TW201705737A - Virtual communication protocol established in physical communication protocol for achieving the aims of intercommunicating and mutually transmitting control instructions - Google Patents

Virtual communication protocol established in physical communication protocol for achieving the aims of intercommunicating and mutually transmitting control instructions Download PDF

Info

Publication number
TW201705737A
TW201705737A TW104133354A TW104133354A TW201705737A TW 201705737 A TW201705737 A TW 201705737A TW 104133354 A TW104133354 A TW 104133354A TW 104133354 A TW104133354 A TW 104133354A TW 201705737 A TW201705737 A TW 201705737A
Authority
TW
Taiwan
Prior art keywords
iot
communication protocol
host
iot device
target
Prior art date
Application number
TW104133354A
Other languages
Chinese (zh)
Other versions
TWI631842B (en
Inventor
Guang-Hong Zheng
Original Assignee
Trusted Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trusted Solutions Corp filed Critical Trusted Solutions Corp
Publication of TW201705737A publication Critical patent/TW201705737A/en
Application granted granted Critical
Publication of TWI631842B publication Critical patent/TWI631842B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/329Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5038Address allocation for local use, e.g. in LAN or USB networks, or in a controller area network [CAN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • H04L69/085Protocols for interworking; Protocol conversion specially adapted for interworking of IP-based networks with other networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses
    • H04L61/5014Internet protocol [IP] addresses using dynamic host configuration protocol [DHCP] or bootstrap protocol [BOOTP]

Abstract

The present invention discloses a virtual communication protocol established in a physical communication protocol for solving the problem that information cannot be transmitted among various current IoT devices because respective different physical communication protocols are used. The virtual communication protocol is arranged on the position of an existent physical communication protocol, equivalent to an application layer on the seventh layer of an OSI model. Through such virtual communication protocol, any IoT device can transmit an IoT instruction to an IoT master control terminal, and then, the IoT master control terminal transfers the IoT instruction to a target IoT device again, so that the two IoT devices with different physical communication protocols can achieve the aims of intercommunicating and mutually transmitting control instructions.

Description

一種建構於實體通訊協定中的虛擬通訊協定 A virtual communication protocol constructed in a physical communication protocol

本發明關於一種建構於實體通訊協定中的虛擬通訊協定,特別是指一種在既成的實體通訊協定,相當於OSI模型第7層應用層之位置上設置一虛擬通訊協定的方法,可達到使兩個具不同實體通訊協定的IoT裝置,達到相互通訊的目的。 The invention relates to a virtual communication protocol constructed in a physical communication protocol, in particular to a method for setting a virtual communication protocol at an existing physical communication protocol, which is equivalent to the layer 7 application layer of the OSI model, which can achieve two IoT devices with different physical communication protocols achieve mutual communication.

近年來物聯網及物聯網裝置的發展相當快速,其應用例如:在智慧電網之領域中,公用事業體以最佳化電量傳輸至家庭及商店;在家庭及建築物自動化之領域中,智慧家庭及建築物可具有對家庭或辦公室中之任一裝置進行集中式控制;在資產追蹤領域中,企業、醫院、工廠可準確地追蹤高價值設備、病人、車輛等之位置;但是各IoT裝置各有自己的通訊協定,而目前在不同通訊協定之間是無法相互通訊的,更無法相互傳輸控制指令,使物聯網的應用受到限制。 In recent years, the development of the Internet of Things and IoT devices has been quite rapid. Applications such as: in the field of smart grids, utilities are optimized for transmission to homes and stores; in the field of home and building automation, smart homes And buildings can have centralized control of any device in the home or office; in the field of asset tracking, companies, hospitals, factories can accurately track the location of high-value equipment, patients, vehicles, etc.; but each IoT device They have their own communication protocols, and currently they cannot communicate with each other between different communication protocols. They are also unable to transmit control commands to each other, which limits the application of the Internet of Things.

緣此,本發明人有鑑於習知物聯網上各IoT裝置在不同通訊協定之間無法相互通訊之困境,本案發明人即著手研發其解決方案,希望能開發出一種能使兩個不同通訊協定的IoT裝置,達到相互通訊的方法,以服務社會大眾及促進此業之發展,遂經多時之構思而有本發明之產生。 Therefore, the present inventors have in view of the dilemma that the various IoT devices on the Internet of Things cannot communicate with each other under different communication protocols, and the inventor of the present invention has started to develop a solution, hoping to develop a different communication protocol. The IoT device achieves the method of mutual communication to serve the public and promote the development of the industry.

本發明之目的在提供一種建構於實體通訊協定中的虛擬通訊協定,係執行於一物聯網系統中,其可使兩個不同實體通訊協定的IoT裝置,達到相互通訊,相互傳輸控制指令的目的,並且可以快速並且以低成本即能達到IoT裝置相互通訊的成果。 The object of the present invention is to provide a virtual communication protocol constructed in a physical communication protocol, which is implemented in an Internet of Things system, which can enable two different physical communication protocol IoT devices to communicate with each other and transmit control commands to each other. And the results of mutual communication between IoT devices can be achieved quickly and at low cost.

本發明為達上述目的所採用之技術手段係包括:一種建構於實體通訊協定中的虛擬通訊協定,係執行於一物聯網系統中,該虛擬通訊協定有相當於OSI模型7層之結構;該物聯網系統包括至少一IoT主控端與複數個可與該IoT主控端連線的IoT裝置;該複數個IoT裝置各自有其隸屬的實體通訊協定,該虛擬通訊協定係各自設置於每一IoT裝置各自隸屬的實體通訊協定相當於OSI模型第7層應用層之位置上;該IoT主控端係支持多個實體通訊協定,並至少包括該等IoT裝置各自隸屬的實體通訊協定,該虛擬通訊協定並各自設置於該IoT主控端之多個實體通訊協定相當於OSI模型第7層應用層之位置上;該每一IoT裝置的虛擬通訊協定包括由該IoT主控端配發給該自身IoT裝置的一個獨特的動態IoT位址,使每一IoT裝置有與其他IoT裝置不同的動態IoT位址。 The technical means adopted by the present invention for the above purposes includes: a virtual communication protocol constructed in a physical communication protocol, which is implemented in an Internet of Things system, and the virtual communication protocol has a structure equivalent to the 7th layer of the OSI model; The Internet of Things system includes at least one IoT host and a plurality of IoT devices connectable to the IoT master; each of the plurality of IoT devices has its own physical communication protocol, and the virtual communication protocols are respectively disposed in each The entity communication protocol to which the IoT device belongs is equivalent to the location of the layer 7 application layer of the OSI model; the IoT master supports multiple entity communication protocols, and at least includes the entity communication protocol to which the IoT devices belong, the virtual The communication protocol and the plurality of physical communication protocols respectively set on the IoT host are corresponding to the location of the layer 7 application layer of the OSI model; the virtual communication protocol of each IoT device is distributed by the IoT host to the A unique dynamic IoT address of the own IoT device allows each IoT device to have a different dynamic IoT address than other IoT devices.

前述構成,其中該IoT裝置係以所隸屬的實體通訊協定與該IoT主控端連線,並發送一個索取IoT位址的資料給該IoT主控端,然後該IoT主控端配送一個獨特的動態IoT位址給該IoT裝置。 The foregoing configuration, wherein the IoT device is connected to the IoT host by a physical communication protocol to which the entity belongs, and sends a request for IoT address information to the IoT host, and then the IoT host distributes a unique one. The dynamic IoT address is given to the IoT device.

前述構成,其中該IoT主控端配送一個獨特的動態IoT位址給每一IoT裝置後,任一IoT裝置向該IoT主控端連線所傳送的資料為一第一訊息封包,該第一訊息封包,包括該IoT裝置隸屬的實體通訊協定與設於其相當於OSI模型第7層應用層之位置上之虛擬通訊協定,該虛擬通訊協定包括一IoT來源位址、一IoT目標位址及至少一IoT指令或請求;其中該IoT來源位址即該IoT裝置之動態IoT位址,該IoT裝置有一通訊目的地:一目標IoT裝置,該目標IoT裝置係為同屬該物聯網之另一IoT裝置,該IoT目標位址即該目標IoT裝置之動態IoT位址,該IoT指令或請求即該IoT裝置要該通訊目的地目標IoT裝置執行之指令或請求。 In the foregoing configuration, after the IoT master delivers a unique dynamic IoT address to each IoT device, the data transmitted by any IoT device to the IoT console is a first message packet, the first The message packet includes a physical communication protocol to which the IoT device belongs and a virtual communication protocol set at a position corresponding to the layer 7 application layer of the OSI model, the virtual communication protocol including an IoT source address, an IoT target address, and At least one IoT command or request; wherein the IoT source address is a dynamic IoT address of the IoT device, the IoT device has a communication destination: a target IoT device, and the target IoT device is another one of the same IoT device The IoT device, the IoT target address is the dynamic IoT address of the target IoT device, and the IoT command or request is an instruction or request that the IoT device needs to execute the communication destination target IoT device.

前述構成,該任一IoT裝置向該IoT主控端傳送該第一訊息封包後,該IoT主控端即收到該第一訊息封包,該IoT主控端並解析該第一訊息封包而發出一送往該目標IoT裝置之一第二訊息封包,該第二訊息封包,包括該目標IoT裝置隸屬的實體通訊協定與設於其相當於OSI模型第7層應用層 之位置上之虛擬通訊協定,該目標IoT裝置隸屬的實體通訊協定內包括符合其規格的來源位址與目標位址,使該第二訊息封包可正確發送到該目標IoT裝置,該第二訊息封包之虛擬通訊協定包括與第一訊息封包之虛擬通訊協定內相同的訊息:該IoT來源位址、該IoT目標位址及該IoT指令或請求。 In the foregoing configuration, after the IoT device transmits the first message packet to the IoT host, the IoT host receives the first message packet, and the IoT master parses the first message packet and sends the first message packet. And a second message packet sent to the target IoT device, where the second message packet includes a physical communication protocol to which the target IoT device belongs and a layer 7 application layer corresponding to the OSI model a virtual communication protocol in the location, the physical communication protocol to which the target IoT device belongs includes a source address and a target address that meet the specifications, so that the second message packet can be correctly sent to the target IoT device, the second message The virtual communication protocol of the packet includes the same message as in the virtual communication protocol of the first message packet: the IoT source address, the IoT target address, and the IoT instruction or request.

前述構成,其中該IoT主控端發出送往該目標IoT裝置之第二訊息封包後,該目標IoT裝置即收到該第二訊息封包,該目標IoT裝置並解析該第二訊息封包,檢視其虛擬通訊協定內容,確認該IoT來源位址,並執行該IoT指令或請求。 In the foregoing configuration, after the IoT master sends a second message packet sent to the target IoT device, the target IoT device receives the second message packet, and the target IoT device parses the second message packet to view the second message packet. The virtual protocol content confirms the IoT source address and executes the IoT command or request.

前述構成,其中該實體通訊協定包括有:TCP/IP通訊協定、藍芽(Bluetooth)、紫蜂標準通訊協定(Zigbee)、RS-232、Wi-Fi、長期演進技術(LTE)、無線射頻識別(RFID)或近場通訊(NFC)。 The foregoing composition, wherein the physical communication protocol includes: TCP/IP communication protocol, Bluetooth, Zigbee standard protocol, RS-232, Wi-Fi, Long Term Evolution (LTE), radio frequency identification (RFID) or Near Field Communication (NFC).

前述構成,其中該IoT主控端為一閘道器、路由器、交換器或分享器。 The foregoing configuration, wherein the IoT master is a gateway, a router, a switch, or a sharer.

前述構成,該IoT主控端為一行動裝置。 In the foregoing configuration, the IoT master is a mobile device.

前述構成,其中該行動裝置為行動電話、筆記型電腦、平板電腦或個人數位助理。 The foregoing configuration, wherein the mobile device is a mobile phone, a notebook computer, a tablet computer or a personal digital assistant.

前述構成,其中該IoT主控端所包括多個實體通訊協定係儲存於該IoT主控端之一記憶體內。 The foregoing configuration, wherein the IoT host includes a plurality of physical communication protocols stored in a memory of the IoT main control terminal.

此外,本發明也可在多個物聯網中順利運作,其所採用之方法技術包括:一種建構於實體通訊協定中的虛擬通訊協定,執行於複數個物聯網中,該複數個物聯網包括至少一第一物聯網與一第二物聯網,該第一物聯網包括一第一IoT主控端與複數個可與該第一IoT主控端連線的第一IoT裝置,該第二物聯網包括一第二IoT主控端與複數個可與該第二IoT主控端連線的第二IoT裝置;該複數個第一IoT裝置各自有其隸屬的第一實體通訊協定,任一第一IoT裝置在各自隸屬的第一實體通訊協定相當於OSI模型第7層應用層之位置上設置有一第一虛擬通訊協定,該第一虛擬通訊協定有相當於OSI 模型7層之結構;該複數個第二IoT裝置各自有其隸屬的第二實體通訊協定,任一第二IoT裝置在各自隸屬的第二實體通訊協定相當於OSI模型第7層應用層之位置上設置有一第二虛擬通訊協定,該第二虛擬通訊協定有相當於OSI模型7層之結構;該第一IoT主控端係支持多個實體通訊協定,至少包括該等第一IoT裝置各自隸屬的第一實體通訊協定,該第一IoT主控端之多個第一實體通訊協定相當於OSI模型第7層應用層之位置上各自設置有該第一虛擬通訊協定;該第二IoT主控端係支持多個實體通訊協定,至少包括該等第二IoT裝置各自隸屬的第二實體通訊協定,該第二IoT主控端之多個第二實體通訊協定相當於OSI模型第7層應用層之位置上各自設置有該第二虛擬通訊協定;該任一第一Io·T裝置係以所隸屬的第一實體通訊協定與該第一IoT主控端連線,並發送一個索取IoT位址的資料給該第一IoT主控端,然後該第一IoT主控端配送一個獨特的第一主控端動態IoT位址給該第一IoT裝置,使該第一IoT裝置有與其他第一IoT裝置不同的第一主控端動態IoT位址;該任一第二IoT裝置係以所隸屬的第二實體通訊協定與該第二IoT主控端連線,並發送一個索取IoT位址的資料給該第二IoT主控端,然後該第二IoT主控端配送一個獨特的第二主控端動態IoT位址給該第二IoT裝置,使該第二IoT裝置有與其他第二IoT裝置不同的第二主控端動態IoT位址。 In addition, the present invention can also be successfully operated in a plurality of Internet of Things, and the method technology used therein comprises: a virtual communication protocol constructed in a physical communication protocol, which is executed in a plurality of Internet of Things, the plurality of Internet of Things including at least a first Internet of Things and a second Internet of Things, the first Internet of Things comprising a first IoT host and a plurality of first IoT devices connectable to the first IoT host, the second Internet of Things The second IoT host includes a second IoT device connectable to the second IoT host; the plurality of first IoT devices each have a first entity communication protocol to which they belong, any first The IoT device is provided with a first virtual communication protocol at a position corresponding to the layer 7 application layer of the OSI model in the respective first physical communication protocol, and the first virtual communication protocol has the equivalent of OSI. The structure of the model 7 layer; the plurality of second IoT devices each have a second entity communication protocol to which they belong, and any second IoT device is in the position of the second entity communication protocol of the OSI model corresponding to the layer 7 application layer of the OSI model There is a second virtual communication protocol, the second virtual communication protocol has a structure corresponding to the 7th layer of the OSI model; the first IoT main control system supports multiple physical communication protocols, and at least includes the respective IoT devices The first physical communication protocol, the first physical communication protocol of the first IoT host is equivalent to the first virtual communication protocol set in the location of the layer 7 application layer of the OSI model; the second IoT master The end system supports a plurality of physical communication protocols, and at least includes a second entity communication protocol to which the second IoT devices belong, and the second physical communication protocol of the second IoT host is equivalent to the layer 7 application layer of the OSI model. Each of the first Io·T devices is connected to the first IoT host by the first physical communication protocol to which the first IoT device belongs, and sends a request for an IoT address. Capital And feeding the first IoT master, and then the first IoT master delivers a unique first master dynamic IoT address to the first IoT device, so that the first IoT device has the first IoT The first dynamic end IoT address of the device is different; the second IoT device is connected to the second IoT host by the second entity communication protocol to which the second IoT device belongs, and sends a data requesting the IoT address Giving the second IoT master, and then the second IoT master distributing a unique second master dynamic IoT address to the second IoT device, so that the second IoT device has other second IoT devices Different second master dynamic IoT addresses.

