TW201711221A - Lift-off method and ultrasonic-horn shaped radiator capable of peeling an epitaxy substrate from an optical device layer even in a case where an optical device wafer with a large diameter is peeled off - Google Patents

Lift-off method and ultrasonic-horn shaped radiator capable of peeling an epitaxy substrate from an optical device layer even in a case where an optical device wafer with a large diameter is peeled off Download PDF

Info

Publication number
TW201711221A
TW201711221A TW105107377A TW105107377A TW201711221A TW 201711221 A TW201711221 A TW 201711221A TW 105107377 A TW105107377 A TW 105107377A TW 105107377 A TW105107377 A TW 105107377A TW 201711221 A TW201711221 A TW 201711221A
Authority
TW
Taiwan
Prior art keywords
substrate
layer
optical element
epitaxial substrate
transfer
Prior art date
Application number
TW105107377A
Other languages
Chinese (zh)
Other versions
TWI674680B (en
Inventor
Tasuku Koyanagi
xiao-ming Qiu
Fumiteru Tashino
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Publication of TW201711221A publication Critical patent/TW201711221A/en
Application granted granted Critical
Publication of TWI674680B publication Critical patent/TWI674680B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Recrystallisation Techniques (AREA)
  • Laser Beam Processing (AREA)
  • Led Devices (AREA)

Abstract

The present invention is to peel an epitaxy substrate from an optical device layer even in a case where an optical device wafer with a large diameter is peeled off. A lift-off method for transferring the optical device layer (12) of the optical device wafer (10) to a transfer substrate (20) comprises: a transfer substrate bonding step in which the transfer substrate (20) is joined to a surface (12a) of the optical device layer via a bonding layer (21); a peeling layer formation step in which a pulse laser beam that is transmissive through an epitaxy substrate (11) and absorbable by a buffer layer (13) is emitted from an inner side (11a) of the epitaxy substrate (11) of the optical device wafer (10) with the transfer substrate (20) joined thereto, thereby forming a peeling layer (19) on an interface between the epitaxy substrate (11) and the buffer layer (13); and an optical device layer transfer step in which while an ultrasonic-horn shaped radiator (40) having a shape surrounding the outer peripheral edge (11c) of the epitaxy substrate (11) is kept in contact with the inner side (11d) of the outer peripheral edge (11c), the epitaxy substrate (11) is vibrated to be peeled off from the transfer substrate (20), and the optical device layer (12) is transferred to the transfer substrate (20).

Description

剝離方法及超音波喇叭形輻射體 Stripping method and ultrasonic horn

本發明係有關於一種於磊晶基板的表面隔著緩衝層,將層積的光學元件層,移換至移設基板的剝離方法,及使用該方法的超音波喇叭形輻射體。 The present invention relates to a peeling method for transferring a laminated optical element layer to a transfer substrate via a buffer layer on a surface of an epitaxial substrate, and an ultrasonic horn using the method.

於光學元件的製造工程中,在呈略圓板形狀的藍寶石基板和碳化矽基板等的磊晶基板的表面,隔著緩衝層,層積由GaN(氮化鎵)等所構成的n型半導體層及p型半導體層所形成的光學元件層,在藉由形成格子狀的複數格線所畫分出的複數區域中,形成如發光二極體、雷射二極體等的光學元件,構成光學元件晶圓。因此,藉由將光學元件晶圓沿著格線分割,製造一個個的光學元件(例如:參照專利文獻1)。 In the manufacturing process of an optical element, an n-type semiconductor composed of GaN (gallium nitride) or the like is laminated on the surface of an epitaxial substrate such as a sapphire substrate or a tantalum carbide substrate having a substantially circular plate shape via a buffer layer. The optical element layer formed by the layer and the p-type semiconductor layer forms an optical element such as a light-emitting diode or a laser diode in a plurality of regions drawn by forming a lattice-shaped complex ruled line. Optical component wafer. Therefore, one optical element is manufactured by dividing the optical element wafer along the ruled line (for example, refer to Patent Document 1).

此外,做為使光學元件的亮度提升的技術,也存在一種稱之為移換剝離的光學元件製造方法,其在構成光學元件晶圓的磊晶基板的表面,將間隔緩衝層所層積的光學元件層,藉由AuSn(金錫)等的接合層接合至Mo(鉬)、Cu(銅)、Si(矽)等的移設基板,從磊晶基板的裏 面側,照射對磊晶基板具有透過性、且對緩衝層具有吸收性之波長的雷射光,藉由破壞緩衝層將磊晶基板從光學元件層剝離,將光學元件層移換剝離至移設基板(例如:參照專利文獻2)。此外,因為利用雷射光照射緩衝層的方法,也會出現無法充分破壞緩衝層的情形,為了將磊晶基板完整地從光學元件剝離,也有隔著浸漬矽基板的純水對矽基板照射超音波,使矽基板上的金屬膜剝離的方法(例如:參照專利文獻3)。 Further, as a technique for improving the brightness of an optical element, there is also a method of manufacturing an optical element called transfer peeling in which a spacer layer is laminated on the surface of an epitaxial substrate constituting an optical element wafer. The optical element layer is bonded to a transfer substrate such as Mo (molybdenum), Cu (copper), or Si (yttrium) by a bonding layer such as AuSn (gold tin), and is formed in the epitaxial substrate. On the surface side, laser light having a wavelength that is transparent to the epitaxial substrate and having absorption to the buffer layer is irradiated, and the epitaxial substrate is peeled off from the optical element layer by breaking the buffer layer, and the optical element layer is transferred and transferred to the transfer substrate. (For example, refer to Patent Document 2). In addition, since the buffer layer is irradiated with laser light, the buffer layer may not be sufficiently damaged. In order to completely peel the epitaxial substrate from the optical element, the germanium substrate is irradiated with ultrasonic waves through the pure water impregnated with the ruthenium substrate. A method of peeling off a metal film on a tantalum substrate (for example, see Patent Document 3).

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

[專利文獻1]JP H10-305420 A [Patent Document 1] JP H10-305420 A

[專利文獻2]JP 2004-72052 A [Patent Document 2] JP 2004-72052 A

[專利文獻3]JP 2011-103361 A [Patent Document 3] JP 2011-103361 A

在此,有關於專利文獻3的發明,完全未揭示移設光學元件層的內容,而且包含在水中進行工程的方法,具有花費時間的問題。此外,光學元件晶圓的直徑超過2吋,以至於是4吋及6吋等的情形,將磊晶基板從光學元件層剝離會變得很困難。 Here, the invention of Patent Document 3 does not disclose the contents of the transfer optical element layer at all, and includes a method of performing engineering in water, which has a problem of taking time. Further, in the case where the diameter of the optical element wafer exceeds 2 Å, so that it is 4 吋 and 6 吋, it is difficult to peel the epitaxial substrate from the optical element layer.

本發明鑑於上述情事,所欲解決的課題為:即便是剝離直徑較大的光學元件晶圓時,也可以將磊晶基 板完整地從光學元件層剝離。 The present invention has been made in view of the above circumstances, and an object to be solved is that an epitaxial group can be used even when an optical element wafer having a large diameter is peeled off. The plate is completely peeled off from the optical element layer.

