TW201706725A - 微影裝置之校準方法、使用該方法之微影裝置及元件製造方法 - Google Patents

微影裝置之校準方法、使用該方法之微影裝置及元件製造方法 Download PDF

Info

Publication number
TW201706725A
TW201706725A TW105119221A TW105119221A TW201706725A TW 201706725 A TW201706725 A TW 201706725A TW 105119221 A TW105119221 A TW 105119221A TW 105119221 A TW105119221 A TW 105119221A TW 201706725 A TW201706725 A TW 201706725A
Authority
TW
Taiwan
Prior art keywords
field
fields
substrate
product
pattern
Prior art date
Application number
TW105119221A
Other languages
English (en)
Other versions
TWI667550B (zh
Inventor
韋佛 艾密爾 彼得 舒密特
詹司 史戴克
科納德 瑞米 安德烈 瑪莉亞 史崔爾
羅伊 渥克曼
Original Assignee
Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asml荷蘭公司 filed Critical Asml荷蘭公司
Publication of TW201706725A publication Critical patent/TW201706725A/zh
Application granted granted Critical
Publication of TWI667550B publication Critical patent/TWI667550B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7019Calibration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70516Calibration of components of the microlithographic apparatus, e.g. light sources, addressable masks or detectors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Human Computer Interaction (AREA)
  • Automation & Control Theory (AREA)

Abstract

一第一基板2002具有藉由一微影裝置而施加至第一複數個場2004之一校準圖案。另外基板2006、2010具有經施加至另外複數個場2008、2012之校準圖案。該不同複數個場具有不同大小及/或形狀及/或位置。對該等經圖案化基板2002、2006、2010執行校準量測且該等校準量測用以獲得用於在將產品圖案施加至後續基板時控制該裝置之校正。表示該裝置在兩個或兩個以上不同尺寸之場(在此實例中為場2004、2008、2012)上之效能的量測資料一起收集於一資料庫2013中,且該量測資料用以合成針對一新大小校準該裝置所需之資訊。亦針對不同掃描及步進方向獲得校準資料。

