TW201643506A - Head mounted display apparatus - Google Patents

Head mounted display apparatus Download PDF

Info

Publication number
TW201643506A
TW201643506A TW105116945A TW105116945A TW201643506A TW 201643506 A TW201643506 A TW 201643506A TW 105116945 A TW105116945 A TW 105116945A TW 105116945 A TW105116945 A TW 105116945A TW 201643506 A TW201643506 A TW 201643506A
Authority
TW
Taiwan
Prior art keywords
user
mounted display
image
head mounted
display
Prior art date
Application number
TW105116945A
Other languages
Chinese (zh)
Other versions
TWI718151B (en
Inventor
金泰敬
高在佑
韓橓燮
Original Assignee
三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星電子股份有限公司 filed Critical 三星電子股份有限公司
Publication of TW201643506A publication Critical patent/TW201643506A/en
Application granted granted Critical
Publication of TWI718151B publication Critical patent/TWI718151B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1015Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for wavefront analysis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0825Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a flexible sheet or membrane, e.g. for varying the focus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1066Beam splitting or combining systems for enhancing image performance, like resolution, pixel numbers, dual magnifications or dynamic range, by tiling, slicing or overlapping fields of view
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/19Sensors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/193Preprocessing; Feature extraction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/011Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0127Head-up displays characterised by optical features comprising devices increasing the depth of field
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0134Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0185Displaying image at variable distance
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Computer Vision & Pattern Recognition (AREA)

Abstract

A head mounted display (HMD) apparatus and a display method thereof are provided. The apparatus includes a display configured to provide an image, an active element comprising a plurality of micro-mirrors and configured to reflect the image provided on the display, and a processor configured to detect a user's eyesight and adjust a focal length of the image provided on the display by controlling a gradient of at least some of the plurality of the micro-mirrors based on the detected user's eyesight.

Description

頭戴式顯示裝置Head mounted display device

本發明是關於一種頭戴式顯示裝置,且特別是有關於一種用以藉由使用主動元件來量測使用者的視力且藉由調整焦點來校正視力的顯示裝置。BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a head mounted display device, and more particularly to a display device for measuring a user's vision by using an active element and correcting the focus by adjusting the focus.

在頭戴式顯示器(head mounted display, HMD)中,光學顯示器用以準直、放大以及中繼一影像源。「準直」一影像指的是產生一虛擬影像,並準確地對位此虛擬影像使其呈現於距離使用者的面部幾吋遠處。「放大」一影像指的是使一影像呈現得大於此影像的實際大小。「中繼」一影像源指的是產生遠離使用者的面部以及影像源的虛擬實境影像。In head mounted displays (HMDs), optical displays are used to collimate, amplify, and relay an image source. "Aligning" an image refers to generating a virtual image and accurately aligning the virtual image a few miles away from the user's face. "Zooming in" an image refers to rendering an image larger than the actual size of the image. A "relay" image source refers to a virtual reality image that produces a face away from the user and an image source.

最近,頭戴式顯示器需要更精巧且精緻的技術,此是因為頭戴式顯示器用以顯示虛擬實境(virtual reality, VR)以及擴增實境(augmented reality, AR)。因為頭戴式顯示器是最接近於使用者的眼睛而使用的顯示裝置,所以需要可減輕眼睛疲乏的技術。Recently, head-mounted displays require more sophisticated and sophisticated technology because head-mounted displays are used to display virtual reality (VR) and augmented reality (AR). Since the head-mounted display is a display device that is used closest to the eyes of the user, there is a need for a technique that can alleviate eye fatigue.

用於量測且校正使用者的視力的先前技術方法的其中之一是涉及藉由調整構成頭戴式顯示器內的光學器件的透鏡的位置來控制光路徑長度以校正視力。此外,亦存在一種視力校正方法,其涉及調整構成頭戴式顯示器內的光學器件的顯示器的位置以控制光路徑長度。One of the prior art methods for measuring and correcting the user's vision involves controlling the optical path length to correct vision by adjusting the position of the lens that constitutes the optics within the head mounted display. In addition, there is also a vision correction method that involves adjusting the position of a display that constitutes an optical device within a head mounted display to control the optical path length.

然而,先前技術的技術具有缺點,因而不能執行精確的視力量測、分別校正左眼以及右眼的視力以及校正散光。此外,當多個使用者共用同一頭戴式顯示器時,每當使用者改變,使用者可能會感受到需要重新調整視力量測的不便之處。However, the prior art technique has disadvantages in that accurate visual force measurement, correction of vision of the left and right eyes, and correction of astigmatism, respectively, cannot be performed. In addition, when multiple users share the same head mounted display, whenever the user changes, the user may feel the inconvenience of needing to readjust the visual strength measurement.

以上資訊僅作為背景資訊而呈現以輔助理解本發明。未進行關於上述內容中的任一者是否可能適用於關於本發明的先前技術的判定以及聲明。The above information is presented as background information only to assist in understanding the invention. It is not possible to make a determination as to whether or not any of the above is applicable to the prior art regarding the present invention and the statement.

本發明的多個態樣會解決至少上文提及的問題及/或缺點且提供至少下文所描述的優點。因此,本發明的一個態樣提供一種顯示裝置以及其控制方法,所述顯示裝置藉由使用可變化焦距的主動元件來縮減頭戴式顯示(head mounted display, HMD)裝置的尺寸,並基於左眼及右眼的視力量測所儲存的資訊及與使用者資訊相關聯的資訊來自動地校正使用者的視力,因而可減輕頭戴式顯示器的使用者的眼睛疲乏。The various aspects of the present invention address at least the above mentioned problems and/or disadvantages and provide at least the advantages described below. Accordingly, an aspect of the present invention provides a display device and a control method thereof, which reduce the size of a head mounted display (HMD) device by using an active element of variable focal length, and based on the left The information stored in the eye and right eye measures information stored in the eye and the information associated with the user information to automatically correct the user's vision, thereby reducing eye fatigue of the user of the head mounted display.

本發明的另一態樣是藉由使用此種主動元件而提供使用者一高清晰度顯示螢幕。Another aspect of the present invention provides a high definition display screen for a user by using such an active component.

在本發明的一態樣中,提供一種頭戴式顯示器裝置。所述裝置包括用以提供影像的一顯示器、包括多個微鏡且用以反射提供於顯示器上的影像的一主動元件、以及用以偵測一使用者的視力且基於偵測到的使用者的視力而控制多個微鏡中的至少一部分的一梯度來調整提供於顯示器上的影像的焦距的一處理器In one aspect of the invention, a head mounted display device is provided. The device includes a display for providing an image, an active component including a plurality of micromirrors for reflecting an image provided on the display, and detecting a user's vision based on the detected user a processor that controls a gradient of at least a portion of the plurality of micromirrors to adjust the focal length of the image provided on the display

所述處理器可在所述主動元件上產生一光罩圖案,以使自所述顯示器發射的用於視力量測的一光射線的僅一特定區域形成為使用者的視網膜上的一影像,以及藉由變化所述主動元件的一光功率來偵測所述視力。The processor may generate a reticle pattern on the active component such that only a specific area of a light ray emitted from the display for visual force measurement is formed as an image on a retina of the user. And detecting the vision by varying an optical power of the active component.

所述處理器可基於偵測到的所述使用者的視力而調整所述主動元件的光功率來校正所述使用者的視力。The processor may adjust the optical power of the active component to correct the visual acuity of the user based on the detected visual acuity of the user.

所述處理器可在指定時間變化顯示於所述顯示器上的虛擬實境影像的焦點,或藉由使用影像辨識來估計顯示於所述顯示器上的所述虛擬實境影像的一物件位置以及變化所述影像的焦點,以變化所述虛擬實境影像的焦距。The processor may change a focus of the virtual reality image displayed on the display at a specified time, or estimate an object position and change of the virtual reality image displayed on the display by using image recognition a focus of the image to change a focal length of the virtual reality image.

所述處理器可藉由使所述主動元件的功率隨所述虛擬實境影像的物距成比例變化來調整所述虛擬實境影像的每一層的一焦點,以及當使用者近視(myopic或nearsighted)時,藉由指定一透鏡的功率上的一偏移量以使所述主動元件的所述功率發生變化,來擴展所述使用者的一視力調整範圍。The processor may adjust a focus of each layer of the virtual reality image by causing the power of the active component to vary proportionally to the object distance of the virtual reality image, and when the user is nearsighted (myopic or Nearsighted), a range of vision adjustments of the user is extended by assigning an offset in the power of a lens to vary the power of the active element.

所述處理器使用高速傾斜以驅動所述主動元件,以擴展所述顯示器的解析度。The processor uses high speed tilt to drive the active components to expand the resolution of the display.

所述主動元件可相對於所述顯示器以及一光路徑在垂直方向上設置。The active component can be disposed in a vertical direction relative to the display and a light path.

所述頭戴式顯示器裝置可另外包括一記憶體,用以儲存偵測到的所述視力資訊以及所述使用者的一生物特徵資訊。The head mounted display device may further include a memory for storing the detected visual information and a biometric information of the user.

所述頭戴式顯示器裝置可另外包括多個偏光鏡。所述頭戴式顯示器裝置可使用以下各者獲得一虛擬實境影像:一第一偏光鏡,其設置於所述主動元件與所述透鏡之間;一第二偏光鏡,其設置於一透鏡鏡面與一第二偏光光束分光器的一前表面之間;以及一第三偏光鏡,其垂直於所述第二偏光鏡、平行於所述主動元件而設置,且設置於所述第二偏光光束分光器的一側表面上。The head mounted display device may additionally include a plurality of polarizers. The head mounted display device can obtain a virtual reality image by using: a first polarizer disposed between the active component and the lens; and a second polarizer disposed on a lens a mirror surface and a front surface of a second polarizing beam splitter; and a third polarizer disposed perpendicular to the second polarizer, parallel to the active component, and disposed on the second polarized light On one side of the beam splitter.

所述第一偏光鏡以及所述第二偏光鏡各可為一四分之一波片,且所述第三偏光鏡可為一二分之一波片。The first polarizer and the second polarizer may each be a quarter-wave plate, and the third polarizer may be a half-wave plate.

所述頭戴式顯示器裝置可另外包括以下各者:一準直透鏡,用以產生自所述顯示器發射而成為一平行射線的所述光射線;一主動元件,用以收斂或發散自所述透鏡發射的所述光射線;一第一繞射元件,用以使自所述主動元件發射的所述光射線產生繞射;一四分之一波片,設置於所述第一繞射元件與所述主動元件之間且用以改變偏光狀態;一光導,用以使用全反射來導引經繞射的所述光射線;以及一第二繞射元件,用以使用所述繞射而將所述光射線發射至使用者。The head mounted display device may additionally include a collimating lens for generating the light ray emitted from the display to become a parallel ray; an active component for converging or diverging from the a light ray emitted by the lens; a first diffractive element for diffracting the light ray emitted from the active element; a quarter wave plate disposed on the first diffractive element And the active element for changing a polarization state; a light guide for guiding the diffracted light ray using total reflection; and a second diffraction element for using the diffraction The light rays are emitted to a user.

所述第一繞射元件可傳遞自所述顯示器發射的一第一線性偏光光射線,以及使垂直於所述第一線性偏光光射線的一第二線性偏光光射線產生繞射。The first diffractive element can transmit a first linearly polarized light ray emitted from the display and a second linearly polarized light ray perpendicular to the first linearly polarized light ray.

