TW201706204A - Passivated microelectromechanical structures and methods - Google Patents

Passivated microelectromechanical structures and methods Download PDF

Info

Publication number
TW201706204A
TW201706204A TW105116731A TW105116731A TW201706204A TW 201706204 A TW201706204 A TW 201706204A TW 105116731 A TW105116731 A TW 105116731A TW 105116731 A TW105116731 A TW 105116731A TW 201706204 A TW201706204 A TW 201706204A
Authority
TW
Taiwan
Prior art keywords
film
crossbar
layer
passivation
substrate
Prior art date
Application number
TW105116731A
Other languages
Chinese (zh)
Inventor
笹川照夫
蔡政憲
賈斯柏 羅德偉克 史汀
原猛
大和朝日
Original Assignee
施耐普特拉克股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/724,374 external-priority patent/US9440848B2/en
Application filed by 施耐普特拉克股份有限公司 filed Critical 施耐普特拉克股份有限公司
Publication of TW201706204A publication Critical patent/TW201706204A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • B81C1/00698Electrical characteristics, e.g. by doping materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0086Electrical characteristics, e.g. reducing driving voltage, improving resistance to peak voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0145Flexible holders
    • B81B2203/0163Spring holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/05Arrays
    • B81B2207/053Arrays of movable structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/016Passivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/0181Physical Vapour Deposition [PVD], i.e. evaporation, sputtering, ion plating or plasma assisted deposition, ion cluster beam technology

Abstract

This disclosure provides systems, methods and apparatus including devices that include layers of passivation material covering at least a portion of an exterior surface of a thin film component within a microelectromechanical device. The thin film component may include an electrically conductive layer that connects via an anchor to a conductive surface on a substrate. The disclosure further provides processes for providing a first layer of passivation material on an exterior surface of a thin film component and for electrically connecting that thin film component to a conductive surface on a substrate. The disclosure further provides processes for providing a second layer of passivation material on any exposed surfaces of the thin film component after release of the microelectromechanical device.

Description

鈍化微機電結構及方法 Passivated microelectromechanical structure and method 優先權主張Priority claim

本申請案主張2015年5月28日申請且名為「鈍化微機電結構及方法(PASSIVATED MICROELECTROMECHANICAL STRUCTURES AND METHODS)」之美國申請案第14/724,374號的優先權,該美國申請案係以其全部內容且出於所有目的而特此以引用之方式併入。 The present application claims priority to U.S. Application Serial No. 14/724,374, filed on May 28, 2015, which is incorporated herein by reference. The content is hereby incorporated by reference in its entirety for all purposes.

本發明係關於微機電系統,且尤其係關於組件具有鈍化外部表面之微機電系統,且係關於由此等鈍化組件形成之器件及用於形成此等器件之程序。 This invention relates to microelectromechanical systems, and more particularly to microelectromechanical systems having components that have passivated external surfaces, and to devices formed therefrom with such passivation components and procedures for forming such devices.

機電系統(EMS)包括具有電及機械元件、致動器、轉訊器、感測器、諸如鏡面及光學膜之光學組件以及電子件的器件。EMS器件或元件可以包括但不限於微尺度及奈米尺度之多種尺度予以製造。舉例而言,微機電系統(MEMS)器件可包括具有範圍為約一微米至數百微米或更大之大小的結構。奈米機電系統(NEMS)器件可包括具有小於一微米之大小(包括(例如)小於數百奈米之大小)的結構。可使用沈積、蝕刻、微影及/或其他微加工程序來產生機電元件,該等程序蝕刻掉基板及/或經沈積材料層之部分或添加層以形成電及機電器件。 Electromechanical systems (EMS) include devices having electrical and mechanical components, actuators, transducers, sensors, optical components such as mirrors and optical films, and electronic components. EMS devices or components can be fabricated including, but not limited to, microscale and nanoscale dimensions. For example, a microelectromechanical system (MEMS) device can include structures having a size ranging from about one micron to hundreds of microns or more. Nanoelectromechanical systems (NEMS) devices can include structures having a size less than one micron (including, for example, less than a few hundred nanometers). Electrodeposition can be created using deposition, etching, lithography, and/or other micromachining programs that etch away portions of the substrate and/or deposited material layer or add layers to form electrical and electromechanical devices.

某些MEMS器件(包括某些MEMS顯示器)需要將結構層重疊。經 重疊層可具有附接至基板之第一層及連接至第一層之第二層,且第二層將第一層用作錨定件以將第二層固持為遠離基板表面,此相似於房屋中之柱子可將屋頂固持於地基上方的方式。 Some MEMS devices, including some MEMS displays, require overlapping structural layers. through The overlay layer can have a first layer attached to the substrate and a second layer attached to the first layer, and the second layer uses the first layer as an anchor to hold the second layer away from the substrate surface, similar to The pillars in the house hold the roof above the foundation.

一旦形成該等層,其就有時被鈍化。鈍化會致使半導體材料具惰性。基本上,鈍化在半導體表面上方提供絕緣塗層。鈍化半導體表面可在不產生可損害器件之短路的情況下與其他表面進行接觸。 Once the layers are formed, they are sometimes passivated. Passivation can render the semiconductor material inert. Basically, passivation provides an insulating coating over the surface of the semiconductor. The passivated semiconductor surface can be contacted with other surfaces without creating a short circuit that can damage the device.

用於使重疊層鈍化之當前程序係複雜的。為了使兩個層鈍化,鈍化劑(常常為氣體)必須行進通過第二層以接觸第一層來鈍化彼第一層。現今,現有程序使用原子層沈積(Atomic Layer Deposition;ALD)。然而,ALD程序係緩慢的,且傾向於留下可造成黏著及器件故障之粒子。因此,需要用於形成MEMS器件之改良式結構及程序。 The current program for passivating overlapping layers is complex. In order to passivate the two layers, a passivating agent (often a gas) must travel through the second layer to contact the first layer to passivate the first layer. Today, existing programs use Atomic Layer Deposition (ALD). However, ALD processes are slow and tend to leave particles that can cause adhesion and device failure. Therefore, there is a need for improved structures and procedures for forming MEMS devices.

本發明之系統、方法及器件各自具有若干創新態樣,其中無單一者單獨地負責本文中所揭示之理想屬性。 The systems, methods and devices of the present invention each have several inventive aspects in which no single one is solely responsible for the desirable attributes disclosed herein.

本發明中所描述之主題之一個創新態樣可實施於一種MEMS器件中。該MEMS器件可包括一組件,諸如一快門、一致動器、一橫桿,或為該MEMS器件之部分的某一其他組件。該組件通常係由諸如非晶矽之一半導體材料薄膜形成,且通常對一電控制信號作出回應。在本文中所描述之一個實施方案中,該MEMS器件包括一第一橫桿及一第二橫桿。該第一橫桿及該第二橫桿係由一基板支撐,且該第一橫桿配置於該基板與該第二橫桿之間。兩個橫桿皆具有承載一鈍化材料層之一外部表面。該第一橫桿及該第二橫桿各自具有朝向該基板之表面延伸之臂。該等臂可為以一重疊配置而連接在一起且形成自該基板之該表面延伸之一錨定件之側壁的薄膜本體。該錨定件能夠將該第一橫桿及該第二橫桿固持為遠離該基板之該表面。在另一創新態樣中,該器件形成於包括一導電表面之一基板上,且該器件包括與該基板上之該 導電表面接觸的一錨定件。該第一橫桿及該第二橫桿兩者具有一導電材料層,且兩個橫桿皆附接至該錨定件,且該等橫桿中之至少一者之電層連接至該基板之該導電表面。 One innovative aspect of the subject matter described in this disclosure can be implemented in a MEMS device. The MEMS device can include a component such as a shutter, an actuator, a crossbar, or some other component that is part of the MEMS device. The assembly is typically formed from a thin film of a semiconductor material such as amorphous germanium and typically responds to an electrical control signal. In one embodiment described herein, the MEMS device includes a first crossbar and a second crossbar. The first crossbar and the second crossbar are supported by a substrate, and the first crossbar is disposed between the substrate and the second crossbar. Both crossbars have an outer surface that carries one of the layers of passivation material. The first crossbar and the second crossbar each have an arm that extends toward a surface of the substrate. The arms may be film bodies joined together in an overlapping configuration and forming sidewalls of one of the anchors extending from the surface of the substrate. The anchor is configured to hold the first rail and the second rail away from the surface of the substrate. In another innovative aspect, the device is formed on a substrate including a conductive surface, and the device includes the same on the substrate An anchor that contacts the conductive surface. The first crossbar and the second crossbar both have a layer of conductive material, and both crossbars are attached to the anchor, and an electrical layer of at least one of the crossbars is connected to the substrate The conductive surface.

在本文中所描述之主題之另一創新態樣中,程序形成具有懸置於一基板上方之兩個重疊橫桿的MEMS器件。該等重疊橫桿可包括對一電信號作出回應之機電組件,其通常在兩個或兩個以上位置之間移動。該程序可形成具有鈍化外部表面之該等橫桿。該等程序可將一鈍化材料層沈積於該基板上。該等程序可藉由將材料沈積至該鈍化層上來形成該第一橫桿。一旦形成該橫桿,該程序就可運用一鈍化材料層來覆蓋該橫桿之該曝露表面。可將一模具沈積於該第一橫桿上,且可運用一鈍化層來覆蓋該模具。該程序可藉由將材料沈積至該鈍化材料上來形成該第二橫桿。一旦形成該第二橫桿,該程序就可運用一鈍化材料層來覆蓋該第二橫桿之該曝露表面。可洗滌掉該模具,且將該等橫桿留在適當位置,且配置為使得該第一橫桿鄰近於該基板而置放且該第二橫桿與該第一橫桿隔開。 In another inventive aspect of the subject matter described herein, the program forms a MEMS device having two overlapping rails suspended above a substrate. The overlapping rails can include an electromechanical component that responds to an electrical signal that typically moves between two or more positions. The program can form the crossbars with a passivated outer surface. The processes deposit a layer of passivation material on the substrate. The processes can form the first crossbar by depositing material onto the passivation layer. Once the crossbar is formed, the program can utilize a layer of passivation material to cover the exposed surface of the crossbar. A mold can be deposited on the first crossbar and a passivation layer can be used to cover the mold. The program can form the second crossbar by depositing material onto the passivation material. Once the second crossbar is formed, the program can utilize a layer of passivation material to cover the exposed surface of the second crossbar. The mold can be washed away and the rails can be left in place and configured such that the first rail is placed adjacent to the substrate and the second rail is spaced from the first rail.

在一些實施方案中,本文中所描述之系統及方法包括具有一基板(其具有一表面)、一第一薄膜橫桿及一第二薄膜橫桿之器件,該第一橫桿配置於該基板與該第二薄膜橫桿之間,且該第一薄膜橫桿與該基板及該第二橫桿隔開,且該第一橫桿具有一第一臂且該第二橫桿具有一第二臂,每一臂朝向該基板之該表面延伸,且該第一臂接合至及重疊於該第二臂,且該第一臂及該第二臂形成能夠將該第一臂及該第二臂固持為與該基板相隔一距離之一錨定件。在一些實施方案中,該等器件進一步包括覆蓋該第一橫桿之一外部表面的一鈍化材料層。在一些實施方案中,該等器件具有覆蓋該第二橫桿之一外部表面的一鈍化材料層。 In some embodiments, the systems and methods described herein include a device having a substrate having a surface, a first film crossbar, and a second film crossbar disposed on the substrate And the second film crossbar is spaced apart from the substrate and the second crossbar, and the first crossbar has a first arm and the second crossbar has a second An arm extending toward the surface of the substrate, the first arm being coupled to and overlapping the second arm, and the first arm and the second arm forming the first arm and the second arm The anchor is held at a distance from the substrate. In some embodiments, the devices further comprise a layer of passivation material overlying an outer surface of one of the first crossbars. In some embodiments, the devices have a layer of passivation material overlying an outer surface of one of the second crossbars.

在一些實施方案中,該等器件亦包括在該錨定件內之一導電 層,且該基板具有與該導電層接觸之一導電表面,且該導電層延伸至該第一橫桿及該第二橫桿中。在一些實施方案中,該錨定件內之該導電層包括一第一導電材料層及一第二導電材料層,其分別耦接至該第一橫桿及該第二橫桿。 In some embodiments, the devices also include a conductive one of the anchors a layer, and the substrate has a conductive surface in contact with the conductive layer, and the conductive layer extends into the first crossbar and the second crossbar. In some embodiments, the conductive layer in the anchor includes a first conductive material layer and a second conductive material layer coupled to the first crossbar and the second crossbar, respectively.

在一些實施方案中,該基板包括一玻璃基板,且在一些實施方案中,該第一橫桿包括一可移動機械本體,其可包括具有大於約4:1之一縱橫比的一可移動側壁橫桿。該可移動側壁橫桿可包括具有一楔形邊緣之一保形鈍化材料層。在一些實施方案中,該第二橫桿包括一或多個孔隙。 In some embodiments, the substrate comprises a glass substrate, and in some embodiments, the first rail includes a movable mechanical body that can include a movable sidewall having an aspect ratio greater than about 4:1 Crossbar. The movable sidewall rail can include a layer of conformal passivation material having a tapered edge. In some embodiments, the second crossbar includes one or more apertures.

在一些實施方案中,該第一橫桿與該第二橫桿被隔開介於約0.3μm與10μm之間的一距離,且在一些實施方案中,該器件具有用於將一板固持為遠離該第二橫桿之複數個隔片。在一些實施方案中,該器件為包括一控制器、一處理器及一記憶體之一顯示器,該顯示器用於經由用該器件之該第一橫桿及該第二橫桿形成的光調變器而產生影像。 In some embodiments, the first crossbar and the second crossbar are separated by a distance between about 0.3 [mu]m and 10 [mu]m, and in some embodiments, the device has a means for holding a board to A plurality of spacers away from the second crossbar. In some embodiments, the device is a display including a controller, a processor, and a memory for modulating light via the first rail and the second rail of the device Produce images.

在另一態樣中,本文中所描述之系統及方法包括用於形成一薄膜器件之程序。該等程序可包括將一導電墊沈積於一基板上,沈積用於形成一第一薄膜橫桿之一模具。該程序可將一鈍化材料層沈積於該模具上,且將至少一個薄膜層沈積於該鈍化材料上以形成該第一薄膜橫桿之至少部分。該程序可在該第一薄膜橫桿上方沈積一鈍化材料層,在該鈍化材料層上方沈積用於形成一第二薄膜橫桿之一模具,且在該模具上方沈積至少一個薄膜層以形成一第二薄膜橫桿。該程序可將該第一薄膜橫桿及該第二薄膜橫桿自該模具脫模,以形成在一外部表面上具有一鈍化材料且與該基板隔開之一第一橫桿,及與該第一橫桿隔開且重疊於該第一橫桿之一第二橫桿。在一些實施方案中,該程序可具有與該第一薄膜橫桿或該第二薄膜橫桿進行實體接觸之該導電 墊。 In another aspect, the systems and methods described herein include a procedure for forming a thin film device. The processes can include depositing a conductive pad on a substrate and depositing a mold for forming a first film crossbar. The program deposits a layer of passivation material on the mold and deposits at least one film layer on the passivation material to form at least a portion of the first film crossbar. The program may deposit a layer of passivation material over the first film crossbar, deposit a mold for forming a second film crossbar over the passivation material layer, and deposit at least one film layer over the mold to form a The second film crossbar. The program may demold the first film crossbar and the second film crossbar from the mold to form a first crossbar having a passivation material on an outer surface and spaced apart from the substrate, and The first crossbar is spaced apart and overlaps the second crossbar of one of the first crossbars. In some embodiments, the program can have the conductive contact in physical contact with the first film crossbar or the second film crossbar pad.

在一些實施方案中,該程序可蝕刻該第一薄膜橫桿以形成一MEMS器件之組件。在一些實施方案中,該程序可將至少一個薄膜層沈積至該鈍化材料上,且可沈積一鈍化材料層、一非晶矽層及一金屬層。 In some embodiments, the program can etch the first film crossbar to form a component of a MEMS device. In some embodiments, the program deposits at least one film layer onto the passivation material and deposits a passivation material layer, an amorphous germanium layer, and a metal layer.

在一些實施方案中,該程序可沈積至少一個薄膜層,包括形成用於調變光之一光調變器。該程序可形成通過該第一薄膜橫桿及該第二薄膜橫桿且延伸至該導電墊之一通孔,且在該通孔內形成用於支撐該第一薄膜橫桿及該第二薄膜橫桿之一錨定件。該程序可進一步用連接至該第一薄膜橫桿之一臂且用連接至該第二薄膜橫桿之一臂形成該錨定件之一側壁。 In some embodiments, the program can deposit at least one film layer, including forming a light modulator for modulating light. The program may form a through hole extending through the first film crossbar and the second film crossbar and extending to the conductive pad, and forming a hole for supporting the first film crossbar and the second film in the through hole One of the rod anchors. The program can be further formed by attaching one of the arms of the first film rail and forming one of the side walls of the anchor with an arm coupled to the second film rail.

該程序可進一步在該第一薄膜橫桿之該臂或該第二薄膜橫桿之該臂內提供用於將該第一薄膜橫桿或該第二薄膜橫桿連接至該導電墊之一導電材料。該程序可使該等第一薄膜橫桿及該等第二薄膜橫桿中之一者連接至該導電墊,且另一薄膜橫桿與該導電墊隔開且電連接至與該導電墊連接之該薄膜橫桿。 The program may further provide in the arm of the first film crossbar or the arm of the second film crossbar for electrically connecting the first film crossbar or the second film crossbar to one of the conductive pads material. The program may connect one of the first film crossbar and the second film crossbar to the conductive pad, and another film crossbar is spaced apart from the conductive pad and electrically connected to the conductive pad The film crossbar.

本發明中所描述之主題之另一創新態樣可實施於一種MEMS器件中,該MEMS器件包括一基板、在該基板上方之一第一薄膜橫桿、在該第一薄膜橫桿上方之一第二薄膜橫桿、部分地覆蓋該第二薄膜橫桿之一外部表面且部分地覆蓋該第一薄膜橫桿之一外部表面的一內部鈍化層,及在該內部鈍化層上方且覆蓋該內部鈍化層、該第二薄膜橫桿之該外部表面及該第一薄膜橫桿之該外部表面的一外部鈍化層。該第一薄膜橫桿包括一或多個電極,且配置於該基板與該第二薄膜橫桿之間且與該基板及該第二薄膜橫桿隔開,其中該第二薄膜橫桿包括一或多個孔隙。 Another inventive aspect of the subject matter described in the present invention can be implemented in a MEMS device including a substrate, a first film crossbar above the substrate, one above the first film crossbar a second film crossbar, an inner passivation layer partially covering an outer surface of the second film crossbar and partially covering an outer surface of one of the first film crossbars, and over the inner passivation layer and covering the interior a passivation layer, the outer surface of the second film crossbar, and an outer passivation layer of the outer surface of the first film crossbar. The first film crossbar includes one or more electrodes, and is disposed between the substrate and the second film crossbar and spaced apart from the substrate and the second film crossbar, wherein the second film crossbar includes a Or multiple pores.

在一些實施方案中,該一或多個電極中之每一者包括一頂部表 面、一底部表面及側壁,該內部鈍化層至少覆蓋該一或多個電極之該等側壁,且該外部鈍化層至少覆蓋該一或多個電極之該等頂部表面及底部表面。在一些實施方案中,該第一薄膜橫桿包括一第一導電層,其中該基板包括與該第一導電層接觸之一導電表面。在一些實施方案中,該第一薄膜橫桿進一步包括一第二導電層,該第二導電層在組成上與該第一導電層相同且連接至該第二薄膜橫桿。在一些實施方案中,該第二導電層為一蝕刻終止層。在一些實施方案中,該第一薄膜橫桿進一步包括在該第一導電層與該第二導電層之間的一金屬層,該第一導電層、該金屬層及該第二導電層中之一或多者實質上不透光。在一些實施方案中,該第二鈍化層之一厚度小於約1000Å。 In some embodiments, each of the one or more electrodes comprises a top table a surface, a bottom surface, and a sidewall, the inner passivation layer covering at least the sidewalls of the one or more electrodes, and the outer passivation layer covers at least the top and bottom surfaces of the one or more electrodes. In some embodiments, the first film crossbar includes a first conductive layer, wherein the substrate includes a conductive surface in contact with the first conductive layer. In some embodiments, the first film crossbar further includes a second conductive layer that is identical in composition to the first conductive layer and to the second film crossbar. In some embodiments, the second conductive layer is an etch stop layer. In some embodiments, the first film crossbar further includes a metal layer between the first conductive layer and the second conductive layer, the first conductive layer, the metal layer and the second conductive layer One or more are substantially opaque. In some embodiments, one of the second passivation layers has a thickness of less than about 1000 Å.

本發明中所描述之主題之另一創新態樣可實施於一種MEMS器件中,該MEMS器件包括一基板、在該基板上方之一第一薄膜橫桿、在該第一薄膜橫桿上方之一第二薄膜橫桿、部分地覆蓋該第二薄膜橫桿之一外部表面且部分地覆蓋該第一薄膜橫桿之一外部表面的用於使該MEMS器件鈍化之第一構件,及在該第一鈍化構件上方的用於使該MEMS器件鈍化之第二構件,該第二鈍化構件覆蓋該第一鈍化構件、該第二薄膜橫桿之該外部表面,及該第一薄膜橫桿之該外部表面。該第一薄膜橫桿包括一或多個電極,且配置於該基板與該第二薄膜橫桿之間且與該基板及該第二薄膜橫桿隔開,其中該第二薄膜橫桿包括一或多個孔隙。 Another inventive aspect of the subject matter described in the present invention can be implemented in a MEMS device including a substrate, a first film crossbar above the substrate, one above the first film crossbar a second film crossbar, a first member partially covering an outer surface of the second film crossbar and partially covering an outer surface of one of the first film crossbars for passivating the MEMS device, and a second member over the passivation member for passivating the MEMS device, the second passivation member covering the first passivation member, the outer surface of the second film crossbar, and the outer portion of the first film crossbar surface. The first film crossbar includes one or more electrodes, and is disposed between the substrate and the second film crossbar and spaced apart from the substrate and the second film crossbar, wherein the second film crossbar includes a Or multiple pores.

在一些實施方案中,該一或多個電極中之每一者包括一頂部表面、一底部表面及側壁,該第一鈍化構件至少覆蓋該一或多個電極之該等側壁,且該第二鈍化構件至少覆蓋該一或多個電極之該等頂部表面及底部表面。在一些實施方案中,該第一薄膜橫桿包括一第一導電層,其中該基板包括與該第一導電層接觸之一導電表面。 In some embodiments, each of the one or more electrodes includes a top surface, a bottom surface, and a sidewall, the first passivation member covering at least the sidewalls of the one or more electrodes, and the second The passivation member covers at least the top and bottom surfaces of the one or more electrodes. In some embodiments, the first film crossbar includes a first conductive layer, wherein the substrate includes a conductive surface in contact with the first conductive layer.

本發明中所描述之主題之另一創新態樣可實施於一種製造一 MEMS器件之方法中,該方法包括:提供一基板;在該基板上方形成用於形成一第一薄膜橫桿之一第一模具;在該第一模具上形成一第一鈍化材料預脫模層;在該第一模具及該第一鈍化材料預脫模層上方形成該第一薄膜橫桿;在該第一薄膜橫桿上方形成一第二鈍化材料預脫模層;在該第二鈍化材料層上方形成用於形成一第二薄膜橫桿之一第二模具;在該第二模具上方形成該第二薄膜橫桿;將該第一薄膜橫桿及該第二薄膜橫桿自該第一模具及該第二模具脫模,使得該第一鈍化材料層及該第二鈍化材料層部分地覆蓋該第一薄膜橫桿之一外部表面,該第一薄膜橫桿與該基板隔開,且該第二薄膜橫桿與該第一薄膜橫桿隔開且重疊於該第一薄膜橫桿;及形成一鈍化材料後脫模層以覆蓋該第二薄膜橫桿及該第一薄膜橫桿之該外部表面。 Another innovative aspect of the subject matter described in the present invention can be implemented in a manufacturing In a method of MEMS device, the method includes: providing a substrate; forming a first mold for forming a first film crossbar over the substrate; forming a first passivation material pre-release layer on the first mold Forming the first film crossbar over the first mold and the first passivation material pre-release layer; forming a second passivation material pre-release layer over the first film crossbar; and the second passivation material Forming a second mold for forming a second film crossbar above the layer; forming the second film crossbar above the second mold; the first film crossbar and the second film crossbar from the first The mold and the second mold are demolded such that the first passivation material layer and the second passivation material layer partially cover an outer surface of the first film crossbar, the first film crossbar is spaced apart from the substrate, and The second film crossbar is spaced apart from the first film crossbar and overlaps the first film crossbar; and a passivation material is formed to form a release layer to cover the second film crossbar and the first film crossbar The outer surface.

在一些實施方案中,該方法進一步包括在將該第一薄膜橫桿及該第二薄膜橫桿脫模之前在該第二薄膜橫桿上方一第三鈍化材料預脫模層。在一些實施方案中,形成該第一薄膜橫桿包括:在該第一鈍化材料預脫模層之部分上方沈積一第一遮罩;蝕刻該第一鈍化材料預脫模層之至少一些;在該第一鈍化材料預脫模層上方及在該第一模具上方沈積一導電層;及在該導電層上沈積一金屬層。在一些實施方案中,形成該第一薄膜橫桿包括:各向異性地蝕刻該第一鈍化材料預脫模層之至少一些;在該第一鈍化材料預脫模層及該第一模具上方沈積一第一導電層;在該第一導電層上沈積一金屬層;及在該金屬層上沈積一第二導電層,該第二導電層在組成上與該第一導電層相同。 In some embodiments, the method further includes pre-debonding a third passivation material over the second film crossbar prior to demolding the first film crossbar and the second film crossbar. In some embodiments, forming the first film crossbar includes: depositing a first mask over a portion of the first passivation material pre-release layer; etching at least some of the first passivation material pre-release layer; Depositing a conductive layer over the first passivation material pre-release layer and over the first mold; and depositing a metal layer on the conductive layer. In some embodiments, forming the first film crossbar comprises: anisotropically etching at least some of the first passivation material pre-release layer; depositing on the first passivation material pre-release layer and the first mold a first conductive layer; depositing a metal layer on the first conductive layer; and depositing a second conductive layer on the metal layer, the second conductive layer being identical in composition to the first conductive layer.

本發明中所描述之主題之一或多個實施方案的細節在隨附圖式及以下描述中予以闡述。其他特徵、態樣及優勢將自描述、圖式及申請專利範圍變得顯而易見。應注意,以下諸圖之相對尺寸可未按比例繪製。 The details of one or more embodiments of the subject matter described herein are set forth in the accompanying drawings and description. Other features, aspects, and advantages will become apparent from the description, drawings, and claims. It should be noted that the relative sizes of the following figures may not be drawn to scale.