Description

微影裝置之校準方法、使用該方法之微影裝置及元件製造方法
本發明係關於微影裝置,且特定言之係關於用於微影裝置之校準方法及用於實施此等方法之電腦程式產品。本發明進一步係關於元件製造方法。
微影程序為將所要圖案施加至基板上(通常施加至基板之目標部分上)之程序。微影裝置可用於(例如)積體電路(IC)之製造中。在彼情況下,圖案化元件(其替代地被稱作光罩或比例光罩)可用以產生待形成於IC之個別層上之電路圖案。可將此圖案轉印至基板(例如,矽晶圓)上之場(例如,包含晶粒之部分、一個晶粒或若干晶粒)上。通常經由成像至提供於基板上之輻射敏感材料(抗蝕劑)層上而進行圖案之轉印。可涉及步進移動及/或掃描移動,以在橫越基板之順次目標部分處重複圖案。亦有可能藉由將圖案壓印至基板上而將圖案自圖案化元件轉印至基板。在實例之以下描述中,術語「曝光」出於方便起見可用以係指將圖案施加至場或施加至基板之步驟,而不指示對光學成像之任何侷限性或排除壓印。
微影裝置之關鍵效能參數為疊對誤差。此誤差(常常被簡單地稱作「疊對」)為相對於形成於先前層中之特徵將產品特徵置放在正確 位置中之誤差。隨著元件結構變得愈來愈小,疊對規格變得愈來愈嚴厲。疊對將用作本發明中之效能參數之主實例,而本文所揭示之概念及技術原則上亦可應用於其他效能參數之量測及改良。微影程序之效能參數之實例包括(例如)臨界尺寸(CD)、CD均一性及其類似者。
當前,借助於諸如(例如)US2012008127A1中所描述之先進程序控制(APC)之方法及(例如)US2013230797A1中所描述之晶圓對準模型來控制及校正疊對誤差。
在微影裝置內,通常基於提供於基板上之對準標記之量測而應用晶圓對準模型。藉由微影裝置進行該等量測,作為每一圖案化操作之基本步驟。對準模型可包括高階模型,以校正晶圓之非線性失真。對準模型亦可擴展以考量其他量測及/或諸如在圖案化操作期間之熱變形之所計算效應。
在操作期間,先進程序控制能夠穩定化微影裝置之效能,但為了首先達成良好效能,通常有必要在操作中在任何中斷之後執行裝置之校準。一般而言,校準涉及(i)使用裝置;(ii)量測裝置之效能;及(iii)基於觀測到之經量測效能之誤差,控制裝置以校正該等誤差且改良後續生產中之效能。為了達成最高可能效能,必須量測且考量許多個別變數。
作為此等變數之一實例,一些誤差可被分類為「場內」誤差,其取決於在每一場內之位置而系統地再現。其他誤差可被分類為「場間」誤差,其依據整體上在基板上之位置而系統地再現。此外,特定場中之疊對可取決於由微影裝置以有效方式使用以曝光所有場之特定掃描方向及/或步進方向。因此,產品場大小及/或曝光序列之改變可改變裝置之效能。因此,獲得最高效能當前需要針對產品圖案(場大小)之每一改變或甚至在將使用新曝光序列或新柵格定位的情況下進行微影裝置之新校準。可必須對可用於裝置內之每一夾盤(基板支撐 件)分離地執行校準。在校準期間中斷生產。此情形直接縮減微影裝置之生產產出率。若裝置將歷時長週期而用以產生相同產品,則可接受損耗的產出率。然而,在其他時間,微影裝置用以根據客戶需求而每天或每小時產生數個不同產品佈局。針對每一個別佈局或序列重新校準裝置係不可行的(即使是針對相對適度數目個個別佈局亦如此),此係因為其將顯著縮減生產產出率。
因此,需要縮減校準一微影裝置所需之時間量。另外,需要藉由縮減歸因於該微影裝置之特定移動之疊對誤差而改良該微影裝置之準確度。
根據本發明之一第一態樣,提供一種校準一微影裝置之方法,其包含:提供已由該微影裝置施加於一或多個基板上之第一複數個場之第一量測資料,該第一複數個場中之每一場具有一第一佈局;提供已由該微影裝置施加於一或多個基板上之一或多個另外複數個場之另外量測資料,該一或多個另外複數個場中之每一場具有不同於該第一佈局的一佈局;基於該第一量測資料及該另外量測資料而產生一預測函數;及使用該預測函數以判定用於具有一產品佈局之至少第一複數個產品場之一資料集。
該資料集可直接或間接地用以獲得在將一產品圖案施加至一基板時供該微影裝置使用的校正參數。該等產品場可具有不同於第一場尺寸及另外場尺寸兩者之產品場尺寸。替代地或另外,該等產品場可具有相對於該第一複數個場及該另外複數個場之該等場而移位的位置。可獲得特定用於該等產品場尺寸之校正參數,而不論該等產品場尺寸及/或該等位置是否不同於校準場尺寸。
在一特定實施例中,該預測函數預測該微影裝置之疊對效能,且用以在使用一產品佈局將一產品圖案施加至一基板上之產品場時校正疊對。
校正參數之集合可為用於一對準模型之參數。
該方法可進一步包含使用該經判定資料以導出用於在控制該微影裝置以將一產品圖案施加至一產品基板上之複數個場中使用之校正參數。該方法可進一步包含使用該等校正參數以在將該產品圖案施加至一基板而處於具有產品場佈局之場中時控制該微影裝置。
在本發明之一些實施例中,分離地獲得關於場間貢獻及場內貢獻之預測函數。
在本發明之一些實施例中,獲得可用以預測用於不同特定曝光序列之效能之預測函數。舉例而言,在圖案化操作之一掃描類型中,特定預測函數可提供針對特定用於該等掃描及步進方向之一場之效能的預測,該等預測函數用以在一給定曝光序列中將一圖案施加至彼場。可獲得該等預測,而不論是使用彼場大小抑或使用彼曝光序列已產生實際校準基板。
本發明進一步提供一種藉由使用用以將產品圖案施加至基板之一微影裝置來製造元件之方法,該微影裝置使用校正參數而將該等產品圖案施加至具有一產品佈局之場,該等校正參數係藉由根據如上文所闡述或在以下之實施例中所闡述的本發明之任何態樣之該方法而獲得。
本發明進一步提供一種包含機器可讀指令之電腦程式產品,該等機器可讀指令用於使一或若干資料處理裝置實施根據如上文所闡述或在以下之實施例中所闡述的本發明之任何態樣的一校準方法。
本發明之此等以及其他特徵及優點對熟習此項技術者而言自以下實例之【實施方式】的考慮而將顯而易見。
200‧‧‧微影工具/裝置
202‧‧‧量測站MEA
204‧‧‧曝光站EXP
206‧‧‧微影裝置控制單元LACU
208‧‧‧塗佈裝置
210‧‧‧烘烤裝置
212‧‧‧顯影裝置
220‧‧‧經圖案化基板
222‧‧‧處理裝置
224‧‧‧處理裝置
226‧‧‧處理裝置/步驟
230‧‧‧傳入基板
232‧‧‧經處理基板
234‧‧‧經處理基板
240‧‧‧度量衡裝置
242‧‧‧度量衡結果/資料
302‧‧‧校準基板
304‧‧‧場
306‧‧‧校準圖案
308‧‧‧疊對目標區域
310‧‧‧目標
310a‧‧‧頂部標記
310b‧‧‧底部標記
312‧‧‧目標
314‧‧‧目標
316‧‧‧目標
400‧‧‧方法
402‧‧‧步驟
404‧‧‧步驟
406‧‧‧步驟
408‧‧‧步驟
410‧‧‧步驟
412‧‧‧步驟
414‧‧‧步驟
502‧‧‧校準基板
504‧‧‧場
506‧‧‧自左至右方向
508‧‧‧自右至左方向
510‧‧‧正Y方向
512‧‧‧負Y方向
514‧‧‧負X方向
518‧‧‧曝光序列/向上掃描/向右步進
520‧‧‧曝光序列/向下掃描/向右步進
522‧‧‧向上掃描/向左步進
524‧‧‧向下掃描/向左步進
602‧‧‧第一曝光序列
604‧‧‧第二曝光序列
606‧‧‧第三曝光序列
608‧‧‧第四曝光序列
610‧‧‧場
612‧‧‧場
614‧‧‧場
616‧‧‧場
702‧‧‧基板
704‧‧‧基板
706‧‧‧基板
708‧‧‧基板
710(DL)‧‧‧虛擬經量測基板
710(DR)‧‧‧虛擬經量測基板
710(UL)‧‧‧虛擬經量測基板
710(UR)‧‧‧虛擬經量測基板
802‧‧‧場
804‧‧‧場
806‧‧‧虛擬經模型化基板
808‧‧‧虛擬經模型化基板
810‧‧‧虛擬經模型化基板
812‧‧‧虛擬經模型化基板
814‧‧‧經模型化基板
816‧‧‧步進方向
902‧‧‧第一基板/經圖案化基板
904‧‧‧場
906‧‧‧第二基板/經圖案化基板
908‧‧‧場
910‧‧‧第三基板/經圖案化基板
912‧‧‧第四基板/經圖案化基板
914‧‧‧資料庫
915‧‧‧效能模型
916‧‧‧場
917‧‧‧產品配方
918‧‧‧效能模型
940‧‧‧場
942‧‧‧場
944‧‧‧場
2002‧‧‧第一基板/校準基板/經圖案化基板
2004‧‧‧場
2006‧‧‧第二基板/經圖案化基板
2008‧‧‧場
2010‧‧‧第三基板/經圖案化基板
2012‧‧‧場
2014‧‧‧資料庫
2015‧‧‧預測函數
2016‧‧‧場
2018‧‧‧效能模型
LA‧‧‧微影裝置
MA‧‧‧圖案化元件/比例光罩
R‧‧‧配方資訊
SCS‧‧‧監督控制系統
W‧‧‧基板
現在將參考隨附示意性圖式而僅作為實例來描述本發明之實施例,在該等圖式中,對應元件符號指示對應部件,且在該等圖式中:圖1描繪微影裝置連同形成用於半導體元件之生產設施的其他裝置;圖2描繪根據本發明之一實施例之校準方法的原理;圖3示意性地展示可用於圖2之方法中之校準圖案的實例;圖4為根據本發明之一實施例之校準方法的流程圖;圖5為在運用圖4之方法中之第一曝光序列的情況下藉由微影裝置而圖案化之校準基板的示意圖;圖6說明在運用圖4之方法中之四個不同曝光序列的情況下之校準圖案之施加於校準基板上;圖7說明自圖4之方法中之四個校準圖案之提取量測資料的不同子集;圖8(包括圖8之(a)及圖8之(b))說明圖4中所說明之方法之估計步驟的示意性說明之總成;及圖9描繪圖2之校準方法的另一應用。
在詳細地描述本發明之實施例之前,有指導性的是呈現可供實施本發明之實施例之實例環境。
圖1在200處將微影裝置LA展示為實施大容量微影製造程序之工業生產設施之部件。在本實例中,製造程序經調適以用於在諸如半導體晶圓之基板上進行半導體產品(積體電路)之製造。熟習此項技術者將瞭解,可藉由以此程序之變體處理不同類型之基板來製造廣泛多種產品。半導體產品之生產純粹用作現今具有大商業意義之實例。
在微影裝置(或簡言之「微影工具」200)內,在202處展示量測站 MEA且在204處展示曝光站EXP。在206處展示控制單元LACU。在此實例中,每一基板訪問量測站及曝光站以具有經施加圖案。舉例而言,在光學微影裝置中,投影系統用以使用經調節輻射及投影系統將產品圖案自圖案化元件MA轉印至基板上。此轉印藉由在輻射敏感抗蝕劑材料層中形成圖案之影像而完成。
本文中所使用之術語「投影系統」應被廣泛地解譯為涵蓋適於所使用之曝光輻射或適於諸如浸潤液體之使用或真空之使用之其他因素的任何類型之投影系統,包括折射、反射、反射折射、磁性、電磁及靜電光學系統,或其任何組合。圖案化MA元件可為將圖案賦予至由圖案化元件透射或反射之輻射光束的光罩或比例光罩。熟知操作模式包括步進模式及掃描模式。眾所周知,投影系統可以多種方式與用於基板及圖案化元件之支撐件及定位系統合作,以橫越基板將所要圖案施加至許多場。可使用可程式化圖案化元件來代替具有固定圖案之比例光罩。輻射(例如)可包括深紫外線(DUV)或極紫外線(EUV)波帶中之電磁輻射。本發明亦適用於(例如)藉由電子束進行之其他類型的微影程序,例如,壓印微影及直寫微影。