為解決上述課題,本發明提供一種剝離方法,其係在磊晶基板的表面隔著由GaN所形成的緩衝層,將由光學元件層所層積的光學元件晶圓的光學元件層,移換至移設基板,其中該剝離方法,包含:在該光學元件晶圓的光學元件層的表面,隔著接合層,接合移設基板的移設基板接合工程;從接合該移設基板的光學元件晶圓的磊晶基板的裏面側,照射對磊晶基板具有透過性、且對緩衝層具有吸收性之波長的脈衝雷射光,在磊晶基板與緩衝層的介面形成剝離層的剝離層形成工程;於該剝離層形成工程之後,使用具有圍繞該磊晶基板外周緣的形狀的可振盪出超音波之超音波喇叭形輻射體,至少接觸該外周緣的裏面,並振動該磊晶基板,使該磊晶基板從移設基板剝離,並使該光學元件層移設至該移設基板的光學元件層移設工程。 In order to solve the above problems, the present invention provides a peeling method in which an optical element layer of an optical element wafer laminated by an optical element layer is transferred to a surface of an epitaxial substrate via a buffer layer made of GaN. Disposing a substrate, wherein the stripping method comprises: transferring a substrate on a surface of the optical element layer of the optical element wafer via a bonding layer, and transferring the substrate from the optical element wafer to which the transfer substrate is bonded; On the back side of the substrate, a pulsed laser beam having a wavelength that is transparent to the epitaxial substrate and having an absorptivity to the buffer layer is irradiated, and a peeling layer forming a peeling layer is formed on the interface between the epitaxial substrate and the buffer layer; After forming the project, an ultrasonic horn that oscillates the ultrasonic wave around the outer periphery of the epitaxial substrate is used to at least contact the inside of the outer periphery and vibrate the epitaxial substrate to make the epitaxial substrate The transfer substrate is peeled off, and the optical element layer is transferred to the optical element layer transfer project of the transfer substrate.

此外,為了解決上述課題的本發明,前述剝離方法所使用的超音波喇叭形輻射體,係具備:沿著磊晶基板的外圍形成圓弧形狀,且接觸該磊晶基板的外周緣裏面的裏面接觸面;以及圍繞磊晶基板的外側面並決定位置的外側面圍繞面。 Further, in order to solve the above-described problems, the ultrasonic horn radiating body used in the peeling method includes an arc shape formed along a periphery of the epitaxial substrate and contacting the inside of the outer peripheral edge of the epitaxial substrate. a contact surface; and an outer side surrounding surface surrounding the outer surface of the epitaxial substrate and determining the position.

有關本發明的剝離方法,於光學元件層移設工程中,使用具有圍繞該磊晶基板的外周緣形狀之可振盪出超音波的超音波喇叭形輻射體,至少接觸該外周緣的裏面,並藉由振動該磊晶基板,即便是直徑較大的光學元件晶圓,也可以使該磊晶基板完整地從光學元件層剝離,因此可以更容易將光學元件層移設至移設基板。 In the peeling method of the present invention, in the optical element layer shifting process, an ultrasonic horn having an outer peripheral edge shape surrounding the epitaxial substrate and oscillating the ultrasonic wave is used, at least contacting the inside of the outer periphery, and borrowing By vibrating the epitaxial substrate, even if the optical element wafer has a large diameter, the epitaxial substrate can be completely removed from the optical element layer, so that the optical element layer can be more easily transferred to the transfer substrate.

此外,有關本發明的超音波喇叭形輻射體,具備:沿著磊晶基板的外圍形成圓弧形狀,且接觸該磊晶基板的外周緣裏面的裏面接觸面、以及圍繞磊晶基板的外側面並決定位置的外側面圍繞面;藉由使用關於本發明剝離方法,超音波可以從磊晶基板的外周緣充分地傳播至磊晶基板,更加提高振動傳播的效率,可以更容易將光學元件層移設至移設基板。 Further, the ultrasonic horn of the present invention has an arcuate shape along the periphery of the epitaxial substrate, an inner contact surface contacting the outer periphery of the epitaxial substrate, and an outer side surrounding the epitaxial substrate. And determining the outer side of the position to surround the surface; by using the stripping method of the present invention, the ultrasonic wave can be sufficiently propagated from the outer periphery of the epitaxial substrate to the epitaxial substrate, thereby further improving the efficiency of vibration propagation, and the optical element layer can be more easily Move to the transfer substrate.

10‧‧‧光學元件晶圓 10‧‧‧Optical component wafer

11‧‧‧磊晶基板 11‧‧‧ epitaxial substrate

11a‧‧‧磊晶基板的表面 11a‧‧‧ Surface of the epitaxial substrate

11b‧‧‧磊晶基板的裏面 11b‧‧‧ inside the epitaxial substrate

11c‧‧‧磊晶基板的外周緣 11c‧‧‧ outer periphery of the epitaxial substrate

11d‧‧‧外周緣的裏面 11d‧‧‧The inside of the outer circumference

11e‧‧‧磊晶基板的外側面 11e‧‧‧Outer side of the epitaxial substrate

12‧‧‧光學元件層 12‧‧‧Optical element layer

12A‧‧‧n型氮化鎵半導體層 12A‧‧‧n type gallium nitride semiconductor layer

12B‧‧‧p型氮化鎵半導體層 12B‧‧‧p type GaN semiconductor layer

12a‧‧‧光學元件層的表面 12a‧‧‧ Surface of the optical component layer

13‧‧‧緩衝層 13‧‧‧buffer layer

15‧‧‧分割預定線 15‧‧‧Split line

16‧‧‧光學元件 16‧‧‧Optical components

19‧‧‧剝離層 19‧‧‧ peeling layer

19a‧‧‧N2氣體層 19a‧‧‧N 2 gas layer

20‧‧‧移設基板 20‧‧‧Transfer substrate

20a‧‧‧移設基板的底面 20a‧‧‧Transfer the bottom surface of the substrate

20b‧‧‧移設基板的表面 20b‧‧‧Transfer the surface of the substrate

20c‧‧‧移設基板的露出部 20c‧‧‧Removal of the exposed part of the substrate

21‧‧‧接合層 21‧‧‧ joint layer

25‧‧‧複合基板 25‧‧‧Composite substrate

30‧‧‧雷射加工裝置 30‧‧‧ Laser processing equipment

31‧‧‧切割盤 31‧‧‧ cutting disk

32‧‧‧雷射光照射手段 32‧‧‧Laser light irradiation

32a‧‧‧雷射光振盪手段 32a‧‧‧Laser light oscillation

32b‧‧‧反射鏡 32b‧‧‧Mirror

32c‧‧‧集光透鏡 32c‧‧‧ collecting lens

33‧‧‧回轉手段 33‧‧‧Revolving means

40‧‧‧超音波喇叭形輻射體 40‧‧‧Supersonic horn

400‧‧‧天板 400‧‧‧天板

400a‧‧‧裏面接觸面 400a‧‧‧ inside contact surface

401‧‧‧側板 401‧‧‧ side panels

401a‧‧‧外側面圍繞面 401a‧‧‧The outer side is surrounded by the surface

401b‧‧‧側板的下表面 401b‧‧‧ lower surface of the side panel

402‧‧‧凸部 402‧‧‧ convex

403‧‧‧超音波振盪器 403‧‧‧Supersonic oscillator

404‧‧‧移動手段 404‧‧‧Mobile means

L1‧‧‧長度 L1‧‧‧ length

44‧‧‧支持台 44‧‧‧Support desk

45‧‧‧移動手段 45‧‧‧moving means

46‧‧‧吸引墊 46‧‧‧Attraction mat

47‧‧‧吸引源 47‧‧‧Attraction source

[圖1]圖1(A)為光學元件晶圓的斜視圖。圖1(B)為光學元件晶圓的部分斷面圖。 Fig. 1 (A) is a perspective view of an optical element wafer. Fig. 1(B) is a partial cross-sectional view showing an optical element wafer.

