TW201710640A - Manufacturing method of conductive via and method for inspecting critical dimension information of blind via - Google Patents

Manufacturing method of conductive via and method for inspecting critical dimension information of blind via Download PDF

Info

Publication number
TW201710640A
TW201710640A TW104128991A TW104128991A TW201710640A TW 201710640 A TW201710640 A TW 201710640A TW 104128991 A TW104128991 A TW 104128991A TW 104128991 A TW104128991 A TW 104128991A TW 201710640 A TW201710640 A TW 201710640A
Authority
TW
Taiwan
Prior art keywords
blind hole
blind
blind holes
light
center point
Prior art date
Application number
TW104128991A
Other languages
Chinese (zh)
Other versions
TWI558976B (en
Inventor
汪秉龍
陳桂標
温子逵
Original Assignee
久元電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 久元電子股份有限公司 filed Critical 久元電子股份有限公司
Priority to TW104128991A priority Critical patent/TWI558976B/en
Application granted granted Critical
Publication of TWI558976B publication Critical patent/TWI558976B/en
Publication of TW201710640A publication Critical patent/TW201710640A/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

A manufacturing method of conductive via and method for inspecting the critical dimension information of blind via are provided. The method for inspecting the critical dimension information of blind via includes the steps of providing a semiconductor substrate having a plurality of blind vias formed on a surface of the semiconductor substrate; capturing an image of each of the blind vias by an image capturing device to determine a center of each of the blind via at the surface; and measuring a depth at the corresponding center of each of the blind vias by a chromatic confocal interference apparatus.

Description

導電結構製造方法及盲孔關鍵尺寸資訊檢測方法 Conductive structure manufacturing method and blind hole key size information detecting method

本發明係有關於一種導電結構製造方法及盲孔二維及三維等關鍵尺寸檢測方法,特別是指在三維積體電路製程中,用來檢測矽穿孔(Through silicon via,TSV)關鍵尺寸的檢測方法及導電結構的製程。 The invention relates to a method for manufacturing a conductive structure and a method for detecting key dimensions such as two-dimensional and three-dimensional blind holes, in particular, for detecting a critical dimension of a through silicon via (TSV) in a three-dimensional integrated circuit process. Method and process of conductive structure.

在三維積體電路(3-Dimentional IC)中,包括多層相互堆疊的半導體層及形成於半導體層之間的線路層及元件,其中這些分別形成於不同半導體層上的元件,通常是藉由穿設於半導體層內的導電結構(conductive via)來相互電性連接,以進行訊號傳遞。 In a three-dimensional integrated circuit, a semiconductor layer including a plurality of layers stacked on each other and a circuit layer and an element formed between the semiconductor layers, wherein the elements respectively formed on different semiconductor layers are usually worn by Conductive vias disposed within the semiconductor layer are electrically connected to each other for signal transfer.

在形成導電結構時,通常會先在半導體層中形成盲孔(blind via),再填入導電材料,之後再以化學研磨(Chemical Mechanical Polishing,CMP)方式研磨去除部分半導體層,以露出孔內的導電材料。若盲孔的深度未能符合預期時,導電材料無法由研磨後的半導體層底部暴露出來,而無法使元件之間建立電性連結,這將導致元件之間無法進行訊號傳遞。 When forming a conductive structure, a blind via is usually formed in the semiconductor layer, and then a conductive material is filled, and then a part of the semiconductor layer is removed by chemical mechanical polishing (CMP) to expose the hole. Conductive material. If the depth of the blind via does not meet the expectations, the conductive material cannot be exposed by the bottom of the polished semiconductor layer, and the electrical connection between the components cannot be established, which will result in no signal transmission between the components.

因此,在三維積體電路中,盲孔的截面積、數量、深度、深寬比等形貌參數將影響最後產品的良率。然而,過去要有效地統計上述參數,必須在完成導電結構所有的製程後,才能作電性測試,接著再做「破壞性」的切片並觀察穿孔影像,相當耗時。 Therefore, in the three-dimensional integrated circuit, the shape parameters such as the cross-sectional area, the number, the depth, and the aspect ratio of the blind hole will affect the yield of the final product. However, in the past, in order to effectively count the above parameters, it is necessary to perform electrical testing after completing all the processes of the conductive structure, and then to perform "destructive" slicing and observing the perforated image, which is quite time consuming.

因此,若能在形成穿孔的過程中即時掌握盲孔的形貌參數,不僅能加速穿孔製程參數優化,也進一步確保產品的良率。然而,形成於半導體層中的盲孔的深寬比值一般約5到10,少部分特殊製程需超過10以上之高深寬比。 Therefore, if the shape parameters of the blind holes can be grasped in the process of forming the perforations, the optimization of the perforation process parameters can be accelerated, and the yield of the products can be further ensured. However, the blind holes formed in the semiconductor layer generally have an aspect ratio of about 5 to 10, and a small number of special processes require a high aspect ratio of more than 10 or more.

傳統的光學量測裝置是以入射光斜向入射孔洞內,再接收反射光的訊號,來量測盲孔的深度。然而,在前述的量測方式中,反射光容易被盲孔壁阻擋,無法有效量測盲孔中心點的深度甚至底部形貌。 The conventional optical measuring device measures the depth of the blind hole by obliquely incident light into the hole and receiving the reflected light signal. However, in the aforementioned measurement method, the reflected light is easily blocked by the blind hole wall, and the depth or even the bottom topography of the center point of the blind hole cannot be effectively measured.

據此,本發明實施例提供一種可用於檢測盲孔的三維形貌的檢測方法,以及導電結構的製造方法。導電結構的製造方法中整合盲孔的檢測方法,以即時獲得盲孔的形貌資訊。 Accordingly, embodiments of the present invention provide a detection method that can be used to detect a three-dimensional topography of a blind hole, and a method of manufacturing the conductive structure. In the manufacturing method of the conductive structure, the blind hole detection method is integrated to obtain the shape information of the blind hole in real time.

本發明實施例提供一種盲孔三維形貌資訊參數的檢測方法,其包括提供一基材,其中所述基材具有形成於一表面的多個盲孔;通過一影像擷取裝置擷取多個所述盲孔在所述表面的盲孔影像,得到每一個盲孔的中心點的位置資訊;以及通過一彩色共焦干涉式顯微裝置,並根據位置資訊,以量測每一個所述盲孔在相對應的所述中心點上的盲孔深度。 Embodiments of the present invention provide a method for detecting a blind hole three-dimensional topography information parameter, which includes providing a substrate, wherein the substrate has a plurality of blind holes formed on a surface; and capturing multiple images through an image capturing device Obtaining a blind hole image of the blind hole on the surface, obtaining position information of a center point of each blind hole; and measuring each of the blinds by a color confocal interferometric microscopic device and according to position information The depth of the blind hole at the corresponding center point of the hole.