微影裝置控制單元LACU控制各種致動器及感測器的所有移動及量測以收納基板W及比例光罩MA且實施圖案化操作。LACU亦包括用以實施與裝置之操作相關的所要計算之信號處理及資料處理能力。實務上,控制單元LACU將被實現為許多子單元之系統,該等子單元各自處置裝置內之一子系統或組件之即時資料獲取、處理及控制。
在曝光站EXP處將圖案施加至基板之前,在量測站MEA處處理基板使得可進行各種預備步驟。該等預備步驟可包括使用位階感測器來映射基板之表面高度,及使用對準感測器來量測基板上之對準標記之位置。對準標記係以規則柵格圖案標稱地配置。然而,歸因於產生標記時之不準確度且亦歸因於基板之貫穿其處理而發生的變形,標記偏 離理想柵格。因此,除了量測基板之位置及定向以外,對準感測器實務上亦必須詳細地量測橫越基板區域之許多標記的位置(在裝置將以極高準確度在正確部位處印刷產品特徵的情況下)。裝置可屬於具有兩個基板台之所謂的雙載物台類型,每一基板台具有由控制單元LACU控制之一定位系統。在曝光站EXP處曝光一個基板台上之一個基板的同時,可在量測站MEA處將另一基板裝載至另一基板台上,使得可進行各種預備步驟。因此,對準標記之量測極耗時,且提供兩個基板台會實現裝置之產出率之相當大增加。若位置感測器IF在基板台處於量測站以及處於曝光站時不能夠量測基板台之位置,則可提供第二位置感測器以使能夠在兩個站處追蹤基板台之位置。此實例中之微影裝置LA屬於所謂的雙載物台類型,其具有兩個基板台WTa及WTb以及兩個站--曝光站及量測站--在該兩個站之間可交換基板台。
在生產設施內,裝置200形成「微影製造單元」或「微影叢集」之部件,該「微影製造單元」或「微影叢集」亦含有塗佈裝置208以用於將感光性抗蝕劑及其他塗層塗覆至基板W以用於藉由裝置200進行圖案化。在裝置200之輸出側處,提供烘烤裝置210及顯影裝置212以用於將經曝光圖案顯影至實體抗蝕劑圖案中。在所有此等裝置之間,基板處置系統負責支撐基板且將基板自一件裝置轉移至下一裝置。常常被集體地稱作塗佈顯影系統(track)之此等裝置係在塗佈顯影系統控制單元之控制下,塗佈顯影系統控制單元自身受到監督控制系統SCS控制,監督控制系統SCS亦經由微影裝置控制單元LACU而控制微影裝置。因此,不同裝置可經操作以最大化產出率及處理效率。監督控制系統SCS接收配方資訊R,配方資訊R非常詳細地提供待執行以產生每一經圖案化基板之步驟的定義。
一旦已在微影製造單元中施加並顯影圖案,就將經圖案化基板220轉移至其他處理裝置(諸如在222、224、226處說明)。廣範圍之處 理步驟係藉由典型製造設施中之各種裝置予以實施。為實例起見,此實施例中之裝置222為蝕刻站,且裝置224執行蝕刻後退火步驟。將另外物理及/或化學處理步驟應用於另外裝置226,等等。可需要眾多類型之操作以製造實際元件,諸如材料之沈積、表面材料特性之改質(氧化、摻雜、離子植入等等)、化學機械拋光(CMP)等等。實務上,裝置226可表示在一或多個裝置中執行之一系列不同處理步驟。作為另一實例,可提供用於實施自對準多重圖案化之裝置及處理步驟,以基於藉由微影裝置敷設之前驅圖案而產生多個較小特徵。
眾所周知,半導體元件之製造涉及此處理之許多重複,以在基板上逐層地建置具有適當材料及圖案之元件結構。因此,到達微影叢集之基板230可為新近製備之基板,或其可為先前已在此叢集中或在另一裝置中完全地被處理之基板。相似地,取決於所需處理,離開裝置226之基板232可返回以用於同一微影叢集中之後續圖案化操作,其可被預定用於不同叢集中之圖案化操作,或其可為成品產品而待發送用於切塊及封裝。
產品結構之每一層需要不同程序步驟集合,且用於每一層處之裝置226可在類型方面完全不同。另外,即使在待由裝置226應用之處理步驟在大設施中標稱地相同的情況下,亦可存在並行地工作以對不同基板執行步驟226之若干假設相同的機器。此等機器之間的設置或故障之小差異可意謂其以不同方式影響不同基板。即使為每一層相對而言為共同的步驟,諸如蝕刻(裝置222)亦可由標稱地相同但並行地工作以最大化產出率之若干蝕刻裝置來實施。此外,實務上,不同層根據待蝕刻之材料之細節需要不同蝕刻程序,例如,化學蝕刻、電漿蝕刻,且需要特定要求,諸如,各向異性蝕刻。
可在其他微影裝置中執行先前及/或後續程序(如剛才所提及),且可甚至在不同類型之微影裝置中執行先前及/或後續程序。舉例而 言,元件製造程序中之在諸如解析度及疊對之參數上要求極高的一些層相比於要求較不高之其他層可在更先進微影工具中予以執行。因此,一些層可曝光於浸潤類型微影工具中,而其他層曝光於「乾式」工具中。一些層可曝光於在DUV波長下工作之工具中,而其他層係使用EUV波長輻射來曝光。
為了正確且一致地曝光由微影裝置曝光之基板,需要檢測經曝光基板以量測諸如後續層之間的疊對誤差、線厚度、臨界尺寸(CD)等等之屬性。因此,經定位有微影製造單元LC之製造設施亦包括度量衡系統,度量衡系統收納已在微影製造單元中處理之基板W中的一些或全部。將度量衡結果直接或間接地提供至監督控制系統SCS。若偵測到誤差,則可對後續基板之曝光進行調整,尤其是在度量衡可足夠迅速地且快速地進行而使得同一批量之其他基板仍待曝光的情況下。又,已經曝光之基板可被剝離及重工以改良良率,或被捨棄,藉此避免對已知有缺陷之基板執行進一步處理。在基板之僅一些目標部分有缺陷之狀況下,可僅對良好的彼等目標部分執行進一步曝光。
圖1中之度量衡系統包括度量衡裝置240,該度量衡裝置經提供以用於在製造程序中對在所要載物台處之產品之參數進行量測。現代微影生產設施中之度量衡站的常見實例為散射計,例如角解析散射計或光譜散射計,且其可應用於量測在裝置222中之蝕刻之前在220處的經顯影基板之屬性。在使用度量衡裝置240的情況下,其可判定出(例如)諸如疊對或臨界尺寸(CD)之重要效能參數並不符合經顯影抗蝕劑中之指定準確度要求。在蝕刻步驟之前,存在經由微影叢集剝離經顯影抗蝕劑且重新處理基板220之機會。亦眾所周知,藉由監督控制系統SCS及/或控制單元LACU 206隨著時間推移進行小調整,可使用來自裝置240之度量衡結果242以維持微影叢集中之圖案化操作之準確效能,藉此最小化製得不合格產品且需要重工之風險。當然,度量衡裝 置240及/或其他度量衡裝置(圖中未繪示)可經應用以量測經處理基板232、234及傳入基板230之屬性。
眾所周知,在一次曝光中施加之圖案每次僅覆蓋基板之小部分,且通常在基板上重複地施加相同圖案以完全利用基板之容量及生產設施整體上之容量。圖案經施加至之部分被稱為「場」,且其最大大小受到光學投影系統之視場限制及裝置設計之其他侷限性限制。另一方面,並非所有產品皆需要整齊地配合於彼最大場大小內之晶粒。鑒於建立及執行生產設施之成本,不可容許基板上之廢棄空間,且因此,對於每一產品,通常將選擇小於最大大小之特定大小及形狀。在掃描操作模式之實例中,微影裝置可受控制而以較短掃描長度及/或較短步長進行操作,以確保具有特定大小及形狀之場之基板區域的最佳填充。
如在引言中所解釋,為了獲得在疊對或其他效能參數方面之最佳效能,對已藉由個別微影裝置施加校準圖案至之一或若干基板執行校準量測之集合。校準圖案化操作影響產品基板之產出率。就此而言,一個特定問題為:特定微影裝置之疊對效能針對不同產品及佈局將不同。舉例而言,一些佈局具有不同場大小。操作員可希望將同一微影工具用於各自具有不同場大小的若干產品。即使場大小不改變,曝光程序之其他參數亦可改變,該等參數例如,用於柵格佈局中之場之曝光的上/下移動及左/右移動序列,及/或柵格相對於基板之位置。因此,為了獲得最佳效能,在開始產品生產之前可有必要進行特定用於每一產品及每一柵格佈局之校準。此情形顯著增加校準程序之時間且藉此增加校準程序之成本。
圖2展示根據本發明之一態樣之例示性校準方法的原理。第一基板2002具有施加至第一複數個場2004之校準圖案。在本實例中,基板為其中校準圖案經施加至複數個同等大小及間隔之場之校準基板。第 二基板2006具有施加至複數個場2008之校準圖案。第三基板2010具有施加至複數個場2012之校準圖案。雖然本實例描述使用專用校準圖案及專用校準基板,但術語「校準圖案」及「校準基板」不意欲排除出於校準之目的而使用實際產品圖案。
第一基板上之場2004、第二基板上之場2008及第三基板上之場2012具有不同大小及形狀,如圖2中所展示。舉例而言,每一場在Y方向上具有一高度且在X方向上具有一寬度。(應理解,此等術語僅涉及基板之平面中之圖案之外觀,而不涉及相對於地球或重力之高度)。換言之,第一基板上之每一場2004具有場尺寸之第一集合,第二複數個場中之每一場具有獨特場尺寸之第二集合,且第三複數個場中之每一場具有獨特場尺寸之第三集合。基板2002、2006及2010在圖2中被展示為分離基板,此可為方便的實施。不同場大小原則上可混合於單一基板上,其限制條件為:可分離地量測在施加具有此等不同場大小的圖案時裝置之效能。將在下文中進一步詳細地解釋用於獲得對一個基板之多個量測之方法。
如上文所提及,場之最大大小係藉由微影裝置之設計而判定。在所說明實例中,基板2002上之場2004具有此最大場大小。因此,通常將使用較小場來設計及佈置特定產品。場2008具有「短粗」大小及形狀,而場2012具有「高細」大小及形狀。例示性方法不限於場尺寸之三個集合,且可能需要使用一個、兩個、四個、五個或五個以上不同大小及形狀以獲得最佳效能。(在其他實例中,可能的情況為:場大小將不變化,或效能對場大小不敏感達其對其他所關注參數之敏感程度)。
在本文所揭示之方法中,對經圖案化基板2002、2006、2010執行校準量測且該等校準量測用以獲得用於在將產品圖案施加至後續基板時控制微影裝置之校正。然而,在本方法中,校準基板及量測並非 準備用於產品場之每一不同大小及形狀。實情為,將表示關於兩個或兩個以上不同尺寸之場(在此實例中為場2004、2008、2012)之裝置之效能的量測資料一起收集於資料庫2013中且該等量測資料用以合成校準用於新大小之裝置所需之資訊。自運用不同場大小之校準基板之量測之資料庫,導出可用以獲得特定用於產品場大小之校正,但無需進行特定用於彼等場大小之實體校準圖案及量測的預測函數2014。該預測函數係用以在運用一特定產品場大小及形狀來施加產品圖案時模擬微影裝置之效能。