[圖2]圖2(A)為在移設基板接合工程中,光學元件晶圓的光學元件層表面,隔著接合層,接合移設基板的狀態示意斜視圖。圖2(B)為在移設基板接合工程中,光學元件晶圓的光學元件層表面,隔著接合層,接合移設基板的狀態示意斜視圖。圖2(C)為在光學元件層表面,隔著接合層,接合移設基板之光學元件晶圓的部分斷面圖。 2(A) is a perspective view showing a state in which a transfer substrate is bonded to a surface of an optical element layer of an optical element wafer in a transfer substrate bonding process via a bonding layer. 2(B) is a perspective view showing a state in which the transfer substrate is bonded to the surface of the optical element layer of the optical element wafer in the transfer substrate bonding process via the bonding layer. 2(C) is a partial cross-sectional view showing the optical element wafer on which the substrate is transferred and transferred via the bonding layer on the surface of the optical element layer.

[圖3]在剝離層形成工程中,對光學元件晶圓照射脈衝雷射光的狀態示意斜視圖。 Fig. 3 is a perspective view showing a state in which pulsed laser light is irradiated onto an optical element wafer in a peeling layer forming process.

[圖4]在剝離層形成工程中,對光學元件晶圓照射脈衝雷射光的狀態示意側面圖。 Fig. 4 is a side view showing a state in which pulsed laser light is irradiated onto an optical element wafer in a peeling layer forming process.

[圖5]在剝離層形成工程中,對光學元件晶圓的磊晶基板的裏面照射脈衝雷射光的照射位置的軌跡示意平面圖。 Fig. 5 is a plan view showing a trajectory of an irradiation position of a pulsed laser beam on the inside of an epitaxial substrate of an optical element wafer in a peeling layer forming process.

[圖6]在剝離層形成工程中,對光學元件晶圓的剝離層照射脈衝雷射光時,從磊晶基板的裏面側觀看的透視圖。 Fig. 6 is a perspective view as seen from the back side of the epitaxial substrate when the peeling layer of the optical element wafer is irradiated with pulsed laser light in the peeling layer forming process.

[圖7]圖7(A)為關於本發明之剝離方法所使用的超音波喇叭形輻射體的斜視圖。圖7(B)為關於本發明之剝離方法所使用的超音波喇叭形輻射體,將其呈仰向狀態的斜視圖。圖7(C)為接觸超音波喇叭形輻射體至磊晶基板的狀態之要部端面示意圖。 Fig. 7 (A) is a perspective view showing an ultrasonic horn radiator used in the peeling method of the present invention. Fig. 7(B) is a perspective view showing the ultrasonic horn radiator used in the peeling method of the present invention in an upright state. Fig. 7(C) is a schematic view showing the end face of the main portion in contact with the ultrasonic horn radiator to the epitaxial substrate.

[圖8]於光學元件層移設工程,將超音波喇叭形輻射體接觸磊晶基板的外周緣的裏面,並使磊晶基板振動的部分端面狀態示意圖。 [Fig. 8] Fig. 8 is a schematic view showing a state of a partial end face in which an ultrasonic horn radiating body contacts the inside of the outer peripheral edge of the epitaxial substrate and the epitaxial substrate is vibrated in the optical element layer transfer process.

[圖9]於光學元件層移設工程,將超音波喇叭形輻射體接觸磊晶基板的外周緣的裏面,並使磊晶基板振動之狀態部分的示意平面圖。 Fig. 9 is a schematic plan view showing a state in which the ultrasonic element layer is transferred to the inside of the outer peripheral edge of the epitaxial substrate and the epitaxial substrate is vibrated in the optical element layer.

[圖10]圖10(A)為在光學元件層移設工程中,利用吸引墊將磊晶基板吸引支持的狀態示意斜視圖。圖10(B)為在光學元件層移設工程中,利用吸引墊將吸引支持的磊晶 基板從光學元件層剝離的狀態示意斜視圖。 Fig. 10 (A) is a perspective view showing a state in which an epitaxial substrate is suction-supported by an attraction pad in an optical element layer transfer process. Fig. 10(B) shows the epitaxial support of the attraction support by the attraction pad in the optical element layer transfer project A state in which the substrate is peeled off from the optical element layer is a schematic oblique view.

圖1(A)及圖1(B)所示的光學元件晶圓10,具有:例如是由直徑4吋、厚度600μm的圓板形狀藍寶石基板所形成的磊晶基板11,及磊晶基板11的表面11a側所層積的光學元件層12。光學元件層12是由在磊晶基板11的表面11a以磊晶成長法所形成的n型氮化鎵半導體層12A及P型氮化鎵半導體層12B(未示於圖1(A))所形成。在層積例如厚度10μm的光學元件層12於磊晶基板11時,磊晶基板11的表面11a與p型氮化鎵半導體層12B之間,形成由GaN所構成厚度例如是1μm的緩衝層13(未示於圖1(A))。光學元件層12在藉由呈格子狀的複數分割預定線15所畫分的複數的區域中形成光學元件16(未示於圖1(B))。 The optical element wafer 10 shown in FIG. 1(A) and FIG. 1(B) has, for example, an epitaxial substrate 11 formed of a disk-shaped sapphire substrate having a diameter of 4 Å and a thickness of 600 μm, and an epitaxial substrate 11; The optical element layer 12 is laminated on the side of the surface 11a. The optical element layer 12 is an n-type gallium nitride semiconductor layer 12A and a p-type gallium nitride semiconductor layer 12B (not shown in FIG. 1(A)) formed by epitaxial growth on the surface 11a of the epitaxial substrate 11. form. When the optical element layer 12 having a thickness of 10 μm is laminated on the epitaxial substrate 11, a buffer layer 13 having a thickness of, for example, 1 μm made of GaN is formed between the surface 11a of the epitaxial substrate 11 and the p-type gallium nitride semiconductor layer 12B. (Not shown in Figure 1 (A)). The optical element layer 12 forms an optical element 16 (not shown in Fig. 1(B)) in a plurality of regions drawn by a plurality of predetermined dividing lines 15 in a lattice shape.

以下,利用圖2~10說明有關本實施形態的剝離方法之各個工程、及進行剝離方法時於光學元件層移設工程中所使用的超音波喇叭形輻射體的動作。但是,於圖2~10所示的各工程,僅是其中一例而己,並不限定於該構造。 Hereinafter, the operation of the peeling method of the present embodiment and the operation of the ultrasonic horn used in the optical element layer transfer process when the peeling method is performed will be described with reference to Figs. However, each of the items shown in FIGS. 2 to 10 is only one example, and is not limited to this structure.

