TW201709138A - Raw data capture device - Google Patents

Raw data capture device Download PDF

Info

Publication number
TW201709138A
TW201709138A TW104128005A TW104128005A TW201709138A TW 201709138 A TW201709138 A TW 201709138A TW 104128005 A TW104128005 A TW 104128005A TW 104128005 A TW104128005 A TW 104128005A TW 201709138 A TW201709138 A TW 201709138A
Authority
TW
Taiwan
Prior art keywords
control module
algorithm
micro
capture device
data capture
Prior art date
Application number
TW104128005A
Other languages
Chinese (zh)
Inventor
陳俊男
Original Assignee
環旭電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 環旭電子股份有限公司 filed Critical 環旭電子股份有限公司
Priority to TW104128005A priority Critical patent/TW201709138A/en
Publication of TW201709138A publication Critical patent/TW201709138A/en

Links

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

A Raw Data Capture Device includes a primary MCU, a secondary MCU, a memory member, a HCI, a wireless communication member and a power circuit. The power circuit supplies power to the primary and secondary MCUs; the primary MCU connects with the secondary MCU, the wireless communication member and the HCI. At least one algorithm is provided in the primary MCU rather than the secondary one. The secondary MCU captures bio-signals originally from a feature sensor, which is attached to a living being, and outputs the raw data, which corresponds to the bio-signals, to the memory member for temporary storage. When an idle event is called in the primary MCU, the algorithm idles. Alternatively, when an awaken event is called in the primary MCU, the raw data, which is previously accumulated in the memory member, is completely collected by the primary MCU, and the algorithm is activated from idling to process the collected raw data into information, which conveys bio-features of the living being. The information is capable of delivery via HCI or the wireless communication member.

Description

原始資料攫取裝置 Raw data capture device

本發明涉及一種資料運算裝置,特別是一種原始資料的攫取與運算裝置。 The invention relates to a data operation device, in particular to a data acquisition and calculation device.

傳統監控心搏的穿戴式裝置,其內通常置備兩個微處理模組,兩微處理模組互相電連接;第一微處理模組電連接至少一心搏感應器,第二微處理模組則電連接前第一微處理模組,且第二微處理模組進一步連接顯示單元。當欲進行心搏監控時,同時驅動兩微處理模組,第一微處理模組取得心搏感應器的訊號並即時演算後,傳送到第二微處理模組及其顯示單元,以供使用者目視。 A traditional wearable device for monitoring heart beats, in which two micro-processing modules are usually provided, and two micro-processing modules are electrically connected to each other; the first micro-processing module is electrically connected to at least one heartbeat sensor, and the second micro-processing module is The first micro processing module is electrically connected, and the second micro processing module is further connected to the display unit. When the heartbeat monitoring is to be performed, the two micro-processing modules are simultaneously driven, and the first micro-processing module obtains the signal of the heartbeat sensor and immediately calculates the signal, and then transmits the signal to the second micro-processing module and its display unit for use. Visually.

由於傳統監控心搏是採即時演算,第一微處理模組每接收一次心搏訊號,便進行一次心搏演算法。但心搏演算法的程式碼相對複雜,並造成相對高的耗電量;以成人休息時每分鐘心搏60~100次,表示第一微處理模組將每分鐘進行60~100次的演算耗電,可以預期此種持續測量心搏的耗電量將相當可觀。此外,倘若欲達成連續24小時持續監控,僅僅是單一的第一微處理模組運作,即可迅速消耗穿戴式裝置的整體電量;一旦整體電量殆盡,心搏將不再受到監控。正因如此,受限於傳統監控心搏的缺失,採欲監控心跳時才驅動兩個微處理模組進行心搏演算;在第二微處理器通常會比第一微處理器採用更高等級處理器的情況之下,但第一微處理 器仍需維持在足夠演算心搏的處理器等級,亦表示處理器模組的成本難以降低。 Since the traditional monitoring heartbeat is a real-time calculation, the first micro-processing module performs a heartbeat algorithm every time a heartbeat signal is received. However, the code of the heartbeat algorithm is relatively complicated and causes relatively high power consumption; 60 to 100 beats per minute for adults to rest, indicating that the first microprocessor module will perform 60 to 100 calculations per minute. Power consumption, it can be expected that the power consumption of such continuous measurement of heart beat will be considerable. In addition, if continuous monitoring is required for 24 hours, only a single first microprocessor module can operate, and the overall power of the wearable device can be quickly consumed; once the overall power is exhausted, the heartbeat will no longer be monitored. Because of this, it is limited by the lack of traditional monitoring heartbeat, and it is only when the heartbeat is monitored to drive two micro-processing modules for heart-calculation; in the second microprocessor, the higher level is usually adopted. In the case of the processor, but the first micro-processing The device still needs to be maintained at a processor level sufficient to calculate the heartbeat, which also means that the cost of the processor module is difficult to reduce.

在現今穿戴式裝置的市場需求逐漸攀升,保健、保命或大數據分析的智慧型要求越來越明確的趨勢下,非24小時連續監控易使訊號漏失,小則無法及時保命、大則難供大數據分析。又,心搏監控僅為監控項目的其中一環,尚有其他諸如運動、血氧、呼吸、體溫、血壓等等生理訊號,目前除受限前述元件的技術整合外,總體耗電量的控制亦為其技術門檻。因此,如何設計出同時具有長時監控與低功耗的穿戴式裝置,業界亦苦心研究中。 In today's market demand for wearable devices, the trend of smarter health care, life-saving or big data analysis is becoming more and more clear. Non-24-hour continuous monitoring makes it easy to lose signals. Big data analysis. In addition, heartbeat monitoring is only one of the monitoring items. There are other physiological signals such as exercise, blood oxygen, respiration, body temperature, blood pressure, etc. At present, in addition to limiting the technical integration of the aforementioned components, the overall power consumption control is also It is the technical threshold. Therefore, how to design a wearable device with both long-term monitoring and low power consumption is also painstakingly studied.