作為一實例,用於產品基板之經設計產品場佈局包含數個場2016。在此實例中,每一場具有不同於場2004、2008、2012之尺寸的一場尺寸之一特定集合。該經設計產品場佈局係用作對預測函數2015之輸入。預測函數之所得輸出為用於在使用產品場大小來圖案化基板時預測微影裝置之效能之特定效能模型2018。預測行為可用作對微影裝置中之校正模型(諸如,對準模型)之輸入,以改良疊對效能。圖1之度量衡裝置240可用以進行量測。可將量測資料作為資料242遞送至資料庫2014,資料庫2014處於監督控制系統內,或其可處於微影裝置控制單元LACU內。在任何狀況下,控制單元LACU在適當時接收其為了校正藉由特定效能模型預測之任何效能誤差所需之資訊,且在實際產品基板上曝光產品場時使用該資訊以改良效能。
應瞭解,待應用之校正為(至少在過分簡單化程度)在特定效能模型中所預測之誤差之逆量。因此,為實施問題的是,預測函數2015是否遞送其首先呈預測形式之輸出(該輸出接著必須轉換成校正參數)或預測函數2015是否經配置以直接遞送必需校正參數。在很大程度上,實施將簡單地取決於何種形式之資料最容易藉由控制單元及其子系統處置。預測效能模型及/或校正參數可與來自其他源(諸如,穩定性模組、基板程序歷史及其類似者)之校正組合,以獲得完整校正集合。 當然對於個別基板,控制單元亦基於緊接在曝光之前藉由量測站MEA中之對準感測器及位階感測器採取之量測而使用對準模型。
如上文所描述,對施加至一或多個校準基板之複數個校準圖案進行根據方法之一項實施例之校準量測。圖3展示例示性校準基板302。該基板劃分成數個場304,該等場中之每一者具有施加至其之一校準圖案306。可藉由在微影裝置中提供特定校準圖案化元件來界定該圖案。替代地,實際產品設計可含有可用於校準之特徵。在一項實例中,目標圖案包含位於在橫越每一場之柵格圖案中均一地間隔之目標區域308中的疊對目標。如在放大插入圖中所說明,每一目標區域308可含有複數個個別目標310、312、314、316等等。此等目標彼此偏移小量,同時保持在區域308之一般部位處。具有偏移之多個目標之此供應應允許待對相同基板且在實質上相同部位處執行多個曝光及多個疊對量測。偏移可(例如)經量測為在數十微米內,而場大小經量測為在數十毫米內。
在疊對目標之狀況下,每一個別目標通常包含底層中之一底部標記及在本發明之微影裝置中待形成之一頂部標記。可已使用同一微影裝置或不同微影裝置來形成底部標記。在校準圖案之施加期間,在每一目標區域308中上覆特定底部標記來施加頂部標記。舉例而言,在特定校準圖案化操作中,可將頂部標記310a施加於底部標記310b上方。在校準量測期間,量測頂部目標標記與底部目標標記之間的疊對誤差。疊對誤差造成該等標記在X方向及Y方向中之一者或兩者中未對準。
在每一個別目標內,可通常提供特徵以允許在單一結構目標中在X及Y方向兩者上進行量測,或可將不同目標提供於複合目標中,以用於在X及Y上分離地量測疊對。該圖式僅出於說明起見而將每一目標展示為簡單「盒中盒」目標。根據現代技術,目標實際上可屬於 適合於以影像為基礎之疊對度量衡的「盒中盒」類型,然而,其可為待藉由以繞射為基礎之疊對而以熟知方式量測之光柵。可使用具有影像特徵及光柵特徵兩者之混合式目標。目標之確切類型及實際上量測之方式為實施問題。如所提及,疊對並非可能經量測之唯一效能參數,且可應用如適於所關注參數之其他類型之目標及其他度量衡技術。
作為一實例,可已在使用不同場大小之順次曝光期間分離地應用疊對目標區域308中之每一特定目標。如將在下文進一步描述,可需要使預測函數2015可產生考量針對給定產品場大小之效能之場間變化及場內變化的效能模型及校正參數。可進一步需要使預測函數2015可產生考量與不同掃描方向及/或步進方向相關聯之效能之細微變化的效能模型及校正參數。換言之,需要特定用於特定曝光序列以及特定場大小及形狀之校準,以便獲得最佳效能。
因此,在一實例中,可能的情況為:目標310已在第一圖案化操作期間使用場尺寸之第一集合以及掃描方向及步驟方向之第一組合而形成。相似地,目標312已在對同一場之第二圖案化操作期間使用場尺寸之第一集合以及掃描方向及步驟方向之第二組合而形成。目標314已在第三圖案化操作期間使用場尺寸之第一集合以及掃描方向及步驟方向之第三組合而形成。目標316已在第四圖案化操作期間使用場尺寸之第一集合以及掃描方向及步驟方向之第四組合而形成。以此方式,可自一個基板收集量測資料之四個集合。量測資料之此四個集合可用以產生預測函數,如將在下文更詳細地描述。藉由合適設計,有可能藉由多個曝光而將所有校準標記施加於同一抗蝕劑層中。替代地,吾人可進行四次塗佈、曝光及顯影之循環。
替代地或另外,可在使用不同場尺寸之順次曝光期間應用疊對目標區域中之目標。此情形是否可能將取決於校準圖案之設計。在使 用三個不同場大小用以獲得用於資料庫2014之量測資料之實例的情況下,將注意到,每一區域308中之十二個目標方便地允許針對三個獨特提出之尺寸(2004、2008、2012)中之每一者收集量測資料之四個集合。
作為一般觀點,熟習此項技術者將知曉此技術領域中之度量衡通常需要使每一值被量測若干次以獲得統計上可靠之量測且儘可能地消除隨機誤差源之效應。因此,舉例而言,校準圖案之每一集合實務上可經施加至若干不同基板,且可量測每一所應用標記若干次以獲得用於在彼標記位置處之微影裝置之疊對效能的單一值。因此,應採取本申請案中之圖案化操作或量測之任何論述以可能指若干相同操作之效能。重複圖案化及量測以獲得最高準確度之需要再次強調在生產設施中必須執行校準時所招致的產出率之損失。
雖然在此實例中說明提供具有移位之多個個別目標標記之參考影像,但此並非基本情況。可設想多個標記經印刷為具有相對於單一參考標記之移位,且可自該等標記獲得分離量測值之其他實施例。亦如所說明,即使在運用所說明之標記之類型的情況下,亦可進行多個曝光而不具有移位,其中在橫越基板之不同場位置處施加圖案,或一場之不同部分在不同曝光中經圖案化。
參看圖4,現在將描述根據上文所描述之原理之用於實現校準的方法400。此圖中之元件符號係指以下步驟,該等步驟中之每一者將更詳細地予以解釋(亦參考其他圖式):402:使用不同場尺寸將校準圖案施加至一或多個基板;404:對校準圖案執行校準量測;406:(例如)基於掃描及步進方向而將量測資料分組成集合及/或子集;408:針對每一集合及/或子集提取場內及場間指紋; 410:產生預測函數;412:使用預測函數以預測用於具有新場尺寸及/或新曝光序列之產品場之效能;及414:使用預測效能以獲得用於控制微影裝置之操作之校正模型以曝光產品場。
如自圖式將看出,執行步驟402至408多於一次,以使用不同場尺寸來產生及量測校準圖案。用以獲得用於場尺寸之每一集合的量測資料之步驟相同,且因此將僅被描述一次。
在方法400之步驟402中,將校準圖案施加至橫越校準基板之順次場,如現在將參看圖5及圖6詳細地予以論述。(出於校準圖案之細節起見,亦可回想起圖3)。
如圖5中所展示,校準基板502劃分成配置成呈柵格圖案之形式的數個場504。在圖案化操作期間,在曝光序列中將圖案施加至基板上之每一場。在掃描型微影裝置中,曝光序列包含基板上之每一場藉以以有效或有利方式經圖案化之步進及掃描移動之序列。按照慣例,步進方向係與基板座標系統之X軸對準。掃描方向係與基板座標系統之Y軸對準。應注意,待描述之步進及掃描移動為在圖案化操作期間在圖案化元件、光學投影系統與基板之間的純粹相對移動。可以數個方式實現此等相對移動。原則上,哪些組件移動及哪些組件保持靜態並不重要,只要整體其相對移動達成所要影像形成及影像置放即可。在實務裝置中,在掃描操作模式中,以謹慎經同步方式來控制圖案化元件及基板之移動,同時投影系統保持靜止。另一方面,出於說明之目的,可觀測到操作好像微影裝置遍及基板進行步進及掃描一樣。
牢記此情形,用於實例場大小之實例曝光序列係由該圖之主部分上方之詳細視圖中的虛線箭頭518、520指示。每一場係藉由在正Y方向((例如)被稱作(例如)「向上掃描」方向「向上掃描」方向)510上 或在負Y方向(「向下掃描」方向)512上進行掃描而圖案化。在曝光一特定場之後,裝置在負X方向514((例如)被稱作「向左步進」)上或在正X方向516(被稱作「向右步進」)上步進。在向左或向右步進之後,通常在與先前場經圖案化之方向相反之方向上圖案化下一場。因此,若已藉由在「向上」方向上進行掃描來曝光一特定場,則藉由在「向下」方向上進行掃描來曝光下一場。此情形最小化微影裝置之不必要移動,藉此縮減處理每一基板所需之時間量。另一方面,其意謂使用稍微移動集合來曝光每一場。此為疊對可取決於掃描及步進方向而以系統性方式在場之間變化的原因。
應理解,標籤「向上」、「向下」、「向左」及「向右」僅僅為出於解釋及理解起見之方便的標籤,且並不指實體世界中之任何特定定向或參考座標系。通常執行步進運動使得下一場為緊鄰場,但可實施替代序列(若發現該等替代序列有利)。
以此方式,將校準圖案順次地施加至校準基板上之一特定列之場中的每一場,而通常在自左至右或自右至左方向上步進。當一個列之場已經圖案化時,微影裝置將校準圖案施加至下一列之場,但(通常)在與先前列相反之方向上步進。在本實例中,據知首先藉由在自左至右方向(箭頭506)上步進來曝光「頂部」列之場,且在自右至左方向(箭頭508)上曝光下一列之場。
在圖5中之前幾個場上,向上及向下箭頭說明在曝光每一場時所使用之掃描方向。另外,影線用以指示對於每一場,使用掃描及步進方向之哪一組合。主圖下方之插入圖展示不同影線如何表示用以將圖案施加至本實例中之校準基板上之不同場的四個掃描及步進組合中之每一者。此等掃描及步進組合為:向上掃描/向右步進518;向下掃描/向右步進520;向上掃描/向左步進522;及向下掃描/向左步進524。
如上文所解釋,特定場中之微影裝置之疊對效能可部分地取決 於在彼場之曝光(圖案化)期間所使用的掃描及步進方向。因此,作為一實例,已使用向上/向左組合而圖案化的特定場中之疊對效能可以小但系統性方式不同於已使用向下/向右組合而圖案化的相同場中之疊對效能。校準方法可校正此系統性誤差(倘若其具有供觀測到系統性效應之量測資料之合適集合)。出於此原因,在所說明方法中,將校準基板上之每一場圖案化若干次。具體言之,運用不同曝光序列重複圖案化操作,使得基板上之每一場已使用參看圖5所論述之四個掃描及步進組合中之每一者而圖案化。
圖6說明如何使用不同曝光序列602、604、606、608而將校準圖案之四個集合施加至一或多個校準基板。(在使用圖3中所說明的類型之偏移的情況下,可將此等曝光序列施加至不同基板上,或可對同一基板進行此等曝光序列而作為多個曝光)。左上方之單一場610突出顯示於每一基板上。如可看到,使用藉由圖式中之不同影線識別之不同掃描及步進移動序列(不同曝光序列)來執行每一圖案化操作。第一曝光序列602相同於圖5中所展示之一曝光序列。在此操作中,使用向上/向右組合將校準圖案施加至突出顯示場610。在第二曝光序列604中,在向上/向左方向上將校準圖案施加至突出顯示場612。在第三曝光序列606中,在向下/向右方向上將校準圖案施加至突出顯示場614。在第四曝光序列608中,在向下/向左方向上將校準圖案施加至突出顯示場616。