本發明另一實施例並提供一種導電結構的製造方法,其包括:提供一基材,其中所述基材具有一表面及與所述表面相反的一底面;形成多個盲孔於所述基材的所述表面;通過一影像擷取裝置擷取多個所述盲孔在所述表面的多個盲孔影像,以得到每一個所述盲孔中心點的位置資訊;通過一彩色共焦干涉式顯微裝置,並根據位置資訊,以量測每一個所述盲孔在相對應的所述中心點上的盲孔深度;分別形成多個導電柱於每一個所述盲孔內於每一個所述盲孔內形成一導電柱;以及根據每一個所述盲孔在所述中心點的深度。 Another embodiment of the present invention provides a method of fabricating a conductive structure, comprising: providing a substrate, wherein the substrate has a surface and a bottom surface opposite to the surface; forming a plurality of blind holes in the base The surface of the material is captured by a plurality of blind holes on the surface by an image capturing device to obtain position information of each of the blind hole center points; Interferometric microscopy device, and according to the position information, measuring the blind hole depth of each of the blind holes at the corresponding center point; respectively forming a plurality of conductive columns in each of the blind holes Forming a conductive pillar in one of the blind holes; and a depth at the center point according to each of the blind holes.

在本發明實施例所提供的盲孔關鍵尺寸資訊的檢測方法及導 電結構的製造方法中,利用影像擷取裝置找出每一個盲孔在表面的中心點的位置後,再利用彩色共焦干涉式顯微裝置來量測每一個盲孔在相對應的中心點的深度。 Method and guide for detecting critical dimension information of blind holes provided by embodiments of the present invention In the manufacturing method of the electrical structure, the image capturing device is used to find the position of each blind hole at the center point of the surface, and then the color confocal interferometric microscopic device is used to measure each blind hole at the corresponding center point. depth.

前述的檢測方法可整合於導電結構的製程中,並實際應用於生產線上,以在形成導電柱之前,即時檢測盲孔的形貌參數,並確認深度是否符合預期,以提高產品良率。並且,取得盲孔的形貌參數,也有利於加快製程參數優化的速度。 The foregoing detection method can be integrated into the manufacturing process of the conductive structure, and is actually applied to the production line to immediately detect the shape parameters of the blind hole before forming the conductive column, and confirm whether the depth meets the expectation to improve the product yield. Moreover, obtaining the shape parameters of the blind holes is also beneficial to speed up the optimization of the process parameters.

此外,本發明實施例的檢測方式可對封裝過程中的晶片進行非破壞性的檢測,不需要額外製作試片,可簡化檢測流程,並縮短檢測時間。 In addition, the detection method of the embodiment of the invention can perform non-destructive detection on the wafer in the packaging process, and does not require additional production of the test piece, which can simplify the detection process and shorten the detection time.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與附圖,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。 For a better understanding of the features and technical aspects of the present invention, reference should be made to the accompanying drawings.

1、1’‧‧‧基材 1, 1'‧‧‧ substrate

1a‧‧‧表面 1a‧‧‧ surface

1b‧‧‧底面 1b‧‧‧ bottom

102‧‧‧位置 102‧‧‧ position

100‧‧‧盲孔 100‧‧‧Blind hole

100C‧‧‧中心點 100C‧‧‧ center point

D‧‧‧深度 D‧‧‧Deep

R‧‧‧盲孔孔徑 R‧‧‧Blind hole diameter

P‧‧‧間距 P‧‧‧ spacing

VA‧‧‧待測區 VA‧‧‧Down Area

2‧‧‧影像擷取裝置 2‧‧‧Image capture device

20‧‧‧發光源 20‧‧‧Light source

21‧‧‧影像感測單元 21‧‧‧Image sensing unit

22‧‧‧處理單元 22‧‧‧Processing unit

3‧‧‧彩色共焦干涉式顯微裝置 3‧‧‧Color confocal interferometric microscopy device

30‧‧‧光源模組 30‧‧‧Light source module

301‧‧‧光產生器 301‧‧‧Light generator

302‧‧‧整形元件 302‧‧‧Shaping components

300‧‧‧寬頻光 300‧‧‧ Wideband light

31‧‧‧光調製模組 31‧‧‧Light Modulation Module

300a‧‧‧第一光束 300a‧‧‧First beam

300b‧‧‧第二光束 300b‧‧‧second beam

300R、300G、300B‧‧‧子光場 300R, 300G, 300B‧‧‧ sub-light field

32‧‧‧色散物鏡 32‧‧‧Dispersive objective

33‧‧‧非色散物鏡 33‧‧‧Non-dispersive objective

34‧‧‧光處理模組 34‧‧‧Light processing module

341‧‧‧空間濾波器 341‧‧‧ Spatial Filter

342‧‧‧光譜儀 342‧‧‧ Spectrometer

343‧‧‧訊號處理單元 343‧‧‧Signal Processing Unit

35‧‧‧參考平面鏡 35‧‧‧Reference plane mirror

300’‧‧‧重合光束 300'‧‧‧ coincident beam

36‧‧‧位移平台 36‧‧‧Displacement platform

4、4’‧‧‧導電柱 4, 4'‧‧‧ conductive column

5‧‧‧絕緣層 5‧‧‧Insulation

100’‧‧‧通孔 100’‧‧‧through hole

Ra‧‧‧紅光反射區 Ra‧‧‧Red light reflection area

Ga‧‧‧綠光反射區 Ga‧‧‧Green light reflection area

Ba‧‧‧藍光反射區 Ba‧‧‧Blue light reflection zone

S100~S102、S200~S205‧‧‧流程步驟 S100~S102, S200~S205‧‧‧ Process steps

圖1 為本發明實施例的盲孔關鍵尺寸資訊的檢測方法的流程圖。 FIG. 1 is a flowchart of a method for detecting blind key size information according to an embodiment of the present invention.

圖2A 顯示影像擷取裝置對基材表面進行檢測的剖面示意圖。 Figure 2A is a schematic cross-sectional view showing the image pickup device detecting the surface of the substrate.

圖2B 顯示基材表面於待測區的俯視示意圖。 Figure 2B shows a top plan view of the surface of the substrate in the area to be tested.

圖3顯示本發明實施例的晶片封裝結構在圖1的步驟中的局部剖面示意圖。 3 is a partial cross-sectional view showing the wafer package structure of the embodiment of the present invention in the step of FIG. 1.

圖4 顯示寬頻光色散之後投射至基材表面時的狀態示意圖。 Figure 4 shows a schematic view of the state when the broadband dispersion is projected onto the surface of the substrate.

圖5 顯示本發明實施例的導電結構製造方法的流程圖。 Figure 5 is a flow chart showing a method of fabricating a conductive structure in accordance with an embodiment of the present invention.

圖6A至6F 分別顯示本發明實施例的導電結構在不同步驟中的剖面示意圖。 6A to 6F are schematic cross-sectional views showing the conductive structure of the embodiment of the present invention in different steps, respectively.