100‧‧‧顯示裝置 100‧‧‧ display device

102a‧‧‧光調變器 102a‧‧‧Light modulator

102b‧‧‧光調變器 102b‧‧‧Light modulator

102c‧‧‧光調變器 102c‧‧‧Light modulator

102d‧‧‧光調變器 102d‧‧‧Light modulator

104‧‧‧影像 104‧‧‧Image

105‧‧‧燈 105‧‧‧ lights

106‧‧‧像素 106‧‧‧ pixels

108‧‧‧快門 108‧‧ ‧Shutter

109‧‧‧孔隙 109‧‧‧ pores

110‧‧‧寫入啟用互連件 110‧‧‧Write Enable Interconnect

112‧‧‧資料互連件 112‧‧‧ Data Interconnects

114‧‧‧共同互連件 114‧‧‧Common interconnections

120‧‧‧主機器件 120‧‧‧Host device

122‧‧‧主機處理器 122‧‧‧Host processor

124‧‧‧環境感測器/環境感測器模組 124‧‧‧Environment Sensor/Environment Sensor Module

126‧‧‧使用者輸入模組 126‧‧‧User input module

128‧‧‧顯示裝置 128‧‧‧ display device

130‧‧‧掃描驅動器 130‧‧‧Scan Drive

131‧‧‧掃描線互連件/寫入啟用互連件 131‧‧‧Scan Line Interconnect/Write Enable Interconnect

132‧‧‧資料驅動器 132‧‧‧Data Drive

133‧‧‧資料互連件 133‧‧‧ Data Interconnects

134‧‧‧控制器/數位控制器電路 134‧‧‧Controller/Digital Controller Circuit

138‧‧‧共同驅動器 138‧‧‧Common drive

139‧‧‧共同互連件 139‧‧‧Common interconnects

140‧‧‧燈 140‧‧‧ lights

142‧‧‧燈 142‧‧‧ lights

144‧‧‧燈 144‧‧‧ lights

146‧‧‧燈 146‧‧‧ lights

148‧‧‧燈驅動器 148‧‧‧light driver

150‧‧‧顯示元件陣列 150‧‧‧Display element array

200‧‧‧快門總成 200‧‧‧Shutter assembly

202‧‧‧快門敞開致動器 202‧‧‧Shutter open actuator

204‧‧‧快門關閉致動器 204‧‧‧Shutter closure actuator

206‧‧‧快門 206‧‧ ‧Shutter

207‧‧‧孔隙層 207‧‧‧ pore layer

208‧‧‧錨定件 208‧‧‧ Anchorage

209‧‧‧孔隙 209‧‧‧ pores

212‧‧‧快門孔隙 212‧‧‧Shutter aperture

216‧‧‧重疊部 216‧‧‧ overlap

300‧‧‧快門總成陣列 300‧‧‧Shutter Assembly Array

301‧‧‧像素 301‧‧ ‧ pixels

302‧‧‧快門總成/快門 302‧‧‧Shutter assembly/shutter

303‧‧‧致動器 303‧‧‧Actuator

304‧‧‧基板 304‧‧‧Substrate

308‧‧‧資料互連件 308‧‧‧ Data Interconnect

311‧‧‧錨定件 311‧‧‧ Anchorage

313‧‧‧側壁橫桿/彈簧 313‧‧‧ sidewall rails/springs

350‧‧‧基板/孔隙層 350‧‧‧Substrate/porosity layer

352‧‧‧金屬層 352‧‧‧metal layer

354‧‧‧孔隙/鈍化層 354‧‧‧Pore/passivation layer

355‧‧‧孔隙/鈍化層 355‧‧‧Pore/passivation layer

356‧‧‧凹部 356‧‧‧ recess

358‧‧‧導電材料/導電表面 358‧‧‧Conductive material / conductive surface

361‧‧‧第一組件層 361‧‧‧First component layer

362‧‧‧光阻層/光阻 362‧‧‧Photoresist/resist

363‧‧‧第二組件層 363‧‧‧Second component layer

364‧‧‧通孔 364‧‧‧through hole

366‧‧‧通孔 366‧‧‧through hole

370‧‧‧模具層/模具 370‧‧‧Mold layer/mold

371‧‧‧臂 371‧‧‧ Arm

372‧‧‧通孔 372‧‧‧through hole

373‧‧‧臂 373‧‧‧ Arm

374‧‧‧通孔 374‧‧‧through hole

378‧‧‧通孔 378‧‧‧through hole

379‧‧‧側壁 379‧‧‧ side wall

382‧‧‧鈍化層 382‧‧‧ Passivation layer

383‧‧‧組件 383‧‧‧ components

384‧‧‧aSi層/額外層 384‧‧‧aSi layer/extra layer

385‧‧‧組件 385‧‧‧ components

386‧‧‧Ti層/額外層 386‧‧‧Ti layer/extra layer

390‧‧‧抗蝕劑/抗蝕劑材料 390‧‧‧resist/resist material

391‧‧‧臂 391‧‧‧ Arm

392‧‧‧抗蝕劑/抗蝕劑材料 392‧‧‧resist/resist material

393‧‧‧臂 393‧‧‧ Arm

394‧‧‧鈍化層 394‧‧‧ Passivation layer

396‧‧‧抗蝕劑層/抗蝕劑 396‧‧‧resist layer/resist

400‧‧‧光阻層/光阻 400‧‧‧ photoresist layer / photoresist

402‧‧‧模具層/模具 402‧‧‧Mold layer/mold

408‧‧‧隔片 408‧‧‧ spacer

410‧‧‧材料層 410‧‧‧Material layer

412‧‧‧材料層 412‧‧‧Material layer

414‧‧‧材料層 414‧‧‧Material layer

415‧‧‧薄膜橫桿 415‧‧‧film rail

417‧‧‧薄膜橫桿 417‧‧‧film crossbar

418‧‧‧抗蝕劑材料 418‧‧‧resist material

420‧‧‧通孔 420‧‧‧through hole

430‧‧‧錨定件 430‧‧‧ Anchorage

500‧‧‧後脫模鈍化層 500‧‧‧Down release passivation layer

502‧‧‧MEMS器件/快門 502‧‧‧MEMS devices/shutter

503‧‧‧電極 503‧‧‧electrode

513‧‧‧電極 513‧‧‧electrode

530‧‧‧內部鈍化層 530‧‧‧Internal passivation layer

550‧‧‧基板 550‧‧‧Substrate

552‧‧‧金屬層 552‧‧‧metal layer

554‧‧‧絕緣層 554‧‧‧Insulation

555‧‧‧孔隙 555‧‧‧ pores

558‧‧‧導電材料 558‧‧‧Electrical materials

562‧‧‧光阻層 562‧‧‧ photoresist layer

570‧‧‧模具層 570‧‧‧Mold layer

574‧‧‧溝槽 574‧‧‧ trench

578‧‧‧通孔 578‧‧‧through hole

582‧‧‧第一鈍化層 582‧‧‧First passivation layer

583‧‧‧組件 583‧‧‧ components

584‧‧‧導電層 584‧‧‧ Conductive layer

585‧‧‧組件 585‧‧‧Component

586‧‧‧金屬層 586‧‧‧metal layer

590‧‧‧第一遮罩 590‧‧‧ first mask

594‧‧‧第二鈍化層 594‧‧‧Second passivation layer

596‧‧‧第二遮罩 596‧‧‧second mask

598‧‧‧第三遮罩 598‧‧‧ third mask

614‧‧‧第三鈍化層 614‧‧‧ third passivation layer

615‧‧‧第二薄膜橫桿 615‧‧‧Second film crossbar

617‧‧‧第一薄膜橫桿 617‧‧‧First film crossbar

700‧‧‧後脫模鈍化層 700‧‧‧Down release passivation layer

702‧‧‧MEMS器件/快門 702‧‧‧MEMS devices/shutter

703‧‧‧電極 703‧‧‧electrode

713‧‧‧電極 713‧‧‧electrode

730‧‧‧內部鈍化層 730‧‧‧Internal passivation layer

750‧‧‧基板 750‧‧‧Substrate

752‧‧‧金屬層 752‧‧‧metal layer

754‧‧‧絕緣層 754‧‧‧Insulation

755‧‧‧孔隙 755‧‧‧ pores

758‧‧‧導電材料 758‧‧‧Electrical materials

762‧‧‧光阻層 762‧‧‧ photoresist layer

770‧‧‧模具層 770‧‧‧Mold layer

774‧‧‧溝槽 774‧‧‧ trench

778‧‧‧通孔 778‧‧‧through hole

782‧‧‧第一鈍化層 782‧‧‧First passivation layer

784‧‧‧導電層 784‧‧‧ Conductive layer

786‧‧‧金屬層 786‧‧‧metal layer

788‧‧‧蝕刻終止層 788‧‧‧etch stop layer

790‧‧‧第一遮罩 790‧‧‧ first mask

794‧‧‧第二鈍化層 794‧‧‧Second passivation layer

814‧‧‧第三鈍化層 814‧‧‧ third passivation layer

815‧‧‧第二薄膜橫桿 815‧‧‧Second film crossbar

817‧‧‧第一薄膜橫桿 817‧‧‧First film crossbar

2500‧‧‧程序 2500‧‧‧Program

2502‧‧‧操作 2502‧‧‧ operation

2504‧‧‧操作 2504‧‧‧ operation

2506‧‧‧操作 2506‧‧‧ operation

2508‧‧‧操作 2508‧‧‧ operation

2510‧‧‧操作 2510‧‧‧ operation

2512‧‧‧操作 2512‧‧‧ operation

2514‧‧‧操作 2514‧‧‧ operation

2516‧‧‧操作 2516‧‧‧ operation

2600‧‧‧程序 2600‧‧‧Program

2602‧‧‧操作 2602‧‧‧ operation

2604‧‧‧操作 2604‧‧‧ operation

2606‧‧‧操作 2606‧‧‧ operation

2608‧‧‧操作 2608‧‧‧ operation

2710‧‧‧導電材料層 2710‧‧‧ Conductive material layer

2711‧‧‧錨定件 2711‧‧‧ Anchors

2712‧‧‧層 2712‧‧ layer

2714‧‧‧鈍化材料層 2714‧‧‧ Passivation material layer

2715‧‧‧第二橫桿 2715‧‧‧Second crossbar

2717‧‧‧第一橫桿 2717‧‧‧First crossbar

2758‧‧‧導電表面/導電層 2758‧‧‧ Conductive surface / conductive layer

2762‧‧‧抗蝕劑層 2762‧‧‧resist layer

2770‧‧‧抗蝕劑層 2770‧‧‧resist layer

2778‧‧‧通孔 2778‧‧‧through hole

5321‧‧‧處理器 5321‧‧‧ processor

5322‧‧‧陣列驅動器 5322‧‧‧Array Driver

5327‧‧‧網路介面 5327‧‧‧Network interface

5328‧‧‧圖框緩衝器 5328‧‧‧Frame buffer

5329‧‧‧驅動器控制器 5329‧‧‧Drive Controller

5330‧‧‧顯示器/顯示陣列 5330‧‧‧Display/Display Array

5340‧‧‧顯示器件 5340‧‧‧Display devices

5341‧‧‧外殼 5341‧‧‧Shell

5343‧‧‧天線 5343‧‧‧Antenna

5345‧‧‧揚聲器 5345‧‧‧Speakers

5346‧‧‧麥克風 5346‧‧‧Microphone

5347‧‧‧收發器 5347‧‧‧Transceiver

5348‧‧‧輸入器件 5348‧‧‧Input device

5350‧‧‧電力供應器 5350‧‧‧Power supply

5352‧‧‧調節硬體 5352‧‧‧Adjust hardware

圖1A展示實例直觀式基於微機電系統(MEMS)之顯示裝置的示意圖。 1A shows a schematic diagram of an example intuitive microelectromechanical system (MEMS) based display device.

圖1B展示實例主機器件之方塊圖。 Figure 1B shows a block diagram of an example host device.

圖2A及圖2B展示實例雙致動器快門總成之視圖。 2A and 2B show views of an example dual actuator shutter assembly.

圖3A及圖3B展示形成於基板上之MEMS快門總成。 3A and 3B show a MEMS shutter assembly formed on a substrate.

圖4展示具有導電表面之基板的橫截面圖。 Figure 4 shows a cross-sectional view of a substrate having a conductive surface.

圖5展示具有光阻層的圖4之基板。 Figure 5 shows the substrate of Figure 4 with a photoresist layer.

圖6展示形成於圖5之光阻上的模具層。 Figure 6 shows the mold layer formed on the photoresist of Figure 5.

圖7展示沈積於模具上方之鈍化層。 Figure 7 shows a passivation layer deposited over the mold.

圖8展示模具上方之額外層。 Figure 8 shows an additional layer above the mold.

圖9描繪經沈積層上的抗蝕劑之圖案。 Figure 9 depicts a pattern of resist on the deposited layer.

圖10描繪基板之經蝕刻表面。 Figure 10 depicts the etched surface of the substrate.

圖11描繪抗蝕劑被移除之基板。 Figure 11 depicts a substrate with a resist removed.

圖12展示具有第二鈍化材料層之基板。 Figure 12 shows a substrate having a second passivation material layer.

圖13展示放於鈍化層上之遮罩。 Figure 13 shows the mask placed on the passivation layer.

圖14展示經蝕刻鈍化層。 Figure 14 shows an etched passivation layer.

圖15展示自基板移除之遮罩。 Figure 15 shows the mask removed from the substrate.

圖16展示沈積於第一橫桿上方之錨定件抗蝕劑層。 Figure 16 shows an anchor resist layer deposited over a first crossbar.

圖17展示由如所蝕刻之錨定件層曝露的表面。 Figure 17 shows the surface exposed by the anchor layer as etched.

圖18展示沈積於錨定件層上的用於第二橫桿之模具。 Figure 18 shows a mold for a second crossbar deposited on an anchor layer.

圖19展示添加至模具之隔片。 Figure 19 shows the spacer added to the mold.

圖20展示形成於模具上之第二橫桿。 Figure 20 shows a second crossbar formed on the mold.

圖21展示放於第二橫桿上之抗蝕劑層。 Figure 21 shows the resist layer placed on the second crossbar.

圖22展示由如所蝕刻之抗蝕劑層曝露的表面。 Figure 22 shows the surface exposed by the resist layer as etched.

圖23展示自基板剝離之抗蝕劑。 Figure 23 shows the resist stripped from the substrate.

圖24展示配置於基板上之第一橫桿及第二橫桿。 Figure 24 shows a first crossbar and a second crossbar disposed on a substrate.

圖25為用於形成MEMS器件之第一橫桿及第二橫桿之程序的流程圖。 Figure 25 is a flow diagram of a procedure for forming a first rail and a second rail of a MEMS device.

圖26為用於形成堆疊式通孔之程序的流程圖。 Figure 26 is a flow diagram of a procedure for forming stacked vias.

圖27A及圖27B展示堆疊式通孔之替代性實施方案。 27A and 27B show an alternative embodiment of a stacked via.

圖28至圖41展示根據一些實施方案的說明製造實例MEMS器件之各種階段的橫截面示意圖。 28 through 41 show cross-sectional schematic views illustrating various stages of fabricating an example MEMS device, in accordance with some embodiments.

圖42A至圖42D展示說明使模具上之薄膜橫桿鈍化之各種階段的橫截面示意圖。 Figures 42A-42D show cross-sectional schematic views illustrating various stages of passivating a film crossbar on a mold.

圖43至圖52展示根據一些其他實施方案的說明製造實例MEMS器件之各種階段的橫截面示意圖。 43-52 show cross-sectional schematic views illustrating various stages of fabricating an example MEMS device, in accordance with some other embodiments.

圖53A及圖53B展示包括複數個顯示元件之實例顯示器件的系統方塊圖。 53A and 53B show system block diagrams of an example display device including a plurality of display elements.

各種圖式中之類似參考編號及名稱指示類似元件。 Similar reference numerals and names in the various figures indicate similar elements.

以下描述係有關於出於描述本發明之創新態樣之目的的某些實施方案。然而,一般熟習此項技術者將容易認識到,可以眾多不同方式來應用本文中之教示。所描述之實施方案可實施於能夠顯示影像(無論係在運動中(諸如視訊)抑或靜止(諸如靜態影像),且無論係文字、圖形抑或圖像)之任何器件、裝置或系統中。除了併有來自一或多個顯示技術之特徵的顯示器以外,本發明中所提供之概念及實例亦可適用於諸如液晶顯示器(LCD)、有機發光二極體(OLED)顯示器、場發射顯示器以及基於機電系統(EMS)及微機電(MEMS)之顯示器的多種顯示器。 The following description is of certain embodiments for the purpose of describing the inventive aspects of the invention. However, those skilled in the art will readily recognize that the teachings herein can be applied in a multitude of different ways. The described embodiments can be implemented in any device, device, or system capable of displaying an image, whether in motion (such as video) or stationary (such as still image), whether text, graphics, or images. In addition to displays having features from one or more display technologies, the concepts and examples provided in the present invention are also applicable to, for example, liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, field emission displays, and the like. A variety of displays based on electromechanical systems (EMS) and microelectromechanical (MEMS) displays.

所描述之實施方案可包括於諸如但不限於以下各者之多種電子器件中或與該等電子器件相關聯:行動電話、具備多媒體網際網路能力之蜂巢式電話、行動電視接收器、無線器件、智慧型電話、 Bluetooth®器件、個人資料助理(PDA)、無線電子郵件接收器、手持型或攜帶型電腦、迷你筆記型電腦、筆記型電腦、智慧筆記型電腦、平板電腦、印表機、影印機、掃描器、傳真器件、全球定位系統(GPS)接收器/導航器、攝影機、數位媒體播放器(諸如MP3播放器)、攝錄影機、遊戲主控台、腕錶、可穿戴式器件、時鐘、計算器、電視監視器、平板顯示器、電子閱讀器件(諸如電子閱讀器)、電腦監視器、汽車顯示器(諸如里程錶及速度計顯示器)、座艙控制件及/或顯示器、攝影機景觀顯示器(諸如車輛中的後視攝影機之顯示器)、電子相片、電子廣告牌或告示牌、投影儀、建築結構、微波爐、冰箱、立體聲系統、卡式錄音機或播放器、DVD播放器、CD播放器、VCR、收音機、攜帶型記憶體晶片、洗滌機、乾燥器、洗滌機/乾燥器、停車計時器、封裝(諸如在包括微機電系統(MEMS)應用之機電系統(EMS)應用以及非EMS應用中)、美學結構(諸如在一件珠寶或服裝上之影像的顯示),及多種EMS器件。 The described implementations can be included in or associated with a variety of electronic devices such as, but not limited to, mobile phones, cellular phones with multimedia internet capabilities, mobile television receivers, wireless devices Smart phone, Bluetooth® device, personal data assistant (PDA), wireless email receiver, handheld or portable computer, mini-notebook, notebook, smart notebook, tablet, printer, photocopier, scanner , fax devices, global positioning system (GPS) receivers / navigators, cameras, digital media players (such as MP3 players), camcorders, game consoles, watches, wearable devices, clocks, computing , television monitors, flat panel displays, electronic reading devices (such as e-readers), computer monitors, car displays (such as odometers and speedometer displays), cockpit controls and/or displays, camera landscape displays (such as in vehicles) Rear view camera display), electronic photo, electronic billboard or billboard, projector, building structure, microwave oven, refrigerator, stereo system, cassette recorder or player, DVD player, CD player, VCR, radio, Portable memory chips, washers, dryers, washers/dryers, parking meters, packages (such as in the MEMS (MEMS) Application of the electromechanical systems (EMS) application, and the application of non-EMS), aesthetic structures (such as the display of the images on a piece of jewelry or clothing), the EMS and a variety of devices.

本文中之教示亦可用於諸如但不限於以下各者之非顯示應用中:電子切換器件、射頻濾波器、感測器、加速度計、迴轉儀、運動感測器件、磁力計、用於消費型電子件之慣性組件、消費型電子產品之零件、可變電抗器、液晶器件、電泳器件、驅動方案、製造程序,及電子測試設備。因此,該等教示並不意欲限於僅僅在諸圖中所描繪之實施方案,而代替地具有廣泛適用性,此對於一般熟習此項技術者而言將顯而易見。 The teachings herein may also be used in non-display applications such as, but not limited to, electronic switching devices, RF filters, sensors, accelerometers, gyroscopes, motion sensing devices, magnetometers, for consumer use. Inertial components for electronic components, parts for consumer electronics, varactors, liquid crystal devices, electrophoretic devices, drive solutions, manufacturing procedures, and electronic test equipment. Therefore, the teachings are not intended to be limited to the embodiments shown in the drawings, but instead have broad applicability, as will be apparent to those skilled in the art.

在一個態樣中,本文中所描述之器件、系統及方法包括具有配置於基板表面上方之兩個橫桿的MEMS器件。薄膜橫桿具有在該橫桿之外部表面上的鈍化塗層。通常,橫桿經配置以具有定位於基板之表面上方的第一橫桿,且第二橫桿定位於第一橫桿上方。術語「上方」或「下方」為相對術語,此係由於橫桿被視為上方抑或下方取決於較 大MEMS器件之定向。在任一狀況下,兩個橫桿皆與基板之表面被隔開一距離,且第一橫桿安置於基板與第二橫桿之間。在一些實施方案中,第一橫桿及第二橫桿可為薄膜之平面,諸如非晶矽(aSi)。在一些實施方案中,橫桿為被形成為微機電組件之薄膜。通常,此等組件為對電控制信號作出回應之可移動結構。 In one aspect, the devices, systems, and methods described herein include a MEMS device having two crossbars disposed over a surface of a substrate. The film crossbar has a passivating coating on the outer surface of the crossbar. Typically, the crossbar is configured to have a first crossbar positioned above a surface of the substrate, and the second crossbar is positioned above the first crossbar. The term "above" or "below" is a relative term, since the crossbar is considered to be above or below Orientation of large MEMS devices. In either case, the two crossbars are spaced apart from the surface of the substrate, and the first crossbar is disposed between the substrate and the second crossbar. In some embodiments, the first crossbar and the second crossbar can be planes of the film, such as amorphous germanium (aSi). In some embodiments, the crossbar is a film that is formed as a microelectromechanical component. Typically, such components are movable structures that respond to electrical control signals.

MEMS器件中之組件可具有以微米為單位予以量測且自幾微米至數百萬微米而量測之尺寸。該等組件可為任何機械或電組件,諸如快門、鏡面、致動器、光圈、馬達、懸臂樑,或機械及/或電系統之任何組件。 Components in MEMS devices can have dimensions measured in micrometers and measured from a few microns to millions of microns. The components can be any mechanical or electrical component such as a shutter, mirror, actuator, aperture, motor, cantilever, or any component of a mechanical and/or electrical system.

在一些實施方案中,MEMS器件可包括在脫模之前形成之一或多個鈍化層,及在脫模之後形成之一或多個額外鈍化層。 In some embodiments, the MEMS device can include forming one or more passivation layers prior to demolding, and forming one or more additional passivation layers after demolding.

可實施本發明中所描述之主題之特定實施方案以實現以下潛在優勢中之一或多者。在一個態樣中,程序可消除或縮減在橫桿之脫模之後針對鈍化程序的需要。另外,藉由使用沈積及蝕刻程序來塑形鈍化塗層,程序可消除或縮減針對用以將經覆蓋墊或孔隙曝露之墊敞開程序(pad open process)的需要。另外,程序可藉由縮減由複雜鈍化程序造成之鬆散粒子產生來改良良率。另外,在脫模之後提供鈍化層可消除或以其他方式縮減可由第一薄膜橫桿或第二薄膜橫桿中之曝露表面引起的洩漏路徑之發生。 Particular embodiments of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages. In one aspect, the program can eliminate or reduce the need for a passivation procedure after demolding of the crossbar. Additionally, by using a deposition and etching process to shape the passivation coating, the procedure eliminates or reduces the need for a pad open process to expose the covered pad or aperture. In addition, the program can improve yield by reducing the generation of loose particles caused by complex passivation procedures. Additionally, providing a passivation layer after demolding can eliminate or otherwise reduce the occurrence of a leak path that can be caused by the exposed surface of the first film crossbar or the second film crossbar.

圖1A展示實例直觀式基於MEMS之顯示裝置100的示意圖。顯示裝置100包括以列及行而配置之複數個光調變器102a至102d(整體上為光調變器102)。在顯示裝置100中,光調變器102a及102d處於敞開狀態,從而允許光通過。光調變器102b及102c處於關閉狀態,從而阻礙光通過。藉由選擇性地設定光調變器102a至102d之狀態,顯示裝置100可用以形成用於背光式顯示(若由一或多個燈105照明)之影像104。在另一實施方案中,裝置100可藉由反射源自該裝置前方之周圍 光而形成影像。在另一實施方案中,裝置100可藉由反射來自定位於顯示器前方之一或多個燈之光(亦即,藉由使用前光)而形成影像。 FIG. 1A shows a schematic diagram of an example intuitive MEMS based display device 100. The display device 100 includes a plurality of optical modulators 102a to 102d (integrally, the optical modulator 102) arranged in columns and rows. In the display device 100, the light modulators 102a and 102d are in an open state, thereby allowing light to pass therethrough. The light modulators 102b and 102c are in a closed state, thereby blocking the passage of light. By selectively setting the state of the light modulators 102a through 102d, the display device 100 can be used to form an image 104 for backlight display (if illuminated by one or more lamps 105). In another embodiment, the device 100 can be derived from the surroundings of the front of the device by reflection Light forms an image. In another embodiment, device 100 can form an image by reflecting light from one or more lamps positioned in front of the display (ie, by using front light).

在一些實施方案中,每一光調變器102對應於影像104中之一像素106。在一些其他實施方案中,顯示裝置100可利用複數個光調變器以在影像104中形成一像素106。舉例而言,顯示裝置100可包括三個色彩特定光調變器102。藉由選擇性地敞開對應於一特定像素106的色彩特定光調變器102中之一或多者,顯示裝置100可在影像104中產生一色彩像素106。在另一實例中,顯示裝置100包括每像素106兩個或兩個以上光調變器102以在影像104中提供明度位準。關於一影像,一像素對應於由影像之解析度定義的最小像元。關於顯示裝置100之結構組件,術語像素係指用以調變形成影像之單一像素之光的組合式機械及電組件。 In some embodiments, each light modulator 102 corresponds to one of the pixels 106 in the image 104. In some other implementations, display device 100 can utilize a plurality of light modulators to form a pixel 106 in image 104. For example, display device 100 can include three color-specific light modulators 102. Display device 100 may generate a color pixel 106 in image 104 by selectively opening one or more of color-specific light modulators 102 corresponding to a particular pixel 106. In another example, display device 100 includes two or more light modulators 102 per pixel 106 to provide a brightness level in image 104. Regarding an image, one pixel corresponds to the smallest pixel defined by the resolution of the image. With respect to the structural components of display device 100, the term pixel refers to a combined mechanical and electrical component used to modulate the light of a single pixel that forms an image.

顯示裝置100為直觀式顯示器之處在於其可不包括通常在投影應用中所發現之成像光學件。在投影顯示器中,將形成於顯示裝置之表面上的影像投影至螢幕上或投影至牆壁上。顯示裝置實質上小於經投影影像。在直觀式顯示器中,可藉由直接地查看顯示裝置而看到影像,顯示裝置含有光調變器且視情況含有用於增強在顯示器上看到之亮度及/或對比度的背光或前光。 Display device 100 is an intuitive display in that it may not include imaging optics found in projection applications. In a projection display, an image formed on the surface of a display device is projected onto a screen or projected onto a wall. The display device is substantially smaller than the projected image. In an intuitive display, the image can be viewed by directly viewing the display device, which includes a light modulator and optionally a backlight or front light for enhancing the brightness and/or contrast seen on the display.

直觀式顯示器可以透射模式或反射模式中之任一者而操作。在透射顯示器中,光調變器濾波或選擇性地阻擋源自定位於顯示器後方之一或多個燈之光。來自燈之光視情況注入至光導或背光中,使得每一像素可被均一地照明。透射直觀式顯示器常常建置至透明基板上以促進含有光調變器之一個基板定位於背光上方的夾層總成配置。在一些實施方案中,透明基板可為玻璃基板(有時被稱作玻璃板或面板),或塑膠基板。玻璃基板可為或包括(例如)硼矽酸鹽玻璃、紫紅玻璃(wine glass)、熔融矽石、鹼石灰玻璃、石英、人造石英、派熱司玻璃 (Pyrex),或其他合適玻璃材料。 The intuitive display can operate in either a transmissive mode or a reflective mode. In a transmissive display, the light modulator filters or selectively blocks light originating from one or more lamps positioned behind the display. Light from the lamp is injected into the light guide or backlight as appropriate so that each pixel can be uniformly illuminated. Transmissive visual displays are often built onto a transparent substrate to facilitate a sandwich assembly configuration in which a substrate containing a light modulator is positioned above the backlight. In some embodiments, the transparent substrate can be a glass substrate (sometimes referred to as a glass plate or panel), or a plastic substrate. The glass substrate can be or include, for example, borosilicate glass, wine glass, molten vermiculite, soda lime glass, quartz, artificial quartz, Pyros glass (Pyrex), or other suitable glass material.

每一光調變器102可包括一快門108及一孔隙109。為了照明影像104中之像素106,將快門108定位使得其允許光傳遞通過孔隙109。為了使像素106保持不被照亮,將快門108定位使得其阻礙光傳遞通過孔隙109。孔隙109係由通過每一光調變器102中之反射或光吸收材料而圖案化的開口界定。 Each of the light modulators 102 can include a shutter 108 and an aperture 109. To illuminate the pixels 106 in the image 104, the shutter 108 is positioned such that it allows light to pass through the aperture 109. In order to keep the pixels 106 from being illuminated, the shutter 108 is positioned such that it blocks light transmission through the apertures 109. The apertures 109 are defined by openings that are patterned by the reflective or light absorbing material in each of the light modulators 102.

顯示裝置亦包括耦接至基板及光調變器以用於控制快門之移動的控制矩陣。控制矩陣包括一系列電互連件(諸如互連件110、112及114),該等電互連件包括:每像素列至少一個寫入啟用互連件110(亦被稱作掃描線互連件);用於每一像素行之一個資料互連件112;及一個共同互連件114,其將共同電壓提供至所有像素或至少提供至來自顯示裝置100中之多個行及多個列兩者的像素。回應於適當電壓(寫入啟用電壓,VWE)之施加,用於給定像素列之寫入啟用互連件110使該列中之像素準備接受新快門移動指令。資料互連件112以資料電壓脈衝之形式傳達新移動指令。在一些實施方案中,施加至資料互連件112之資料電壓脈衝直接地促成快門之靜電移動。在一些其他實施方案中,資料電壓脈衝控制開關,諸如控制單獨驅動電壓至光調變器102之施加的電晶體或其他非線性電路元件,單獨驅動電壓在量值上通常高於資料電壓。此等驅動電壓之施加會引起快門108之靜電驅動移動。 The display device also includes a control matrix coupled to the substrate and the optical modulator for controlling movement of the shutter. The control matrix includes a series of electrical interconnects, such as interconnects 110, 112, and 114, including: at least one write enable interconnect 110 per pixel column (also referred to as scan line interconnect) a data interconnect 112 for each pixel row; and a common interconnect 114 that provides a common voltage to all pixels or at least to multiple rows and columns from the display device 100 The pixels of both. In response to the application of an appropriate voltage (write enable voltage, V WE ), the write enable interconnect 110 for a given column of pixels causes the pixels in the column to be ready to accept a new shutter move command. The data interconnect 112 communicates the new move command in the form of a data voltage pulse. In some embodiments, the data voltage pulse applied to the data interconnect 112 directly contributes to electrostatic movement of the shutter. In some other implementations, the data voltage pulse controls a switch, such as a transistor or other non-linear circuit element that controls the application of a separate drive voltage to the optical modulator 102, the individual drive voltages being typically higher in magnitude than the data voltage. The application of these drive voltages causes electrostatic drive movement of the shutter 108.