前述構成,其中該第一IoT主控端配送一個獨特的第一主控端動態IoT位址給該第一IoT裝置後,該第一IoT裝置向該第一IoT主控端連線所傳送的資料為一第三訊息封包,該第三訊息封包,包括該第一IoT裝置隸屬的第一實體通訊協定與設於該第一實體通訊協定相當於OSI模型第7層應用層之位置上之第一虛擬通訊協定,該第一虛擬通訊協定包括一第一主控端IoT來源位址、一第一主控端IoT目標位址及一第一主控端IoT指令或請 求;其中該第一主控端IoT來源位址即該第一IoT裝置之第一主控端動態IoT位址,該第一IoT裝置有一通訊目的地:一第一目標IoT裝置,該第一目標IoT裝置係為同屬該第一物聯網之另一第一IoT裝置,該第一主控端IoT目標位址即該第一目標IoT裝置之第一主控端動態IoT位址,該第一主控端IoT指令或請求即該第一IoT裝置要該第一目標IoT裝置執行之指令或請求;該第二IoT主控端配送一個獨特的第二主控端動態IoT位址給該第二IoT裝置後,該第二IoT裝置向該第二IoT主控端連線所傳送的資料為一第四訊息封包,該第四訊息封包,包括該第二IoT裝置隸屬的一第二實體通訊協定與設於該第二實體通訊協定相當於OSI模型第7層應用層之位置上之第二虛擬通訊協定,該第二虛擬通訊協定包括一第二主控端IoT來源位址、一第二主控端IoT目標位址及一第二主控端IoT指令或請求;其中該第二主控端IoT來源位址即該第二IoT裝置之第二主控端動態IoT位址,該第二IoT裝置有一通訊目的地:一第二目標IoT裝置,該第二目標IoT裝置係為同屬該第二物聯網之另一第二IoT裝置,該第二主控端IoT目標位址即該第二目標IoT裝置之第二主控端動態IoT位址,該第二主控端IoT指令或請求即該第二IoT裝置要該第二目標IoT裝置執行之指令或請求。 The foregoing configuration, wherein the first IoT master delivers a unique first master dynamic IoT address to the first IoT device, and the first IoT device transmits the first IoT device to the first IoT master terminal. The data is a third message packet, where the first entity communication protocol to which the first IoT device belongs is the same as the location of the first entity communication protocol corresponding to the layer 7 application layer of the OSI model. a virtual communication protocol, the first virtual communication protocol includes a first host IoT source address, a first host IoT target address, and a first host IoT instruction or request The first host IoT source address is the first master dynamic IoT address of the first IoT device, and the first IoT device has a communication destination: a first target IoT device, the first The target IoT device is another first IoT device belonging to the first Internet of Things, and the first host IoT target address is the first host dynamic IoT address of the first target IoT device, the first a master IoT command or request that the first IoT device wants to execute an instruction or request by the first target IoT device; the second IoT master delivers a unique second master dynamic IoT address to the first After the second IoT device, the data transmitted by the second IoT device to the second IoT master is a fourth message packet, and the fourth message packet includes a second entity communication to which the second IoT device belongs. The second virtual communication protocol is disposed at a position corresponding to the layer 7 application layer of the OSI model, and the second virtual communication protocol includes a second host IoT source address, a second a host IoT target address and a second master IoT instruction or request; wherein The second master IoT source address is the second master dynamic IoT address of the second IoT device, and the second IoT device has a communication destination: a second target IoT device, and the second target IoT device For the second IoT device belonging to the second Internet of Things, the second host IoT target address is the second master dynamic IoT address of the second target IoT device, and the second host is The IoT instruction or request is an instruction or request that the second IoT device wants to execute by the second target IoT device.

前述構成,其中該任一第一IoT裝置向該第一IoT主控端傳送該第三訊息封包後,該第一IoT主控端即收到該第三訊息封包,該第一IoT主控端並解析該第三訊息封包而發出一送往該第一目標IoT裝置之一第五訊息封包,該第五訊息封包,包括該第一目標IoT裝置隸屬的一第一實體通訊協定與設於該第一實體通訊協定相當於OSI模型第7層應用層之位置上之第一虛擬通訊協定,該第一目標IoT裝置隸屬的第一實體通訊協定內包括符合其規格的來源位址與目標位址,使該第五訊息封包可正確發送到該第一目標IoT裝置,該第五訊息封包之第一虛擬通訊協定包括與第三訊息封包之第一虛擬通訊協定內相同的訊息:該第一主控端IoT來源位址、該第一主控端IoT目標位址及該第一主控端IoT指令或請求; 包後,該第二IoT主控端即收到該第四訊息封包,該第二IoT主控端並解析該第四訊息封包而發出一送往該第二目標IoT裝置之一第六訊息封包,該第六訊息封包,包括該第二目標IoT裝置隸屬的一第二實體通訊協定與設於該第二實體通訊協定相當於OSI模型第7層應用層之位置上之第二虛擬通訊協定,該第二目標IoT裝置隸屬的第二實體通訊協定內包括符合其規格的來源位址與目標位址,使該第六訊息封包可正確發送到該第二目標IoT裝置,該第六訊息封包之第二虛擬通訊協定包括與第四訊息封包之第二虛擬通訊協定內相同的訊息:該第二主控端IoT來源位址、該第二主控端IoT目標位址及該第二主控端IoT指令或請求。 The foregoing configuration, after the first IoT device transmits the third message packet to the first IoT host, the first IoT host receives the third message packet, and the first IoT host And parsing the third message packet to send a fifth message packet sent to the first target IoT device, where the fifth message packet includes a first entity communication protocol to which the first target IoT device belongs and The first entity communication protocol is equivalent to the first virtual communication protocol at the location of the layer 7 application layer of the OSI model, and the first entity communication protocol to which the first target IoT device belongs includes a source address and a target address that meet its specifications. So that the fifth message packet can be correctly sent to the first target IoT device, and the first virtual communication protocol of the fifth message packet includes the same message as in the first virtual communication protocol of the third message packet: the first main a control end IoT source address, the first host IoT target address, and the first host IoT instruction or request; After the packet, the second IoT master receives the fourth message packet, and the second IoT master parses the fourth message packet to send a sixth message packet sent to the second target IoT device. The sixth message packet includes a second entity communication protocol to which the second target IoT device belongs and a second virtual communication protocol disposed at a position corresponding to the layer 7 application layer of the OSI model in the second entity communication protocol. The second entity communication protocol to which the second target IoT device belongs includes a source address and a target address that meet the specifications, so that the sixth message packet can be correctly sent to the second target IoT device, and the sixth message packet is The second virtual communication protocol includes the same message as the second virtual communication protocol of the fourth message packet: the second host IoT source address, the second host IoT target address, and the second host IoT instruction or request.

前述構成,其中該第一IoT主控端發出送往該第一目標IoT裝置之第五訊息封包後,該第一目標IoT裝置即收到該第五訊息封包,該第一目標IoT裝置並解析該第五訊息封包,檢視其第一虛擬通訊協定內容,確認該第一主控端IoT來源位址,並執行該第一主控端IoT指令或請求;該第二IoT主控端發出送往該第二目標IoT裝置之第六訊息封包後,該第二目標IoT裝置即收到該第六訊息封包,該第二目標IoT裝置並解析該第六訊息封包,檢視其第二虛擬通訊協定內容,確認該第二主控端IoT來源位址,並執行該第二主控端IoT指令或請求。 In the foregoing configuration, after the first IoT master sends a fifth message packet sent to the first target IoT device, the first target IoT device receives the fifth message packet, and the first target IoT device parses The fifth message packet is configured to view the content of the first virtual communication protocol, confirm the source address of the first host IoT, and execute the first host IoT command or request; the second IoT host sends the message to After the sixth message packet of the second target IoT device, the second target IoT device receives the sixth message packet, and the second target IoT device parses the sixth message packet to view the second virtual communication protocol content. Confirming the second host IoT source address and executing the second host IoT instruction or request.

前述構成,其中該複數個物聯網中包括至少一多網IoT裝置,該多網IoT裝置同時有該第一IoT裝置的第一實體通訊協定與該第二IoT裝置的第二實體通訊協定,使得該多網IoT裝置能與該第一IoT主控端與該第二IoT主控端連線;該多網IoT裝置經由建構於該第一實體通訊協定的第一虛擬通訊協定,透過該第一IoT主控端與該第一物聯網的其他第一IoT裝置通訊與傳達指令;該多網IoT裝置經由建構於該第二實體通訊協定的第二虛擬通訊協定,透過該第二IoT主控端與該第二物聯網的其他第二IoT裝置通訊與傳達指令。 The foregoing configuration, wherein the plurality of Internet of Things includes at least one multi-network IoT device, the multi-network IoT device simultaneously having a first entity communication protocol of the first IoT device and a second entity communication protocol of the second IoT device, such that The multi-network IoT device can be connected to the first IoT master and the second IoT master; the multi-network IoT device transmits the first virtual communication protocol through the first entity communication protocol, through the first The IoT master communicates with the other first IoT device of the first Internet of Things to communicate the command; the multi-network IoT device transmits the second IoT host through the second virtual communication protocol constructed in the second entity communication protocol. Communicating and communicating instructions with other second IoT devices of the second Internet of Things.

前述構成,其中該第一實體通訊協定或該第二實體通訊協定為:TCP/IP通訊協定、藍芽(Bluetooth)、紫蜂標準通訊協定(Zigboe)、RS-232、 Wi-Fi、長期演進技術(LTE)、無線射頻識別(RFID)或近場通訊(NFC)。 The foregoing composition, wherein the first entity communication protocol or the second entity communication protocol is: TCP/IP communication protocol, Bluetooth, Zigboe, RS-232, Wi-Fi, Long Term Evolution (LTE), Radio Frequency Identification (RFID) or Near Field Communication (NFC).

前述構成,其中該第一IoT主控端或該第二IoT主控端為一閘道器、路由器、交換器或分享器。 The foregoing configuration, wherein the first IoT master or the second IoT master is a gateway, a router, a switch, or a sharer.

前述構成,其中該第一IoT主控端或該第二IoT主控端為一行動裝置。 The foregoing configuration, wherein the first IoT master or the second IoT master is a mobile device.

前述構成,其中該行動裝置為行動電話、筆記型電腦、平板電腦或個人數位助理。 The foregoing configuration, wherein the mobile device is a mobile phone, a notebook computer, a tablet computer or a personal digital assistant.

前述構成,其中該第一IoT主控端所包括多個第一實體通訊協定係儲存於該第一IoT主控端之一記憶體內,該第二IoT主控端所包括多個第二實體通訊協定係儲存於該第二IoT主控端之一記憶體內。 The foregoing configuration, wherein the first IoT host includes a plurality of first entity communication protocols stored in a memory of the first IoT host, and the second IoT host includes a plurality of second entity communications. The agreement is stored in one of the memories of the second IoT master.

茲為使 貴審查委員對本發明之技術特徵及所達成之功效更有進一步之瞭解與認識,謹佐以較佳之實施例圖及配合詳細之說明,說明如後: In order to give the reviewer a better understanding and understanding of the technical features of the present invention and the efficacies achieved, the following is a description of the preferred embodiment and a detailed description.

10‧‧‧虛擬通訊協定 10‧‧‧Virtual Communications Agreement

12‧‧‧IoT裝置 12‧‧‧IoT device

14‧‧‧實體通訊協定 14‧‧‧Physical Communications Agreement

16‧‧‧相當於OSI模型第7層應用層之位置 16‧‧‧ is equivalent to the location of the 7th application layer of the OSI model

18‧‧‧動態IoT位址 18‧‧‧Dynamic IoT Address

19‧‧‧IoT來源位址 19‧‧‧IoT source address

20‧‧‧IoT目標位址 20‧‧‧IoT target address

21‧‧‧IoT指令或請求 21‧‧‧IoT Directive or Request

22‧‧‧TCP/IP通訊協定 22‧‧‧TCP/IP Protocol

23‧‧‧來源位址 23‧‧‧ source address

24‧‧‧紫蜂標準通訊協定 24‧‧‧Zipa Standard Communication Agreement

25‧‧‧目標位址 25‧‧‧ Target address

32‧‧‧IoT裝置 32‧‧‧IoT device

50‧‧‧IoT主控端 50‧‧‧IoT master

60‧‧‧IoT主控端 60‧‧‧IoT master

72‧‧‧目標IoT裝置 72‧‧‧Target IoT device

73‧‧‧來源位址 73‧‧‧Source address

74‧‧‧目標位址 74‧‧‧ Target address

800‧‧‧第一物聯網 800‧‧‧First Internet of Things

810‧‧‧第一IoT主控端 810‧‧‧First IoT master

820‧‧‧第一IoT裝置 820‧‧‧First IoT device

822‧‧‧第一目標IoT裝置 822‧‧‧First target IoT device

830‧‧‧第一實體通訊協定 830‧‧‧ First entity communication agreement

850‧‧‧第一虛擬通訊協定 850‧‧‧First Virtual Protocol

851‧‧‧第一主控端IoT來源位址 851‧‧‧First host IoT source address

852‧‧‧第一主控端IoT目標位址 852‧‧‧First host IoT target address

853‧‧‧第一主控端IoT指令或請求 853‧‧‧First master IoT command or request

854‧‧‧來源位址 854‧‧‧ source address

855‧‧‧目標位址 855‧‧‧ Target address

900‧‧‧第二物聯網 900‧‧‧Second Internet of Things

910‧‧‧第二IoT主控端 910‧‧‧Second IoT master

920‧‧‧第二IoT裝置 920‧‧‧Second IoT device

922‧‧‧第二目標IoT裝置 922‧‧‧second target IoT device

930‧‧‧第二實體通訊協定 930‧‧‧ Second entity communication agreement

950‧‧‧第二虛擬通訊協定 950‧‧‧Second Virtual Protocol

951‧‧‧第二主控端IoT來源位址 951‧‧‧Second host IoT source address

952‧‧‧第二主控端IoT目標位址 952‧‧‧Second master IoT target address

953‧‧‧第二主控端IoT指令或請求 953‧‧‧Second master IoT command or request

954‧‧‧來源位址 954‧‧‧ source address

955‧‧‧目標位址 955‧‧‧ Target address

970‧‧‧多網IoT裝置 970‧‧‧Multi-network IoT device

第1圖為本發明第一實施例之架構示意圖。 FIG. 1 is a schematic structural view of a first embodiment of the present invention.