請參閱圖1,其顯示本發明一實施例的盲孔關鍵尺寸資訊的檢測方法的流程圖。由於三維積體電路封裝的製程,或者是電路板製程中,通常會藉由導電通孔來連接位於不同層的線路。因此,在三維積體電路封裝的製程或者是電路板製程中,會根據需要在 多層或單層基材上形成盲孔。據此,本發明實施例所提供的檢測方法,可應用於檢測前述製程中所形成的盲孔的二維或三維的關鍵尺寸及形貌資訊。 Please refer to FIG. 1 , which shows a flow chart of a method for detecting blind hole key size information according to an embodiment of the present invention. Due to the process of three-dimensional integrated circuit packaging, or in the circuit board process, conductive vias are often used to connect the lines at different layers. Therefore, in the process of three-dimensional integrated circuit package or circuit board process, it will be Blind holes are formed on a multilayer or single layer substrate. Accordingly, the detection method provided by the embodiment of the present invention can be applied to detect the two-dimensional or three-dimensional key size and shape information of the blind hole formed in the foregoing process.

在步驟S100中,提供一基材,其中所述基材具有形成於一表面的多個盲孔。基材例如是半導體基材、金屬基材、絕緣基材或者是複合基材。半導體基材例如是矽基材、砷化鎵基材、氮化鎵(GaN)基材或碳化矽(SiC)基材。絕緣基材可以是環氧樹脂基材、玻璃纖維板、電木板或是其他塑膠材質構成的板材,而複合基材可以是絕緣材與金屬片相互壓合而形成的複合基材。 In step S100, a substrate is provided, wherein the substrate has a plurality of blind holes formed on a surface. The substrate is, for example, a semiconductor substrate, a metal substrate, an insulating substrate or a composite substrate. The semiconductor substrate is, for example, a tantalum substrate, a gallium arsenide substrate, a gallium nitride (GaN) substrate, or a tantalum carbide (SiC) substrate. The insulating substrate may be an epoxy resin substrate, a fiberglass board, a bakelite or other plastic material, and the composite substrate may be a composite substrate formed by pressing the insulating material and the metal sheet together.

在本發明實施例中,基材具有形成於表面的多個盲孔。在本發明實施例中,盲孔具有較高的深寬比。在一實施例中,盲孔的深寬比至少大於5。 In an embodiment of the invention, the substrate has a plurality of blind holes formed in the surface. In an embodiment of the invention, the blind holes have a high aspect ratio. In an embodiment, the blind holes have an aspect ratio of at least greater than five.

此外,基材的表面上已經完成元件及線路的製程,前述的元件可以是主動元件或被動元件。在其他實施例中,基材也可以是尚未製作任何元件的晶圓或是絕緣基材,本發明並不以此為限。 In addition, the process of components and circuits has been completed on the surface of the substrate, and the aforementioned components may be active components or passive components. In other embodiments, the substrate may also be a wafer or an insulating substrate that has not been fabricated with any components, and the invention is not limited thereto.

在步驟S101中,通過一影像擷取裝置擷取多個盲孔在表面的盲孔影像,以得到每一個盲孔位於表面上的中心點的位置資訊。另外,在本實施例中,於步驟S101中,也可得到每一個盲孔的寬度或直徑,以及任兩相鄰的盲孔之間的間距。 In step S101, a blind hole image of a plurality of blind holes on the surface is captured by an image capturing device to obtain position information of a center point of each blind hole on the surface. In addition, in the embodiment, in step S101, the width or diameter of each blind hole and the spacing between any two adjacent blind holes can also be obtained.

詳細而言,請配合參照圖2A及圖2B,其中圖2A顯示影像擷取裝置對基材表面進行檢測的剖面示意圖,圖2B顯示基材表面於待測區的俯視示意圖。如前所述,基材1具有一表面1a及與表面1a相反的底面1b。在基材1的表面1a上,具有多個盲孔100。 For details, please refer to FIG. 2A and FIG. 2B. FIG. 2A is a schematic cross-sectional view showing the surface of the substrate by the image capturing device, and FIG. 2B is a schematic plan view showing the surface of the substrate in the area to be tested. As described above, the substrate 1 has a surface 1a and a bottom surface 1b opposite to the surface 1a. On the surface 1a of the substrate 1, there are a plurality of blind holes 100.

影像擷取裝置擷取基材1表面1a的影像之後,可通過影像處理技術判斷出每一個盲孔的邊緣,從而判定每一個盲孔的中心點位於表面上的位置。 After the image capturing device captures the image of the surface 1a of the substrate 1, the edge of each blind hole can be judged by image processing technology, thereby determining the position of the center point of each blind hole on the surface.

影像擷取裝置2包括發光源20、影像感測單元21及處理單元22,其中影像感測單元21電性連接於處理單元22,並將所擷取的 影像傳送至處理單元22進行影像處理。發光源20用以產生入射光線照射至基材1的表面1a上的一待測區VA,前述的入射光線可以是可見光(visible light)或不可見光(invisible light),而此不可見光例如是紅外線。 The image capturing device 2 includes a light source 20, an image sensing unit 21, and a processing unit 22, wherein the image sensing unit 21 is electrically connected to the processing unit 22, and the captured image is captured. The image is transmitted to the processing unit 22 for image processing. The light source 20 is configured to generate incident light to a region VA to be measured on the surface 1a of the substrate 1. The incident light may be visible light or invisible light, and the invisible light is, for example, infrared light. .

影像感測單元21接收由待測區VA反射的反射光線,以擷取一待測區影像。影像感測單元21可為互補式金屬氧化物半導體感測元件(Complementary Metal-Oxide-Semiconductor Sensor,CMOS Sensor)或電荷耦合元件(Charge-Coupled Device,CCD)。 The image sensing unit 21 receives the reflected light reflected by the area to be tested VA to capture an image of the area to be tested. The image sensing unit 21 can be a Complementary Metal-Oxide-Semiconductor Sensor (CMOS Sensor) or a Charge-Coupled Device (CCD).

處理單元22存有辨識資料,以在接收影像感測單元21所擷取的待測區影像之後,進行影像處理及分析,並進一步判斷出位於待測區影像中的盲孔100的邊緣,從而決定盲孔100位於表面1a的中心點100C的位置資訊。 The processing unit 22 stores the identification data to perform image processing and analysis after receiving the image of the to-be-detected area captured by the image sensing unit 21, and further determines the edge of the blind hole 100 in the image of the area to be tested, thereby The position information of the blind hole 100 at the center point 100C of the surface 1a is determined.

更進一步而言,在決定盲孔100的邊緣及中心點100C的位置資訊之後,處理單元22可決定盲孔100的邊緣至中心點100C的距離。當盲孔100在基材10表面1a的俯視形狀為圓形或方形,可以得到盲孔的孔徑R,並進一步得知盲孔100直徑或寬度。在另一實施例中,當盲孔100在基材10表面1a的俯視形狀為長條形,可以得到盲孔100的寬度。 Still further, after determining the edge information of the blind hole 100 and the position information of the center point 100C, the processing unit 22 may determine the distance from the edge of the blind hole 100 to the center point 100C. When the blind hole 100 has a circular or square shape in plan view on the surface 1a of the substrate 10, the aperture R of the blind hole can be obtained, and the diameter or width of the blind hole 100 can be further known. In another embodiment, when the blind hole 100 has an elongated shape in a plan view of the surface 1a of the substrate 10, the width of the blind hole 100 can be obtained.