控制矩陣亦可包括但不限於電路系統,諸如與每一快門總成相關聯之電晶體及電容器。在一些實施方案中,每一電晶體之閘極可電連接至掃描線互連件。在一些實施方案中,每一電晶體之源極可電連接至對應資料互連件。在一些實施方案中,每一電晶體之汲極可並聯地電連接至對應電容器之電極及對應致動器之電極。在一些實施方案中,與每一快門總成相關聯之電容器及致動器之另一電極可連接至共 同或接地電位。在一些其他實施方案中,可運用半導電二極體或金屬-絕緣體-金屬切換元件來替換電晶體。 Control matrices may also include, but are not limited to, circuitry, such as transistors and capacitors associated with each shutter assembly. In some embodiments, the gate of each transistor can be electrically connected to the scan line interconnect. In some embodiments, the source of each transistor can be electrically connected to a corresponding data interconnect. In some embodiments, the drain of each transistor can be electrically connected in parallel to the electrodes of the corresponding capacitor and the electrodes of the corresponding actuator. In some embodiments, the capacitor associated with each shutter assembly and the other electrode of the actuator can be connected to a total Same or ground potential. In some other implementations, the transistor can be replaced with a semiconducting diode or a metal-insulator-metal switching element.

圖1B展示實例主機器件120(亦即,蜂巢式電話、智慧型電話、PDA、MP3播放器、平板電腦、電子閱讀器、迷你筆記型電腦、筆記型電腦、手錶、可穿戴式器件、膝上型電腦、電視,或其他電子器件)之方塊圖。主機器件120包括顯示裝置128(諸如圖1A所展示之顯示裝置100)、主機處理器122、環境感測器124、使用者輸入模組126,及電源。 1B shows an example host device 120 (ie, a cellular phone, a smart phone, a PDA, an MP3 player, a tablet, an e-reader, a mini-notebook, a notebook, a watch, a wearable device, a laptop) Block diagram of a computer, television, or other electronic device. The host device 120 includes a display device 128 (such as the display device 100 shown in FIG. 1A), a host processor 122, an environmental sensor 124, a user input module 126, and a power source.

顯示裝置128包括複數個掃描驅動器130(亦被稱作寫入啟用電壓源)、複數個資料驅動器132(亦被稱作資料電壓源)、控制器134、共同驅動器138、燈140至146、燈驅動器148,及顯示元件陣列150,諸如圖1A所展示之光調變器102。掃描驅動器130將寫入啟用電壓施加至掃描線互連件131。資料驅動器132將資料電壓施加至資料互連件133。 Display device 128 includes a plurality of scan drivers 130 (also referred to as write enable voltage sources), a plurality of data drivers 132 (also referred to as data voltage sources), controller 134, common drivers 138, lamps 140 through 146, lights Driver 148, and display element array 150, such as optical modulator 102 shown in FIG. 1A. The scan driver 130 applies a write enable voltage to the scan line interconnect 131. The data driver 132 applies a data voltage to the data interconnect 133.

在顯示裝置之一些實施方案中,資料驅動器132能夠將類比資料電壓提供至顯示元件陣列150,尤其是在將以類比方式導出影像之明度位準的情況下。在類比操作中,顯示元件經設計使得當通過資料互連件133施加一系列中間電壓時,在所得影像中得到一系列中間照明狀態或明度位準。在一些其他實施方案中,資料驅動器132能夠將一縮減組(諸如2、3或4個)數位電壓位準施加至資料互連件133。在顯示元件為基於快門之光調變器(諸如圖1A所展示之光調變器102)的實施方案中,此等電壓位準經設計成以數位方式將敞開狀態、關閉狀態或其他離散狀態設定至快門108中之每一者。在一些實施方案中,驅動器能夠在類比模式與數位模式之間切換。 In some implementations of the display device, the data driver 132 can provide an analog data voltage to the display element array 150, particularly where the brightness level of the image will be derived in an analogous manner. In analog operation, the display elements are designed such that when a series of intermediate voltages are applied through the data interconnect 133, a series of intermediate illumination states or brightness levels are obtained in the resulting image. In some other implementations, the data driver 132 can apply a reduced set (such as 2, 3, or 4) digital voltage levels to the data interconnect 133. In embodiments where the display element is a shutter-based light modulator (such as the light modulator 102 shown in FIG. 1A), the voltage levels are designed to be in an open, closed, or other discrete state in a digital manner. Each of the shutters 108 is set. In some embodiments, the driver is capable of switching between analog mode and digital mode.

掃描驅動器130及資料驅動器132連接至數位控制器電路134(亦被稱作控制器134)。控制器134以主要串列方式將資料發送至資料驅 動器132,該資料係按序列予以組織,在一些實施方案中,其可被預定、按列而分組及按影像圖框而分組。資料驅動器132可包括串列至並列資料轉換器、位準移位,及(對於一些應用)數位至類比電壓轉換器。 Scan driver 130 and data driver 132 are coupled to digital controller circuit 134 (also referred to as controller 134). Controller 134 sends the data to the data drive in a primary serial The data is organized in a sequence, which in some embodiments can be predetermined, grouped by column, and grouped by image frame. Data driver 132 may include a serial to parallel data converter, level shifting, and (for some applications) a digital to analog voltage converter.

顯示裝置視情況包括一組共同驅動器138,亦被稱作共同電壓源。在一些實施方案中,共同驅動器138將DC共同電位提供至顯示元件陣列150內之所有顯示元件,例如,藉由將電壓供應至一系列共同互連件139。在一些其他實施方案中,共同驅動器138遵循來自控制器134之命令而向顯示元件陣列150發出電壓脈衝或信號,例如,能夠驅動及/或起始該陣列之多個列及行中的所有顯示元件之同時致動的全域致動脈衝。 The display device optionally includes a set of common drivers 138, also referred to as a common voltage source. In some implementations, the common driver 138 provides a DC common potential to all of the display elements within the display element array 150, for example, by supplying a voltage to a series of common interconnects 139. In some other implementations, the common driver 138 issues a voltage pulse or signal to the display element array 150 following commands from the controller 134, for example, capable of driving and/or initiating all of the columns and rows of the array. Simultaneously actuated global actuation pulses of the components.

用於不同顯示功能之驅動器(諸如掃描驅動器130、資料驅動器132及共同驅動器138)中之每一者可由控制器134進行時間同步。來自控制器134之時序命令協調經由燈驅動器148進行的紅燈、綠燈、藍燈及白燈(分別為140、142、144及146)之照明、顯示元件陣列150內之特定列之寫入啟用及定序、來自資料驅動器132之電壓輸出,及提供顯示元件致動之電壓輸出。在一些實施方案中,該等燈為發光二極體(LED)。 Each of the drivers for different display functions, such as scan driver 130, data driver 132, and common driver 138, can be time synchronized by controller 134. The timing commands from controller 134 coordinate the illumination of red, green, blue, and white lights (140, 142, 144, and 146, respectively) via lamp driver 148, and enable writing of particular columns within display element array 150. And sequencing, voltage output from data driver 132, and voltage output for providing display element actuation. In some embodiments, the lamps are light emitting diodes (LEDs).

控制器134判定可由該等顯示元件中之每一者用來重設至適於新影像104之照明位準的定序或定址方案。可以週期性時間間隔來設定新影像104。舉例而言,對於視訊顯示器,以範圍為10赫茲(Hz)至300赫茲之頻率來再新色彩影像或視訊圖框。在一些實施方案中,使影像圖框至顯示元件陣列150之設定與燈140、142、144及146之照明同步,使得運用一交替系列色彩(諸如紅色、綠色、藍色及白色)來照明交替影像圖框。用於每一各別色彩之影像圖框被稱作色彩子圖框。在此方法(被稱作場序色彩方法)中,若色彩子圖框係以超過20Hz之頻 率交替,則人類視覺系統(HVS)將交替圖框影像平均化為對具有廣泛且連續範圍之色彩之影像的感知。在一些其他實施方案中,燈可使用除了紅色、綠色、藍色及白色以外之原色。在一些實施方案中,具有原色之四個以下或四個以上燈可用於顯示裝置128中。 Controller 134 determines a sequencing or addressing scheme that can be used by each of the display elements to reset to an illumination level suitable for new image 104. The new image 104 can be set at periodic intervals. For example, for a video display, the color image or video frame is renewed at a frequency ranging from 10 Hz to 300 Hz. In some embodiments, the setting of the image frame to display element array 150 is synchronized with the illumination of lamps 140, 142, 144, and 146 such that an alternating series of colors (such as red, green, blue, and white) is used to illuminate alternately. Image frame. The image frame for each individual color is called a color sub-frame. In this method (called the field sequential color method), if the color sub-frame is more than 20 Hz At alternate rates, the Human Visual System (HVS) averages the alternating frame images into perceptions of images with a wide and continuous range of colors. In some other implementations, the lamp can use primary colors other than red, green, blue, and white. In some embodiments, four or fewer lamps having primary colors can be used in display device 128.

在顯示裝置128經設計用於快門(諸如圖1A所展示之快門108)在敞開狀態與關閉狀態之間的數位切換的一些實施方案中,控制器134藉由分時灰階之方法而形成影像。在一些其他實施方案中,顯示裝置128可經由使用每像素多個顯示元件來提供灰階。 In some embodiments in which the display device 128 is designed for digital switching between a shutter state (such as the shutter 108 shown in FIG. 1A) between an open state and a closed state, the controller 134 forms an image by means of a time division gray scale. . In some other implementations, display device 128 can provide grayscale via the use of multiple display elements per pixel.

在一些實施方案中,用於影像狀態之資料係由控制器134藉由個別列(亦被稱作掃描線)之循序定址而載入至顯示元件陣列150。對於序列中之每一列或掃描線,掃描驅動器130將寫入啟用電壓施加至用於顯示元件陣列150之彼列的寫入啟用互連件131,且隨後,資料驅動器132針對該陣列之選定列中之每一行供應對應於所要快門狀態之資料電壓。此定址程序可重複直至已針對顯示元件陣列150中之所有列載入資料為止。在一些實施方案中,用於資料載入之選定列之序列為線性的,在顯示元件陣列150中自頂部至底部而進行。在一些其他實施方案中,選定列之序列為偽隨機的,以便減輕潛在視覺假影。且在一些其他實施方案中,定序係按區塊而組織,其中對於一區塊,用於影像之某一分率的資料被載入至顯示元件陣列150。舉例而言,序列可經實施以按序列定址顯示元件陣列150之每五個列。 In some embodiments, the information for the image state is loaded by controller 134 to display element array 150 by sequential addressing of individual columns (also referred to as scan lines). For each column or scan line in the sequence, scan driver 130 applies a write enable voltage to write enable interconnect 131 for the other of display element array 150, and then, data driver 132 selects a column for that array Each of the rows supplies a data voltage corresponding to the desired shutter state. This addressing procedure can be repeated until data has been loaded for all of the columns in display element array 150. In some embodiments, the sequence of selected columns for data loading is linear, from top to bottom in display element array 150. In some other implementations, the sequence of selected columns is pseudo-random in order to mitigate potential visual artifacts. And in some other implementations, the sequencing is organized in blocks, wherein for a block, data for a certain fraction of the image is loaded into display element array 150. For example, the sequences can be implemented to address each of the five columns of the array of elements 150 in a sequence.

在一些實施方案中,用於將影像資料載入至顯示元件陣列150之定址程序在時間上與致動該等顯示元件之程序分離。在此實施方案中,顯示元件陣列150可包括用於每一顯示元件之資料記憶體元件,且控制矩陣可包括用於攜載來自共同驅動器138之觸發信號以根據儲存於該等記憶體元件中之資料來起始該等顯示元件之同時致動的全域致動互連件。 In some embodiments, the addressing procedure for loading image data into display element array 150 is separated in time from the program that actuates the display elements. In this embodiment, display element array 150 can include a data memory element for each display element, and the control matrix can include a trigger signal for carrying from common driver 138 for storage in the memory elements. The data is used to initiate simultaneous actuation of the global actuation interconnects of the display elements.

在一些實施方案中,顯示元件陣列150及控制該等顯示元件之控制矩陣可以除了矩形列及行以外之組態而配置。舉例而言,顯示元件可以六邊形陣列或曲線列及行而配置。 In some embodiments, display element array 150 and control matrices that control the display elements can be configured in configurations other than rectangular columns and rows. For example, the display elements can be configured in a hexagonal array or a curved column and rows.

主機處理器122通常控制主機器件120之操作。舉例而言,主機處理器122可為用於控制攜帶型電子器件之一般用途或特殊用途處理器。關於包括於主機器件120內之顯示裝置128,主機處理器122輸出影像資料以及關於主機器件120之額外資料。此資訊可包括:來自環境感測器124之資料,諸如周圍光或溫度;關於主機器件120之資訊,包括(例如)主機之操作模式或主機器件之電源中剩餘的電力量;關於影像資料之內容的資訊;關於影像資料之類型的資訊;及/或用於顯示裝置128以供選擇成像模式之指令。 Host processor 122 typically controls the operation of host device 120. For example, host processor 122 can be a general purpose or special purpose processor for controlling portable electronic devices. With respect to display device 128 included in host device 120, host processor 122 outputs image material and additional information regarding host device 120. This information may include: information from the environmental sensor 124, such as ambient light or temperature; information about the host device 120, including, for example, the mode of operation of the host or the amount of power remaining in the power source of the host device; Information about the content; information about the type of image material; and/or instructions for displaying device 128 for selecting an imaging mode.

在一些實施方案中,使用者輸入模組126使能夠直接地或經由主機處理器122將使用者之個人偏好傳送至控制器134。在一些實施方案中,使用者輸入模組126係由軟體控制,其中使用者輸入個人偏好,例如,色彩、對比度、功率、亮度、內容,以及其他顯示設定及參數偏好。在一些其他實施方案中,使用者輸入模組126係由硬體控制,其中使用者輸入個人偏好。在一些實施方案中,使用者可經由語音命令、一或多個按鈕、開關或撥號盤或運用觸控能力來輸入此等偏好。至控制器134之複數個資料輸入指導控制器將資料提供至對應於最佳成像特性之各種驅動器130、132、138及148。 In some embodiments, the user input module 126 enables the user's personal preferences to be communicated to the controller 134 directly or via the host processor 122. In some embodiments, the user input module 126 is controlled by software where the user enters personal preferences, such as color, contrast, power, brightness, content, and other display settings and parameter preferences. In some other implementations, the user input module 126 is controlled by hardware where the user enters personal preferences. In some embodiments, the user can enter such preferences via voice commands, one or more buttons, switches or dials, or using touch capabilities. The plurality of data inputs to the controller 134 directs the controller to provide data to the various drivers 130, 132, 138, and 148 that correspond to the optimal imaging characteristics.

環境感測器模組124亦可被包括作為主機器件120之部分。環境感測器模組124可能夠接收關於周圍環境之資料,諸如溫度及/或周圍照明條件。感測器模組124可經程式化以(例如)辨別器件係在室內或辦公室環境中抑或在明亮白天之戶外環境中抑或在夜間室外環境中操作。感測器模組124將此資訊傳達至顯示控制器134,使得控制器134可回應於周圍環境而使觀察條件最佳化。 The environmental sensor module 124 can also be included as part of the host device 120. The environmental sensor module 124 can be capable of receiving information about the surrounding environment, such as temperature and/or ambient lighting conditions. The sensor module 124 can be programmed to, for example, identify whether the device is in an indoor or office environment, or in a bright daytime outdoor environment or in a nighttime outdoor environment. The sensor module 124 communicates this information to the display controller 134 such that the controller 134 can optimize the viewing conditions in response to the surrounding environment.

圖2A及圖2B展示實例雙致動器快門總成200之視圖。如圖2A所描繪,雙致動器快門總成200處於敞開狀態。圖2B展示處於關閉狀態之雙致動器快門總成200。快門總成200包括在快門206之任一側上的致動器202及204。每一致動器202及204受到獨立地控制。第一致動器(快門敞開致動器202)用以敞開快門206。第二對置致動器(快門關閉致動器204)用以關閉快門206。致動器202及204中之每一者可被實施為順應式橫桿電極致動器。致動器202及204藉由實質上在平行於孔隙層207之平面中驅動快門206來敞開及關閉快門206,該快門懸置於孔隙層207上方。快門206係由附接至致動器202及204之錨定件208懸置於孔隙層207上方之短距離。使致動器202及204沿著快門206之移動軸線附接至快門206之對置末端會縮減快門206之平面外運動,且將該運動實質上限制至平行於基板(未描繪)之平面。 2A and 2B show views of an example dual actuator shutter assembly 200. As depicted in Figure 2A, the dual actuator shutter assembly 200 is in an open state. 2B shows the dual actuator shutter assembly 200 in a closed state. Shutter assembly 200 includes actuators 202 and 204 on either side of shutter 206. Each actuator 202 and 204 is independently controlled. A first actuator (shutter open actuator 202) is used to open the shutter 206. A second opposing actuator (shutter closing actuator 204) is used to close the shutter 206. Each of the actuators 202 and 204 can be implemented as a compliant crossbar electrode actuator. The actuators 202 and 204 open and close the shutter 206 by driving the shutter 206 substantially in a plane parallel to the aperture layer 207, which is suspended above the aperture layer 207. The shutter 206 is suspended a short distance above the aperture layer 207 by anchors 208 attached to the actuators 202 and 204. Attaching the actuators 202 and 204 along the axis of movement of the shutter 206 to the opposite end of the shutter 206 reduces the out-of-plane motion of the shutter 206 and substantially limits the motion to a plane parallel to the substrate (not depicted).

在所描繪之實施方案中,快門206包括光可傳遞通過的兩個快門孔隙212。孔隙層207包括一組三個孔隙209。在圖2A中,快門總成200處於敞開狀態,且因而,快門敞開致動器202已致動,快門關閉致動器204處於其鬆弛位置,且快門孔隙212之中心線與孔隙層孔隙209中之兩者之中心線重合。在圖2B中,快門總成200已移動至關閉狀態,且因而,快門敞開致動器202處於其鬆弛位置,快門關閉致動器204已致動,且快門206之光阻擋部分現在處於適當位置以阻擋光透射通過孔隙209(被描繪為點線)。 In the depicted embodiment, the shutter 206 includes two shutter apertures 212 through which light can pass. The void layer 207 includes a set of three apertures 209. In FIG. 2A, the shutter assembly 200 is in an open state, and thus, the shutter open actuator 202 has been actuated, the shutter close actuator 204 is in its relaxed position, and the centerline of the shutter aperture 212 is in the aperture layer aperture 209. The centerlines of the two coincide. In FIG. 2B, the shutter assembly 200 has moved to the closed state, and thus, the shutter open actuator 202 is in its relaxed position, the shutter close actuator 204 has been actuated, and the light blocking portion of the shutter 206 is now in place. The blocking light is transmitted through the aperture 209 (depicted as a dotted line).

每一孔隙具有圍繞其周邊之至少一個邊緣。舉例而言,矩形孔隙209具有四個邊緣。在圓形、橢圓形、卵形或其他彎曲孔隙形成於孔隙層207中之一些實施方案中,每一孔隙可具有單一邊緣。在一些其他實施方案中,孔隙不需要分離或在數學意義上不相交,而代替地可連接。換言之,雖然孔隙之部分或經塑形區段可維持與每一快門之對應性,但此等區段中之若干者可連接使得孔隙之單一連續周界由多 個快門共用。 Each aperture has at least one edge around its perimeter. For example, the rectangular aperture 209 has four edges. In some embodiments in which a circular, elliptical, oval or other curved aperture is formed in the void layer 207, each aperture can have a single edge. In some other embodiments, the pores need not be separated or do not intersect in a mathematical sense, but instead may be joined. In other words, although portions of the aperture or shaped segments can maintain correspondence with each shutter, several of these segments can be connected such that a single continuous perimeter of the aperture is Shutter sharing.

為了允許具有多種出射角之光傳遞通過處於敞開狀態之孔隙212及209,可將快門孔隙212之寬度或大小設計為大於孔隙層207中之孔隙209之對應寬度或大小。為了有效地阻擋光在關閉狀態中逸出,可將快門206之光阻擋部分設計為重疊於孔隙209之邊緣。圖2B展示在快門206中之光阻擋部分之邊緣與形成於孔隙層207中之孔隙209之一個邊緣之間的重疊部216,其在一些實施方案中可被預定義。 To allow light having multiple exit angles to pass through the apertures 212 and 209 in an open state, the width or size of the shutter apertures 212 can be designed to be larger than the corresponding width or size of the apertures 209 in the aperture layer 207. In order to effectively block light from escaping in the closed state, the light blocking portion of the shutter 206 can be designed to overlap the edge of the aperture 209. 2B shows an overlap 216 between the edge of the light blocking portion in the shutter 206 and one edge of the aperture 209 formed in the aperture layer 207, which may be predefined in some embodiments.

靜電致動器202及204經設計使得其電壓位移行為向快門總成200提供雙穩態特性。對於快門敞開致動器及快門關閉致動器中之每一者,存在低於致動電壓之一系列電壓,其在彼致動器處於關閉狀態(其中快門敞開或關閉)時被施加的情況下將使致動器保持關閉且使快門保持於適當位置,甚至在將驅動電壓施加至對置致動器之後亦如此。與此反向力相抵而維持快門之位置所需要的最小電壓被稱作維持電壓VmThe electrostatic actuators 202 and 204 are designed such that their voltage displacement behavior provides a bistable characteristic to the shutter assembly 200. For each of the shutter open actuator and the shutter close actuator, there is a series of voltages below the actuation voltage that is applied when the actuator is in the closed state (where the shutter is open or closed) This will keep the actuator closed and hold the shutter in place, even after applying the drive voltage to the opposing actuator. The minimum voltage required to maintain the position of the shutter opposing force against this is referred to as the sustain voltage V m.

可使用本文中所描述之系統及方法以形成任何類型之微機電器件,包括具有尺寸與使用用於形成半導體器件之程序(諸如用於在表面上形成半導體材料之圖案的程序)而達成之尺寸相當之特徵的任何器件。MEMS器件可包括但不限於光調變器、麥克風、感測器、壓電電阻器、壓電晶體、用於機電致動之器件、濾波器、用於信號轉訊之器件,及通常與基於半導體之電子器件一起使用的任何其他類型之組件。僅出於說明起見,將參考用於顯示器中之MEMS快門總成來論述本文中所描述之系統及方法。圖3A及圖3B展示形成於基板上之MEMS快門總成。詳言之,圖3A為快門總成陣列300之部分的等角視圖,其中每一快門總成可在一顯示器之一影像內提供一像素。快門總成陣列300包括以列及行而配置之四個像素301,但典型顯示器將具有數千個像素。每一像素301為製造於基板304之表面上的一半導體器 件。詳言之,每一像素301為一半導體器件,其包括一孔隙354及一快門總成302,該兩者皆已製造於基板304上。像素301包括諸如以下各者之組件:快門總成302、致動器303、孔隙354,及電互連組件,諸如所描繪之資料互連件308。每一像素301之個別組件(諸如致動器303或快門總成302)包括使用將該等組件形成為承載於孔隙層350之表面上之元件之程序流程而製造的半導體組件。孔隙層350同樣為組件,且經沈積及圖案化至基板304上。孔隙層350提供光可傳遞通過以產生影像之孔隙。在一些實施方案中,基板304可為透明基板,諸如玻璃、矽石、塑膠,或適合於收納可充當孔隙層350且可經處理以形成構成每一像素301之不同組件之半導體材料層的某一其他材料。視情況,如參考圖1A及圖1B所描述之控制矩陣可製造於孔隙層350上,且諸如薄膜開關、電晶體及電容器以及互連件(諸如資料互連件308)之不同組件可形成於孔隙層350上。用以製造此等組件之程序可為用於供顯示器中使用之主動矩陣陣列之製造的此項技術中所知之典型程序。 The systems and methods described herein can be used to form any type of microelectromechanical device, including dimensions having dimensions and procedures for forming semiconductor devices, such as those used to form patterns of semiconductor materials on a surface. Equivalent to any device. MEMS devices may include, but are not limited to, optical modulators, microphones, sensors, piezoresistors, piezoelectric crystals, devices for electromechanical actuation, filters, devices for signal transduction, and generally and based Any other type of component used with electronic devices of semiconductors. For purposes of illustration only, the systems and methods described herein will be discussed with reference to a MEMS shutter assembly for use in a display. 3A and 3B show a MEMS shutter assembly formed on a substrate. In particular, Figure 3A is an isometric view of a portion of the shutter assembly array 300, wherein each shutter assembly provides a pixel within an image of one of the displays. The shutter assembly array 300 includes four pixels 301 arranged in columns and rows, but a typical display will have thousands of pixels. Each pixel 301 is a semiconductor fabricated on the surface of the substrate 304 Pieces. In detail, each pixel 301 is a semiconductor device that includes an aperture 354 and a shutter assembly 302, both of which have been fabricated on the substrate 304. Pixel 301 includes components such as shutter assembly 302, actuator 303, aperture 354, and electrical interconnection components, such as the depicted data interconnect 308. The individual components of each pixel 301, such as actuator 303 or shutter assembly 302, include semiconductor components fabricated using the program flow of forming the components into components carried on the surface of aperture layer 350. The void layer 350 is also an assembly and is deposited and patterned onto the substrate 304. The aperture layer 350 provides aperture through which light can pass to create an image. In some embodiments, the substrate 304 can be a transparent substrate, such as glass, vermiculite, plastic, or some suitable for housing a layer of semiconductor material that can act as a void layer 350 and that can be processed to form different components that make up each pixel 301. One other material. Optionally, a control matrix as described with reference to Figures 1A and 1B can be fabricated on the aperture layer 350, and different components such as membrane switches, transistors and capacitors, and interconnects (such as the data interconnect 308) can be formed on On the pore layer 350. The program used to fabricate these components can be a typical procedure known in the art for use in the fabrication of active matrix arrays for use in displays.

孔隙層350可由與製造於彼孔隙層350上之主動矩陣程序相容的薄膜材料組成。孔隙層可具有孔,諸如可藉由蝕刻孔隙層350之部分直至基板304曝露為止而形成的孔隙355。用於製造諸如孔隙355之孔的程序可為用以在孔隙層350上製造主動矩陣之相同薄膜處理技術,且僅需要改變遮罩設計或像素佈局以適應孔隙孔之形成。 The void layer 350 can be comprised of a thin film material that is compatible with the active matrix process fabricated on the pore layer 350. The void layer can have pores, such as pores 355 that can be formed by etching portions of the void layer 350 until the substrate 304 is exposed. The procedure for fabricating holes such as apertures 355 can be the same thin film processing technique used to fabricate the active matrix on the void layer 350, and only the mask design or pixel layout needs to be changed to accommodate the formation of pores.

通常,孔隙層350係作為單一薄膜而沈積至基板304上。可由蒸鍍、濺鍍、化學氣相沈積或任何合適技術來實現沈積。孔隙層350可為任何合適半導體材料,諸如非晶或多晶矽(Si)、鍺(Ge)、砷化鎵(GaAs)材料,或可以具有超過500nm之膜而沈積的任何其他合適材料。 Typically, the void layer 350 is deposited onto the substrate 304 as a single film. Deposition can be accomplished by evaporation, sputtering, chemical vapor deposition, or any suitable technique. The void layer 350 can be any suitable semiconductor material, such as amorphous or polycrystalline germanium (Si), germanium (Ge), gallium arsenide (GaAs) materials, or any other suitable material that can be deposited with a film over 500 nm.

圖3A進一步描繪像素301為包括可相對於孔隙層350移動之機械 組件的MEMS器件。在一個程序中,使用可支援半導體材料之沈積的模具來形成像素301之組件,該等半導體材料可經圖案化及形成以產生像素301之個別組件。舉例而言,模具可用以產生將支援半導體材料(諸如非晶矽(aSi))之沈積的平線區。aSi可作為薄膜而放於平線區上。可將經沈積薄膜硬化,且可蝕刻、洗滌或以其他方式移除支撐彼薄膜之模具以將薄膜留在適當位置以充當快門302。快門302與孔隙層350之表面被隔開一距離。為此目的,錨定件311形成於孔隙350之表面上且自孔隙層350之表面延伸。側壁橫桿313連接於錨定件311與快門302之間以將快門302固持於適當位置且遠離孔隙層350之表面。側壁橫桿可為具有大於約4比1且可能大於16比1之縱橫比的可移動橫桿,以提供窄剖面及可藉由施加電動勢而移動之可撓性橫桿。錨定件311可附接至基板304以針對由錨定件311支撐之組件(諸如快門302)提供穩定且安全之附接。錨定件311可連接至基板304上之導電表面。導電表面可將錨定件311耦接成與可通過錨定件311將電信號施加至像素301之驅動器電路及其他元件進行電通信。 FIG. 3A further depicts that pixel 301 is a machine that includes movement relative to aperture layer 350. Component MEMS device. In one process, a module that supports deposition of a semiconductor material is used to form components of a pixel 301 that can be patterned and formed to produce individual components of pixel 301. For example, a mold can be used to create a flat line region that will support deposition of a semiconductor material, such as amorphous germanium (aSi). aSi can be placed on the flat line as a film. The deposited film can be hardened and the mold supporting the film can be etched, washed or otherwise removed to leave the film in place to act as the shutter 302. The shutter 302 is spaced apart from the surface of the aperture layer 350 by a distance. For this purpose, an anchor 311 is formed on the surface of the aperture 350 and extends from the surface of the aperture layer 350. A sidewall rail 313 is coupled between the anchor 311 and the shutter 302 to hold the shutter 302 in place and away from the surface of the aperture layer 350. The sidewall rails can be movable rails having an aspect ratio greater than about 4 to 1 and possibly greater than 16 to 1 to provide a narrow profile and a flexible crossbar that can be moved by the application of an electromotive force. The anchor 311 can be attached to the substrate 304 to provide a stable and secure attachment for components supported by the anchor 311, such as the shutter 302. The anchor 311 can be coupled to a conductive surface on the substrate 304. The electrically conductive surface can couple the anchor 311 in electrical communication with a driver circuit and other components that can apply an electrical signal to the pixel 301 via the anchor 311.