現在亦參看圖4之步驟404,對校準基板進行量測,諸如,量測由目標310、312、314、316揭露之疊對誤差。可(例如)使用度量衡裝置240來進行校準量測中之一些或全部。在一些實例中,可替代地使用微影裝置LA內之對準感測器AS或其他感測器來進行校準量測中之一些或全部。將所有量測資料收集於資料庫2014中以供後續處理。
再次參看圖4,在步驟406中,基於所關注變數將用於個別場之 量測資料分類成集合及子集。在此特定實例中,所關注變數包括在圖案化操作期間使用的掃描及步進方向。此步驟在圖7中更詳細地予以說明。四個基板702、704、706、708為使用圖6中所展示之四個曝光序列602、604、606、608而圖案化之基板(或單一基板)。為了清楚起見,僅突出顯示在向上/向右方向上圖案化之場,但所有場已經圖案化四次,如上文參看圖6所描述。自用於四個基板(或以不同移位形成於一個基板上之四個目標集合)之量測資料提取來自已使用向上/向右組合而圖案化的場之所有量測資料。組合該等量測資料以合成表示每一場已使用向上/向右方向而圖案化的實際上「虛擬」經量測基板710(UR)之量測資料集。重複提取關於使用其他掃描及步進組合中之每一者而圖案化的場之資料之此程序,藉此產生四個虛擬經量測基板710(UR、DR、UL、DL),該等虛擬經量測基板中之每一者表示在不同掃描及步進組合期間之微影裝置之效能。
再次參看圖4,在步驟408處,自四個虛擬經量測基板中之每一者提取「場內」指紋及「場間」指紋,如現在將解釋。如上文所解釋,有效的是在大多數狀況下分離地量測及校正取決於位置而系統地再現之彼等誤差及依據整體上在基板上之位置而系統地再現之彼等誤差。
為了提取場內指紋,藉由組合來自所有經圖案化場之量測而判定「平均場」。此平均場提供對於每一場內位置之在X及Y方向兩者上判定之疊對之估計。出於此目的可考慮許多不同類型之演算法,且原則上可使用簡單平均值。自特定用於每一步進及掃描組合之量測資料之子集(亦即,自虛擬經量測基板710中之每一者)計算分離平均場。在一項實施中,作為一另外步驟,自所有量測資料(用於給定場大小)判定之平均場形成總場內指紋。接著自特定用於不同掃描及步進組合之平均場減去此總場內指紋。結果為提取對每一特定掃描及步進組合 特定的疊對誤差之分量之四個殘餘場內指紋之集合。
為了獲得用於每一掃描及步進組合之場間指紋,自每一場部位處之虛擬經量測基板減去已經判定為場內指紋之平均場。在減法之後之殘差可視需要經受平滑函數。再次,在一項實施中,使用用於給定場大小之所有量測資料來計算總場間指紋,且接著自特定用於每一掃描及步進組合之資料集減去此總場間指紋,以獲得特定用於每一掃描及步進組合之指紋。
應回想起,使用用於校準圖案之若干不同場尺寸來重複步驟402或408,且在資料庫2014中收集所有結果。在步驟410中,使用用於所有掃描及步進組合及用於所有經量測場大小之經處理場內指紋及場間指紋以產生預測函數。可以任何合適形式來表達預測函數,可藉由使用訓練演算法自動獲得預測函數,且預測函數無需特定洞察指紋之形式或誤差之基礎原因。
如上文所解釋,預測函數可用以預測微影裝置之效能且獲得用於具有任何大小或具有任何佈局之場之校正參數。預測函數可提供場間效能或場內效能或其兩者(實際上在彼狀況下存在兩個預測函數)之預測。另外,該(該等)預測函數在所說明實施例中可用以基於用以圖案化基板之特定掃描及步進序列而預測微影裝置之效能。
在本實例中,該或每一預測函數具有如下形式:v=F(x,y,w),其中v為在X及Y方向上之預測之疊對向量。參數x及y為基板內(場間預測函數)或場內(場內預測函數)之熟悉的座標。然而,另外,提供一第三參數(且視情況提供若干參數),使得預測函數實際上為多維模型。在一項實例中,單一參數w用作表示場尺寸之參數,如將在下文中進一步論述。雖然在此實例中使用單一參數,但場大小可(例如)藉由兩個參數(例如,高度及寬度)來表達。可使此額外自由度是否以較大準確度提供模型成為實驗主題。作為訓練函數之副產物的統計分析 將揭露每一變體在捕捉系統性指紋相對於隨機效應時之成功程度。
可針對基板上之任何位置使用適當預測函數連同場尺寸(參數w)之知識來預測對針對特定掃描/步進組合之疊對誤差的個別場間貢獻。通常可將針對每一掃描/步進組合之疊對貢獻描述如下:dx URa =f xURa (x,y,w),dy URa =f yURa (x,y,w)
dx DRa =f xDRa (x,y,w),dy DRa =f yDRa (x,y,w)
dx ULa =f xULa (x,y,w),dy ULa =f yULa (x,y,w)
dx DLa =f xDLa (x,y,w),dy DLa =f yDLa (x,y,w)
值dx及dy為在x及y方向上之疊對之預測。下標UR、DR、UL及DL分別表示向上/向右掃描及步進組合、向下/向右掃描及步進組合、向上/向左掃描及步進組合及向下/向左掃描及步進組合。字尾「a」用以指示此為場間貢獻。應理解,用於每一組合之函數f x...f y...為預測函數。無需分析上定義該等函數。該等函數可為使用資料之相關子集(710 UR、UL、DR或DL)而訓練的簡單統計函數。x及y參數為基板座標。基板之中心可用作用於x及y座標之原點,但基板上之任何光點可用作原點(若將其用作原點較佳或有利)。場尺寸參數w被定義為 ,其中fcx及fcy分別表示在X及Y方向上在場之中心與 基板之中心之間的距離。換言之,參數w指示自場中心至基板之中心之距離。可計算函數f x...f y...且以在參數方程式至查找表之範圍內之任何合適形式來表達該等函數f x...f y...
相似地,可使用用於掃描及步進組合中之每一者之場內預測函數來預測對針對給定場大小之疊對的場內貢獻:dx URb =f xURb (x,y,w),dy URb =f yURb (x,y,w)
dx DRb =f xDRb (x,y,w),dy DRb =f yDRb (x,y,w)
dx ULb =f xULb (x,y,w),dy ULb =f yULb (x,y,w)
dx DLb =f xDLb (x,y,w),dy DLb =f yDLb (x,y,w)
所使用之記數法相似於用於場間貢獻之記數法。字尾「b」指示此等為場內貢獻。對於場內貢獻,參數x及y為場內座標(相對於在場 間貢獻之狀況下之基板座標)。參數w被定義為,其中 fx及fy表示在X及Y方向上之場之尺寸。換言之,參數w指示特定場之對角線長度,且因此,充當場之大小之指示符。如所提及,其他參數(例如,兩個參數)可用以增加模型之維度。在運用兩個參數的情況下,可獨立於對角線大小來表示場之形狀(縱橫比)。
現在參看圖8以及圖4,在步驟412中,使用用於場間貢獻及場內貢獻之上述特定預測函數以預測關於具有特定場尺寸及特定曝光序列的實際產品基板之效能。(應注意,可預測關於作為「實驗」之替代曝光序列之效能,而不執行實際場大小之任何特定校準基板)。可分離地預測場間貢獻及場內貢獻,或可將該等貢獻組合至單一經模型化校準基板中。
如圖8之(a)處所看到,產品基板劃分成複數個場802、804等等,該複數個場具有可不同於用於校準基板2002等等(圖2)上之場尺寸中之任一者的產品場尺寸。雖然場佈局按照慣例為規則柵格,而可設想其他類型之場佈局。除了場佈局以外,亦指定曝光序列。(此曝光序列可為將用於實際生產中之確定曝光序列,或其可為經評估可能使用的候選曝光序列)。可自動選擇曝光序列,或可由使用者手動選擇曝光序列。在說明中,曝光序列指定由箭頭816指示之步進方向。如可看到,產品場之頂部列將在自左至右步進序列中經圖案化,且與用於每一後續列之產品場之步進方向交替。
曝光序列進一步指定用於每一場之掃描方向。在所說明實例中,待曝光之第一場可為頂部列中之最左側場,且其將經選擇為藉由在向上方向上進行掃描而圖案化。第二場將相應地藉由在向下方向上進行掃描而圖案化。相似地,第二列中之最右側場將藉由在向下方向 上進行掃描而圖案化,下一場將藉由在向上方向上進行掃描而圖案化,等等。
一旦已判定出用於圖案化元件之曝光序列,就可使用步驟410中獲得之預測函數來合成裝置之效能之完整預測。此程序係直接了當的,如圖8之(b)中所展示。在使用場尺寸參數的情況下,可使用適當預測函數fx及fy(理論上或實際上)以預測四個虛擬經模型化基板806、808、810、812之場間貢獻及場內貢獻。此等虛擬經模型化基板中之每一者係僅與以與之前所述相同的方式藉由影線所指示的掃描及步進組合中之一者有關。產品場佈局及曝光序列理論上可疊置於虛擬經模型化基板中之每一者上,以識別將自哪些預測函數導出最終預測之哪些部分。舉例而言,待在指定曝光序列中使用向上/向右組合而圖案化的場突出顯示於對應於向上/向右組合之經模型化基板806上。提取對應於待使用每一特定經模型化基板之掃描及步進方向而圖案化的場之位置之經模型化基板之部分。接著將虛擬經模型化基板之經提取部分合成為完整經模型化基板814。
再次參看圖4,在步驟414中,接著使用經模型化產品基板以獲得用於控制微影裝置以將產品圖案施加至產品基板之校正參數之一或多個集合。視需要,可使用用以預測效能之預測函數來嘗試不同曝光序列及佈局。
在前述內容中,預測函數係基於來自若干複數個場之量測資料,每複數個場形成一柵格圖案。在複數個場當中,不同場具有不同場尺寸。然而,應注意,可在除了場大小之變化以外之變化下應用如上之相同原理以預測效能。舉例而言,可設想在柵格圖案移位時(即使在場大小恆定時)使用預測函數來預測效能之實施例。接著,預測函數可預測在處於不同於校準圖案中之任何場位置的位置處但不具有場大小之任何改變之場中的效能。
圖9說明在此情形中應用的圖2之方法。原理與上文參看圖2所描述相同,其中相似特徵用類似元件符號來標註,但具有首碼「9」而非「20」。圖2展示根據本發明之一態樣之例示性校準方法的原理。第一基板902具有施加至第一複數個場902之校準圖案。在本實例中,基板為校準圖案經施加至複數個同等大小及間隔之場之校準基板。第二基板906具有施加至複數個場908之校準圖案。視情況,第三基板910及第四基板912具有施加至複數個場之校準圖案。此等校準圖案亦可在場大小或位置方面或在某其他變數方面不同。雖然本實例描述使用專用校準圖案及專用校準基板,但術語「校準圖案」及「校準基板」出於校準之目的不意欲排除實際產品圖案之使用。
在圖9之實例中,此實例中之第一基板上之場904及第二基板上之場908具有相同大小及形狀,但具有相對於基板之不同位置。基板906之中心之場可(例如)在每一方向上移位一半場大小。與先前實例中一樣,可使用步進及掃描移動之不同序列重複地施加每一佈局中之圖案。在上文已經描述之圖6中說明此原理。上文所描述之方法之其他特徵亦可應用於此實例中。