第2圖為本發明第二實施例之架構示意圖。 FIG. 2 is a schematic structural view of a second embodiment of the present invention.

第3圖為本發明第三實施例之架構示意圖。 FIG. 3 is a schematic structural view of a third embodiment of the present invention.

第4圖為本發明第四實施例之架構示意圖。 4 is a schematic structural view of a fourth embodiment of the present invention.

第5圖為本發明第五實施例之架構示意圖。 Figure 5 is a schematic diagram of the architecture of the fifth embodiment of the present invention.

請參閱第1圖,為本發明一種建構於實體通訊協定中的虛擬通訊協定之第一實施例,該建構於實體通訊協定中的虛擬通訊協定10係執行於一物聯網(Intemet of Things,簡寫為IoT)系統中,該虛擬通訊協定10有相當於OSI模型7層之結構。 Referring to FIG. 1 , a first embodiment of a virtual communication protocol constructed in a physical communication protocol according to the present invention, the virtual communication protocol 10 constructed in a physical communication protocol is implemented in an Internet of Things (Intemet of Things, shorthand) In the IoT system, the virtual communication protocol 10 has a structure equivalent to the 7th layer of the OSI model.

該物聯網系統包括至少一IoT主控端50與複數個IoT裝置12;該複數個IoT裝置12各自有其隸屬的實體通訊協定14,該虛 擬通訊協定10係各自設置於每一IoT裝置12各自隸屬的實體通訊協定14相當於OSI模型第7層應用層之位置16上;該IoT主控端50係支持多個實體通訊協定14,至少包括該等IoT裝置12各自隸屬的實體通訊協定14,該虛擬通訊協定10並各自設置於該IoT主控端50之多個實體通訊協定14相當於OSI模型第7層應用層之位置16上;每一IoT裝置12的虛擬通訊協定10包括由該IoT主控端50配發給該自身IoT裝置12的一個獨特的動態IoT位址18,使每一IoT裝置12有與其他IoT裝置12不同的動態IoT位址18。 The Internet of Things system includes at least one IoT host 50 and a plurality of IoT devices 12; each of the plurality of IoT devices 12 has its own physical communication protocol 14, which is virtual The pseudo-communication protocol 10 is respectively disposed on the physical communication protocol 14 to which each IoT device 12 belongs, corresponding to the location 16 of the layer 7 application layer of the OSI model; the IoT host 50 supports multiple physical communication protocols 14, at least The physical communication protocol 14 of each of the IoT devices 12 is included, and the virtual communication protocol 10 and the plurality of physical communication protocols 14 respectively disposed on the IoT host 50 are corresponding to the location 16 of the layer 7 application layer of the OSI model; The virtual communication protocol 10 of each IoT device 12 includes a unique dynamic IoT address 18 assigned by the IoT host 50 to the own IoT device 12, such that each IoT device 12 has a different identity than the other IoT devices 12. Dynamic IoT address 18.

其中,前述之IoT裝置12係指具有一可定址通訊介面(如近場通訊(NFC)ID、網際網路協定(IP)位址、藍芽識別符號(ID)等)且可經由一有線或無線連接傳輸資訊至一個或多個其他裝置之任何物件(如感應器、電器等);IoT裝置12可具有一被動通信介面(如NFC標籤、快速回應(QR)碼、無線射頻識別(RFID)標籤等),或一主動通信介面(如收發器、數據機等);因此,IoT裝置12可包括(但不限於)冰箱、烤箱、烘烤箱、微波爐、製冷器、洗碗機、餐具、手工工具、洗衣機、乾衣機、爐、冷暖氣機、電視、燈具、吸塵器、灑水器等,只要裝配有一與物聯網通信之可定址通信介面便可;當然,IoT裝置12亦可包括桌上型電腦、筆記型電腦、平板電腦、行動電話、個人數位助理(PDA)等。 Wherein, the aforementioned IoT device 12 means having an addressable communication interface (such as a Near Field Communication (NFC) ID, an Internet Protocol (IP) address, a Bluetooth identification symbol (ID), etc.) and may be via a wired or The wireless connection transmits information to any of one or more other devices (eg, sensors, appliances, etc.); the IoT device 12 can have a passive communication interface (eg, NFC tag, quick response (QR) code, radio frequency identification (RFID) Labels, etc., or an active communication interface (eg, transceiver, modem, etc.); therefore, IoT device 12 may include, but is not limited to, a refrigerator, an oven, a oven, a microwave oven, a refrigerator, a dishwasher, a tableware, Hand tools, washing machines, clothes dryers, stoves, air conditioners, televisions, lamps, vacuum cleaners, sprinklers, etc., as long as they are equipped with an addressable communication interface for communication with the Internet of Things; of course, the IoT device 12 may also include a table. Laptops, notebooks, tablets, mobile phones, personal digital assistants (PDAs), etc.

其中,前述之IoT主控端50係指可與各IoT裝置12通訊之裝置,因此該IoT主控端50至少需包括該等IoT裝置12各自隸屬的實體通訊協定14,以便該IoT主控端50能以各IoT裝置12各自隸屬的實體通訊協定14與各IoT裝置12通訊,例如,某一IoT裝置12之實體通訊協定14為TCP/IP通訊協定,另一IoT裝置12之實體通訊協定14為紫蜂標準通訊協定(Zigbee),再一IoT裝置12之實體通訊協定14為Wi-Fi,則該IoT主控端50也應設有TCP/IP通訊協定、紫蜂標準通訊協定(Zigbee)與Wi-Fi等實體通訊協定14,以便該IoT主控端50能以各IoT裝置12各自隸屬的實體通訊協定14與各IoT裝置12通訊。 The IoT host 50 is a device that can communicate with each IoT device 12, and therefore the IoT host 50 needs to include at least the physical communication protocol 14 to which the IoT devices 12 belong, so that the IoT host is provided. 50 can communicate with each IoT device 12 in a physical communication protocol 14 to which each IoT device 12 belongs. For example, the physical communication protocol 14 of one IoT device 12 is a TCP/IP communication protocol, and the physical communication protocol 14 of another IoT device 12 is For the Zigbee standard communication protocol (Zigbee), and the physical communication protocol 14 of the IoT device 12 is Wi-Fi, the IoT host terminal 50 should also have a TCP/IP communication protocol and a Zigbee standard communication protocol (Zigbee). The entity 14 communicates with the entity such as Wi-Fi so that the IoT host 50 can communicate with each IoT device 12 in a physical communication protocol 14 to which each IoT device 12 belongs.

該IoT主控端50可為一閘道器、路由器、交換器或分享器,使該IoT主控端50可兼具其他裝置之功能。 The IoT host 50 can be a gateway, router, switch or sharer, so that the IoT master 50 can function as another device.

其中,該IoT主控端50可為一行動裝置,該行動裝置可為行動電話、筆記型電腦、平板電腦或個人數位助理,使該IoT主控端50可兼具行動裝置之功能。 The IoT host 50 can be a mobile device, and the mobile device can be a mobile phone, a notebook computer, a tablet computer or a personal digital assistant, so that the IoT master terminal 50 can function as a mobile device.

其中,該IoT主控端50所包括多個實體通訊協定14係儲存於該IoT主控端50之一記憶體內,該記憶體之型態並無限制,如快閃記憶體、韌體、電子抹除式可複寫唯讀記憶體(Electrically-Erasable Programmable Read-Only Memory,簡寫EEPROM)、隨機存取記憶體(Random Access Memory,簡寫RAM)、硬碟、磁片、光碟片等皆可。 The IoT host 50 includes a plurality of physical communication protocols 14 stored in a memory of the IoT host 50. The type of the memory is not limited, such as a flash memory, a firmware, or an electronic device. Erasable-type EEPROM (Electrically-Erasable Programmable Read-Only Memory), Random Access Memory (RAM), hard disk, magnetic disk, optical disk, etc.

其中,前述之OSI模型(OSI model),其係為開放式系統互聯通訊參考模型(Qpen System Interconnection Reference Model)之簡稱,其為一種概念模型,由國際標準化組織(ISO)提出,能使各種電腦在世界範圍內互連為網路的標準框架。該OSI模型之7層結構為:第1層實體層(Physical Layer)、第2層資料鏈結層(Data Link Layer)、第3層網路層(Network Layer)、第4層傳輸層(Transport Layer)、第5層會議層(Session Layer)、第6層表現層(Presentation Layer)、第7層應用層(Application Layer)。 The OSI model (OSI model) is an abbreviation of the Open System Interconnection Reference Model (QSP), which is a conceptual model proposed by the International Organization for Standardization (ISO) to enable various computers. A standard framework for interconnecting the world worldwide. The 7-layer structure of the OSI model is: a first physical layer (physical layer), a second layer data link layer (Data Link Layer), a layer 3 network layer (Network Layer), and a layer 4 transport layer (Transport). Layer), Layer 5 Session Layer, Presentation Layer, and Application Layer.

其中,前述之該虛擬通訊協定10係各自設置於每一IoT裝置12各自隸屬的實體通訊協定14相當於OSI模型第7層應用層之位置16上,例如:某一IoT裝置12所隸屬的實體通訊協定14為TCP/IP通訊協定,TCP/IP通訊協定一般包括四層架構模型:第1層網絡接口層(相當於OSI模型第1和第2層)、第2層網絡互連層(相當於OSI模型第3層)、第3層傳輸層(相當於OSI模型第4層)、第4層應用層(相當於OSI模型第5到7層),該TCP/IP通訊協定相當於OSI模型第7層應用層之位置16即為其第4層應用層,因此該虛擬通訊協定10係設置在其第4層應用層上。 The foregoing virtual communication protocol 10 is respectively disposed on the physical communication protocol 14 to which each IoT device 12 belongs, corresponding to the location 16 of the layer 7 application layer of the OSI model, for example, the entity to which the IoT device 12 belongs. Protocol 14 is a TCP/IP protocol. TCP/IP protocols generally include a four-layer architecture model: Layer 1 network interface layer (equivalent to OSI model layers 1 and 2), Layer 2 network interconnection layer (equivalent In the OSI model layer 3), the layer 3 transport layer (equivalent to the OSI model layer 4), and the layer 4 application layer (equivalent to the OSI model layers 5 to 7), the TCP/IP protocol is equivalent to the OSI model. The location 16 of the layer 7 application layer is its layer 4 application layer, so the virtual protocol 10 is placed on its layer 4 application layer.

其中,前述之該虛擬通訊協定10各自設置於該IoT主控端50之多個實體通訊協定14相當於OSI模型第7層應用層之位置16上,例如該IoT 主控端50設有以下的實體通訊協定14,但不以下面所列為限:TCP/IP通訊協定、藍芽(Bluetooth)、紫蜂標準通訊協定(Zigbee)、RS-232、Wi-Fi、長期演進技術(LTE)、無線射頻識別(RFID,英文:RadioFrequencyIDentification)、或近場通訊(NFC,英文:Near Field Communication)等,該TCP/IP通訊協定相當於OSI模型第7層應用層之位置16為其第4層應用層,該紫蜂標準通訊協定相當於OSI模型第7層應用層之位置16為其第4層應用層,其他實體通訊協定14也有相當於OSI模型第7層應用層之位置16,此為業界已知,不再詳細說明;如此在該IoT主控端50之每個實體通訊協定14上,都設有一該虛擬通訊協定10。 The plurality of physical communication protocols 14 respectively disposed on the IoT host 50 are corresponding to the location 16 of the layer 7 application layer of the OSI model. For example, the IoT master 50 is provided with the following Physical Agreement 14, but not limited to the following: TCP/IP Protocol, Bluetooth, Zigbee, RS-232, Wi-Fi, Long Term Evolution (LTE), Radio frequency identification (RFID, English : RadioFrequency IDentification), or near field communication (NFC, English : Near Field Communication), etc., the TCP/IP communication protocol is equivalent to the location 16 of the OSI model layer 7 application layer for its layer 4 application. Layer, the Zigbee standard communication protocol is equivalent to the location 16 of the 7th application layer of the OSI model as its 4th application layer, and the other entity communication protocol 14 also has the position 16 of the 7th application layer of the OSI model. This is the industry. It is known that it will not be described in detail; thus, each virtual communication protocol 10 is provided on each physical communication protocol 14 of the IoT master 50.

如此一來,各IoT裝置12不但能以各隸屬的實體通訊協定14與該IoT主控端50通訊,且各IoT裝置12都設有虛擬通訊協定10與各自的動態IoT位址18,故可以該動態IoT位址18代表該IoT裝置12之位址,透過該IoT主控端50為中介,以虛擬通訊協定10為橋樑,使隸屬不同的實體通訊協定14之各IoT裝置12能相互通訊。 In this way, each IoT device 12 can communicate with the IoT host 50 by using the associated physical communication protocol 14, and each IoT device 12 is provided with a virtual communication protocol 10 and a respective dynamic IoT address 18, so The dynamic IoT address 18 represents the address of the IoT device 12, and is mediated by the IoT host 50, and the virtual communication protocol 10 is used as a bridge to enable the IoT devices 12 belonging to different physical communication protocols 14 to communicate with each other.