圖3A說明MEMS器件之一個實施方案,且此所說明之MEMS器件具有兩個組件層。第一層(孔隙層350)放於基板304上方,且提供包括孔隙355之半導體材料層。 FIG. 3A illustrates one embodiment of a MEMS device, and the MEMS device described herein has two component layers. A first layer (void layer 350) is placed over substrate 304 and provides a layer of semiconductor material including apertures 355.

第二層定位於孔隙層350上方,且重疊於該孔隙層之部分。此第二層包括快門302及致動器303,以及固持於適當位置中而與孔隙層350相隔一距離之其他組件。在一些實施方案中,藉由將第一材料層或一組材料層沈積於模具上且接著在彼層或彼等層上建置第二模具來形成第一層及第二層。可將材料沈積於彼第二模具上以形成第二組件層。藉由移除第一模具及第二模具,將兩個組件層脫模以將孔隙層350留下為緊接於基板層350上方之基板304以及快門302及致動器303。 The second layer is positioned above the void layer 350 and overlaps portions of the void layer. This second layer includes a shutter 302 and an actuator 303, as well as other components that are held in place and spaced apart from the aperture layer 350. In some embodiments, the first layer and the second layer are formed by depositing a first material layer or a set of material layers on a mold and then constructing a second mold on the other layer or layers. A material can be deposited on the second mold to form a second component layer. The two component layers are demolded by removing the first mold and the second mold to leave the void layer 350 as the substrate 304 and the shutter 302 and actuator 303 immediately above the substrate layer 350.

在一些實施方案中,第一層及第二層中之組件之外部表面具有鈍化塗層。鈍化塗層沈積至第一模具及/或第二模具上以形成該等組件層中之一者之外部表面。在脫模之後,第一組件層及第二組件層具有鈍化外部,且不需要鈍化程序。此可縮減鈍化材料在可移動組件(諸如致動器303)上方之沈積干擾彼等組件之操作的可能性。 In some embodiments, the outer surfaces of the components in the first layer and the second layer have a passivating coating. A passivating coating is deposited onto the first mold and/or the second mold to form an exterior surface of one of the component layers. After demolding, the first component layer and the second component layer have a passivated exterior and no passivation process is required. This can reduce the likelihood that deposition of the passivating material over the movable components, such as actuator 303, will interfere with the operation of their components.

圖3B以橫截面展示一個快門總成302。快門總成302包括:第一組件層361,其包括致動器303、彈簧313及快門302;及第二組件層363,其包括孔隙355。層361及363兩者連接至錨定件311。層361及363兩者具有覆蓋該層之外部表面之至少一部分的鈍化材料層。如上文所論述,層361及363可由一或多個半導體材料薄膜形成。層361包括由半導體材料薄膜形成且朝向基板304之表面延伸的臂371。臂371形成錨定件311之側壁之部分。層363具有由半導體材料薄膜形成且朝向基板304之表面延伸的臂373。臂373之薄膜重疊於及連接至臂371之薄膜,且形成錨定件311之側壁之部分。錨定件311之底壁接觸互連件308之導電表面。錨定件311將層361及363固持為遠離基板304之表面且呈重疊配置。 FIG. 3B shows a shutter assembly 302 in cross section. The shutter assembly 302 includes a first component layer 361 that includes an actuator 303, a spring 313, and a shutter 302, and a second component layer 363 that includes an aperture 355. Both layers 361 and 363 are coupled to anchor 311. Both layers 361 and 363 have a layer of passivation material covering at least a portion of the outer surface of the layer. As discussed above, layers 361 and 363 can be formed from one or more thin films of semiconductor material. Layer 361 includes an arm 371 formed from a thin film of semiconductor material and extending toward the surface of substrate 304. The arm 371 forms part of the side wall of the anchor 311. Layer 363 has an arm 373 formed of a thin film of semiconductor material and extending toward the surface of substrate 304. The film of arm 373 is overlaid and attached to the film of arm 371 and forms part of the sidewall of anchor 311. The bottom wall of the anchor 311 contacts the conductive surface of the interconnect 308. The anchor 311 holds the layers 361 and 363 away from the surface of the substrate 304 and is in an overlapping configuration.

為了形成像素301之組件,將抗蝕劑材料沈積於基板304之表面上以形成模具。該模具可用以澆鑄像素301之不同組件,且可提供像素301之每一組件的形狀或形狀之至少部分。可將鈍化材料層沈積於模具上方,且可沈積額外薄膜層以在鈍化層上建置層且在該層內形成組件。此等沈積之結果為建置於具有外部鈍化材料層之模具之頂部上的薄膜結構,通常為橫桿。 To form the components of the pixel 301, a resist material is deposited on the surface of the substrate 304 to form a mold. The mold can be used to cast different components of the pixel 301 and can provide at least a portion of the shape or shape of each component of the pixel 301. A layer of passivation material can be deposited over the mold, and an additional thin film layer can be deposited to build a layer on the passivation layer and form a component within the layer. The result of such deposition is a thin film structure, typically a crossbar, built on top of a mold having an outer layer of passivation material.

可將另一模具形成於此第一橫桿上方,且彼模具可允許形成包括像素301之孔隙355的另一橫桿。為此目的,可將一或多個材料層沈積於此另一模具上,且可運用鈍化材料層來覆蓋此等層。一旦經沈積層已將組件形成於模具上,就洗滌、蝕刻或以其他方式移除模具材料 以將該等組件留在適當位置而具有鈍化外部表面且附接至基板。 Another mold can be formed over the first crossbar, and the mold can allow for the formation of another crossbar that includes the aperture 355 of the pixel 301. For this purpose, one or more layers of material may be deposited on this other mold, and a layer of passivating material may be applied to cover the layers. Washing, etching, or otherwise removing mold material once the component has been formed on the mold by the deposited layer Leave the components in place with a passivated exterior surface and attached to the substrate.

圖4展示具有導電表面之基板的橫截面圖。圖4展示本文中所描述之類型之器件之一些實施方案的一個器件製造階段,該等器件包括(例如)具有基板之器件,該基板具有一導電表面且具有兩個薄膜橫桿,該等薄膜橫桿兩者與該基板隔開且由錨定件固持為遠離該基板。兩個橫桿可經配置使得一個橫桿重疊於另一橫桿。在一些實施方案中,錨定件具有由自兩個橫桿延伸之臂形成的側壁。該等臂可接合且重疊以形成提供錨定件之一個側壁的薄膜橫桿。詳言之,圖4展示基板350,其具有沈積於基板350上之金屬層352及沈積於金屬層352上之鈍化材料層354。在一個實施方案中,基板係由玻璃形成。玻璃基板可由顯示級玻璃、鹼石灰玻璃以及其他實例形成。在一些實施方案中,玻璃基板具有大於或等於約0.2毫米(mm)之厚度,以提供所要量之剛度。在替代性實施方案中,代替作為剛性基板之材料的玻璃或除了該玻璃以外,亦可使用諸如矽、塑膠或金屬之其他材料。在一些實施方案中,玻璃基板包括諸如SiO2、SiNx及/或各種金屬之塗層。基板亦可由諸如AlOx、YOx、BNx、SiCx、AlNx或GaNx之陶瓷形成。在其他實施方案中,基板係由諸如GaAs、GaP或GaN之合成半導體形成。在另外實施方案中,基板為(例如)厚度大於或等於約0.1mm或0.2mm之Si晶圓。可將諸如SiO2、SiNx及/或一些材料之一或多個塗層施加至Si晶圓。在另外實施方案中,可使用由諸如不鏽鋼、Al、Ti、Cr、Cu、W、Ni、V、Mo、Co、Ta、Fe、Pt、Au、Zn、Sn之各種金屬及/或此等金屬之合金(例如,AlCu、AlSi、AlCu、AlTi、AlSc、AlNd、AlCr、AlCo、AlTiSi、AlCuSi、AlSc、AlY、CrCu、CrMo、CrRu、CrTa、CrTi、CrV、CoNi、NiV、AlFe、NiFe、WSi,及WTi)形成的金屬基板。在一些實施方案中,可層壓本文中所描述之各種基板。]金屬層352具有被填充有來自鈍化層354之材料的凹部356。鈍 化層354同樣具有被填充有導電材料358之凹部。導電材料358形成接觸金屬層352之墊。在一個實施方案中,導電材料358為氧化銦錫(ITO),或用於提供與金屬層352之電連接且在鈍化層354內提供導電表面的某一其他合適材料。在其他實施方案中,導電材料358可為氧化鋅(ZnOx)、鈦(Ti)、氮化鈦(TiNx)、氮化鉬(MoNx)、鉭及氮化鉭(Ta、TaNx),及擴散障壁及鋁(Al)之多層。擴散障壁可為Ti、Mo、TiNx、MoNx、Ta及TaNx。金屬層352可為金屬材料層,諸如鋁(Al)、銅(Cu)、鈷(Co)、鉭(Ta)、鈦(Ti)、鉬(Mo)、金(Au)、銀(Ag)、此等材料之多層、此等材料之組合及此等材料之合金,或足夠良好地傳導電信號以將電信號提供至像素301之組件的某一其他材料。金屬層352可為單一材料層或材料複合物,包括通常經提供以控制擴散且改良金屬層352之導電性的材料。 Figure 4 shows a cross-sectional view of a substrate having a conductive surface. 4 shows a device fabrication stage of some embodiments of devices of the type described herein, including, for example, a device having a substrate having a conductive surface and having two film crossbars, the films Both of the crossbars are spaced from the substrate and are held away from the substrate by anchors. The two crossbars can be configured such that one crossbar overlaps the other crossbar. In some embodiments, the anchor has a side wall formed by arms extending from the two crossbars. The arms can be joined and overlap to form a film crossbar that provides one side wall of the anchor. In detail, FIG. 4 shows a substrate 350 having a metal layer 352 deposited on the substrate 350 and a passivation material layer 354 deposited on the metal layer 352. In one embodiment, the substrate is formed from glass. The glass substrate can be formed from display grade glass, soda lime glass, and other examples. In some embodiments, the glass substrate has a thickness greater than or equal to about 0.2 millimeters (mm) to provide the desired amount of stiffness. In an alternative embodiment, instead of or in addition to the glass as the material of the rigid substrate, other materials such as tantalum, plastic or metal may be used. In some embodiments, the glass substrate comprises a coating such as SiO 2 , SiNx, and/or various metals. The substrate may also be formed of a ceramic such as AlOx, YOx, BNx, SiCx, AlNx or GaNx. In other embodiments, the substrate is formed from a synthetic semiconductor such as GaAs, GaP, or GaN. In other embodiments, the substrate is, for example, a Si wafer having a thickness greater than or equal to about 0.1 mm or 0.2 mm. One or more coatings such as SiO 2 , SiNx, and/or some materials may be applied to the Si wafer. In other embodiments, various metals such as stainless steel, Al, Ti, Cr, Cu, W, Ni, V, Mo, Co, Ta, Fe, Pt, Au, Zn, Sn, and/or such metals may be used. Alloys (for example, AlCu, AlSi, AlCu, AlTi, AlSc, AlNd, AlCr, AlCo, AlTiSi, AlCuSi, AlSc, AlY, CrCu, CrMo, CrRu, CrTa, CrTi, CrV, CoNi, NiV, AlFe, NiFe, WSi And a metal substrate formed by WTi). In some embodiments, the various substrates described herein can be laminated. The metal layer 352 has a recess 356 that is filled with a material from the passivation layer 354. Passivation layer 354 also has a recess that is filled with conductive material 358. Conductive material 358 forms a pad that contacts metal layer 352. In one embodiment, the electrically conductive material 358 is indium tin oxide (ITO) or some other suitable material for providing electrical connection to the metal layer 352 and providing a conductive surface within the passivation layer 354. In other embodiments, the conductive material 358 can be zinc oxide (ZnOx), titanium (Ti), titanium nitride (TiNx), molybdenum nitride (MoNx), tantalum and tantalum nitride (Ta, TaNx), and diffusion barriers. And a multilayer of aluminum (Al). The diffusion barriers may be Ti, Mo, TiNx, MoNx, Ta, and TaNx. The metal layer 352 may be a metal material layer such as aluminum (Al), copper (Cu), cobalt (Co), tantalum (Ta), titanium (Ti), molybdenum (Mo), gold (Au), silver (Ag), Multiple layers of such materials, combinations of such materials, and alloys of such materials, or some other material that conducts electrical signals sufficiently well to provide electrical signals to components of pixel 301. Metal layer 352 can be a single material layer or material composite, including materials that are typically provided to control diffusion and improve the electrical conductivity of metal layer 352.

如上文所提到,基板350可為玻璃、塑膠、含矽石材料、單晶或非晶矽(aSi)、諸如石英或砷化鎵(GaAs)之其他單晶材料,或可收納經沈積材料薄膜之任何其他合適基板材料。在一些實施方案中,基板350係由諸如光學透射形式之氧化鋁(Al2O3)、氧化矽(SiO2)、氮化矽(Si3N4)或其他合適材料的透明材料形成。鈍化層354可為任何合適鈍化材料。通常,鈍化層為氮化矽(SiNx)。SiNx可在金屬層352之表面上形成氮化物層,且可在金屬之表面上充當保護層。在一些實施方案中,鈍化層354亦可包括SiO2、SiOxNy及旋塗式玻璃(SOG)。視情況,可使用聚合物塗層。在一些實施方案中,聚合物塗層可包括高溫聚合物,諸如聚醯亞胺、苯并環丁烯(BCB),及諸如SiNx之聚合物及介電薄膜之多層。進一步視情況,在一些實施方案中,此介電層可形成於鈍化層上以提供對諸如氧灰化之灰化的抵抗。在一些實施方案中,此介電層可包括SiNx、SiO2或SiONx。鈍化層354通常藉由將MEMS器件之組件與可存在於MEMS器件正操作之環境中的電及化學 條件隔離來提供電穩定性。可根據此項技術中所知之技術來選擇金屬層352及鈍化層354之厚度,且可在不脫離本發明之範疇的情況下使用任何合適厚度。金屬層352提供與導電材料358接觸之導電表面。金屬層之厚度可通常為1000Å至1um,且在一些實例中可為300Å至3um。導電材料358可為通常為摻錫氧化銦之氧化銦錫(ITO)材料,其為提供透明電導體之高摻半導體材料。 As mentioned above, the substrate 350 can be glass, plastic, vermiculite-containing material, single crystal or amorphous germanium (aSi), other single crystal materials such as quartz or gallium arsenide (GaAs), or can contain deposited materials. Any other suitable substrate material for the film. In some embodiments, substrate 350 is formed from a transparent material such as alumina (Al 2 O 3 ), yttrium oxide (SiO 2 ), tantalum nitride (Si 3 N 4 ), or other suitable material, in optically transmissive form. Passivation layer 354 can be any suitable passivation material. Typically, the passivation layer is tantalum nitride (SiNx). The SiNx may form a nitride layer on the surface of the metal layer 352 and may serve as a protective layer on the surface of the metal. In some embodiments, passivation layer 354 can also include SiO 2 , SiOxNy, and spin on glass (SOG). Polymer coatings can be used as appropriate. In some embodiments, the polymeric coating can include high temperature polymers such as polyimine, benzocyclobutene (BCB), and multilayers of polymers such as SiNx and dielectric films. Further optionally, in some embodiments, this dielectric layer can be formed on the passivation layer to provide resistance to ashing such as oxygen ashing. In some embodiments, the dielectric layer can comprise SiNx, SiO 2 or SiONx. Passivation layer 354 typically provides electrical stability by isolating components of the MEMS device from electrical and chemical conditions that may be present in the environment in which the MEMS device is operating. The thickness of metal layer 352 and passivation layer 354 can be selected according to techniques known in the art, and any suitable thickness can be used without departing from the scope of the invention. Metal layer 352 provides a conductive surface that is in contact with conductive material 358. The thickness of the metal layer can be typically from 1000 Å to 1 um, and in some instances from 300 Å to 3 um. Conductive material 358 can be an indium tin oxide (ITO) material, typically tin-doped indium oxide, which is a highly doped semiconductor material that provides a transparent electrical conductor.

圖5展示具有光阻層的圖4之基板。詳言之,圖5展示覆蓋基板350上之鈍化層355之部分的光阻層362。光阻362可旋塗於基板350上,且經圖案化以提供用於第一組件層之特徵的模具。光阻層362包括將導電材料358曝露之通孔364。另外,光阻層362包括將鈍化層355曝露之通孔366。通孔366及364允許將材料沈積至與基板350連接之層上。此提供用於可連接至基板350的諸如錨定件之組件的部位。此等錨定件可用以支撐將懸置於基板350之表面上方且將含有器件之其他組件(諸如快門、致動器及孔隙)的橫桿。在一些實施方案中,選擇光阻層362之厚度以界定基板350與將在懸置於基板350之表面上方之橫桿中的組件(諸如快門及致動器)之間的距離。為此目的,通孔366及364可被視為形成錨定件之模具,該等錨定件可連接至基板350且自基板350延伸且將比如快門302之組件固持為遠離基板350。 Figure 5 shows the substrate of Figure 4 with a photoresist layer. In particular, FIG. 5 shows a photoresist layer 362 overlying portions of passivation layer 355 on substrate 350. The photoresist 362 can be spin coated onto the substrate 350 and patterned to provide a mold for the features of the first component layer. Photoresist layer 362 includes vias 364 that expose conductive material 358. Additionally, photoresist layer 362 includes vias 366 that expose passivation layer 355. Vias 366 and 364 allow material to be deposited onto the layer that is connected to substrate 350. This provides a location for an assembly such as an anchor that can be attached to the substrate 350. These anchors can be used to support a crossbar that will overlie the surface of the substrate 350 and will contain other components of the device, such as shutters, actuators, and apertures. In some embodiments, the thickness of the photoresist layer 362 is selected to define the distance between the substrate 350 and components (such as shutters and actuators) that will be suspended in the crossbar above the surface of the substrate 350. To this end, the through holes 366 and 364 can be considered as molds forming anchors that can be coupled to and extend from the substrate 350 and hold components such as the shutter 302 away from the substrate 350.

圖6展示形成於圖5之光阻上的模具層。詳言之,圖6展示沈積於光阻層362上之模具層370。模具層370可由旋塗於基板上方、被硬化且被圖案化之光阻材料形成。圖案支援可用於MEMS器件中之組件的形成。圖案部分地起因於模具層370內形成之通孔。在圖6中,通孔包括將鈍化層355曝露之通孔372、將光阻層362曝露之通孔374,及將導電材料358曝露之通孔378。通孔372及374以及模具層370之上部表面提供由層362中之通孔366及364形成的模具之特徵,該等特徵將塑形像素301之組件(比如快門302)且可附接至錨定件(諸如圖3A所展示之 錨定件311)。 Figure 6 shows the mold layer formed on the photoresist of Figure 5. In detail, FIG. 6 shows a mold layer 370 deposited on the photoresist layer 362. Mold layer 370 can be formed from a photoresist material that is spin coated over the substrate, cured and patterned. Pattern support can be used to form components in MEMS devices. The pattern is partially caused by the through holes formed in the mold layer 370. In FIG. 6, the via includes a via 372 exposing the passivation layer 355, a via 374 exposing the photoresist layer 362, and a via 378 exposing the conductive material 358. The vias 372 and 374 and the upper surface of the mold layer 370 provide features of the mold formed by the vias 366 and 364 in the layer 362 that will shape the components of the pixel 301 (such as the shutter 302) and can be attached to the anchor Fixings (such as shown in Figure 3A) Anchor 311).

圖7展示模具上方之鈍化層。詳言之,圖7展示形成於模具層370上方之鈍化層382。在一個實施方案中,鈍化層382為在模具層370上方延伸且抵靠通孔372、378及374之側壁的保形SiNx層。在一些其他實施方案中,鈍化層可為SiO2、氮氧化矽(SiNxOy),及AlOx。在一些實施方案中,鈍化層包括SiOxNy,且可調整SiOxNy之沈積程序及組成以達成不同範圍之機械應力。鈍化層382通常為可充當MEMS器件之組件之外部表面的電絕緣體。為了將鈍化層382配置為用於MEMS器件中之組件(諸如像素301)的外部表面,程序將鈍化層382沈積為直接地與模具層370接觸之層。由於將在脫模程序期間自基板350移除模具層370,故鈍化層382將曝露於MEMS器件之環境且將為用於MEMS器件之外部表面。通常,程序將沈積額外材料,該等額外材料可形成構成MEMS器件之組件(諸如圖3所描繪之快門302及孔隙層304)的薄膜。 Figure 7 shows the passivation layer over the mold. In detail, FIG. 7 shows a passivation layer 382 formed over mold layer 370. In one embodiment, passivation layer 382 is a conformal SiNx layer that extends over mold layer 370 and abuts sidewalls of vias 372, 378, and 374. In some other embodiments, the passivation layer can be SiO 2 , lanthanum oxynitride (SiNxOy), and AlOx. In some embodiments, the passivation layer comprises SiOxNy and the deposition procedure and composition of SiOxNy can be adjusted to achieve different ranges of mechanical stress. Passivation layer 382 is typically an electrical insulator that can serve as an exterior surface of a component of a MEMS device. To configure passivation layer 382 as an external surface for components in a MEMS device, such as pixel 301, the process deposits passivation layer 382 as a layer that is in direct contact with mold layer 370. Since the mold layer 370 will be removed from the substrate 350 during the demolding process, the passivation layer 382 will be exposed to the environment of the MEMS device and will be used for the exterior surface of the MEMS device. Typically, the program will deposit additional materials that can form a film that forms a component of the MEMS device, such as shutter 302 and aperture layer 304 depicted in FIG.

圖8展示沈積於模具上方之額外層。額外層384及386可為半導體材料薄膜,諸如aSi、鈦(Ti)、鋁(Al),或適合於形成MEMS器件之組件的某一其他材料。在一個實施方案中,層384為經沈積為鈍化層382上方之保形層的aSi層。可視情況烘烤aSi層384或以其他方式將aSi層384硬化以採取模具370之形狀,且藉此採取像素301中之組件的形狀。在一個實施方案中,層386為Ti之保形沈積。Ti層386可為搭配光學組件(比如阻擋光行進經過孔隙354之快門)而使用之不透明層。aSi層384及Ti層386兩者可為能夠在形成於模具370上方之MEMS組件內攜載電信號的導電層。在層384及386形成用於阻擋光之快門之部分的一些實施方案中,該等層中之一者或兩者可不透明且能夠阻擋光。 Figure 8 shows an additional layer deposited over the mold. The additional layers 384 and 386 can be thin films of semiconductor material such as aSi, titanium (Ti), aluminum (Al), or some other material suitable for forming components of MEMS devices. In one embodiment, layer 384 is an aSi layer deposited as a conformal layer over passivation layer 382. The aSi layer 384 may be baked or otherwise cured to take the shape of the mold 370, and thereby take the shape of the components in the pixel 301. In one embodiment, layer 386 is a conformal deposition of Ti. The Ti layer 386 can be an opaque layer for use with optical components such as shutters that block light traveling through the apertures 354. Both the aSi layer 384 and the Ti layer 386 can be a conductive layer capable of carrying electrical signals within the MEMS component formed over the mold 370. In some embodiments in which layers 384 and 386 form part of a shutter for blocking light, one or both of the layers may be opaque and capable of blocking light.

圖9描繪經沈積層上的抗蝕劑之圖案。詳言之,圖9描繪經沈積為抗蝕劑390之圖案的抗蝕劑材料。抗蝕劑390填充模具370內之通 孔,惟通孔378除外,通孔378係由抗蝕劑材料392半填充,抗蝕劑材料392覆蓋通孔378之一個側壁以及底壁之部分。在一個實施方案中,經半填充通孔378係藉由以下步驟而形成:運用抗蝕劑390來完全地填充通孔378,且使用經圖案化遮罩來以光微影方式選擇抗蝕劑390之半部以供藉由溶劑或各向同性選擇性乾式蝕刻而移除。對於藉由曝露於光而使得可溶之正型抗蝕劑,可應用顯影劑,諸如但不限於KOH或四甲基銨氫氧化物(TMAH)。一旦移除選定抗蝕劑390,就如所說明而將通孔378半填充。抗蝕劑材料390可為習知抗蝕劑材料,且可為諸如已被硬烘烤之聚醯胺的抗蝕劑材料。在一個實施方案中,用以移除經沈積層386、384及382之部分的蝕刻程序可為使用氯基來蝕刻鈦及非晶矽之各向異性乾式蝕刻程序,且可包括用於移除SiNx鈍化層的基於氟化硫(SF6)或氟化碳(CF4)之乾式蝕刻。在任何狀況下,可出於蝕刻掉沈積於模具層370上以及通孔372、374及378內的薄膜之部分的目的而使用蝕刻程序。 Figure 9 depicts a pattern of resist on the deposited layer. In particular, Figure 9 depicts a resist material deposited as a pattern of resist 390. Resist 390 fills the vias in mold 370 except for vias 378, which are half filled with resist material 392, which covers one sidewall of via 378 and portions of the bottom wall. In one embodiment, the semi-filled vias 378 are formed by the use of a resist 390 to completely fill the vias 378 and using a patterned mask to select the resist in a photolithographic manner. Half of 390 is removed by solvent or isotropic selective dry etching. For a positive resist that is soluble by exposure to light, a developer such as, but not limited to, KOH or tetramethylammonium hydroxide (TMAH) can be applied. Once the selected resist 390 is removed, the vias 378 are half filled as explained. The resist material 390 may be a conventional resist material, and may be a resist material such as polyamine which has been hard baked. In one embodiment, the etch process to remove portions of deposited layers 386, 384, and 382 can be an anisotropic dry etch process that etches titanium and amorphous germanium using a chlorine group, and can include The SiNx passivation layer is dry etched based on sulfur fluoride (SF 6 ) or carbon fluoride (CF 4 ). In any event, an etching process can be used for the purpose of etching away portions of the film deposited on mold layer 370 and through holes 372, 374, and 378.

圖10描繪基板之經蝕刻表面。詳言之,圖10說明已在未受到抗蝕劑材料390保護之彼等部位處自模具層370移除層386、384及382。已蝕刻通孔378之底壁以移除層386、384及382之曝露部分且將導電表面358曝露。此程序基本上將薄膜層382、384及386切割為正確大小及形狀,使得將薄膜塑形為其應有形狀以形成像素301中之組件的橫桿。 Figure 10 depicts the etched surface of the substrate. In particular, FIG. 10 illustrates that layers 386, 384, and 382 have been removed from mold layer 370 at portions that are not protected by resist material 390. The bottom wall of via 378 has been etched to remove exposed portions of layers 386, 384, and 382 and expose conductive surface 358. This procedure essentially cuts the film layers 382, 384, and 386 to the correct size and shape such that the film is shaped into a crossbar that should have the shape to form the components in the pixel 301.

圖11描繪抗蝕劑390及392被移除之基板。圖11說明形成於層370及362上方之組件383及385,其為MEMS器件之錨定件的組件。組件383及385與基板350之表面被隔開等於金屬層352及鈍化層354之厚度的距離。圖12至圖15展示用於將鈍化層沈積於藉由圖1至圖11所展示之早先程序而形成之組件上方的程序。通常,圖12至圖15說明沈積鈍化層且接著蝕刻彼層以具有用於第二橫桿(諸如圖3B之橫桿363)之正 確形狀的程序。 Figure 11 depicts the substrate with resists 390 and 392 removed. Figure 11 illustrates components 383 and 385 formed over layers 370 and 362 which are components of the anchor of the MEMS device. The components 383 and 385 are spaced from the surface of the substrate 350 by a distance equal to the thickness of the metal layer 352 and the passivation layer 354. 12 through 15 show a procedure for depositing a passivation layer over a component formed by the earlier procedure shown in Figures 1-11. In general, Figures 12 through 15 illustrate depositing a passivation layer and then etching the other layer to have a positive for a second crossbar (such as crossbar 363 of Figure 3B). The shape of the program.

圖12描繪經沈積有第二鈍化材料層之基板。詳言之,圖12描繪經沈積為保形鈍化材料層之第二鈍化層394。鈍化層394覆蓋模具層370之曝露表面、薄膜層386之表面,且延伸至通孔372、378及374中以提供塗佈此等通孔之側壁及底壁的保形層。一旦運用第二鈍化層394進行塗佈,程序就可應用抗蝕劑。 Figure 12 depicts a substrate deposited with a second layer of passivation material. In particular, Figure 12 depicts a second passivation layer 394 deposited as a conformal passivation material layer. A passivation layer 394 covers the exposed surface of the mold layer 370, the surface of the film layer 386, and extends into the vias 372, 378, and 374 to provide a conformal layer that coats the sidewalls and bottom walls of the vias. Once the second passivation layer 394 is applied, the process can apply a resist.