(1)移設基板接合工程 (1) Transfer substrate bonding project

首先,如圖2(A)~圖2(C)所示的,在該光學元件晶圓10的光學元件層12表面,隔著接合層21(未示於圖 2(A)),進行接合移設基板20的移設基板接合工程。 First, as shown in FIG. 2(A) to FIG. 2(C), on the surface of the optical element layer 12 of the optical element wafer 10, a bonding layer 21 is interposed (not shown). 2(A)), a transfer substrate bonding process of bonding the transfer substrate 20 is performed.

移設基板接合工程在該光學元件層12的表面12a上,將例如是由厚度1mm的銅基板所形成的移設基板20,隔著接合層21做接合。而且,做為移設基板20,可以使用Mo、Cu、Si等,此外,接合層21可以使用例如:Au(金)、Pt(白金)、Cr(鉻)、In(銦)、Pd(鈀)等接合金屬。 In the transfer substrate bonding process, the transfer substrate 20 formed of, for example, a copper substrate having a thickness of 1 mm is bonded to the surface 12a of the optical element layer 12 via the bonding layer 21. Further, as the transfer substrate 20, Mo, Cu, Si, or the like can be used, and the bonding layer 21 can be, for example, Au (gold), Pt (platinum), Cr (chromium), In (indium), or Pd (palladium). Etching the metal.

該移設基板接合工程,在該光學元件層12的表面12a或移設基板20的底面20a蒸鍍上述接合金屬,形成例如是厚度3μm左右的接合層21。接著,將接合層21與移設基板的底面20a或光學元件層12的表面12a做面對面壓合。藉此,隔著接合層21,將光學元件晶圓10與移設基板20接合形成複合基板25。但是,於圖4、圖7(C)、圖8中省略接合層21。 In the transfer substrate bonding process, the bonding metal is deposited on the surface 12a of the optical element layer 12 or the bottom surface 20a of the transfer substrate 20 to form a bonding layer 21 having a thickness of, for example, about 3 μm. Next, the bonding layer 21 is pressed face-to-face with the bottom surface 20a of the transfer substrate or the surface 12a of the optical element layer 12. Thereby, the optical element wafer 10 and the transfer substrate 20 are bonded to each other via the bonding layer 21 to form the composite substrate 25. However, the bonding layer 21 is omitted in FIGS. 4, 7(C), and 8.

(2)剝離層的形成工程 (2) Formation of peeling layer

在進行移設基板接合工程之後,進行如圖3所示的,從接合移設基板20的光學元件晶圓10的磊晶基板11的裏面11b側,照射對磊晶基板11具有透過性、且對緩衝層13具有吸收性之波長的脈衝雷射光,在磊晶基板11與緩衝層13的介面形成剝離層的剝離層形成工程。 After the transfer substrate bonding process is performed, as shown in FIG. 3, from the side of the back surface 11b of the epitaxial substrate 11 of the optical element wafer 10 on which the substrate 20 is bonded, the irradiation is transparent to the epitaxial substrate 11, and the buffer is applied. The layer 13 has pulsed laser light having an absorptive wavelength, and a peeling layer forming process of forming a peeling layer on the interface between the epitaxial substrate 11 and the buffer layer 13 is performed.

於剝離層形成工程中,具備雷射加工裝置30的切割盤31做為支持面之上表面,以連接複合基板25的移設基板20的表面20b的方式載置於該切割盤31上。接 著,利用連接切割盤31(圖未示)之吸引手段做吸引,在切割盤31上吸附支持複合基板25。接著,利用未圖示的移動手段作動之,例如移動利用具備電流掃描儀等的雷射光照射手段32,使雷射光照射手段32所具備的集光透鏡32c與複合基板25的磊晶基板11的裏面11b面對面,設置雷射光照射手段32的雷射光照射位置於磊晶11的最外圍。之後,如圖4所示的,藉由雷射光照射手段32,從磊晶基板的裏面11b側照射脈衝雷射光。雷射光照射手段32從雷射光振盪手段32a側,設定對磊晶基板11具有透過性、且對緩衝層13具有吸收性之波長,使脈衝雷射光振盪。因此,從雷射光振盪手段32a所振盪的脈衝雷射光由反射鏡32b所反射,進入集光透鏡32c中。集光透鏡32c將光集中至緩衝層13,照射所集光的脈衝雷射光。 In the peeling layer forming process, the cutting disk 31 including the laser processing apparatus 30 is placed on the upper surface of the supporting surface, and is placed on the cutting disk 31 so as to connect the surface 20b of the transfer substrate 20 of the composite substrate 25. Connect The suction is supported by the suction means connected to the cutting disk 31 (not shown), and the composite substrate 25 is adsorbed and supported on the cutting disk 31. Then, the laser light irradiation means 32 including a current scanner or the like is used to move the light collecting lens 32c included in the laser light irradiation means 32 and the epitaxial substrate 11 of the composite substrate 25 by a moving means (not shown). The inside 11b faces the surface, and the laser light irradiation position of the laser light irradiation means 32 is disposed at the outermost periphery of the epitaxial crystal 11. Thereafter, as shown in FIG. 4, pulsed laser light is irradiated from the inner surface 11b side of the epitaxial substrate by the laser light irradiation means 32. The laser light irradiation means 32 sets a wavelength which is transparent to the epitaxial substrate 11 and has absorption to the buffer layer 13 from the side of the laser light oscillating means 32a, and oscillates the pulsed laser light. Therefore, the pulsed laser light oscillated from the laser light oscillation means 32a is reflected by the mirror 32b and enters the collecting lens 32c. The collecting lens 32c concentrates the light to the buffer layer 13 and illuminates the collected laser light.

反射鏡32b由電動鏡等所構成,可調整反射角度,由集光透鏡32c所集光的脈衝雷射光設置成可沿著緩衝層13的面方向之任意方向做掃描。調整反射鏡32b,如圖5所示,使脈衝雷射光的集光點,從磊晶基板11的裏面11b的最外圍開始,向中心以螺旋狀軌跡描繪的方式進行脈衝雷射光的掃描。藉此,對應緩衝層13的整個區域都會被照射到脈衝雷射光,使得構成緩衝層13的GaN分解成N2氣體及Ga。因此,如圖4所示,磊晶基板11與緩衝層13的介面,形成複數個由N2氣體層19a及Ga層所構成的島狀剝離層19。於是,N2氣體層19a雖然可能形成在緩衝層13的整個面上,但如圖6所示,N2 氣體層19a具有在接近磊晶基板11的外圍廣範圍區域均勻形成的傾向。接著,在剝離層形成工程中,也可以在對直徑為4吋大小的磊晶基板11做脈衝雷射光照射的時候,例如:將雷射光照射手段32的雷射光照射位置設於磊晶基板11的最外圍,利用配置於切割盤31下部的如圖4所示之回轉手段33在回轉切割盤31的同時,藉由將雷射光照射手段32向磊晶基板11的裏面11b的中心移動,對緩衝層13做全面性地脈衝雷射光照射。 The mirror 32b is constituted by a motor mirror or the like, and the reflection angle can be adjusted, and the pulsed laser light collected by the collecting lens 32c is set to be scanable in any direction along the plane direction of the buffer layer 13. As shown in FIG. 5, the mirror 32b is adjusted so that the light collecting point of the pulsed laser light is scanned from the outermost periphery of the inner surface 11b of the epitaxial substrate 11 and the center of the epitaxial substrate 11 is drawn in a spiral trajectory. Thereby, the entire area corresponding to the buffer layer 13 is irradiated with the pulsed laser light, so that the GaN constituting the buffer layer 13 is decomposed into N 2 gas and Ga. Therefore, as shown in FIG. 4, a plurality of island-shaped peeling layers 19 composed of the N 2 gas layer 19a and the Ga layer are formed on the interface between the epitaxial substrate 11 and the buffer layer 13. Then, although the N 2 gas layer 19a may be formed on the entire surface of the buffer layer 13, as shown in FIG. 6, the N 2 gas layer 19a tends to be uniformly formed in a wide range of regions close to the periphery of the epitaxial substrate 11. Then, in the peeling layer forming process, when the epitaxial substrate 11 having a diameter of 4 Å is irradiated with pulsed laser light, for example, the laser light irradiation position of the laser light irradiation means 32 is set on the epitaxial substrate 11 At the outermost periphery, by rotating the cutting disk 31 by the turning means 33 shown in FIG. 4 disposed at the lower portion of the cutting disk 31, by moving the laser light irradiation means 32 toward the center of the inner surface 11b of the epitaxial substrate 11, The buffer layer 13 is subjected to comprehensive pulsed laser light irradiation.