另外,在本實施例中,處理單元22在得到每一個盲孔100的中心點100C的位置資訊之後,可更進一步計算每兩個相鄰的盲孔100的中心點100C之間的距離,以得到每兩個相鄰的盲孔100的間距(pitch)P。 In addition, in this embodiment, after obtaining the position information of the center point 100C of each blind hole 100, the processing unit 22 may further calculate the distance between the center points 100C of each two adjacent blind holes 100, A pitch P of each two adjacent blind holes 100 is obtained.

接著,在步驟S102中,通過一彩色共焦干涉式顯微裝置,以量測每一個盲孔在相對應的中心點上的盲孔深度。通過檢測盲孔深度及盲孔的直徑或寬度,可獲得盲孔的關鍵尺寸資訊。 Next, in step S102, a color confocal interferometric microscopy device is used to measure the blind hole depth of each blind hole at a corresponding center point. By measuring the depth of the blind hole and the diameter or width of the blind hole, critical dimension information of the blind hole can be obtained.

詳細而言,請配合參照圖3,顯示本發明實施例利用彩色共焦干涉式顯微裝置對基材表面進行檢測的剖面示意圖。 In detail, please refer to FIG. 3 to show a schematic cross-sectional view of the surface of the substrate by using a color confocal interferometric microscopy apparatus according to an embodiment of the present invention.

彩色共焦干涉式顯微裝置3包括光源模組30、光調製模組 31、色散物鏡32、非色散物鏡33及光處理模組34。 The color confocal interferometric microscopy device 3 includes a light source module 30 and a light modulation module 31. A dispersive objective lens 32, a non-dispersive objective lens 33, and a light processing module 34.

光源模組30用以產生一寬頻光300。寬頻光300可以是單一色彩的寬頻光,其具有一特定的頻寬範圍,例如:紅光(620nm~750nm)、綠光(495nm~570nm)、藍光(476nm~495nm)或者是其他色光。此外,在另一實施例中,寬頻光300也可以是由多種色彩複合的寬頻光,例如可見光(白光),其波長介於380nm~750nm。在本實施例中,寬頻光300為白光。 The light source module 30 is used to generate a broadband light 300. The broadband light 300 can be a single color broadband light having a specific bandwidth range, such as red light (620 nm to 750 nm), green light (495 nm to 570 nm), blue light (476 nm to 495 nm), or other colored light. In addition, in another embodiment, the broadband light 300 may also be broadband light that is composited by a plurality of colors, such as visible light (white light), having a wavelength between 380 nm and 750 nm. In the present embodiment, the broadband light 300 is white light.

具體而言,光源模組30包括光產生器301及整形元件302。光產生器301用以提供複合色彩的初始寬頻光,例如:白光。整形元件302則用以將光產生器301所產生的初始寬頻光調整形成一點寬頻光或者是線形寬頻光。在一實施例中,整形元件302可以是空間濾波元件,例如:狹縫結構或者是針孔結構,但本發明並不以此為限。在本實施例中,整形元件302為針孔,因此光產生器301所發出的初始寬頻光經過整形元件302調整後,寬頻光300為點寬頻光。 Specifically, the light source module 30 includes a light generator 301 and a shaping element 302. The light generator 301 is used to provide initial broadband light of a composite color, such as white light. The shaping element 302 is configured to adjust the initial broadband light generated by the light generator 301 to form a little broadband light or linear broadband light. In an embodiment, the shaping element 302 can be a spatial filtering component, such as a slit structure or a pinhole structure, but the invention is not limited thereto. In the present embodiment, the shaping element 302 is a pinhole. Therefore, after the initial broadband light emitted by the light generator 301 is adjusted by the shaping element 302, the broadband light 300 is a point broadband light.

此外,要說明的是,如果要產生單一色彩的寬頻光,可以直接在光產生器301以及整形元件302之間設置僅允許單一色彩通過的彩色濾光片。如果要產生複合兩種或三種色彩的寬頻光,則可以使用對應該兩種或三種色彩的彩色濾光片。 Further, it is to be noted that if a single color of broadband light is to be generated, a color filter that allows only a single color to pass can be disposed directly between the light generator 301 and the shaping element 302. If you want to produce broadband light with two or three colors combined, you can use a color filter that corresponds to two or three colors.

光調製模組31可以是一分光鏡,以將寬頻光300分成一第一光束300a及一第二光束300b。 The light modulation module 31 can be a beam splitter to divide the broadband light 300 into a first beam 300a and a second beam 300b.

色散物鏡32用以使第一光束300a產生軸向色散,以形成複數個子光場300R、300G及300B(圖中繪示3個),以投射至基材1表面1a,以對盲孔100進行檢測。值得注意的是,針對具有高深寬比的盲孔100,色散物鏡32具有較低數值孔徑,可加強第一光束300a軸向色散的效果。 The dispersing objective lens 32 is configured to generate axial dispersion of the first light beam 300a to form a plurality of sub-light fields 300R, 300G, and 300B (three are shown) for projecting onto the surface 1a of the substrate 1 to perform the blind hole 100. Detection. It is worth noting that for blind vias 100 having a high aspect ratio, the dispersive objective lens 32 has a lower numerical aperture that enhances the axial dispersion of the first beam 300a.

另外,這些子光場300R、300G及300B分別具有不同的聚焦深度。並且,這些子光場300R、300G及300B可分別以不同量測 深度聚焦至盲孔100內。此外,每一個子光場300R、300G及300B具有不同波長。在一實施例中,這些子光場300R、300G及300B可形成一連續光譜。 In addition, these sub-light fields 300R, 300G, and 300B have different depths of focus, respectively. Moreover, these sub-light fields 300R, 300G, and 300B can be measured differently Focus deep into the blind hole 100. In addition, each sub-light field 300R, 300G, and 300B has a different wavelength. In one embodiment, the sub-light fields 300R, 300G, and 300B can form a continuous spectrum.

請參照圖4,其顯示寬頻光色散之後投射至基材表面時的狀態示意圖。在本發明實施例中,是以白光為例來進行說明。當白光被色散之後,由於白光光譜是由不同波長的色光所構成的連續光譜(圖中以紅光300R、綠光300G與藍光300B來代表),被色散後的白光,其成份中的每一個波長的光之聚焦深度會不同。 Referring to FIG. 4, it is a schematic view showing a state when the broadband light dispersion is projected onto the surface of the substrate. In the embodiment of the present invention, white light is taken as an example for description. After the white light is dispersed, since the white light spectrum is a continuous spectrum composed of color light of different wavelengths (represented by red light 300R, green light 300G and blue light 300B), the dispersed white light, each of its components The depth of focus of the wavelength of light will be different.

一般而言,頻率高(波長小)的光聚焦深度較淺,頻率低(波長大)的光其聚焦深度則較深,因此當投射至基材1表面1a而被反射時,不同波長的反射光在基材1表面1a上反射的狀態也不相同。 In general, a light with a high frequency (small wavelength) has a shallow depth of focus, and a light with a low frequency (large wavelength) has a deep depth of focus, so when reflected onto the surface 1a of the substrate 1 and reflected, different wavelengths of reflection The state in which light is reflected on the surface 1a of the substrate 1 is also different.