圖13描繪抗蝕劑層396,其沈積於選擇部位處以保護器件之某些特徵(諸如形成於模具層370內之通孔372、378及374之某些部分)上的第二鈍化層394。抗蝕劑層396可抵抗蝕刻程序以保護由抗蝕劑層396覆蓋之材料。可自基板350移除曝露於蝕刻程序之材料。選擇抗蝕劑層396之圖案以允許蝕刻程序自模具層370移除鈍化層382之部分,且藉此塑形鈍化層382以提供具有鈍化外部表面的像素301之組件。 FIG. 13 depicts a resist layer 396 deposited at a selected location to protect certain features of the device, such as a second passivation layer 394 formed over portions of vias 372, 378, and 374 within mold layer 370. The resist layer 396 is resistant to etching procedures to protect the material covered by the resist layer 396. Material exposed to the etching process can be removed from the substrate 350. The pattern of resist layer 396 is selected to allow the etch process to remove portions of passivation layer 382 from mold layer 370, and thereby passivation layer 382 is shaped to provide a component of pixel 301 having a passivated outer surface.

圖14展示藉由蝕刻程序而移除的鈍化層394之部分。圖14說明已藉由蝕刻程序而移除鈍化層394之曝露部分。在一個實施方案中,蝕刻程序可為各向異性蝕刻程序,諸如可移除氮化矽(SiNx)鈍化層之CF4電漿蝕刻程序。圖14說明已自未由抗蝕劑396覆蓋之所有區域移除鈍化層394。圖15說明自基板剝離之抗蝕劑396。 Figure 14 shows a portion of passivation layer 394 that is removed by an etch process. Figure 14 illustrates the exposed portion of the passivation layer 394 that has been removed by an etching process. In one embodiment, the etching process may be an anisotropic etch process, such as a removable silicon nitride (SiNx) CF 4 plasma etching of the passivation layer program. FIG. 14 illustrates that the passivation layer 394 has been removed from all regions not covered by the resist 396. Figure 15 illustrates resist 396 stripped from the substrate.

圖15展示MEMS器件之錨定件組件383及385,其中鈍化層(層394)經沈積為外部保形塗層。組件383及385亦具有安置於組件383及385與層370之間的鈍化材料層382。 Figure 15 shows anchor assemblies 383 and 385 of a MEMS device in which a passivation layer (layer 394) is deposited as an outer conformal coating. Components 383 and 385 also have a passivation material layer 382 disposed between components 383 and 385 and layer 370.

圖16描繪施加至基板之光阻層。詳言之,圖16描繪橫越基板之表面而沈積的光阻層400,其具有可允許經隨後沈積之材料層形成MEMS器件之組件之元件的圖案。 Figure 16 depicts a photoresist layer applied to a substrate. In particular, Figure 16 depicts a photoresist layer 400 deposited across the surface of the substrate having a pattern that allows elements of the subsequently deposited material layer to form components of the MEMS device.

圖17描繪在蝕刻程序之後的基板。詳言之,圖17描繪為各向同性乾式蝕刻程序之蝕刻程序的效應,該各向同性乾式蝕刻程序可移除諸如氮化矽(SiNx)鈍化層394之鈍化層。詳言之,圖17展示已蝕刻通 孔378以自通孔378之側壁以及底壁之部分移除鈍化層394且將導電材料358曝露。亦已蝕刻掉SiNx材料之其他區段,從而留下早先由第二鈍化層394覆蓋之層386且將其曝露。 Figure 17 depicts the substrate after the etching process. In particular, Figure 17 depicts the effect of an etch process for an isotropic dry etch process that removes a passivation layer such as a tantalum nitride (SiNx) passivation layer 394. In detail, Figure 17 shows the etched pass The hole 378 removes the passivation layer 394 from the sidewalls of the via 378 and portions of the bottom wall and exposes the conductive material 358. Other sections of the SiNx material have also been etched away leaving the layer 386 previously covered by the second passivation layer 394 and exposed.

圖18描繪用於形成MEMS器件之組件的模具層。詳言之,圖18描繪已以一圖案橫越光阻400之表面而沈積的模具層402。模具層402可提供將允許一組經隨後沈積之薄膜材料具有一形狀的結構,該形狀適合於形成懸置於基板350上方之橫桿且具有MEMS器件之組件,諸如圖3A所說明之孔隙354。 Figure 18 depicts a mold layer used to form an assembly of a MEMS device. In particular, FIG. 18 depicts a mold layer 402 that has been deposited across a surface of photoresist 400 in a pattern. Mold layer 402 can provide a structure that will allow a set of subsequently deposited film materials to have a shape suitable for forming a crossbar suspended above substrate 350 and having components of a MEMS device, such as aperture 354 illustrated in Figure 3A. .

圖19描繪出於提供隔片組件之目的的光阻材料之沈積。詳言之,圖19描繪隔片408之沈積,隔片408為位於某些模具區段402之頂部上的光阻材料之部分。隔片408可向所形成之通孔結構372提供額外高度。在一個實施方案中,MEMS器件被置放為與第二基板接觸,且隔片408可接觸第二基板,且提供機械支撐之部分,且彼情形使第二基板與第一基板350保持分離。 Figure 19 depicts the deposition of a photoresist material for the purpose of providing a spacer assembly. In particular, Figure 19 depicts the deposition of a spacer 408 that is part of the photoresist material on top of certain mold segments 402. The spacer 408 can provide an additional height to the formed via structure 372. In one embodiment, the MEMS device is placed in contact with the second substrate, and the spacer 408 can contact the second substrate and provide a portion of the mechanical support, and in some cases keep the second substrate separate from the first substrate 350.

圖20描繪模具及隔片上方的若干半導體材料層之沈積。詳言之,圖20描繪若干半導體材料層(通常為aSi層,以及諸如Ti金屬材料之金屬層)及鈍化層(通常為氮化矽層(SiNx))之沈積。該等層被描繪為一者位於另一者之頂部上,且在圖20中被展示為元件410、412及414。所描繪之層為一組保形層,此在於該等層遵循模具402及隔片408之圖案且在通孔378之底壁及側壁上提供保形沈積。層410可為aSi且導電。彼導電層410沈積於通孔378之底部上且與導電表面358接觸。此允許形成於通孔378內之錨定件430與MEMS器件之互連層進行電接觸。通孔378具有側壁379,側壁379具有來自第一橫桿之臂391,臂391抵靠自組件之第二橫桿延伸的臂393而堆疊且與臂393重疊。兩個臂391及393各自係由三個半導體材料薄膜層形成(如由用於參考編號391及393之參考線之末端處的括弧所展示)。臂391及393係以重疊 配置而接合以形成錨定件430之側壁379。臂391包括沿著側壁379自基板350延伸且覆蓋用以形成組件(諸如圖3A之孔隙354)之第二橫桿的模具層400之部分的導電層410。導電層410亦與導電層384接觸。導電層384沿著側壁379自基板350延伸,且覆蓋用以形成組件(諸如圖3A之快門302)之第一橫桿的模具層370之部分。 Figure 20 depicts the deposition of several layers of semiconductor material over the mold and spacer. In particular, Figure 20 depicts the deposition of several layers of semiconductor material (typically an aSi layer, and a metal layer such as a Ti metal material) and a passivation layer (typically a tantalum nitride layer (SiNx)). The layers are depicted as being on top of one another and shown as elements 410, 412, and 414 in FIG. The layer depicted is a set of conformal layers in that the layers follow the pattern of mold 402 and spacer 408 and provide conformal deposition on the bottom and side walls of via 378. Layer 410 can be aSi and be electrically conductive. A conductive layer 410 is deposited on the bottom of the via 378 and in contact with the conductive surface 358. This allows the anchor 430 formed within the via 378 to make electrical contact with the interconnect layer of the MEMS device. The through hole 378 has a side wall 379 having an arm 391 from a first crossbar that is stacked against the arm 393 extending from the second crossbar of the assembly and overlaps the arm 393. The two arms 391 and 393 are each formed of three thin film layers of semiconductor material (as shown by the brackets at the ends of the reference lines for reference numbers 391 and 393). Arms 391 and 393 are overlapped The engagement is configured to form a sidewall 379 of the anchor 430. The arm 391 includes a conductive layer 410 extending from the substrate 350 along the sidewall 379 and covering a portion of the mold layer 400 used to form a second crossbar of an assembly, such as the aperture 354 of FIG. 3A. Conductive layer 410 is also in contact with conductive layer 384. Conductive layer 384 extends from substrate 350 along sidewall 379 and overlies portions of mold layer 370 that are used to form a first crossbar of a component, such as shutter 302 of Figure 3A.

圖21描繪沈積於基板上之抗蝕劑材料418。抗蝕劑材料418係以包括若干通孔420之圖案而沈積。通孔420將經沈積層414、412及410之部分曝露。 Figure 21 depicts a resist material 418 deposited on a substrate. Resist material 418 is deposited in a pattern that includes a plurality of vias 420. The via 420 exposes portions of the deposited layers 414, 412, and 410.

圖22描繪基板之經蝕刻表面。詳言之,圖22描繪已藉由蝕刻程序而自基板移除材料層410、412及414之曝露部分。因而,此等層410、412及414之曝露部分以及通孔420中之彼等層的曝露部分被移除且底層400被曝露。 Figure 22 depicts the etched surface of the substrate. In particular, Figure 22 depicts the exposed portions of material layers 410, 412, and 414 that have been removed from the substrate by an etching process. Thus, the exposed portions of the layers 410, 412, and 414 and the exposed portions of their layers in the vias 420 are removed and the underlayer 400 is exposed.

圖23描繪抗蝕劑被移除之基板350。詳言之,圖23描繪被形成為具有MEMS組件之兩個薄膜橫桿415及417的MEMS器件之組件,諸如快門及孔隙。薄膜橫桿415及417基本上平行於基板350之表面而延伸。薄膜橫桿415及417兩者連接至基板350,但與基板350分離,使得將薄膜橫桿415及417懸置為遠離基板350之表面。薄膜橫桿415及417亦彼此被分離某一距離,且在繪示中,橫桿415懸置於橫桿417上方。在薄膜組件之間的是用以形成薄膜層之形狀及圖案且因此形成MEMS器件之組件的光阻層及模具材料層。 Figure 23 depicts a substrate 350 with a resist removed. In particular, Figure 23 depicts components of a MEMS device, such as a shutter and aperture, formed as having two film rails 415 and 417 of a MEMS component. The film rails 415 and 417 extend substantially parallel to the surface of the substrate 350. Both of the film rails 415 and 417 are coupled to the substrate 350, but are separated from the substrate 350 such that the film rails 415 and 417 are suspended away from the surface of the substrate 350. The film rails 415 and 417 are also separated from one another by a distance, and in the illustration, the rail 415 is suspended above the rail 417. Between the film modules is a layer of photoresist and mold material used to form the shape and pattern of the film layer and thus form the components of the MEMS device.

圖24展示構成模具之光阻材料被剝離掉的MEMS器件,該等器件係圍繞該模具而形成。圖24描繪MEMS器件包括第一薄膜橫桿417且接著包括第二薄膜橫桿415。該等橫桿配置於基板350之間且與基板350被隔開一距離。存在具有與導電表面358接觸的層384之部分(在一些實施方案中為導電層)的錨定件430。兩個橫桿415及417附接至錨定件430,且其經固持為遠離基板350。在一些實施方案中,錨定件430 可將橫桿415及417連接至導電表面358。 Figure 24 shows a MEMS device in which the photoresist material constituting the mold is peeled off, the devices being formed around the mold. 24 depicts a MEMS device including a first film rail 417 and then a second film rail 415. The crossbars are disposed between the substrates 350 and spaced apart from the substrate 350 by a distance. There is an anchor 430 having a portion (in some embodiments a conductive layer) of layer 384 that is in contact with conductive surface 358. Two rails 415 and 417 are attached to the anchor 430 and are held away from the substrate 350. In some embodiments, anchor 430 Crossbars 415 and 417 can be coupled to conductive surface 358.

上文所描述之材料可藉由濺鍍、化學氣相沈積或任何其他合適技術而沈積,且可橫越抗蝕劑材料之整個表面而延伸或在彼表面之部分上方延伸,且該材料如何被沈積將取決於應用、圖案,及所產生之特徵。如上文所提到,基板上之沈積或任何材料可藉由以下各者而達成:濺鍍、化學氣相沈積(CVD)、電沈積、磊晶、熱氧化、物理反應、物理氣相沈積(PVD)、原子層沈積、濺鍍、澆鑄,或以化學方式或以物理方式將材料移動至基板上之任何其他技術。沈積可或可不保形,此取決於程序操作之應用及目標。可使經沈積材料鈍化以防止諸如表面之間的靜摩擦之問題。鈍化可藉由氟化、矽烷化、氫化或任何合適程序而進行。通常,經沈積材料為厚度為介於幾奈米至約100微米之間的薄膜。圖案模具之沈積可藉由任何合適方法而進行。在一些實施方案中,模具可為所形成之硬遮罩或合適材料,諸如藉由濺鍍於經退火抗蝕劑之表面上而沈積的鉬(Mo)層。圖案化可經由任何合適程序(諸如化學洗滌或乾式蝕刻)或任何其他合適技術而進行。蝕刻程序可包括濕式或乾式蝕刻程序。濕式蝕刻程序可包括使用溶劑(諸如氫氧化鉀(KOH))以溶解自基板移除之材料的任何程序。乾式蝕刻可包括使用反應性離子或氣相蝕刻進行濺鍍或溶解。濕式蝕刻程序及乾式蝕刻程序兩者可為各向異性的及/或各向同性的。 The materials described above may be deposited by sputtering, chemical vapor deposition, or any other suitable technique, and may extend across the entire surface of the resist material or over portions of the surface, and how the material The deposition will depend on the application, the pattern, and the features produced. As mentioned above, deposition or any material on the substrate can be achieved by sputtering, chemical vapor deposition (CVD), electrodeposition, epitaxy, thermal oxidation, physical reaction, physical vapor deposition ( PVD), atomic layer deposition, sputtering, casting, or any other technique that chemically or physically moves material onto a substrate. Deposition may or may not be conformal, depending on the application and objectives of the program operation. The deposited material can be passivated to prevent problems such as static friction between the surfaces. Passivation can be carried out by fluorination, oximation, hydrogenation or any suitable procedure. Typically, the deposited material is a film having a thickness between a few nanometers and about 100 microns. The deposition of the pattern mold can be carried out by any suitable method. In some embodiments, the mold can be a formed hard mask or a suitable material, such as a layer of molybdenum (Mo) deposited by sputtering on the surface of the annealed resist. Patterning can be performed via any suitable procedure, such as chemical or dry etching, or any other suitable technique. The etching process can include a wet or dry etch process. The wet etch process can include any procedure that uses a solvent such as potassium hydroxide (KOH) to dissolve the material removed from the substrate. Dry etching can include sputtering or dissolving using reactive ions or vapor phase etching. Both the wet etch process and the dry etch process can be anisotropic and/or isotropic.

圖25為用於形成MEMS器件之第一橫桿及第二橫桿之程序的流程圖。具體而言,圖25展示在操作2502處開始且提供在基板上具有導電墊之基板的程序2500。在操作2504中,在基板上沈積模具以形成第一薄膜橫桿。在一些實施方案中,可將模具敷設為抗蝕劑材料層,其經圖案化以提供構成器件之不同組件之形狀及形式。在操作2506中,在模具上沈積鈍化材料層。在操作2508中,程序在鈍化材料上沈積至少一個薄膜層以形成第一薄膜橫桿之至少部分。經沈積層(無論用以形成模具抑或橫桿)之厚度可根據所處理之應用而變化。在一個實施方案中,操作2504沈積厚度介於2微米與5微米之間的抗蝕劑材料層,且在操作2506及2508中,沈積介於約25埃與125埃之間的鈍化材料層或其他半導體材料層。可藉由濺鍍、CVD、PVD或用於以化學方式或以 物理方式將材料移動至基板上之任何其他技術(包括早先所提及之技術)來達成沈積。可藉由沈積一系列材料層來形成第一薄膜橫桿,每一層為接合至其所沈積之層的薄膜層。該等層將遵循模具之圖案,且提供將形成經由模具而澆鑄之不同組件的材料。程序2500接著在操作2510中在第一薄膜橫桿上方沈積鈍化材料層。如上文所描述,鈍化材料可為可將鈍化塗層提供至由沈積於模具上方之層形成之橫桿的任何合適鈍化材料。程序2500在操作2512中在鈍化材料層上方沈積用於形成第二薄膜橫桿之模具。此第二模具可具有將形成將為器件之第二橫桿之部分之組件的圖案。在操作2514中,程序在模具上方沈積至少一個薄膜層以形成第二薄膜橫桿,且在操作2516中,程序將第一薄膜橫桿及第二薄膜橫桿自模具脫模,以形成在外部表面上具有鈍化材料且與基板隔開之第一橫桿,及與第一橫桿隔開且重疊於第一橫桿之第二橫桿。 Figure 25 is a flow diagram of a procedure for forming a first rail and a second rail of a MEMS device. In particular, FIG. 25 shows a routine 2500 that begins at operation 2502 and provides a substrate having conductive pads on a substrate. In operation 2504, a mold is deposited on the substrate to form a first film crossbar. In some embodiments, the mold can be applied as a layer of resist material that is patterned to provide the shape and form of the various components that make up the device. In operation 2506, a layer of passivation material is deposited on the mold. In operation 2508, the program deposits at least one film layer on the passivation material to form at least a portion of the first film crossbar. The thickness of the deposited layer (whether used to form a mold or crossbar) can vary depending on the application being processed. In one embodiment, operation 2504 deposits a layer of resist material having a thickness between 2 microns and 5 microns, and in operations 2506 and 2508, depositing a layer of passivation material between about 25 angstroms and 125 angstroms or Other layers of semiconductor material. Can be by sputtering, CVD, PVD or for chemical or Physically moving the material to any other technique on the substrate, including the techniques mentioned earlier, to achieve deposition. The first film crossbar can be formed by depositing a series of layers of material, each layer being a film layer bonded to the layer in which it is deposited. The layers will follow the pattern of the mold and provide materials that will form the different components that are cast through the mold. The process 2500 then deposits a layer of passivation material over the first film crossbar in operation 2510. As described above, the passivating material can be any suitable passivating material that can provide a passivating coating to the crossbar formed by the layer deposited over the mold. The process 2500 deposits a mold for forming a second film crossbar over the passivation material layer in operation 2512. This second mold can have a pattern that will form an assembly that will be part of the second crossbar of the device. In operation 2514, the program deposits at least one film layer over the mold to form a second film crossbar, and in operation 2516, the program releases the first film crossbar and the second film crossbar from the mold to form externally a first crossbar having a passivating material on the surface and spaced apart from the substrate, and a second crossbar spaced from the first crossbar and overlapping the first crossbar.

程序2500說明形成具有兩個重疊橫桿之MEMS器件的程序。然而,程序2500並不限於形成具有兩個橫桿或具有重疊橫桿之器件,且可用以形成具有兩個以上橫桿及並不重疊且彼此橫向地隔開之橫桿的器件。 Program 2500 illustrates a procedure for forming a MEMS device having two overlapping rails. However, the procedure 2500 is not limited to forming a device having two crossbars or having overlapping rails, and can be used to form a device having two or more crossbars and crossbars that do not overlap and are laterally spaced apart from one another.

圖26為用於形成堆疊式通孔之程序的流程圖。具體而言,圖26展示用於製造MEMS器件(諸如使用參考圖25所描述之程序2500而製造之器件)且向彼MEMS器件提供可支撐兩個或兩個以上橫桿且將該等橫桿懸置為遠離基板之表面之堆疊式通孔之程序的流程圖。程序2600具有操作2602,其通過第一薄膜橫桿及第二薄膜橫桿形成通孔且延伸通孔以將基板上之導電墊曝露。操作2602提供通孔以在通孔內形成用於支撐第一薄膜橫桿及第二薄膜橫桿之錨定件。在操作2604中,程序用連接至第一薄膜橫桿之臂及用連接至第二薄膜橫桿之臂形成錨定件之側壁。在操作2606中,向第一薄膜橫桿之臂或第二薄膜橫桿之 臂提供用於將第一薄膜橫桿或第二薄膜橫桿連接至導電墊之導電材料。在操作2608中,將第一薄膜橫桿或第二薄膜橫桿中之任一者連接至導電墊,且將另一薄膜橫桿與導電墊隔開且電連接至與導電墊連接之薄膜橫桿。此提供延伸至兩個橫桿之錨定件,且可將電信號攜載至兩個橫桿。 Figure 26 is a flow diagram of a procedure for forming stacked vias. In particular, Figure 26 shows a fabrication of a MEMS device (such as a device fabricated using the procedure 2500 described with reference to Figure 25) and providing two or more crossbars to the MEMS device and having the crossbars A flow chart of a procedure for suspending stacked vias away from the surface of the substrate. The program 2600 has an operation 2602 that forms a through hole through the first film crossbar and the second film crossbar and extends the through hole to expose the conductive pad on the substrate. Operation 2602 provides a through hole to form an anchor for supporting the first film crossbar and the second film crossbar within the through hole. In operation 2604, the program forms a sidewall of the anchor with an arm coupled to the first film crossbar and an arm coupled to the second film crossbar. In operation 2606, the arm of the first film crossbar or the second film crossbar The arm provides a conductive material for attaching the first film crossbar or the second film crossbar to the conductive pad. In operation 2608, either one of the first film crossbar or the second film crossbar is attached to the conductive pad, and the other film crossbar is separated from the conductive pad and electrically connected to the film cross-section connected to the conductive pad. Rod. This provides an anchor that extends to the two rails and carries electrical signals to the two rails.

圖27A及圖27B展示堆疊式通孔之替代性實施方案。圖27A展示以方框勾勒出之通孔2778。可使用參考圖26所描述之程序流程來形成此通孔2778,然而,通孔2778使用橫桿2717之頂部表面及橫桿2715之底部表面作為用於將橫桿2715及2717內之組件連接至基板350上之導電層2758的電接點。為此目的,通孔2778包括一系列保形薄膜層,其包括導電材料層2710,諸如aSi。所描繪之層為一組保形層,此在於其遵循由抗蝕劑層2770及2762形成之圖案。導電層2710沈積於通孔2778之底部上,且被置放為與導電表面2758接觸。此允許將錨定件形成於通孔2778內,且使彼錨定件與MEMS器件之互連層進行電接觸。通孔2778連接至及支撐第一橫桿2717,且連接至及支撐第二橫桿2717。層2710延伸至第二橫桿2715中。層2710亦接觸層2712且與層2712進行電連接,層2712亦可為諸如aSi之導電材料且延伸通過第一橫桿2717。圖27B展示藉由將沈積於通孔2778上之保形層脫模而形成的錨定件2711,通孔2778形成於抗蝕劑層2770及2762中且展示於圖27A中。錨定件2711具有圍繞其外部之鈍化材料層2714。錨定件2711將兩個橫桿2715及2717固持為遠離基板之表面,且將兩個橫桿連接至導電層2758。 27A and 27B show an alternative embodiment of a stacked via. Figure 27A shows a through hole 2778 outlined in a square. The through hole 2778 can be formed using the program flow described with reference to FIG. 26, however, the through hole 2778 uses the top surface of the crossbar 2717 and the bottom surface of the crossbar 2715 as a means for connecting the components within the crossbars 2715 and 2717 to Electrical contacts of conductive layer 2758 on substrate 350. To this end, the via 2778 includes a series of conformal film layers comprising a layer of electrically conductive material 2710, such as aSi. The layer depicted is a set of conformal layers in that it follows the pattern formed by resist layers 2770 and 2762. Conductive layer 2710 is deposited on the bottom of via 2778 and placed in contact with conductive surface 2758. This allows the anchor to be formed within the via 2778 and to make electrical contact between the anchor and the interconnect layer of the MEMS device. The through hole 2778 is connected to and supports the first cross bar 2717 and is connected to and supports the second cross bar 2717. Layer 2710 extends into second crossbar 2715. Layer 2710 also contacts layer 2712 and is electrically coupled to layer 2712, which may also be a conductive material such as aSi and extends through first crossbar 2718. Figure 27B shows an anchor 2711 formed by demolding a conformal layer deposited over via 2778, which is formed in resist layers 2770 and 2762 and is shown in Figure 27A. The anchor 2711 has a layer of passivation material 2714 around its exterior. The anchor 2711 holds the two rails 2715 and 2717 away from the surface of the substrate and connects the two rails to the conductive layer 2758.

圖28至圖41展示根據一些實施方案的說明製造實例MEMS器件502之各種階段的橫截面示意圖。MEMS器件502可在顯示器內形成一或多個光調變器。舉例而言,MEMS器件502可包括在顯示器內形成一或多個光調變器之第一薄膜橫桿617及第二薄膜橫桿615。MEMS器 件502可在顯示器內形成一或多個像素。用於製造MEMS器件502之階段相比於圖28至圖41所說明之階段可包括不同、較少或額外操作。 28 through 41 show cross-sectional schematic views illustrating various stages of fabricating an example MEMS device 502, in accordance with some embodiments. MEMS device 502 can form one or more light modulators within the display. For example, MEMS device 502 can include a first film crossbar 617 and a second film crossbar 615 that form one or more light modulators within the display. MEMS device Piece 502 can form one or more pixels within the display. The stages used to fabricate MEMS device 502 may include different, fewer, or additional operations than the stages illustrated in Figures 28-41.

圖28展示經部分製造之MEMS器件的實例。經部分製造之MEMS器件可包括基板550、在基板550上之金屬層552,及在金屬層552上之絕緣層554。在一些實施方案中,基板550可包括任何合適基板材料,諸如玻璃。絕緣層554可為凹入的且被填充有導電材料558,其中導電材料558形成接觸金屬層552之墊。在一些實施方案中,導電材料558包括ITO,或用於提供與金屬層552之電連接的某一其他合適材料。導電材料558可充分地傳導電信號以將電信號提供至顯示器之像素的組件。第一模具可形成於絕緣層554之部分上方,其中第一模具可包括光阻層562。光阻層562可包括可將導電材料558曝露之通孔578。通孔578准許將材料沈積至導電材料558上。第一模具可進一步包括模具層570,其中模具層570可由光阻材料形成且形成於光阻層562上方。模具層570可包括將光阻層562之部分曝露的溝槽574。溝槽574及通孔578提供可塑形MEMS器件之組件(諸如快門)的第一模具之特徵。第一模具可經圖案化用於形成MEMS器件之第一薄膜橫桿。第一鈍化層582形成於第一模具上及導電材料558上。第一鈍化層582保形地沈積於第一模具上,第一模具包括光阻層562及模具層570。第一鈍化層582可由本文中早先所描述之任何合適鈍化材料製成。第一鈍化層582可沿著溝槽574及通孔578之側壁保形,且亦接觸導電材料558。第一鈍化層582可為在MEMS器件之脫模之前提供的鈍化層。經部分製造之MEMS器件可相似於關於圖4至圖7所描述的經部分製造之MEMS器件。 28 shows an example of a partially fabricated MEMS device. The partially fabricated MEMS device can include a substrate 550, a metal layer 552 on the substrate 550, and an insulating layer 554 on the metal layer 552. In some embodiments, substrate 550 can comprise any suitable substrate material, such as glass. The insulating layer 554 can be recessed and filled with a conductive material 558, wherein the conductive material 558 forms a pad that contacts the metal layer 552. In some embodiments, conductive material 558 includes ITO, or some other suitable material for providing electrical connection to metal layer 552. Conductive material 558 can substantially conduct electrical signals to provide electrical signals to components of the pixels of the display. A first mold can be formed over a portion of the insulating layer 554, wherein the first mold can include a photoresist layer 562. Photoresist layer 562 can include vias 578 that can expose conductive material 558. Vias 578 permit deposition of material onto conductive material 558. The first mold may further include a mold layer 570, wherein the mold layer 570 may be formed of a photoresist material and formed over the photoresist layer 562. Mold layer 570 can include a trench 574 that exposes portions of photoresist layer 562. The trenches 574 and vias 578 provide features of the first mold of a component of the shapeable MEMS device, such as a shutter. The first mold can be patterned to form a first film crossbar of the MEMS device. A first passivation layer 582 is formed on the first mold and on the conductive material 558. The first passivation layer 582 is conformally deposited on the first mold, and the first mold includes a photoresist layer 562 and a mold layer 570. The first passivation layer 582 can be made of any suitable passivation material described earlier herein. The first passivation layer 582 can conform to the sidewalls of the trench 574 and the via 578 and also contact the conductive material 558. The first passivation layer 582 can be a passivation layer provided prior to demolding of the MEMS device. The partially fabricated MEMS device can be similar to the partially fabricated MEMS device described with respect to Figures 4-7.