上述剝離層形成工程,例如可以利用以下的雷射加工條件實施。 The above-described peeling layer forming process can be carried out, for example, by the following laser processing conditions.

光源:YAG雷射 Light source: YAG laser

波長:257nm Wavelength: 257nm

重複頻率:50kHz Repeat frequency: 50kHz

平均輸出:0.12W Average output: 0.12W

脈衝幅:100ps Pulse amplitude: 100ps

峰值功率:5μJ-3μJ Peak power: 5μJ-3μJ

點徑:70μm Dot diameter: 70μm

雷射光照射手段移動速度:50-100mm/秒 Laser light irradiation means moving speed: 50-100mm / sec

(3)光學元件層移設工程 (3) Optical component layer transfer engineering

進行剝離層形成工程之後,如圖8~9所示,使用具有圍繞該磊晶基板11的外周緣11c形狀之可振盪出超音波的超音波喇叭形輻射體40,至少接觸該外周緣11c的裏面11d,並振動磊晶基板11,使磊晶基板11從移設基板 20剝離,並使光學元件層12移設至移設基板20,進行光學元件層移設工程。此外,磊晶基板11的外周緣11c為:例如是由磊晶基板11的外側面11e與磊晶基板11的裏面11b中佔有最外圍部分的環狀面11d所合併成的具有一定面積之部分。也就是說,磊晶基板11的外周緣11c的裏面,與磊晶基板11的裏面11b中佔有最外圍部分的環狀面11d為同一面。 After the peeling layer forming process is performed, as shown in FIGS. 8 to 9, an ultrasonic horn 40 having an outer peripheral edge 11c surrounding the epitaxial substrate 11 and oscillating ultrasonic waves is used, at least contacting the outer peripheral edge 11c. Inside 11d, and vibrating the epitaxial substrate 11 to move the epitaxial substrate 11 from the substrate 20 is peeled off, and the optical element layer 12 is transferred to the transfer substrate 20 to perform an optical element layer transfer process. Further, the outer peripheral edge 11c of the epitaxial substrate 11 is, for example, a portion having a certain area formed by the outer surface 11e of the epitaxial substrate 11 and the annular surface 11d occupying the outermost portion of the inner surface 11b of the epitaxial substrate 11. . That is, the inner surface of the outer peripheral edge 11c of the epitaxial substrate 11 is flush with the annular surface 11d which occupies the outermost peripheral portion of the inner surface 11b of the epitaxial substrate 11.

如圖7(A)~圖7(C)所示的超音波喇叭形輻射體40,例如是由:半環狀的天板400、從天板400的外圍向-Z方向垂直垂下的半環狀側板401、從側板401的外圍側突出的凸部402所構成,該整體形狀在本實施形態中,為沿著磊晶基板11的外圍呈半圓弧的形狀。因此,超音波喇叭形輻射體40的斷面呈現例如是逆L字型。此外,超音波喇叭形輻射體40可藉由移動手段404沿鉛直方向(Z軸方向)及水平方向(X軸方向及Y軸方向)移動。而且,超音波喇叭形輻射體40的整體形狀,並不限定於半圓弧形狀,也可以是沿著磊晶基板11的外圍呈圓弧形狀。 The ultrasonic horn 40 shown in Figs. 7(A) to 7(C) is, for example, a semi-annular slab 400, and a half ring vertically hanging from the periphery of the stencil 400 in the -Z direction. The side plate 401 and the convex portion 402 projecting from the outer side of the side plate 401 have a semicircular arc shape along the outer periphery of the epitaxial substrate 11 in the present embodiment. Therefore, the cross section of the ultrasonic horn 40 is, for example, an inverted L shape. Further, the ultrasonic horn 40 can be moved in the vertical direction (Z-axis direction) and the horizontal direction (X-axis direction and Y-axis direction) by the moving means 404. Further, the overall shape of the ultrasonic horn 40 is not limited to a semicircular arc shape, and may be an arc shape along the outer periphery of the epitaxial substrate 11.

天板400的下表面,形成與磊晶基板11的外周緣11c的裏面11d接觸的裏面接觸面400a,從配設於凸部402上的超音波振盪器403(未圖示於圖7(B))所振盪的超音波振動,從裏面接觸面400a對磊晶基板11傳播。半環狀的側板401之內徑(半環中空部之直徑)和磊晶基板11的外徑相同或較大,側板401的內周側的面圍繞磊晶基板11的外側面11e,成為決定位置的外側面圍繞面401a。也 就是說,例如:藉由將外側面圍繞面401a圍繞並接觸磊晶基板11的外側面11e,使超音波喇叭形輻射體40決定相對磊晶基板11的位置。再者,外側面圍繞面401a的鉛直方向(Z軸方向)的長度也就是說從裏面接觸面400a至側板401下表面401b的長度L1(未示於圖7(A)中),為磊晶基板11的厚度以下的長度。 The lower surface of the top plate 400 forms an inner contact surface 400a that is in contact with the inner surface 11d of the outer peripheral edge 11c of the epitaxial substrate 11, and is provided from the ultrasonic oscillator 403 disposed on the convex portion 402 (not shown in FIG. 7 (B). )) The oscillated ultrasonic vibration propagates from the inner contact surface 400a to the epitaxial substrate 11. The inner diameter of the semi-annular side plate 401 (the diameter of the half-ring hollow portion) is the same as or larger than the outer diameter of the epitaxial substrate 11, and the inner circumferential side surface of the side plate 401 surrounds the outer surface 11e of the epitaxial substrate 11, and is determined. The outer side of the location surrounds the face 401a. and also That is, for example, the ultrasonic horn radiator 40 determines the position of the epitaxial substrate 11 by surrounding the outer side surface 401a and contacting the outer side surface 11e of the epitaxial substrate 11. Further, the length of the outer side surrounding surface 401a in the vertical direction (Z-axis direction), that is, the length L1 from the inner contact surface 400a to the lower surface 401b of the side plate 401 (not shown in FIG. 7(A)), is epitaxial. The length of the substrate 11 is equal to or less than the thickness.