請一併參閱第2圖,為本發明一種建構於實體通訊協定中的虛擬通訊協定之第二實施例,該實施例進一步說明本發明之IoT裝置以虛擬通訊協定10取得動態IoT位址18的方法。 Please refer to FIG. 2, which is a second embodiment of a virtual communication protocol constructed in a physical communication protocol according to the present invention. The embodiment further illustrates that the IoT device of the present invention obtains the dynamic IoT address 18 by using the virtual communication protocol 10. method.

該IoT主控端60設有TCP/IP通訊協定22;有一IoT裝置32,該IoT裝置32設有TCP/IP通訊協定22。在該IoT裝置32的虛擬通訊協定建立前,需先建立原先的TCP/IP通訊協定,以常見的DHCP(動態主機設定協定,英文為:Dynamic Host Configuration Protocol,簡稱DHCP)為例,該IoT裝置32需要向DHCP伺服器(網路上某主機或是該IoT主控端60)索取動態網路IP位址,對該IoT裝置32而言此動態網路IP位址,即為TCP/IP通訊協定22內的來源位址23,取得此動態網路IP位址後即可與該IoT主控端60進行通訊及資料交換。 The IoT master 60 is provided with a TCP/IP protocol 22; an IoT device 32 is provided with a TCP/IP protocol 22. Before the virtual communication protocol of the IoT device 32 is established, the original TCP/IP communication protocol needs to be established, and a common DHCP (Dynamic Host Configuration Protocol, DHCP for short) is taken as an example. The IoT device is used as an example. 32 needs to request a dynamic network IP address from a DHCP server (a host on the network or the IoT host 60). For the IoT device 32, the dynamic network IP address is a TCP/IP protocol. The source address 23 in 22 can obtain communication and data exchange with the IoT host 60 after obtaining the dynamic network IP address.

在取得動態網路IP位址後,該IoT裝置32僅能與該IoT主控端60進行一般的TCP/IP通訊協定相關應用,若是該IoT裝置32想要以虛擬通訊 協定10與該IoT主控端60之IoT功能連線時,該IoT裝置32必須要以現有的TCP/IP通訊協定連線,發送一個索取動態IoT位址18(或代號)的資料給該IoT主控端60。此時,該IoT主控端60會再配發一個適用於該IoT裝置32的動態IoT位址18給該IoT裝置32。此後該IoT裝置32便能以此動態IoT位址18向該IoT主控端60發送及接收IoT相關指令或請求,該動態IoT位址18對該IoT裝置32而言,即為虛擬通訊協定10(IoT通訊協定)中的IoT來源位址19。 After obtaining the dynamic network IP address, the IoT device 32 can only perform general TCP/IP protocol-related applications with the IoT host 60, if the IoT device 32 wants to use virtual communication. When the protocol 10 is connected to the IoT function of the IoT master 60, the IoT device 32 must connect to the existing TCP/IP protocol and send a request for the dynamic IoT address 18 (or code) to the IoT. The master terminal 60. At this time, the IoT master 60 will allocate a dynamic IoT address 18 suitable for the IoT device 32 to the IoT device 32. Thereafter, the IoT device 32 can send and receive an IoT related command or request to the IoT host terminal 60 by using the dynamic IoT address 18, which is the virtual communication protocol 10 for the IoT device 32. The IoT source address 19 in the (IoT Protocol).

例如,一開始該IoT裝置32沒有IP,因此向整個網路廣播詢問誰可以指派IP給他,該IoT主控端60因具備DHCP動態配發IP的功能,所以傳送一組IP給該IoT裝置32使用,因此該IoT裝置32取得一個IP為192.168.1.2之動態IoT位址18(對該IoT裝置32而言,此動態網路IP位址即為TCP/IP通訊協定22內的來源位址23),且得知該IoT主控端60的IP為192.168.1.1對該IoT裝置32而言,此IP位址即為TCP/IP通訊協定22內的目標位址25)。 For example, initially the IoT device 32 does not have an IP, so the entire network is broadcast to ask who can assign an IP to him. The IoT host 60 has a function of dynamically allocating IP by DHCP, so a set of IP is transmitted to the IoT device. 32 is used, so the IoT device 32 obtains a dynamic IoT address 18 with an IP of 192.168.1.2 (for the IoT device 32, the dynamic network IP address is the source address in the TCP/IP protocol 22 23), and know that the IP of the IoT host 60 is 192.168.1.1. For the IoT device 32, the IP address is the target address 25 in the TCP/IP protocol 22).

之後該IoT裝置32以192.168.1.2為來源位址23,並將一筆詢問自身IoT位址為何的資料給目標位址25為192.168.1.1的IoT主控端60。IoT主控端60收到此請求,以192.168.1.1的來源位址傳送給192.168.1.2的IoT裝置32一個名為enddevice01的IoT位址,此即為在該虛擬通訊協定中代表該IoT裝置32的IoT位址。 The IoT device 32 then uses 192.168.1.2 as the source address 23 and sends a data asking for its own IoT address to the IoT master 60 with the target address 25 of 192.168.1.1. The IoT master 60 receives the request and transmits the source address of 192.168.1.1 to the IoT device 32 of 192.168.1.2, an IoT address named enddevice01, which represents the IoT device 32 in the virtual communication protocol. IoT address.

在本實施例中,此後,該IoT裝置32要發給該IoT主控端60的IoT指令,會載在192.168.x的網路封包上,裡面包含了該虛擬通訊協定10(IoT通訊協定)的內容,即包括發送位址(IoT來源位址19)為enddevice01的IoT指令,送達位址(IoT目標位址20)例如為manager01的IoT指令,以及針對送達位址之裝置要執行的IoT指令或請求21。 In this embodiment, thereafter, the IoT command sent by the IoT device 32 to the IoT host 60 is carried on the network packet of 192.168.x, which contains the virtual communication protocol 10 (IoT protocol). The content, that is, the IoT instruction including the transmission address (IoT source address 19) is enddevice01, and the delivery address (IoT destination address 20) is, for example, the IoT instruction of manager01, and the IoT instruction to be executed by the device for the address of the address. Or request 21.

因此,一個以該虛擬通訊協定傳送,從該IoT裝置32要發給該IoT主控端60的封包,在此稱為第一訊息封包,該第一訊息封包至少包括以下架構:「虛擬通訊協定10(IoT通訊協定): Therefore, a packet transmitted from the IoT device 32 to the IoT host 60, which is transmitted by the virtual communication protocol, is referred to herein as a first message packet, and the first message packet includes at least the following architecture: "Virtual Protocol 10 (IoT Protocol):

1.IoT來源位址19:enddevice01 1.IoT source address 19: enddevice01

2.IoT目標位址20:manager01 2.IoT target address 20: manager01

3.IoT指令或請求21:read temp 3. IoT instruction or request 21: read temp

實體通訊協定(TCP/IP通訊協定22): Physical Agreement (TCP/IP Protocol 22):

1.來源位址23:192.168.1.2 1. Source address 23: 192.168.1.2

2.目標位址25:192.168.1.1」 2. Target address 25: 192.168.1.1"

以上的說明,換言之,即一IoT裝置32係以所隸屬的實體通訊協定與一IoT主控端60連線,並發送一個索取IoT位址的資料給該IoT主控端60,然後該IoT主控端60配送一個獨特的動態IoT位址18給該IoT裝置32。 The above description, in other words, an IoT device 32 is connected to an IoT host 60 by the entity communication protocol to which it belongs, and sends a request for IoT address information to the IoT host 60, and then the IoT master The console 60 distributes a unique dynamic IoT address 18 to the IoT device 32.

該IoT主控端60配送一個獨特的動態IoT位址18給該IoT裝置32後,該IoT裝置32向該IoT主控端60連線所傳送的資料為一第一訊息封包,該第一訊息封包,包括該IoT裝置32隸屬的實體通訊協定與設於其相當於OSI模型第7層應用層之位置上之虛擬通訊協定10,該虛擬通訊協定10包括一IoT來源位址19、一IoT目標位址20及至少一IoT指令或請求21;其中該IoT來源位址19即該IoT裝置32之動態IoT位址18,該IoT目標位址20即該IoT裝置32通訊目的地目標IoT裝置32之動態IoT位址,該IoT指令或請求21即該IoT裝置32要該通訊目的地裝置執行之指令或請求。 After the IoT host 60 delivers a unique dynamic IoT address 18 to the IoT device 32, the data transmitted by the IoT device 32 to the IoT host 60 is a first message packet, the first message. The packet includes a physical communication protocol to which the IoT device 32 belongs and a virtual communication protocol 10 disposed at a position corresponding to the layer 7 application layer of the OSI model. The virtual communication protocol 10 includes an IoT source address 19 and an IoT target. Address 20 and at least one IoT command or request 21; wherein the IoT source address 19 is the dynamic IoT address 18 of the IoT device 32, and the IoT target address 20 is the IoT device 32 communication destination target IoT device 32 A dynamic IoT address, the IoT instruction or request 21 is an instruction or request that the IoT device 32 is to be executed by the communication destination device.

前述之動態IoT位址18,是指該IoT主控端50可動態的對一IoT裝置12重新配置一新的位址或代號,該新的位址或代號即為該動態IoT位址18,當一IoT裝置12啟動後或進人該IoT主控端50的物聯網後,經由該IoT裝置12對該IoT主控端50的請求,該IoT主控端50即會配發一動態IoT位址18給該IoT裝置12,此方式對於一物聯網中頻繁的更動各個IoT裝置12是很實用的,可使該IoT主控端50完整的管控到該物聯網的每一IoT裝置12。 The foregoing dynamic IoT address 18 means that the IoT host 50 can dynamically reconfigure a new address or code for an IoT device 12, and the new address or code is the dynamic IoT address 18. After the IoT device 12 is started or enters the Internet of Things of the IoT host 50, the IoT host 50 will issue a dynamic IoT bit via the IoT device 12 requesting the IoT host 50. The address 18 is given to the IoT device 12, which is very useful for frequently changing the IoT devices 12 in an Internet of Things, enabling the IoT master 50 to be fully managed to each IoT device 12 of the Internet of Things.

請參閱第3圖,為本發明一種建構於實體通訊協定中的虛擬通訊協定之第三實施例,該實施例進一步說明本發明應用虛擬通訊協定能跨越不同實體通訊協定,使隸屬不同的實體通訊協定14之各IoT裝置能相互通訊的方法。 Please refer to FIG. 3, which is a third embodiment of a virtual communication protocol constructed in a physical communication protocol according to the present invention. The embodiment further illustrates that the application virtual communication protocol of the present invention can communicate with different entities according to different physical communication protocols. A method by which each IoT device of Protocol 14 can communicate with each other.

該IoT主控端60設有TCP/IP通訊協定22與紫蜂標準通訊協定 24(Zigbee);有一IoT裝置32,該IoT裝置32設有TCP/IP通訊協定22;有一目標IoT裝置72,該目標IoT裝置72設有紫蜂標準通訊協定24;該IoT裝置32與該IoT主控端60係以TCP/IP通訊協定22進行通訊,該目標IoT裝置72與該IoT主控端60係以紫蜂標準通訊協定24進行通訊。 The IoT host terminal 60 is provided with a TCP/IP protocol 22 and a Zigbee standard communication protocol. 24 (Zigbee); an IoT device 32 having a TCP/IP protocol 22; a target IoT device 72 having a Zigbee standard protocol 24; the IoT device 32 and the IoT The master terminal 60 communicates via the TCP/IP protocol 22, and the target IoT device 72 communicates with the IoT master terminal 60 via the Zigbee standard communication protocol 24.

本實施例說明該IoT裝置32如何向該目標IoT裝置72通訊並傳送一IoT指令為關閉裝置。 This embodiment illustrates how the IoT device 32 communicates with the target IoT device 72 and transmits an IoT command to the shutdown device.

在虛擬通訊協定10建立前,如同第2圖所示之方法,該IoT裝置32透過TCP/IP通訊協定22向該IoT主控端60取得IoT位址enddevice01,同樣的,該目標IoT裝置72透過紫蜂標準通訊協定24向該IoT主控端60取得其IoT位址enddevice02。 Before the establishment of the virtual communication protocol 10, the IoT device 32 obtains the IoT address enddevice01 from the IoT master 60 via the TCP/IP protocol 22, as in the method shown in FIG. 2. Similarly, the target IoT device 72 transmits The Zigbee standard protocol 24 obtains its IoT address enddevice02 from the IoT master 60.

在虛擬通訊協定10建立後,當該IoT裝置32要傳送IoT指令給該目標IoT裝置72時,他會透過TCP/IP通訊協定22傳送一個封包(即第一訊息封包)給該IoT主控端60,該第一訊息封包除了原本的TCP/IP通訊協定22相關資料(來源位址、目標位址等)外,在TCP/IP通訊協定22之應用層的資料裡,還有標註此封包來自enddevice01,此封包接收者為enddevice02,此IoT指令為關閉裝置。 After the virtual communication protocol 10 is established, when the IoT device 32 is to transmit an IoT command to the target IoT device 72, it transmits a packet (ie, the first message packet) to the IoT host through the TCP/IP protocol 22. 60. In addition to the original TCP/IP protocol 22 related information (source address, target address, etc.), in the data of the application layer of the TCP/IP protocol 22, the first message packet is marked with the packet from the packet. Enddevice01, the receiver of this packet is enddevice02, and this IoT instruction is to shut down the device.

當該IoT主控端60收到這個由該IoT裝置32傳給自己的第一訊息封包後,檢視其TCP/IP通訊協定22之應用層的虛擬通訊協定10內之資料發現,該封包接收者為enddevice02。因此將此第一訊息封包扣除TCP/IP通訊協定的純應用層資料來源位址23,目標位址25,轉由紫蜂標準通訊協定24傳送。 After the IoT host 60 receives the first message packet transmitted by the IoT device 32 to itself, it checks the data discovery in the virtual communication protocol 10 of the application layer of the TCP/IP protocol 22, and the packet receiver For enddevice02. Therefore, the first message packet is deducted from the pure application layer data source address 23 of the TCP/IP protocol, and the target address 25 is transferred to the Zigbee standard communication protocol 24.

傳送之前係在前面加上紫蜂標準通訊協定24之資料(來源位址73、目標位址74等),以便能讓該目標IoT裝置72能收到通訊訊息,經過此處理,透過該紫蜂標準通訊協定24傳送給目標IoT裝置72的封包,包括虛擬通訊協定10的內容,此封包在本實施例為一第二訊息封包。 Before the transmission, the data of the Zigbee standard communication protocol 24 (source address 73, target address 74, etc.) is added in front to enable the target IoT device 72 to receive the communication message, and the process is passed through the purple bee. The standard communication protocol 24 transmits the packet to the target IoT device 72, including the contents of the virtual communication protocol 10, which in this embodiment is a second message packet.