本發明之目的在於提供一種原始資料攫取裝置,係同時達到長時監控與低功耗的功效。 The object of the present invention is to provide a raw data capture device that achieves both long-term monitoring and low power consumption.

為此,本發明提供一種原始資料攫取裝置,係包括:一特徵感測元件、一次微控模組、一記憶元件、以及一主微控模組。其中,次微控模組電連接主微控模組,由特徵偵測單元依次且連續地接收至少一生理特徵訊號,並對應該生理特徵訊號產生一組原始資訊。記憶元件電連接次微控模組,接收並儲存該組原始資訊。主微控模組定義有一睡眠事件與一喚醒事件,並包括至少一演算法;當主微控模組發生喚醒事件時,主微控模組支配次微控模組批量取得儲存於記憶元件之該等原始資料,對應該等原始資料之演算法被執行以產生至少一生理特徵資訊,主微控模組並輸出該生理特徵資訊;當主微控模組發生睡眠事件時,演算法不執行。 To this end, the present invention provides a raw data capture device comprising: a feature sensing component, a primary micro-control module, a memory component, and a primary micro-control module. The sub-micro control module is electrically connected to the main micro-control module, and the feature detecting unit sequentially and continuously receives at least one physiological characteristic signal, and generates a set of original information for the physiological characteristic signal. The memory component is electrically connected to the secondary micro-control module to receive and store the original information of the group. The main micro-control module defines a sleep event and a wake-up event, and includes at least one algorithm; when the main micro-control module has a wake-up event, the main micro-control module dominates the sub-micro control module to obtain the memory component in batches. The original data, the algorithm corresponding to the original data is executed to generate at least one physiological characteristic information, and the main micro control module outputs the physiological characteristic information; when the main micro control module generates a sleep event, the algorithm does not execute .

100‧‧‧原始資料攫取裝置 100‧‧‧ raw data acquisition device

120‧‧‧穿戴結構 120‧‧‧Wearing structure

200‧‧‧主微控模組 200‧‧‧Main Micro Control Module

220‧‧‧演算法 220‧‧‧ algorithm

221‧‧‧心搏演算法 221‧‧‧heart beat algorithm

222‧‧‧運動演算法 222‧‧‧ sports algorithm

240‧‧‧監控程序 240‧‧‧Monitor program

260‧‧‧強制程序 260‧‧‧compulsory procedure

300‧‧‧攫取單元 300‧‧‧Capture unit

320‧‧‧特徵偵測單元 320‧‧‧ Feature Detection Unit

321‧‧‧心搏感應器 321‧‧‧Heart Beat Sensor

322‧‧‧加速度計 322‧‧‧Accelerometer

340‧‧‧次微控模組 340‧‧‧ micro control modules

360‧‧‧記憶元件 360‧‧‧ memory components

380‧‧‧攫取程序 380‧‧‧Selection procedure

400‧‧‧電源電路 400‧‧‧Power circuit

500‧‧‧人機介面 500‧‧‧ human machine interface

600‧‧‧無線傳輸元件 600‧‧‧Wireless transmission components

700‧‧‧本體 700‧‧‧ Ontology

S200‧‧‧生理特徵資訊 S200‧‧‧ Physiological information

S201‧‧‧心搏資訊 S201‧‧‧ Heart Beat Information

S202‧‧‧運動資訊 S202‧‧‧ Sports Information

S320‧‧‧生理特徵訊號 S320‧‧‧ physiological characteristic signal

S321‧‧‧心搏訊號 S321‧‧‧ heart beat signal

S322‧‧‧加速度訊號 S322‧‧‧ Acceleration signal

S340‧‧‧原始資料 S340‧‧‧Sources

S341‧‧‧心搏原始資料 S341‧‧‧ Heart Beat Original Information

S342‧‧‧運動原始資料 S342‧‧‧ Sports original information

Sd1,Sd2,Sd3‧‧‧訊號 Sd1, Sd2, Sd3‧‧‧ signals

R1‧‧‧第一資料流 R1‧‧‧ first data stream

R2‧‧‧第二資料流 R2‧‧‧Second data stream

I‧‧‧第三資料流 I‧‧‧ third data stream

第1圖為本發明原始資料攫取裝置之方塊圖;第1A圖為第1圖之演算法與特徵偵測單元之對應示意圖;第2圖為第1圖之資料流示意圖;第3圖為本發明原始資料攫取裝置之一實施態樣之方塊圖;第3A圖為第3圖之演算法與特徵偵測單元之對應示意圖;第4圖為第3圖之資料流示意圖;第5A圖為第3圖之主微空模組於睡眠事件(off)之方塊圖;第5B圖為第3圖之主微空模組於喚醒事件(on)之方塊圖;第6圖為本發明原始資料攫取裝置另一實施態樣之方塊圖;第7圖為本發明原始資料攫取裝置一穿戴實施態樣之示意圖;以及第8圖為本發明原始資料攫取裝置又一穿戴實施態樣之示意圖。 1 is a block diagram of a raw data capture device of the present invention; FIG. 1A is a schematic diagram of correspondence between the algorithm and the feature detecting unit of FIG. 1; FIG. 2 is a schematic diagram of data flow of FIG. 1; A block diagram of an embodiment of the original data capture device is invented; FIG. 3A is a schematic diagram of the algorithm and feature detection unit of FIG. 3; FIG. 4 is a data flow diagram of FIG. 3; 3 is a block diagram of the main micro-empty module in the sleep event (off); FIG. 5B is a block diagram of the main micro-empty module in the wake-up event (on) of FIG. 3; A block diagram of another embodiment of the apparatus; FIG. 7 is a schematic diagram of a wearable implementation of the original data capture device of the present invention; and FIG. 8 is a schematic diagram of another wearable embodiment of the original data capture device of the present invention.