在圖29中,可在第一模具上方形成第一遮罩590。第一遮罩590可安置於選擇部位上方以便形成於模具層570及光阻層562上方。在一些實施方案中,第一遮罩590可形成於溝槽574中及上方,但不形成於 通孔578中,使得可執行接觸蝕刻。第一遮罩590可沈積於第一鈍化層582上方。第一遮罩590可由合適抗蝕劑材料製成以允許蝕刻程序移除通孔578內的第一鈍化層582之部分。 In Figure 29, a first mask 590 can be formed over the first mold. The first mask 590 can be disposed over the selected portion to be formed over the mold layer 570 and the photoresist layer 562. In some embodiments, the first mask 590 can be formed in and above the trench 574, but is not formed in In the via hole 578, contact etching can be performed. A first mask 590 can be deposited over the first passivation layer 582. The first mask 590 can be made of a suitable resist material to allow an etch process to remove portions of the first passivation layer 582 within the vias 578.

圖30展示在移除通孔578內之第一鈍化層582之後的經部分製造之MEMS器件。諸如選擇性乾式蝕刻程序之蝕刻程序可移除第一鈍化層582之一些以將導電材料558曝露。蝕刻掉或以其他方式移除未受到第一遮罩590保護的第一鈍化層582之部分。然而,一般熟習此項技術者應理解,可在無第一遮罩590的情況下發生通孔578內的第一鈍化層582之部分的移除。在一些實施方案中,可在無第一遮罩590的情況下使用各向異性蝕刻程序來移除導電材料558上的第一鈍化層582之部分。在一些實施方案中,第一鈍化層582之另一部分可留存於通孔578之側壁上。 FIG. 30 shows a partially fabricated MEMS device after removal of the first passivation layer 582 within via 578. An etch process such as a selective dry etch process may remove some of the first passivation layer 582 to expose the conductive material 558. Portions of the first passivation layer 582 that are not protected by the first mask 590 are etched away or otherwise removed. However, it will be understood by those skilled in the art that removal of portions of the first passivation layer 582 within the vias 578 can occur without the first mask 590. In some implementations, an anisotropic etch process can be used to remove portions of the first passivation layer 582 on the conductive material 558 without the first mask 590. In some embodiments, another portion of the first passivation layer 582 can remain on the sidewalls of the vias 578.

圖31展示在移除第一遮罩590之後的經部分製造之MEMS器件。可剝離第一遮罩590之抗蝕劑材料,使得將第一鈍化層582曝露。第一鈍化層582留存於第一模具上,但不沿著通孔578之側壁或在導電材料558上。 FIG. 31 shows a partially fabricated MEMS device after removal of the first mask 590. The resist material of the first mask 590 may be stripped such that the first passivation layer 582 is exposed. The first passivation layer 582 remains on the first mold but not along the sidewalls of the vias 578 or on the conductive material 558.

在圖32中,將額外層沈積於第一模具上方。導電層584形成於第一模具上方,包括形成於光阻層562及模具層570上方。導電層584可包括用於在MEMS器件內攜載電信號之任何合適材料,諸如aSi、Ti或Al。導電層584可保形地沈積於第一鈍化層582上以及沿著通孔578之側壁且在導電材料558上。因此,導電層584可與導電材料558進行電接觸。金屬層586可形成於導電層584上。金屬層586可保形地沈積於導電層584上。在一些實施方案中,金屬層586亦可導電且能夠在MEMS器件內攜載電信號。在一些實施方案中,金屬層586可不透明或以其他方式能夠實質上阻擋可見光之透射。在一些實施方案中,金屬層586及導電層584中之一者或兩者可實質上不透明,其中金屬層 586及導電層584中之一者或兩者能夠實質上阻擋可見光之透射。舉例而言,金屬層586及導電層584中之一者或兩者可能夠阻擋可見光之80%或更多、90%或更多,或95%或更多。層584及586可形成MEMS器件之第一薄膜橫桿之構成層。 In Figure 32, an additional layer is deposited over the first mold. A conductive layer 584 is formed over the first mold, including over the photoresist layer 562 and the mold layer 570. Conductive layer 584 can include any suitable material for carrying electrical signals within the MEMS device, such as aSi, Ti, or Al. Conductive layer 584 can be conformally deposited on first passivation layer 582 and along sidewalls of vias 578 and on conductive material 558. Thus, conductive layer 584 can be in electrical contact with conductive material 558. A metal layer 586 can be formed on the conductive layer 584. Metal layer 586 can be conformally deposited on conductive layer 584. In some embodiments, metal layer 586 can also be electrically conductive and capable of carrying electrical signals within the MEMS device. In some implementations, metal layer 586 can be opaque or otherwise capable of substantially blocking the transmission of visible light. In some implementations, one or both of metal layer 586 and conductive layer 584 can be substantially opaque, wherein the metal layer One or both of 586 and conductive layer 584 can substantially block the transmission of visible light. For example, one or both of metal layer 586 and conductive layer 584 can block 80% or more, 90% or more, or 95% or more of visible light. Layers 584 and 586 can form the constituent layers of the first film crossbar of the MEMS device.

在層582、584及586之沈積之後,第二遮罩596可形成於層582、584及586上方以用於圖案化及形成第一薄膜橫桿。如圖34所說明,第二遮罩596可以用於形成MEMS器件之第一薄膜橫桿之組件的圖案形成於層582、584及586上方。在一些實施方案中,第二遮罩596可形成於通孔578及至少一個溝槽574上方。在一些實施方案中,第二遮罩596可包括任何合適抗蝕劑材料。 After deposition of layers 582, 584, and 586, a second mask 596 can be formed over layers 582, 584, and 586 for patterning and forming a first film crossbar. As illustrated in FIG. 34, a second mask 596 can be used to form a pattern of components of the first film crossbar of the MEMS device over layers 582, 584, and 586. In some embodiments, a second mask 596 can be formed over the vias 578 and the at least one trench 574. In some embodiments, the second mask 596 can comprise any suitable resist material.

在圖34中,執行蝕刻程序以移除未由第二遮罩596覆蓋的金屬層586及導電層584之部分。蝕刻程序可包括任何合適蝕刻程序,諸如乾式蝕刻或濕式蝕刻。蝕刻程序可移除第一模具之頂部表面上方的金屬層586及導電層584兩者。在一些實施方案中,蝕刻程序可自溝槽574之側壁移除金屬層586,同時使溝槽574之側壁上的導電層584完好。蝕刻程序可為用以將導電層584及第一鈍化層582之部分留在溝槽574之側壁上的各向異性蝕刻程序。 In FIG. 34, an etch process is performed to remove portions of metal layer 586 and conductive layer 584 that are not covered by second mask 596. The etching process can include any suitable etching process, such as dry etching or wet etching. The etch process removes both the metal layer 586 and the conductive layer 584 over the top surface of the first mold. In some embodiments, the etch process can remove the metal layer 586 from the sidewalls of the trench 574 while leaving the conductive layer 584 on the sidewalls of the trench 574 intact. The etch process can be an anisotropic etch process to leave portions of conductive layer 584 and first passivation layer 582 on the sidewalls of trench 574.

圖35展示在移除第二遮罩596之後的經部分製造之MEMS器件。可剝離第二遮罩596之抗蝕劑材料,使得將層582、584及586曝露。導電層584及/或金屬層586之剩餘部分可形成MEMS器件之第一薄膜橫桿。 FIG. 35 shows a partially fabricated MEMS device after removal of the second mask 596. The resist material of the second mask 596 can be stripped such that the layers 582, 584, and 586 are exposed. The remaining portions of conductive layer 584 and/or metal layer 586 can form a first film crossbar of the MEMS device.

第二鈍化層594形成於第一薄膜橫桿上方,如圖36所說明。第二鈍化層594可保形地沈積於第一薄膜橫桿上及第一模具上方。在圖36中,第二鈍化層594覆蓋光阻層562、模具層570、導電層584及金屬層586之曝露表面。在一些實施方案中,第二鈍化層594保形地覆蓋溝槽574之側壁及底壁。第二鈍化層594可由本文中早先所描述之任何合適 鈍化材料製成。 A second passivation layer 594 is formed over the first film crossbar as illustrated in FIG. The second passivation layer 594 can be conformally deposited on the first film crossbar and over the first mold. In FIG. 36, the second passivation layer 594 covers the exposed surfaces of the photoresist layer 562, the mold layer 570, the conductive layer 584, and the metal layer 586. In some embodiments, the second passivation layer 594 conformally covers the sidewalls and bottom walls of the trenches 574. The second passivation layer 594 can be any suitable as described earlier herein. Made of passivation material.

在圖37中,形成第三遮罩598以用於選擇性地移除第二鈍化層594之部分。第三遮罩598可包括抗蝕劑材料,且形成於選擇部位以保護MEMS器件之某些特徵上的第二鈍化層594。可形成第三遮罩598之圖案以允許蝕刻程序自第一模具移除第二鈍化層594之部分。以此方式,第一薄膜橫桿之組件可具有至少一部分鈍化外部表面。在一些實施方案中,第三遮罩598可形成於某些部位上方,在該等部位處,第二鈍化層594形成於金屬層586及導電層584兩者上方。 In FIG. 37, a third mask 598 is formed for selectively removing portions of the second passivation layer 594. The third mask 598 can include a resist material and is formed at a selected location to protect the second passivation layer 594 on certain features of the MEMS device. A pattern of the third mask 598 can be formed to allow the etch process to remove portions of the second passivation layer 594 from the first mold. In this manner, the assembly of the first film crossbar can have at least a portion of the passivated exterior surface. In some embodiments, a third mask 598 can be formed over portions where a second passivation layer 594 is formed over both the metal layer 586 and the conductive layer 584.

在圖38中,藉由蝕刻程序來移除第二鈍化層594之部分。蝕刻程序可移除未由第三遮罩598覆蓋的第二鈍化層594之部分。然而,一般熟習此項技術者應理解,可在無第三遮罩598的情況下移除第二鈍化層594之一些部分。在一些實施方案中,可在無第三遮罩598的情況下藉由各向異性蝕刻程序來移除第二鈍化層594之此等部分,使得第二鈍化層594可在經部分製造之MEMS器件的側壁上保持完好。在一些實施方案中,蝕刻程序可為各向異性乾式蝕刻程序,諸如CF4電漿蝕刻程序。 In FIG. 38, portions of the second passivation layer 594 are removed by an etching process. The etch process can remove portions of the second passivation layer 594 that are not covered by the third mask 598. However, it will be understood by those of ordinary skill in the art that portions of the second passivation layer 594 can be removed without the third mask 598. In some implementations, such portions of the second passivation layer 594 can be removed by an anisotropic etch process without the third mask 598 such that the second passivation layer 594 can be in a partially fabricated MEMS The side walls of the device remain intact. In some embodiments, an anisotropic etching process may be a dry etching process, such as a CF 4 plasma etch process.

圖39展示具有第一薄膜橫桿的經部分製造之MEMS器件,其中第一薄膜橫桿包括由第一鈍化層582及第二鈍化層594鈍化之組件583及585。圖39中移除第三遮罩598,其中可剝離第三遮罩598之抗蝕劑材料。在組件583及585之間的是鈍化材料。鈍化材料可防止電短路。在一些實施方案中,第一薄膜橫桿之組件583及585可包括一或多個致動器、快門及錨定件。一或多個錨定件可在導電材料558處連接至基板550以提供用於第一薄膜橫桿的穩定且安全之附接。一或多個快門可為經組態以實質上防止可見光之透射(諸如可見光通過一或多個孔隙之透射)的可移動機械組件。快門可在敞開位置與關閉位置之間可移動,其中可實施一或多個致動器以用於控制快門之移動。一或多個致 動器可包括電極,其中電極可攜載用於控制快門之移動的電信號。 39 shows a partially fabricated MEMS device having a first film crossbar, wherein the first film crossbar includes components 583 and 585 that are passivated by a first passivation layer 582 and a second passivation layer 594. The third mask 598 is removed in FIG. 39, wherein the resist material of the third mask 598 can be peeled off. Between components 583 and 585 is a passivating material. The passivation material prevents electrical shorts. In some embodiments, the first film crossbar assemblies 583 and 585 can include one or more actuators, shutters, and anchors. One or more anchors can be coupled to the substrate 550 at a conductive material 558 to provide a stable and secure attachment for the first film crossbar. The one or more shutters can be a moveable mechanical component configured to substantially prevent transmission of visible light, such as transmission of visible light through one or more apertures. The shutter is moveable between an open position and a closed position, wherein one or more actuators can be implemented for controlling movement of the shutter. One or more The actuator can include an electrode, wherein the electrode can carry an electrical signal for controlling the movement of the shutter.

圖40展示MEMS器件502之實例,其具有第一薄膜橫桿617及在第一薄膜橫桿617上方之第二薄膜橫桿615。可將MEMS器件502自第一模具及第二模具脫模。第一薄膜橫桿617包括一或多個電極503及513。在一些實施方案中,一或多個電極503及513可包括具有大於約4比1且可能大於16比1之縱橫比的可移動側壁橫桿,以提供窄剖面及可藉由施加電動勢而移動之可撓性橫桿。在一些實施方案中,第一薄膜橫桿617進一步包括一或多個快門502。第二薄膜橫桿615定位於第一薄膜橫桿617上方,其中第一薄膜橫桿617配置於基板550與第二薄膜橫桿615之間,且與基板550及第二薄膜橫桿615隔開。第二薄膜橫桿615被展示為在第一薄膜橫桿617上方隔開且重疊於第一薄膜橫桿617。第二薄膜橫桿615包括一或多個孔隙555。一或多個快門502可經組態以實質上防止光行進通過一或多個孔隙555。內部鈍化層530部分地覆蓋第二薄膜橫桿615之外部表面,且部分地覆蓋第一薄膜橫桿617之外部表面。 40 shows an example of a MEMS device 502 having a first film crossbar 617 and a second film crossbar 615 above the first film crossbar 617. The MEMS device 502 can be demolded from the first mold and the second mold. The first film crossbar 617 includes one or more electrodes 503 and 513. In some embodiments, one or more of the electrodes 503 and 513 can include a movable sidewall rail having an aspect ratio greater than about 4 to 1 and possibly greater than 16 to 1 to provide a narrow profile and can be moved by applying an electromotive force Flexible crossbar. In some embodiments, the first film crossbar 617 further includes one or more shutters 502. The second film crossbar 615 is positioned above the first film crossbar 617, wherein the first film crossbar 617 is disposed between the substrate 550 and the second film crossbar 615, and is separated from the substrate 550 and the second film crossbar 615. . The second film crossbar 615 is shown spaced above the first film crossbar 617 and overlaps the first film crossbar 617. The second film crossbar 615 includes one or more apertures 555. The one or more shutters 502 can be configured to substantially prevent light from traveling through the one or more apertures 555. The inner passivation layer 530 partially covers the outer surface of the second film crossbar 615 and partially covers the outer surface of the first film crossbar 617.

在一些實施方案中,第一薄膜橫桿617包括第一臂且第二薄膜橫桿615包括第二臂,其中每一臂朝向基板550之表面延伸,其中第一臂接合至及重疊於第二臂以形成能夠將第一薄膜橫桿617及第二薄膜橫桿615固持為與基板550相隔一距離之錨定件。 In some embodiments, the first film crossbar 617 includes a first arm and the second film crossbar 615 includes a second arm, wherein each arm extends toward a surface of the substrate 550, wherein the first arm is joined to and overlaps the second The arms are configured to form anchors that hold the first film crossbar 617 and the second film crossbar 615 a distance from the substrate 550.

第二薄膜橫桿615之製造可相似於圖24中之第二薄膜橫桿415之製造,其中程序流程可相似於圖15至圖23所展示之程序流程。在將第一薄膜橫桿617形成於第一模具上方且運用鈍化層582及594來覆蓋第一薄膜橫桿617之後,可將第二薄膜橫桿615形成於第一薄膜橫桿617上方。將第二模具形成於第一薄膜橫桿617上方。接著,將至少額外導電層及額外金屬層沈積及圖案化於第二模具上方以形成第二薄膜橫桿615。在一些實施方案中,將第三鈍化層614形成於第二薄膜橫桿 615上方。第三鈍化層614可包括如本文中早先所描述之任何合適鈍化材料。可藉由移除第一模具及第二模具而將MEMS器件502脫模,如圖40所展示。在脫模之前形成鈍化層582、594及614。內部鈍化層530可包括鈍化層582、594及614。 The fabrication of the second film rail 615 can be similar to the fabrication of the second film rail 415 of Figure 24, wherein the program flow can be similar to the program flow shown in Figures 15-23. After the first film crossbar 617 is formed over the first mold and the passivation layers 582 and 594 are used to cover the first film crossbar 617, the second film crossbar 615 can be formed over the first film crossbar 617. A second mold is formed over the first film crossbar 617. Next, at least additional conductive layers and additional metal layers are deposited and patterned over the second mold to form a second film crossbar 615. In some embodiments, the third passivation layer 614 is formed on the second film crossbar Above 615. The third passivation layer 614 can comprise any suitable passivation material as described earlier herein. The MEMS device 502 can be demolded by removing the first mold and the second mold, as shown in FIG. Passivation layers 582, 594, and 614 are formed prior to demolding. The inner passivation layer 530 can include passivation layers 582, 594, and 614.

在圖40中,一或多個電極503、513可具有一或多個曝露表面。可不使一或多個曝露表面鈍化,此可導致用於電流之洩漏路徑。可歸因於電極之間的電位差而引起洩漏路徑。一或多個電極503及513中之每一者可具有頂部表面、底部表面及側壁。如圖40所展示,可將電極503及513之頂部表面曝露,而由第一鈍化層582或第二鈍化層594使電極503及513之側壁及底部表面鈍化。為了加頂蓋於電極503及513之頂部表面以及第一薄膜橫桿617及第二薄膜橫桿615中之任何其他曝露表面,可在脫模之後將額外鈍化材料層提供至MEMS器件502。 In Figure 40, one or more of the electrodes 503, 513 can have one or more exposed surfaces. One or more exposed surfaces may not be passivated, which may result in a leakage path for the current. A leakage path can be caused attributable to a potential difference between the electrodes. Each of the one or more electrodes 503 and 513 can have a top surface, a bottom surface, and a sidewall. As shown in FIG. 40, the top surfaces of the electrodes 503 and 513 can be exposed while the sidewalls and bottom surfaces of the electrodes 503 and 513 are passivated by the first passivation layer 582 or the second passivation layer 594. To top the top surface of electrodes 503 and 513 and any other exposed surfaces in first film crossbar 617 and second film crossbar 615, an additional layer of passivation material may be provided to MEMS device 502 after demolding.

圖41展示具有後脫模鈍化層500之MEMS器件502。在MEMS器件502之脫模之後,可形成後脫模鈍化層500以覆蓋第一薄膜橫桿617及第二薄膜橫桿615之外部表面。另外,後脫模鈍化層500可構成覆蓋內部鈍化層530之外部鈍化層。可藉由CVD(諸如電漿CVD)而將後脫模鈍化層500保形地沈積於MEMS器件502之曝露表面上。然而,一般熟習此項技術者應理解,可應用任何合適沈積技術。後脫模鈍化層500可包括如本文中早先所描述之任何合適鈍化材料。在一些實施方案中,MEMS器件502可包括用於將板固持為遠離第二薄膜橫桿615之複數個隔片。 FIG. 41 shows a MEMS device 502 having a post-release passivation layer 500. After demolding of the MEMS device 502, a post-release passivation layer 500 can be formed to cover the outer surfaces of the first film crossbar 617 and the second film crossbar 615. Additionally, the post-release passivation layer 500 can constitute an external passivation layer that covers the inner passivation layer 530. The post-release passivation layer 500 can be conformally deposited on the exposed surface of the MEMS device 502 by CVD, such as plasma CVD. However, those of ordinary skill in the art will appreciate that any suitable deposition technique can be applied. The post-release passivation layer 500 can comprise any suitable passivation material as described earlier herein. In some embodiments, MEMS device 502 can include a plurality of spacers for holding the plate away from second film crossbar 615.

後脫模鈍化層500之沈積可發生於MEMS器件502之所有表面上,如圖41所展示。換言之,後脫模鈍化層500塗佈MEMS器件502上之各處。然而,塗層可並非橫越MEMS器件502之所有表面為均一的。舉例而言,與一或多個快門502組合之一或多個孔隙555可呈現塗佈一些表面超過塗佈其他表面之困難。用於CVD之前驅體可能必須出現在一 或多個孔隙555及一或多個快門502下方或周圍,以塗佈MEMS器件502之表面中的一些。後脫模鈍化層500確保MEMS器件500之曝露表面的覆蓋。如圖41所展示,後脫模鈍化層500可覆蓋一或多個電極503及513之頂部表面。在一些實施方案中,後脫模鈍化層500可相對薄,諸如小於約1000Å、小於約500Å,或介於約200Å與約400Å之間。因此,即使後脫模鈍化層500之沈積可為非均一的,此非均一性之影響亦在後脫模鈍化層500相對薄時可能小。與此對比,內部鈍化層530可具有小於約2000Å之厚度,諸如介於約300Å與約1000Å之間。 Deposition of the post-release passivation layer 500 can occur on all surfaces of the MEMS device 502, as shown in FIG. In other words, the post-release passivation layer 500 coats the entire surface of the MEMS device 502. However, the coating may not be uniform across all surfaces of MEMS device 502. For example, combining one or more apertures 555 with one or more shutters 502 can present the difficulty of coating some surfaces over other surfaces. The precursor used in CVD may have to appear in a Or a plurality of apertures 555 and one or more shutters 502 below or around to coat some of the surface of the MEMS device 502. The post-release passivation layer 500 ensures coverage of the exposed surface of the MEMS device 500. As shown in FIG. 41, the post-release passivation layer 500 can cover the top surface of one or more of the electrodes 503 and 513. In some embodiments, the post-release passivation layer 500 can be relatively thin, such as less than about 1000 Å, less than about 500 Å, or between about 200 Å and about 400 Å. Therefore, even if the deposition of the post-release passivation layer 500 can be non-uniform, the effect of this non-uniformity may be small when the post-release passivation layer 500 is relatively thin. In contrast, internal passivation layer 530 can have a thickness of less than about 2000 Å, such as between about 300 Å and about 1000 Å.

圖41展示經完全囊封及鈍化之MEMS器件502。圖28至圖41展示藉由應用預脫模鈍化層582、594及614以及後脫模鈍化層500兩者來製造MEMS器件502之各種階段,而非圖4至圖27中的僅僅將預脫模鈍化層應用於外部表面。在一些實施方案中,若僅應用預脫模鈍化層582、594及614,則可使MEMS器件502之一些表面(諸如電極503及513之頂部表面)曝露。在一些實施方案中,若僅應用後脫模鈍化層500,則由於塗佈MEMS器件502之非均一性可具有更實質的影響。為了在無預脫模鈍化層582、594及614的情況下塗佈MEMS器件502中之各處,可應用後脫模鈍化層500之較厚沈積。然而,後脫模鈍化層500之較厚沈積可引起(例如)一或多個孔隙555之失真。另外,後脫模鈍化層500之較厚沈積可導致器件效能非均一性。舉例而言,MEMS器件502之邊緣可較厚,此可導致較高拉進電壓(pull-in voltage)及不同快門速度。此外,非均一後脫模鈍化層500可造成尖端間隙非均一性。 Figure 41 shows a fully encapsulated and passivated MEMS device 502. 28 through 41 illustrate various stages of fabricating MEMS device 502 by applying both pre-release passivation layers 582, 594 and 614 and post-release passivation layer 500, rather than simply pre-offset in Figures 4-27. The mold passivation layer is applied to the outer surface. In some embodiments, some of the surfaces of MEMS device 502, such as the top surfaces of electrodes 503 and 513, may be exposed if only pre-release passivation layers 582, 594, and 614 are applied. In some embodiments, if only the post-release passivation layer 500 is applied, the non-uniformity of the coated MEMS device 502 can have a more substantial impact. To coat all of the MEMS device 502 without the pre-release passivation layers 582, 594, and 614, a thicker deposition of the post-release passivation layer 500 can be applied. However, thicker deposition of the post-release passivation layer 500 can cause, for example, distortion of one or more of the apertures 555. Additionally, thicker deposition of the post-release passivation layer 500 can result in device performance non-uniformity. For example, the edges of MEMS device 502 can be thicker, which can result in higher pull-in voltages and different shutter speeds. In addition, the non-uniform post-release passivation layer 500 can cause tip gap non-uniformities.

圖42A至圖42D展示說明使模具上之薄膜橫桿鈍化之各種階段的橫截面示意圖。在圖42A中,將第一鈍化層582保形地沈積於模具層570之頂部表面及側壁上,且保形地沈積於光阻層562之頂部表面上。在一些實施方案中,第一鈍化層582可包括SiNx。此外,可將導電層 584保形地沈積於第一鈍化層582上。在一些實施方案中,導電層584可包括aSi。 Figures 42A-42D show cross-sectional schematic views illustrating various stages of passivating a film crossbar on a mold. In FIG. 42A, a first passivation layer 582 is conformally deposited on the top surface and sidewalls of the mold layer 570 and conformally deposited on the top surface of the photoresist layer 562. In some implementations, the first passivation layer 582 can include SiN x . Additionally, conductive layer 584 can be conformally deposited on first passivation layer 582. In some implementations, the conductive layer 584 can include aSi.

在圖42B中,移除導電層584之部分,而第一鈍化層582沿著模具層570及光阻層562之頂部表面及側壁保持保形。導電層584之另一部分保持完好,其在第一鈍化層582上且鄰近於模具層570之側壁。 In FIG. 42B, portions of conductive layer 584 are removed, while first passivation layer 582 remains conformal along the top surface and sidewalls of mold layer 570 and photoresist layer 562. Another portion of conductive layer 584 remains intact, on first passivation layer 582 and adjacent to sidewalls of mold layer 570.

在圖42C中,將第二鈍化層594保形地沈積於第一鈍化層582上及導電層584上。在一些實施方案中,第二鈍化層594可與第一鈍化層582具有相同組成。第二鈍化層594可覆蓋導電層584之曝露表面,且增加第一鈍化層582之厚度。 In FIG. 42C, a second passivation layer 594 is conformally deposited on the first passivation layer 582 and on the conductive layer 584. In some implementations, the second passivation layer 594 can have the same composition as the first passivation layer 582. The second passivation layer 594 can cover the exposed surface of the conductive layer 584 and increase the thickness of the first passivation layer 582.

在圖42D中,自模具層570及光阻層562之頂部表面移除第二鈍化層594及第一鈍化層582之部分。然而,第二鈍化層594及第一鈍化層582之部分的移除亦可使導電層584之部分曝露。此可引起MEMS器件之一些表面未鈍化,其可導致電流之洩漏。在一些實施方案中,MEMS器件中未鈍化之組件甚至可導致電短路。導電層584之曝露表面可相似地由圖28至圖40所展示之程序流程引起。因此,後脫模鈍化層500可提供用於覆蓋任何此等曝露表面之塗層以消除或以其他方式縮減MEMS器件中之洩漏路徑。 In FIG. 42D, portions of the second passivation layer 594 and the first passivation layer 582 are removed from the top surfaces of the mold layer 570 and the photoresist layer 562. However, removal of portions of the second passivation layer 594 and the first passivation layer 582 may also expose portions of the conductive layer 584. This can cause some surfaces of the MEMS device to be unpassivated, which can cause leakage of current. In some embodiments, unpassivated components in MEMS devices can even cause electrical shorts. The exposed surface of conductive layer 584 can similarly be caused by the program flow shown in Figures 28-40. Thus, the post-release passivation layer 500 can provide a coating for covering any of these exposed surfaces to eliminate or otherwise reduce the leakage path in the MEMS device.

圖43至圖52展示根據一些其他實施方案的說明製造實例MEMS器件702之各種階段的橫截面示意圖。圖43至圖52中之程序流程可相似於圖28至圖41中之程序流程,惟具有較少遮罩除外。MEMS器件702可在顯示器內形成一或多個光調變器。在一些實施方案中,MEMS器件702可包括在顯示器內形成一或多個光調變器之第一薄膜橫桿817及第二薄膜橫桿815。MEMS器件702可在顯示器內形成一或多個像素。用於製造MEMS器件702之階段相比於圖43至圖52所說明之階段可包括不同、較少或額外操作。 43-52 show cross-sectional schematic diagrams illustrating various stages of fabricating an example MEMS device 702, in accordance with some other embodiments. The program flow in Figures 43 through 52 can be similar to the program flow in Figures 28 through 41 except that there are fewer masks. MEMS device 702 can form one or more light modulators within the display. In some embodiments, MEMS device 702 can include a first film crossbar 817 and a second film crossbar 815 that form one or more light modulators within the display. MEMS device 702 can form one or more pixels within the display. The stages used to fabricate MEMS device 702 may include different, fewer, or additional operations than the stages illustrated in Figures 43-52.