當該目標IoT裝置72收到紫蜂標準通訊協定24所傳來的第二訊息封包,檢視其應用層的虛擬通訊資料發現,該封包發送自enddevice01, 指定接收者為enddevice02,確認此第二訊息封包是由某一名為enddevice01傳給自己的(但不知對方的TCP/IP位址),又發現此第二訊息封包虛擬通訊協定10內的指令為關閉裝置。在解析完封包後,該目標IoT裝置72即執行該虛擬通訊協定10內的指令,進行關機動作。 When the target IoT device 72 receives the second message packet sent by the Zigbee standard communication protocol 24, and checks the virtual communication data of the application layer, the packet is sent from the end device 01, Specifying the receiver as enddevice02, confirming that the second message packet is transmitted to itself by a certain name enddevice01 (but does not know the TCP/IP address of the other party), and finds that the instruction in the second message packet virtual communication protocol 10 is Turn off the unit. After parsing the packet, the target IoT device 72 executes the command in the virtual communication protocol 10 to perform a shutdown operation.

以本例而言,一個以該虛擬通訊協定傳送,從該IoT裝置32要發給該IoT主控端60的封包,在此稱為第一訊息封包,該第一訊息封包至少包括以下架構:「虛擬通訊協定10(IoT通訊協定): In this example, a packet transmitted by the IoT device 32 to the IoT host 60, which is transmitted by the virtual communication protocol, is referred to herein as a first message packet, and the first message packet includes at least the following architecture: "Virtual Protocol 10 (IoT Protocol):

1.IoT來源位址19:enddevice01 1.IoT source address 19: enddevice01

2.IoT目標位址20:enddevice02 2.IoT target address 20: enddevice02

3.IoT指令或請求21:關閉裝置 3. IoT command or request 21: turn off the device

實體通訊協定(TCP/IP通訊協定22): Physical Agreement (TCP/IP Protocol 22):

1.來源位址23:192.168.1.2 1. Source address 23: 192.168.1.2

2.目標位址25:192.168.1.1」 2. Target address 25: 192.168.1.1"

類似的,一個以該虛擬通訊協定傳送,從該IoT主控端60要發給該目標IoT裝置72的封包,在此稱為第二訊息封包,該第二訊息封包至少包括以下架構:「虛擬通訊協定10(IoT通訊協定): Similarly, a packet transmitted by the IoT host 60 to the target IoT device 72, which is transmitted by the virtual communication protocol, is referred to herein as a second message packet, and the second message packet includes at least the following structure: "Virtual Agreement 10 (IoT Protocol):

1.IoT來源位址19:enddevice01 1.IoT source address 19: enddevice01

2.IoT目標位址20:enddevice02 2.IoT target address 20: enddevice02

3.IoT指令或請求21:關閉裝置 3. IoT command or request 21: turn off the device

實體通訊協定(紫蜂標準通訊協定24): Physical Communications Agreement (Zigbee Standard Protocol 24):

1.來源位址73 PAN ID:0x32 1. Source Address 73 PAN ID: 0x32

2.目標位址74 PAN ID:0x41」 2. Target address 74 PAN ID: 0x41"

以上的說明,換言之,即當該IoT裝置32向該IoT主控端60傳送該第一訊息封包後,該IoT主控端60即收到該第一訊息封包,該IoT主控端60並解析該第一訊息封包,然後轉發一送往該目標IoT裝置72之一第二訊息 封包,該第二訊息封包,包括該目標IoT裝置72隸屬的實體通訊協定14與設於其相當於OSI模型第7層應用層之位置16上之虛擬通訊協定10,該目標IoT裝置72隸屬的實體通訊協定14內包括符合其協定規格的來源位址73與目標位址74,使該第二訊息封包可正確發送到該目標IoT裝置72,該第二訊息封包之虛擬通訊協定10包括與第一訊息封包之虛擬通訊協定10內相同的訊息:該IoT來源位址19、該IoT目標位址20及該IoT指令或請求21。 The above description, in other words, after the IoT device 32 transmits the first message packet to the IoT master terminal 60, the IoT master terminal 60 receives the first message packet, and the IoT master terminal 60 parses The first message packet is then forwarded to a second message sent to the target IoT device 72 The packet, the second message packet, includes a physical communication protocol 14 to which the target IoT device 72 belongs and a virtual communication protocol 10 located at a location 16 corresponding to the layer 7 application layer of the OSI model, the target IoT device 72 is attached. The physical communication protocol 14 includes a source address 73 and a target address 74 that conform to its protocol specifications, so that the second message packet can be correctly sent to the target IoT device 72, and the second message packet virtual communication protocol 10 includes The same message in the virtual communication protocol 10 of a message packet: the IoT source address 19, the IoT target address 20, and the IoT instruction or request 21.

並且,當該IoT主控端60轉發出送往該目標IoT裝置72之第二訊息封包後,該目標IoT裝置72即收到該第二訊息封包,該目標IoT裝置72並解析該第二訊息封包,檢視其虛擬通訊協定10內容,確認該IoT來源位址19,並執行該IoT指令或請求21。如此,即可完成兩個具不同實體通訊協定的IoT裝置,達到相互通訊的目的。 Moreover, after the IoT host 60 forwards the second message packet sent to the target IoT device 72, the target IoT device 72 receives the second message packet, and the target IoT device 72 parses the second message. The packet, the content of its virtual communication protocol 10 is checked, the IoT source address 19 is confirmed, and the IoT instruction or request 21 is executed. In this way, two IoT devices with different physical communication protocols can be completed to achieve mutual communication.

請參閱第4圖,為本發明一種建構於實體通訊協定中的虛擬通訊協定之第四實施例,該實施例進一步說明本發明應用於多個物聯網的方法,其係以前面運作於單一物聯網實施例為基礎的進一步延伸。 Referring to FIG. 4, a fourth embodiment of a virtual communication protocol constructed in a physical communication protocol according to the present invention further illustrates a method for applying the present invention to a plurality of Internet of Things, which operates in front of a single object. A further extension based on the networking embodiment.

在本實施例中,本發明一種建構於實體通訊協定中的虛擬通訊協定,係執行於複數個物聯網中,該複數個物聯網包括至少一第一物聯網800與一第二物聯網900,該第一物聯網800包括一第一IoT主控端810與複數個可與該第一IoT主控端810連線的第一IoT裝置820,該第二物聯網900包括一第二IoT主控端910與複數個可與該第二IoT主控端910連線的第二IoT裝置920;該複數個第一IoT裝置820各自有其隸屬的第一實體通訊協定830,任一第一IoT裝置820在各自隸屬的第一實體通訊協定830相當於OSI模型第7層應用層之位置上設置有一第一虛擬通訊協定850,該第一虛擬通訊協定850有相當於OSI模型7層之結構;該複數個第二IoT裝置920各自有其隸屬的第二實體通訊協定930,任一第二IoT裝置920在各自隸屬的第二實體通訊協定930相當於OSI模型第7層應用層之位置上設置有一第二虛擬通訊協定950,該第二虛擬通訊 協定950有相當於OSI模型7層之結構;該第一IoT主控端810係支持多個實體通訊協定,至少包括該等第一IoT裝置820各自隸屬的第一實體通訊協定830,該第一IoT主控端810之多個第一實體通訊協定830相當於OSI模型第7層應用層之位置上各自設置有該第一虛擬通訊協定850;該第二IoT主控端910係支持多個實體通訊協定,至少包括該等第二IoT裝置920各自隸屬的第二實體通訊協定930,該第二IoT主控端910之多個第二實體通訊協定930相當於OSI模型第7層應用層之位置上各自設置有該第二虛擬通訊協定950;其中,該第一實體通訊協定830或該第二實體通訊協定930為:TCP/IP通訊協定、藍芽(Bluetooth)、紫蜂標準通訊協定(Zigbee)、RS-232、Wi-Fi、長期演進技術(LTE)、無線射頻識別(RFID)或近場通訊(NFC)。 In this embodiment, a virtual communication protocol constructed in a physical communication protocol is implemented in a plurality of Internet of Things, and the plurality of Internet of Things includes at least a first Internet of Things 800 and a second Internet of Things 900. The first Internet of Things 800 includes a first IoT host 810 and a plurality of first IoT devices 820 that can be connected to the first IoT host 810. The second Internet of Things 900 includes a second IoT master. The terminal 910 and the plurality of second IoT devices 920 connectable to the second IoT host 910; the plurality of first IoT devices 820 each have a first physical communication protocol 830 to which they belong, any first IoT device 820 is provided with a first virtual communication protocol 850 at a position corresponding to the layer 7 application layer of the OSI model, and the first virtual communication protocol 850 has a structure corresponding to the 7th layer of the OSI model; The plurality of second IoT devices 920 each have a second entity communication protocol 930 to which they belong, and any second IoT device 920 is provided at a position corresponding to the layer 7 application layer of the OSI model corresponding to the second entity communication protocol 930 of the respective OSI model. Second virtual communication protocol 950, the Two Virtual Communications The protocol 950 has a structure corresponding to the 7th layer of the OSI model; the first IoT host 810 supports a plurality of physical communication protocols, and at least includes a first entity communication protocol 830 to which the first IoT devices 820 are respectively attached, the first The first physical communication protocol 830 of the IoT host 810 is equivalent to the first virtual communication protocol 850 respectively disposed at the location of the layer 7 application layer of the OSI model; the second IoT host 910 supports multiple entities. The communication protocol includes at least a second entity communication protocol 930 to which the second IoT devices 920 belong, and the plurality of second entity communication protocols 930 of the second IoT host 910 are equivalent to the location of the layer 7 application layer of the OSI model. Each of the second virtual communication protocols 950 is disposed thereon; wherein the first entity communication protocol 830 or the second entity communication protocol 930 is: TCP/IP communication protocol, Bluetooth, Zigbee standard communication protocol (Zigbee ), RS-232, Wi-Fi, Long Term Evolution (LTE), Radio Frequency Identification (RFID) or Near Field Communication (NFC).

其中,該第一IoT主控端810或該第二IoT主控端910為一閘道器、路由器、交換器或分享器,使該等IoT主控端可兼具其他裝置之功能。 The first IoT host 810 or the second IoT host 910 is a gateway, a router, a switch, or a sharer, so that the IoT masters can function as other devices.

其中,該第一IoT主控端810或該第二IoT主控端910為一行動裝置,該行動裝置可為行動電話、筆記型電腦、平板電腦或個人數位助理,使該等IoT主控端可兼具行動裝置之功能。 The first IoT host 810 or the second IoT host 910 is a mobile device, and the mobile device can be a mobile phone, a notebook computer, a tablet computer or a personal digital assistant, so that the IoT masters It can function as a mobile device.

其中,該第一IoT主控端810所包括多個第一實體通訊協定830係儲存於該第一IoT主控端810之一記憶體內,該第二IoT主控端910所包括多個第二實體通訊協定930係儲存於該第二IoT主控端910之一記憶體內,該記憶體之型態並無限制,如快閃記憶體、韌體、電子抹除式可複寫唯讀記憶體(Electrically-Erasable Programmable Read-Only Memory,簡寫EEPROM)、隨機存取記憶體(Random Access Memory,簡寫RAM)、硬碟、磁片、光碟片等皆可。 The first IoT host 810 includes a plurality of first entity communication protocols 830 stored in a memory of the first IoT host 810, and the second IoT host 910 includes a plurality of second The physical communication protocol 930 is stored in a memory of the second IoT main control terminal 910, and the type of the memory is not limited, such as a flash memory, a firmware, and an electronic erasable rewritable read-only memory ( Electrically-Erasable Programmable Read-Only Memory (Acronym EEPROM), Random Access Memory (Random Access Memory), hard disk, magnetic disk, optical disk, etc.

下面說明本發明在2個物聯網中,其第一IoT裝置820與第二IoT裝置920以虛擬通訊協定取得動態IoT位址的方法。 The following describes a method for obtaining a dynamic IoT address by a first IoT device 820 and a second IoT device 920 in a virtual communication protocol in two Internet of Things.

該任一第一IoT裝置820係以所隸屬的第一實體通訊協定830 與該第一IoT主控端810連線,並發送一個索取IoT位址的資料給該第一IoT主控端810,然後該第一IoT主控端810配送一個獨特的第一主控端動態IoT位址給該第一IoT裝置820,使該第一IoT裝置820有與其他第一IoT裝置820不同的第一主控端動態IoT位址;該任一第二IoT裝置920係以所隸屬的第二實體通訊協定930與該第二IoT主控端910連線,並發送一個索取IoT位址的資料給該第二IoT主控端910,然後該第二IoT主控端910配送一個獨特的第二主控端動態IoT位址給該第二IoT裝置920,使該第二IoT裝置920有與其他第二IoT裝置920不同的第二主控端動態IoT位址。 The first IoT device 820 is associated with the first entity communication protocol 830 Connecting to the first IoT host 810, and sending a request for IoT address information to the first IoT host 810, and then the first IoT host 810 delivers a unique first host dynamic The IoT address is given to the first IoT device 820, so that the first IoT device 820 has a first master dynamic IoT address different from the other first IoT devices 820; the second IoT device 920 is affiliated with The second entity communication protocol 930 is connected to the second IoT host 910, and sends a request for IoT address information to the second IoT host 910, and then the second IoT host 910 delivers a unique The second master dynamic IoT address is given to the second IoT device 920, so that the second IoT device 920 has a second master dynamic IoT address different from the other second IoT devices 920.

下面說明本發明在2個物聯網中,其第一IoT裝置820與第二IoT裝置920與同一物聯網中其他IoT裝置通訊並傳遞與執行指令的方法。 The following describes a method in which the first IoT device 820 and the second IoT device 920 communicate with other IoT devices in the same Internet of Things and transmit and execute instructions in the two Internet of Things.