在本文所揭示之方法中,對經圖案化基板902、906、910、912執行校準量測且該等校準量測用以獲得用於在將產品圖案施加至後續基板時控制微影裝置之校正。在本方法中,校準基板及量測並非準備用於產品場之每一不同經移位位置。實情為,將表示關於使用不同曝光序列及不同經移位位置而應用之場(在此實例中為場904、908)之裝置之效能的量測資料一起收集於資料庫914中且該等量測資料用以合成校準用於產品佈局及曝光序列之裝置所需之資訊。自運用不同曝光序列之校準基板之量測之資料庫,導出可用以獲得特定用於不同於實體校準圖案及量測之佈局及曝光序列的產品佈局及曝光序列之資料集之效能模型915。該效能模型係用以在運用特定產品佈局及曝光序 列、場大小及形狀以及場位置來施加產品圖案時預測微影裝置之效能。
作為一實例,用於產品基板之經設計產品佈局包含數個場916。在此實例中,每一場具有相同於場904、908之尺寸的場尺寸,但場中心處於不同於場904或908之中心之位置的位置處。在產品配方917中指定經設計產品佈局及曝光序列連同其他參數。產品配方係供效能模型使用以獲得在使用該配方中所指定之產品佈局及曝光序列來圖案化基板時預測微影裝置之效能之特定效能模型918。舉例而言,可藉由自用於圖式之頂部處突出顯示的重疊場942及944之量測資料內插而獲得對突出顯示場940之預測。當使用特定掃描及步進組合來圖案化場940時,用於場942及944之量測資料將經選擇為對應於場940之掃描及步進方向。可針對產品佈局之所有場重複相同程序。
經預測行為可用作對微影裝置中之校正模型之輸入。圖1之度量衡裝置240可用以進行量測。可將量測資料作為資料242遞送至資料庫914,資料庫914處於監督控制系統內,或其可處於微影裝置控制單元LACU內。在任何狀況下,控制單元LACU在適當時接收其為了校正藉由特定效能模型預測之任何效能誤差所需之資訊,且在實際產品基板上曝光產品場時使用該資訊以改良效能。因此,可在可有必要或需要變更場柵格圖案,而不改變場柵格圖案中之場之場尺寸的應用中使用圖9之實施例。舉例而言,可嘗試在一個方向上使場柵格圖案移位以獲得關於生產基板之較高產品良率。作為另一實例,可在將第一層施加至基板之後變更場柵格圖案。如前述內容所描述,基板之邊緣處之場可不引起產品之良率或僅引起產品之部分良率。因此,可決定應不將圖案施加至另外層中之特定場。在使用掃描及步進方向之組合來順序地應用場時,自場柵格圖案移除場可變更在曝光序列期間使用的掃描及步進組合。再次,預測函數可用以在曝光序列改變時(即使在 不存在場大小之改變時)預測微影裝置之效能。
因此,如圖9中所展示,可以相似於參看圖2及圖4所描述之方式相似的方式將複數個校準圖案施加至一或多個校準基板上之複數個場,但並不必需提供用於校準圖案之兩個或兩個以上場大小。
如上文所提及,預測效能及校正參數極密切相關,且其中之一者或另一者可在實際上準備之資料中係隱含的而非顯式的。亦即,若預測函數預測在x方向上為(比如)+1.2奈米之疊對誤差,則此隱含地表明應應用為-1.2奈米之校正。倘若控制系統整體上解譯值使得在操作中施加實際圖案時經預測誤差得以縮減,則預測函數是經設計以遞送值+1.2奈米抑或-1.2奈米為選擇問題。因此,諸如「校正參數」之術語不應被解譯為排除「經預測效能」,且反之亦然。當然可將校正參數表達為點陣列,但更可能依據現有對準模型及校正函數中所定義的多項式係數來表達該等校正參數。
結論
本文所揭示之方法及關聯微影裝置實現以下益處中之一或多者。
該方法允許歸因於待模型化且考量之基板上之(例如)場大小改變的疊對誤差之改變,且不使分離校準量測成為必需。
該方法改良校準程序,此係因為其允許歸因於在圖案化操作期間待考量之圖案化元件之掃描及步進方向之疊對改變,而針對每一新產品不增加校準負擔。
可使用校準圖案之新類型或使用現有類型來實施該方法。
可在微影裝置中、在度量衡裝置中或在離線系統中執行導出預測函數所必需之計算。無需微影裝置之硬體修改,此係因為校正參數可呈與自對特定場大小及曝光序列之實際量測導出的校正參數相同之格式。
儘管在本文中可特定地參考微影裝置在IC製造中之使用,但應理解,本文所描述之檢測裝置可具有其他應用,諸如,製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭,等等。熟習此項技術者應瞭解,在此等替代應用之內容背景中,可認為本文對術語「晶圓」或「晶粒」之任何使用分別與更一般術語「基板」或「目標部分」同義。
本文所使用之術語「輻射」及「光束」涵蓋所有類型之電磁輻射,包括紫外線(UV)輻射(例如,具有為或為約365奈米、355奈米、248奈米、193奈米、157奈米或126奈米之波長)及極紫外線(EUV)輻射(例如,具有在5奈米至20奈米之範圍內之波長);以及粒子束(諸如,離子束或電子束)。
術語「透鏡」在內容背景允許時可指各種類型之光學組件(包括折射、反射、磁性、電磁及靜電光學組件)中之任一者或其組合。
可使用以下條項進一步描述本發明:
1.一種校準一微影裝置之方法,其包含:提供已由該微影裝置施加於一或多個基板上之第一複數個場之第一量測資料,該第一複數個場中之每一場具有一第一佈局;提供已由該微影裝置施加於一或多個基板上之一或多個另外複數個場之另外量測資料,該一或多個另外複數個場中之每一場具有不同於該第一佈局的一佈局;基於該第一量測資料及該另外量測資料而產生一預測函數;及使用該預測函數以判定用於具有一產品佈局之至少第一複數個產品場之一資料集。
2.如條項1之方法,其進一步包含使用該經判定資料以導出用於在控制該微影裝置以將一產品圖案施加至一產品基板上之複數個場中使用之校正參數。
3.如條項2之方法,其進一步包含針對具有該產品佈局之複數個場使用該預測函數以模擬該微影裝置之效能。
4.如條項2或3之方法,其中該等校正參數包括使用該量測資料之場內分量而獲得的場內校正參數。
5.如條項2至4中任一項之方法,其中該等校正參數包括使用該量測資料之場間分量而獲得的場間校正參數。
6.如條項2至5中任一項之方法,其進一步包含使用該等校正參數以在將該產品圖案施加至一基板時控制該微影裝置。
7.如前述條項中任一項之方法,其中該產品佈局包含具有不同於該第一複數個場及/或該另外複數個場之一場尺寸的一產品場尺寸的產品場。
8.如條項7之方法,其中該第一複數個場及該另外複數個場包括具有兩個或兩個以上不同尺寸之場。
9.如條項8之方法,其中該第一複數個場及/或該另外複數個場包括具有三個或三個以上不同尺寸之場。
10.如前述條項中任一項之方法,其中該產品佈局包含具有相同於該第一複數個場及/或該另外複數個場中之一些或全部之一場尺寸的一產品場尺寸的產品場,其相對於該基板之場位置不同於該第一複數個場及該另外複數個場之場位置。
11.如條項7之方法,其中該第一複數個場及該另外複數個場包括具有相同場尺寸但具有相對於該基板之不同場位置的場。
12.如前述條項中任一項之方法,其中該微影裝置使用一掃描運動將圖案施加至場,且其中該第一量測資料及該另外量測資料中之每一者包含:一第一量測資料集,其表示使用一第一掃描方向將該校準圖案施加至之場中的效能;及 一第二量測資料集,其表示使用一第二掃描方向將該校準圖案施加至之場中的效能。
13.如條項12之方法,其中該微影裝置使用在一步進運動之後的一掃描運動而將圖案施加至場,且其中在該第一量測資料及該另外量測資料中之每一者中,該第一量測資料集及該第二量測資料集中之每一者包含:一第一量測資料子集,其表示在一第一步進方向上之一步進運動之後將該校準圖案施加至之場中的效能;及一第二量測資料子集,其表示在一第二步進方向上之一步進運動之後將該校準圖案施加至之場中的效能。
14.如條項12或13之方法,其中該等校正參數包括:特定用於在使用該第一掃描方向來施加該產品圖案中使用之校正參數;及特定用於在使用該第二掃描方向來施加該產品圖案中使用之校正參數。
15.如條項14之方法,其中該等校正參數包括:特定用於在使用該第一掃描方向及該第一步進方向來施加該產品圖案中使用之校正參數;特定用於在使用該第一掃描方向及該第二步進方向來施加該產品圖案中使用之校正參數;特定用於在使用該第二掃描方向及該第一步進方向來施加該產品圖案中使用之校正參數;及特定用於在使用該第二掃描方向及該第二步進方向來施加該產品圖案中使用之校正參數。
16.如條項12至15中任一項之方法,其中提供該量測資料包含: 使用掃描及步進方向之一序列而將該校準圖案順序地施加至該至少一個基板;及對該等經施加圖案執行一量測。
17.如條項16之方法,其中使用掃描及步進方向之不同序列而將該校準圖案重複地施加至一或多個基板。
18.如條項16或17之方法,其中導出校正參數之該步驟進一步包含產生一多維模型,該多維模型基於該等所獲得量測資料集合中之每一者而針對該等掃描及步進方向之不同組合分離地模型化該微影裝置之效能。
19.如前述條項中任一項之方法,其中已將一校準圖案重複地施加至該同一基板上之場,同時在諸重複之間施加一移位,以使量測能夠分離地表示在每一重複中之該微影裝置之該效能。
20.一種微影裝置,其經配置以使用藉由一如條項1至19中任一項之方法而獲得的一預測函數以導出校正參數,且使用該等所導出校正參數以將一產品圖案施加至一產品基板上之複數個場。
21.一種包含機器可讀指令之電腦程式產品,該等機器可讀指令在執行於一合適處理器上時使該處理器執行該如條項1至19中任一項之方法之該等產生及使用步驟。
22.一種使用一微影裝置來製造一元件之方法,該方法包含:界定一產品佈局;藉由該如條項1至19中任一項之方法而導出用於該產品佈局之校正參數;使用該等所導出校正參數以使用該產品佈局以將一產品圖案施加至一產品基板上之複數個場;及根據該經施加圖案而在基板上形成功能元件結構。
雖然上文已描述本發明之特定實施例,但應瞭解,可以與所描 述不同之其他方式來實踐本發明。此外,可以如下形式實施裝置之部分:電腦程式,其含有描述如上文所揭示之方法的機器可讀指令之一或多個序列;或資料儲存媒體(例如,半導體記憶體、磁碟或光碟),其具有儲存於其中之此電腦程式。
以上之描述意欲為說明性而非限制性的。因此,熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下對如所描述之本發明進行修改。
2002‧‧‧第一基板/校準基板/經圖案化基板
2004‧‧‧場
2006‧‧‧第二基板/經圖案化基板
2008‧‧‧場
2010‧‧‧第三基板/經圖案化基板
2012‧‧‧場
2014‧‧‧資料庫
2015‧‧‧預測函數
2016‧‧‧場
2018‧‧‧效能模型