所述頭戴式顯示器裝置可藉由以下操作來調整一擴增實境影像的一焦點:將所述第一繞射元件設置成平行於所述主動元件;將所述第二繞射元件設置成平行於使用者的眼睛;以及將所述主動元件的一光軸設置成相對於所述使用者的眼睛的一光軸成一指定角度。The head mounted display device can adjust a focus of an augmented reality image by: arranging the first diffractive element parallel to the active element; setting the second diffractive element Parallel to the eye of the user; and positioning an optical axis of the active component at a specified angle relative to an optical axis of the user's eye.

在本發明的一實施例中,提供一種頭戴式顯示器裝置的顯示方法。所述方法包括以下步驟:藉由使用包括多個微鏡的一主動元件來偵測一使用者的視力資訊;儲存偵測到的所述使用者的視力資訊至一使用者的資訊;以及當基於所述使用者的資訊而辨識出所述使用者時,基於偵測到的所述使用者的視力資訊而控制所述多個微鏡中的至少一部分的一梯度,以調整提供至一顯示器的一影像的一焦距。In an embodiment of the invention, a display method of a head mounted display device is provided. The method includes the steps of: detecting a user's vision information by using an active component including a plurality of micromirrors; storing the detected visual information of the user to a user's information; When the user is identified based on the information of the user, controlling a gradient of at least a portion of the plurality of micromirrors based on the detected visual information of the user to adjust to be provided to a display a focal length of an image.

所述偵測可包括以下步驟:產生一光罩圖案,其用以使自所述顯示器發射的光射線的僅一特定區域形成於所述主動元件的一中心上,以用於所述視力量測,且所述特定區域可形成為所述使用者視網膜上的一影像;以及藉由變化所述主動元件的光功率來量測所述視力。The detecting may include the steps of: generating a reticle pattern for forming only a specific region of the light ray emitted from the display on a center of the active component for the visual force And the specific area may be formed as an image on the retina of the user; and the optical power is measured by varying the optical power of the active element.

所述顯示方法可另外包括基於自所述主動元件所偵測到的所述視力而調整所述使用者的所述光功率,以校正所述使用者的所述視力。The display method can additionally include adjusting the optical power of the user based on the vision detected from the active component to correct the visual acuity of the user.

所述焦距的調整更可包括以下步驟中的其中之一:在指定時間變化顯示於所述顯示器上的一虛擬實境影像的一焦點;以及藉由使用影像辨識而估計顯示於所述顯示器上的所述虛擬實境影像內的一物件位置以及變化所述影像的焦點來變化所述虛擬實境影像的一焦距。The adjustment of the focal length may further comprise one of the following steps: changing a focus of a virtual reality image displayed on the display at a specified time; and estimating the display on the display by using image recognition An object position in the virtual reality image and a change in focus of the image to change a focal length of the virtual reality image.

所述顯示方法可另外包括藉由使所述主動元件的所述功率隨所述虛擬實境影像內的一物距成比例地變化來調整一虛擬實境影像的每一層的一焦點。The display method can additionally include adjusting a focus of each layer of a virtual reality image by causing the power of the active component to vary proportionally with an object distance within the virtual reality image.

所述顯示方法可另外包括當使用者近視時,藉由指定一透鏡的所述功率上的一偏移量以使得所述主動元件的所述功率發生變化來擴展所述使用者的一視力調整範圍。The display method may additionally include expanding a vision adjustment of the user by assigning an offset in the power of a lens to cause the power of the active component to change when the user is nearsighted range.

所述顯示方法可另外包括使用高速傾斜以驅動所述主動元件以擴展所述顯示器的一解析度。The display method can additionally include using a high speed tilt to drive the active component to expand a resolution of the display.

基於上述,本發明的各種實施例的頭戴式顯示器裝置可藉由使用所述主動元件來量測所述使用者的視力,以提供使用者經最佳化的影像。此外,頭戴式顯示器裝置可藉由使用所述主動元件而小型化,並可提供使用者一高清晰度顯示螢幕。Based on the above, the head mounted display device of various embodiments of the present invention can measure the visual acuity of the user by using the active component to provide an optimized image of the user. In addition, the head mounted display device can be miniaturized by using the active component and can provide a high definition display screen for the user.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

以下描述搭配參考附圖是用以幫助全面理解由申請專利範圍及其等效物所界定的本發明的各種實施例作全面理解。以下描述包括各種特定細節以輔助理解,但此等細節應僅被視為舉例說明。因此,所屬領域中具通常知識者應理解,可在不脫離本發明的範疇以及精神的情況下對本文中所描述的本發明的各種實施例進行各種潤飾以及修改。此外,出於清楚以及簡明起見,可省略熟知功能以及構造的描述。The following description of the various embodiments of the invention are intended to The description below includes various specific details to assist the understanding, but such details should be considered as illustrative only. Accordingly, it is understood by those of ordinary skill in the art that the various embodiments of the invention described herein may be modified and modified without departing from the scope and spirit of the invention. In addition, descriptions of well-known functions and constructions may be omitted for clarity and conciseness.

用於以下描述以及申請專利範圍中的術語以及詞語並不限於字面含義,而僅是由發明人所採用,以實現對本發明的清楚且一致的理解。因此,對於所屬領域中具通常知識者應顯而易見的是,以下關於本發明的各種實施例的描述的目的僅用以作為說明之用而非用以限制由所附申請專利範圍及其等效物所界定的本發明。The terms and words used in the following description and claims are not to be construed as limited Therefore, it should be apparent to those skilled in the art that the following description of the various embodiments of the present invention are intended to be illustrative only and not to limit the scope of the appended claims The invention as defined.

應理解的是,除非上下文另有清楚地指示,單數形式「一」以及「所述」包括多個提及物,。因此,舉例而言,對「一元件表面」的敘述應包括一或多個此等表面。It should be understood that the singular forms """ Thus, for example, reference to "a component surface" shall include one or more of these surfaces.

此外,本文中所使用的元件名稱的後綴詞「-er(-r)」僅是為了容易書寫的描述,因此,此等者並不賦予彼此區分的任何含義或角色。In addition, the suffix "-er(-r)" of the component names used herein is merely a description for easy writing, and therefore, these do not give any meaning or role to distinguish from each other.

此外,如本文中所使用的包括序數數字(諸如「第一」、「第二」等等)的表達可用於描述多種元件,但元件不應受到此類表達限制。上述的表達僅用以將一個元件與另一者區分。舉例而言,在不脫離本揭露內容的範疇的情況下,「第一元件」可被命名為「第二元件」,或相似地,「第二元件」可被命名為「第一元件」。In addition, expressions including ordinal numbers (such as "first", "second", etc.), as used herein, may be used to describe various elements, but the elements are not limited by such expression. The above expressions are only used to distinguish one element from another. For example, the "first component" may be named "second component" or, similarly, the "second component" may be named "first component" without departing from the scope of the disclosure.

現在將參考附圖以更詳細地描述本發明的某些實施例。Certain embodiments of the present invention will now be described in detail with reference to the drawings.

在以下描述中,相同圖式標號用於甚至在不同圖式中的相同元件。以下描述中所定義的事項(諸如詳細構造以及元件)是用以幫助全面理解本發明。因此,顯而易見的是,本發明的多種實施例可在沒有下述定義的事項的情況下被實現。In the following description, the same drawing numbers are used for the same elements in different drawings. The matters defined in the following description, such as detailed construction and elements, are intended to be a comprehensive understanding of the invention. Thus, it will be apparent that various embodiments of the invention may be practiced without the items defined below.

參看隨附圖式,下文將詳細地描述本發明。The invention will be described in detail below with reference to the accompanying drawings.

圖1是依照本發明的一實施例的頭戴式顯示器(head mounted display, HMD)的一般配置的示意圖。1 is a schematic diagram of a general configuration of a head mounted display (HMD) according to an embodiment of the invention.

請參照圖1,頭戴式顯示器100可為雙目鏡形式的一顯示裝置。然而,本發明並不限於此,且因此,頭戴式顯示器100可裝在頭上或可包括類似一般眼鏡的薄且輕的結構。Referring to FIG. 1, the head mounted display 100 can be a display device in the form of a binocular. However, the present invention is not limited thereto, and thus, the head mounted display 100 may be mounted on the head or may include a thin and light structure like general glasses.

在本發明的一實施例中,頭戴式顯示器100可包括對左眼以及右眼顯示一影像的一顯示器、可量測使用者的視力的一光學切片(未繪示)以及一控制器101。控制器101可配置在頭戴式顯示器100的外部或在頭戴式顯示器100的內部。圖2A的一處理器220可執行控制器101的功能。所述光學切片將在圖2B中予以具體地解釋。In an embodiment of the invention, the head mounted display 100 can include a display that displays an image for the left and right eyes, an optical slice (not shown) that can measure the user's vision, and a controller 101. . The controller 101 can be disposed external to the head mounted display 100 or inside the head mounted display 100. A processor 220 of FIG. 2A can perform the functions of the controller 101. The optical section will be specifically explained in Figure 2B.

控制器101可基於光學切片中所量測的使用者的視力而調整光功率,以藉此校正使用者的視力。此外,控制器101可將所量測的使用者的視力儲存於一記憶體(未繪示)中,並控制光學切片,以基於所儲存的使用者資訊來量測視力。The controller 101 can adjust the optical power based on the measured vision of the user in the optical slice to thereby correct the user's vision. In addition, the controller 101 can store the measured visual power of the user in a memory (not shown) and control the optical slice to measure the vision based on the stored user information.

當控制器101配置在頭戴式顯示器100的外部時,頭戴式顯示器100可執行與控制器101的通訊,且控制器101可執行此通訊以使頭戴式顯示器100可自一影像處理裝置(未繪示)接收一影像。頭戴式顯示器100以及控制器101可有線或無線地執行此通訊。When the controller 101 is disposed outside the head mounted display 100, the head mounted display 100 can perform communication with the controller 101, and the controller 101 can perform the communication to make the head mounted display 100 available from an image processing device. (not shown) receives an image. The head mounted display 100 and the controller 101 can perform this communication by wire or wirelessly.

此外,本發明的一實施例可應用於具有光學器件的所有顯示裝置,其中,所述光學器件可在顯示裝置以及頭戴式顯示器100中量測以及校正使用者的視力。Moreover, an embodiment of the present invention is applicable to all display devices having optical devices that can measure and correct the user's vision in the display device and the head mounted display 100.

圖2A是依照本發明的一實施例的一種頭戴式顯示器的配置的方塊圖。2A is a block diagram of a configuration of a head mounted display in accordance with an embodiment of the present invention.

請參照圖2A,頭戴式顯示器100可包括顯示器210、處理器220、記憶體230以及一主動元件240。Referring to FIG. 2A, the head mounted display 100 can include a display 210, a processor 220, a memory 230, and an active component 240.

顯示器210可提供多個影像,並基於藉由主動元件240所量測到的一使用者的左眼視力以及右眼視力以及根據處理器220的一控制命令而儲存於記憶體230中的使用者資訊,來顯示適合使用者的視力的經校正的影像。The display 210 can provide a plurality of images and is stored in the memory 230 based on a left eye vision and a right eye vision of the user measured by the active component 240 and a control command according to the processor 220. Information to display a corrected image that is appropriate for the user's vision.

此外,顯示器210可實施為各種形式,諸如液晶顯示器(liquid crystal display, LCD)、有機發光二極體(organic light emitting diode, OLED)、可撓性顯示器、三維(three-dimensional, 3D)顯示器等。顯示器210可經配置以作為一觸控螢幕,並作為用於接收一使用者觸控命令的輸入的一輸入裝置也可作為一輸出裝置。In addition, the display 210 can be implemented in various forms, such as a liquid crystal display (LCD), an organic light emitting diode (OLED), a flexible display, a three-dimensional (3D) display, etc. . The display 210 can be configured to function as a touch screen and as an input device for receiving an input of a user's touch command.