請參閱第1、1A圖與第2圖,本發明提供一種原始資料攫取裝置100,包括一主微控模組200、一攫取單元300、一電源電路400、一人機介面500、與一無線傳輸元件600。主微控模組200具有至少一演算法220,演算法220可對生命體的特定生理特徵的原始資料進行演算;並在主微控模組200內定義演算法220執行時為喚醒事件、演算法220不執行時為睡眠事件。攫取單元300包括一特徵偵測單元320、一次微控模組340與一記憶元件360。特徵偵測單元320係包括至少一個特徵感測器,以近貼生物體感測, 產生特定的至少一個生理特徵訊號S320。次微控模組340電連接至主微控模組200、前述特徵偵測單元320與記憶元件360;次微控模組340接收前述特徵偵測單元320的生理特徵訊號S320(同時,連續接收的生理特徵訊號S320係定義為第一資料流R1),可經判斷或轉換而產出一組原始資料S340,輸出並暫時儲存至記憶元件360(同時,連續輸出的原始資料S340係定義為第二資料流R2)。其中,前述第一資料流R1可為一類比訊號、數位訊號或類比數位混合訊號,前述第二資料流R2可為一數位訊號或類比數位混合訊號,因此第二資料流R2有可能等於第一資料流R1。 Referring to FIG. 1A and FIG. 2 , the present invention provides a raw data capture device 100 including a main micro control module 200 , a capture unit 300 , a power supply circuit 400 , a human interface 500 , and a wireless transmission . Element 600. The main micro-control module 200 has at least one algorithm 220, and the algorithm 220 can calculate the original data of the specific physiological features of the living body; and define the wake-up event and the calculation when the algorithm 220 is executed in the main micro-control module 200. When the method 220 is not executed, it is a sleep event. The capturing unit 300 includes a feature detecting unit 320, a primary micro control module 340 and a memory component 360. Feature detection unit 320 includes at least one feature sensor for proximity biometric sensing, A specific at least one physiological characteristic signal S320 is generated. The secondary micro-control module 340 is electrically connected to the main micro-control module 200, the feature detecting unit 320 and the memory component 360; the secondary micro-control module 340 receives the physiological characteristic signal S320 of the feature detecting unit 320 (simultaneously, continuous receiving) The physiological characteristic signal S320 is defined as a first data stream R1), which can be judged or converted to produce a set of original data S340, which is output and temporarily stored to the memory element 360 (at the same time, the continuous output of the original data S340 is defined as the first Two data streams R2). The first data stream R1 may be an analog signal, a digital signal or an analog digital mixed signal, and the second data stream R2 may be a digital signal or an analog digital mixed signal, so the second data stream R2 may be equal to the first data stream R2. Data stream R1.

藉由次微控模組340連續並重複地進行生理特徵訊號S320(第一資料流R1)的接收、判斷或轉換為原始資料S340(第二資料流R2)並進而儲存至記憶元件360,記憶元件360將具備相當程度的原始資料S340之資料量。當主微控模組200發生喚醒事件時,主微控模組200支配次微控模組340批量取得累積於記憶元件360之該等原始資料S340(第二資料流R2)。隨後,主微控模組200執行演算法220,產生至少一生理特徵資訊S200並輸出(同時,此時輸出的生理特徵資訊S200係定義為第三資料流I)。前述生理特徵資訊S200可選擇性地透過至人機介面500顯示、透過無線傳輸元件600連接外部鄰近的電子裝置或資料庫、或上傳雲端等。前述第三資料流I可為數位訊號或類比數位混合訊號。 The physiological characteristic signal S320 (first data stream R1) is continuously and repeatedly received, judged or converted into the original data S340 (second data stream R2) by the secondary micro-control module 340 and stored in the memory element 360, and then memorized. Element 360 will have a substantial amount of data for the original data S340. When the main micro-control module 200 has a wake-up event, the main micro-control module 200 controls the sub-micro control module 340 to batchly obtain the original data S340 (second data stream R2) accumulated in the memory component 360. Subsequently, the main micro-control module 200 executes the algorithm 220 to generate and output at least one physiological feature information S200 (at the same time, the physiological characteristic information S200 outputted at this time is defined as the third data stream I). The physiological characteristic information S200 can be selectively transmitted to the human-machine interface 500, connected to an externally adjacent electronic device or database through the wireless transmission component 600, or uploaded to the cloud or the like. The third data stream I can be a digital signal or an analog digital mixed signal.

其中,電源電路400係提供主微控模組200、攫取單元300、與人機介面500運作所需之電源,其於本發明之原始資料攫取裝置100內如何設計及配置則不在所問。 The power supply circuit 400 provides the main micro control module 200, the capture unit 300, and the power supply required for operation of the human interface 500. How to design and configure the original data capture device 100 of the present invention is not required.