以圖4為例,假設在基材1表面1a的位置102處,是綠光300G聚焦深度的位置,因此對於該點位置102而言,綠光300G的強度會集中在該位置上的一點,對於其他色光,則視反射所含的面積而有不同。圖4所顯示的Ga代表第一光束300a被反射後,綠光300G集中的區域,Ra代表第一光束300a反射後,紅光300R集中的區域,Ba代表第一光束300a反射後,藍光300B集中的區域。 Taking FIG. 4 as an example, it is assumed that at the position 102 of the surface 1a of the substrate 1 is the position of the depth of focus of the green light 300G, so for the point position 102, the intensity of the green light 300G will be concentrated at a point on the position. For other shades, the area of the reflection varies. The Ga shown in FIG. 4 represents a region where the green light 300G is concentrated after the first light beam 300a is reflected, Ra represents a region where the red light 300R is concentrated after the first light beam 300a is reflected, and Ba represents the reflection of the first light beam 300a, and the blue light 300B is concentrated. Area.

基於上述原理,子光場300R、300G及300B在經待測區VA反射後形成一物光,且物光中所包含的不同波長的光會根據其被待測區VA反射的面積,以及在待測區VA的表面形貌的不同,而具有不同的強度。 Based on the above principle, the sub-light fields 300R, 300G, and 300B form an object light after being reflected by the region to be tested VA, and the light of different wavelengths contained in the object light is reflected according to the area of the region to be tested VA, and The surface morphology of the area to be tested VA is different, but has different strengths.

另一方面,非色散物鏡33用以將第二光束300b聚焦至一參考平面鏡35上,使第二光束300b被參考平面鏡35反射而形成參考光。當參考光與物光返回光調製模組31時,參考光與物光重合並相互干涉,而形成一重合光束300’。 On the other hand, the non-dispersive objective lens 33 is used to focus the second light beam 300b onto a reference plane mirror 35 such that the second light beam 300b is reflected by the reference plane mirror 35 to form reference light. When the reference light and the object light return to the light modulation module 31, the reference light and the object light are combined and interfere with each other to form a coincident light beam 300'.

光處理模組34用以接收重合光束300’,並根據所接收的重合光束300’產生一訊號,再對訊號進行處理,以推算表面1a的三維形貌資訊,其中訊號例如是一彩色共焦干涉訊號。 The light processing module 34 is configured to receive the coincident light beam 300 ′ and generate a signal according to the received coincident light beam 300 ′, and then process the signal to estimate the three-dimensional shape information of the surface 1 a , wherein the signal is, for example, a color confocal Interference signal.

詳細而言,光處理模組34包括一空間濾波器341、一光譜儀342及一訊號處理單元343。空間濾波器341設置於重合光束300’所通過的路徑上,以濾除非聚焦光。在本實施例中,空間濾波器341為針孔結構。 In detail, the optical processing module 34 includes a spatial filter 341, a spectrometer 342, and a signal processing unit 343. A spatial filter 341 is disposed on the path through which the coincident beam 300' passes to filter out the focused light. In the present embodiment, the spatial filter 341 has a pinhole structure.

光譜儀342用以接收經空間濾波器341過濾後的重合光束300’,並將重合光束300’分散成多個具有不同波長的色光,並分別將這些色光的光強度轉換為對應的電信訊號。也就是說,在本實施例中,光譜儀342接收重合光束300’後,產生彩色共焦干涉訊號。 The spectrometer 342 is configured to receive the coincident beam 300' filtered by the spatial filter 341, and to disperse the coincident beam 300' into a plurality of color lights having different wavelengths, and respectively convert the light intensities of the color lights into corresponding telecommunication signals. That is, in the present embodiment, after the spectrometer 342 receives the coincident beam 300', a color confocal interference signal is generated.

訊號處理單元343由光譜儀342接收並處理彩色共焦干涉訊號,以推算出待測區VA的三維形貌資訊。訊號處理單元343可透過去背景光強度、傅立葉轉換、濾波等演算法及光學訊號處理手段,推算出待測區VA的三維形貌資訊。 The signal processing unit 343 receives and processes the color confocal interference signal from the spectrometer 342 to derive the three-dimensional topographical information of the area to be tested VA. The signal processing unit 343 can calculate the three-dimensional topographical information of the VA to be tested by performing algorithms such as background light intensity, Fourier transform, filtering, and optical signal processing means.

在本實施例中,基材1係設置於一位移平台36上。位移平台36至少需要可以進行Z軸方向的位移運動。此外,位移平台36亦可以搭配X與Y軸方向的驅動單元,例如螺桿、導軌與馬達的組合,以調整位移平台在XY平面上之位置,從而使子光場300R、300G及300B可偵測在基材1表面1a位於不同區域的三維形貌資訊。 In the present embodiment, the substrate 1 is disposed on a displacement platform 36. The displacement stage 36 requires at least a displacement movement in the Z-axis direction. In addition, the displacement platform 36 can also be combined with a driving unit in the X and Y axis directions, such as a combination of a screw, a guide rail and a motor, to adjust the position of the displacement platform on the XY plane, so that the sub-light fields 300R, 300G and 300B can be detected. Three-dimensional topographical information on different surfaces of the surface 1a of the substrate 1.

進一步而言,在利用影像擷取裝置2擷取到基材1表面1a的影像,並得到盲孔100位於表面1a上的位置之後,可通過位移平台36移動基材1在XY平面上的位置,使子光場300R、300G及300B聚焦於盲孔100內。需特別說明的是,利用彩色共焦干涉式顯微裝置3對盲孔100進行深度量測時,可直接利用上述的寬頻光300中具有不同波長的子光場300R、300G及300B來得到盲孔100的深度D及底部形貌等三維形貌資訊。 Further, after the image of the surface 1a of the substrate 1 is captured by the image capturing device 2, and the position of the blind hole 100 on the surface 1a is obtained, the position of the substrate 1 on the XY plane can be moved by the displacement platform 36. The sub-light fields 300R, 300G, and 300B are focused in the blind hole 100. It should be particularly noted that when the blind hole 100 is depth-measured by the color confocal interferometric microscopy device 3, the sub-light fields 300R, 300G, and 300B having different wavelengths in the wide-band light 300 described above can be directly used to obtain blindness. Three-dimensional topographical information such as the depth D of the hole 100 and the bottom topography.

也就是說,利用彩色共焦干涉技術,可以直接利用上述寬頻光獲得深度資訊,而不需要進行Z軸掃描。詳細而言,因為寬頻 光包含波長400nm至700nm的多種色光,不同波長的色光會對應聚焦於不同的位置。據此,可以建立波長與深度的線性關係圖。 That is to say, by using the color confocal interference technique, the above-mentioned wide-band light can be directly used to obtain depth information without performing Z-axis scanning. In detail, because of broadband The light contains a plurality of color lights having a wavelength of 400 nm to 700 nm, and the color lights of different wavelengths are correspondingly focused on different positions. According to this, a linear relationship between wavelength and depth can be established.

