。該些P型金屬氧化物半導體電晶體與N型金屬氧化物半導體電晶體相連在一 起以形成元件格中的一個或多個互補式金屬氧化物半導體裝置。 An embodiment of the present disclosure is directed to a component cell structure comprising a plurality of polysilicon lines in a cell, a plurality of fin-shaped oxide diffusion regions in the cell, and a plurality of P-type metals in the cell An oxide semiconductor transistor and an N-type metal oxide semiconductor transistor. The polysilicon lines are arranged in a first direction and are evenly spaced at a first pitch. The fin-shaped oxidized diffusion regions are arranged in a second direction and are equally spaced at a second pitch. The second pitch of the fin-shaped oxidized diffusion region defines the width of the component grid. The P-type metal oxide semiconductor transistor and the N-type metal oxide semiconductor transistor have a source node and a drain node formed in the corresponding fin-shaped oxide diffusion region, and a gate connected to the corresponding polysilicon line. The P-type metal oxide semiconductor transistors are connected to the N-type metal oxide semiconductor transistor Forming one or more complementary metal oxide semiconductor devices in the component cell.

為讓本揭示內容之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附符號之說明如下: The above and other objects, features, advantages and embodiments of the present disclosure will become more apparent and understood.

102‧‧‧多晶矽線 102‧‧‧Polyline

102_1、102_2、102_3、102_4、102_5、102_6、102_7‧‧‧多晶矽線 102_1, 102_2, 102_3, 102_4, 102_5, 102_6, 102_7‧‧‧ polycrystalline germanium

104‧‧‧鰭形氧化擴散區域 104‧‧‧Fin-shaped oxidized diffusion zone

104_1、104_2、104_3、104_4、104_5、104_6、104_7、104_8‧‧‧鰭形氧化擴散區域 104_1, 104_2, 104_3, 104_4, 104_5, 104_6, 104_7, 104_8‧‧‧ Fin-shaped oxidized diffusion regions

106‧‧‧N型材料 106‧‧‧N type materials

108‧‧‧P型材料 108‧‧‧P type material

109‧‧‧分隔線 109‧‧‧ separate line

110‧‧‧點 110‧‧‧ points

112、114‧‧‧電力線 112, 114‧‧‧Power line

116、116_1、116_2、116_3、116_4、116_5‧‧‧金屬線 116, 116_1, 116_2, 116_3, 116_4, 116_5‧‧‧ metal lines

118‧‧‧切割多晶矽線 118‧‧‧Cut polycrystalline tantalum wire

120、132‧‧‧P型金屬氧化物半導體裝置 120, 132‧‧‧P type metal oxide semiconductor device

122、134‧‧‧N型金屬氧化物半導體裝置 122, 134‧‧‧N type metal oxide semiconductor device

124_1、124_2、124_3、124_4、124_5、124_6‧‧‧金屬線 124_1, 124_2, 124_3, 124_4, 124_5, 124_6‧‧‧ metal wires

126、126_1、126_2、126_3、126_4、126_5、126_6、126_7、126_8、128‧‧‧穿孔 126, 126_1, 126_2, 126_3, 126_4, 126_5, 126_6, 126_7, 126_8, 128‧‧‧ perforation

130、136‧‧‧互補式金屬氧化物半導體裝置 130, 136‧‧‧Complementary Metal Oxide Semiconductor Devices

X‧‧‧節距 X‧‧‧ pitch

Y‧‧‧節距 Y‧‧‧ pitch

VDD、VSS‧‧‧電壓源 VDD, VSS‧‧‧ voltage source

PMOS-1、PMOS-2、PMOS-3、PMOS-4‧‧‧P型金屬氧化物半導體裝置 PMOS-1, PMOS-2, PMOS-3, PMOS-4‧‧‧P type metal oxide semiconductor device

NMOS-1、NMOS-2、NMOS-3、NMOS-4‧‧‧N型金屬氧化物半導體裝置 NMOS-1, NMOS-2, NMOS-3, NMOS-4‧‧‧N type metal oxide semiconductor device

700‧‧‧方法 700‧‧‧ method

702、704、706、708、710‧‧‧步驟 702, 704, 706, 708, 710‧ ‧ steps

一或多個實施例以範例方式說明,且不以此為限,在附圖的圖式中,其中具有相同參考數字名稱的元件代表所有類似元件。強調的是,根據產業多種類特徵構造標準實務可能並非依比例畫出,而僅為舉例目的之用。事實上,圖式中多種類特徵構造的尺寸可任意增加或減少以利討論的明確性。 The one or more embodiments are illustrated by way of example and not by way of limitation. It is emphasized that the construction of standard practices based on multiple characteristics of the industry may not be drawn to scale, but for illustrative purposes only. In fact, the dimensions of the various types of feature constructs in the schema can be arbitrarily increased or decreased for clarity of discussion.

第1A~1B圖是依據本揭示內容的一些實施例所繪示的兩個不同元件格佈局的示例性平面圖,其中該元件格佈局的寬度被POLY線的節距所定義;第2A~2B圖是依據本揭示內容的一些實施例所分別繪示的第1A~1B圖的兩個元件格佈局的不同例子的平面圖,其中該元件格的寬度被鰭形OD區域而非POLY線的節距所定義;第3A~3B圖是依據本揭示內容的一些實施例所繪示的第2A圖的示例性元件格佈局的不同展開(未摺)圖;第4A~4B圖是依據本揭示內容的一些實施例所繪示的第3A~3B圖的元件格的另一示例性佈局的不同展開圖,其中該些裝置皆相連在一起以形成一個CMOS反相器; 第5A~5B圖是依據本揭示內容的一些實施例所繪示的第1A圖的元件格的示例性佈局的不同展開圖,其中相鄰的鰭形OD區域水平地錯開且彼此相距一特定距離;第6A~6B圖是依據本揭示內容的一些實施例所繪示的第5A~5B圖的元件格的另一示例性佈局的不同展開圖,其中該些裝置皆連接在一起以形成一個CMOS反相器;以及第7圖是依據本揭示內容的一些實施例所繪示的利用一個或多個FinFET裝置形成元件格之方法的流程圖,其中該元件格的寬度被鰭形OD區域的節距而非POLY線的節距所定義。 1A-1B are exemplary plan views of two different component cell layouts in accordance with some embodiments of the present disclosure, wherein the width of the component cell layout is defined by the pitch of the POLY line; 2A-2B A plan view of a different example of two component cell layouts of Figures 1A-1B, respectively, in accordance with some embodiments of the present disclosure, wherein the width of the component cell is determined by the fin OD region rather than the pitch of the POLY line. Definitions; FIGS. 3A-3B are different expanded (unfolded) diagrams of an exemplary component layout of FIG. 2A in accordance with some embodiments of the present disclosure; FIGS. 4A-4B are diagrams in accordance with the present disclosure Different development views of another exemplary layout of the component of the 3A-3B diagram of the embodiment, wherein the devices are connected together to form a CMOS inverter; 5A-5B are different developments of an exemplary layout of the component cells of FIG. 1A, in which adjacent fin OD regions are horizontally staggered and at a particular distance from one another, in accordance with some embodiments of the present disclosure. 6A-6B are different development views of another exemplary layout of the component cells of FIGS. 5A-5B according to some embodiments of the present disclosure, wherein the devices are all connected together to form a CMOS. Inverter; and Figure 7 is a flow diagram of a method of forming a component cell using one or more FinFET devices, wherein the width of the component cell is segmented by a fin shaped OD region, in accordance with some embodiments of the present disclosure The pitch is defined instead of the pitch of the POLY line.

以下揭示內容提供許多不同實施例,例如實施所揭露專利標的不同特徵構造。元件與排列之特定範例如下所敘述以簡化本揭示內容,並且僅為舉例說明並非用以限定本揭示內容。舉例來說,後段敘述中形成第一特徵於第二特徵上可能包含第一特徵與第二特徵是以直接接觸方式形成的實施例,也可能包含其他特徵形成於第一第二特徵間,以使第一及第二特徵可能不是直接接觸的實施例。另外,本揭示內容可重複參考標號及/或文字於不同的例子中。這種重複是為了簡化及清楚之目的且並非限定所討論的不同實施例及/或配置之間的關係。 The following disclosure provides many different embodiments, such as implementing different features of the disclosed subject matter. Specific examples of components and permutations are set forth below to simplify the disclosure and are not intended to limit the disclosure. For example, forming a first feature in the following description on the second feature may include an embodiment in which the first feature and the second feature are formed in direct contact, and may also include other features formed between the first and second features to Embodiments in which the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or words in different examples. This repetition is for the purpose of simplicity and clarity and is not a limitation of the various embodiments and/

另外,和空間相關的術語,例如「在......底下」、「以下」、「低於」、「在......之上」、「高於」等等,於此可以被用來簡單描述圖式中的元件和/或特徵與另一個(或多個)元件和/或特徵的關係。這些和空間相關的術語除了包含圖式中所示的方向以外還包含使用和/或操作中的裝置的不同的方向。裝置可以以其他方式定向(例如旋轉90度或處於其他方向)並且在此所使用的和空間相關的描述詞被相應地解釋。應被瞭解的是,當一元件被稱「連接至」或「耦接至」另一元件時,這可為直接連接或耦接至其他元件,或者存在一或多個中介元件。 In addition, space-related terms such as "under", "below", "below", "above", "above", etc. The relationship of elements and/or features in the figures to the other element(s) and/or features may be used. These spatially related terms encompass different orientations of the device in use and/or operation in addition to the orientation shown in the drawings. The device may be otherwise oriented (eg, rotated 90 degrees or in other directions) and the spatially related descriptors used herein are interpreted accordingly. It will be appreciated that when an element is referred to as being "connected" or "coupled" to another element, this may be directly connected or coupled to the other element, or one or more intervening elements.