參第2圖可了解本實施例的資料流概況為:次微控模組340接收由特徵偵測單元320所出之第一資料流R1,並輸出第二資料流R2至記憶元件360儲存之。於主微控模組200發生喚醒事件時,主微控模組200透過次微控模組340從記憶元件360取得第二資料流R2,且執行演算法220後輸出第三資料流I。 Referring to FIG. 2, the data flow profile of the embodiment is as follows: the secondary micro-control module 340 receives the first data stream R1 outputted by the feature detecting unit 320, and outputs the second data stream R2 to the memory component 360 for storage. . When the wake-up event occurs in the main micro-control module 200, the main micro-control module 200 obtains the second data stream R2 from the memory component 360 through the secondary micro-control module 340, and executes the algorithm 220 to output the third data stream I.

前述特徵偵測單元320可包括心搏、慣性(運動)、體溫、血氧濃度、酒精濃度、血壓、血糖、呼吸、肌肉張力、腦波等等生理特徵之感測器,各種生理特徵感應器又可隨科技進化而有不同的偵測技術,特徵偵測單元320可任意配置前述(或不限於前述)各種生理特徵感測器的數量與組合。 The foregoing feature detecting unit 320 may include sensors for physiological characteristics such as heartbeat, inertia (motion), body temperature, blood oxygen concentration, alcohol concentration, blood pressure, blood sugar, respiration, muscle tension, brain waves, and the like, and various physiological feature sensors. In addition, different detection technologies may be used as the technology evolves, and the feature detecting unit 320 may arbitrarily configure the number and combination of the aforementioned physiological characteristic sensors (or not limited to the foregoing).

請參第3、3A圖,以特徵偵測單元320包括一心搏感應器321與一加速度計322為例:心搏感應器321可為偵測血管血液變化之感光模組、偵測心電脈衝變化之心電感應器,其觀測心搏而能連續產生心搏訊號S321;加速度計322則偵測生物體的運動,並產生加速度訊號S322。心搏感應器321與加速度計322個別偵測生物體並連續產生心搏訊號S321與加速度訊號S322等生理特徵訊號,次微控模組340持續地接收心搏感應器321的心搏訊號S321、以及加速度計322的加速度訊號S322,並即時地、個別地判斷或轉換心搏訊號S321、加速度訊號S322為一組心搏原始資料S341、運動原始資料S342,傳送心搏原始訊號S341與運動原始資料S342至記憶元件360儲存;其中,前述兩種原始資料或按先進先出傳送、或交錯傳送、或合併傳送等,其輸出模式係按需求設計不在所問。 For example, the feature detecting unit 320 includes a heart beat sensor 321 and an accelerometer 322 as an example: the heart beat sensor 321 can be a photosensitive module for detecting blood vessel blood changes, and detecting an electrocardiogram pulse. The changing ECG sensor continuously observes the heartbeat signal S321; the accelerometer 322 detects the motion of the living body and generates an acceleration signal S322. The heartbeat sensor 321 and the accelerometer 322 individually detect the living body and continuously generate physiological characteristic signals such as the heartbeat signal S321 and the acceleration signal S322, and the secondary micro control module 340 continuously receives the heartbeat signal S321 of the heartbeat sensor 321 And the accelerometer 322 acceleration signal S322, and instantly or individually determine or convert the heartbeat signal S321, the acceleration signal S322 as a set of heartbeat original data S341, the motion original data S342, and transmit the heartbeat original signal S341 and the motion original data. S342 to memory element 360 are stored; wherein the two kinds of original data are transmitted by first-in first-out, or interleaved, or combined, and the output mode is not required according to the requirement design.

次微控搏組340不間斷地持續運作,因此記憶元件360亦持續累積原始資料量。 The secondary micro-control group 340 continues to operate uninterrupted, so the memory component 360 also continues to accumulate the original amount of data.

主微控模組200內定義的演算法220可以區分為複數個,本實施例中,主微控模組200內定義的演算法220包括單一心搏演算法221與單一運動演算法222;該心搏感應器321、加速度計322個別對應心搏演算法221、運動演算法222。當主微控模組200發生喚醒事件時,此時主微控模組200可單獨執行心搏演算法221或運動演算法222,或同時執行二者。主微控模組200主動發出一觸發訊號Sd1支配次微控模組340;次微控模組340對應觸發訊號Sd1產生一批量取得訊號Sd2支配記憶元件360,使記憶元件360釋放批量資料,將該心搏原始資料S341或/與運動原始資料S342傳送至主微控模組200。此時在主微控模組200內,心搏演算法221或/與運動演算法222被執行,經分別對應該心搏原始資料S341與運動原始資料S342運算產出一心搏資訊S201與一運動資訊S202。所產出的心搏資訊S201與運動資訊S202等生理特徵資訊可輸出,如傳送至人機介面500或無線傳輸元件600。 The algorithm 220 defined in the main micro-control module 200 can be divided into a plurality of functions. In this embodiment, the algorithm 220 defined in the main micro-control module 200 includes a single heart beat algorithm 221 and a single motion algorithm 222; The heartbeat sensor 321 and the accelerometer 322 individually correspond to the heartbeat algorithm 221 and the motion algorithm 222. When the main micro-control module 200 has a wake-up event, the main micro-control module 200 can perform the heartbeat algorithm 221 or the motion algorithm 222 separately, or both. The main micro-control module 200 actively sends a trigger signal Sd1 to control the sub-micro control module 340; the sub-micro control module 340 generates a batch acquisition signal Sd2 to control the memory component 360 corresponding to the trigger signal Sd1, so that the memory component 360 releases the batch data, The heartbeat original data S341 or/and the motion original data S342 are transmitted to the main micro control module 200. At this time, in the main micro-control module 200, the heartbeat algorithm 221 or/and the motion algorithm 222 are executed, and the heartbeat original data S341 and the motion original data S342 are respectively processed to generate a heart beat information S201 and a motion. Information S202. The physiological characteristic information such as the generated heartbeat information S201 and the sports information S202 can be output, for example, to the human machine interface 500 or the wireless transmission component 600.