如圖8所示,於光學元件層移設工程中,首先,在具備移設裝置4的支持台44做為支持面之上表面,以連接複合基板25的移設基板20的表面20b的方式載置於該支持台44上。接著,利用連接支持台44(未圖示)之吸引手段做吸引,在切割盤44上吸附支持複合基板25。接著,如圖9所示,將2個超音波喇叭形輻射體40分別藉由移動手段404朝複合基板25上及與各超音波喇叭形輻射體40的外側面圍繞面401a對向的方式做移動,進行磊晶基板11與2個超音波喇叭形輻射體40的對位。但是,於圖8中只圖示一側的超音波喇叭形輻射體40。在這對位中,如圖8所示,例如:將超音波喇叭形輻射體40的外側面圍繞面401a,以連接磊晶基板11的外側面11e的狀態圍繞該磊晶基板11。因此,本實施形態中,例如:藉由在磊晶基板11的圓周上一併使用2個超音波喇叭形輻射體40,如圖9所示使超音波喇叭形輻射體40呈圍繞整個磊晶基板11的外周緣11c之狀態。 As shown in FIG. 8, in the optical element layer transfer project, first, the support table 44 including the transfer device 4 is placed on the upper surface of the support surface, and is placed on the surface 20b of the transfer substrate 20 of the composite substrate 25. The support station 44 is on. Next, suction is performed by a suction means connected to the support table 44 (not shown), and the composite substrate 25 is adsorbed and supported on the cutting disk 44. Next, as shown in FIG. 9, the two ultrasonic horns 40 are respectively moved toward the composite substrate 25 by the moving means 404 and opposed to the outer side surrounding surface 401a of each of the ultrasonic horns 40. Moving, the alignment of the epitaxial substrate 11 with the two ultrasonic horns 40 is performed. However, only one side of the ultrasonic horn 40 is illustrated in FIG. In this pair, as shown in FIG. 8, for example, the outer side surface of the ultrasonic horn 40 is surrounded by the surface 401a, and the epitaxial substrate 11 is surrounded in a state of connecting the outer side surface 11e of the epitaxial substrate 11. Therefore, in the present embodiment, for example, by using two ultrasonic horns 40 on the circumference of the epitaxial substrate 11, the ultrasonic horn 40 is surrounded by the entire epitaxial crystal as shown in FIG. The state of the outer peripheral edge 11c of the substrate 11.

接著,如圖8所示,具備超音波振盪器403的超音波喇叭形輻射體40作動為:從超音波振盪器 403,以振幅方向相對於磊晶基板11的裏面11b的垂直方向(Z軸方向),做例如是頻率20kHz、振幅為20μm的超音波振盪。該超音波可適度地變更頻率及振幅,例如:若光學元件晶圓10的厚度變薄的話,可以將超音波振幅變小。此外,使2個超音波喇叭形輻射體40向-Z方向做下降,使各超音波喇叭形輻射體40的裏面接觸面400a接觸整個磊晶基板11的外周緣11c的裏面11d,也就是說,對於佔有整個磊晶基板11的裏面11b的最外圍部分的環狀面11d,藉由2個超音波喇叭形輻射體40的裏面接觸面400a做接觸,使從超音波振盪器403振盪的超音波向磊晶基板11傳播。因此,磊晶基板11因超音波的傳播而在上下方向(Z軸方向)做振動。在此,例如,當移設基板20的直徑比光學元件晶圓10的直徑還大時,及於移設基板接合工程中移設基板20與光學元件晶圓10之間的接合有偏移的情形時,會有如圖8所示的在移設基板20形成突出部20c的情形。即便是這種情形,因為從超音波喇叭形輻射體40的裏面接觸面400a到側板401的下表面401b的長度L1(參照圖7(C))為磊晶基板11的厚度以下的長度,超音波喇叭形輻射體40的外側面圍繞面401a不會與移設基板20連接。因此,對於移設基板20並無傳播超音波。 Next, as shown in FIG. 8, the ultrasonic horn 40 having the ultrasonic oscillator 403 is activated as follows: from the ultrasonic oscillator 403, for example, is an ultrasonic oscillation having a frequency of 20 kHz and an amplitude of 20 μm with respect to the vertical direction (Z-axis direction) of the inner surface 11b of the epitaxial substrate 11 in the amplitude direction. The ultrasonic wave can appropriately change the frequency and the amplitude. For example, if the thickness of the optical element wafer 10 is reduced, the ultrasonic wave amplitude can be made small. Further, the two ultrasonic horns 40 are lowered in the -Z direction so that the inner contact faces 400a of the respective ultrasonic horns 40 are in contact with the inner face 11d of the outer periphery 11c of the entire epitaxial substrate 11, that is, The annular surface 11d occupying the outermost portion of the inner surface 11b of the entire epitaxial substrate 11 is contacted by the inner contact surface 400a of the two ultrasonic horns 40 to oscillate from the ultrasonic oscillator 403. The sound waves propagate toward the epitaxial substrate 11. Therefore, the epitaxial substrate 11 vibrates in the vertical direction (Z-axis direction) due to the propagation of ultrasonic waves. Here, for example, when the diameter of the transfer substrate 20 is larger than the diameter of the optical element wafer 10 and the transfer between the transfer substrate 20 and the optical element wafer 10 is shifted in the transfer substrate bonding process, There is a case where the protruding portion 20c is formed on the transfer substrate 20 as shown in FIG. Even in this case, the length L1 (see FIG. 7(C)) from the inner contact surface 400a of the ultrasonic horn 40 to the lower surface 401b of the side plate 401 is the length below the thickness of the epitaxial substrate 11, super The outer side surrounding surface 401a of the acoustic horn 40 is not connected to the transfer substrate 20. Therefore, no ultrasonic waves are propagated to the transfer substrate 20.

在此,推測超音波振動從磊晶基板11隔著剝離層19的N2氣體層19a做傳播。也就是說,藉由N2氣體層19a在Z軸方向的搖動,由緩衝層13所接合的磊晶 基板11與光學元件層12之間的結合將漸漸地被破壞。因此,超音波喇叭形輻射體40所接觸的磊晶基板11的表面11a的外圍部,因為在剝離層19形成有均勻且廣範圍的N2氣體層19a,所以從極靠近N2氣體層19a的正上方等的位置可充分地振盪,N2氣體層19a在向朝剝離層19的中心,破壞由緩衝層13所接合的磊晶基板11與光學元件層12之間的結合,並同時從外圍側開始擴散,可以更增加振動傳播的效率。 Here, it is presumed that the ultrasonic vibration propagates from the epitaxial substrate 11 via the N 2 gas layer 19a of the peeling layer 19. That is, by the shaking of the N 2 gas layer 19a in the Z-axis direction, the bonding between the epitaxial substrate 11 and the optical element layer 12 joined by the buffer layer 13 is gradually broken. Therefore, the peripheral portion of the surface 11a of the epitaxial substrate 11 which the ultrasonic horn 40 is in contact with, since the uniform and wide-range N 2 gas layer 19a is formed in the peeling layer 19, the polar portion is close to the N 2 gas layer 19a. The position immediately above and the like can be sufficiently oscillated, and the N 2 gas layer 19a breaks the bond between the epitaxial substrate 11 and the optical element layer 12 joined by the buffer layer 13 toward the center of the peeling layer 19, and simultaneously The peripheral side begins to diffuse, which can increase the efficiency of vibration propagation.