依據一些實施例,使用於元件格結構中的鰭形氧化擴散(oxide diffused;OD)區域以及多晶矽(polycrystalline silicon;POLY)線被均勻且平均地間隔。一對相鄰的鰭形OD區域的間隔或一對相鄰的POLY線之間的間隔分別被稱作該些鰭形OD區域的節距或該些POLY線的節距。在一實施例中,元件格的寬度可以被POLY線的節距乘上元件格中POLY線的數量所定義,或者被鰭形OD區域的節距乘上元件格中鰭形OD區域的數量所定義,如同以下所進行的詳細討論。隨著半導體製程技術的進展,鰭形OD區域的節距持續降低,且於一些實施例中,鰭形OD區域的節距小於POLY線的節距。 According to some embodiments, the finned oxide diffused (OD) regions and the polycrystalline silicon (POLY) lines used in the cell structure are evenly and evenly spaced. The spacing of a pair of adjacent fin-shaped OD regions or the spacing between a pair of adjacent POLY lines is referred to as the pitch of the fin-shaped OD regions or the pitch of the POLY lines, respectively. In an embodiment, the width of the component grid may be defined by the pitch of the POLY line multiplied by the number of POLY lines in the component cell, or by the pitch of the fin OD region multiplied by the number of fin OD regions in the component cell. The definition is as discussed in detail below. As semiconductor process technology advances, the pitch of the fin OD regions continues to decrease, and in some embodiments, the pitch of the fin OD regions is less than the pitch of the POLY lines.

依據一些實施例,寬度被鰭形OD區域所定義的元件格結構可以被用以佈局出以及製造出半導體元件格(cell grid)/電路。半導體元件格/電路具有複數個利用 FinFET製程所製作的互補式金屬氧化物半導體(complementary metal oxide semiconductor;CMOS)裝置。於此,元件格的寬度被鰭形OD區域的節距乘上元件格中鰭形OD區域的數量所決定。當鰭形OD區域的節距小於POLY線的節距時,若在元件格中實現出相同數量的CMOS裝置,以鰭形OD區域之節距所定義的元件格的寬度小於以POLY線之節距所定義的元件格的寬度。如此一來,由於元件格的高度於電路設計中已經固定,藉由使用以鰭形OD區域的節距所定義的元件格,元件格的佈局面積會被降低。 According to some embodiments, a cell structure whose width is defined by a fin OD region can be used to lay out and fabricate a semiconductor cell grid/circuit. Semiconductor component cell/circuit has multiple uses A complementary metal oxide semiconductor (CMOS) device fabricated by a FinFET process. Here, the width of the component grid is determined by the pitch of the fin OD region multiplied by the number of fin OD regions in the component cell. When the pitch of the fin-shaped OD region is smaller than the pitch of the POLY line, if the same number of CMOS devices are implemented in the component cell, the width of the component cell defined by the pitch of the fin-shaped OD region is smaller than the pitch of the POLY line. The width of the defined component cell. As a result, since the height of the component cell is fixed in the circuit design, the layout area of the component cell is reduced by using the component cell defined by the pitch of the fin-shaped OD region.

例如,第1A~1B圖是依據鰭式場效電晶體(fin field-effect transistor;FinFET)裝置佈局技術所繪示的兩個不同元件格佈局的平面圖,該元件格佈局的寬度被POLY線的節距所定義。 For example, FIGS. 1A-1B are plan views of two different component grid layouts according to a fin field-effect transistor (FinFET) device layout technique, the width of the component grid layout being the section of the POLY line. Distance defined.

以第1A以及1B圖示例而言,各元件格包含複數條平均間隔的多晶矽(polycrystalline silicon;POLY)線102以及複數個平均間隔的鰭形氧化擴散(oxide diffused;OD)區域104。POLY線102以第一方向(例如:垂直)配置。鰭形OD區域104以第二方向(例如:水平)配置。POLY線102與鰭形OD區域104實質上彼此以正交方向(例如:垂直方向相對於水平方向)配置在半導體基板的不同層。各元件格包含N型材料106以及P型材料108。N型材料106被使用來形成複數個PMOS裝置。P型材料108被使用來形成複數個NMOS裝置。兩種型式的材料分別顯示在元件格的上部以及下部且被分隔線109所分開。以第1A以及1B圖 示例而言,POLY線102的節距為兩相鄰POLY線102之中線之間的距離,且被以X代表。相似地,鰭形OD區域104的節距為兩相鄰鰭形OD區域104之中線之間的距離,且被以Y代表。在第1A以及1B圖的示例中,X與Y之間的比例為X=2Y。也就是說,鰭形OD區域104之節距是POLY線102之節距的一半。 In the example of FIGS. 1A and 1B, each of the component cells includes a plurality of polycrystalline silicon (POLY) lines 102 equally spaced, and a plurality of evenly spaced finned oxide diffusion (OD) regions 104. The POLY line 102 is configured in a first direction (eg, vertical). The fin OD region 104 is configured in a second direction (eg, horizontal). The POLY line 102 and the fin OD region 104 are substantially disposed in different layers of the semiconductor substrate in an orthogonal direction (eg, a vertical direction with respect to a horizontal direction). Each component cell includes an N-type material 106 and a P-type material 108. N-type material 106 is used to form a plurality of PMOS devices. P-type material 108 is used to form a plurality of NMOS devices. Two types of materials are shown on the upper and lower portions of the component grid and separated by a dividing line 109. Take pictures 1A and 1B For example, the pitch of the POLY line 102 is the distance between the lines of two adjacent POLY lines 102 and is represented by X. Similarly, the pitch of the fin OD regions 104 is the distance between the lines of the two adjacent fin OD regions 104 and is represented by Y. In the examples of FIGS. 1A and 1B, the ratio between X and Y is X=2Y. That is, the pitch of the fin OD regions 104 is half the pitch of the POLY line 102.

以第1A圖示例而言,元件格的高度在電路設計過程中被決定且通常於元件格的佈局過程中不會被改變,且元件格的高度等於鰭形OD區域104的節距Y乘上元件格中平均間隔的鰭形OD區域104的數量。以第1A圖示例而言,元件格的高度為12Y(8個鰭形OD區域104與4個未被占據的點110之間的11個間隔,加上2個位於元件格的上邊以及底邊的1/2間隔,以提供總共12Y)。注意,基於設計規則及/或元件格中裝置的位置,某些點/地點110可以不被鰭形OD區域104占據(也就是說,不被氧化物擴散)。第1A圖中元件格的寬度等於POLY線102的節距乘上元件格中POLY線102的數量。在這個例子中,其等於3X(3條POLY線102之間的2個間隔,加上2個位於元件格的左邊以及右邊的1/2間隔,以提供總共3個間隔或節距),如第1A圖所示。如此,由於在這個例子中X=2Y,因此第1A圖中的元件格的面積為3X×12Y=18X2In the example of FIG. 1A, the height of the component cell is determined during the circuit design process and is generally not changed during the layout of the component cell, and the height of the component cell is equal to the pitch Y of the fin OD region 104. The number of fin-shaped OD regions 104 that are equally spaced in the upper cell. In the example of Figure 1A, the height of the component grid is 12Y (11 intervals between the 8 fin OD regions 104 and the 4 unoccupied points 110, plus 2 are located on the top and bottom of the component grid 1/2 spacing of the sides to provide a total of 12Y). Note that certain points/sites 110 may not be occupied by the fin-shaped OD region 104 (that is, not diffused by the oxide) based on design rules and/or the location of the devices in the component cell. The width of the component cell in Figure 1A is equal to the pitch of the POLY line 102 multiplied by the number of POLY lines 102 in the component cell. In this example, it is equal to 3X (2 intervals between 3 POLY lines 102, plus 2 1/2 intervals on the left and right sides of the cell to provide a total of 3 intervals or pitches), such as Figure 1A shows. Thus, since X = 2Y in this example, the area of the component cell in Fig. 1A is 3X x 12Y = 18X 2 .

對於如第1B圖中所示之另一種(不同的)例子的元件格佈局,雖然基於元件格中裝置的數量及/或高度,該元件格中具有較少數量(這個例子中為4個)的鰭形OD區 域104,元件格的高度被預先決定且仍可以被計算為12Y(8個鰭形OD區域104與4個未被占據的點110之間的11個間隔,加上2個位於元件格的上邊以及底邊的1/2間隔,以提供總共12Y)。元件格的寬度也可以依據元件格中POLY線102的數量被決定為3X(3個POLY線102之間的2個間隔,加上2個位於元件格的左邊以及右邊的1/2間隔,以提供總共3個間隔或節距),如第1B圖所示。如此,即使在這個例子中具有較少數量的鰭形OD區域104(這個例子為4,第1A圖的例子為8),第1B圖中元件格的面積與第1A圖中元件格的面積相同為3X×12Y=18X2For a different (different) example of the component grid layout as shown in Figure 1B, although there are fewer numbers in the component grid based on the number and/or height of the devices in the component cell (four in this example) The fin OD area 104, the height of the component grid is predetermined and can still be calculated as 12Y (11 intervals between the 8 fin OD areas 104 and the 4 unoccupied points 110, plus 2 The upper edge of the component cell and the 1/2 spacing of the bottom edge provide a total of 12Y). The width of the component grid can also be determined to be 3X according to the number of POLY lines 102 in the component cell (two intervals between three POLY lines 102, plus two 1/2 intervals on the left and right sides of the component grid, A total of 3 intervals or pitches are provided, as shown in Figure 1B. Thus, even in this example, there are a small number of fin-shaped OD regions 104 (this example is 4, and the example of FIG. 1A is 8), and the area of the component cell in the first panel is the same as the area of the component cell in the first panel AA. It is 3X×12Y=18X 2 .