記憶體230可儲存由處理器220產生的使用者的視力資訊以及生物特徵資訊。此外,記憶體230可儲存一使用者的經校正的視力資訊。記憶體230可儲存用於處理器220中的程式、計算參數以及使用者指令。舉例而言,記憶體220可包括一硬碟、一多媒體卡、一快閃記憶體、一微安全數位(secure digital, SD)卡或極數位(extreme digital, XD)卡中的至少一者。此外,記憶體230可為處理器220內的隨機存取記憶體(random access memory, RAM)或唯讀記憶體(read only memory, ROM)。The memory 230 can store the visual information of the user and the biometric information generated by the processor 220. In addition, the memory 230 can store corrected vision information of a user. The memory 230 can store programs, calculation parameters, and user instructions for use in the processor 220. For example, the memory 220 can include at least one of a hard disk, a multimedia card, a flash memory, a secure digital (SD) card, or an extreme digital (XD) card. In addition, the memory 230 can be a random access memory (RAM) or a read only memory (ROM) in the processor 220.

主動元件240可藉由調整一使用者的光功率來修改焦點,且包括梯度可變化的一可變形鏡面。主動元件240可包括多個微鏡,且反射顯示器210所提供的影像。下文解釋本發明的實施例,其中,包括微鏡的微機電系統(micro-electromechanical systems;MEMS)鏡面被用作主動元件240。請參照圖6A以及圖6B以具體說明所述主動元件240。The active component 240 can modify the focus by adjusting the optical power of a user, and includes a deformable mirror whose gradient can be varied. The active component 240 can include a plurality of micromirrors and reflect the image provided by the display 210. Embodiments of the invention are explained below in which micro-electromechanical systems (MEMS) mirrors including micromirrors are used as the active elements 240. Please refer to FIG. 6A and FIG. 6B to specifically describe the active component 240.

處理器220可控制主動元件240以偵測使用者的視力,且基於所偵測到的使用者的視力而控制主動元件240中的多個微鏡中的至少一部分的梯度,以藉此調整自顯示器210提供的影像的焦距。The processor 220 can control the active component 240 to detect the visual force of the user, and control the gradient of at least a portion of the plurality of micromirrors in the active component 240 based on the detected visual force of the user, thereby adjusting the self The focal length of the image provided by display 210.

處理器220可控制顯示器210以產生一視力量測光射線,且控制主動元件240以使視力量測光射線可透過主動元件240中的多個微鏡的至少其中之一而形成為使用者的視網膜上的影像。此外,處理器220可在影像形成於使用者的視網膜上的時間點基於主動元件240所偵測到的資訊而將使用者的視力資訊記錄於記憶體230中。The processor 220 can control the display 210 to generate a visual force metering ray and control the active component 240 such that the apparent power metering ray can be formed on the user's retina through at least one of the plurality of micromirrors in the active component 240. Image. In addition, the processor 220 can record the user's vision information in the memory 230 based on the information detected by the active device 240 at the time when the image is formed on the user's retina.

處理器220可在主動元件240上產生一光罩圖案,以使自顯示器210發射的用於量測視力的光射線中的部分區域形成為使用者視網膜上的一影像,且藉由變化主動元件240的光功率來偵測視力。此外,處理器220可基於偵測到的視力而調整主動元件240的光功率,以藉此校正使用者的視力。The processor 220 can generate a reticle pattern on the active component 240 to form a partial region of the light ray for measuring visual acuity emitted from the display 210 as an image on the user's retina, and by changing the active component 240 optical power to detect vision. Additionally, the processor 220 can adjust the optical power of the active component 240 based on the detected vision to thereby correct the user's vision.

此外,處理器220可在一指定時間修改顯示於顯示器210上的虛擬實境影像的一焦點。此外,處理器220可藉由使用影像辨識而估計顯示於顯示器210上的虛擬實境影像的物件位置以及藉由變化影像的焦點來修改虛擬實境影像的一焦距。Additionally, processor 220 can modify a focus of the virtual reality image displayed on display 210 at a specified time. In addition, the processor 220 can estimate the object position of the virtual reality image displayed on the display 210 by using image recognition and modify a focal length of the virtual reality image by changing the focus of the image.

並且,處理器220可變化主動元件的功率,使其與虛擬實境影像的物距成比例,以藉此調整虛擬實境影像的一層的焦點。此外,當頭戴式顯示器100的使用者為近視時,處理器220可指定一透鏡的功率上的偏移量,且在主動元件240的功率變化時擴展使用者的視力調整範圍。Moreover, the processor 220 can vary the power of the active component to be proportional to the object distance of the virtual reality image to thereby adjust the focus of a layer of the virtual reality image. Moreover, when the user of the head mounted display 100 is nearsighted, the processor 220 can specify an offset in power of a lens and expand the range of vision adjustment of the user as the power of the active component 240 changes.

處理器220可用以藉由接收使用者命令以及變化主動元件的微鏡的梯度來量測使用者的視力。舉例而言,處理器220可透過用於視力量測的使用者介面(user interface, UI)或選單按鈕由使用者修改主動元件的微鏡的梯度。舉例而言,處理器220可透過輸入至頭戴式顯示器100的一觸控螢幕的觸控輸入或拖曳輸入而自一使用者接收調整視力的指令以及量測視力的指令。並且,處理器220可透過使用者操縱(manipulation)指令(例如:頭戴式顯示器100中提供的滾輪式按鈕)而自使用者接收調整視力的指令以及量測視力的指令。The processor 220 can be used to measure the user's vision by receiving user commands and varying the gradient of the micromirrors of the active components. For example, the processor 220 can modify the gradient of the micro-mirror of the active component by the user through a user interface (UI) or a menu button for visual force measurement. For example, the processor 220 can receive an instruction for adjusting vision and an instruction for measuring vision from a user through a touch input or a drag input input to a touch screen of the head mounted display 100. Moreover, the processor 220 can receive an instruction to adjust the vision and an instruction to measure the vision from the user through a user manipulation command (eg, a roller button provided in the head mounted display 100).

頭戴式顯示器100可包括通訊裝置(未繪示)。通訊裝置可執行與一外部電子裝置的有線/無線資料通訊。當依據無線通訊方法執行與一外部電子裝置的資料通訊時,通訊裝置可包括以下各者中的至少其中之一:Wi-Fi直接通訊模組、藍芽(Bluetooth, BT)模組、紅外數據協會(infrared data association, IrDA)模組、近場通信(near field communication, NFC)模組、紫蜂(ZigBee)模組、蜂巢式通訊模組、第3代(3rd generation, 3G)移動通訊模組、第4代(4th generation, 4G)移動通訊模組以及長期演進(long term evolution, LTE)通訊模組等。The head mounted display 100 can include a communication device (not shown). The communication device can perform wired/wireless data communication with an external electronic device. When performing data communication with an external electronic device according to the wireless communication method, the communication device may include at least one of the following: a Wi-Fi direct communication module, a Bluetooth (BT) module, and infrared data. Association (infrared data association, IrDA) module, NFC (near field communication, NFC) module, ZigBee (ZigBee) modules, cellular communication module, a third-generation (3 rd generation, 3G) mobile communications module, the 4th generation (4 th generation, 4G) mobile communication module and long Term Evolution (long term evolution, LTE) communication modules.

在本實施例中,當依據有線通訊方法執行與外部電子裝置的資料通訊時,通訊裝置可包括一介面模組,例如:通用串列匯流排(universal serial bus, USB)。經由此介面模組,通訊裝置可在實體連接至一外部終端(例如:個人電腦)時傳送或接收影像資料或是傳送或接收韌體資料以執行韌體升級。In this embodiment, when performing data communication with an external electronic device according to a wired communication method, the communication device may include an interface module, such as a universal serial bus (USB). Through the interface module, the communication device can transmit or receive image data or transmit or receive firmware data to perform firmware upgrade when physically connected to an external terminal (eg, a personal computer).

經由以上的程序,在本發明的一實施例中的頭戴式顯示器100可透過使用主動元件240來量測使用者的視力,以提供使用者最佳化的影像。Through the above procedure, the head mounted display 100 in an embodiment of the present invention can measure the user's vision by using the active component 240 to provide an image optimized by the user.

圖2B是依照本發明的一實施例的一種頭戴式顯示器中的一光學切片的配置的方塊圖。2B is a block diagram of a configuration of an optical slice in a head mounted display in accordance with an embodiment of the present invention.

參看圖2B,光學切片260可包括主動元件240、一顯示螢幕270、一光束分光器275、透鏡280、一透鏡鏡面285、多個偏光鏡290(四分之一波片或二分之一波片)以及一稜鏡295。構成光學切片260的單元並不限於以上各者,可更包括其他新單元。將藉由參考圖5來具體解釋每一單元的特徵。Referring to FIG. 2B, the optical slice 260 can include an active component 240, a display screen 270, a beam splitter 275, a lens 280, a lens mirror 285, and a plurality of polarizers 290 (quarter wave or half wave) Tablet) and a 295. The unit constituting the optical slice 260 is not limited to the above, and may further include other new units. The features of each unit will be specifically explained by referring to FIG.

顯示螢幕270可在頭戴式顯示器100的左眼以及右眼上產生光射線。顯示螢幕270可為平坦或彎曲的。顯示螢幕270可包括光學指示器(indicator optics)。頭戴式顯示器100的左眼以及右眼中的每一者上可包括一個顯示螢幕270,或頭戴式顯示器100的左眼以及右眼中的每一者上可包括兩個顯示螢幕270。以下將解釋本發明的一實施例,其中頭戴式顯示器100的左眼以及右眼中的每一者上包括一個顯示螢幕270。The display screen 270 can generate light rays on the left and right eyes of the head mounted display 100. Display screen 270 can be flat or curved. Display screen 270 can include an indicator optics. Each of the left and right eyes of the head mounted display 100 can include a display screen 270, or each of the left and right eyes of the head mounted display 100 can include two display screens 270. An embodiment of the present invention will be explained below in which each of the left eye and the right eye of the head mounted display 100 includes a display screen 270.

光束分光器275可包括可反射自顯示螢幕270發射的光射線的一第一光束分光器以及可反射自主動元件240發射的光射線的一第二光束分光器。透鏡280(例如:凹透鏡、凸透鏡、圓柱透鏡)可收斂自光束分光器275反射的光射線。主動元件240可透過收斂或發散而反射自透鏡280發射的光射線。透鏡鏡面285可收斂自光束分光器275反射的光射線並將所述光射線發射至一使用者。Beam splitter 275 can include a first beam splitter that can reflect light rays emitted from display screen 270 and a second beam splitter that can reflect light rays emitted from active element 240. The lens 280 (eg, a concave lens, a convex lens, a cylindrical lens) can converge the light rays reflected from the beam splitter 275. The active element 240 can reflect the light rays emitted from the lens 280 by converging or diverging. The lens mirror 285 can converge the light rays reflected from the beam splitter 275 and emit the light rays to a user.

偏光鏡290可包括多個偏光鏡(四分之一波片、二分之一波片)。稜鏡295可擴大使用者的視場。稜鏡295可為自由彎曲的稜鏡,其可擴展自顯示螢幕270收斂的光射線並將其誘導至使用者的眼睛。The polarizer 290 may include a plurality of polarizers (quarter wave plates, half wave plates).稜鏡295 expands the user's field of view. The crucible 295 can be a freely curved crucible that can expand the light rays that converge from the display screen 270 and induce it to the user's eyes.