Claims (15)

  1. 一種校準一微影裝置之方法,其包含:提供已由該微影裝置施加於一或多個基板上之第一複數個場之第一量測資料,該第一複數個場中之每一場具有一第一佈局;提供已由該微影裝置施加於一或多個基板上之一或多個另外複數個場之另外量測資料,該一或多個另外複數個場中之每一場具有不同於該第一佈局的一佈局;基於該第一量測資料及該另外量測資料而產生一預測函數;及使用該預測函數以判定用於具有一產品佈局之至少第一複數個產品場之一資料集。
  2. 如請求項1之方法,其進一步包含使用該經判定資料以導出用於在控制該微影裝置以將一產品圖案施加至一產品基板上之複數個場中使用之校正參數。
  3. 如請求項2之方法,其進一步包含針對具有該產品佈局之複數個場使用該預測函數以模擬該微影裝置之效能。
  4. 如請求項2之方法,其中該等校正參數包括使用該量測資料之場內分量而獲得的場內校正參數,及/或其中該等校正參數包括使用該量測資料之場間分量而獲得的場間校正參數。
  5. 如請求項1之方法,其中該產品佈局包含具有不同於該第一複數個場及/或該另外複數個場之一場尺寸的一產品場尺寸的產品場。
  6. 如請求項5之方法,其中該第一複數個場及該另外複數個場包括具有兩個或兩個以上不同尺寸之場。
  7. 如請求項1之方法,其中該產品佈局包含具有相同於該第一複數個場及/或該另外複數個場中之一些或全部之一場尺寸的一產品場尺寸的產品場,其相對於該基板之場位置不同於該第一複數個場及該另外複數個場之場位置。
  8. 如請求項5之方法,其中該第一複數個場及該另外複數個場包括具有相同場尺寸但具有相對於該基板之不同場位置的場。
  9. 如請求項1之方法,其中該微影裝置使用一掃描運動將圖案施加至場,且其中該第一量測資料及該另外量測資料中之每一者包含:一第一量測資料集,其表示使用一第一掃描方向將該校準圖案施加至之場中的效能;及一第二量測資料集,其表示使用一第二掃描方向將該校準圖案施加至之場中的效能。
  10. 如請求項9之方法,其中該微影裝置使用在一步進運動之後的一掃描運動而將圖案施加至場,且其中在該第一量測資料及該另外量測資料中之每一者中,該第一量測資料集及該第二量測資料集中之每一者包含:一第一量測資料子集,其表示在一第一步進方向上之一步進運動之後將該校準圖案施加至之場中的效能;及一第二量測資料子集,其表示在一第二步進方向上之一步進運動之後將該校準圖案施加至之場中的效能。
  11. 如請求項9之方法,其中該等校正參數包括:特定用於在使用該第一掃描方向來施加該產品圖案中使用之校正參數;及特定用於在使用該第二掃描方向來施加該產品圖案中使用之校正參數。
  12. 如請求項11之方法,其中該等校正參數包括:特定用於在使用該第一掃描方向及該第一步進方向來施加該產品圖案中使用之校正參數;特定用於在使用該第一掃描方向及該第二步進方向來施加該產品圖案中使用之校正參數;特定用於在使用該第二掃描方向及該第一步進方向來施加該產品圖案中使用之校正參數;及特定用於在使用該第二掃描方向及該第二步進方向來施加該產品圖案中使用之校正參數。
  13. 如請求項9之方法,其中提供該量測資料包含:使用掃描及步進方向之一序列而將該校準圖案順序地施加至該至少一個基板;及對該等經施加圖案執行一量測。
  14. 如請求項1之方法,其中已將一校準圖案重複地施加至同一基板上之場,同時在諸重複之間施加一移位,以使量測能夠分離地表示在每一重複中之該微影裝置之該效能。
  15. 一種包含機器可讀指令之電腦程式產品,該等機器可讀指令在執行於一合適處理器上時使該處理器執行如請求項1之方法之產生及使用步驟。
TW105119221A 2015-06-18 2016-06-17 微影裝置之校準方法、使用該方法之微影裝置及元件製造方法 TWI667550B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP15172798 2015-06-18
??15172798.9 2015-06-18
??15200409.9 2015-12-16
EP15200409 2015-12-16