第2A圖顯示與第1A圖相同的元件格的示例佈局,但元件格的寬度被以鰭形OD區域104的節距Y而非POLY線102的節距X所定義。第2A圖的元件格實現與第1A圖的元件組相同的電晶體以及裝置。然而,與第1A圖的元件格的佈局不同的是,在現在的例子中該些鰭形OD區域104是垂直地配置且錯開。鰭形OD區域104沿著水平方向(例如,X軸方向)垂直地配置。POLY線102相較於水平方向上的鰭形OD區域104(例如,X軸方向)正交地(例如,Y軸方向)設置。利用這種佈局方式,元件格的高度維持相同且等於POLY線102的節距乘上元件格中POLY線102之間的節距數量(這個例子為6)。也就是說,第2圖中所顯示的6X。然而,元件格的寬度現在是以鰭形OD區域104的節距Y乘上元件格中被一或多個鰭形OD區域104占據的位置或點的數量所決定。各點沿著水平方向的寬度等於一個鰭形 OD區域104的寬度。以第2A圖示例而言,以鰭形OD區域104所定義的元件格寬度等於4Y(也就是說,4個錯開排列的OD區域104之間的3個間隔,加上2個位於元件格的左邊以及右邊的1/2間隔,以提供總共4個間隔或節距)。各個位置被兩個垂直配向的OD區域104所占據以形成總共8個鰭形OD區域104。兩個垂直配向的OD區域104形成一組。各組的兩個OD區域104相對錯開於相鄰另一組的兩個垂直配向的OD區域104。如此,基於X=2Y,第2A圖中元件格的面積為6X×4Y=12X2。此顯著地小於第1A圖相同元件格的佈局面積(18X2相對於12X2)。 Figure 2A shows an example layout of the same component grid as Figure 1A, but the width of the component grid is defined by the pitch Y of the fin OD region 104 rather than the pitch X of the POLY line 102. The component cell of Fig. 2A realizes the same transistor and device as the component group of Fig. 1A. However, unlike the layout of the component cells of FIG. 1A, in the present example, the fin-shaped OD regions 104 are vertically arranged and staggered. The fin-shaped OD region 104 is vertically arranged in the horizontal direction (for example, the X-axis direction). The POLY line 102 is disposed orthogonally (for example, the Y-axis direction) than the fin-shaped OD region 104 (for example, the X-axis direction) in the horizontal direction. With this layout, the height of the component cells remains the same and is equal to the pitch of the POLY line 102 multiplied by the number of pitches between the POLY lines 102 in the component cell (this example is 6). That is, 6X shown in Figure 2. However, the width of the component grid is now determined by the pitch Y of the fin OD region 104 multiplied by the number of locations or points in the component cell that are occupied by one or more fin OD regions 104. The width of each point along the horizontal direction is equal to the width of one fin OD area 104. In the example of FIG. 2A, the cell width defined by the fin OD region 104 is equal to 4Y (that is, 3 intervals between the 4 staggered OD regions 104, plus 2 in the component grid The left and right 1/2 intervals to provide a total of 4 intervals or pitch). Each location is occupied by two vertically aligned OD regions 104 to form a total of eight fin OD regions 104. Two vertically aligned OD regions 104 form a group. The two OD regions 104 of each group are relatively offset from the two vertically aligned OD regions 104 of another adjacent group. Thus, based on X = 2Y, the area of the component cell in Fig. 2A is 6X × 4Y = 12X 2 . This is significantly smaller than the layout area of the same component of Figure 1A (18X 2 versus 12X 2 ).

以第2A圖示例而言,當元件格的高度被預先決定且通常於元件格的佈局過程中不會被改變,藉由以鰭形OD區域104的節距定義元件格寬度且鰭形OD區域104的節距可以小於POLY線102的節距,元件格的佈局面積可具有顯著的降低。多個鰭形OD區域104可以在相同水平位置錯開以節省第1A圖中未被鰭形OD區域104占據的點110的空間。以另一個例子示例而言,第2B圖顯示與第1B圖相同的元件格的示例佈局,但元件格的寬度被以鰭形OD區域104的節距Y而非POLY線102的節距X所定義。由於第2B圖中所顯示的元件格佈局的例子相較於第2A圖中的例子具有較少數量(4相對於8)的鰭形OD區域104,被以鰭形OD區域104定義的元件格的寬度等於2Y(也就是說,2個錯開的OD區域104之間的1個間隔,加上2個位於元件格的左邊以及右邊的1/2間隔,以提供總共2個間隔或節距)。如此,當 X=2Y,元件格的面積現在等於6X×2Y=12X2。相較於第1B圖中相同的元件格的佈局,這使得元件格的佈局面積有相當巨大的降低(18X2相對於6X2)。 In the example of FIG. 2A, when the height of the component cell is predetermined and is generally not changed during the layout of the component cell, the cell width and the fin shape OD are defined by the pitch of the fin OD region 104. The pitch of the regions 104 may be less than the pitch of the POLY lines 102, and the layout area of the component cells may have a significant reduction. The plurality of fin OD regions 104 may be staggered at the same horizontal position to save space in point 1A that is not occupied by the fin OD region 104. In another example, Figure 2B shows an example layout of the same component grid as Figure 1B, but the width of the component grid is taken at the pitch Y of the fin OD region 104 instead of the pitch X of the POLY line 102. definition. Since the example of the layout of the component grid shown in FIG. 2B has a smaller number (4 vs. 8) of the fin-shaped OD region 104 than the example in FIG. 2A, the component lattice defined by the fin-shaped OD region 104 The width is equal to 2Y (that is, 1 interval between 2 staggered OD regions 104, plus 2 1/2 spacing on the left and right sides of the component grid to provide a total of 2 intervals or pitch) . Thus, when X = 2Y, the area of the component cell is now equal to 6X x 2Y = 12X 2 . This results in a considerable reduction in the layout area of the component grid (18X 2 versus 6X 2 ) compared to the layout of the same component grid in Figure 1B.

第3A以及3B圖顯示第2A圖的元件格的示例性佈局的不同展開(未摺)圖。各元件格的寬度被以鰭形OD區域104的節距Y所定義。第3A圖顯示元件格的佈局圖,元件格包含元件格中的POLY線、OD區域、切割POLY(Cut-POLY)、以及垂直金屬線。如第3A圖所示,POLY線102_1至102_7橫跨元件格配置成平均間隔的水平線段。鰭形OD區域104_1至104_4橫跨元件格垂直地設置且錯開於許多水平位置。電力線112以及114為分別連接至高電壓源VDD以及低電壓源VSS的垂直金屬線。垂直金屬線116被用來連接元件格中的不同裝置。 Figures 3A and 3B show different expanded (unfolded) views of an exemplary layout of the component cells of Figure 2A. The width of each component cell is defined by the pitch Y of the fin OD region 104. Figure 3A shows a layout of the component cell, which contains the POLY line, the OD area, the cut POLY (POL-POLY), and the vertical metal line in the component cell. As shown in FIG. 3A, the POLY lines 102_1 to 102_7 are arranged across the element grid as an evenly spaced horizontal line segment. The fin-shaped OD regions 104_1 to 104_4 are vertically disposed across the component grid and are staggered in a plurality of horizontal positions. The power lines 112 and 114 are vertical metal lines respectively connected to the high voltage source VDD and the low voltage source VSS. Vertical metal lines 116 are used to connect different devices in the cell.