圖43展示經部分製造之MEMS器件的實例。經部分製造之MEMS 器件可包括基板750、金屬層752、絕緣層754、導電材料758、光阻層762、模具層770、第一鈍化層782,及溝槽774,以及通孔778。光阻層762及模具層770可形成第一模具,其中第一模具包括用於塑形MEMS器件之組件的特徵。圖43中的經部分製造之MEMS器件可相似於圖28中的經部分製造之MEMS器件。因此,如何形成及配置基板750、金屬層752、絕緣層754、導電材料758、光阻層762、模具層770、第一鈍化層782及溝槽774以及通孔778可相似於如何形成及配置基板550、金屬層552、絕緣層554、導電材料558、光阻層562、模具層570、第一鈍化層582及溝槽574以及通孔578。 Figure 43 shows an example of a partially fabricated MEMS device. Partially manufactured MEMS The device can include a substrate 750, a metal layer 752, an insulating layer 754, a conductive material 758, a photoresist layer 762, a mold layer 770, a first passivation layer 782, and a trench 774, and vias 778. Photoresist layer 762 and mold layer 770 can form a first mold, wherein the first mold includes features for shaping the components of the MEMS device. The partially fabricated MEMS device of Figure 43 can be similar to the partially fabricated MEMS device of Figure 28. Therefore, how to form and configure the substrate 750, the metal layer 752, the insulating layer 754, the conductive material 758, the photoresist layer 762, the mold layer 770, the first passivation layer 782 and the trench 774, and the via 778 can be similar to how to form and configure Substrate 550, metal layer 552, insulating layer 554, conductive material 558, photoresist layer 562, mold layer 570, first passivation layer 582 and trench 574, and vias 578.

在圖44中,經部分製造之MEMS器件中移除第一鈍化層782之部分。在移除第一鈍化層782之此等部分時未應用遮罩。實情為,應用諸如各向異性乾式蝕刻程序之蝕刻程序以移除第一鈍化層782之部分。可自第一模具之頂部表面(包括光阻層762及模具層770之頂部表面)以及自導電材料758蝕刻第一鈍化層782。第一鈍化層782之其他部分可在溝槽774及通孔778之側壁上保持完好。 In FIG. 44, portions of the first passivation layer 782 are removed from the partially fabricated MEMS device. No mask is applied when removing portions of the first passivation layer 782. Instead, an etch process such as an anisotropic dry etch process is applied to remove portions of the first passivation layer 782. The first passivation layer 782 can be etched from the top surface of the first mold (including the photoresist layer 762 and the top surface of the mold layer 770) and from the conductive material 758. Other portions of the first passivation layer 782 may remain intact on the sidewalls of the trench 774 and via 778.

在圖45中,將額外層形成於第一模具上方。將導電層784形成於第一模具及第一鈍化層782上方,其中可將導電層784保形地沈積於光阻層762、模具層770、第一鈍化層782及導電材料758上。在一些實施方案中,導電層784可包括aSi。因此,導電層784可與導電材料758進行電接觸。可將金屬層786形成於導電層784上,其中金屬層786沿著導電層784保形。在一些實施方案中,金屬層786可包括Ti。此外,可將蝕刻終止層788形成於金屬層786上,其中蝕刻終止層788沿著金屬層786保形。在一些實施方案中,蝕刻終止層788可在組成上與導電層784相同。舉例而言,蝕刻終止層788可包括aSi。蝕刻終止層788亦可被稱作第二導電層788。蝕刻終止層788可充當蝕刻終止且保護金屬層786。在一些實施方案中,層784、786及788中之一或多者可不透明或 實質上不透明。舉例而言,導電層784、金屬層786及蝕刻終止層788中之一或多者可能夠阻擋可見光之80%或更多、90%或更多,或95%或更多。層784、786及788可形成MEMS器件之第一薄膜橫桿之構成層。 In Figure 45, an additional layer is formed over the first mold. A conductive layer 784 is formed over the first mold and the first passivation layer 782, wherein the conductive layer 784 can be conformally deposited on the photoresist layer 762, the mold layer 770, the first passivation layer 782, and the conductive material 758. In some implementations, the conductive layer 784 can include aSi. Thus, conductive layer 784 can be in electrical contact with conductive material 758. Metal layer 786 can be formed over conductive layer 784, with metal layer 786 conforming along conductive layer 784. In some embodiments, the metal layer 786 can include Ti. Additionally, an etch stop layer 788 can be formed over the metal layer 786 with the etch stop layer 788 conforming along the metal layer 786. In some implementations, the etch stop layer 788 can be identical in composition to the conductive layer 784. For example, etch stop layer 788 can include aSi. Etch stop layer 788 may also be referred to as second conductive layer 788. Etch stop layer 788 can serve as an etch stop and protect metal layer 786. In some embodiments, one or more of layers 784, 786, and 788 can be opaque or Substantially opaque. For example, one or more of conductive layer 784, metal layer 786, and etch stop layer 788 can be capable of blocking 80% or more, 90% or more, or 95% or more of visible light. Layers 784, 786, and 788 can form the constituent layers of the first film crossbar of the MEMS device.

圖46展示經部分製造之MEMS器件,其中第一遮罩790形成於層782、784及786上方以用於形成第一薄膜橫桿。如圖46所說明,可在選擇部位上方提供用於形成第一薄膜橫桿之第一遮罩790。在一些實施方案中,第一遮罩790可形成於通孔778及至少一個溝槽774上方。在一些實施方案中,第一遮罩790可包括任何合適抗蝕劑材料。 Figure 46 shows a partially fabricated MEMS device in which a first mask 790 is formed over layers 782, 784, and 786 for forming a first film crossbar. As illustrated in Figure 46, a first mask 790 for forming a first film crossbar can be provided over the selected portion. In some embodiments, a first mask 790 can be formed over the via 778 and the at least one trench 774. In some embodiments, the first mask 790 can comprise any suitable resist material.

圖47中移除層784、786及788之部分,包括未由第一遮罩790覆蓋之部分。蝕刻程序可包括任何合適蝕刻程序,諸如乾式蝕刻或濕式蝕刻。蝕刻程序可自第一模具之頂部表面移除導電層784、金屬層786及蝕刻終止層788。在一些實施方案中,蝕刻程序可移除溝槽774之側壁上的金屬層786及蝕刻終止層788,同時使溝槽774之側壁上的導電層784完好。在一些實施方案中,蝕刻程序可包括蝕刻終止層788之各向同性蝕刻、金屬層786之各向同性蝕刻,及導電層784之各向異性蝕刻。導電層784之各向異性蝕刻可使溝槽774之側壁上的導電層784及第一鈍化層782之部分完好。 Portions of layers 784, 786, and 788 are removed in FIG. 47, including portions that are not covered by first mask 790. The etching process can include any suitable etching process, such as dry etching or wet etching. An etch process can remove conductive layer 784, metal layer 786, and etch stop layer 788 from the top surface of the first mold. In some implementations, the etch process can remove metal layer 786 and etch stop layer 788 on the sidewalls of trench 774 while leaving conductive layer 784 on the sidewalls of trench 774 intact. In some implementations, the etch process can include an isotropic etch of the etch stop layer 788, an isotropic etch of the metal layer 786, and an anisotropic etch of the conductive layer 784. The anisotropic etch of conductive layer 784 can complete portions of conductive layer 784 and first passivation layer 782 on the sidewalls of trench 774.

圖48展示在移除第一遮罩790之後的經部分製造之MEMS器件。可剝離第一遮罩790之抗蝕劑材料,使得將層782、784、786及/或788曝露。導電層784、金屬層786及/或蝕刻終止層788之剩餘部分形成MEMS器件之第一薄膜橫桿的組件。 FIG. 48 shows a partially fabricated MEMS device after removal of the first mask 790. The resist material of the first mask 790 can be stripped such that the layers 782, 784, 786, and/or 788 are exposed. The remaining portions of conductive layer 784, metal layer 786, and/or etch stop layer 788 form the components of the first film crossbar of the MEMS device.

在圖49中,將第二鈍化層794形成於第一薄膜橫桿上方。第二鈍化層794可保形地沈積於第一薄膜橫桿上及第一模具上方。在一些實施方案中,第二鈍化層794覆蓋光阻層762、模具層770、第一鈍化層782、導電層784、金屬層786及蝕刻終止層788之曝露表面。在一些實 施方案中,第二鈍化層794保形地覆蓋溝槽774之側壁及底壁。第二鈍化層794可由本文中早先所描述之任何合適鈍化材料製成。 In FIG. 49, a second passivation layer 794 is formed over the first film crossbar. The second passivation layer 794 can be conformally deposited on the first film crossbar and over the first mold. In some implementations, the second passivation layer 794 covers the exposed surfaces of the photoresist layer 762, the mold layer 770, the first passivation layer 782, the conductive layer 784, the metal layer 786, and the etch stop layer 788. In some real In the embodiment, the second passivation layer 794 conformally covers the sidewalls and the bottom wall of the trench 774. The second passivation layer 794 can be made of any suitable passivation material described earlier herein.

圖50展示第二鈍化層794之部分被移除的經部分製造之MEMS器件。在移除第二鈍化層794之此等部分時未應用遮罩。代替地,應用諸如各向異性乾式蝕刻程序之蝕刻程序以移除第二鈍化層794之部分。可自第一薄膜橫桿之頂部表面(包括蝕刻終止層788及導電層784之頂部表面)蝕刻第二鈍化層794。亦可自光阻層762及模具層770之頂部表面蝕刻第二鈍化層794。蝕刻終止層788可充當蝕刻終止,使得在不移除第一薄膜橫桿之層784及786的情況下移除第二鈍化層794之部分。第二鈍化層794之其他部分可在溝槽774及通孔778之側壁上保持完好。 Figure 50 shows a partially fabricated MEMS device with portions of the second passivation layer 794 removed. No mask is applied when removing portions of the second passivation layer 794. Instead, an etch process such as an anisotropic dry etch process is applied to remove portions of the second passivation layer 794. The second passivation layer 794 can be etched from the top surface of the first film crossbar, including the etch stop layer 788 and the top surface of the conductive layer 784. A second passivation layer 794 can also be etched from the top surface of the photoresist layer 762 and the mold layer 770. Etch stop layer 788 can serve as an etch stop such that portions of second passivation layer 794 are removed without removing layers 784 and 786 of the first film crossbar. Other portions of the second passivation layer 794 may remain intact on the sidewalls of the trench 774 and via 778.

圖51展示MEMS器件702之實例,其具有第一薄膜橫桿817及在第一薄膜橫桿817上方之第二薄膜橫桿815。可將MEMS器件702自第一模具及第二模具脫模。第一薄膜橫桿817包括一或多個電極703及713。在一些實施方案中,一或多個電極703及713可包括具有大於約4比1且可能大於16比1之縱橫比的可移動側壁橫桿,以提供窄剖面及可藉由施加電動勢而移動之可撓性橫桿。在一些實施方案中,第一薄膜橫桿817包括一或多個快門702。第二薄膜橫桿815定位於第一薄膜橫桿817上方,其中第一薄膜橫桿817配置於基板750與第二薄膜橫桿815之間,且與基板750及第二薄膜橫桿815隔開。第二薄膜橫桿815被展示為在第一薄膜橫桿817上方隔開且重疊於第一薄膜橫桿817。第二薄膜橫桿815包括一或多個孔隙755。一或多個快門702可經組態以實質上防止光行進通過一或多個孔隙755。內部鈍化層730部分地覆蓋第二薄膜橫桿815之外部表面,且部分地覆蓋第一薄膜橫桿817之外部表面。 51 shows an example of a MEMS device 702 having a first film crossbar 817 and a second film crossbar 815 above the first film crossbar 817. The MEMS device 702 can be demolded from the first mold and the second mold. The first film crossbar 817 includes one or more electrodes 703 and 713. In some embodiments, one or more of the electrodes 703 and 713 can include a movable sidewall rail having an aspect ratio greater than about 4 to 1 and possibly greater than 16 to 1 to provide a narrow profile and can be moved by applying an electromotive force Flexible crossbar. In some embodiments, the first film crossbar 817 includes one or more shutters 702. The second film crossbar 815 is positioned above the first film crossbar 817, wherein the first film crossbar 817 is disposed between the substrate 750 and the second film crossbar 815, and is separated from the substrate 750 and the second film crossbar 815. . The second film crossbar 815 is shown spaced above the first film crossbar 817 and overlaps the first film crossbar 817. The second film crossbar 815 includes one or more apertures 755. The one or more shutters 702 can be configured to substantially prevent light from traveling through the one or more apertures 755. The inner passivation layer 730 partially covers the outer surface of the second film crossbar 815 and partially covers the outer surface of the first film crossbar 817.

在一些實施方案中,第一薄膜橫桿817包括第一臂且第二薄膜橫 桿815包括第二臂,其中每一臂朝向基板750之表面延伸,其中第一臂接合至及重疊於第二臂以形成能夠將第一薄膜橫桿817及第二薄膜橫桿815固持為與基板750相隔一距離之錨定件。第二薄膜橫桿815可在錨定件處連接至蝕刻終止層788。 In some embodiments, the first film crossbar 817 includes a first arm and a second film cross The rod 815 includes a second arm, wherein each arm extends toward a surface of the substrate 750, wherein the first arm is coupled to and overlaps the second arm to form a first film crossbar 817 and a second film crossbar 815 that are capable of holding The substrate 750 is separated by a distance anchor. A second film crossbar 815 can be attached to the etch stop layer 788 at the anchor.

第二薄膜橫桿815之製造可相似於圖24中之薄膜橫桿415之製造,其中程序流程可相似於圖15至圖23所展示之程序流程。在將第一薄膜橫桿817形成於第一模具上方且運用鈍化層782及794來覆蓋第一薄膜橫桿817之後,可將第二薄膜橫桿815形成於第一薄膜橫桿817上方。將第二模具形成於第一薄膜橫桿817上方。接著,將至少額外導電層及額外金屬層沈積及圖案化於第二模具上方以形成第二薄膜橫桿815。在一些實施方案中,第三鈍化層814形成於第二薄膜橫桿815上方。第三鈍化層814可包括本文中早先所論述之任何合適鈍化材料。可藉由移除第一模具及第二模具而將MEMS器件702脫模,如圖51所展示。在脫模之前形成鈍化層782、794及814。 The fabrication of the second film rail 815 can be similar to the fabrication of the film rail 415 of Figure 24, wherein the program flow can be similar to the program flow shown in Figures 15-23. After the first film crossbar 817 is formed over the first mold and the passivation layers 782 and 794 are used to cover the first film crossbar 817, the second film crossbar 815 can be formed over the first film crossbar 817. A second mold is formed over the first film crossbar 817. Next, at least additional conductive layers and additional metal layers are deposited and patterned over the second mold to form a second film crossbar 815. In some embodiments, a third passivation layer 814 is formed over the second film crossbar 815. The third passivation layer 814 can comprise any suitable passivation material discussed earlier herein. The MEMS device 702 can be demolded by removing the first mold and the second mold, as shown in FIG. Passivation layers 782, 794, and 814 are formed prior to demolding.

在圖51中,一或多個電極703及713可具有一或多個曝露表面。可不使一或多個曝露表面鈍化,此可導致用於電流之洩漏路徑。如圖51所展示,可將電極703及713之頂部表面及底部表面曝露,而由第一鈍化層782或第二鈍化層794使電極703及713之側壁鈍化。此外,可將一或多個快門702之頂部表面及底部表面曝露。為了使第一薄膜橫桿817及第二薄膜橫桿815中之任何曝露表面鈍化,可在脫模之後將額外鈍化材料層提供至MEMS器件702。 In Figure 51, one or more of the electrodes 703 and 713 can have one or more exposed surfaces. One or more exposed surfaces may not be passivated, which may result in a leakage path for the current. As shown in FIG. 51, the top and bottom surfaces of electrodes 703 and 713 can be exposed while the sidewalls of electrodes 703 and 713 are passivated by first passivation layer 782 or second passivation layer 794. Additionally, the top and bottom surfaces of one or more shutters 702 can be exposed. To passivate any exposed surfaces in the first film crossbar 817 and the second film crossbar 815, an additional layer of passivation material can be provided to the MEMS device 702 after demolding.

圖52展示具有後脫模鈍化層500之MEMS器件702。在MEMS器件702之脫模之後,可形成後脫模鈍化層700以覆蓋第一薄膜橫桿817及第二薄膜橫桿815之外部表面。另外,後脫模鈍化層700可構成覆蓋內部鈍化層730之外部鈍化層。可藉由CVD(諸如電漿CVD)而將後脫模鈍化層700保形地沈積於MEMS器件702之曝露表面上。然而,一般熟 習此項技術者應理解,可應用任何合適沈積技術。後脫模鈍化層700可包括如本文中早先所描述之任何合適鈍化材料。在一些實施方案中,MEMS器件702可包括用於將板固持為遠離第二薄膜橫桿815之複數個隔片。 FIG. 52 shows MEMS device 702 having a post-release passivation layer 500. After demolding of the MEMS device 702, a post-release passivation layer 700 can be formed to cover the outer surfaces of the first film crossbar 817 and the second film crossbar 815. Additionally, the post-release passivation layer 700 can form an outer passivation layer that covers the inner passivation layer 730. The post-release passivation layer 700 can be conformally deposited on the exposed surface of the MEMS device 702 by CVD, such as plasma CVD. However, generally cooked It will be understood by those skilled in the art that any suitable deposition technique can be applied. The post-release passivation layer 700 can comprise any suitable passivation material as described earlier herein. In some embodiments, MEMS device 702 can include a plurality of spacers for holding the plate away from second film crossbar 815.

後脫模鈍化層700之沈積可發生於MEMS器件702之所有表面上,如圖52所展示。換言之,後脫模鈍化層700塗佈MEMS器件702上之各處。後脫模鈍化層700可覆蓋一或多個電極703及713之頂部表面及底部表面以及一或多個快門702之頂部表面及底部表面。在一些實施方案中,後脫模鈍化層700可相對薄,諸如小於約1000Å、小於約500Å,或介於約200Å與約400Å之間。與此對比,內部鈍化層730可具有小於約2000Å之厚度,諸如介於約300Å與約1000Å之間。圖52中之後脫模鈍化層700之態樣可相似於圖41中之後脫模鈍化層500。 Deposition of the post-release passivation layer 700 can occur on all surfaces of the MEMS device 702, as shown in FIG. In other words, the post-release passivation layer 700 coats the entire surface of the MEMS device 702. The post-release passivation layer 700 can cover the top and bottom surfaces of the one or more electrodes 703 and 713 and the top and bottom surfaces of the one or more shutters 702. In some embodiments, the post-release passivation layer 700 can be relatively thin, such as less than about 1000 Å, less than about 500 Å, or between about 200 Å and about 400 Å. In contrast, internal passivation layer 730 can have a thickness of less than about 2000 Å, such as between about 300 Å and about 1000 Å. The pattern of the subsequent stripping passivation layer 700 in FIG. 52 can be similar to the subsequent stripping passivation layer 500 in FIG.

圖53A及圖53B展示包括複數個顯示元件之實例顯示器件5340的系統方塊圖。顯示器件5340可為(例如)智慧型電話、蜂巢式電話或行動電話。然而,顯示器件5340之相同組件或其輕微變化亦說明各種類型之顯示器件,諸如電視、電腦、平板電腦、電子閱讀器、手持型器件及攜帶型媒體器件。 53A and 53B show system block diagrams of an example display device 5340 that includes a plurality of display elements. Display device 5340 can be, for example, a smart phone, a cellular phone, or a mobile phone. However, the same components of display device 5340, or slight variations thereof, also illustrate various types of display devices, such as televisions, computers, tablets, e-readers, handheld devices, and portable media devices.

顯示器件5340包括外殼5341、顯示器5330、天線5343、揚聲器5345、輸入器件5348及麥克風5346。外殼5341可由包括射出模製及真空模製之多種製造程序中之任一者形成。另外,外殼5341可由包括但不限於以下各者之多種材料中之任一者製成:塑膠、金屬、玻璃、橡膠及陶瓷,或其組合。外殼5341可包括可與具有不同色彩或含有不同標誌、圖片或符號之其他可移除部分互換的可移除部分(未圖示)。 Display device 5340 includes a housing 5341, a display 5330, an antenna 5343, a speaker 5345, an input device 5348, and a microphone 5346. The outer casing 5341 can be formed from any of a variety of manufacturing processes including injection molding and vacuum molding. Additionally, the outer casing 5341 can be made from any of a variety of materials including, but not limited to, plastic, metal, glass, rubber, and ceramic, or a combination thereof. The housing 5341 can include a removable portion (not shown) that can be interchanged with other removable portions having different colors or containing different logos, pictures, or symbols.

顯示器5330可為如本文中所描述之多種顯示器中之任一者,包括雙穩態或類比顯示器。顯示器5330亦可能夠包括:平板顯示器,諸如電漿、電致發光(EL)顯示器、OLED、超扭轉向列(STN)顯示器、 LCD或薄膜電晶體(TFT)LCD;或非平板顯示器,諸如陰極射線管(CRT)或其他管式器件。另外,顯示器5330可包括基於機械光調變器之顯示器,如本文中所描述。 Display 5330 can be any of a variety of displays as described herein, including bistable or analog displays. The display 5330 can also include: a flat panel display such as a plasma, an electroluminescence (EL) display, an OLED, a super twisted nematic (STN) display, LCD or thin film transistor (TFT) LCD; or non-flat panel display, such as cathode ray tube (CRT) or other tubular device. Additionally, display 5330 can include a display based on a mechanical light modulator, as described herein.

圖53B中示意性地說明顯示器件5340之組件。顯示器件5340包括外殼5341且可包括至少部分地圍封於其中之額外組件。舉例而言,顯示器件5340包括網路介面5327,其包括可耦接至收發器5347之天線5343。網路介面5327可為可顯示於顯示器件5340上之影像資料的源。因此,網路介面5327為影像源模組之一個實例,但處理器5321及輸入器件5348亦可充當影像源模組。收發器5347連接至處理器5321,處理器5321連接至調節硬體5352。調節硬體5352可經組態以調節信號(諸如濾波或以其他方式操縱信號)。調節硬體5352可連接至揚聲器5345及麥克風5346。處理器5321亦可連接至輸入器件5348及驅動器控制器5329。驅動器控制器5329亦可耦接至圖框緩衝器5328且耦接至陣列驅動器5322,陣列驅動器5322又可耦接至顯示陣列5330。顯示器件5340中之一或多個元件(包括圖53A中未特定地描繪之元件)可能夠充當記憶體器件且能夠與處理器5321通信。在一些實施方案中,電力供應器5350可將電力提供至特定顯示器件5340設計中之實質上所有組件。 The components of display device 5340 are schematically illustrated in Figure 53B. Display device 5340 includes a housing 5341 and can include additional components that are at least partially enclosed therein. For example, display device 5340 includes a network interface 5327 that includes an antenna 5343 that can be coupled to transceiver 5347. The network interface 5327 can be a source of image material that can be displayed on the display device 5340. Therefore, the network interface 5327 is an example of an image source module, but the processor 5321 and the input device 5348 can also function as an image source module. The transceiver 5347 is coupled to the processor 5321 and the processor 5321 is coupled to the conditioning hardware 5352. The conditioning hardware 5352 can be configured to condition a signal (such as filtering or otherwise manipulating the signal). The adjustment hardware 5352 can be connected to the speaker 5345 and the microphone 5346. The processor 5321 can also be coupled to the input device 5348 and the driver controller 5329. The driver controller 5329 can also be coupled to the frame buffer 5328 and coupled to the array driver 5322. The array driver 5322 can be coupled to the display array 5330. One or more of the components of display device 5340 (including those not specifically depicted in FIG. 53A) may be capable of acting as a memory device and capable of communicating with processor 5321. In some implementations, the power supply 5350 can provide power to substantially all of the components in a particular display device 5340 design.

網路介面5327包括天線43及收發器5347,使得顯示器件5340可經由網路而與一或多個器件通信。網路介面5327亦可具有緩和(例如)處理器5321之資料處理要求的一些處理能力。天線5343可傳輸及接收信號。在一些實施方案中,天線5343根據IEEE 16.11標準中之任一者或IEEE 802.11標準中之任一者而傳輸及接收RF信號。在一些其他實施方案中,天線5343根據Bluetooth®標準而傳輸及接收RF信號。在蜂巢式電話之狀況下,天線5343可經設計以接收分碼多重存取(CDMA)、分頻多重存取(FDMA)、分時多重存取(TDMA)、全球行動通信系統(GSM)、GSM/通用封包無線電服務(GPRS)、增強型資料 GSM環境(EDGE)、陸上集群無線電(TETRA)、寬頻CDMA(W-CDMA)、演進資料最佳化(EV-DO)、1xEV-DO、EV-DO Rev A、EV-DO Rev B、高速封包存取(HSPA)、高速下行鏈路封包存取(HSDPA)、高速上行鏈路封包存取(HSUPA)、演進型高速封包存取(HSPA+)、長期演進(LTE)、AMPS,或用以在無線網路(諸如利用3G、4G或5G技術或其另外實施方案之系統)內通信之其他已知信號。收發器5347可預處理自天線5343接收之信號,使得該等信號可由處理器5321接收及進一步操縱。收發器5347亦可處理自處理器5321接收之信號,使得該等信號可經由天線5343而自顯示器件5340傳輸。 The network interface 5327 includes an antenna 43 and a transceiver 5347 such that the display device 5340 can communicate with one or more devices via a network. Network interface 5327 may also have some processing power to mitigate, for example, the data processing requirements of processor 5321. The antenna 5343 can transmit and receive signals. In some embodiments, antenna 5343 transmits and receives RF signals in accordance with any of the IEEE 16.11 standards or any of the IEEE 802.11 standards. In some other implementations, the antenna 5343 transmits and receives RF signals in accordance with the Bluetooth® standard. In the case of a cellular telephone, the antenna 5343 can be designed to receive code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), Global System for Mobile Communications (GSM), GSM/General Packet Radio Service (GPRS), enhanced data GSM Environment (EDGE), Terrestrial Trunked Radio (TETRA), Broadband CDMA (W-CDMA), Evolution Data Optimized (EV-DO), 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA), High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Evolved High Speed Packet Access (HSPA+), Long Term Evolution (LTE), AMPS, or Other known signals communicated within a wireless network, such as a system utilizing 3G, 4G, or 5G technology or other embodiments thereof. Transceiver 5347 can preprocess the signals received from antenna 5343 such that the signals can be received and further manipulated by processor 5321. Transceiver 5347 can also process signals received from processor 5321 such that the signals can be transmitted from display device 5340 via antenna 5343.

在一些實施方案中,收發器5347可由接收器替換。另外,在一些實施方案中,網路介面5327可由影像源替換,影像源可儲存或產生待發送至處理器5321之影像資料。處理器5321可控制顯示器件5340之總操作。處理器5321接收資料(諸如來自網路介面5327或影像源之經壓縮影像資料),且將資料處理成原始影像資料或處理成可容易處理成原始影像資料之格式。處理器5321可將經處理資料發送至驅動器控制器5329或發送至圖框緩衝器5328以供儲存。原始資料通常係指識別影像內之每一部位處之影像特性的資訊。舉例而言,此等影像特性可包括色彩、飽和度及灰度階準。 In some embodiments, the transceiver 5347 can be replaced by a receiver. Additionally, in some embodiments, the network interface 5327 can be replaced by an image source that can store or generate image material to be sent to the processor 5321. The processor 5321 can control the overall operation of the display device 5340. The processor 5321 receives the data (such as compressed image data from the network interface 5327 or the image source) and processes the data into raw image data or processed into a format that can be easily processed into the original image data. The processor 5321 can send the processed data to the driver controller 5329 or to the frame buffer 5328 for storage. Raw material is usually information that identifies the image characteristics at each part of the image. For example, such image characteristics may include color, saturation, and gray scale.

處理器5321可包括用以控制顯示器件5340之操作的微控制器、CPU或邏輯單元。調節硬體5352可包括用於將信號傳輸至揚聲器5345及用於自麥克風5346接收信號之放大器及濾波器。調節硬體5352可為顯示器件5340內之離散組件,或可併入於處理器5321或其他組件內。 The processor 5321 can include a microcontroller, CPU, or logic unit to control the operation of the display device 5340. The conditioning hardware 5352 can include amplifiers and filters for transmitting signals to the speaker 5345 and for receiving signals from the microphone 5346. The conditioning hardware 5352 can be a discrete component within the display device 5340 or can be incorporated within the processor 5321 or other components.

驅動器控制器5329可直接地自處理器5321或自圖框緩衝器5328採取由處理器5321產生之原始影像資料,且可適當地重新格式化該原始影像資料以用於高速傳輸至陣列驅動器5322。在一些實施方案中,驅動器控制器5329可將原始影像資料重新格式化成具有類點陣格式之 資料流,使得該資料流具有適合於橫越顯示陣列5330進行掃描之時間次序。接著,驅動器控制器5329將經格式化資訊發送至陣列驅動器5322。儘管驅動器控制器5329常常作為單機積體電路(IC)而與系統處理器5321相關聯,但可以許多方式來實施此等控制器。舉例而言,控制器可作為硬體而嵌入於處理器5321中、作為軟體而嵌入於處理器5321中,或與陣列驅動器5322一起完全地整合於硬體中。 The driver controller 5329 can take the raw image material generated by the processor 5321 directly from the processor 5321 or from the frame buffer 5328 and can reformat the original image material for high speed transmission to the array driver 5322. In some embodiments, the driver controller 5329 can reformat the original image data into a dot-like format. The data stream is such that the data stream has a temporal order suitable for scanning across the display array 5330. Driver controller 5329 then sends the formatted information to array driver 5322. Although the driver controller 5329 is often associated with the system processor 5321 as a stand-alone integrated circuit (IC), such controllers can be implemented in a number of ways. For example, the controller may be embedded in the processor 5321 as a hardware, embedded in the processor 5321 as a software, or fully integrated into the hardware together with the array driver 5322.