由於演算法的性質與數量取決於攫取訊號與所欲產出的資訊;因此,如欲獲取更精確的心搏資訊,勢必備置多個複雜的演算法加以組合,例如,以特徵點演算法結合波形面積演算與複雜度演算等,此時涉及心搏資訊產出的演算法將不只一個,以運算心搏原始資料S341,進而產出包括心律及其他生理參數之心搏資訊S201。又,本發明之原始資料攫取裝置100之特徵偵測單元320可按需求包括至少一種且至少一個特徵感測器,因此對應性質不同的特徵感測器須置備性質不同的至少一演算法220。 因此,特徵偵測單元320與演算法220的數量與性質,在本發明之原始資料攫取裝置100內部如何設計與配置,並非所問。 Since the nature and quantity of the algorithm depends on the information obtained by the signal and the desired output; therefore, in order to obtain more accurate heartbeat information, it is necessary to combine multiple complex algorithms, for example, by feature point algorithm. Waveform area calculation and complexity calculation, etc., at this time, there will be more than one algorithm involving the heartbeat information output, to calculate the heartbeat original data S341, and then generate heartbeat information S201 including heart rhythm and other physiological parameters. In addition, the feature detecting unit 320 of the original data capturing device 100 of the present invention may include at least one and at least one feature sensor as needed, and thus the feature sensors having different corresponding properties shall be provided with at least one algorithm 220 having different properties. Therefore, the number and nature of the feature detecting unit 320 and the algorithm 220 are not designed and configured in the interior of the original data capturing device 100 of the present invention.

同樣參閱第3圖,本實施例中的主微控模組200更進一步具有一監控程序240,前述心搏演算法221與運動演算法222係受監控程序240於喚醒事件時之支配而執行。因此,若主微控模組200尚需要運作其他功能時,可安排監控程序240的睡眠與喚醒,不干涉主微控模組200其他功能的執行。換句話說,監控程序240的加入,有利主微控模組200進行與生理特徵演算無關的其他運作。此外,監控程序240也能進一步支配主微控模組200,使主微控模組200能與監控程序240同步切換睡眠或喚醒,此亦視需要設計,不在所問。 Referring to FIG. 3, the main micro-control module 200 in this embodiment further has a monitoring program 240. The heartbeat algorithm 221 and the motion algorithm 222 are executed by the monitoring program 240 at the time of the wake-up event. Therefore, if the main micro-control module 200 still needs to operate other functions, the sleep and wake-up of the monitoring program 240 can be arranged without interfering with the execution of other functions of the main micro-control module 200. In other words, the addition of the monitoring program 240 facilitates the main micro-control module 200 to perform other operations unrelated to the physiological characteristic calculation. In addition, the monitoring program 240 can further control the main micro-control module 200, so that the main micro-control module 200 can switch to sleep or wake up synchronously with the monitoring program 240, which is also designed as needed, and is not asked.

同時參閱第3、3A圖,由於次微控模組340需要不斷地接收前述生理特徵訊號,其接收模式可以由特徵偵測單元320(即心搏感應器321與加速度計322)自動回饋,亦可於本實施例進一步在次微控模組340設有具迴圈設計之一攫取程序380,由攫取程序380主動攫取前述生理特徵訊號。其中,攫取程序380係至少不受監控程序240干涉,或進一步,監控程序240與攫取程序380之間互不干涉;不同性質的心搏演算法221與運動演算法222之間通常不互相干涉;單一監控程序240可以執行不同性質的心搏演算法221及/或運動演算法222,也可以具備不同的監控程序240來執行不同性質的心搏演算法221及/或運動演算法222。 Referring to FIG. 3 and FIG. 3A, since the secondary micro-control module 340 needs to continuously receive the physiological characteristic signal, the receiving mode can be automatically fed back by the feature detecting unit 320 (ie, the heart beat sensor 321 and the accelerometer 322). In the embodiment, the sub-micro control module 340 is further provided with a loop design 380, and the picking program 380 actively captures the physiological characteristic signal. The capture program 380 is at least not interfered by the monitoring program 240, or further, the monitoring program 240 and the capture program 380 do not interfere with each other; the heartbeat algorithm 221 and the motion algorithm 222 of different natures generally do not interfere with each other; The single monitor program 240 can execute the heartbeat algorithm 221 and/or the motion algorithm 222 of different natures, or can have different monitor programs 240 to execute the heartbeat algorithm 221 and/or the motion algorithm 222 of different natures.