第3B圖更顯示被實現(或錯開)於元件格中的複數個P型金屬氧化物半導體(p-type metal oxide semiconductor;PMOS)裝置120以及複數個N型金屬氧化物半導體(n-type metal oxide semiconductor;NMOS裝置122。由於多個PMOS或NMOS裝置可以共享相同的POLY線102,如第3B圖,複數個切割POLY(CPOs)118將多個PMOS裝置或NMOS裝置所共享的POLY線102切割成多個未連接的線段,以使各個PMOS裝置120或NMOS裝置122成為元件格中具有自身之POLY線線段的獨立裝置。CPOs118為用以切割元件的POLY,用以將多個裝置所共享的各POLY線102切割成分離的片段。如第3B圖所示,各個 PMOS裝置120以及NMOS裝置122具有其閘極,其閘極連接至其中一條POLY線(例如:分別為102_2、102_3、102_5以及102_6),該些POLY線攜帶輸入訊號至相應的閘極。各個PMOS以及NMOS裝置的源極以及汲極形成於相應的鰭形OD區域104_1至104_8。在一些實施例中,PMOS以及NMOS裝置的汲極所在的OD區域分別被POLY線102_1、102_4以及102_7連接。在一些實施例中,一個或多個PMOS裝置120(例如:PMOS-3)以及一個或多個NMOS裝置122(例如:NMOS-1)可以被連接在一起以形成一個CMOS裝置130。針對一個非限制性的例子,如第3B圖所示,藉由接觸穿孔128連接兩個OD區域104至POLY線102_4,PMOS裝置120(例如:PMOS-3)的汲極連接NMOS裝置122(例如:NMOS-1)的汲極。PMOS裝置120(PMOS-3)的汲極形成於相應的OD區域104_1。NMOS裝置120(例如:PMOS-3)的汲極形成於相應的OD區域104_1。NMOS裝置122(NMOS-1)的汲極形成於相應的OD區域104_6。在一些實施例中,POLY線102_3以及102_5分別攜帶輸入訊號至PMOS-3以及NMOS-1的閘極。POLY線102_3以及102_5也可以藉由連接線(圖未示)被連接,以使兩個裝置得以共享一個相同的輸入。在這種方式下,PMOS-3以及NMOS-1可以藉由將其汲極相連接以及將其閘極輸入相連接,以形成CMOS裝置130。PMOS-3裝置的源極與NMOS-1裝置的源極透過相應的CPO118彼此絕緣。PMOS-3裝置的源極形成於PMOS-4裝置上方的OD 區域104_1。NMOS-1裝置的源極形成於NMOS-1裝置下方的OD區域104_6。在一些實施例中,PMOS-3的源極以及NMOS-1的源極透過導電線段或線(圖未示)分別連接至VDD以及VSS。額外的CMOS裝置130可以以相似的方式形成於其它對PMOS裝置120與NMOS裝置122(例如:PMOS-4以及NMOS-2)之間。另外,被瞭解的是在PMOS裝置120以及NMOS裝置122的汲極、源極及/或閘極之間的不同連接可依據需求而形成不同形式的CMOS裝置。 Figure 3B further shows a plurality of p-type metal oxide semiconductor (PMOS) devices 120 implemented in (or staggered) in the component cell and a plurality of N-type metal oxide semiconductors (n-type metal) Oxide device 122. Since a plurality of PMOS or NMOS devices can share the same POLY line 102, as in FIG. 3B, a plurality of dicing POLY (CPOs) 118 cut the POLY line 102 shared by a plurality of PMOS devices or NMOS devices. A plurality of unconnected line segments are formed such that each PMOS device 120 or NMOS device 122 becomes a separate device having its own POLY line segment in the component cell. The CPOs 118 are POLY for cutting components for sharing by a plurality of devices. Each POLY line 102 is cut into separate segments. As shown in Figure 3B, each The PMOS device 120 and the NMOS device 122 have their gates connected to one of the POLY lines (eg, 102_2, 102_3, 102_5, and 102_6, respectively), which carry the input signals to the corresponding gates. Sources and drains of the respective PMOS and NMOS devices are formed in the respective fin OD regions 104_1 to 104_8. In some embodiments, the OD regions of the PMOS and the drain of the NMOS device are connected by the POLY lines 102_1, 102_4, and 102_7, respectively. In some embodiments, one or more PMOS devices 120 (eg, PMOS-3) and one or more NMOS devices 122 (eg, NMOS-1) can be connected together to form one CMOS device 130. For one non-limiting example, as shown in FIG. 3B, the two OD regions 104 are connected to the POLY line 102_4 by contact vias 128, and the drain of the PMOS device 120 (eg, PMOS-3) is connected to the NMOS device 122 (eg, : NMOS-1) bungee. The drain of the PMOS device 120 (PMOS-3) is formed in the corresponding OD region 104_1. The drain of the NMOS device 120 (for example, PMOS-3) is formed in the corresponding OD region 104_1. The drain of the NMOS device 122 (NMOS-1) is formed in the corresponding OD region 104_6. In some embodiments, the POLY lines 102_3 and 102_5 carry the input signals to the gates of PMOS-3 and NMOS-1, respectively. The POLY lines 102_3 and 102_5 can also be connected by a connecting line (not shown) so that the two devices can share the same input. In this manner, PMOS-3 and NMOS-1 can be formed into CMOS device 130 by connecting their drains and connecting their gate inputs. The source of the PMOS-3 device and the source of the NMOS-1 device are insulated from each other by a corresponding CPO 118. The source of the PMOS-3 device is formed on the OD above the PMOS-4 device Area 104_1. The source of the NMOS-1 device is formed in the OD region 104_6 below the NMOS-1 device. In some embodiments, the source of PMOS-3 and the source of NMOS-1 are coupled to VDD and VSS, respectively, through conductive line segments or lines (not shown). Additional CMOS devices 130 may be formed in a similar manner between other pairs of PMOS devices 120 and NMOS devices 122 (eg, PMOS-4 and NMOS-2). Additionally, it is understood that different connections between the PMOS device 120 and the drain, source, and/or gate of the NMOS device 122 can form different forms of CMOS devices as desired.

第4A~4B圖顯示第3A~3B圖的元件格的佈局的另一實施例的不同的展開圖,以繪示了兩個或更多的PMOS裝置如何可被平行地連接在一起以形成一個較大的PMOS裝置,以及兩個或更多的NMOS裝置如何可被平行地連接在一起以形成一個較大的NMOS裝置。第4A~4B圖中的POLY線102_1至102_7以及OD區域104_1至104_8相同於第3A~3B圖所示。第4A圖是依據一實施例顯示元件格的佈局圖。相較於第3A圖的例子所顯示的佈局,第4A圖所繪示的佈局更包含水平金屬線124_1至124_6,其與垂直金屬線112、114以及116在不同的金屬層且可藉由金屬接觸/穿孔126而連接至垂直金屬線112、114以及116。如第4A圖所示,金屬線116_1透過穿孔126_1至126_4分別連接POLY線102_2、102_3、102_5以及102_6。這些POLY線攜帶輸入至該些PMOS裝置120以及該些NMOS裝置122的閘極。如此,所有的PMOS裝置120以及NMOS裝置122共享相同的輸入。相似地,金屬線116_2透過穿孔126_5至 126_8分別將水平金屬線124_1、124_3、124_4以及124_6連接在一起。在一些實施例中,這些水平金屬線依據電路設計/佈局規則而從PMOS裝置120以及NMOS裝置122的汲極攜帶輸出。如此,所有的PMOS裝置120以及NMOS裝置122共享相同的輸出。水平金屬線124_2以及124_5分別透過垂直金屬線112以及垂直金屬線114連接至VDD以及VSS。CPOs(Cut-POLYs)118被用來終止被多個裝置共享的特定POLY線102。由於多個PMOS裝置120以及NMOS裝置122現在共享相同的輸入,因此相較於第3A~3B圖的例子(8個CPOs),第4A圖以及第4B圖需要較少數量的CPO118(4個CPOs)。 4A-4B show different development views of another embodiment of the layout of the component cells of FIGS. 3A-3B to illustrate how two or more PMOS devices can be connected in parallel to form one Larger PMOS devices, and how two or more NMOS devices can be connected together in parallel to form a larger NMOS device. The POLY lines 102_1 to 102_7 and the OD areas 104_1 to 104_8 in FIGS. 4A to 4B are the same as those shown in FIGS. 3A to 3B. Figure 4A is a layout diagram showing a component cell in accordance with an embodiment. Compared to the layout shown in the example of FIG. 3A, the layout illustrated in FIG. 4A further includes horizontal metal lines 124_1 to 124_6 which are in different metal layers from the vertical metal lines 112, 114 and 116 and can be made of metal. Contact/perforation 126 is connected to vertical metal lines 112, 114, and 116. As shown in FIG. 4A, the metal line 116_1 is connected to the POLY lines 102_2, 102_3, 102_5, and 102_6 through the through holes 126_1 to 126_4, respectively. These POLY lines carry the gates input to the PMOS devices 120 and the NMOS devices 122. As such, all PMOS devices 120 and NMOS devices 122 share the same input. Similarly, the metal line 116_2 passes through the through hole 126_5 to 126_8 connects the horizontal metal lines 124_1, 124_3, 124_4, and 124_6, respectively. In some embodiments, these horizontal metal lines carry output from the PMOS device 120 and the drain of the NMOS device 122 in accordance with circuit design/layout rules. As such, all PMOS devices 120 and NMOS devices 122 share the same output. The horizontal metal lines 124_2 and 124_5 are connected to VDD and VSS through the vertical metal line 112 and the vertical metal line 114, respectively. CPOs (Cut-POLYs) 118 are used to terminate a particular POLY line 102 that is shared by multiple devices. Since the plurality of PMOS devices 120 and NMOS devices 122 now share the same input, Figures 4A and 4B require a smaller number of CPOs (4 CPOs) than the examples of Figures 3A-3B (8 CPOs). ).

第4B圖顯示被實現(以及錯開)在元件格中的複數個PMOS裝置120與NMOS裝置122,外加第4A圖中的POLY線102、鰭形OD區域104以及切割POLYs118。在一些實施例中,兩個或更多的PMOS裝置(例如:PMOS-3以及PMOS-4)之形成於其相應的鰭形OD區域104_1以及104_3的汲極可以藉由POLY線102_4透過接觸穿孔128彼此電性耦接,以使PMOS裝置共享相同的汲極(其源極可以連接至VDD穿孔,例如:第4A圖中所示的水平金屬線124_2)。由於PMOS裝置120也共享相同的輸入以及輸出,如同上述針對第4A圖之討論,其現在以平行的方式連接(也就是說,其共享相同源極、汲極/輸出、以及閘極/輸入)以形成一個更大的PMOS裝置132。PMOS裝置132的寬度是單一個PMOS裝置120的寬度的好幾倍。注意,在取而代之 的實施例中,PMOS裝置120與NMOS裝置122之間各種取而代之的連接可依據需求形成取而代之的電路及/或裝置,其不同於第4B圖中所繪示的特定連接。舉例來說,額外的PMOS裝置(例如:PMOS-1以及PMOS-2及/或額外未被繪示的PMOS裝置)的汲極也可以透過額外的(複數)連接元件(圖未示)耦接至PMOS-3以及PMOS-4的汲極,使得所有的PMOS裝置共享相同的汲極。 Figure 4B shows a plurality of PMOS devices 120 and NMOS devices 122 implemented (and staggered) in the component cell, plus the POLY line 102, the fin OD region 104, and the cut POLYs 118 in Figure 4A. In some embodiments, the drains of two or more PMOS devices (eg, PMOS-3 and PMOS-4) formed in their respective fin OD regions 104_1 and 104_3 may be perforated through the contact via the POLY line 102_4. The 128s are electrically coupled to each other such that the PMOS devices share the same drain (the source of which can be connected to the VDD via, eg, the horizontal metal line 124_2 shown in FIG. 4A). Since PMOS devices 120 also share the same inputs and outputs, as discussed above for Figure 4A, they are now connected in parallel (that is, they share the same source, drain/output, and gate/input). To form a larger PMOS device 132. The width of the PMOS device 132 is several times the width of a single PMOS device 120. Note that it is replaced In various embodiments, various alternative connections between PMOS device 120 and NMOS device 122 may be substituted for circuits and/or devices as desired, which are different than the particular connections depicted in FIG. 4B. For example, the drains of additional PMOS devices (eg, PMOS-1 and PMOS-2 and/or additional PMOS devices not shown) can also be coupled through additional (plural) connection components (not shown). The drains to PMOS-3 and PMOS-4 allow all PMOS devices to share the same drain.