在利用寬頻光進行掃描時,寬頻光中僅會有一種色光的波長會對應於盲孔100的深度而聚焦於待測區VA的表面(如圖4所示),從而在回饋訊號產生波峰。藉由分析回饋訊號,得到該色光的波長,再根據前述的線性關係圖,即可得知該波長所對應的深度,從而可得到盲孔100的深度資訊。 When scanning with wide-band light, only one wavelength of the color light will be focused on the surface of the area to be tested VA corresponding to the depth of the blind hole 100 (as shown in FIG. 4), thereby generating a peak in the feedback signal. By analyzing the feedback signal, the wavelength of the color light is obtained, and according to the linear relationship diagram described above, the depth corresponding to the wavelength can be known, so that the depth information of the blind hole 100 can be obtained.

因此,利用彩色共焦干涉式顯微裝置3對基材1的表面1a進行掃描時,不需要通過移動位移平台36,來改變基材1在Z軸上的位置,從而可加快掃描的速度。 Therefore, when the surface 1a of the substrate 1 is scanned by the color confocal interferometric microscopy device 3, it is not necessary to change the position of the substrate 1 on the Z axis by moving the displacement stage 36, so that the scanning speed can be increased.

上述的方式可以通過一電性連接於位移平台36的控制單元(未圖示)來實現。具體而言,影像擷取裝置2在擷取待測區VA的影像,並判斷出盲孔100中心點100C的位置資訊之後,將中心點100C的位置資訊傳送至控制單元。控制單元再依據所接收的位置資訊,控制位移平台36將基材1調整基材1在XY平面上的位置,使子光場300R、300G及300B可以投射至盲孔100的中心點100C。 The above manner can be realized by a control unit (not shown) electrically connected to the displacement platform 36. Specifically, after capturing the image of the area to be tested VA and determining the position information of the center point 100C of the blind hole 100, the image capturing device 2 transmits the position information of the center point 100C to the control unit. The control unit then controls the displacement platform 36 to adjust the position of the substrate 1 on the XY plane according to the received position information, so that the sub-light fields 300R, 300G and 300B can be projected to the center point 100C of the blind hole 100.

在另一實施例中,也可以使影像擷取裝置2的處理單元22電性連接至位移平台36,以直接根據盲孔100中心點100C的位置資訊控制位移平台36移動,從而使彩色共焦干涉式顯微裝置3可直接量測盲孔100在中心點100C的深度D。 In another embodiment, the processing unit 22 of the image capturing device 2 can be electrically connected to the displacement platform 36 to directly control the displacement platform 36 according to the position information of the center point 100C of the blind hole 100, thereby making the color confocal The interferometric microscopy device 3 can directly measure the depth D of the blind hole 100 at the center point 100C.

因此,在一實施例中,影像擷取裝置2可和彩色共焦干涉式顯微裝置3整合成同一檢測設備。並且,先利用影像擷取裝置2決定盲孔100的位置之後,再利用彩色共焦干涉式顯微裝置3直接對盲孔100進行檢測,可節省量測時間。 Thus, in one embodiment, the image capture device 2 can be integrated with the color confocal interferometric microscopy device 3 into the same detection device. Further, after the position of the blind hole 100 is determined by the image capturing device 2, the blind hole 100 is directly detected by the color confocal interferometric microscopy device 3, thereby saving measurement time.

須說明的是,利用彩色共焦干涉式顯微裝置3對每一個盲孔100進行量測時,子光場300R、300G及300B是垂直入射於盲孔100內,較不會受到盲孔100的孔壁限制。據此,本發明實施例中所提供的彩色共焦干涉式顯微裝置3可以量測盲孔100的深度D 及底部形貌。 It should be noted that when each blind hole 100 is measured by the color confocal interferometric microscopy device 3, the sub-light fields 300R, 300G, and 300B are vertically incident on the blind hole 100, and are not subjected to the blind hole 100. Hole wall restrictions. Accordingly, the color confocal interferometric microscopy device 3 provided in the embodiment of the present invention can measure the depth D of the blind hole 100. And the bottom shape.

本發明實施例並提供一種導電結構的製造方法,在導電結構的製造方法中,利用前述的影像擷取裝置及彩色共焦干涉式顯微裝置來進行檢測,以提高產品良率。 The embodiment of the invention provides a method for manufacturing a conductive structure. In the method for manufacturing a conductive structure, the image capturing device and the color confocal interferometric micro device are used for detecting to improve product yield.

請參照圖5,顯示本發明實施例的導電結構製造方法的流程圖。另外,請一併參照圖6A至圖6F,分別顯示本發明實施例的導電結構在不同步驟中的剖面示意圖。 Referring to FIG. 5, a flow chart of a method for fabricating a conductive structure according to an embodiment of the present invention is shown. In addition, please refer to FIG. 6A to FIG. 6F together, which respectively show schematic cross-sectional views of the conductive structure of the embodiment of the present invention in different steps.

在步驟S200中,提供一基材。如圖6A所示,基材1具有一表面1a及與表面1a相反的一底面1b。 In step S200, a substrate is provided. As shown in FIG. 6A, the substrate 1 has a surface 1a and a bottom surface 1b opposite to the surface 1a.

接著,在步驟S201中,形成多個盲孔於基材的表面。如圖6B所示。形成盲孔100的技術手段可以採用微影、蝕刻等習知的技術手段。並且,盲孔100的深寬比至少大於3。 Next, in step S201, a plurality of blind holes are formed on the surface of the substrate. As shown in Figure 6B. The technical means for forming the blind via 100 may be a conventional technique such as lithography or etching. Also, the blind hole 100 has an aspect ratio of at least greater than three.

隨後,在步驟S202中,通過一影像擷取裝置擷取多個所述盲孔在所述表面的多個盲孔影像,以得到每一個所述盲孔的中心點的位置資訊。圖6C所示利用影像擷取裝置擷取盲孔影像,並進行影像處理的方式和圖2所示的實施例相似,在此不再贅述。 Then, in step S202, a plurality of blind hole images of the blind holes on the surface are captured by an image capturing device to obtain position information of a center point of each of the blind holes. The method of capturing the blind hole image by using the image capturing device and performing image processing is similar to the embodiment shown in FIG. 2, and details are not described herein again.

另外,在一實施例中,在通過影像擷取裝置擷取多個盲孔在表面的盲孔影像的步驟中,可更進一步包括通過影像擷取裝置擷取盲孔的邊緣至中心點的距離,以得到盲孔的直徑或寬度。 In addition, in an embodiment, the step of capturing a blind hole image of a plurality of blind holes on the surface by the image capturing device may further include: capturing the distance from the edge of the blind hole to the center point by the image capturing device To get the diameter or width of the blind hole.

在本實施例中,在量測到每一個盲孔及其所對應的中心點在表面的位置之後,可更進一步包括計算每兩個相鄰的所述盲孔的所述中心點之間的距離,以得到每兩個相鄰的所述盲孔的間距P。 In this embodiment, after measuring the position of each blind hole and its corresponding center point on the surface, it may further comprise calculating between the center points of each two adjacent blind holes Distance to obtain the pitch P of each of the two adjacent blind holes.