該第一IoT主控端810配送一個獨特的第一主控端動態IoT位址給該第一IoT裝置820後,該第一IoT裝置820向該第一IoT主控端810連線所傳送的資料為一第三訊息封包,該第三訊息封包,包括該第一IoT裝置820隸屬的第一實體通訊協定830與設於該第一實體通訊協定830相當於OSI模型第7層應用層之位置上之第一虛擬通訊協定850,該第一虛擬通訊協定850包括一第一主控端IoT來源位址851、一第一主控端IoT目標位址852及一第一主控端IoT指令或請求853;其中該第一主控端IoT來源位址851即該第一IoT裝置820之第一主控端動態IoT位址,該第一IoT裝置820有一通訊目的地:一第一目標IoT裝置822,該第一目標IoT裝置822係為同屬該第一物聯網800之另一第一IoT裝置,該第一主控端IoT目標位址852即該第一目標IoT裝置822之第一主控端動態IoT位址,該第一主控端IoT指令或請求853即該第一IoT裝置820要該第一目標IoT裝置822執行之指令或請求;該第二IoT主控端910配送一個獨特的第二主控端動態IoT位址給該第二IoT裝置920後,該第二IoT裝置920向該第二IoT主控端910連線所傳送的資料為一第四訊息封包,該第四訊息封包,包括該第二IoT裝置920 隸屬的一第二實體通訊協定930與設於該第二實體通訊協定930相當於OSI模型第7層應用層之位置上之第二虛擬通訊協定950,該第二虛擬通訊協定950包括一第二主控端IoT來源位址951、一第二主控端IoT目標位址952及一第二主控端IoT指令或請求953;其中該第二主控端IoT來源位址951即該第二IoT裝置920之第二主控端動態IoT位址,該第二IoT裝置920有一通訊目的地:一第二目標IoT裝置922,該第二目標IoT裝置922係為同屬該第二物聯網900之另一第二IoT裝置,該第二主控端IoT目標位址952即該第二目標IoT裝置922之第二主控端動態IoT位址,該第二主控端IoT指令或請求953即該第二IoT裝置920要該第二目標IoT裝置922執行之指令或請求。 After the first IoT host 810 delivers a unique first active dynamic IoT address to the first IoT device 820, the first IoT device 820 transmits the first IoT device 820 to the first IoT host 810. The data is a third message packet, and the first entity communication protocol 830 to which the first IoT device 820 belongs is located at a position corresponding to the layer 7 application layer of the OSI model set in the first entity communication protocol 830. The first virtual communication protocol 850, the first virtual communication protocol 850 includes a first host IoT source address 851, a first host IoT target address 852, and a first host IoT command or Requesting 853; wherein the first host IoT source address 851 is the first master dynamic IoT address of the first IoT device 820, and the first IoT device 820 has a communication destination: a first target IoT device 822. The first target IoT device 822 is another first IoT device that belongs to the first Internet of Things 800. The first host IoT target address 852 is the first host of the first target IoT device 822. a control terminal dynamic IoT address, the first host IoT instruction or request 853, that is, the first IoT device 820 The first target IoT device 822 executes an instruction or request; after the second IoT host 910 delivers a unique second master dynamic IoT address to the second IoT device 920, the second IoT device 920 The data transmitted by the second IoT host 910 is a fourth message packet, and the fourth message packet includes the second IoT device 920. a second entity communication protocol 930 to which the second entity communication protocol 930 belongs, and a second virtual communication protocol 950 corresponding to the second entity communication protocol 930 corresponding to the layer 7 application layer of the OSI model, the second virtual communication protocol 950 includes a second The host IoT source address 951, a second host IoT target address 952, and a second host IoT command or request 953; wherein the second host IoT source address 951 is the second IoT The second active dynamic IoT address of the device 920, the second IoT device 920 has a communication destination: a second target IoT device 922, and the second target IoT device 922 belongs to the second Internet of Things 900. Another second IoT device, the second host IoT target address 952 is the second master dynamic IoT address of the second target IoT device 922, and the second host IoT command or request 953 is The second IoT device 920 is to issue an instruction or request by the second target IoT device 922.

下面說明本發明在2個物聯網中,在第一物聯網800中其第一IoT裝置820如何藉由該第一IoT主控端810與該第一目標IoT裝置822溝通並傳達指令,以及在第二物聯網900中其第二IoT裝置920如何藉由該第二IoT主控端910與該第二目標IoT裝置922溝通並傳達指令的方法。 The following describes how the first IoT device 820 of the first IoT device 820 communicates with the first target IoT device 822 and communicates instructions in the first Internet of Things 800 in the first Internet of Things 800, and A method of how the second IoT device 920 of the second Internet of Things 900 communicates with the second target IoT device 922 via the second IoT host 910 and communicates instructions.

該任一第一IoT裝置820向該第一IoT主控端810傳送該第三訊息封包後,該第一IoT主控端810即收到該第三訊息封包,該第一IoT主控端810並解析該第三訊息封包而發出一送往該第一目標IoT裝置822之一第五訊息封包,該第五訊息封包,包括該第一目標IoT裝置822隸屬的一第一實體通訊協定830與設於該第一實體通訊協定830相當於OSI模型第7層應用層之位置上之第一虛擬通訊協定850,該第一目標IoT裝置822隸屬的第一實體通訊協定830內包括符合其規格的來源位址854與目標位址855,使該第五訊息封包可正確發送到該第一目標IoT裝置822,該第五訊息封包之第一虛擬通訊協定850包括與第三訊息封包之第一虛擬通訊協定850內相同的訊息:該第一主控端IoT來源位址851、該第一主控端IoT目標位址852及該第一主控端IoT指令或請求853;該任一第二IoT裝置920向該第二IoT主控端910傳送該第四訊息封包後,該第二IoT主控端910即收到該第四訊息封包,該第二IoT主控端910並解析該第四訊息封包而發出一送往該第二目標IoT裝置922之一第六訊 息封包,該第六訊息封包,包括該第二目標IoT裝置922隸屬的一第二實體通訊協定930與設於該第二實體通訊協定930相當於OSI模型第7層應用層之位置上之第二虛擬通訊協定950,該第二目標IoT裝置922隸屬的第二實體通訊協定930內包括符合其規格的來源位址954與目標位址955,使該第六訊息封包可正確發送到該第二目標IoT裝置922,該第六訊息封包之第二虛擬通訊協定950包括與第四訊息封包之第二虛擬通訊協定950內相同的訊息:該第二主控端IoT來源位址951、該第二主控端IoT目標位址952及該第二主控端IoT指令或請求953。 After the first IoT device 820 transmits the third message packet to the first IoT host 810, the first IoT host 810 receives the third message packet, and the first IoT host 810 receives the third message packet. And parsing the third message packet to send a fifth message packet sent to the first target IoT device 822, where the fifth message packet includes a first entity communication protocol 830 to which the first target IoT device 822 belongs The first physical communication protocol 830 is located in the first virtual communication protocol 850 at the location of the layer 7 application layer of the OSI model, and the first entity communication protocol 830 to which the first target IoT device 822 belongs includes the specification that meets its specifications. The source address 854 and the target address 855 enable the fifth message packet to be correctly sent to the first target IoT device 822, and the first virtual communication protocol 850 of the fifth message packet includes the first virtual packet with the third message packet. The same message in the communication protocol 850: the first host IoT source address 851, the first host IoT target address 852, and the first host IoT command or request 853; any of the second IoT The device 920 transmits the fourth to the second IoT host 910 After the message is encapsulated, the second IoT host 910 receives the fourth message packet, and the second IoT host 910 parses the fourth message packet and sends a message to the second target IoT device 922. Sixth news The sixth packet, the second entity communication protocol 930 to which the second target IoT device 922 belongs, and the second entity communication protocol 930 corresponding to the layer 7 application layer of the OSI model. The second virtual communication protocol 950, the second entity communication protocol 930 to which the second target IoT device 922 belongs includes a source address 954 and a target address 955 according to its specifications, so that the sixth message packet can be correctly sent to the second The target IoT device 922, the second virtual communication protocol 950 of the sixth message packet includes the same message as the second virtual communication protocol 950 of the fourth message packet: the second host IoT source address 951, the second The master IoT target address 952 and the second master IoT command or request 953.

該第一IoT主控端810發出送往該第一目標IoT裝置822之第五訊息封包後,該第一目標IoT裝置822即收到該第五訊息封包,該第一目標IoT裝置822並解析該第五訊息封包,檢視其第一虛擬通訊協定850內容,確認該第一主控端IoT來源位址851,並執行該第一主控端IoT指令或請求853;該第二IoT主控端910發出送往該第二目標IoT裝置922之第六訊息封包後,該第二目標IoT裝置922即收到該第六訊息封包,該第二目標IoT裝置922並解析該第六訊息封包,檢視其第二虛擬通訊協定950內容,確認該第二主控端IoT來源位址951,並執行該第二主控端IoT指令或請求953。 After the first IoT host 810 sends the fifth message packet sent to the first target IoT device 822, the first target IoT device 822 receives the fifth message packet, and the first target IoT device 822 parses The fifth message packet is configured to view the content of the first virtual communication protocol 850, confirm the first host IoT source address 851, and execute the first host IoT command or request 853; the second IoT host After the 910 sends the sixth message packet sent to the second target IoT device 922, the second target IoT device 922 receives the sixth message packet, and the second target IoT device 922 parses the sixth message packet to view The second virtual communication protocol 950 content confirms the second host IoT source address 951 and executes the second host IoT command or request 953.

一個IoT裝置同時在2個物聯網中運作的情況是很常見的,例如一使用瓦斯加熱的熱水器,該熱水器可在其內部設有的一瓦斯濃度偵測器,使該熱水器作為保全物聯網的一IoT裝置,另外該熱水器也可為家電物聯網的一IoT裝置,透過該家電物聯網可由另一IoT裝置控制該熱水器的啟動與其熱水溫度設定。 It is common for an IoT device to operate in two Internet of Things at the same time. For example, a water heater that uses a gas heater can have a gas concentration detector inside it to make the water heater as a security object. An IoT device, in addition, the water heater can also be an IoT device of the home appliance Internet, through which the IoT device can control the startup of the water heater and its hot water temperature setting.

如同上面的例子,本發明可在多個物聯網中運作,即使是一個IoT裝置為同時連結多個物聯網,亦可順利運作,請參閱第5圖,為本發明一種建構於實體通訊協定中的虛擬通訊協定之第五實施例,該實施例進一步說明在2個物聯網中,在第一物聯網800中的一IoT裝置同時也是在第二物聯網900中的一IoT裝置時,本發明該IoT裝置如何同時在第一物聯網800與第二物聯網900運作的方法。 As in the above example, the present invention can operate in multiple Internet of Things. Even if an IoT device is connected to multiple Internet of Things at the same time, it can operate smoothly. Referring to FIG. 5, the present invention is constructed in a physical communication protocol. A fifth embodiment of a virtual communication protocol, the embodiment further illustrates that in an Internet of Things, when an IoT device in the first Internet of Things 800 is also an IoT device in the second Internet of Things 900, the present invention How the IoT device operates simultaneously in the first Internet of Things 800 and the second Internet of Things 900.

在本發明之第五實施例中,該複數個物聯網中包括一第一物聯網800、一第二物聯網900與至少一可與該第一物聯網與該第二物聯網溝通的多網IoT裝置970,該多網IoT裝置970同時在第四實施例中有該第一IoT裝置820的第一實體通訊協定830與在第四實施例中該第二IoT裝置920的第二實體通訊協定930,使得該多網IoT裝置970能與該第一IoT主控端810與該第二IoT主控端910連線;該多網IoT裝置970經由建構於該第一實體通訊協定830的第一虛擬通訊協定850,透過該第一IoT主控端810與該第一物聯網800的其他第一IoT裝置820通訊與傳達指令;該多網IoT裝置970經由建構於該第二實體通訊協定930的第二虛擬通訊協定950,透過該第二IoT主控端910與該第二物聯網900的其他第二IoT裝置920通訊與傳達指令,如此該多網IoT裝置970即可同時在第一物聯網800與第二物聯網900運作。 In a fifth embodiment of the present invention, the plurality of Internet of Things includes a first Internet of Things 800, a second Internet of Things 900, and at least one multi-network that can communicate with the first Internet of Things and the second Internet of Things. The IoT device 970, the multi-network IoT device 970 has the first entity communication protocol 830 of the first IoT device 820 and the second entity communication protocol of the second IoT device 920 in the fourth embodiment in the fourth embodiment. 930. The multi-network IoT device 970 can be connected to the first IoT host 810 and the second IoT host 910. The multi-network IoT device 970 is first configured by the first entity communication protocol 830. The virtual communication protocol 850 communicates and communicates with the other first IoT devices 820 of the first Internet of Things 800 through the first IoT host 810; the multi-network IoT device 970 is configured by the second entity communication protocol 930. The second virtual communication protocol 950 communicates with the second IoT device 920 of the second Internet of Things 900 through the second IoT host 910, so that the multi-network IoT device 970 can simultaneously be in the first Internet of Things. 800 operates with the second Internet of Things 900.

本發明建構於實體通訊協定中的虛擬通訊協定,能解決之前各種IoT裝置使用各自的實體通訊協定,彼此之間無法傳遞訊息的問題,本發明係在既成的實體通訊協定,相當於OSI模型第7層應用層之位置上設置一虛擬通訊協定,透過此虛擬通訊協定,任一IoT裝置可將IoT指令傳給IoT主控端,該IoT主控端再重新將IoT指令轉送到目標IoT裝置,使兩個具不同實體通訊協定的IoT裝置,達到相互通訊,相互傳輸控制指令的目的,本發明不需重新設計IoT裝置的通訊介面,可以快速並且低成本的達到IoT裝置相互通訊的成果,此外本發明也可在多個物聯網中運作,即使是一個IoT裝置為同時連結多個物聯網,亦可順利運作。 The invention establishes a virtual communication protocol in a physical communication protocol, which can solve the problem that various IoT devices use respective physical communication protocols and cannot transmit messages to each other. The present invention is an established physical communication protocol, which is equivalent to the OSI model. A virtual communication protocol is set at the location of the 7-layer application layer. Through the virtual communication protocol, any IoT device can transmit the IoT command to the IoT host, and the IoT host retransmits the IoT command to the target IoT device. The two IoT devices with different physical communication protocols can communicate with each other and transmit control commands to each other. The present invention does not need to redesign the communication interface of the IoT device, and can achieve the result of mutual communication between the IoT devices quickly and at low cost. The invention can also operate in multiple Internet of Things, even if an IoT device can simultaneously operate multiple Internet of Things.

本發明已藉上述較佳具體實施例進行更詳細說明,惟本發明並不限定於上述所舉例之實施例,凡在本發明揭示之技術思想範圍內,對該等結構作各種變化及修飾仍屬本發明之範圍。 The present invention has been described in more detail by the above-described preferred embodiments, but the present invention is not limited to the above-exemplified embodiments, and various changes and modifications may be made to the structures within the scope of the technical idea disclosed herein. It is within the scope of the invention.