Publications (2)

Publication Number Publication Date
TW201706725A true TW201706725A (zh) 2017-02-16
TWI667550B TWI667550B (zh) 2019-08-01

Family

ID=56108624

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105119221A TWI667550B (zh) 2015-06-18 2016-06-17 微影裝置之校準方法、使用該方法之微影裝置及元件製造方法

Country Status (4)

Country Link
US (2) US10627729B2 (zh)
KR (2) KR102046597B1 (zh)
TW (1) TWI667550B (zh)
WO (1) WO2016202560A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697744B (zh) * 2017-10-20 2020-07-01 日商紐富來科技股份有限公司 帶電粒子束描繪裝置及帶電粒子束描繪方法
TWI749607B (zh) * 2019-07-04 2021-12-11 荷蘭商Asml荷蘭公司 微影製程之子場控制及相關聯裝置
US11378891B2 (en) 2017-06-22 2022-07-05 Asml Netherlands B.V. Method for determining contribution to a fingerprint
TWI835363B (zh) * 2022-10-24 2024-03-11 華邦電子股份有限公司 半導體晶圓、疊對偏移的處理裝置及其方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102046597B1 (ko) 2015-06-18 2019-11-19 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치 교정 방법
KR102153482B1 (ko) 2016-04-15 2020-09-09 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치의 작동을 조절하는 방법
US10353299B2 (en) * 2016-06-01 2019-07-16 Canon Kabushiki Kaisha Lithography method, determination method, information processing apparatus, storage medium, and method of manufacturing article
CN110115034B (zh) * 2016-12-23 2023-01-13 华为技术有限公司 一种用于扩展预定定向帧内预测模式集合的帧内预测装置
US10990022B2 (en) 2018-12-20 2021-04-27 Kla Corporation Field-to-field corrections using overlay targets
KR20210046404A (ko) 2019-10-18 2021-04-28 주식회사 엘지화학 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
US11965798B2 (en) 2021-06-10 2024-04-23 Applied Materials, Inc. Endpoint detection system for enhanced spectral data collection
US20220397515A1 (en) * 2021-06-10 2022-12-15 Applied Materials, Inc. Obtaining substrate metrology measurement values using machine learning
US11901203B2 (en) 2021-06-10 2024-02-13 Applied Materials, Inc. Substrate process endpoint detection using machine learning

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3127851B2 (ja) * 1997-03-24 2001-01-29 日本電気株式会社 重ね合わせ露光方法
TW500987B (en) 2000-06-14 2002-09-01 Asm Lithography Bv Method of operating an optical imaging system, lithographic projection apparatus, device manufacturing method, and device manufactured thereby
US20050185174A1 (en) 2004-02-23 2005-08-25 Asml Netherlands B.V. Method to determine the value of process parameters based on scatterometry data
US7262831B2 (en) 2004-12-01 2007-08-28 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method using such lithographic projection apparatus
US7526749B2 (en) 2005-10-31 2009-04-28 Kla-Tencor Technologies Corporation Methods and apparatus for designing and using micro-targets in overlay metrology
NL2003654A (en) 2008-11-06 2010-05-10 Brion Tech Inc Methods and system for lithography calibration.
US9177219B2 (en) 2010-07-09 2015-11-03 Asml Netherlands B.V. Method of calibrating a lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product
NL2009345A (en) 2011-09-28 2013-04-02 Asml Netherlands Bv Method of applying a pattern to a substrate, device manufacturing method and lithographic apparatus for use in such methods.
CN103365124B (zh) * 2012-03-31 2015-01-21 中芯国际集成电路制造(上海)有限公司 曝光对准方法
KR102046597B1 (ko) 2015-06-18 2019-11-19 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치 교정 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11378891B2 (en) 2017-06-22 2022-07-05 Asml Netherlands B.V. Method for determining contribution to a fingerprint
TWI780404B (zh) * 2017-06-22 2022-10-11 荷蘭商Asml荷蘭公司 判定出自複數個器件之一器件對一參數之一指紋之一貢獻的方法、系統、及程式
TWI697744B (zh) * 2017-10-20 2020-07-01 日商紐富來科技股份有限公司 帶電粒子束描繪裝置及帶電粒子束描繪方法
TWI749607B (zh) * 2019-07-04 2021-12-11 荷蘭商Asml荷蘭公司 微影製程之子場控制及相關聯裝置
TWI835363B (zh) * 2022-10-24 2024-03-11 華邦電子股份有限公司 半導體晶圓、疊對偏移的處理裝置及其方法

Also Published As

Publication number Publication date
WO2016202560A1 (en) 2016-12-22
US10884345B2 (en) 2021-01-05
TWI667550B (zh) 2019-08-01
US20180173118A1 (en) 2018-06-21
KR20190130070A (ko) 2019-11-20
US20200218170A1 (en) 2020-07-09
KR102307022B1 (ko) 2021-09-30
KR102046597B1 (ko) 2019-11-19
US10627729B2 (en) 2020-04-21
KR20180006973A (ko) 2018-01-19

Similar Documents

Publication Publication Date Title
TWI667550B (zh) 微影裝置之校準方法、使用該方法之微影裝置及元件製造方法
TWI668518B (zh) 獲得量測的方法、用於執行處理步驟的設備、度量衡設備、器件製造方法
JP6140662B2 (ja) 応力ならびにオーバーレイのフィードフォーワード、及び/または、フィードバック・リソグラフィック・プロセス制御
TWI616728B (zh) 控制微影裝置之方法及器件製造方法、用於微影裝置之控制系統及微影裝置
TWI613531B (zh) 控制圖案化製程的方法、器件製造方法、微影設備的控制系統及微影設備
TWI572990B (zh) 施加一圖案至一基板之方法、元件製造方法及用於此等方法之微影裝置
TWI664664B (zh) 微影製程和設備及檢測製程和設備
EP3382606A1 (en) Optimizing an apparatus for multi-stage processing of product units
US20160334712A1 (en) Lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product
TW201928527A (zh) 用於控制微影設備之方法及與相關裝置
TWI761780B (zh) 用於控制基板之定位之方法及用於判定參照基板之特徵之位置的方法
TW201812474A (zh) 預測由疊對誤差造成之圖案化缺陷之方法
CN110546576B (zh) 优化针对产品单元制造的工艺序列
TWI750640B (zh) 判定與標記佈局相關聯的對準模型之方法、電腦程式產品、量測系統及微影裝置
TW201903534A (zh) 最佳化微影製程之方法及裝置
TWI689789B (zh) 預測微影裝置之效能之方法、微影裝置之校準及器件製造方法
TW202040288A (zh) 用於判定性能參數之指紋的方法及設備
TW202020939A (zh) 判定出自複數個器件之一器件對一參數之一指紋之一貢獻的方法、系統、及程式
TW202129427A (zh) 將量測資料擬合到模型中及模型化性能參數分佈的方法及相關裝置
TW202347042A (zh) 度量衡方法及其相關聯裝置