圖3是習知的一種可校正使用者的視力的頭戴式顯示器的示意圖。3 is a schematic diagram of a conventional head mounted display that corrects the user's vision.

參看圖3,在先前技術中,可藉由以下操作來校正使用者的視力:將構成頭戴式顯示器100的光學器件的透鏡鏡面301以及顯示螢幕300設置於均勻的光路徑上,並調整透鏡鏡面301與顯示螢幕300之間的距離(亦即,光路徑長度)以將影像聚焦於使用者的眼睛302中。Referring to FIG. 3, in the prior art, the user's vision can be corrected by setting the lens mirror 301 and the display screen 300 constituting the optical device of the head mounted display 100 on a uniform light path, and adjusting the lens. The distance between the mirror 301 and the display screen 300 (i.e., the length of the light path) is used to focus the image in the user's eye 302.

此外,在先前技術中,可藉由以下操作來校正使用者的視力:將顯示螢幕300、透鏡鏡面301以及一反射鏡面(未繪示)(其經組態成頭戴式顯示器100的光學器件)設置於均勻的光路徑上,並調整自顯示螢幕300至反射鏡面(未繪示)的第一光路徑以及自反射鏡面(未繪示)至透鏡鏡面301的第二光學路徑中的至少其中之一者。In addition, in the prior art, the user's vision can be corrected by the following operations: a display screen 300, a lens mirror 301, and a mirror surface (not shown) configured as optics of the head mounted display 100. Positioning on a uniform light path and adjusting at least one of a first light path from the display screen 300 to the mirror surface (not shown) and a second optical path from the mirror surface (not shown) to the lens mirror 301 One of them.

然而,以上技術可能具有以下問題:當頭戴式顯示器100的使用者改變時,不能精確地量測且不能自動地校正此使用者的視力。However, the above technique may have a problem that when the user of the head mounted display 100 changes, the user's vision cannot be accurately measured and the user's vision cannot be automatically corrected.

圖4是瞳孔成像設計的示意圖,其中瞳孔成像設計是依照本發明的一實施例的頭戴式顯示器的一光學設計。4 is a schematic illustration of a pupil imaging design in which the pupil imaging design is an optical design of a head mounted display in accordance with an embodiment of the present invention.

非瞳孔成像設計以及瞳孔成像設計可作為用於頭戴式顯示器100的光學設計。非瞳孔成像設計可輕易建立。同時,因為非瞳孔成像設計具有短路徑長度,所以可獲得源影像與虛擬實境影像之間的短投射距離。短路徑長度指的是頭戴式顯示器100的顯示器是定位於靠近於使用者的面部及使用者的眼睛。頭戴式顯示器100的此種光學設計具有難以進行修改的缺點。The non-pupil imaging design and the pupil imaging design can be used as an optical design for the head mounted display 100. Non-pupil imaging designs can be easily established. At the same time, because the non-pupil imaging design has a short path length, a short throw distance between the source image and the virtual reality image can be obtained. The short path length refers to the display of the head mounted display 100 being positioned close to the user's face and the user's eyes. Such an optical design of the head mounted display 100 has the disadvantage of being difficult to modify.

同時,瞳孔成像設計具有相似於在顯微鏡、雙目鏡或潛水艇的潛望鏡中產生影像的配置。At the same time, the pupil imaging design has a configuration similar to that produced in a periscope of a microscope, binocular or submarine.

參看圖4,瞳孔成像設計可產生自顯示器400傳送至一第一透鏡組401的源影像的一中間影像402。產生的中間影像402可透過一第二透鏡組403而傳遞至使用者的眼睛404。使用者的眼睛404可定位於出射瞳孔區域(其為虛擬實境影像)處。Referring to FIG. 4, the pupil imaging design can produce an intermediate image 402 of the source image transmitted from display 400 to a first lens group 401. The resulting intermediate image 402 can be transmitted to the user's eye 404 through a second lens group 403. The user's eye 404 can be positioned at the exit pupil area, which is a virtual reality image.

瞳孔成像設計的優點包括可提供由影像平面至使用者的眼睛的一所要路徑長度。此外,相較於非瞳孔成像設計,瞳孔成像設計可提供較長的路徑長度且移動得與使用者的面部相距更遠。此外,因為瞳孔成像設計可包括更多透鏡以及鏡面,所以可增強光學校正。Advantages of the pupil imaging design include providing a desired path length from the image plane to the user's eyes. In addition, the pupil imaging design provides a longer path length and moves further away from the user's face than a non-pupil imaging design. In addition, optical correction can be enhanced because the pupil imaging design can include more lenses as well as mirrors.

圖5是說明根據本發明的一實施例的頭戴式顯示器的顯示光學器件的詳細組態的圖。FIG. 5 is a diagram illustrating a detailed configuration of display optics of a head mounted display according to an embodiment of the present invention.

參看圖5,頭戴式顯示器100的光學器件可包括顯示器500、主動元件501、稜鏡502、偏光光束分光器503、透鏡鏡面504、透鏡506、第一偏光鏡507、第二偏光鏡508以及一第三偏光鏡509。Referring to FIG. 5, the optical device of the head mounted display 100 can include a display 500, an active device 501, a 稜鏡 502, a polarizing beam splitter 503, a lens mirror 504, a lens 506, a first polarizer 507, a second polarizer 508, and A third polarizer 509.

顯示器500可為平坦顯示器或彎曲顯示器。顯示器500可為例如LCD等液體顯示器或例如OLED等發光二極體顯示器。Display 500 can be a flat display or a curved display. The display 500 can be a liquid display such as an LCD or a light emitting diode display such as an OLED.

主動元件501可實施為包括多個微鏡的微機電系統(MEMS)鏡面。微鏡包括可藉由朝向X軸或Y軸旋轉來調整光功率以及修改光罩圖案的粒子。The active component 501 can be implemented as a microelectromechanical system (MEMS) mirror comprising a plurality of micromirrors. The micromirror includes particles that can be adjusted by rotating toward the X-axis or the Y-axis to modify the optical power and modify the reticle pattern.

頭戴式顯示器100可藉由控制主動元件501中的微鏡的至少一部分的梯度,以基於變化的光功率所產生的光罩圖案來偵測使用者的視力。此外,可藉由基於偵測到的視力而控制主動元件501中的微鏡的至少一部分的梯度以及藉由調整提供至顯示器的影像的一焦距來校正使用者的視力。The head mounted display 100 can detect the user's vision based on the reticle pattern generated by the varying optical power by controlling the gradient of at least a portion of the micromirrors in the active element 501. Moreover, the user's vision can be corrected by controlling the gradient of at least a portion of the micromirrors in the active element 501 based on the detected vision and by adjusting a focal length of the image provided to the display.

透過以上的步驟,頭戴式顯示器100可更精確地量測以及校正使用者的視力。此外,頭戴式顯示器100可利用微鏡的精確視力量測來降低公差容限。以下將藉由參考圖7A至圖7E來具體解釋一種藉由變化主動元件501的光罩圖案來量測視力的方法。Through the above steps, the head mounted display 100 can more accurately measure and correct the user's vision. In addition, the head mounted display 100 can utilize the precision vision of the micromirror to reduce tolerance tolerance. A method of measuring visual acuity by varying the reticle pattern of the active element 501 will be specifically explained below by referring to FIGS. 7A through 7E.

主動元件501可垂直於光路徑而配置,且亦垂直於顯示器500而配置。下文將藉由參考圖6A以及圖6B來具體解釋關於主動元件501的配置的說明。The active component 501 can be configured perpendicular to the optical path and also perpendicular to the display 500. An explanation about the configuration of the active element 501 will be specifically explained below by referring to FIGS. 6A and 6B.

稜鏡502可擴大使用者的視場。偏光光束分光器503可發揮作用以藉由穿透或反射光來分離入射線。可使用平坦型或立方型光束分光器。稜鏡 502 can expand the user's field of view. The polarizing beam splitter 503 can function to separate the incoming rays by penetrating or reflecting the light. A flat or cubic beam splitter can be used.

透鏡鏡面504可為一凹透鏡鏡面、一凸透鏡鏡面以及一圓柱透鏡鏡面的其中之一者。透鏡506可包括凹透鏡、凸透鏡以及圓柱透鏡中的其中之一或多者。透鏡506以及透鏡鏡面504可經組態為一單一結構,或可經組態成具有多個不同透鏡。The lens mirror 504 can be one of a concave lens mirror, a convex lens mirror, and a cylindrical lens mirror. Lens 506 can include one or more of a concave lens, a convex lens, and a cylindrical lens. Lens 506 and lens mirror 504 can be configured as a single structure or can be configured to have a plurality of different lenses.

第一偏光鏡507以及第三偏光鏡509可由1/4波片(四分之一波片)組成,而第二偏光鏡508可由1/2波片(二分之一波片)組成。1/4波片507、1/4波片509以及1/2波片508可依據入射光射線的狀態而產生多種偏光狀態。The first polarizer 507 and the third polarizer 509 may be composed of a quarter wave plate (quarter wave plate), and the second polarizer 508 may be composed of a 1/2 wave plate (a half wave plate). The 1/4 wave plate 507, the 1/4 wave plate 509, and the 1/2 wave plate 508 can generate a plurality of polarization states depending on the state of the incident light ray.

顯示器500可發射光射線,且配置於主動元件501的正面上的第一偏光光束分光器503可反射由顯示器500發射的光射線。由第一偏光光束分光器503反射的光射線可收斂於透鏡506上,通過1/4波片並收斂於主動元件501上。The display 500 can emit light rays, and the first polarizing beam splitter 503 disposed on the front surface of the active element 501 can reflect the light rays emitted by the display 500. The light rays reflected by the first polarizing beam splitter 503 can converge on the lens 506, pass through the 1/4 wave plate and converge on the active element 501.

主動元件501可藉由收斂或發散而反射自透鏡506發射的光射線。自主動元件501發射的光射線可通過1/4波片並收斂於透鏡506上。收斂於透鏡506上的光可通過第一偏光光束分光器503,通過1/2波片508,反射過第二偏光光束分光器503,通過1/4波片509並進入透鏡鏡面504。透鏡鏡面504可反射入射線。自透鏡鏡面504反射的光射線可通過1/4波片509,通過第二偏光光束分光器503以及形成為使用者的視網膜505上的影像。The active element 501 can reflect the light rays emitted from the lens 506 by converging or diverging. The light rays emitted from the active element 501 can pass through the 1/4 wave plate and converge on the lens 506. Light converges on the lens 506 can pass through the first polarizing beam splitter 503, through the 1/2 wave plate 508, through the second polarizing beam splitter 503, through the quarter wave plate 509 and into the lens mirror 504. Lens mirror 504 can be reflected into the radiation. Light rays reflected from the lens mirror 504 can pass through the quarter-wave plate 509, through the second polarizing beam splitter 503, and as an image on the retina 505 of the user.

特定言之,當顯示器500發射X偏光射線時,X偏光射線可自第一偏光光束分光器反射並進入主動元件501。在本實施例中,在進入主動元件501之前,X偏光射線可通過1/4波片507。自主動元件501反射的光射線可再次通過1/4波片507,且Y偏光射線可通過第一偏光光束分光器503。In particular, when the display 500 emits X-polarized rays, the X-polarized rays can be reflected from the first polarizing beam splitter and enter the active element 501. In the present embodiment, the X-polar ray may pass through the 1/4 wave plate 507 before entering the active element 501. The light rays reflected from the active element 501 may pass through the quarter wave plate 507 again, and the Y polarized rays may pass through the first polarizing beam splitter 503.