舉例而言,在一實施例中,藉由延長位於POLY線102_3下方的OD區域104_2的長度,或者取而代之地藉由提供導電性線段(圖未示)以將POLY線102_3電性連接至102_4,PMOS-1的汲極可以連接至PMOS-3以及PMOS-4的汲極。PMOS-1的汲極形成在與POLY線102_3交叉的鰭形OD區域104_2的下半部。在這個例子中,由於PMOS-1的汲極也連接至PMOS-3以及PMOS-4的閘極,將PMOS-1的汲極連接至PMOS-3以及PMOS-4的閘極也可將PMOS-3的汲極與閘極連接在一起,以及也可將PMOS-4的汲極與閘極連接在一起,使得PMOS-3以及PMOS-4作為二極體。假若這種二極體配置不具需求,切割-POLY118(圖未示)可以形成在OD區域104_2與POLY線102_3的交叉處的周圍,以使PMOS-1的汲極絕緣於PMOS-3的閘極與PMOS-4的閘極,從而使得在PMOS-1的閘極與PMOS-4的閘極在沒有連接至其相應的汲極的情況下,PMOS-1的汲極連接至PMOS-3的汲極與PMOS-4的汲極。相似地,PMOS-2的汲極形成於與POLY線102_3交叉的鰭形OD區 域104_4的下半部。藉由延長位於POLY線102_3之下的OD區域104_4的長度,或取而代之地藉由提供一導線線段(圖未示)將POLY線102_3連接至POLY線102_4,可使得PMOS-2的汲極可以連接至PMOS-3以及PMOS-4的汲極。注意,如第4B圖所示,藉由環繞鰭形OD區域104_4以POLY線102_3之交叉處的cut-POLY118,PMOS-2的汲極絕緣於PMOS-3以及PMOS-4的閘極。如此,連接PMOS-2的汲極至PMOS-3的以及PMOS-4的汲極不會將PMOS-3以PMOS-4相應的的汲極以及閘極連接於二極體配置中。上述討論只描述示例性的連接,其可以依據各種不同取代的實施例而改變。被瞭解的是各種不同實施例並不限制於如上所述的特定連接或者不限制於第4B圖中所示。 For example, in one embodiment, by extending the length of the OD region 104_2 under the POLY line 102_3, or alternatively by providing a conductive line segment (not shown) to electrically connect the POLY line 102_3 to 102_4, The drain of PMOS-1 can be connected to the drains of PMOS-3 and PMOS-4. The drain of the PMOS-1 is formed in the lower half of the fin OD region 104_2 crossing the POLY line 102_3. In this example, since the drain of PMOS-1 is also connected to the gates of PMOS-3 and PMOS-4, the drain of PMOS-1 is connected to the gate of PMOS-3 and PMOS-4. The drain of 3 is connected to the gate, and the drain of PMOS-4 can also be connected to the gate, so that PMOS-3 and PMOS-4 act as diodes. If such a diode configuration is not required, a dicing-POLY 118 (not shown) may be formed around the intersection of the OD region 104_2 and the POLY line 102_3 to insulate the PMOS-1 gate from the PMOS-3 gate. With the gate of PMOS-4, so that the gate of PMOS-1 and the gate of PMOS-4 are not connected to their respective drains, the drain of PMOS-1 is connected to the PMOS-3. Extremely poles with PMOS-4. Similarly, the drain of PMOS-2 is formed in the fin OD region crossing the POLY line 102_3. The lower half of the field 104_4. The PMOS-2 drain can be connected by extending the length of the OD region 104_4 under the POLY line 102_3, or alternatively by connecting a POLY line 102_3 to the POLY line 102_4 by providing a wire segment (not shown). The drain to PMOS-3 and PMOS-4. Note that, as shown in FIG. 4B, the drain of the PMOS-2 is insulated from the gates of the PMOS-3 and the PMOS-4 by the cut-POLY 118 at the intersection of the POLY line 102_3 around the fin OD region 104_4. Thus, the drain connecting PMOS-2 to PMOS-3 and the drain of PMOS-4 does not connect PMOS-3 to the diode configuration with the corresponding drain and gate of PMOS-4. The above discussion describes only exemplary connections, which may vary depending on various alternative embodiments. It is to be understood that the various embodiments are not limited to the specific connections described above or are not limited to those shown in FIG. 4B.

相似地,透過相似於前述所討論的PMOS裝置120的方式,兩個或多個NMOS裝置122也可以平行的方式連接以形成一個較大的NMOS裝置134。在一些實施例中,POLY線102_4連接鰭形OD區域104_1、104_3、104_6以及104_8。PMOS裝置120的汲極以及NMOS裝置122的汲極藉由穿孔128形成在一起,使得所有PMOS裝置120以及所有NMOS裝置122皆共享相同的汲極。結果,兩個較大的PMOS裝置132以及NMOS裝置134可形成一個CMOS裝置136,在其汲極連接在一起的情況下具有相同的輸入以及輸出。 Similarly, two or more NMOS devices 122 may also be connected in parallel to form a larger NMOS device 134 in a manner similar to the PMOS device 120 discussed above. In some embodiments, the POLY line 102_4 connects the fin OD regions 104_1, 104_3, 104_6, and 104_8. The drain of PMOS device 120 and the drain of NMOS device 122 are formed by vias 128 such that all PMOS devices 120 and all NMOS devices 122 share the same drain. As a result, the two larger PMOS devices 132 and NMOS devices 134 can form a CMOS device 136 having the same inputs and outputs with their drains connected together.

除了占據元件格太多的空間之外,繪示於第1A~1B圖中的元件格佈局的例子可能遭遇另一個問題。此 問題的起因是鰭形OD區域104以極度接近的方式彼此水平地配置。鰭形OD區域104的節距太小以致於元件格中不同的元件不能夠被切割或分離開來。 In addition to occupying too much space in the component grid, the example of the layout of the component grids depicted in Figures 1A-1B may encounter another problem. this The cause of the problem is that the fin-shaped OD regions 104 are arranged horizontally to each other in an extremely close manner. The pitch of the fin OD regions 104 is too small for different elements in the component cell to be cut or separated.

第5A~5B圖顯示一種解決上述問題的第1A圖的元件格的佈局的一種例子的不同展開圖。元件格的寬度被POLY線102的節距X所定義。第5A圖是依據一些實施例顯示該元件格的一佈局圖。在這個例子中,POLY線102_1至102_4垂直地配置且平均地間隔,而複數個鰭形OD區域以兩個相鄰的群組(104_1、104_3、104_5以及104_7)及(104_2、104_4、104_6以及104_8)配置,其各自錯開且水平地彼此相距一距離(例如:節距2Y),如第5A圖所示。在鰭型OD區域104具有這種水平位移下,任兩個相近的鰭形OD區域(例如:104_1與104_3,或者104_2以及104_4)之間在沿著水平方向上的一位置上的間隙/分離至少為2Y而非Y,如第5A圖所示。由於鰭形OD區域(例如:104_1以及104_3)之間具有更多空間,因此將CPO118設置於位於鰭形OD區域之間的此空間以將POLY線(例如:102_2)切割成多個未相連的片段是可能的。POLY線(例如:102_2)被多個PMOS裝置120或者多個NMOS裝置122共享。如第5A圖所示,鰭形OD區域104的這種水平位移不會造成以POLY線102之節距所定義的元件格的寬度增加,且等於如第5A圖所示的3X,其相同於第1A圖中的佈局的寬度。 Figs. 5A to 5B are diagrams showing different developments of an example of the layout of the component cell of Fig. 1A for solving the above problem. The width of the component grid is defined by the pitch X of the POLY line 102. Figure 5A is a layout showing the component grid in accordance with some embodiments. In this example, the POLY lines 102_1 to 102_4 are vertically arranged and equally spaced, and the plurality of fin OD areas are in two adjacent groups (104_1, 104_3, 104_5, and 104_7) and (104_2, 104_4, 104_6, and 104_8) Configurations, each of which is staggered and horizontally spaced apart from each other by a distance (eg, pitch 2Y) as shown in FIG. 5A. With the fin-type OD region 104 having such horizontal displacement, gap/separation at a position along the horizontal direction between any two similar fin-shaped OD regions (eg, 104_1 and 104_3, or 104_2 and 104_4) At least 2Y instead of Y, as shown in Figure 5A. Since there is more space between the fin OD regions (eg, 104_1 and 104_3), the CPO 118 is disposed in this space between the fin OD regions to cut the POLY line (eg, 102_2) into a plurality of unconnected Fragments are possible. The POLY line (e.g., 102_2) is shared by a plurality of PMOS devices 120 or a plurality of NMOS devices 122. As shown in FIG. 5A, such horizontal displacement of the fin OD region 104 does not cause an increase in the width of the component grid defined by the pitch of the POLY line 102, and is equal to 3X as shown in FIG. 5A, which is the same as The width of the layout in Figure 1A.