並且,對於向磊晶基板11提供超音波振動,也可以不在磊晶基板11的圓周上一併使用2個超音波喇叭形輻射體40,只使用1個超音波喇叭形輻射體40沿著磊晶基板11的外周緣11c做圓周方向的移動。 Further, in order to provide ultrasonic vibration to the epitaxial substrate 11, two ultrasonic horns 40 may be used together on the circumference of the epitaxial substrate 11, and only one ultrasonic horn 40 may be used along the ray. The outer peripheral edge 11c of the crystal substrate 11 is moved in the circumferential direction.

此外,例如:當超音波喇叭形輻射體40具備比該半圓還短的圓弧形狀時,也可以在磊晶基板11的圓周上一併使用2個以上的超音波喇叭形輻射體40,提供超音波振動。 Further, for example, when the ultrasonic horn 40 has an arc shape shorter than the semicircle, two or more ultrasonic horns 40 may be used together on the circumference of the epitaxial substrate 11 to provide Ultrasonic vibration.

在使用超音波喇叭形輻射體40提供超音波振動後,藉由如圖10(A)所示的移動手段45、及沿鉛直方向(Z軸方向)及水平方向(X軸方向及Y軸方向)移動可能的吸引墊46,可將磊晶基板11做吸引支持並移動。吸引墊46連接吸引源47,藉由吸引源47的吸引力傳達至由多孔元件等所構成的吸引墊46的吸引面(下表面),吸引墊46在吸引面上吸引支持磊晶基板11。 After the ultrasonic vibration is supplied using the ultrasonic horn 40, the moving means 45 as shown in FIG. 10(A), and the vertical direction (Z-axis direction) and the horizontal direction (X-axis direction and Y-axis direction) Moving the possible attraction pads 46, the epitaxial substrate 11 can be attracted and supported. The suction pad 46 is connected to the suction source 47, and is attracted to the suction surface (lower surface) of the suction pad 46 composed of a porous member or the like by the suction force of the suction source 47, and the suction pad 46 sucks and supports the epitaxial substrate 11 on the suction surface.

首先,藉由移動手段45將吸引墊46移動至 磊晶基板11,接著使吸引墊46往-Z方向下降,使吸引墊46的吸引面(下表面)接觸於複合基板25的磊晶基板11之裏面11b。因此,使吸引源47作動,由吸引墊46的吸引面吸引支持磊晶基板的裏面11b。因此,如圖所示,藉由移動手段45將吸引墊46從離開支持台44的+Z方向昇起。藉此,從光學元件層12將磊晶基板11剝離,光學元件層12的向移設基板20之移設結束。 First, the attraction pad 46 is moved by the moving means 45 to The epitaxial substrate 11 is then lowered in the -Z direction by the suction pad 46, and the suction surface (lower surface) of the suction pad 46 is brought into contact with the inner surface 11b of the epitaxial substrate 11 of the composite substrate 25. Therefore, the suction source 47 is actuated, and the inner surface 11b of the epitaxial substrate is attracted by the suction surface of the suction pad 46. Therefore, as shown, the attraction pad 46 is raised by the moving means 45 from the +Z direction away from the support table 44. Thereby, the epitaxial substrate 11 is peeled off from the optical element layer 12, and the transfer of the optical element layer 12 to the transfer substrate 20 is completed.

因此,有關本實施形態的剝離方法,在光學元件層移設工程中,藉由超音波喇叭形輻射體40至少接觸磊晶基板11的外周緣11c的裏面11d並振動該磊晶基板11,可以如上所述高效率地傳播超音波振動。藉此,由緩衝層13所接合的磊晶基板11與光學元件層12之間的結合可充分地被破壞。因此,即便剝離的對象是直徑4吋大的光學元件晶圓10,也可避免由磊晶基板11的剝離所發生的光學元件層12之損傷,並可以將磊晶基板11從光學元件層12迅速且完整地剝離。此外,超音波喇叭形輻射體40因具有上述的形狀,超音波可以從磊晶基板11的外周緣11c的裏面11d充分地對磊晶基板11傳播,振動傳播的效率更加地提高,可以更容易將光學元件層12移設至移設基板20。 Therefore, in the peeling method of the present embodiment, in the optical element layer transfer process, the ultrasonic horn radiator 40 contacts at least the inner surface 11d of the outer peripheral edge 11c of the epitaxial substrate 11 and vibrates the epitaxial substrate 11, as described above. The ultrasonic vibration is propagated with high efficiency. Thereby, the bond between the epitaxial substrate 11 and the optical element layer 12 joined by the buffer layer 13 can be sufficiently broken. Therefore, even if the object to be peeled is the optical element wafer 10 having a diameter of 4 inches, the damage of the optical element layer 12 caused by the peeling of the epitaxial substrate 11 can be avoided, and the epitaxial substrate 11 can be removed from the optical element layer 12. Stripped quickly and completely. Further, since the ultrasonic horn 40 has the above-described shape, the ultrasonic wave can sufficiently propagate from the inner surface 11d of the outer peripheral edge 11c of the epitaxial substrate 11 to the epitaxial substrate 11, and the efficiency of vibration propagation can be further improved and can be made easier. The optical element layer 12 is transferred to the transfer substrate 20.

而且,有關於本發明的剝離方法並不限於上述實施形態,此外,由圖示所示的超音波喇叭形輻射體40之大小及形狀也不限於此,可在為發揮本發明的效果的範圍內做適當地變更。 Further, the peeling method according to the present invention is not limited to the above embodiment, and the size and shape of the ultrasonic horn 40 shown in the drawing are not limited thereto, and may be in the range in which the effects of the present invention are exerted. Make appropriate changes within.

4‧‧‧移設裝置 4‧‧‧Transfer device

11‧‧‧磊晶基板 11‧‧‧ epitaxial substrate

11a‧‧‧磊晶基板的表面 11a‧‧‧ Surface of the epitaxial substrate

11b‧‧‧磊晶基板的裏面 11b‧‧‧ inside the epitaxial substrate

11c‧‧‧磊晶基板的外周緣 11c‧‧‧ outer periphery of the epitaxial substrate

11d‧‧‧外周緣的裏面 11d‧‧‧The inside of the outer circumference

11e‧‧‧磊晶基板的外側面 11e‧‧‧Outer side of the epitaxial substrate

12‧‧‧光學元件層 12‧‧‧Optical element layer

13‧‧‧緩衝層 13‧‧‧buffer layer

19‧‧‧剝離層 19‧‧‧ peeling layer

20‧‧‧移設基板 20‧‧‧Transfer substrate

20b‧‧‧移設基板的表面 20b‧‧‧Transfer the surface of the substrate

20c‧‧‧移設基板的露出部 20c‧‧‧Removal of the exposed part of the substrate

25‧‧‧複合基板 25‧‧‧Composite substrate

40‧‧‧超音波喇叭形輻射體 40‧‧‧Supersonic horn

400‧‧‧天板 400‧‧‧天板

400a‧‧‧裏面接觸面 400a‧‧‧ inside contact surface

401‧‧‧側板 401‧‧‧ side panels

401a‧‧‧外側面圍繞面 401a‧‧‧The outer side is surrounded by the surface

401b‧‧‧側板的下表面 401b‧‧‧ lower surface of the side panel

402‧‧‧凸部 402‧‧‧ convex

403‧‧‧超音波振盪器 403‧‧‧Supersonic oscillator

404‧‧‧移動手段 404‧‧‧Mobile means

44‧‧‧支持台 44‧‧‧Support desk

Claims (2)