通過第一偏光光束分光器503的Y偏光射線可在入射於1/2波片508上後就產生虛擬實境影像,且通過1/2波片508的Y偏光射線則以X偏光射線進入透鏡鏡面504 。作為X偏光射線的入射光射線可兩次(進入/反射)通過1/4波片509(進入/反射),並使Y偏光射線自透鏡鏡面504發散於光瞳505上。The Y-polarized ray passing through the first polarizing beam splitter 503 can generate a virtual reality image after being incident on the 1/2 wave plate 508, and the Y polarized ray passing through the 1/2 wave plate 508 enters the lens as the X polarized ray. Mirror 504. The incident light ray, which is an X-polarized ray, can pass through the quarter-wave plate 509 (incoming/reflecting) twice (into/reflect), and cause the Y-polarized ray to diverge from the lens mirror 504 on the aperture 505.

在本實施例中,依據瞳孔成像設計的一實施例,使用者可看見出射瞳孔上的一虛擬實境影像。In this embodiment, according to an embodiment of the pupil imaging design, the user can see a virtual reality image on the exit pupil.

圖6A以及圖6B是構成依照本發明的一實施例的一種頭戴式顯示器的主動元件的示意圖。6A and 6B are schematic views of an active element constituting a head mounted display in accordance with an embodiment of the present invention.

圖6A是供解釋依據本發明的一實施例的MEMS鏡面(其為主動元件)形成影像的圖。Figure 6A is a diagram for explaining the formation of an image of a MEMS mirror (which is an active element) in accordance with an embodiment of the present invention.

參看圖6A,MEMS鏡面610可包括多個微鏡601。可在微鏡601的位置方面控制MEMS鏡面610。自主地分散的光射線可收斂於影像平面的一個點P 600上。Referring to FIG. 6A, the MEMS mirror 610 can include a plurality of micromirrors 601. The MEMS mirror 610 can be controlled in terms of the position of the micromirror 601. The autonomously dispersed light rays can converge at a point P 600 of the image plane.

圖6B是依據本發明的一實施例的MEMS鏡面610(其為主動元件)的一平面視圖的示意圖。6B is a schematic diagram of a plan view of a MEMS mirror 610 (which is an active component) in accordance with an embodiment of the present invention.

參看圖6B,MEMS鏡面610可以微鏡620呈圓形配置的形式來組態,且微鏡620可具有與反射鏡的功能一致的功能。微鏡620具有高反射度。各個微鏡620可具有扇形形狀以增加反射區域,此可增進光學效率。然而,圓形配置以及扇形形狀僅是用以說明本發明的實施例的其中之一者;本發明並不限於以上內容。Referring to FIG. 6B, the MEMS mirror 610 can be configured in the form of a circular mirror 620 in a circular configuration, and the micromirror 620 can have a function consistent with the function of the mirror. Micromirror 620 has a high degree of reflectivity. Each of the micromirrors 620 may have a fan shape to increase the reflective area, which may enhance optical efficiency. However, the circular configuration and the sector shape are only one of the embodiments for explaining the present invention; the present invention is not limited to the above.

具有MEMS鏡面配置的透鏡(主動元件)具有最快的反應速度,此是因為微鏡620具有極小的尺寸以及低的質量。舉例而言,微鏡620的反應速度可超過100 KHz。因此,微鏡620的焦距的改變速度可被實施為大於或等於100 KHz。A lens (active element) having a MEMS mirror configuration has the fastest reaction speed because the micro mirror 620 has a very small size and low quality. For example, the reaction speed of the micromirror 620 can exceed 100 KHz. Therefore, the speed of change of the focal length of the micromirror 620 can be implemented to be greater than or equal to 100 KHz.

此外,微鏡620可受控制以便修改透鏡的焦距。MEMS鏡面610可控制分別關於微鏡620的平移或旋轉以便改變焦距。旋轉微鏡620可改變光射線朝向X軸以及Y軸的方向,且平移可調整光射線朝向Z軸的相位。Additionally, the micromirror 620 can be controlled to modify the focal length of the lens. The MEMS mirror 610 can control translation or rotation about the micromirror 620, respectively, to change the focal length. The rotating micromirror 620 can change the direction of the light ray toward the X axis and the Y axis, and the translation can adjust the phase of the light ray toward the Z axis.

因此,本發明的一實施例可經實施以使由多個微鏡620組成的平坦MEMS鏡面610可相對於頭戴式顯示器100的光路徑垂直地配置,且用於視力量測的特定光射線可形成於靠近於MEMS鏡面610的中心處。通過以上步驟,僅僅自顯示器發射的光射線當中的用於視力量測的主射線可形成為使用者的視網膜上的影像,且可量測視力。Thus, an embodiment of the present invention can be implemented such that a flat MEMS mirror 610 comprised of a plurality of micromirrors 620 can be vertically disposed relative to the light path of the head mounted display 100 and used to view specific light rays of the force measurement It may be formed near the center of the MEMS mirror 610. Through the above steps, only the main ray for visual force measurement among the light rays emitted from the display can be formed as an image on the user's retina, and the visual acuity can be measured.

此外,可經由旋轉以及平移微鏡620而變化焦距,以藉此調整光功率。可經由以上步驟來校正視力。Further, the focal length can be varied via rotation and translation of the micromirror 620 to thereby adjust the optical power. The vision can be corrected through the above steps.

圖7A至圖7E是使用依照本發明的一實施例的一種頭戴式顯示器的主動元件來量測使用者的視力之方法的示意圖。7A-7E are schematic diagrams of a method of measuring a user's vision using an active component of a head mounted display in accordance with an embodiment of the present invention.

圖7A是在使用光學器件來量測視力時根據使用者的視力在主動元件上變化的光罩圖案的示意圖。7A is a schematic illustration of a reticle pattern that varies over the active element according to the user's visual acuity when optics are used to measure vision.

參看圖7A,當顯示螢幕700發射光射線時,像素701可在顯示器700中被接通,且經接通的點狀像素701可進入透鏡。當自顯示螢幕700發射的光射線通過透鏡時,為點狀光射線的像素701的大小可藉由透鏡而變為擴展型點狀光射線。當通過透鏡的光射線702進入主動元件時,在主動元件的中心附近可藉由主動元件的微鏡的旋轉以及共振來僅遮蔽特定光射線。因此,特定區域光射線703可形成為通過透鏡的點狀光射線702當中的位於主動元件上的影像。形成為主動元件上的影像的特定區域光射線703可收斂至透鏡,且其他區域光射線可不穿透所述透鏡。因此,通過主動元件的光射線可變為先前形成於主動元件上的特定區域的點狀影像704。Referring to FIG. 7A, when the display screen 700 emits a light ray, the pixel 701 can be turned on in the display 700, and the turned-on point pixel 701 can enter the lens. When the light ray emitted from the display screen 700 passes through the lens, the size of the pixel 701 which is a spotted light ray can be changed into a flared spot ray by the lens. When the light ray 702 passing through the lens enters the active element, only a specific light ray can be shielded by the rotation and resonance of the micromirror of the active element near the center of the active element. Thus, the particular regional light ray 703 can be formed as an image on the active component among the spotted light rays 702 that pass through the lens. The particular area of light ray 703 formed as an image on the active element may converge to the lens, and other areas of the light ray may not penetrate the lens. Therefore, the light ray passing through the active element can be changed into a dot image 704 of a specific area previously formed on the active element.

根據席耐爾原理(Scheiner's principle)(其為視力量測的原理),一般視力量測方法可就正常視力而言在光射線聚焦於一個點705上時量測視力,而光射線706是就近視或遠視(hyperopia/farsightedness)而言予以劃分。According to the Scheiner's principle, which is the principle of visual force measurement, the general visual force measurement method can measure the visual acuity when the light ray is focused on a point 705 in terms of normal vision, and the light ray 706 is Divided by myopia or farsightedness (hyperopia/farsightedness).

在本發明的一實施例中,藉由應用席耐爾原理以及使用主動元件,頭戴式顯示器100可藉由控制微鏡中的至少一部分的梯度以及驅動其他光射線遠離中心以使僅僅用於視力量測的光射線可成像於視網膜的中心上,藉此來量測視力。In an embodiment of the invention, by applying the Schneider principle and using active components, the head mounted display 100 can be used only by controlling the gradient of at least a portion of the micromirrors and driving other light rays away from the center. Vision-measured light rays can be imaged at the center of the retina to measure vision.

在本發明的一實施例中,頭戴式顯示器100可藉由使用主動元件來被動地執行視力量測。因此,頭戴式顯示器100可經實施以藉由接收使用者指令以及變化構成主動元件的微鏡的梯度來量測使用者的視力。In an embodiment of the invention, the head mounted display 100 can passively perform visual force measurement by using active components. Thus, the head mounted display 100 can be implemented to measure the user's vision by receiving user commands and varying the gradient of the micromirrors that make up the active components.

舉例而言,頭戴式顯示器100可經實施以經由用於視力量測的UI或選單按鈕,由使用者修改構成主動元件的微鏡的梯度。在本實施例中,用於視力量測的UI或選單按鈕可實施於頭戴式顯示器100內或藉由外部裝置(例如:遠端控制器)而予以實施。For example, the head mounted display 100 can be implemented to modify the gradient of the micromirrors that make up the active component by the user via a UI or menu button for visual force measurement. In this embodiment, the UI or menu button for visual force measurement can be implemented in the head mounted display 100 or by an external device (eg, a remote controller).

特定言之,使用者可在觸摸頭戴式顯示器100的螢幕或操縱選單按鈕時修改構成主動元件的微鏡的梯度。使用者可在自頭戴式顯示器100看見清楚的圖案的時刻儲存使用者的視力,而構成主動元件的微鏡的梯度相對於使用者的視力發生變化。頭戴式顯示器100可經實施以在由使用者輸入視力儲存指令時,基於構成主動元件的微鏡的梯度資訊而儲存偵測到的視力資訊,且儲存視力資訊至使用者資訊(例如:使用者識別符(user identifier;ID)以及使用者的生物特徵資訊)。在本實施例中,使用者資訊可為先前由使用者儲存於頭戴式顯示器100中的使用者資訊或由使用者連同視力資訊一起輸入的資訊。In particular, the user can modify the gradient of the micromirrors that make up the active element when touching the screen of the head mounted display 100 or manipulating the menu button. The user can store the user's vision at a time when the head-mounted display 100 sees a clear pattern, and the gradient of the micro-mirror that constitutes the active component changes with respect to the user's vision. The head mounted display 100 can be configured to store the detected visual information based on the gradient information of the micromirrors constituting the active component when the visual storage instruction is input by the user, and store the visual information to the user information (eg, use User identifier (ID) and user's biometric information). In this embodiment, the user information may be user information previously stored by the user in the head mounted display 100 or information input by the user together with the vision information.

圖7B至圖7E是在量測正常視力以及遠視時主動元件上的光罩圖案的修改的示意圖。圖7B以及圖7C是說明在量測正常視力時主動元件上的光罩圖案的示意圖。7B to 7E are schematic views of modifications of the reticle pattern on the active element when measuring normal vision and farsightedness. 7B and 7C are schematic diagrams illustrating a reticle pattern on an active element when normal vision is measured.