第5B圖顯示PMOS/NMOS裝置120/122以及額外如第5A圖所示的POLY線102、鰭形OD區域104以及 Cut-POLY118。如第5B圖所示,各PMOS裝置120以及NMOS裝置122具有其閘極、源極以及汲極。閘極連接至其中一條POLY線(例如:分別為102_2以及102_3)。源極與汲極形成於其中一個鰭形OD區域104_1至104_8。在一些實施例中,PMOS以及NMOS的汲極所形成的OD區域分別藉由POLY線102_1以及102_4連接。Cut-POLYs(CPOs)118將由複數個PMOS或NMOS裝置所共享的POLY線102_1切割成複數個線段,使得各個PMOS裝置120或NMOS裝置122成為獨立裝置。獨立裝置具有其本身針對輸入訊號的POLY線線段。在一些實施例中,一個或多個PMOS裝置120(例如:PMOS-3)以及一個或多個NMOS裝置122(例如:NMOS-1)可以連接在一起以形成一個CMOS裝置130。針對一個非限制性的例子,如第5B圖所示,藉由透過接觸穿孔128將兩個OD區域104_3以及104_5連接至POLY線102_1,PMOS裝置120(例如:PMOS-3)之形成在相應OD區域104_3的汲極連接至NMOS裝置122(例如:NMOS-1)之形成在相應OD區域104_5的汲極。另外,在一些實施例中,藉由將鰭形OD區域104_1以104_7相應地連接至POLY線102_1,第5B圖中的PMOS-1以及NMOS-3的汲極也彼此連接且連接至PMOS-3以及NMOS-1的汲極。 Figure 5B shows PMOS/NMOS device 120/122 and additional POLY line 102, fin OD area 104 as shown in Figure 5A, and Cut-POLY118. As shown in FIG. 5B, each of the PMOS device 120 and the NMOS device 122 has its gate, source, and drain. The gate is connected to one of the POLY lines (for example: 102_2 and 102_3, respectively). The source and the drain are formed in one of the fin-shaped OD regions 104_1 to 104_8. In some embodiments, the OD regions formed by the drains of the PMOS and the NMOS are connected by the POLY lines 102_1 and 102_4, respectively. Cut-POLYs (CPOs) 118 cut the POLY line 102_1 shared by a plurality of PMOS or NMOS devices into a plurality of line segments such that each PMOS device 120 or NMOS device 122 becomes a separate device. The standalone device has its own line of diagonal lines for the input signal. In some embodiments, one or more PMOS devices 120 (eg, PMOS-3) and one or more NMOS devices 122 (eg, NMOS-1) can be connected together to form one CMOS device 130. For a non-limiting example, as shown in FIG. 5B, by connecting the two OD regions 104_3 and 104_5 to the POLY line 102_1 through the contact via 128, the PMOS device 120 (eg, PMOS-3) is formed at the corresponding OD. The drain of the region 104_3 is connected to the drain of the NMOS device 122 (eg, NMOS-1) formed in the corresponding OD region 104_5. In addition, in some embodiments, the PMOS-1 and the drains of the NMOS-3 in FIG. 5B are also connected to each other and connected to the PMOS-3 by correspondingly connecting the fin OD region 104_1 to the POLY line 102_1 at 104_7. And the NMOS-1 bungee.

在一些實施例中,POLY線102_2的線段相應地攜帶輸入訊號至PMOS-3以及NMOS-1的閘極。POLY線102_2的線段也可以透過連接線段(圖位示)連接,使得兩個 裝置可以共享相同輸入。在這種方式中,透過連接線段(圖未示)使PMOS-3與NMOS-1的汲極連接在一起、使PMOS-3與NMOS-1的閘極輸入連接在一起、使PMOS-3與NMOS-1的源極分別連接至VDD以及VSS,PMOS-3以及NMOS-1可形成一個CMOS裝置130。額外的CMOS裝置130可以以相似的方式形成於其他對(pair)的PMOS裝置120與NMOS裝置122(例如:PMOS-4以及NMOS-2)。如上述關於第3B圖以及第4B圖的討論,依據各種取代的實施例,兩個或更多的PMOS裝置120可以彼此連接,兩個或更多的NMOS裝置122可以彼此連接,或者,一個或更多的PMOS裝置可以連接至一個或更多的NMOS裝置122,以各種方式創造出各種型式的CMOS裝置以及電路。被瞭解的是,各種取而代之的實施例不限定於上述所討論或者圖示所繪示的特定示例性連接。 In some embodiments, the line segments of the POLY line 102_2 carry the input signals to the gates of PMOS-3 and NMOS-1, respectively. The line segment of the POLY line 102_2 can also be connected through the connecting line segment (picture position), so that two Devices can share the same input. In this way, the PMOS-3 is connected to the drain of NMOS-1 through the connection line segment (not shown), the PMOS-3 is connected to the gate input of NMOS-1, and the PMOS-3 is connected. The sources of NMOS-1 are connected to VDD and VSS, respectively, and PMOS-3 and NMOS-1 can form a CMOS device 130. Additional CMOS devices 130 may be formed in a similar manner to other pairs of PMOS devices 120 and NMOS devices 122 (eg, PMOS-4 and NMOS-2). As discussed above with respect to FIGS. 3B and 4B, in accordance with various alternative embodiments, two or more PMOS devices 120 may be connected to each other, and two or more NMOS devices 122 may be connected to each other, or one or More PMOS devices can be connected to one or more NMOS devices 122 to create various types of CMOS devices and circuits in a variety of ways. It is to be understood that the various embodiments are not limited to the specific exemplary connections discussed or illustrated herein.

第6A~6B圖顯示第5A~5B圖中元件格佈局的另一實施例的各種展開圖,其繪示兩個或更多PMOS裝置如何以平行的方式連接在一起以形成一個較大的PMOS裝置,以及繪示兩個或更多NMOS裝置如何以平行的方式連接在一起以形成一個較大的NMOS裝置。第6A~6B圖中POLY線102_1至102_4以及OD區域104_1至104_8的佈局相同於第5A~5B圖中所示。第6A圖依據一實施例顯示出元件格的佈局圖。相較於第5A圖之例子的佈局,第6A圖所繪示的佈局更包含垂直金屬線116_1至116_5,其位於相異於水平金屬線124的金屬層且可以藉由接觸/穿孔126連接至水平 金屬線124以及POLY線102。如第6A圖所示,金屬線124_5透過穿孔126連接POLY線102_2以及102_3,該些POLY線攜帶輸入至PMOS裝置120的閘極以及NMOS裝置122的閘極。如此,PMOS裝置120以及NMOS122共享相同的輸入。相似地,垂直金屬線116_5連接至水平金屬線(例如:124_2至124_4以及124_6至124_8中的一個或多個)。該些水平金屬線攜帶來自PMOS裝置120之汲極以及NMOS裝置122之汲極的輸出。如此,PMOS裝置120以及NMOS裝置122可以共享相同的輸出/汲極。水平金屬線124_1至124_9相應地連接至VDD垂直金屬線116_1/116_2以及VSS垂直金屬線116_3/116_4。Cut-POLYs118被利用來切斷被多個裝置所共享的POLY線102_1或102_2。因為多個PMOS裝置120及/或多個NMOS裝置122現在共享相同的輸入,相較於第5A~B圖的例子(8個CPOs),第6A~6B圖的例子需要更少數量的CPOs118(2個CPO)。 Figures 6A-6B show various developments of another embodiment of the layout of the elements in Figures 5A-5B, showing how two or more PMOS devices are connected together in a parallel manner to form a larger PMOS. The device, and how two or more NMOS devices are connected together in a parallel manner to form a larger NMOS device. The layout of the POLY lines 102_1 to 102_4 and the OD areas 104_1 to 104_8 in FIGS. 6A to 6B is the same as that shown in FIGS. 5A to 5B. Figure 6A shows a layout of the component cells in accordance with an embodiment. Compared to the layout of the example of FIG. 5A, the layout illustrated in FIG. 6A further includes vertical metal lines 116_1 to 116_5 located on the metal layer different from the horizontal metal line 124 and can be connected to the via/perforation 126 to Level Metal line 124 and POLY line 102. As shown in FIG. 6A, the metal line 124_5 is connected to the POLY lines 102_2 and 102_3 through the vias 126, which carry the gates input to the PMOS device 120 and the gates of the NMOS device 122. As such, PMOS device 120 and NMOS 122 share the same input. Similarly, the vertical metal line 116_5 is connected to a horizontal metal line (eg, one or more of 124_2 to 124_4 and 124_6 to 124_8). The horizontal metal lines carry the output from the drain of the PMOS device 120 and the drain of the NMOS device 122. As such, PMOS device 120 and NMOS device 122 can share the same output/drain. The horizontal metal lines 124_1 to 124_9 are connected to the VDD vertical metal lines 116_1/116_2 and the VSS vertical metal lines 116_3/116_4, respectively. Cut-POLYs 118 is utilized to cut off the POLY line 102_1 or 102_2 shared by a plurality of devices. Since multiple PMOS devices 120 and/or multiple NMOS devices 122 now share the same input, the examples of Figures 6A-6B require a smaller number of CPOs 118 than the examples of Figures 5A-B (8 CPOs). 2 CPO).

第6B圖顯示複數個PMOS/NMOS裝置額外加上第6A圖所示的POLY線102、鰭形OD區域104、切割POLY118、以及垂直金屬線116。在一些實施例中,形成於相應鰭形OD區域104_1以及104_3的兩個或更多個PMOS裝置(例如:PMOS_1以及PMOS_3)的汲極可以藉由POLY線102_1透過接觸穿孔128彼此電性耦接,使得該些PMOS裝置共享相同的汲極。如上述相關於第5B圖的討論,其源極連接至VDD。由於該些PMOS裝置120也共享相同的輸入/閘極以及輸出/汲極,如上述相關於第6A圖的討 論,該些PMOS裝置120現在以平行的方式連接(也就是說,其共享相同的源極、汲極/輸出以及閘極/輸入),以形成一個較大的PMOS裝置132。PMOS裝置132的寬度是單一個PMOS裝置120的寬度許多倍。該些NMOS裝置122也可透過相似的方式且以平行的方式連接以形成一個較大的NMOS裝置134。在一些實施例中,POLY線102_1連接鰭形OD區域(例如:104_1、104_3、104_5以104_7),其中該些PMOS裝置的汲極藉由接觸穿孔128連接在一起,使得該些裝置皆共享相同的汲極。如此,兩個較大的PMOS裝置132與NMOS裝置134可以形成一個CMOS裝置136,在其汲極連接在一起的情況下具有相同輸入以及輸出。 Figure 6B shows a plurality of PMOS/NMOS devices additionally with a POLY line 102, a fin OD region 104, a cut POLY 118, and a vertical metal line 116 as shown in Figure 6A. In some embodiments, the drains of the two or more PMOS devices (eg, PMOS_1 and PMOS_3) formed in the respective fin OD regions 104_1 and 104_3 can be electrically coupled to each other through the contact via 128 through the POLY line 102_1. So that the PMOS devices share the same drain. As discussed above in relation to Figure 5B, its source is connected to VDD. Since the PMOS devices 120 also share the same input/gate and output/drain, as described above in relation to FIG. The PMOS devices 120 are now connected in a parallel manner (that is, they share the same source, drain/output, and gate/input) to form a larger PMOS device 132. The width of the PMOS device 132 is many times the width of a single PMOS device 120. The NMOS devices 122 can also be connected in a similar manner and in a parallel manner to form a larger NMOS device 134. In some embodiments, the POLY line 102_1 is connected to the fin OD region (eg, 104_1, 104_3, 104_5 to 104_7), wherein the drains of the PMOS devices are connected together by the contact vias 128 such that the devices share the same Bungee jumping. As such, the two larger PMOS devices 132 and NMOS devices 134 can form a CMOS device 136 having the same input and output with their drains connected together.