接著,在步驟S203中,通過一彩色共焦干涉式顯微裝置,以量測每一個盲孔在相對應的所述中心點上的盲孔深度。彩色共焦干涉式顯微裝置例如是圖3所示的彩色共焦干涉式顯微裝置。此外,通過彩色共焦干涉式顯微裝置,可進一步量測每一個盲孔的底部形貌。也就是說,在步驟S202至步驟S203中,可取得每一個盲孔的關鍵尺寸資訊。 Next, in step S203, a color confocal interferometric microscopy device is used to measure the blind hole depth of each blind hole at the corresponding center point. The color confocal interferometric microscopy device is, for example, a color confocal interferometric microscopy device as shown in FIG. In addition, the bottom topography of each blind hole can be further measured by a color confocal interferometric microscopy device. That is to say, in step S202 to step S203, key size information of each blind hole can be obtained.

如圖6D所示,通過彩色共焦干涉式顯微裝置3測量盲孔100的盲孔深度D及底部形貌的方式,和圖3所示的實施例相似,在此不再贅述。 As shown in FIG. 6D, the blind hole depth D and the bottom topography of the blind hole 100 are measured by the color confocal interferometric microscopy device 3, which is similar to the embodiment shown in FIG. 3, and will not be described herein.

另外,根據每一個盲孔的關鍵尺寸資訊,可判別多個盲孔是否符合製程需求。詳細而言,可通過彩色共焦干涉式顯微裝置3的訊號處理單元343,判別盲孔的深度是否大於一預定深度。當盲孔的深度並未大於預定深度時,訊號處理單元343可記錄該盲孔的位置及深度,並通過螢幕顯示警示訊號,以通知檢測者對該盲孔進行進一步的處理。在另一實施例中,也可省略此步驟。 In addition, according to the critical size information of each blind hole, it can be determined whether multiple blind holes meet the process requirements. In detail, the signal processing unit 343 of the color confocal interferometric microscopy device 3 can determine whether the depth of the blind hole is greater than a predetermined depth. When the depth of the blind hole is not greater than the predetermined depth, the signal processing unit 343 can record the position and depth of the blind hole, and display a warning signal through the screen to notify the detector to further process the blind hole. In another embodiment, this step can also be omitted.

接著,在步驟S204中,於每一個所述盲孔內形成一導電柱。構成導電柱的材料例如是銅、銅合金或者是其他導電材料。請參照圖6E,在本實施例中,於每一個盲孔100中形成導電柱4之前,可先在盲孔100的內側壁面形成絕緣層5,之後再填入導電材料以形成導電柱4。 Next, in step S204, a conductive pillar is formed in each of the blind holes. The material constituting the conductive pillar is, for example, copper, a copper alloy or other conductive material. Referring to FIG. 6E, in the embodiment, before forming the conductive pillars 4 in each of the blind vias 100, the insulating layer 5 may be formed on the inner sidewall surface of the blind via 100, and then filled with a conductive material to form the conductive pillars 4.

接著,在步驟S205中,根據盲孔在所述中心點的深度執行一薄化製程於所述底面,以使所述盲孔改變成一穿孔,並使所述導電柱的頂部與底部分別被所述穿孔的兩相反開口所裸露。 Next, in step S205, a thinning process is performed on the bottom surface according to the depth of the blind hole at the center point, so that the blind hole is changed into a perforation, and the top and bottom of the conductive post are respectively The opposite openings of the perforations are exposed.

請繼續參照圖6E及圖6F。所述的薄化製程可以是利用化學機械研磨手段,由基材1的底面1b將基材1的厚度減薄,直到暴露導電柱4’的底部。據此,原本形成於基材1的盲孔100已改變為通孔100’,且導電柱4’的底部被通孔100’下方的開口所暴露出來,以使導電柱4’可作為連接基材1’的兩相反側元件的導線。 Please continue to refer to FIG. 6E and FIG. 6F. The thinning process may be to reduce the thickness of the substrate 1 from the bottom surface 1b of the substrate 1 by chemical mechanical polishing until the bottom of the conductive post 4' is exposed. Accordingly, the blind hole 100 originally formed on the substrate 1 has been changed to the through hole 100', and the bottom of the conductive post 4' is exposed by the opening below the through hole 100', so that the conductive post 4' can serve as a connecting base. The wires of the opposite side elements of the material 1'.

〔實施例的可能功效〕 [Possible effects of the examples]

綜上所述,本發明的有益效果可以在於,在本發明實施例所提供的檢測方法可整合於導電結構的製程中,並實際應用於生產線上,以在形成導電柱之前,即時檢測盲孔的關鍵尺寸,確認深度是否符合預期,以提高產品良率。並且,取得盲孔的形貌參數,也有利於加快製程參數優化的速度。 In summary, the beneficial effects of the present invention may be that the detection method provided by the embodiment of the present invention can be integrated into the manufacturing process of the conductive structure, and is actually applied to the production line to detect the blind hole immediately before forming the conductive column. The critical dimensions confirm that the depth is as expected to improve product yield. Moreover, obtaining the shape parameters of the blind holes is also beneficial to speed up the optimization of the process parameters.

此外,本發明實施例的檢測方式可對封裝過程中的晶片進行非破壞性的檢測,不需要額外製作試片,可簡化檢測流程,並縮短檢測時間。 In addition, the detection method of the embodiment of the invention can perform non-destructive detection on the wafer in the packaging process, and does not require additional production of the test piece, which can simplify the detection process and shorten the detection time.

以上所述僅為本發明的較佳可行實施例,非因此侷限本發明的專利範圍,故舉凡運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的保護範圍內。 The above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, equivalent technical changes made by using the present specification and the contents of the drawings are included in the protection scope of the present invention. .

S100~S102‧‧‧流程步驟 S100~S102‧‧‧ Process steps

Claims (7)