請參第4圖與第5A圖,次微控模組340之攫取程序380取得第一資料流R1,第一資料流R1包括心搏訊號S321與加速度訊號S322,兩種訊 號通常錯開,其時脈設計與輸出模式不在所問。第一資料流R1經過次微控模組340輸出為第二資料流R2至記憶元件360,此第二資料流R2包括心搏原始訊號S341與運動原始資料S342,其傳送的時脈設計與輸出模式亦非所問。此時,監控程序240切換為睡眠事件,如第5A圖之圖示為「off」,記憶元件360可不受干擾持續累積原始資料量。復參第4圖與第5B圖,當主微控模組200發生喚醒事件時,即,監控程序240切換為喚醒事件,如第5B圖之圖示為「on」,主微控模組200取得第二資料流R2,此時記憶元件360中所累積的原始資料均被批量取得,記憶元件360淨空;主微控模組200選擇執行對應的心搏演算法221或運動演算法222,處理第二資料流R2後輸出第三資料流I。 Referring to FIG. 4 and FIG. 5A, the capture program 380 of the secondary control module 340 obtains the first data stream R1, and the first data stream R1 includes the heartbeat signal S321 and the acceleration signal S322. The numbers are usually staggered, and their clock design and output mode are not asked. The first data stream R1 is outputted by the secondary micro control module 340 as a second data stream R2 to the memory element 360. The second data stream R2 includes a heartbeat original signal S341 and a motion original data S342, and the clock design and output of the transmission The model is also not asked. At this time, the monitoring program 240 switches to a sleep event. If the illustration in FIG. 5A is "off", the memory element 360 can continuously accumulate the original data amount without interference. Referring to FIG. 4 and FIG. 5B, when the main micro-control module 200 has a wake-up event, that is, the monitoring program 240 switches to a wake-up event, as shown in FIG. 5B as "on", the main micro-control module 200 The second data stream R2 is obtained. At this time, the original data accumulated in the memory component 360 is obtained in batches, and the memory component 360 is cleaned; the main micro-control module 200 selects to execute the corresponding heartbeat algorithm 221 or the motion algorithm 222, and processes The third data stream I is output after the second data stream R2.

又,主微控模組200或其監控程序240係可自主地進入喚醒事件,或受一強制程序260控制而被動地進入喚醒事件。強制程序260可實施在主微控模組200或人機介面500上,以供人為操作;如第6圖,強制程序260設於人機介面500上,用以提供一觸發訊號Sd3強制主微控模組200/或監控程序240進入喚醒事件。 Moreover, the main micro-control module 200 or its monitoring program 240 can enter the wake-up event autonomously or passively enter the wake-up event under the control of a mandatory program 260. The mandatory program 260 can be implemented on the main micro-control module 200 or the human-machine interface 500 for human operation; as shown in FIG. 6, the forcing program 260 is disposed on the human-machine interface 500 for providing a trigger signal Sd3 to force the main micro The control module 200/or the monitoring program 240 enters a wake event.

復參第1圖,本發明之原始資料攫取裝置100透過無線傳輸元件600,可單獨傳送該等該等生理特徵資訊S200,或將該等原始資料S340與該等生理特徵資訊S200一併傳送至外部,如主機、遠端系統或雲端等;藉此,可達到遠端監控、大數據分析等更進一步的功效。 Referring to FIG. 1, the original data capture device 100 of the present invention can transmit the physiological feature information S200 separately through the wireless transmission component 600, or transmit the original data S340 together with the physiological feature information S200. External, such as host, remote system or cloud; thus, further effects such as remote monitoring and big data analysis can be achieved.

本發明之原始資料攫取裝置係為一穿戴式裝置,如第7圖,其進一步結合一穿戴結構120;或如第8圖,其進一步結合一本體700連接穿 戴結構120。主微控模組200、攫取單元300均設於該本體700,人機介面500則設於本體700可目視處;其中,本體700可為智慧錶等電子裝置,此時強制程序260可實施於本體700或如第8圖設於人機介面500上。簡而言之,穿戴結構120用以將原始資料攫取裝置100拘束至生物體一部位,如人體手、胸、腰、腿、頭等處,但不受前述部位之侷限。 The original data capture device of the present invention is a wearable device, such as Figure 7, which is further combined with a wearable structure 120; or as shown in Figure 8, it is further coupled with a body 700. Wear structure 120. The main micro-control module 200 and the capture unit 300 are all disposed on the main body 700, and the human-machine interface 500 is disposed on the main body 700. The main body 700 can be an electronic device such as a smart watch. The body 700 is disposed on the human machine interface 500 as shown in FIG. In short, the wearing structure 120 is used to restrain the original data capturing device 100 to a part of the living body, such as a human hand, chest, waist, legs, head, etc., but is not limited by the aforementioned parts.