第7圖是用以形成元件格的方法700的流程圖,元件格的寬度是被鰭形OD區域的節距而非POLY線所定義。雖然顯示於第2A~B以及3A~B圖中的元件的參考符號被使用在以下非限制性的例子以描述第7圖中的步驟,但方法700並不受限於這些例子或者不受限於這些步驟的特定順序。 Figure 7 is a flow diagram of a method 700 for forming a cell, the width of the cell being defined by the pitch of the fin OD region rather than the POLY line. Although the reference symbols of the elements shown in FIGS. 2A to B and 3A to B are used in the following non-limiting examples to describe the steps in FIG. 7, the method 700 is not limited to these examples or is not limited. The specific order of these steps.

在步驟702,複數多晶矽(POLY)線102形成於元件格,POLY線102水平地形成且以節距X平均地間隔。 At step 702, a plurality of polycrystalline germanium (POLY) lines 102 are formed in the element grid, and the POLY lines 102 are horizontally formed and equally spaced by a pitch X.

在步驟704,複數鰭形氧化擴散(OD)區域104形成於元件格,鰭形OD區域104垂直地形成且以節距Y平均地間隔。鰭形OD區域104的節距Y定義出元件格的寬度。 At step 704, a plurality of fin-shaped oxidized diffusion (OD) regions 104 are formed on the element grid, and fin-shaped OD regions 104 are formed vertically and equally spaced by a pitch Y. The pitch Y of the fin OD region 104 defines the width of the component grid.

在步驟706,至少部分的垂直地形成的鰭形OD區域104沿著水平方向的一相同位置垂直地錯開。 At step 706, at least a portion of the vertically formed fin OD regions 104 are vertically offset along a same location in the horizontal direction.

在步驟708,複數個PMOS電晶體120以及NMOS電晶體122形成於元件格。PMOS電晶體120以及NMOS電晶體122具有其源極節點、汲極節點以及閘極。PMOS120電晶體以及NMOS電晶體122的源極節點與汲極節點形成於鰭形OD區域104。PMOS120電晶體以及NMOS電晶體122的閘極連接至相應的POLY線102。 At step 708, a plurality of PMOS transistors 120 and NMOS transistors 122 are formed in the cell. The PMOS transistor 120 and the NMOS transistor 122 have their source node, drain node, and gate. A source node and a drain node of the PMOS 120 transistor and the NMOS transistor 122 are formed in the fin OD region 104. The PMOS 120 transistor and the gate of NMOS transistor 122 are connected to respective POL line 102.

在步驟710,該些PMOS電晶體120以及該些NMOS電晶體122連接在一起以形成元件格中的一個或多個CMOS裝置。 At step 710, the PMOS transistors 120 and the NMOS transistors 122 are coupled together to form one or more CMOS devices in the component cell.

在一些實施例中,一種元件格結構包含複數條在元件格中的多晶矽(POLY)線以及複數個在元件格中的鰭形氧化擴散(OD)區域。多晶矽線以第一方向配置且以第一節距平均地間隔。鰭形氧化擴散區域以第二方向配置且以第二節距平均地間隔。鰭形氧化擴散區域的第二節距定義出元件格的寬度。元件格結構更包含複數個在元件格中的PMOS電晶體與NMOS電晶體。該些PMOS電晶體以及NMOS電晶體具有形成在鰭形氧化擴散區域中的源極節點以及汲極節點,以及連接至相應之多晶矽線的閘極。該些PMOS電晶體與NMOS電晶體相連在一起以形成元件格中的一個或多個CMOS裝置。 In some embodiments, a component cell structure includes a plurality of polycrystalline (POLY) lines in a cell and a plurality of fin oxidized diffusion (OD) regions in the cell. The polysilicon lines are arranged in a first direction and are evenly spaced at a first pitch. The fin-shaped oxidized diffusion regions are arranged in the second direction and are equally spaced at the second pitch. The second pitch of the fin-shaped oxidized diffusion region defines the width of the component grid. The component cell structure further includes a plurality of PMOS transistors and NMOS transistors in the cell. The PMOS transistors and NMOS transistors have a source node and a drain node formed in the fin-shaped oxide diffusion region, and a gate connected to the corresponding polysilicon line. The PMOS transistors are coupled to an NMOS transistor to form one or more CMOS devices in the component cell.

在一些實施例中,鰭形OD區域的第二節距小於POLY線的第一節距。 In some embodiments, the second pitch of the fin OD region is less than the first pitch of the POLY line.

在一些實施例中,元件格的寬度由鰭形OD區域的第二節距乘上元件格中鰭形OD區域的數量所決定。 In some embodiments, the width of the component grid is determined by the second pitch of the fin OD region multiplied by the number of fin OD regions in the component cell.

在一些實施例中,元件格的高度被預先決定。 In some embodiments, the height of the component grid is predetermined.

在一些實施例中,至少部分的鰭形OD區域在第二方向上錯開於第一方向上的相同位置。 In some embodiments, at least a portion of the fin OD regions are staggered in the second direction at the same location in the first direction.

在一些實施例中,各個CMOS裝置藉由連接至少一個PMOS裝置的一汲極與至少一NMOS裝置的一汲極,以及藉由連接該至少一PMOS裝置的一閘極輸入與該至少一NMOS裝置的一閘極輸入而形成。 In some embodiments, each CMOS device is connected to a drain of at least one PMOS device and a drain of at least one NMOS device, and a gate input connected to the at least one PMOS device and the at least one NMOS device Formed by a gate input.

在一些實施例中,元件格結構更包含至少一POLY線切割元件。POLY線切割元件用以切割複數條POLY線中的至少一條,使得至少一個PMOS裝置或NMOS裝置成為元件格中的一獨立裝置。POLY線被多個PMOS或NMOS裝置共享。 In some embodiments, the component cell structure further comprises at least one POLY wire cutting component. The POLY wire cutting element is configured to cut at least one of the plurality of POLY lines such that at least one PMOS device or NMOS device becomes a separate device in the component cell. The POLY line is shared by multiple PMOS or NMOS devices.

在一些實施例中,兩個或更多個PMOS裝置平行地連接以形成一個較大的PMOS裝置。兩個或更多個NMOS裝置平行地連接以形成一個較大的NMOS裝置。 In some embodiments, two or more PMOS devices are connected in parallel to form one larger PMOS device. Two or more NMOS devices are connected in parallel to form one larger NMOS device.

在一些實施例中,平行連接的PMOS裝置以及NMOS裝置形成一個較大的CMOS裝置。 In some embodiments, the parallel connected PMOS devices and NMOS devices form a larger CMOS device.

在一些實施例中,一種元件格結構包含複數條在元件格中的多晶矽(POLY)線以及複數個在元件格中的鰭形氧化擴散(OD)區域。多晶矽線以第二方向配置且以第一節距平均地間隔。鰭形氧化擴散區域以第一方向配置且以第二節距平均地間隔。相鄰的鰭形氧化擴散區域錯開且水平地彼此相距一距離。元件格結構更包含複數個在元件格中的PMOS電晶體與NMOS電晶體。該些PMOS電晶體以及 NMOS電晶體具有形成在鰭形氧化擴散區域中的源極節點以及汲極節點,以及連接至相應之多晶矽線的閘極。該些PMOS電晶體以及NMOS電晶體相連在一起以形成元件格中的一個或多個CMOS裝置。 In some embodiments, a component cell structure includes a plurality of polycrystalline (POLY) lines in a cell and a plurality of fin oxidized diffusion (OD) regions in the cell. The polysilicon lines are arranged in a second direction and are evenly spaced at a first pitch. The fin-shaped oxidized diffusion regions are arranged in a first direction and are equally spaced at a second pitch. Adjacent fin-shaped oxidized diffusion regions are staggered and horizontally spaced apart from one another. The component cell structure further includes a plurality of PMOS transistors and NMOS transistors in the cell. The PMOS transistors and The NMOS transistor has a source node and a drain node formed in the fin-shaped oxide diffusion region, and a gate connected to the corresponding polysilicon line. The PMOS transistors and NMOS transistors are connected together to form one or more CMOS devices in the cell.

在一些實施例中,沿第一方向上任一點的任兩個最相近的鰭形OD區域之間的空間是第二節距的至少兩倍。 In some embodiments, the space between any two of the closest fin OD regions at any point in the first direction is at least twice the second pitch.

在一些實施例中,一個或更多個POLY線切割元件被配置於兩個最相近的鰭形OD區域之間且用以切割被多個PMOS裝置或NMOS裝置所共享的POLY,使得該些裝置成為完全分離的裝置。 In some embodiments, one or more POLY wire cutting elements are disposed between the two closest fin OD regions and are used to cut the POLY shared by the plurality of PMOS devices or NMOS devices such that the devices Become a completely separate device.

在一些實施例中,兩個或更多個PMOS裝置連接在一起以形成一個較大的PMOS裝置。兩個或更多個NMOS裝置平行地連接以形成一個較大的NMOS裝置。 In some embodiments, two or more PMOS devices are connected together to form one larger PMOS device. Two or more NMOS devices are connected in parallel to form one larger NMOS device.