10‧‧‧虛擬通訊協定 10‧‧‧Virtual Communications Agreement

19‧‧‧IoT來源位址 19‧‧‧IoT source address

20‧‧‧IoT目標位址 20‧‧‧IoT target address

21‧‧‧IoT指令或請求 21‧‧‧IoT Directive or Request

22‧‧‧TCP/IP通訊協定 22‧‧‧TCP/IP Protocol

23‧‧‧來源位址 23‧‧‧ source address

24‧‧‧紫蜂標準通訊協定 24‧‧‧Zipa Standard Communication Agreement

25‧‧‧目標位址 25‧‧‧ Target address

32‧‧‧IoT裝置 32‧‧‧IoT device

60‧‧‧IoT主控端 60‧‧‧IoT master

72‧‧‧目標IoT裝置 72‧‧‧Target IoT device

73‧‧‧來源位址 73‧‧‧Source address

74‧‧‧目標位址 74‧‧‧ Target address

Claims (19)

一種建構於實體通訊協定中的虛擬通訊協定,執行於一物聯網系統中,該虛擬通訊協定有相當於OSI模型7層之結構;該物聯網系統包括至少一IoT主控端與複數個可與該IoT主控端連線的IoT裝置;該複數個IoT裝置各自有其隸屬的實體通訊協定,該虛擬通訊協定係各自設置於每一IoT裝置各自隸屬的實體通訊協定相當於OSI模型第7層應用層之位置上;該IoT主控端係支持多個實體通訊協定,至少包括該等IoT裝置各自隸屬的實體通訊協定,該虛擬通訊協定並各自設置於該IoT主控端之多個實體通訊協定相當於OSI模型第7層應用層之位置上;該每一IoT裝置的虛擬通訊協定,包括由該IoT主控端配發給該自身IoT裝置的一個獨特的動態IoT位址,使每一IoT裝置有與其他IoT裝置不同的動態IoT位址;該每一IoT裝置係以所隸屬的實體通訊協定與該IoT主控端連線,並發送一個索取IoT位址的資料給該IoT主控端,然後該IoT主控端配送一個獨特的動態IoT位址給該每一IoT裝置。 A virtual communication protocol constructed in a physical communication protocol, implemented in an Internet of Things system, the virtual communication protocol having a structure corresponding to the 7th layer of the OSI model; the Internet of Things system comprising at least one IoT host and a plurality of The IoT device connected to the IoT host; the plurality of IoT devices each have a physical communication protocol to which the IoT device belongs, and the virtual communication protocol is set in each entity. The physical communication protocol of each IoT device is equivalent to the 7th layer of the OSI model. The location of the application layer; the IoT master supports multiple physical communication protocols, including at least the physical communication protocols to which the IoT devices are attached, and the virtual communication protocols are respectively set to be connected to multiple entities of the IoT host. The agreement is equivalent to the location of the layer 7 application layer of the OSI model; the virtual communication protocol of each IoT device includes a unique dynamic IoT address assigned by the IoT host to the own IoT device, such that each The IoT device has a different dynamic IoT address than the other IoT devices; each IoT device is connected to the IoT host by the physical communication protocol to which it belongs, and sends a request for an IoT address. IoT data to the master, then the master IoT a unique delivery addresses to the dynamic IoT IoT each device. 依據申請專利範圍第1項所述之建構於實體通訊協定中的虛擬通訊協定,其中該IoT主控端配送一個獨特的動態IoT位址給該每一IoT裝置後,任一IoT裝置向該IoT主控端連線所傳送的資料為一第一訊息封包,該第一訊息封包,包括該IoT裝置隸屬的實體通訊協定與設於其相當於OSI模型第7層應用層之位置上之虛擬通訊協定,該虛擬通訊協定包括一IoT來源位址、一IoT目標位址及至少一IoT指令或請求;其中該IoT來源位址即該IoT裝置之動態IoT位址,該IoT裝置有一通訊目的地:一目標IoT裝置,該目標IoT裝置係為同屬該物聯網之另一IoT裝置,該IoT目標位址即該目標IoT裝置之動態IoT位址,該IoT指令或請求即該IoT裝置要 該目標IoT裝置執行之指令或請求。 According to the virtual communication protocol constructed in the physical communication protocol described in claim 1, wherein the IoT host distributes a unique dynamic IoT address to each IoT device, and any IoT device to the IoT device The data transmitted by the master connection is a first message packet, and the first message packet includes a physical communication protocol to which the IoT device belongs and a virtual communication set at a position corresponding to the layer 7 application layer of the OSI model. The virtual communication protocol includes an IoT source address, an IoT target address, and at least one IoT instruction or request; wherein the IoT source address is a dynamic IoT address of the IoT device, and the IoT device has a communication destination: a target IoT device, the target IoT device being another IoT device belonging to the Internet of Things, the IoT target address being the dynamic IoT address of the target IoT device, and the IoT command or request is the IoT device An instruction or request executed by the target IoT device. 依據申請專利範圍第2項所述之建構於實體通訊協定中的虛擬通訊協定,其中該任一IoT裝置向該IoT主控端傳送該第一訊息封包後,該IoT主控端即收到該第一訊息封包,該IoT主控端並解析該第一訊息封包而發出一送往該目標IoT裝置之一第二訊息封包,該第二訊息封包,包括該目標IoT裝置隸屬的實體通訊協定與設於其相當於OSI模型第7層應用層之位置上之虛擬通訊協定,該目標IoT裝置隸屬的實體通訊協定內包括符合其規格的來源位址與目標位址,使該第二訊息封包可正確發送到該目標IoT裝置,該第二訊息封包之虛擬通訊協定包括與第一訊息封包之虛擬通訊協定內相同的訊息:該IoT來源位址、該IoT目標位址及該IoT指令或請求。 According to the virtual communication protocol constructed in the physical communication protocol described in claim 2, wherein the IoT host receives the first message packet after the IoT device transmits the first message packet to the IoT host a first message packet, the IoT master parses the first message packet and sends a second message packet sent to the target IoT device, where the second message packet includes a physical communication protocol to which the target IoT device belongs The virtual communication protocol is located at the position corresponding to the layer 7 application layer of the OSI model, and the physical communication protocol to which the target IoT device belongs includes a source address and a target address that meet the specifications, so that the second message packet can be Correctly sent to the target IoT device, the virtual communication protocol of the second message packet includes the same message in the virtual communication protocol of the first message packet: the IoT source address, the IoT target address, and the IoT instruction or request. 依據申請專利範圍第3項所述之建構於實體通訊協定中的虛擬通訊協定,其中該IoT主控端發出送往該目標IoT裝置之第二訊息封包後,該目標IoT裝置即收到該第二訊息封包,該目標IoT裝置並解析該第二訊息封包,檢視其虛擬通訊協定內容,確認該IoT來源位址,並執行該IoT指令或請求。 According to the virtual communication protocol constructed in the physical communication protocol described in claim 3, wherein the target IoT device receives the second message packet sent to the target IoT device, the target IoT device receives the first The second message packet, the target IoT device parses the second message packet, views its virtual communication protocol content, confirms the IoT source address, and executes the IoT instruction or request. 依據申請專利範圍第1項所述之建構於實體通訊協定中的虛擬通訊協定,其中該實體通訊協定包括有:TCP/IP通訊協定、藍芽(Bluetooth)、紫蜂標準通訊協定(Zigbee)、RS-232、Wi-Fi、長期演進技術(LTE)、無線射頻識別(RFID)或近場通訊(NFC)。 According to the virtual communication protocol constructed in the physical communication agreement described in claim 1 of the patent application scope, the physical communication agreement includes: a TCP/IP communication protocol, a Bluetooth, a Zigbee standard communication protocol (Zigbee), RS-232, Wi-Fi, Long Term Evolution (LTE), Radio Frequency Identification (RFID) or Near Field Communication (NFC). 依據申請專利範圍第1項所述之建構於實體通訊協定中的虛擬通訊協定,其中該IoT主控端為一閘道器、路由器、交換器或分享器。 The virtual communication protocol constructed in the physical communication protocol according to claim 1 of the patent application scope, wherein the IoT main control terminal is a gateway, a router, a switch or a sharer. 依據申請專利範圍第1項所述之建構於實體通訊協定中的虛擬通訊協定,其中該IoT主控端為一行動裝置。 According to the virtual communication protocol constructed in the physical communication protocol described in claim 1, wherein the IoT master is a mobile device. 依據申請專利範圍第7項所述之建構於實體通訊協定中的虛擬通訊協定,其中該行動裝置為行動電話、筆記型電腦、平板電腦或個人數位助理。 The virtual communication protocol constructed in the physical communication protocol according to claim 7 of the patent application scope, wherein the mobile device is a mobile phone, a notebook computer, a tablet computer or a personal digital assistant. 依據申請專利範圍第1項所述之建構於實體通訊協定中的虛擬通訊協定,其中該IoT主控端所包括多個實體通訊協定係儲存於該IoT主控端之一記憶體內。 According to the virtual communication protocol constructed in the physical communication protocol, the IoT host includes a plurality of physical communication protocols stored in one memory of the IoT main control terminal. 一種建構於實體通訊協定中的虛擬通訊協定,執行於複數個物聯網中,該複數個物聯網包括至少一第一物聯網與一第二物聯網,該第一物聯網包括一第一IoT主控端與複數個可與該第一IoT主控端連線的第一IoT裝置,該第二物聯網包括一第二IoT主控端與複數個可與該第二IoT主控端連線的第二IoT裝置;該複數個第一IoT裝置各自有其隸屬的第一實體通訊協定,任一第一IoT裝置在各自隸屬的第一實體通訊協定相當於OSI模型第7層應用層之位置上設置有一第一虛擬通訊協定,該第一虛擬通訊協定有相當於OSI模型7層之結構;該複數個第二IoT裝置各自有其隸屬的第二實體通訊協定,任一第二IoT裝置在各自隸屬的第二實體通訊協定相當於OSI模型第7層應用層之位置上設置有一第二虛擬通訊協定,該第二虛擬通訊協定有相當於OSI模型7層之結構;該第一IoT主控端係支持多個實體通訊協定,至少包括該等第一IoT裝置各自隸屬的第一實體通訊協定,該第一IoT主控端之多個第一實體通訊協定相當於OSI模型第7層應用層之位置上各自設置有該第一虛擬通訊協定;該第二IoT主控端係支持多個實體通訊協定,至少包括該等第二IoT裝置各自隸屬的第二實體通訊協定,該第二IoT主控端之多個第二實體通訊協定相當於OSI模型第7層應用層之位置上各自設置有該第二虛擬通訊協定;該任一第一IoT裝置係以所隸屬的第一實體通訊協定與該第一IoT主控端連線,並發送一個索取IoT位址的資料給該第一IoT主控端,然後該第一IoT主控端配送一個獨特的第一主控端動態IoT位址給該第一IoT裝置, 使該第一IoT裝置有與其他第一IoT裝置不同的第一主控端動態IoT位址;該任一第二IoT裝置係以所隸屬的第二實體通訊協定與該第二IoT主控端連線,並發送一個索取IoT位址的資料給該第二IoT主控端,然後該第二IoT主控端配送一個獨特的第二主控端動態IoT位址給該第二IoT裝置,使該第二IoT裝置有與其他第二IoT裝置不同的第二主控端動態IoT位址。 A virtual communication protocol constructed in a physical communication protocol, implemented in a plurality of Internet of Things, the plurality of Internet of Things comprising at least a first Internet of Things and a second Internet of Things, the first Internet of Things comprising a first IoT host a first IoT device connected to the first IoT host, the second Internet of Things includes a second IoT host and a plurality of terminals connectable to the second IoT host a second IoT device; each of the plurality of first IoT devices has its own first entity communication protocol, and any of the first IoT devices is in a position corresponding to the layer 7 application layer of the OSI model in the first entity communication protocol to which the respective IoT devices belong a first virtual communication protocol is provided, the first virtual communication protocol has a structure corresponding to the 7th layer of the OSI model; the plurality of second IoT devices each have a second entity communication protocol to which they belong, and any second IoT device is in its own The second entity communication protocol is equivalent to the location of the layer 7 application layer of the OSI model, and the second virtual communication protocol has a structure corresponding to the 7th layer of the OSI model; the first IoT host end Support multiple The physical communication protocol includes at least a first entity communication protocol to which the first IoT device belongs, and the first physical communication protocol of the first IoT host is equivalent to the respective settings of the layer 7 application layer of the OSI model. The first IoT host supports a plurality of physical communication protocols, and at least includes a second entity communication protocol to which the second IoT devices are respectively attached, and the second IoT host has multiple The second entity communication protocol is equivalent to the location of the layer 7 application layer of the OSI model, each of which is provided with the second virtual communication protocol; the first IoT device is associated with the first entity communication protocol and the first IoT master The console is connected, and sends a request for the IoT address to the first IoT host, and then the first IoT host delivers a unique first master dynamic IoT address to the first IoT device. , Having the first IoT device have a first master dynamic IoT address different from the other first IoT devices; the second IoT device is associated with the second entity communication protocol and the second IoT host Connecting, and sending a request for information of the IoT address to the second IoT host, and then the second IoT host distributing a unique second master dynamic IoT address to the second IoT device, so that The second IoT device has a second master dynamic IoT address that is different from the other second IoT devices. 依據申請專利範圍第10項所述之建構於實體通訊協定中的虛擬通訊協定,其中該第一IoT主控端配送一個獨特的第一主控端動態IoT位址給該第一IoT裝置後,該第一IoT裝置向該第一IoT主控端連線所傳送的資料為一第三訊息封包,該第三訊息封包,包括該第一IoT裝置隸屬的第一實體通訊協定與設於該第一實體通訊協定相當於OSI模型第7層應用層之位置上之第一虛擬通訊協定,該第一虛擬通訊協定包括一第一主控端IoT來源位址、一第一主控端IoT目標位址及一第一主控端IoT指令或請求;其中該第一主控端IoT來源位址即該第一IoT裝置之第一主控端動態IoT位址,該第一IoT裝置有一通訊目的地:一第一目標IoT裝置,該第一目標IoT裝置係為同屬該第一物聯網之另一第一IoT裝置,該第一主控端IoT目標位址即該第一目標IoT裝置之第一主控端動態IoT位址,該第一主控端IoT指令或請求即該第一IoT裝置要該第一目標IoT裝置執行之指令或請求;該第二IoT主控端配送一個獨特的第二主控端動態IoT位址給該第二IoT裝置後,該第二IoT裝置向該第二IoT主控端連線所傳送的資料為一第四訊息封包,該第四訊息封包,包括該第二IoT裝置隸屬的一第二實體通訊協定與設於該第二實體通訊協定相當於OSI模型第7層應用層之位置上之第二虛擬通訊協定,該第二虛擬通訊協定包括一第二主控端IoT來源位址、一第二主控端IoT目標位址及一第二主控端IoT指令或請求;其中該第二主控端IoT來源位址即該第二IoT裝置之第二主控端動態IoT位址,該第二IoT裝置有一通訊目的地:一第二目標IoT裝置,該第二目標IoT裝置係為同屬該第二物聯網之另一第二IoT裝置,該第二主控端IoT目標 位址即該第二目標IoT裝置之第二主控端動態IoT位址,該第二主控端IoT指令或請求即該第二IoT裝置要該第二目標IoT裝置執行之指令或請求。 According to the virtual communication protocol constructed in the physical communication protocol described in claim 10, wherein the first IoT host delivers a unique first master dynamic IoT address to the first IoT device, The data transmitted by the first IoT device to the first IoT master is a third message packet, and the third message packet includes a first entity communication protocol to which the first IoT device belongs and is configured in the first A physical communication protocol is equivalent to the first virtual communication protocol at the location of the layer 7 application layer of the OSI model, and the first virtual communication protocol includes a first host IoT source address and a first host IoT target bit. And a first master IoT command or request; wherein the first host IoT source address is the first master dynamic IoT address of the first IoT device, and the first IoT device has a communication destination a first target IoT device, the first target IoT device is another first IoT device belonging to the first Internet of Things, and the first host IoT target address is the first target IoT device a master dynamic IoT address, the first host IoT instruction Requesting that the first IoT device requests an instruction or request from the first target IoT device; after the second IoT host delivers a unique second master dynamic IoT address to the second IoT device, the first The data transmitted by the second IoT device to the second IoT master connection is a fourth message packet, and the fourth message packet includes a second entity communication protocol to which the second IoT device belongs and is located in the second The physical communication protocol is equivalent to the second virtual communication protocol at the location of the layer 7 application layer of the OSI model, and the second virtual communication protocol includes a second host IoT source address and a second host IoT target address. And a second master IoT command or request; wherein the second master IoT source address is the second master dynamic IoT address of the second IoT device, and the second IoT device has a communication destination: a second target IoT device, the second target IoT device being another second IoT device belonging to the second Internet of Things, the second host IoT target The address is the second active dynamic IoT address of the second target IoT device, and the second host IoT command or request is an instruction or request that the second IoT device needs to execute by the second target IoT device. 依據申請專利範圍第11項所述之建構於實體通訊協定中的虛擬通訊協定,其中該任一第一IoT裝置向該第一IoT主控端傳送該第三訊息封包後,該第一IoT主控端即收到該第三訊息封包,該第一IoT主控端並解析該第三訊息封包而發出一送往該第一目標IoT裝置之一第五訊息封包,該第五訊息封包,包括該第一目標IoT裝置隸屬的一第一實體通訊協定與設於該第一實體通訊協定相當於OSI模型第7層應用層之位置上之第一虛擬通訊協定,該第一目標IoT裝置隸屬的第一實體通訊協定內包括符合其規格的來源位址與目標位址,使該第五訊息封包可正確發送到該第一目標IoT裝置,該第五訊息封包之第一虛擬通訊協定包括與第三訊息封包之第一虛擬通訊協定內相同的訊息:該第一主控端IoT來源位址、該第一主控端IoT目標位址及該第一主控端IoT指令或請求;該任一第二IoT裝置向該第二IoT主控端傳送該第四訊息封包後,該第二IoT主控端即收到該第四訊息封包,該第二IoT主控端並解析該第四訊息封包而發出一送往該第二目標IoT裝置之一第六訊息封包,該第六訊息封包,包括該第二目標IoT裝置隸屬的一第二實體通訊協定與設於該第二實體通訊協定相當於OSI模型第7層應用層之位置上之第二虛擬通訊協定,該第二目標IoT裝置隸屬的第二實體通訊協定內包括符合其規格的來源位址與目標位址,使該第六訊息封包可正確發送到該第二目標IoT裝置,該第六訊息封包之第二虛擬通訊協定包括與第四訊息封包之第二虛擬通訊協定內相同的訊息:該第二主控端IoT來源位址、該第二主控端IoT目標位址及該第二主控端IoT指令或請求。 According to the virtual communication protocol constructed in the physical communication protocol described in claim 11, wherein the first IoT device transmits the third message packet to the first IoT host, the first IoT master The control end receives the third message packet, and the first IoT host parses the third message packet to send a fifth message packet sent to the first target IoT device, where the fifth message packet includes a first physical communication protocol to which the first target IoT device belongs and a first virtual communication protocol disposed at a location of the first entity communication protocol corresponding to the layer 7 application layer of the OSI model, the first target IoT device belongs to The first entity communication protocol includes a source address and a target address that meet the specifications, so that the fifth message packet can be correctly sent to the first target IoT device, and the first virtual communication protocol of the fifth message packet includes The same message in the first virtual communication protocol of the three message packets: the first host IoT source address, the first host IoT target address, and the first host IoT instruction or request; Second IoT device After the second IoT host transmits the fourth message packet, the second IoT host receives the fourth message packet, and the second IoT host analyzes the fourth message packet and sends a message to the second IoT host. a sixth message packet of the second target IoT device, the sixth message packet, including a second entity communication protocol to which the second target IoT device belongs, and a layer 7 corresponding to the OSI model in the second entity communication protocol a second virtual communication protocol at the location of the application layer, the second entity communication protocol to which the second target IoT device belongs includes a source address and a target address that meet the specifications, so that the sixth message packet can be correctly sent to the The second target IoT device, the second virtual communication protocol of the sixth message packet includes the same message as the second virtual communication protocol of the fourth message packet: the second host IoT source address, the second master The end IoT target address and the second host IoT instruction or request. 依據申請專利範圍第12項所述之建構於實體通訊協定中的虛擬通訊協定,其中該第一IoT主控端發出送往該第一目標IoT裝置之第五訊息封包後,該第一目標IoT裝置即收到該第五訊息封包,該第一目標IoT裝置並解析該第五訊息封包,檢視其第一虛擬通訊協定內容,確認該第一主控 端IoT來源位址,並執行該第一主控端IoT指令或請求;該第二IoT主控端發出送往該第二目標IoT裝置之第六訊息封包後,該第二目標IoT裝置即收到該第六訊息封包,該第二目標IoT裝置並解析該第六訊息封包,檢視其第二虛擬通訊協定內容,確認該第二主控端IoT來源位址,並執行該第二主控端IoT指令或請求。 According to the virtual communication protocol constructed in the physical communication protocol described in claim 12, wherein the first IoT host sends a fifth message packet sent to the first target IoT device, the first target IoT The device receives the fifth message packet, and the first target IoT device parses the fifth message packet, checks the content of the first virtual communication protocol, and confirms the first host control. Ending the IoT source address and executing the first host IoT command or request; after the second IoT master sends the sixth message packet sent to the second target IoT device, the second target IoT device receives Going to the sixth message packet, the second target IoT device parses the sixth message packet, checks the content of the second virtual communication protocol, confirms the source address of the second host IoT, and executes the second host. IoT instruction or request. 依據申請專利範圍第13項所述之建構於實體通訊協定中的虛擬通訊協定,其中該複數個物聯網中包括至少一多網IoT裝置,該多網IoT裝置同時有該第一IoT裝置的第一實體通訊協定與該第二IoT裝置的第二實體通訊協定,使得該多網IoT裝置能與該第一IoT主控端與該第二IoT主控端連線;該多網IoT裝置經由建構於該第一實體通訊協定的第一虛擬通訊協定,透過該第一IoT主控端與該第一物聯網的其他第一IoT裝置通訊與傳達指令;該多網IoT裝置經由建構於該第二實體通訊協定的第二虛擬通訊協定,透過該第二IoT主控端與該第二物聯網的其他第二IoT裝置通訊與傳達指令。 The virtual communication protocol constructed in the physical communication protocol according to claim 13 of the patent application scope, wherein the plurality of Internet of Things includes at least one multi-network IoT device, and the multi-network IoT device simultaneously has the first IoT device a physical communication protocol and a second entity communication protocol of the second IoT device, so that the multi-network IoT device can be connected to the first IoT host and the second IoT host; the multi-network IoT device is constructed Communicating and transmitting instructions to the first IoT device of the first Internet of Things through the first IoT host in the first virtual communication protocol of the first entity communication protocol; the multi-network IoT device is constructed in the second The second virtual communication protocol of the physical communication protocol communicates and communicates with the other second IoT device of the second Internet of Things through the second IoT host. 依據申請專利範圍第12項所述之建構於實體通訊協定中的虛擬通訊協定,其中該第一實體通訊協定或該第二實體通訊協定為:TCP/IP通訊協定、藍芽(Bluetooth)、紫蜂標準通訊協定(Zigbee)、RS-232、Wi-Fi、長期演進技術(LTE)、無線射頻識別(RFID)或近場通訊(NFC)。 According to the virtual communication protocol constructed in the physical communication agreement described in claim 12, wherein the first entity communication protocol or the second entity communication protocol is: TCP/IP communication protocol, Bluetooth, purple Bee standard communication protocol (Zigbee), RS-232, Wi-Fi, Long Term Evolution (LTE), Radio Frequency Identification (RFID) or Near Field Communication (NFC). 依據申請專利範圍第10項所述之建構於實體通訊協定中的虛擬通訊協定,其中該第一IoT主控端或該第二IoT主控端為一閘道器、路由器、交換器或分享器。 The virtual communication protocol constructed in the physical communication protocol according to claim 10, wherein the first IoT host or the second IoT host is a gateway, router, switch or sharer . 依據申請專利範圍第16項所述之建構於實體通訊協定中的虛擬通訊協定,其中該第一IoT主控端或該第二IoT主控端為一行動裝置。 The virtual communication protocol constructed in the physical communication protocol according to claim 16 of the patent application, wherein the first IoT master or the second IoT master is a mobile device. 依據申請專利範圍第17項所述之建構於實體通訊協定中的虛擬通訊協定,其中該行動裝置為行動電話、筆記型電腦、平板電腦或個人數位助理。 The virtual communication protocol constructed in the physical communication protocol according to claim 17 of the patent application scope, wherein the mobile device is a mobile phone, a notebook computer, a tablet computer or a personal digital assistant. 依據申請專利範圍第10項所述之建構於實體通訊協定中的虛擬通訊協定,其中該第一IoT主控端所包括多個第一實體通訊協定係儲存於該第一IoT主控端之一記憶體內,該第二IoT主控端所包括多個第二實體通訊協定係儲存於該第二IoT主控端之一記憶體內。 The virtual communication protocol constructed in the physical communication protocol according to claim 10, wherein the first IoT host includes a plurality of first entity communication protocols stored in one of the first IoT hosts. In the memory, the second IoT host includes a plurality of second entity communication protocols stored in a memory of the second IoT master.
TW104133354A 2015-07-31 2015-10-12 A virtual communication method constructed in a physical communication protocol TWI631842B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW104124855 2015-07-31
??104124855 2015-07-31