一種盲孔關鍵尺寸資訊的檢測方法,其包括:提供一基材,其中所述基材具有形成於一表面的多個盲孔;通過一影像擷取裝置擷取多個所述盲孔在所述表面的盲孔影像,以得到每一個所述盲孔的中心點的位置資訊;以及通過一彩色共焦干涉式顯微裝置,並根據所述位置資訊,以量測每一個所述盲孔在相對應的所述中心點上的盲孔深度。 A method for detecting critical dimension information of a blind hole, comprising: providing a substrate, wherein the substrate has a plurality of blind holes formed on a surface; and the plurality of blind holes are taken by an image capturing device a blind hole image of the surface to obtain position information of a center point of each of the blind holes; and measuring each of the blind holes by a color confocal interferometric microscopic device and according to the position information The blind hole depth at the corresponding center point. 如請求項1所述的盲孔關鍵尺寸資訊的檢測方法,其中在通過所述影像擷取裝置擷取多個所述盲孔在所述表面的所述盲孔影像的步驟中,更進一步包括:通過所述影像擷取裝置擷取所述盲孔的邊緣至所述中心點的距離,以得到所述盲孔的直徑或寬度。 The method for detecting blind hole key size information according to claim 1, wherein in the step of capturing, by the image capturing device, the plurality of blind holes in the blind hole image of the surface, further comprising : capturing, by the image capturing device, a distance from an edge of the blind hole to the center point to obtain a diameter or a width of the blind hole. 如請求項2所述的盲孔關鍵尺寸資訊的檢測方法,其中每一個所述盲孔通過所述盲孔深度及所述盲孔的直徑或寬度,以獲得每一個所述盲孔的關鍵尺寸資訊。 The method for detecting blind hole key size information according to claim 2, wherein each of the blind holes passes through the blind hole depth and the diameter or width of the blind hole to obtain a critical size of each of the blind holes. News. 如請求項1所述的盲孔關鍵尺寸資訊的檢測方法,其中在得到每一個所述盲孔的中心點的位置資訊步驟之後,更進一步包括:計算每兩個相鄰的所述盲孔的所述中心點之間的距離,以得到每兩個相鄰的所述盲孔的間距。 The method for detecting blind hole key size information according to claim 1, wherein after obtaining the position information step of the center point of each of the blind holes, the method further comprises: calculating each of the two adjacent blind holes The distance between the center points to obtain the spacing of each of the two adjacent blind holes. 一種導電結構的製造方法,其包括:提供一基材,其中所述基材具有一表面及與所述表面相反的一底面;形成多個盲孔於所述基材的所述表面;通過一影像擷取裝置擷取多個所述盲孔在所述表面的多個盲孔影像,以得到每一個所述盲孔的中心點的位置資訊;通過一彩色共焦干涉式顯微裝置,並根據所述位置資訊,量測每一個所述盲孔在相對應的所述中心點上的盲孔深度; 於每一個所述盲孔內形成一導電柱;以及根據所述盲孔在所述中心點的深度執行一薄化製程於所述底面,以使所述盲孔改變成一穿孔,並使所述導電柱的頂部與底部分別被所述穿孔的兩相反開口所裸露。 A method of fabricating a conductive structure, comprising: providing a substrate, wherein the substrate has a surface and a bottom surface opposite the surface; forming a plurality of blind holes in the surface of the substrate; The image capturing device captures a plurality of blind hole images of the blind holes on the surface to obtain position information of a center point of each of the blind holes; through a color confocal interferometric microscopic device, and And measuring, according to the location information, a blind hole depth of each of the blind holes at the corresponding center point; Forming a conductive pillar in each of the blind holes; and performing a thinning process on the bottom surface according to the depth of the blind hole at the center point, so that the blind hole is changed into a through hole, and the The top and bottom of the conductive post are respectively exposed by the opposite openings of the perforations. 如請求項5所述的導電結構的製造方法,其中在通過所述影像擷取裝置擷取多個所述盲孔在所述表面的所述盲孔影像的步驟中,以及在量測每一個所述盲孔在所述中心點的深度的步驟之前,更進一步包括:通過所述影像擷取裝置擷取所述盲孔的邊緣至所述中心點的距離,以得到所述盲孔的直徑或寬度。 The method of manufacturing a conductive structure according to claim 5, wherein in the step of capturing a plurality of the blind holes in the blind hole image of the surface by the image capturing device, and measuring each Before the step of the blind hole at the depth of the center point, the method further includes: capturing, by the image capturing device, the distance from the edge of the blind hole to the center point to obtain the diameter of the blind hole Or width. 如請求項5所述的導電結構的製造方法,其中在得到每一個所述盲孔的中心點的位置資訊的步驟之後,更進一步包括:計算每兩個相鄰的所述盲孔的所述中心點之間的距離,以得到每兩個相鄰的所述盲孔的間距。 A method of manufacturing a conductive structure according to claim 5, wherein after the step of obtaining positional information of a center point of each of said blind holes, further comprising: calculating said each of said two adjacent said blind holes The distance between the center points to obtain the spacing of each of the two adjacent blind holes.
TW104128991A 2015-09-02 2015-09-02 Manufacturing method of conductive via and method for inspecting critical dimension information of blind via TWI558976B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104128991A TWI558976B (en) 2015-09-02 2015-09-02 Manufacturing method of conductive via and method for inspecting critical dimension information of blind via

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104128991A TWI558976B (en) 2015-09-02 2015-09-02 Manufacturing method of conductive via and method for inspecting critical dimension information of blind via

Publications (2)

Publication Number Publication Date
TWI558976B TWI558976B (en) 2016-11-21
TW201710640A true TW201710640A (en) 2017-03-16

Family

ID=57851684

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104128991A TWI558976B (en) 2015-09-02 2015-09-02 Manufacturing method of conductive via and method for inspecting critical dimension information of blind via

Country Status (1)

Country Link
TW (1) TWI558976B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10571252B2 (en) 2018-07-17 2020-02-25 Industrial Technology Research Institute Surface topography optical measuring system and surface topography optical measuring method
TWI724370B (en) * 2019-02-01 2021-04-11 由田新技股份有限公司 An automatic optical inspection system, and method for measuring a hole structure
CN112763486B (en) * 2020-11-30 2022-05-10 成都飞机工业(集团)有限责任公司 Composite material wall plate array hole detection method based on line laser scanning

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI271126B (en) * 2004-01-19 2007-01-11 Cin Phown Technology Co Ltd Method of the three-dimensional image for the blind hole examines on a printed circuit board
TWI420067B (en) * 2010-06-08 2013-12-21 Ind Tech Res Inst Method for measuring hole depth
TWI424145B (en) * 2010-12-08 2014-01-21 Ind Tech Res Inst Measurement method of via bottom profile
KR101186464B1 (en) * 2011-04-13 2012-09-27 에스엔유 프리시젼 주식회사 Interferometric system for measuring tsv and method using the same

Also Published As

Publication number Publication date
TWI558976B (en) 2016-11-21

Similar Documents

Publication Publication Date Title
TWI442015B (en) Interferometric system for measuring tsv and method using the same
US9140539B2 (en) Optical system and method for measurement of one or more parameters of via-holes
US9305341B2 (en) System and method for measurement of through silicon structures
US8848185B2 (en) Optical system and method for measuring in three-dimensional structures
US9863889B2 (en) System and method for inspecting a wafer
US8885918B2 (en) System and method for inspecting a wafer
CN107036539B (en) Membrane thickness measuring system and method
US10066927B2 (en) Inspection of microelectronic devices using near-infrared light
TWI558976B (en) Manufacturing method of conductive via and method for inspecting critical dimension information of blind via
KR20180121663A (en) All surface membrane instrumentation systems
JP2011191285A (en) Method for measurement of stepped structure in light transmissive material
KR20070113655A (en) Method of measuring thickness of a thin layer on a substrate and apparatus for performing the same
US8537213B2 (en) Method for measuring via bottom profile
US20150168132A1 (en) Method and system for use in optical measurements in deep three-dimensional structures
CN105051485B (en) Characterize TSV micro manufacturing processes and products thereof
KR20150049743A (en) Interferometric Reflectometry Module
CN206974377U (en) Measuring system
TWM536412U (en) Automatic measuring device of hole and film thickness
Myalitsin et al. Raman Spectroscopy and Hyperspectral Imaging for Wafer-On-Wafer (WOW) Processing
Fujimori et al. New methodology for through silicon via array macroinspection
IL227510A (en) Optical method for measuring in three-dimensional structures
JP2009164336A (en) Method of inspecting electronic component, electronic component, and method of manufacturing electronic component