參看圖7B以及圖7C,在圖7A中予以解釋的自顯示螢幕700發射的點狀光射線701可在通過透鏡710後就擴展。如上文在圖7A中所描述,通過透鏡的光射線可擴展成點狀影像702。自透鏡發散的光射線702可進入主動元件720。Referring to Figures 7B and 7C, the spotted light ray 701 emitted from the display screen 700 as explained in Figure 7A can be expanded after passing through the lens 710. As described above in FIG. 7A, the light rays passing through the lens can be expanded into a point image 702. Light rays 702 diverging from the lens can enter the active element 720.

進入主動元件720的光射線702可藉由平移以及旋轉構成主動元件720的微鏡來修改光罩圖案。因此,僅僅與使用者的焦距對應的特定區域光射線可形成為主動元件720上的影像。Light ray 702 entering active element 720 can modify the reticle pattern by translating and rotating the micromirrors that make up active element 720. Therefore, only a specific area of light rays corresponding to the focal length of the user can be formed as an image on the active element 720.

如圖7A中所描述,形成於主動元件上的光射線可具有特定光射線的光罩圖案703。此外,光射線在通過主動元件之後可變為先前形成於主動元件上的特定區域的點狀影像704。參看圖7B以及圖7C,通過主動元件720的光射線704(參見圖7A)可形成於使用者的視網膜730的中心上,且用於使用者的視力量測的光射線705可產生於顯示螢幕700上,因而可量測視力。As described in FIG. 7A, the light rays formed on the active element may have a reticle pattern 703 of a specific light ray. In addition, the light rays may become a point image 704 of a particular area previously formed on the active element after passing through the active element. 7B and 7C, a light ray 704 (see FIG. 7A) through the active element 720 can be formed on the center of the user's retina 730, and a light ray 705 for the user's visual force measurement can be generated on the display screen. On the 700, the vision can be measured.

圖7D以及圖7E是說明在量測近視時主動元件上的光罩圖案的示意圖。7D and 7E are schematic diagrams illustrating a reticle pattern on an active element when measuring myopia.

參看圖7D以及圖7E,主動元件720可藉由旋轉以及平移構成收斂於透鏡710上的光射線702的主動元件720的微鏡而產生不同於正常視力(圖7B以及圖7C)的光罩圖案。在本實施例中,具有形成以及產生於主動元件720上的光罩圖案的光射線704可在圖7D以及圖7E中形成於使用者的視網膜730的前部區域上,且可分離以及產生用於使用者視力量測的光射線706。因此,可藉由使用以上步驟來量測近視。此外,可藉由調整隨著旋轉由主動元件720產生的光罩圖案的方位角而產生的光罩圖案來量測散光。Referring to Figures 7D and 7E, the active element 720 can produce a reticle pattern different from normal vision (Figs. 7B and 7C) by rotating and translating the micromirrors of the active element 720 that converge on the light ray 702 on the lens 710. . In the present embodiment, the light ray 704 having the reticle pattern formed and produced on the active element 720 can be formed on the front region of the user's retina 730 in FIGS. 7D and 7E, and can be separated and generated. The light ray 706 is measured by the user. Therefore, myopia can be measured by using the above steps. Furthermore, astigmatism can be measured by adjusting the reticle pattern produced by rotating the azimuth of the reticle pattern produced by the active element 720.

如上文所描述,頭戴式顯示器100可控制顯示螢幕700以產生用於視力量測的光射線,控制主動元件720以透過主動元件720而將用於視力量測的光射線形成於使用者視網膜730上,以及在影像形成於使用者視網膜730上以作為使用者視力資訊的時間點記錄主動元件720的資訊。As described above, the head mounted display 100 can control the display screen 700 to generate light rays for visual force measurement, and control the active element 720 to transmit light rays for visual force measurement to the user's retina through the active element 720. Information on the active component 720 is recorded on the 730 and at a point in time when the image is formed on the user's retina 730 as the user's vision information.

在本實施例中,所量測的視力資訊可儲存於頭戴式顯示器100的記憶體中。記憶體可一起儲存使用者的生物特徵資訊。舉例而言,使用者的生物特徵資訊可儲存諸如虹膜辨識、語音辨識、面部辨識以及指紋辨識的多種資訊。因此,當使用者再次使用頭戴式顯示器100時,頭戴式顯示器100可基於使用者的生物特徵資訊來自動地校正視力以適合於使用者的視力資訊。In this embodiment, the measured vision information can be stored in the memory of the head mounted display 100. The memory can store the biometric information of the user together. For example, the user's biometric information can store a variety of information such as iris recognition, speech recognition, facial recognition, and fingerprint recognition. Therefore, when the user uses the head mounted display 100 again, the head mounted display 100 can automatically correct the vision based on the user's biometric information to suit the user's vision information.

具體而言,使用者可在頭戴式顯示器100辨識使用者的生物特徵資訊時經由使用者指令(例如:提供使用者辨識選單的UI)而選擇執行辨識,或可在使用者將頭戴式顯示器100穿戴於其頭上時自動地執行辨識。當辨識出使用者時,頭戴式顯示器100可基於與儲存於記憶體中的使用者的生物特徵資訊匹配的使用者的視力資訊來校正視力。因為用以儲存以及辨識使用者的生物特徵資訊的技術被應用於頭戴式顯示器100,所以可應用用以保護使用者資訊的加密技術。Specifically, the user can select to perform the recognition through the user's instruction (for example, the UI providing the user identification menu) when the head mounted display 100 recognizes the biometric information of the user, or the user can wear the headset. Identification is automatically performed when the display 100 is worn on its head. When the user is recognized, the head mounted display 100 can correct the vision based on the visual information of the user that matches the biometric information of the user stored in the memory. Since the technique for storing and recognizing the biometric information of the user is applied to the head mounted display 100, an encryption technique for protecting user information can be applied.

在本發明的一實施例中,用於在頭戴式顯示器100中校正使用者視力的方法可藉由使用主動元件而調整使用者光功率來校正使用者視力。In an embodiment of the invention, the method for correcting the user's vision in the head mounted display 100 can correct the user's vision by adjusting the user's optical power using the active components.

光功率可表示為透鏡功率,且可與焦距成反比。因此,頭戴式顯示器100根據使用者視力可具有不同焦距。由多個微鏡組成的主動元件可控制基於使用者視力所呈現的不同焦距。如圖6A中所說明,包括MEMS鏡面的主動元件可藉由旋轉微鏡來修改光射線的方向,藉由平移來調整光射線的相位,並修改主動元件的焦距。因而可校正視力。Optical power can be expressed as lens power and can be inversely proportional to the focal length. Therefore, the head mounted display 100 can have different focal lengths depending on the user's vision. An active component consisting of multiple micromirrors controls different focal lengths that are presented based on the user's vision. As illustrated in Figure 6A, the active component including the MEMS mirror can modify the direction of the light ray by rotating the micromirror, adjusting the phase of the light ray by translation, and modifying the focal length of the active component. Thus, vision can be corrected.

此外,在本發明的一實施例中,頭戴式顯示器100可藉由變化虛擬實境影像的焦點而減輕眼睛疲乏。當長時間使用頭戴式顯示器100時,虛擬實境影像的焦距可固定於一個位置上。在本實施例中,可因為焦點長時間置放於一個位置上而出現眼睛疲乏,且可出現視力喪失。Moreover, in an embodiment of the invention, the head mounted display 100 can reduce eye fatigue by varying the focus of the virtual reality image. When the head mounted display 100 is used for a long time, the focal length of the virtual reality image can be fixed at one position. In the present embodiment, eye fatigue may occur due to the focus being placed in one position for a long time, and loss of vision may occur.

為了解決以上問題,頭戴式顯示器100可藉由控制主動元件而在指定時間自主地修改虛擬實境影像的焦點。因此,頭戴式顯示器100可藉由在特定時間調整主動元件的光功率而調整虛擬實境影像的焦點。此外,頭戴式顯示器100可藉由估計顯示於顯示螢幕上的物件位置以及應用影像辨識技術來修改虛擬實境影像的焦點。在本實施例中,可藉由將環境物件位置上的虛擬實境影像的焦點與主動元件匹配來減輕眼睛疲乏。In order to solve the above problem, the head mounted display 100 can autonomously modify the focus of the virtual reality image at a specified time by controlling the active component. Therefore, the head mounted display 100 can adjust the focus of the virtual reality image by adjusting the optical power of the active device at a specific time. In addition, the head mounted display 100 can modify the focus of the virtual reality image by estimating the position of the object displayed on the display screen and applying image recognition technology. In this embodiment, eye fatigue can be alleviated by matching the focus of the virtual reality image at the location of the environmental object to the active component.

在本發明的一實施例中,當近視使用者的視力是3屈光度時,虛擬實境物件可形成於33 cm的距離。在本實施例中,當應用距正常視力3屈光度視差(與無窮遠的物距一致)時,近視使用者可感覺眩暈。附帶言之,屈光度是透鏡或彎曲鏡面的光功率的量測單位,其等於以公尺為單位所量測的焦距的倒數(亦即,1/公尺)。因此,本發明的一實施例可藉由提供視差經調整為適合於使用者的視力的影像來應用影像失真的經最佳化的值。In an embodiment of the invention, when the vision of the myopic user is 3 diopters, the virtual reality object can be formed at a distance of 33 cm. In the present embodiment, the myopic user may feel dizzy when applying a diopter parallax from normal vision (consistent with the object distance of infinity). Incidentally, the diopter is a unit of measurement of the optical power of a lens or a curved mirror, which is equal to the reciprocal of the focal length measured in units of meters (ie, 1/meter). Accordingly, an embodiment of the present invention can apply an optimized value of image distortion by providing an image whose parallax is adjusted to be suitable for the user's vision.

此外,在本發明的一實施例中,頭戴式顯示器100可校正高像差。因為不能在校正性透鏡中量測眼睛的整個區域,所以可僅校正低像差。然而,主動元件可由多個MEMS鏡面組成,且可調整分別關於微鏡區域的焦距(其近似不同透鏡功率)。因此,可執行校正高像差。通過以上步驟,可應用經實施以量測眼睛的整個區域(眼睛的完整像差「指紋」)的高像差偵測技術,以藉此偵測高像差,且可藉由使用主動元件來校正偵測到的像差。Moreover, in an embodiment of the invention, the head mounted display 100 can correct for high aberrations. Since the entire area of the eye cannot be measured in the corrective lens, only low aberrations can be corrected. However, the active component can be composed of a plurality of MEMS mirrors and the focal lengths (which approximate different lens powers) with respect to the micromirror regions, respectively, can be adjusted. Therefore, correction of high aberration can be performed. Through the above steps, a high aberration detection technique implemented to measure the entire area of the eye (the complete aberration "fingerprint" of the eye) can be applied to detect high aberrations and can be used by using active components. Correct the detected aberrations.

此外,在本發明的一實施例中,頭戴式顯示器100可藉由建立構成光學器件的透鏡鏡面的透鏡功率上的偏移量值而擴展視力調整範圍。舉例而言,關於構成主動元件的多個MEMS鏡面,色像差在光功率增大時伴隨繞射而增大。因此,應使用低光功率來驅動頭戴式顯示器100以便減小色像差。因為光功率與焦距成反比,所以光功率可在焦距較大時具有較低值。Moreover, in an embodiment of the invention, the head mounted display 100 can extend the range of vision adjustment by establishing an offset value on the lens power of the lens mirror that constitutes the optical device. For example, with respect to a plurality of MEMS mirrors constituting an active element, chromatic aberration increases with diffraction as the optical power increases. Therefore, low light power should be used to drive the head mounted display 100 in order to reduce chromatic aberration. Since the optical power is inversely proportional to the focal length, the optical power can have a lower value when the focal length is larger.