在一些實施例中,平行連接的PMOS裝置以及NMOS裝置形成一個較大的CMOS裝置。 In some embodiments, the parallel connected PMOS devices and NMOS devices form a larger CMOS device.

在一些實施例中,一種方法包含:形成複數條在元件格中的多晶矽(POLY)線以及形成複數個在元件格中的鰭形氧化擴散(OD)區域。多晶矽線以第一方向配置且以第一節距平均地間隔。鰭形氧化擴散區域以第二方向配置且以第二節距平均地間隔。鰭形氧化擴散區域的第二節距定義出元件格的寬度,且鰭形氧化擴散區域的第二節距小於POLY線的第一節距。方法更包含形成複數個在元件格中的PMOS電晶體與NMOS電晶體以及連接該些PMOS電晶體 與NMOS電晶體以形成複數個在元件格中分離的CMOS裝置。該些PMOS電晶體以及NMOS電晶體具有形成在鰭形氧化擴散區域中的源極節點以及汲極節點,以及連接至相應之多晶矽線的閘極。 In some embodiments, a method includes forming a plurality of polycrystalline (POLY) lines in a cell and forming a plurality of fin-shaped oxidized diffusion (OD) regions in the cell. The polysilicon lines are arranged in a first direction and are evenly spaced at a first pitch. The fin-shaped oxidized diffusion regions are arranged in the second direction and are equally spaced at the second pitch. The second pitch of the fin-shaped oxidized diffusion region defines the width of the cell, and the second pitch of the fin-shaped oxidized diffusion region is less than the first pitch of the POLY line. The method further includes forming a plurality of PMOS transistors and NMOS transistors in the component grid and connecting the PMOS transistors The NMOS transistor is formed to form a plurality of CMOS devices separated in the cell. The PMOS transistors and NMOS transistors have a source node and a drain node formed in the fin-shaped oxide diffusion region, and a gate connected to the corresponding polysilicon line.

在一些實施例中,方法更包含:藉由將鰭形OD區域的第二節距乘上元件格中鰭形OD區域的數量決定元件格的寬度。 In some embodiments, the method further comprises determining the width of the component grid by multiplying the second pitch of the fin OD region by the number of fin OD regions in the component cell.

在一些實施例中,方法更包含:於第二方向上錯開至少部分的鰭形OD區域於第一方向上的相同位置。 In some embodiments, the method further comprises: staggering at least a portion of the fin OD regions in the second direction at the same location in the first direction.

在一些實施例中,方法更包含:藉由連接至少一PMOS裝置的相應的閘極輸入與至少一NMOS裝置的相應的閘極輸入,以及連接該至少一PMOS裝置的相應的汲極節點與該至少一NMOS裝置的相應的閘極汲極節點。 In some embodiments, the method further includes: connecting a corresponding gate input of the at least one PMOS device with a corresponding gate input of the at least one NMOS device, and connecting a corresponding drain node of the at least one PMOS device with the At least one corresponding gate buck node of the NMOS device.

在一些實施例中,方法更包含:形成至少一POLY線切割元件。POLY線切割元件用以切割POLY線中的至少一者。POLY線被多個PMOS或NMOS裝置共享,使得PMOS或NMOS裝置中的至少一者成為元件格中的一獨立裝置。 In some embodiments, the method further comprises: forming at least one POLY wire cutting element. The POLY wire cutting element is used to cut at least one of the POLY wires. The POLY line is shared by a plurality of PMOS or NMOS devices such that at least one of the PMOS or NMOS devices becomes a separate device in the component cell.

在一些實施例中,方法更包含:以平行的方式連接該些PMOS裝置的輸入以及以平行的方式連接該些PMOS裝置的輸出,以形成一個較大的PMOS裝置;以平行的方式連接該些NMOS裝置的輸入以及以平行的方式連接該些NMOS裝置的輸出,以形成一個較大的NMOS裝置。 In some embodiments, the method further includes: connecting the inputs of the PMOS devices in a parallel manner and connecting the outputs of the PMOS devices in a parallel manner to form a larger PMOS device; connecting the plurality of PMOS devices in a parallel manner The inputs of the NMOS devices and the outputs of the NMOS devices are connected in a parallel manner to form a larger NMOS device.

雖然本揭示已透過示例性的實施例進行描述,但本揭示不受限於此。更確切地說,附加的申請專利範圍可以被技術領域通常知識者在不違背本揭示之範圍與其均等範圍的情況下寬廣地解釋,以包含其他的變化以及本揭示的實施例。 Although the present disclosure has been described in terms of exemplary embodiments, the disclosure is not limited thereto. Rather, the scope of the appended claims may be broadly interpreted by those of ordinary skill in the art without departing from the scope of the disclosure and the scope of the disclosure.

102‧‧‧多晶矽線 102‧‧‧Polyline

104‧‧‧鰭形氧化擴散區域 104‧‧‧Fin-shaped oxidized diffusion zone

106‧‧‧N型材料 106‧‧‧N type materials

108‧‧‧P型材料 108‧‧‧P type material

109‧‧‧分隔線 109‧‧‧ separate line

X‧‧‧節距 X‧‧‧ pitch

Y‧‧‧節距 Y‧‧‧ pitch

Claims (1)

一種元件格結構,包含:複數條在該元件格中的多晶矽(POLY)線,其中該些多晶矽線以一第一方向配置且以一第一節距平均地間隔;複數個在該元件格中的鰭形氧化擴散(OD)區域,其中該些鰭形氧化擴散區域以一第二方向配置且以一第二節距平均地間隔,其中該些鰭形氧化擴散區域的該第二節距定義出該元件格的寬度;以及複數個在該元件格中的P型金屬氧化物半導體(PMOS)電晶體與N型金屬氧化物半導體(NMOS)電晶體,其中該些P型金屬氧化物半導體電晶體與該些N型金屬氧化物半導體電晶體具有形成在相應之鰭形氧化擴散區域的源極節點以及汲極節點,以及連接至相應之多晶矽線的閘極,其中該些P型金屬氧化物半導體電晶體與該些N型金屬氧化物半導體電晶體相連在一起以形成該元件格中的一個或多個互補式金屬氧化物半導體(CMOS)裝置。 A component cell structure comprising: a plurality of polycrystalline (POLY) lines in the cell, wherein the polysilicon lines are arranged in a first direction and equally spaced by a first pitch; a plurality of cells are in the cell a fin-shaped oxidized diffusion (OD) region, wherein the fin-shaped oxidized diffusion regions are disposed in a second direction and are equally spaced by a second pitch, wherein the second pitch definition of the fin-shaped oxidized diffusion regions a width of the cell; and a plurality of P-type metal oxide semiconductor (PMOS) transistors and N-type metal oxide semiconductor (NMOS) transistors in the cell, wherein the P-type metal oxide semiconductors The crystal and the N-type metal oxide semiconductor transistors have a source node and a drain node formed in the corresponding fin-shaped oxide diffusion region, and a gate connected to the corresponding polysilicon line, wherein the P-type metal oxide A semiconductor transistor is coupled to the N-type metal oxide semiconductor transistors to form one or more complementary metal oxide semiconductor (CMOS) devices in the cell.
TW105141862A 2016-12-16 2016-12-16 Cell grid layout architecture and method of forming cell grid TWI700833B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105141862A TWI700833B (en) 2016-12-16 2016-12-16 Cell grid layout architecture and method of forming cell grid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105141862A TWI700833B (en) 2016-12-16 2016-12-16 Cell grid layout architecture and method of forming cell grid

Publications (2)

Publication Number Publication Date
TW201712864A true TW201712864A (en) 2017-04-01
TWI700833B TWI700833B (en) 2020-08-01

Family

ID=59256664

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105141862A TWI700833B (en) 2016-12-16 2016-12-16 Cell grid layout architecture and method of forming cell grid

Country Status (1)

Country Link
TW (1) TWI700833B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8595661B2 (en) * 2011-07-29 2013-11-26 Synopsys, Inc. N-channel and p-channel finFET cell architecture
US8901615B2 (en) * 2012-06-13 2014-12-02 Synopsys, Inc. N-channel and P-channel end-to-end finfet cell architecture
US9012287B2 (en) * 2012-11-14 2015-04-21 Taiwan Semiconductor Manufacturing Company, Ltd. Cell layout for SRAM FinFET transistors

Also Published As

Publication number Publication date
TWI700833B (en) 2020-08-01

Similar Documents

Publication Publication Date Title
JP6449082B2 (en) Semiconductor device
KR102167956B1 (en) Semiconductor device including standard cells
US9846757B2 (en) Cell grid architecture for FinFET technology
JP6428956B2 (en) Semiconductor integrated circuit device
KR101851844B1 (en) Layout of static random access memory cell
TWI628782B (en) Static random access memory devices
US10164121B2 (en) Stacked independently contacted field effect transistor having electrically separated first and second gates
US10157922B2 (en) Interconnect metal layout for integrated circuit
JP2008171977A (en) Layout structure of semiconductor integrated circuit
JP2011515826A (en) Memory cell
JP2008171977A5 (en)
US10297588B2 (en) Semiconductor device and fabrication method of the same
JP6100981B1 (en) High performance standard cell
TWI769180B (en) Semiconductor device, method of designing a layout of a semiconductor device, and method of manufacturing a semiconductor device
US10297512B2 (en) Method of making thin SRAM cell having vertical transistors
US11239228B2 (en) Integrated circuit layout and method of configuring the same
CN103928458A (en) Metal-programmable Integrated Circuits
CN106601732B (en) Element grid layout structure and method for forming element grid
TWI700833B (en) Cell grid layout architecture and method of forming cell grid
TW201935616A (en) Semiconductor device having fin structure
JP6640965B2 (en) Semiconductor device
US11031383B2 (en) Semiconductor device