綜上所述,本發明之原始資料攫取裝置,參第2圖,是藉由次微控模組340不間斷接收第一資料流R1並輸出為第二資料流R2,記憶元件360暫存第二資料流R2,而主微控模組200在睡眠事件與喚醒事件之間切換,並於喚醒事件時才批量取得第二資料流R2並演算產出第三資料流I,藉此使演算所須功耗被控制於發生喚醒事件的時候產生。相較於傳統監控心搏每接收心搏訊號即進行一次心搏演算,本發明一次性的演算可降低演算法的運行次數;要知道心搏演算法通常不只包含一演算法,因此本發明更能大幅降低演算法的總量運算,進而降低整體功耗、延長裝置運作時間,以達到24小時連續監控的要求。此外,次微控模組340並不被要求演算,因此對次微控模組340的規格選購可不必維持高規格的處理器,此種規格選用的餘裕可以獲得下列兩種結果:在與先前技術達到相當的監控效果下,成本可降低;在與先前技術選用相同的處理器規格下,達到時間更長、資訊更為完整的監控效果。由於監控心搏乃是穿戴式裝置其中的一種功效,本發明之原始資料攫取裝置若選用其他特徵感測器如體溫、呼吸、運動感應器等,因其演算未如心搏演算法複雜,主微控模組將有餘裕整合更多功能或生理訊號感應器、或者可維持更長久的整體電量,並藉此達成市場保健、 保命或大數據分析的智慧型要求。本發明之原始資料攫取裝置更能針對目的性分析的大數據要求,進一步應用於高齡者、嬰幼兒、失能者等監控照護,或於醫療院所或於居家自宅,或擴及罪犯或寵物等等廣泛範圍。 In summary, the original data capture device of the present invention, as shown in FIG. 2, is that the secondary data control module 340 continuously receives the first data stream R1 and outputs it as the second data stream R2, and the memory device 360 is temporarily stored. The data stream R2, and the main micro-control module 200 switches between the sleep event and the wake-up event, and obtains the second data stream R2 in batches and calculates the third data stream I at the wake-up event, thereby making the algorithm The power consumption must be controlled when a wake-up event occurs. Compared with the traditional monitoring heartbeat, a heartbeat calculus is performed every time the heartbeat signal is received, and the one-time calculus of the present invention can reduce the running times of the algorithm; it is known that the heartbeat algorithm usually includes more than one algorithm, so the present invention is more It can greatly reduce the total calculation of the algorithm, thereby reducing the overall power consumption and extending the operating time of the device to meet the requirements of 24-hour continuous monitoring. In addition, the secondary micro-control module 340 is not required to be calculated. Therefore, it is not necessary to maintain a high-standard processor for the specification of the secondary micro-control module 340. The margin for selecting such a specification can obtain the following two results: When the prior art achieves a comparable monitoring effect, the cost can be reduced; under the same processor specifications as the prior art, the monitoring effect with longer time and more complete information is achieved. Since monitoring the heart beat is one of the functions of the wearable device, the original data capture device of the present invention uses other characteristic sensors such as body temperature, breathing, motion sensor, etc., because the calculation is not as complicated as the heartbeat algorithm, the main The micro-control module will have more resources to integrate more functions or physiological signal sensors, or to maintain a longer overall power, and to achieve market health, Smart requirements for life-saving or big data analysis. The original data acquisition device of the invention can be further applied to the monitoring and care of elderly people, infants, disabled persons, etc. for the big data requirements of the purpose analysis, or in the medical institution or at home, or to expand the criminal or pet. And so on.

本發明及其具體實施例係不侷限於上述例示,其概念透過申請專利範圍的概念與範疇下可為替代或變換。 The present invention and its specific embodiments are not limited to the above-described examples, and the concepts may be substituted or changed by the concept and scope of the claims.

100‧‧‧原始資料攫取裝置 100‧‧‧ raw data acquisition device

200‧‧‧主微控模組 200‧‧‧Main Micro Control Module

220‧‧‧演算法 220‧‧‧ algorithm

300‧‧‧攫取單元 300‧‧‧Capture unit

320‧‧‧特徵偵測單元 320‧‧‧ Feature Detection Unit

340‧‧‧次微控模組 340‧‧‧ micro control modules

360‧‧‧記憶元件 360‧‧‧ memory components

400‧‧‧電源電路 400‧‧‧Power circuit

500‧‧‧人機介面 500‧‧‧ human machine interface

600‧‧‧無線傳輸元件 600‧‧‧Wireless transmission components

S200‧‧‧生理特徵資訊 S200‧‧‧ Physiological information

S320‧‧‧生理特徵訊號 S320‧‧‧ physiological characteristic signal

S340‧‧‧原始資料 S340‧‧‧Sources

Sd1‧‧‧觸發訊號 Sd1‧‧‧ trigger signal

Claims (10)