為了增大頭戴式顯示器100中的焦距,可在透鏡鏡面上建立光功率偏移量,且建立於透鏡鏡面中的光功率的偏移量值可在主動元件中被減去。To increase the focal length in the head mounted display 100, an optical power offset can be established on the lens surface, and the offset value of the optical power established in the lens surface can be subtracted from the active component.

舉例而言,當正常使用者的視力是60屈光度時且當透鏡鏡面的光功率是27屈光度時,可被主動元件的MEMS鏡面所使用的光功率可假定為+3屈光度至-3屈光度。當未在透鏡鏡面上建立光功率的偏移量值時且當量測正常視力時,透鏡鏡面的光功率可為27屈光度,且MEMS鏡面的光功率可為+3屈光度至-3屈光度。在本實施例中,當量測近視時,透鏡鏡面的光功率可為27屈光度,且MEMS鏡面可將視力自0屈光度校正至-3屈光度。For example, when the normal user's vision is 60 diopters and when the optical power of the lens mirror is 27 diopters, the optical power that can be used by the MEMS mirror of the active component can be assumed to be +3 diopters to -3 diopters. When the offset value of the optical power is not established on the lens surface and the normal vision is equivalent, the optical power of the lens mirror may be 27 diopters, and the optical power of the MEMS mirror may be +3 diopters to -3 diopters. In this embodiment, when the near vision is measured, the optical power of the lens surface can be 27 diopters, and the MEMS mirror can correct the visual acuity from 0 diopters to -3 diopters.

同時,在本發明的一實施例中,當在透鏡鏡面上建立光功率的偏移量值時,且當量測正常視力時,透鏡鏡面的光功率可為24屈光度(27屈光度-3屈光度),且MEMS鏡面的光功率可為0屈光度至-6屈光度。因此,當量測近視時,可量測且校正達-6屈光度的視力。Meanwhile, in an embodiment of the present invention, when the offset value of the optical power is established on the lens mirror surface, and the normal vision is equivalently measured, the optical power of the lens mirror surface may be 24 diopters (27 diopters - 3 diopters) And the optical power of the MEMS mirror can be 0 diopter to -6 diopter. Therefore, when the near vision is measured, the visual acuity of up to -6 diopter can be measured and corrected.

以上內容僅僅是用以解釋本發明的實施例的其中之一者,且據此本發明的實施例可藉由各種方法以及技術來變化光功率、量測以及校正視力而予以應用以及變化。The above is merely one of the embodiments for explaining the present invention, and accordingly, embodiments of the present invention can be applied and varied by varying optical power, measurement, and correcting vision by various methods and techniques.

圖8A以及圖8B是依照本發明的一實施例的一種利用頭戴式顯示器的主動元件的高速傾斜來實施的高清晰度顯示器的示意圖。8A and 8B are schematic diagrams of a high definition display implemented using high speed tilting of active elements of a head mounted display, in accordance with an embodiment of the present invention.

正常人眼的角解析度是1/60弧分。因此,人眼可區分60像素/弧分。弧分指的是一個像素的角度;當弧分值變得較小時,解析度變得較高。目前用於虛擬實境的頭戴式顯示器為約15像素/度。因此,當使用頭戴式顯示器100檢視影像時,可看到像素上的圓點,其會降低沉浸感。The angular resolution of a normal human eye is 1/60 arc minutes. Therefore, the human eye can distinguish 60 pixels/arc. The arc division refers to the angle of one pixel; when the arc score becomes smaller, the resolution becomes higher. The head-mounted display currently used for virtual reality is about 15 pixels/degree. Therefore, when the image is viewed using the head mounted display 100, dots on the pixels can be seen, which can reduce the immersion.

圖8A是高速驅動由MEMS鏡面組成的主動元件的示意圖。Figure 8A is a schematic illustration of a high speed drive of an active component comprised of a MEMS mirror.

參看圖8A,可高速驅動朝向X軸方向以及Y軸方向傾斜的主動元件801的多個微鏡802,來獲得約雙倍解析度的效果。如圖6B中所描述,因為具有MEMS鏡面的主動元件包括極輕且小的微鏡620(低質量),所以可獲得最快的反應速度。舉例而言,微鏡620的反應速度可超過100 KHz。因此,微鏡620的焦距的改變速度可大於或等於100 KHz。Referring to FIG. 8A, a plurality of micromirrors 802 of the active elements 801 inclined toward the X-axis direction and the Y-axis direction can be driven at a high speed to obtain an effect of about double resolution. As described in FIG. 6B, since the active element having the MEMS mirror includes an extremely light and small micro mirror 620 (low quality), the fastest reaction speed can be obtained. For example, the reaction speed of the micromirror 620 can exceed 100 KHz. Therefore, the speed of change of the focal length of the micromirror 620 can be greater than or equal to 100 KHz.

舉例而言,如圖8A中所說明,當以120 KHz驅動微鏡802時,主動元件801的焦點可在焦點平面上朝向左側方向以及右側方向(X方向、Y方向)高速地搖晃。因此,可組合顯示器800的左側以及右側上的均勻低解析度螢幕,並可因為殘像效應而得到顯示高解析度影像的效果。For example, as illustrated in FIG. 8A, when the micromirror 802 is driven at 120 KHz, the focus of the active element 801 can be shaken at a high speed toward the left side direction and the right side direction (X direction, Y direction) on the focal plane. Therefore, a uniform low-resolution screen on the left and right sides of the display 800 can be combined, and the effect of displaying a high-resolution image can be obtained due to the afterimage effect.

特定言之,參看圖8B,一個像素可為10微米,且顯示器可包括3x3個像素。舉例而言,當使用1,000x1,000的顯示器(10微米像素)來實現50度的視場時,每一解析度810可為約1,000/30像素/度,亦即,約33像素/度。In particular, referring to Figure 8B, one pixel can be 10 microns and the display can include 3x3 pixels. For example, when a 1000x1,000 display (10 micron pixels) is used to achieve a 50 degree field of view, each resolution 810 can be about 1,000/30 pixels/degree, that is, about 33 pixels/degree.

在本發明的一實施例中,關於如圖8B所示的3x3像素低解析度顯示器810的每一像素,藉由的如圖8A所示的主動元件801來高速驅動頭戴式顯示器100,以繪製5微米的圓(其為每一像素的一半)。在本實施例中,頭戴式顯示器100的顯示可與每一像素的位置同步,可掃描多個低解析度影像820,且多個均勻的低解析度螢幕可彼此組合以及顯示。在本實施例中,頭戴式顯示器100可實施成使多個經組合的低解析度螢幕820依據殘像效應而變為分別具有約60像素/度的解析度的高解析度影像830。In an embodiment of the present invention, with respect to each pixel of the 3x3 pixel low-resolution display 810 as shown in FIG. 8B, the head mounted display 100 is driven at a high speed by the active component 801 as shown in FIG. 8A, Draw a 5 micron circle (which is half of each pixel). In this embodiment, the display of the head mounted display 100 can be synchronized with the position of each pixel, and a plurality of low resolution images 820 can be scanned, and a plurality of uniform low resolution screens can be combined and displayed with each other. In the present embodiment, the head mounted display 100 can be implemented such that a plurality of combined low resolution screens 820 become high resolution images 830 having resolutions of about 60 pixels/degree, respectively, depending on the afterimage effect.

圖9A至圖9C是依照本發明的一實施例的一種藉由主動元件而控制虛擬實境影像的焦點以控制一個眼睛的視覺調節/收斂的頭戴式顯示器的示意圖。9A-9C are schematic diagrams of a head mounted display that controls the focus of a virtual reality image by an active component to control visual adjustment/convergence of an eye, in accordance with an embodiment of the present invention.

頭戴式顯示器100可在一指定時間修改顯示於顯示器上的虛擬實境影像的焦點。The head mounted display 100 can modify the focus of the virtual reality image displayed on the display at a specified time.

參看圖9A至圖9C,可藉由分時驅動主動元件中的MEMS鏡面的光功率來調整分別關於3D影像的一層904-i的一焦點。Referring to Figures 9A-9C, a focus on a layer 904-i of the 3D image can be adjusted by time-division driving the optical power of the MEMS mirror in the active component.

此外,頭戴式顯示器100可根據影像辨識方法自顯示於顯示螢幕900上的虛擬實境影像估計虛擬實境影像內的物件位置。在本實施例中,頭戴式顯示器100可基於所估計的物件位置而使用主動元件變化影像的焦點,以藉此調整虛擬實境影像的一焦距。此外,頭戴式顯示器100可使主動元件901的功率隨使用者的眼睛902至虛擬實境影像內的物距成比例變化,以藉此調整虛擬實境影像的一層的一焦點。In addition, the head mounted display 100 can estimate the position of the object in the virtual reality image from the virtual reality image displayed on the display screen 900 according to the image recognition method. In the present embodiment, the head mounted display 100 can use the focus of the active component to change the image based on the estimated object position to thereby adjust a focal length of the virtual reality image. In addition, the head mounted display 100 can vary the power of the active component 901 in proportion to the object distance of the user's eye 902 to the virtual reality image to thereby adjust a focus of a layer of the virtual reality image.

舉例而言,圖9A是主動元件901的光功率的示意圖,其中,當使用者在一指定距離904-i(物件的放置位置與眼睛902的距離)上經由頭戴式顯示器100來檢視虛擬實境影像時,調整上述的光功率。當檢視指定距離904-i上的物件時,構成主動元件901的微鏡的傾角不改變。For example, FIG. 9A is a schematic diagram of the optical power of the active component 901, wherein the virtual reality is viewed via the head mounted display 100 at a specified distance 904-i (the distance between the placement of the object and the eye 902). In the case of the image, adjust the above optical power. When the object on the specified distance 904-i is viewed, the tilt angle of the micromirrors constituting the active element 901 does not change.

參看圖9B,當存在虛擬實境層904-n(其中物件距眼睛的置放距離比指定距離904-i近)時,主動元件901的MEMS鏡面的傾角可根據分別位於影像內的物件的焦距而改變,所述MEMS鏡面將光功率調整為+屈光度。Referring to FIG. 9B, when there is a virtual reality layer 904-n (where the object is placed closer to the eye than the specified distance 904-i), the tilt angle of the MEMS mirror of the active element 901 may be based on the focal length of the object located in the image respectively. And changing, the MEMS mirror adjusts the optical power to + diopter.

參看圖9C,當存在虛擬實境層904-1(其中物件距眼睛的置放距離比指定距離904-i遠)時,主動元件901的MEMS鏡面的傾角可根據分別位於影像內的物件的焦距而改變,所述MEMS鏡面將光功率調整為-屈光度。Referring to FIG. 9C, when there is a virtual reality layer 904-1 (where the object is placed farther away from the eye than the specified distance 904-i), the tilt angle of the MEMS mirror of the active element 901 may be based on the focal length of the object located in the image respectively. And changing, the MEMS mirror adjusts the optical power to - diopter.

因此,當檢視虛擬實境影像時,頭戴式顯示器100可將自使用者的眼睛至虛擬實境影像內的物件的距離的一指定值(例如,1公尺)建立為一臨界值。根據所建立的標準,頭戴式顯示器100可使用3D層(其中物件距眼睛的距離比1公尺遠)中的為-屈光度的光功率來分時修改焦距。此外,頭戴式顯示器100可使用3D層(其中物件距眼睛的置放距離比1公尺近)中的為+屈光度的光功率來分時修改焦距。Therefore, when viewing the virtual reality image, the head mounted display 100 can establish a specified value (eg, 1 meter) of the distance from the user's eyes to the object within the virtual reality image as a threshold. In accordance with established standards, head mounted display 100 can use a diopter optical power in a 3D layer (where the object is at a distance of more than 1 meter from the eye) to modify the focal length in a time-sharing manner. In addition, the head mounted display 100 can use a light power of + diopter in the 3D layer (where the object is placed at a distance of more than 1 meter from the eye) to modify the focal length in a time division manner.