Publications (2)

Publication Number Publication Date
TW201705737A true TW201705737A (en) 2017-02-01
TWI631842B TWI631842B (en) 2018-08-01

Family

ID=57883132

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104133354A TWI631842B (en) 2015-07-31 2015-10-12 A virtual communication method constructed in a physical communication protocol

Country Status (2)

Country Link
US (1) US9986071B2 (en)
TW (1) TWI631842B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9942235B2 (en) * 2015-12-16 2018-04-10 Verizon Patent And Licensing Inc. Network access security for internet of things (IoT) devices
US10623274B2 (en) * 2016-12-12 2020-04-14 Arris Enterprises Llc Mechanism and apparatus for set-top box power off to internet of things device status display
GB2565129A (en) * 2017-08-03 2019-02-06 Sony Interactive Entertainment Inc Data communications
WO2021050269A1 (en) * 2019-09-10 2021-03-18 Arris Enterprises Llc User interface for configuring device-specific iot applications

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101990004B (en) * 2010-11-05 2013-03-13 中国科学院声学研究所 Method for distributing virtual ID and virtual IP based on home gateway of internet of things
CN102694883A (en) * 2012-06-08 2012-09-26 汕头市易普联科技有限公司 Address distribution method and equipment for intelligent household network
CN103986743A (en) * 2013-02-07 2014-08-13 伊姆西公司 Method, apparatus and system for acquiring data in Internet of Things
US9853826B2 (en) * 2013-02-25 2017-12-26 Qualcomm Incorporated Establishing groups of internet of things (IOT) devices and enabling communication among the groups of IOT devices
WO2014193940A1 (en) * 2013-05-28 2014-12-04 Convida Wireless, Llc Load balancing in the internet of things
TWI538444B (en) * 2013-09-14 2016-06-11 Chunghwa Telecom Co Ltd IPv6 CE standard automated test system
US20150156266A1 (en) * 2013-11-29 2015-06-04 Qualcomm Incorporated Discovering cloud-based services for iot devices in an iot network associated with a user
EP3170284B1 (en) * 2014-07-18 2023-01-25 Convida Wireless, LLC Enhanced operations between service layer and management layer in an m2m system by allowing the execution of a plurality of commands on a plurality of devices
US10887394B2 (en) * 2014-07-31 2021-01-05 Convida Wireless, Llc Mechanism and service for device naming
US11792872B2 (en) * 2015-02-24 2023-10-17 Intel Corporation Methods and apparatuses associated with reestablishment of a network connection with a child node

Also Published As

Publication number Publication date
US20170034116A1 (en) 2017-02-02
US9986071B2 (en) 2018-05-29
TWI631842B (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6751094B2 (en) Method, apparatus and system for supporting wireless communication
KR101986922B1 (en) Connectivity module for internet of things (iot) devices
US9596603B2 (en) Distributed bulk onboarding process
US8751614B2 (en) Providing virtualized visibility through routers
CN107113299B (en) Allocation of leases to devices
TWI631842B (en) A virtual communication method constructed in a physical communication protocol
CN107113892B (en) Method and device for automatically networking gateway equipment
EP3223498A1 (en) Method and apparatus for interconnection between networks
CA2941566C (en) An environment control device providing a wi-fi hotspot for accessing the internet
US10038634B2 (en) Method of addressing IoT device and applying such for IoT connection
US8832314B2 (en) Information synchronization method, apparatus and system
US11098914B2 (en) System and method for operating a HVAC system by determining occupied state of a structure via IP address
JP5818362B2 (en) Network system, network management device, network management program, and network management method
EP3706373A1 (en) Establishing a vxlan between a wireless access point and a node
CN102006266B (en) Method for configuring service quality parameter, remote access server and system
CN102904978B (en) In Ubiquitous Network, ubiquitous equipment realizes the method for UPnP
CN105516121B (en) The method and system that AC is communicated with AP in WLAN
TWI626836B (en) Method for addressing IoT device and its connection to Internet of Things
KR101885618B1 (en) Method for automatically connecting ip based devices and the apparatus supporting the same
Tanaka et al. Implementation of Secure End-to-End Remote Control System for Smart Home Appliances on Android
KR101809912B1 (en) Apparatus and method for managing ip adress conflict and vehicle network apparatus and method having the same
CN111988349A (en) Network connection establishing method, device and system and display system
KR20130067735A (en) Mobile network system and mobile networking method thereof
JP2009071866A (en) Communication apparatus