一種原始資料攫取裝置,係包括:一特徵偵測單元,感測至少一生理特徵訊號;一次微控模組,由該特徵偵測單元依次且連續地接收複數個生理特徵訊號,並依次對應各該生理特徵訊號輸出為一組原始資訊;一記憶元件,接收並儲存該組原始資訊;以及一主微控模組,包括至少一演算法;其中,該主微控模組至少定義一睡眠事件與一喚醒事件;當該主微控模組發生該睡眠事件時,該演算法不執行;當該主微控模組發生該喚醒事件時,該主微控模組支配該次微控模組批量取得儲存於該記憶元件之該等原始資料,對應該等原始資料之該演算法被執行以產生至少一生理特徵資訊,該主微控模組輸出該生理特徵資訊。 An original data capture device includes: a feature detection unit that senses at least one physiological feature signal; and a primary control module that sequentially and continuously receives a plurality of physiological feature signals, and sequentially corresponds to each The physiological characteristic signal is output as a set of original information; a memory component receives and stores the set of original information; and a main micro control module includes at least one algorithm; wherein the main micro control module defines at least one sleep event And a wake-up event; when the sleep event occurs in the main micro-control module, the algorithm is not executed; when the wake-up event occurs in the main micro-control module, the main micro-control module dominates the micro-control module The original data stored in the memory component is batch-produced, and the algorithm corresponding to the original data is executed to generate at least one physiological feature information, and the main micro-control module outputs the physiological feature information. 如請求項1之原始資料攫取裝置,更具有一強制程序,主微控模組之該喚醒事件的發生,係受該強制程序驅動。 For example, the original data capture device of claim 1 has a mandatory program, and the occurrence of the wake event of the main micro control module is driven by the forced program. 如請求項1或2之原始資料攫取裝置,其中:該特徵偵測單元包括至少一種特徵感測器;該主微控模組包括複數演算法,該等演算法係對應該特徵感測器。 The source data capture device of claim 1 or 2, wherein: the feature detection unit comprises at least one feature sensor; the master micro-control module comprises a complex algorithm, and the algorithms are corresponding to the feature sensor. 如請求項3之原始資料攫取裝置,其中,該主微控模組至少具有一監控程序;該監控程序切換為該睡眠事件或該喚醒事件;該演算法係受該監控程序支配。 The source data capture device of claim 3, wherein the master micro-control module has at least one monitoring program; the monitoring program switches to the sleep event or the wake-up event; the algorithm is subject to the monitoring program. 如請求項1或2之原始資料攫取裝置,其中:該特徵偵測單元包括複數種特徵感測器;該主微控模組包括複數演算法,該等演算法係個別對應該 等特徵感測器。 The source data capture device of claim 1 or 2, wherein: the feature detection unit comprises a plurality of feature sensors; the master micro-control module comprises a complex algorithm, and the algorithms are individually corresponding And other feature sensors. 如請求項5之原始資料攫取裝置,其中,該主微控模組具有複數監控程序;該等監控程序切換為該睡眠事件或該喚醒事件;該主微控模組具有複數演算法,該等演算法係個別受該等監控程序支配。 The source data capture device of claim 5, wherein the main micro control module has a plurality of monitoring programs; the monitoring programs switch to the sleep event or the wake event; the main micro control module has a complex algorithm, and the like The algorithm is individually governed by these monitoring programs. 如請求項1或2之原始資料攫取裝置,其中,該次微控模組具迴圈設計之一攫取程序,可主動攫取該等生理特徵訊號並對應輸出為該組原始資訊;該攫取程序至少不受該監控程序干涉。 The raw data capture device of claim 1 or 2, wherein the micro control module has a loop design program that actively captures the physiological characteristic signals and outputs the corresponding original information; the capture program at least Not interfered by this monitoring program. 如請求項1或2之原始資料攫取裝置,進一步包括一人機介面,接收該生理特徵資訊並顯示。 The original data capture device of claim 1 or 2 further includes a human interface for receiving the physiological feature information and displaying the information. 如請求項1或2之原始資料攫取裝置,進一步包括一無線傳輸元件,電連接至該主微控模組,傳送該等生理特徵資訊至外部。 The original data capture device of claim 1 or 2 further includes a wireless transmission component electrically coupled to the primary micro control module to transmit the physiological characteristic information to the outside. 如請求項1或2之原始資料攫取裝置,進一步包括一穿戴結構。 The original data capture device of claim 1 or 2 further comprising a wearable structure.
TW104128005A 2015-08-26 2015-08-26 Raw data capture device TW201709138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104128005A TW201709138A (en) 2015-08-26 2015-08-26 Raw data capture device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104128005A TW201709138A (en) 2015-08-26 2015-08-26 Raw data capture device

Publications (1)

Publication Number Publication Date
TW201709138A true TW201709138A (en) 2017-03-01

Family

ID=58774565

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104128005A TW201709138A (en) 2015-08-26 2015-08-26 Raw data capture device

Country Status (1)

Country Link
TW (1) TW201709138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI712878B (en) * 2019-04-17 2020-12-11 美律實業股份有限公司 Wearable device and power saving method for wearable device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI712878B (en) * 2019-04-17 2020-12-11 美律實業股份有限公司 Wearable device and power saving method for wearable device

Similar Documents

Publication Publication Date Title
JP6659830B2 (en) Biological information analyzer, system, and program
US10667724B2 (en) System and method for continuous background heartrate and heartbeat events detection using a motion sensor
US20190000332A1 (en) Self-powered wearable for continuous biometrics monitoring
US20160367202A1 (en) Systems and Methods for Wearable Sensor Techniques
WO2020253558A1 (en) Health parameter testing method, apparatus and system based on massage chair
KR20190016886A (en) System and method for real-time heartbeat events detection using low-power motion sensor
US20210186347A1 (en) Method and apparatus for determining a health status of an infant
US10631739B2 (en) Monitoring vital signs
EP2285270A1 (en) Method and system for determining a physiological condition
Liu et al. Low-power, noninvasive measurement system for wearable ballistocardiography in sitting and standing positions
WO2019047428A1 (en) Pulse monitoring device and system
CN112022096A (en) Sleep state monitoring method and device
Jourand et al. Textile integrated breathing and ECG monitoring system
Sejdić et al. Assessing interactions among multiple physiological systems during walking outside a laboratory: An android based gait monitor
CN106389070A (en) Intelligent rehabilitation training system and application
TW201709138A (en) Raw data capture device
JPH0698863A (en) Evaluating device for sleep
EP3995074A1 (en) Comprehensive care device
CN209285905U (en) A kind of eye hot compress physiotherapy equipment
CN206026320U (en) Many function body examine appearance
TW201818876A (en) Sleep position analysis system
US20230157632A1 (en) Detecting Obstructive Sleep Apnea/Hypopnea Using Micromovements
RU2578356C1 (en) Method of determining optimum value of long-term physical load, safe for operation of cardiovascular system based on kovalev method and device therefor
CN113015479B (en) Mobile monitoring device, monitoring equipment, monitoring system and patient state monitoring method
CN206007768U (en) A kind of SCM Based nightmare automatic waking device