陣列驅動器5322可自驅動器控制器5329接收經格式化資訊,且可將視訊資料重新格式化成一組平行波形,該等波形被每秒許多次地施加至來自顯示器之x-y顯示元件矩陣之數百個且有時數千個(或更多)引線。在一些實施方案中,陣列驅動器5322及顯示陣列5330為顯示模組之部分。在一些實施方案中,驅動器控制器5329、陣列驅動器5322及顯示陣列5330為顯示模組之部分。 Array driver 5322 can receive formatted information from driver controller 5329 and can reformat the video material into a set of parallel waveforms that are applied to the matrix of xy display elements from the display many times per second. And sometimes thousands (or more) of leads. In some embodiments, array driver 5322 and display array 5330 are part of a display module. In some embodiments, the driver controller 5329, the array driver 5322, and the display array 5330 are part of a display module.

在一些實施方案中,驅動器控制器5329、陣列驅動器5322及顯示陣列5330適於本文中所描述之類型的顯示器中之任一者。舉例而言,驅動器控制器5329可為習知顯示控制器或雙穩態顯示控制器(諸如機械光調變器顯示元件控制器)。另外,陣列驅動器5322可為習知驅動器或雙穩態顯示驅動器(諸如機械光調變器顯示元件驅動器)。此外,顯示陣列5330可為習知顯示陣列或雙穩態顯示陣列(諸如包括機械光調變器顯示元件陣列之顯示器)。在一些實施方案中,驅動器控制器5329可與陣列驅動器5322整合。此實施方案可用於高度整合系統,例如,行動電話、攜帶型電子器件、手錶或小面積顯示器。 In some implementations, the driver controller 5329, the array driver 5322, and the display array 5330 are suitable for any of the types of displays described herein. For example, the driver controller 5329 can be a conventional display controller or a bi-stable display controller (such as a mechanical light modulator display element controller). Additionally, array driver 5322 can be a conventional driver or a bi-stable display driver (such as a mechanical light modulator display element driver). Additionally, display array 5330 can be a conventional display array or a bi-stable display array (such as a display including an array of mechanical light modulator display elements). In some embodiments, the driver controller 5329 can be integrated with the array driver 5322. This embodiment can be used in highly integrated systems such as mobile phones, portable electronics, watches or small area displays.

在一些實施方案中,輸入器件5348可經組態以允許(例如)使用者控制顯示器件5340之操作。輸入器件5348可包括小鍵盤(諸如QWERTY鍵盤或電話小鍵盤)、按鈕、開關、搖臂、觸敏式螢幕、與顯示陣列5330整合之觸敏式螢幕,或壓敏式或熱敏式隔膜。麥克風5346可經組態為用於顯示器件5340之輸入器件。在一些實施方案中, 經由麥克風5346之語音命令可用於控制顯示器件5340之操作。另外,在一些實施方案中,語音命令可用於控制顯示參數及設定。 In some embodiments, input device 5348 can be configured to allow, for example, a user to control the operation of display device 5340. Input device 5348 can include a keypad (such as a QWERTY keyboard or telephone keypad), buttons, switches, rocker arms, touch sensitive screens, a touch sensitive screen integrated with display array 5330, or a pressure sensitive or thermal diaphragm. Microphone 5346 can be configured as an input device for display device 5340. In some embodiments, Voice commands via microphone 5346 can be used to control the operation of display device 5340. Additionally, in some embodiments, voice commands can be used to control display parameters and settings.

電力供應器5350可包括多種能量儲存器件。舉例而言,電力供應器5350可為可再充電蓄電池,諸如鎳鎘蓄電池或鋰離子蓄電池。在使用可再充電蓄電池之實施方案中,可再充電蓄電池可為使用來自(例如)壁式插座或光伏打器件或陣列之電力而可充電的。替代地,可再充電蓄電池可為可無線充電的。電力供應器5350亦可為可再生能源、電容器,或太陽能電池,包括塑膠太陽能電池或太陽能電池漆。電力供應器5350亦可經組態以自壁式插座接收電力。 Power supply 5350 can include a variety of energy storage devices. For example, the power supply 5350 can be a rechargeable battery, such as a nickel cadmium battery or a lithium ion battery. In embodiments in which a rechargeable battery is used, the rechargeable battery can be rechargeable using power from, for example, a wall socket or photovoltaic device or array. Alternatively, the rechargeable battery can be wirelessly chargeable. The power supply 5350 can also be a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell or a solar cell lacquer. Power supply 5350 can also be configured to receive power from a wall outlet.

在一些實施方案中,控制可程式性駐留於可位於電子顯示系統中之若干處的驅動器控制器5329中。在一些其他實施方案中,控制可程式性駐留於陣列驅動器5322中。上文所描述之最佳化可實施於任何數目個硬體及/或軟體組件中且以各種組態予以實施。 In some embodiments, the control can be programmatically resident in a driver controller 5329 that can be located at several places in the electronic display system. In some other implementations, control resides programmatically in array driver 5322. The optimizations described above can be implemented in any number of hardware and/or software components and implemented in a variety of configurations.

如本文中所使用,參考項目之清單「中之至少一者」的片語係指彼等項目之任何組合,包括單成員。作為一實例,「a、b或c中之至少一者」意欲涵蓋:a、b、c、a-b、a-c、b-c,及a-b-c。 As used herein, a phrase referring to at least one of the list of items refers to any combination of items, including single members. As an example, "at least one of a, b or c" is intended to cover: a, b, c, a-b, a-c, b-c, and a-b-c.

結合本文中所揭示之實施方案所描述之各種說明性邏輯、邏輯區塊、模組、電路及演算法程序可被實施為電子硬體、電腦軟體,或此兩者之組合。硬體與軟體之互換性已大體上在功能性方面予以描述,且在上文所描述之各種說明性組件、區塊、模組、電路及程序中予以說明。此功能性係以硬體抑或軟體予以實施取決於特定應用及強加於總系統之設計約束。 The various illustrative logic, logic blocks, modules, circuits, and algorithms described in connection with the embodiments disclosed herein can be implemented as an electronic hardware, a computer software, or a combination of both. The interchangeability of hardware and software has been described generally in terms of functionality and is described in the various illustrative components, blocks, modules, circuits, and procedures described above. This functionality is implemented in hardware or software depending on the particular application and design constraints imposed on the overall system.

用以實施結合本文中所揭示之態樣所描述之各種說明性邏輯、邏輯區塊、模組及電路的硬體及資料處理裝置可運用經設計以執行本文中所描述之功能的以下各者予以實施或執行:一般用途單晶片或多晶片處理器、數位信號處理器(DSP)、特殊應用積體電路(ASIC)、場 可程式化閘陣列(FPGA)或其他可程式化邏輯器件、離散閘或電晶體邏輯、離散硬體組件,或其任何組合。一般用途處理器可為微處理器,或任何習知處理器、控制器、微控制器或狀態機。處理器亦可被實施為計算器件之組合,例如,DSP與微處理器之組合、複數個微處理器、結合DSP核心之一或多個微處理器,或任何其他此類組態。在一些實施方案中,特定程序及方法可由特定於給定功能之電路系統執行。 The hardware and data processing apparatus for implementing the various illustrative logic, logic blocks, modules, and circuits described in connection with the aspects disclosed herein may employ the following, which are designed to perform the functions described herein. Implemented or implemented: general purpose single or multi-chip processors, digital signal processors (DSPs), special application integrated circuits (ASICs), fields Programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof. A general purpose processor can be a microprocessor, or any conventional processor, controller, microcontroller, or state machine. The processor can also be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some embodiments, specific procedures and methods may be performed by circuitry that is specific to a given function.

在一或多個態樣中,所描述之功能可以硬體、數位電子電路系統、電腦軟體、韌體(包括本說明書中所揭示之結構及其結構等效者)或其任何組合予以實施。本說明書中所描述之主題的實施方案亦可被實施為編碼於電腦儲存媒體上之一或多個電腦程式(亦即,電腦程式指令之一或多個模組)以供資料處理裝置執行或控制資料處理裝置之操作。 In one or more aspects, the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware (including the structures disclosed in this specification and their structural equivalents), or any combination thereof. Embodiments of the subject matter described in this specification can also be implemented as one or more computer programs (ie, one or more modules of computer program instructions) encoded on a computer storage medium for execution by a data processing device or Control the operation of the data processing device.

在不脫離本發明之精神或範疇的情況下,對本發明中所描述之實施方案的各種修改對於熟習此項技術者而言可容易顯而易見,且本文中所定義之一般原理可應用於其他實施方案。因此,申請專利範圍並不意欲限於本文中所展示之實施方案,但應符合與本文中所揭示之本發明、原理及新穎特徵相一致之最廣泛範疇。 Various modifications to the described embodiments of the invention can be readily apparent to those skilled in the art without departing from the scope of the invention, and the general principles defined herein are applicable to other embodiments. . Therefore, the scope of the invention is not intended to be limited to the embodiments shown herein, but the broadest scope of the invention, the principles and novel features disclosed herein.

另外,一般熟習此項技術者將容易瞭解,術語「上部」及「下部」有時係為了易於描述諸圖而使用,且指示對應於在適當定向之頁面上的圖之定向的相對位置,且可能並不反映如所實施之任何器件之適當定向。 In addition, it will be readily apparent to those skilled in the art that the terms "upper" and "lower" are sometimes used to facilitate the description of the figures, and indicate the relative position of the orientation corresponding to the map on the appropriately oriented page, and It may not reflect the proper orientation of any device as implemented.

本說明書中在單獨實施方案之上下文中所描述之某些特徵亦可以組合形式實施於單一實施方案中。相反地,在單一實施方案之上下文中所描述之各種特徵亦可單獨地或以任何合適子組合形式實施於多個實施方案中。此外,儘管上文可將特徵描述為以某些組合形式起作 用且甚至最初按此而主張,但來自所主張組合之一或多個特徵在一些狀況下可自該組合被刪除,且所主張組合可有關於子組合或子組合之變化。 Certain features that are described in this specification in the context of separate embodiments can also be implemented in a single embodiment. Conversely, various features that are described in the context of a single embodiment can be implemented in various embodiments, either individually or in any suitable sub-combination. Moreover, although the features may be described above as being in some combination It is used and even initially claimed, but one or more features from the claimed combination may be deleted from the combination under some circumstances, and the claimed combination may have variations with respect to sub-combinations or sub-combinations.

相似地,雖然在圖式中以特定次序來描繪操作,但不應將此理解為要求以所展示之特定次序或以循序次序來執行此等操作或要求執行所有所說明操作,以達成理想結果。此外,圖式可按流程圖之形式示意性地描繪一或多個實例程序。然而,未描繪之其他操作可併入於示意性地所說明之實例程序中。舉例而言,可在所說明操作中之任一者之前、之後、同時地或之間執行一或多個額外操作。在某些情況下,多任務及並行處理可為有利的。此外,不應將在上文所描述之實施方案中的各種系統組件之分離理解為在所有實施方案中需要此分離,且應理解,所描述之程式組件及系統通常可一起整合於單一軟體產品中或封裝至多個軟體產品中。另外,其他實施方案係在以下申請專利範圍之範疇內。在一些狀況下,申請專利範圍中所敍述之動作可以不同次序執行且仍達成理想結果。 Similarly, although the operations are depicted in a particular order in the drawings, this is not to be construed as a limitation or a . Furthermore, the drawings may schematically depict one or more example programs in the form of flowcharts. However, other operations not depicted may be incorporated in the illustrative examples that are schematically illustrated. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the illustrated operations. In some cases, multitasking and parallel processing may be advantageous. In addition, the separation of various system components in the embodiments described above should not be construed as requiring such separation in all embodiments, and it is understood that the described program components and systems can generally be integrated together into a single software product. Medium or packaged into multiple software products. In addition, other embodiments are within the scope of the following claims. In some cases, the actions described in the scope of the claims can be performed in a different order and still achieve the desired results.

700‧‧‧後脫模鈍化層 700‧‧‧Down release passivation layer

702‧‧‧MEMS器件/快門 702‧‧‧MEMS devices/shutter

Claims (26)

一種微機電系統(MEMS)器件,其包含:一基板;在該基板上方之一第一薄膜橫桿,其中該第一薄膜橫桿包括一或多個電極;在該第一薄膜橫桿上方之一第二薄膜橫桿,該第一薄膜橫桿配置於該基板與該第二薄膜橫桿之間且與該基板及該第二薄膜橫桿隔開,其中該第二薄膜橫桿包括一或多個孔隙;部分地覆蓋該第二薄膜橫桿之一外部表面且部分地覆蓋該第一薄膜橫桿之一外部表面的一內部鈍化層,其中該第一薄膜橫桿之一部分及該第二薄膜橫桿之一部分未由該內部鈍化層覆蓋;及在該內部鈍化層上方之一外部鈍化層,該外部鈍化層覆蓋該內部鈍化層以及該第一薄膜橫桿之該未經覆蓋部分及該第二薄膜橫桿之該未經覆蓋部分。 A microelectromechanical system (MEMS) device comprising: a substrate; a first film crossbar above the substrate, wherein the first film crossbar includes one or more electrodes; above the first film crossbar a second film crossbar disposed between the substrate and the second film crossbar and spaced apart from the substrate and the second film crossbar, wherein the second film crossbar includes one or a plurality of apertures; an inner passivation layer partially covering an outer surface of the second film crossbar and partially covering an outer surface of one of the first film crossbars, wherein the first film crossbar and the second portion One portion of the film crossbar is not covered by the inner passivation layer; and an outer passivation layer over the inner passivation layer, the outer passivation layer covering the inner passivation layer and the uncovered portion of the first film crossbar and the The uncovered portion of the second film crossbar. 如請求項1之MEMS器件,其中該一或多個電極中之每一者包括一頂部表面、一底部表面及側壁,該內部鈍化層至少覆蓋該一或多個電極之該等側壁,且該外部鈍化層至少覆蓋該一或多個電極之該等頂部表面及底部表面。 The MEMS device of claim 1, wherein each of the one or more electrodes comprises a top surface, a bottom surface, and a sidewall, the inner passivation layer covering at least the sidewalls of the one or more electrodes, and An outer passivation layer covers at least the top and bottom surfaces of the one or more electrodes. 如請求項1之MEMS器件,其中該第一薄膜橫桿包括一第一導電層,其中該基板包括與該第一導電層接觸之一導電表面。 The MEMS device of claim 1, wherein the first film crossbar comprises a first conductive layer, wherein the substrate comprises a conductive surface in contact with the first conductive layer. 如請求項3之MEMS器件,其中該第一薄膜橫桿進一步包括一第二導電層,該第二導電層在組成上與該第一導電層相同且連接至該第二薄膜橫桿。 The MEMS device of claim 3, wherein the first film crossbar further comprises a second conductive layer that is identical in composition to the first conductive layer and to the second film crossbar. 如請求項4之MEMS器件,其中該第二導電層為一蝕刻終止層。 The MEMS device of claim 4, wherein the second conductive layer is an etch stop layer. 如請求項4之MEMS器件,其中該第一薄膜橫桿進一步包括在該第一導電層與該第二導電層之間的一金屬層,該第一導電層、該金屬層及該第二導電層中之一或多者實質上不透光。 The MEMS device of claim 4, wherein the first film crossbar further comprises a metal layer between the first conductive layer and the second conductive layer, the first conductive layer, the metal layer and the second conductive One or more of the layers are substantially opaque. 如請求項1之MEMS器件,其中該第一薄膜橫桿包括一快門,該快門經組態以實質上防止光行進通過該一或多個孔隙。 The MEMS device of claim 1, wherein the first film crossbar includes a shutter configured to substantially prevent light from traveling through the one or more apertures. 如請求項1之MEMS器件,其中該第二鈍化層之一厚度小於約1000Å。 The MEMS device of claim 1, wherein one of the second passivation layers has a thickness of less than about 1000 Å. 如請求項1之MEMS器件,其中該第一薄膜橫桿包括一第一臂且該第二薄膜橫桿包括一第二臂,每一臂朝向該基板之該表面延伸,該第一臂接合至及重疊於該第二臂,該第一臂及該第二臂形成能夠將該第一薄膜橫桿及該第二薄膜橫桿固持為與該基板相隔一距離之一錨定件。 The MEMS device of claim 1, wherein the first film crossbar includes a first arm and the second film crossbar includes a second arm, each arm extending toward the surface of the substrate, the first arm being coupled to And overlapping the second arm, the first arm and the second arm form an anchor capable of holding the first film crossbar and the second film crossbar at a distance from the substrate. 如請求項1之MEMS器件,其中該一或多個電極包括具有大於約4:1之一縱橫比的可移動側壁橫桿。 The MEMS device of claim 1, wherein the one or more electrodes comprise a movable sidewall rail having an aspect ratio greater than about 4:1. 如請求項1之MEMS器件,其中該基板包括一玻璃基板。 The MEMS device of claim 1, wherein the substrate comprises a glass substrate. 如請求項1之MEMS器件,其進一步包含用於將一板固持為遠離該第二薄膜橫桿之複數個隔片。 The MEMS device of claim 1, further comprising a plurality of spacers for holding a plate away from the second film crossbar. 如請求項12之MEMS器件,其進一步包含一處理器,其能夠與顯示器通信,該處理器能夠處理影像資料;及一記憶體器件,其能夠與該處理器通信。 The MEMS device of claim 12, further comprising a processor operative to communicate with the display, the processor capable of processing the image material; and a memory device operative to communicate with the processor. 如請求項13之MEMS器件,其進一步包含一驅動器電路,其能夠將至少一個信號發送至該顯示器;及一控制器,其能夠將該影像資料之至少一部分發送至該驅動器電路。 The MEMS device of claim 13 further comprising a driver circuit capable of transmitting at least one signal to the display; and a controller capable of transmitting at least a portion of the image data to the driver circuit. 如請求項13之MEMS器件,其進一步包含一影像源模組,該影像 源模組能夠將該影像資料發送至該處理器,其中該影像源模組包括一接收器、收發器及傳輸器中之至少一者。 The MEMS device of claim 13, further comprising an image source module, the image The source module can send the image data to the processor, wherein the image source module includes at least one of a receiver, a transceiver, and a transmitter. 如請求項13之MEMS器件,其進一步包含一輸入器件,該輸入器件能夠接收輸入資料且將該輸入資料傳達至該處理器。 The MEMS device of claim 13 further comprising an input device capable of receiving input data and communicating the input data to the processor. 一種MEMS器件,其包含:一基板;在該基板上方之一第一薄膜橫桿,其中該第一薄膜橫桿包括一或多個電極;在該第一薄膜橫桿上方之一第二薄膜橫桿,該第一薄膜橫桿配置於該基板與該第二薄膜橫桿之間且與該基板及該第二薄膜橫桿隔開,其中該第二薄膜橫桿包括一或多個孔隙;部分地覆蓋該第二薄膜橫桿之一外部表面且部分地覆蓋該第一薄膜橫桿之一外部表面的用於使該MEMS器件鈍化之第一構件,其中該第一薄膜橫桿之一部分及該第二薄膜橫桿之一部分未由該第一鈍化構件覆蓋;及在該第一鈍化構件上方的用於使該MEMS器件鈍化之第二構件,該第二鈍化構件覆蓋該第一鈍化構件以及該第一薄膜橫桿之該未經覆蓋部分及該第二薄膜橫桿之該未經覆蓋部分。 A MEMS device comprising: a substrate; a first film crossbar above the substrate, wherein the first film crossbar includes one or more electrodes; and a second film cross over the first film crossbar a first film crossbar disposed between the substrate and the second film crossbar and spaced apart from the substrate and the second film crossbar, wherein the second film crossbar includes one or more apertures; a first member for covering the outer surface of one of the second film rails and partially covering an outer surface of one of the first film rails for passivating the MEMS device, wherein the first film rail portion and the portion One portion of the second film crossbar is not covered by the first passivation member; and a second member over the first passivation member for passivating the MEMS device, the second passivation member covering the first passivation member and the The uncovered portion of the first film crossbar and the uncovered portion of the second film crossbar. 如請求項17之MEMS器件,其中該一或多個電極中之每一者包括一頂部表面、一底部表面及側壁,該第一鈍化構件至少覆蓋該一或多個電極之該等側壁,且該第二鈍化構件至少覆蓋該一或多個電極之該等頂部表面及底部表面。 The MEMS device of claim 17, wherein each of the one or more electrodes comprises a top surface, a bottom surface, and a sidewall, the first passivation member covering at least the sidewalls of the one or more electrodes, and The second passivation member covers at least the top and bottom surfaces of the one or more electrodes. 如請求項17之MEMS器件,其中該第一薄膜橫桿包括一第一導電層,其中該基板包括與該第一導電層接觸之一導電表面。 The MEMS device of claim 17, wherein the first film crossbar comprises a first conductive layer, wherein the substrate comprises a conductive surface in contact with the first conductive layer. 一種製造一MEMS器件之方法,該方法包含:提供一基板; 在該基板上方形成用於形成一第一薄膜橫桿之一第一模具;在該第一模具上形成一第一鈍化材料預脫模層;在該第一模具及該第一鈍化材料預脫模層上方形成該第一薄膜橫桿;在該第一薄膜橫桿上方形成一第二鈍化材料預脫模層;在該第二鈍化材料預脫模層上方形成用於形成一第二薄膜橫桿之一第二模具;在該第二模具上方形成該第二薄膜橫桿;將該第一薄膜橫桿及該第二薄膜橫桿自該第一模具及該第二模具脫模,使得該第一鈍化材料預脫模層及該第二鈍化材料預脫模層部分地覆蓋該第一薄膜橫桿之一外部表面,該第一薄膜橫桿與該基板隔開,且該第二薄膜橫桿與該第一薄膜橫桿隔開且重疊於該第一薄膜橫桿;及形成一鈍化材料後脫模層以覆蓋該第二薄膜橫桿及該第一薄膜橫桿之該外部表面。 A method of fabricating a MEMS device, the method comprising: providing a substrate; Forming a first mold for forming a first film crossbar over the substrate; forming a first passivation material pre-release layer on the first mold; pre-detaching the first mold and the first passivation material Forming a first film crossbar above the mold layer; forming a second passivation material pre-release layer over the first film crossbar; forming a second film cross-section over the second passivation material pre-release layer a second mold of the rod; forming the second film crossbar above the second mold; demolding the first film crossbar and the second film crossbar from the first mold and the second mold, such that The first passivation material pre-release layer and the second passivation material pre-release layer partially cover an outer surface of the first film crossbar, the first film crossbar is spaced apart from the substrate, and the second film is transverse The rod is spaced apart from the first film crossbar and overlaps the first film crossbar; and a passivation material is formed to release the mold layer to cover the second film crossbar and the outer surface of the first film crossbar. 如請求項20之方法,其進一步包含:在將該第一薄膜橫桿及該第二薄膜橫桿脫模之前在該第二薄膜橫桿上方形成一第三鈍化材料預脫模層。 The method of claim 20, further comprising: forming a third passivation material pre-release layer over the second film crossbar prior to demolding the first film crossbar and the second film crossbar. 如請求項20之方法,其中形成該第一薄膜橫桿包含:在該第一鈍化材料預脫模層之部分上方沈積一第一遮罩;蝕刻該第一鈍化材料預脫模層之至少一些;在該第一鈍化材料預脫模層上方及在該第一模具上方沈積一導電層;及在該導電層上沈積一金屬層。 The method of claim 20, wherein the forming the first film crossbar comprises: depositing a first mask over a portion of the first passivation material pre-release layer; etching at least some of the first passivation material pre-release layer Depositing a conductive layer over the first passivation material pre-release layer and over the first mold; and depositing a metal layer on the conductive layer. 如請求項20之方法,其中形成該第一薄膜橫桿包含:各向異性地蝕刻該第一鈍化材料預脫模層之至少一些; 在該第一鈍化材料預脫模層及該第一模具上方沈積一第一導電層;在該第一導電層上沈積一金屬層;及在該金屬層上沈積一第二導電層,該第二導電層在組成上與該第一導電層相同。 The method of claim 20, wherein forming the first film crossbar comprises: anisotropically etching at least some of the first passivation material pre-release layer; Depositing a first conductive layer over the first passivation material pre-release layer and the first mold; depositing a metal layer on the first conductive layer; and depositing a second conductive layer on the metal layer The two conductive layers are identical in composition to the first conductive layer. 如請求項20之方法,其中在將該第一薄膜橫桿及該第二薄膜橫桿脫模之後,該第一薄膜橫桿包括一或多個電極且該第二薄膜橫桿包括一或多個孔隙。 The method of claim 20, wherein after the first film crossbar and the second film crossbar are demolded, the first film crossbar includes one or more electrodes and the second film crossbar includes one or more A pore. 如請求項24之方法,其中該一或多個電極中之每一者包括一頂部表面、一底部表面及側壁,該第一鈍化材料預脫模層及該第二鈍化材料預脫模層至少覆蓋該一或多個電極之該等側壁,且該鈍化材料後脫模層至少覆蓋該一或多個電極之該等頂部表面及底部表面。 The method of claim 24, wherein each of the one or more electrodes comprises a top surface, a bottom surface, and a sidewall, the first passivation material pre-release layer and the second passivation material pre-release layer at least The sidewalls of the one or more electrodes are covered, and the passivation material post-release layer covers at least the top and bottom surfaces of the one or more electrodes. 一種器件,其包含:一基板;在該基板上方之一導電墊;接觸該導電墊之至少一個第一薄膜層,其中該至少一個第一薄膜層形成一第一薄膜橫桿之至少部分;用以形成一第二薄膜橫桿之至少部分的在該第一薄膜橫桿上方之至少一個第二薄膜層,其中該第一薄膜橫桿與該基板隔開,且該第二薄膜橫桿與該第一薄膜橫桿隔開且重疊於該第一薄膜橫桿;部分地覆蓋該第一薄膜橫桿之一外部表面的一第一預脫模鈍化層,其中該第一薄膜橫桿之至少一部分曝露;在該第一預脫模鈍化層上方之一後脫模鈍化層,其中該後脫模鈍化層至少覆蓋該第一薄膜橫桿之該曝露部分。 A device comprising: a substrate; a conductive pad over the substrate; at least one first film layer contacting the conductive pad, wherein the at least one first film layer forms at least a portion of a first film crossbar; Forming at least a second film layer over the first film crossbar of at least a portion of the second film crossbar, wherein the first film crossbar is spaced from the substrate, and the second film crossbar is a first film crossbar spaced apart and overlapping the first film crossbar; a first pre-release passivation layer partially covering an outer surface of one of the first film crossbars, wherein at least a portion of the first film crossbar Exposing; releasing the passivation layer after one of the first pre-release passivation layers, wherein the post-release passivation layer covers at least the exposed portion of the first film cross-bar.
TW105116731A 2015-05-28 2016-05-27 Passivated microelectromechanical structures and methods TW201706204A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/724,374 US9440848B2 (en) 2014-09-30 2015-05-28 Passivated microelectromechanical structures and methods

Publications (1)

Publication Number Publication Date
TW201706204A true TW201706204A (en) 2017-02-16

Family

ID=56024401

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105116731A TW201706204A (en) 2015-05-28 2016-05-27 Passivated microelectromechanical structures and methods

Country Status (2)

Country Link
TW (1) TW201706204A (en)
WO (1) WO2016191063A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220112610A1 (en) * 2019-04-05 2022-04-14 Hewlett-Packard Development Company, L.P. Covers for electronic devices

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9223128B2 (en) * 2012-12-18 2015-12-29 Pixtronix, Inc. Display apparatus with densely packed electromechanical systems display elements

Also Published As

Publication number Publication date
WO2016191063A1 (en) 2016-12-01

Similar Documents

Publication Publication Date Title
US7630114B2 (en) Diffusion barrier layer for MEMS devices
TWI391317B (en) Method and device of electromechanical systems and displays
TWI387780B (en) Method of fabricating interferometric devices using lift-off processing techniques, display panel, and display device
TW201611623A (en) Microelectromechanical microphone
US20080218834A1 (en) Method and apparatus for providing a light absorbing mask in an interferometric modulator display
JP2009503565A (en) Support structure for MEMS device and method thereof
US9440848B2 (en) Passivated microelectromechanical structures and methods
TWI390643B (en) Mems device and interconnects for same
TW201500764A (en) Display apparatus incorporating dual-level shutters
TW201515986A (en) Thin-film transistors incorporated into three dimensional MEMS structures
US9395533B2 (en) Passivated microelectromechanical structures and methods
US20130335312A1 (en) Integration of thin film switching device with electromechanical systems device
TW201238010A (en) Method of fabrication and resultant encapsulated electromechanical device
TW201432345A (en) Display device incorporating multiple dielectric layers
TW201430381A (en) Display apparatus incorporating high-aspect ratio electrical interconnects
TW201409072A (en) Cavity liners for electromechanical systems devices
TW201333920A (en) Systems, devices, and methods for driving a display
TWI516799B (en) An apparatus having an electrostatic actuation assembly for controlling the position of a suspeneded portion of a display element and a method for forming an electrostatic actuator
TW201717184A (en) Systems and methods for supporting a bezel region of a display device
US20150318308A1 (en) Low temperature polycrystalline silicon backplane with coated aperture edges
TW201706204A (en) Passivated microelectromechanical structures and methods
US20160096729A1 (en) Photolithography Structures and Methods
JP2014534470A (en) Stack via for vertical integration
TW201502576A (en) Shutter assemblies incorporating out-of-plane motion restriction features
US20150355457A1 (en) Compact anchor for ems display elements