一種剝離方法,其係在磊晶基板的表面隔著由GaN所形成的緩衝層,將由光學元件層所層積的光學元件晶圓的光學元件層,移換至移設基板,其中該剝離方法,包含:在該光學元件晶圓的光學元件層的表面,隔著接合層,接合移設基板的移設基板接合工程;從接合該移設基板的光學元件晶圓的磊晶基板的裏面側,照射對磊晶基板具有透過性、且對緩衝層具有吸收性之波長的脈衝雷射光,在磊晶基板與緩衝層的介面形成剝離層的剝離層形成工程;於該剝離層形成工程之後,使用具有圍繞該磊晶基板外周緣的形狀的可振盪出超音波之超音波喇叭形輻射體,至少接觸該外周緣的裏面,並振動該磊晶基板,使該磊晶基板從移設基板剝離,並使該光學元件層移設至該移設基板的光學元件層移設工程。 A peeling method for shifting an optical element layer of an optical element wafer laminated by an optical element layer to a transfer substrate by a buffer layer formed of GaN on a surface of an epitaxial substrate, wherein the peeling method is The method includes: a transfer substrate bonding process of bonding the transfer substrate via a bonding layer on a surface of the optical element layer of the optical element wafer; and an illumination of the back side of the epitaxial substrate of the optical element wafer to which the transfer substrate is bonded a crystal substrate having pulsed laser light having a permeability and having a wavelength absorbing to the buffer layer, forming a peeling layer forming a peeling layer on the interface between the epitaxial substrate and the buffer layer; after the peeling layer is formed, the use has a surrounding An ultrasonic horn that oscillates an ultrasonic wave in a shape of an outer periphery of the epitaxial substrate, at least contacts the inner surface of the outer periphery, vibrates the epitaxial substrate, peels the epitaxial substrate from the transfer substrate, and causes the optical The element layer is transferred to the optical element layer transfer project of the transfer substrate. 一種使用於如請求項1所記載的剝離方法之超音波喇叭形輻射體,其具備:沿著磊晶基板的外圍形成圓弧形狀,且接觸該磊晶基板的外周緣裏面的裏面接觸面;以及圍繞磊晶基板的外側面並決定位置的外側面圍繞面。 An ultrasonic horn for use in the peeling method according to claim 1, comprising: an inner contact surface that forms an arc shape along a periphery of the epitaxial substrate and contacts an inner periphery of the epitaxial substrate; And an outer side surrounding surface surrounding the outer side surface of the epitaxial substrate and determining the position.
TW105107377A 2015-04-21 2016-03-10 Stripping method and ultrasonic horn TWI674680B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015086687A JP6450637B2 (en) 2015-04-21 2015-04-21 Lift-off method and ultrasonic horn
JP2015-086687 2015-04-21

Publications (2)

Publication Number Publication Date
TW201711221A true TW201711221A (en) 2017-03-16
TWI674680B TWI674680B (en) 2019-10-11

Family

ID=57419203

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105107377A TWI674680B (en) 2015-04-21 2016-03-10 Stripping method and ultrasonic horn

Country Status (3)

Country Link
JP (1) JP6450637B2 (en)
CN (1) CN106067437B (en)
TW (1) TWI674680B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714890B (en) * 2018-09-28 2021-01-01 景碩科技股份有限公司 Peeling device
TWI728915B (en) * 2018-09-28 2021-05-21 景碩科技股份有限公司 Peeling device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6773506B2 (en) * 2016-09-29 2020-10-21 株式会社ディスコ Wafer generation method
JP6991673B2 (en) * 2018-02-27 2022-01-12 株式会社ディスコ Peeling method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824186A (en) * 1993-12-17 1998-10-20 The Regents Of The University Of California Method and apparatus for fabricating self-assembling microstructures
US6387829B1 (en) * 1999-06-18 2002-05-14 Silicon Wafer Technologies, Inc. Separation process for silicon-on-insulator wafer fabrication
DE19950068B4 (en) * 1999-10-16 2006-03-02 Schmid Technology Systems Gmbh Method and device for separating and detaching substrate disks
JP2005045156A (en) * 2003-07-25 2005-02-17 Matsushita Electric Ind Co Ltd Lift-off method
JP3998639B2 (en) * 2004-01-13 2007-10-31 株式会社東芝 Manufacturing method of semiconductor light emitting device
US7666321B2 (en) * 2006-09-26 2010-02-23 United Microelectronics Corp. Method for decapsulating package
US7902091B2 (en) * 2008-08-13 2011-03-08 Varian Semiconductor Equipment Associates, Inc. Cleaving of substrates
US9847243B2 (en) * 2009-08-27 2017-12-19 Corning Incorporated Debonding a glass substrate from carrier using ultrasonic wave
JP5612336B2 (en) * 2010-03-08 2014-10-22 スタンレー電気株式会社 Manufacturing method of semiconductor light emitting device
JP5766530B2 (en) * 2011-07-13 2015-08-19 株式会社ディスコ Processing method of optical device wafer
JP5996254B2 (en) * 2012-04-26 2016-09-21 株式会社ディスコ Lift-off method
JP6068165B2 (en) * 2013-01-29 2017-01-25 スタンレー電気株式会社 Semiconductor optical device and method of manufacturing semiconductor optical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714890B (en) * 2018-09-28 2021-01-01 景碩科技股份有限公司 Peeling device
TWI728915B (en) * 2018-09-28 2021-05-21 景碩科技股份有限公司 Peeling device

Also Published As

Publication number Publication date
JP2016207801A (en) 2016-12-08
CN106067437A (en) 2016-11-02
CN106067437B (en) 2021-05-25
TWI674680B (en) 2019-10-11
JP6450637B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
TWI690090B (en) Lift off method
TWI674680B (en) Stripping method and ultrasonic horn
TWI721206B (en) SiC wafer generation method
JP6858587B2 (en) Wafer generation method
TWI555223B (en) Processing method of optical element wafers
US9793166B2 (en) Lift-off method
JP5996250B2 (en) Lift-off method
JP2017123400A (en) Chuck table
JP2020088097A (en) Wafer generation method
JP5860272B2 (en) Processing method of optical device wafer
JP4334864B2 (en) Thin plate crystal wafer and method for manufacturing crystal resonator
KR20190043088A (en) Lift-off method
JP2017046225A (en) Baw device and manufacturing method of the same
JP6699927B2 (en) BAW device and method for manufacturing BAW device
KR101161731B1 (en) Laser processing apparatus and method
JP2016035976A (en) Wafer processing method
JP7408475B2 (en) Peeling device
CN113814554A (en) Lift-off method and laser processing device
JP2024003655A (en) Method of manufacturing wafer
JP2020191432A (en) Relocation method
JP2019079921A (en) Chip manufacturing method