在本實施例中,比臨界距離還遠的3D層可遵循校正近視的原理。此外,比臨界距離遠得多的3D層可導致看見二維(two-dimensional, 2D)影像905的效果。In the present embodiment, the 3D layer farther than the critical distance may follow the principle of correcting myopia. Furthermore, a 3D layer that is much farther than the critical distance can result in the effect of seeing a two-dimensional (2D) image 905.

具體而言,數個3D層可劃分成例如16份,且一個3D影像可例如在30 Hz的基礎上產生。在10 KHz的MEMS裝置中,主動元件的MEMS鏡面可接著用以在30x16=480Hz下被驅動。In particular, several 3D layers can be divided into, for example, 16 copies, and a 3D image can be generated, for example, on a 30 Hz basis. In a 10 KHz MEMS device, the MEMS mirror of the active component can then be driven at 30 x 16 = 480 Hz.

圖10A以及圖10B是依照本發明的一實施例的一種藉由主動元件以根據虛擬實境影像的距離而執行視覺調節/收斂的頭戴式顯示器的示意圖。10A and 10B are schematic diagrams of a head mounted display that performs visual adjustment/convergence according to the distance of a virtual reality image by an active component, in accordance with an embodiment of the present invention.

如圖9A至圖9C中所描述,頭戴式顯示器100可藉由分時驅動主動元件901中的MEMS鏡面的光功率來調整分別關於3D影像的一層的一焦點。As shown in FIGS. 9A-9C, the head mounted display 100 can adjust a focus of a layer of the 3D image by driving the optical power of the MEMS mirror in the active component 901 in a time-sharing manner.

圖10A以及圖10B是依據本發明的一實施例的頭戴式顯示器的示意圖,其頭戴式顯示器使用一主動元件以依據一虛擬實境影像的一距離來執行視覺調節/收斂。10A and 10B are schematic diagrams of a head mounted display that uses an active component to perform visual adjustment/convergence in accordance with a distance of a virtual reality image, in accordance with an embodiment of the present invention.

參看圖10A,頭戴式顯示器100可減輕眼睛疲乏,此是因為可相對於虛擬實境影像1001內的物件1002、物件1003中的置放距離較長的物件1003來調整兩個眼睛1000-1、眼睛1000-2的視覺調節以及視覺收斂。Referring to FIG. 10A, the head mounted display 100 can reduce eye fatigue because the two eyes 1000-1 can be adjusted with respect to the object 1002 in the virtual reality image 1001 and the object 1003 having a long placement distance in the object 1003. , visual adjustment of the eye 1000-2 and visual convergence.

虛擬實境影像1001可包括物件1002、物件1003。頭戴式顯示器100可使用影像辨識技術來估計顯示於顯示器上的虛擬實境影像內的物件的位置。因此,頭戴式顯示器100可估計物件1002、1003中的置放距離更靠近於眼睛的物件1002-1以及距使用者眼睛的置放距離更長的物件1003-1。The virtual reality image 1001 can include an object 1002 and an object 1003. The head mounted display 100 can use image recognition techniques to estimate the position of objects within the virtual reality image displayed on the display. Therefore, the head mounted display 100 can estimate the object 1002-1 in the articles 1002, 1003 that is placed closer to the eye and the object 1003-1 that is placed longer than the user's eyes.

當存在虛擬實境影像層1004(其中物件1002-1被置放得更靠近於眼睛)時,主動元件901的MEMS鏡面的傾角可根據影像內的物件1002-1的焦距而改變,所述MEMS鏡面將光功率調整為+屈光度,如在圖9B中所說明。因此,眼睛疲乏可減輕,此是因為使用者的眼睛1000-1的視覺調節以及視覺收斂擬合於置放距離更靠近的物件1002-2。When there is a virtual reality image layer 1004 (where the object 1002-1 is placed closer to the eye), the tilt angle of the MEMS mirror of the active component 901 may vary depending on the focal length of the object 1002-1 within the image, the MEMS The mirror adjusts the optical power to + diopter as illustrated in Figure 9B. Therefore, eye fatigue can be alleviated because the visual adjustment and visual convergence of the user's eye 1000-1 fits to the object 1002-2 that is placed closer together.

參看圖10B,頭戴式顯示器100可減輕眼睛疲乏,此是因為兩個眼睛1000-1、眼睛1000-2的視覺調節以及視覺收斂適合於虛擬實境影像內的物件1002、1003中距離較近的物件1002。Referring to FIG. 10B, the head mounted display 100 can alleviate eye fatigue because the visual adjustment and visual convergence of the two eyes 1000-1, 1000-2 are suitable for closer distances between objects 1002, 1003 within the virtual reality image. Object 1002.

虛擬實境影像1001可包括物件1002、物件1003。頭戴式顯示器100可使用影像辨識技術來估計顯示於顯示器上的虛擬實境影像內的物件的位置。因此,頭戴式顯示器100可估計物件1002、1003中距離眼睛較近的物件1002-1以及距使用者眼睛的距離更長的物件1003-1。The virtual reality image 1001 can include an object 1002 and an object 1003. The head mounted display 100 can use image recognition techniques to estimate the position of objects within the virtual reality image displayed on the display. Thus, the head mounted display 100 can estimate an object 1002-1 that is closer to the eye of the articles 1002, 1003 and an object 1003-1 that is a longer distance from the user's eyes.

當存在虛擬實境影像層1005(其中物件1003-1距眼睛的置放距離更長)時,主動元件901的MEMS鏡面的傾角可根據影像內的物件1003-1的焦距而改變,所述MEMS鏡面將光功率調整為-屈光度(如在圖9C中所示)。此外,眼睛疲乏可減輕,此是因為使用者眼睛1000-1、眼睛1000-2的視覺調節以及視覺收斂適合於置放距離較長的物件1003-2。When there is a virtual reality image layer 1005 (where the object 1003-1 is placed at a longer distance from the eye), the tilt angle of the MEMS mirror of the active component 901 may vary according to the focal length of the object 1003-1 within the image, the MEMS The mirror adjusts the optical power to - diopter (as shown in Figure 9C). In addition, eye fatigue can be alleviated because the visual adjustment of the user's eyes 1000-1, 1000-2, and visual convergence are suitable for objects 1003-2 that are placed at a longer distance.

經由以上方法,頭戴式顯示器100可在經過一指定時間後,藉由變化使用者的焦點來最小化眼睛疲乏。因此,當位於使用者的眼睛與頭戴式顯示器100影像之間的焦距是較長的距離時,且當使用者檢視影像大於指定時間時,頭戴式顯示器100可將使用者的焦點移動至影像內的物件中的焦距的距離較近的物件。同時,當位於使用者的眼睛與頭戴式顯示器100影像之間的焦距是較近的距離時,且當使用者檢視影像大於指定時間時,頭戴式顯示器100可將使用者的焦點移動至影像內的物件中的焦距的距離較長的物件。Through the above method, the head mounted display 100 can minimize eye fatigue by changing the focus of the user after a specified time has elapsed. Therefore, when the focal length between the user's eyes and the image of the head mounted display 100 is a long distance, and when the user views the image for more than a specified time, the head mounted display 100 can move the user's focus to An object in the object that has a close focal length in the image. Meanwhile, when the focal length between the user's eyes and the image of the head mounted display 100 is a relatively close distance, and when the user views the image for more than a specified time, the head mounted display 100 can move the focus of the user to An object with a long focal length in an object within the image.

圖11是依照本發明的一實施例的一種使用主動元件以及繞射元件的用於擴增實境影像的頭戴式顯示器的配置示意圖。11 is a block diagram showing a configuration of a head mounted display for augmenting a real-world image using an active element and a diffractive element, in accordance with an embodiment of the present invention.

擴增實境是用以將虛擬實境影像與真實世界的實體環境維度組合的技術,其中,可能會出現位於虛擬實境影像與實境影像之間的焦點不一致的問題。Augmented reality is a technique used to combine virtual reality images with real-world physical environment dimensions. The problem of inconsistencies in the focus between virtual reality images and real-world images may occur.

參看圖11,自顯示螢幕1100發射的X偏光光射線可通過透鏡1106,穿透第一繞射元件1103,通過1/4波片1107以及收斂於主動元件1101上。在本實施例中,透鏡1106可實施為準直透鏡以產生X偏光光射線而為平行光射線。Referring to Figure 11, X-polarized light rays emitted from display screen 1100 can pass through lens 1106, penetrate first diffractive element 1103, pass through quarter-wave plate 1107, and converge on active element 1101. In this embodiment, the lens 1106 can be implemented as a collimating lens to produce X-polarized light rays as parallel light rays.

第一繞射元件1103可配置於光導1105的內部區域上且平行於主動元件1101。此外,第一繞射元件1103可使X偏光光射線(其為自顯示器1100發射的第一線性偏光光射線)通過,以及使Y偏光光射線(其為相對於第一線性偏光光射線垂直的第二線性偏光光射線)產生繞射。The first diffractive element 1103 can be disposed on an interior region of the light guide 1105 and parallel to the active component 1101. Furthermore, the first diffractive element 1103 can pass X-polarized light rays, which are first linearly polarized light rays emitted from the display 1100, and Y-polarized light rays (which are relative to the first linearly polarized light rays) A vertical second linearly polarized light ray produces a diffraction.

主動元件1101可藉由旋轉以及平移微鏡來調整梯度。使用者的視力可使用主動元件1101的可修改的遮罩圖案來進行量測。此外,主動元件1101可藉由調整光功率來校正使用者的視力。The active component 1101 can adjust the gradient by rotating and translating the micromirrors. The user's vision can be measured using a modifiable mask pattern of the active element 1101. In addition, the active component 1101 can correct the user's vision by adjusting the optical power.

主動元件1101可藉由使用1/4波片1107發散Y偏光光射線以及在第一繞射元件1103上全反射來修改光射線1108的角度。在本實施例中,第一繞射元件1103以及第二繞射元件1104可配置於光導1105的內部區域上,且光導可為波導管(其為平坦玻璃)。被第一繞射元件1103所繞射的光射線1108可在光導1105內全反射,且在第二繞射元件1104上繞射。在第二繞射元件1104上繞射的光射線1108可形成為使用者的視網膜1102上的影像。The active element 1101 can modify the angle of the light ray 1108 by diverging the Y-polarized light ray using the quarter-wave plate 1107 and total reflection on the first diffractive element 1103. In the present embodiment, the first diffractive element 1103 and the second diffractive element 1104 may be disposed on an inner region of the light guide 1105, and the light guide may be a waveguide (which is a flat glass). The light ray 1108, which is diffracted by the first diffractive element 1103, is totally reflective within the light guide 1105 and is diffracted on the second diffractive element 1104. The light ray 1108 diffracted on the second diffractive element 1104 can be formed as an image on the user's retina 1102.

在本實施例中,主動元件1101的光軸可被置放成相對於出射瞳孔軸上的眼睛光軸、Z軸而靠近於0度至+/-15度的範圍。因此,頭戴式顯示器100可在以薄眼鏡之形式予以製造時經建立以改良虛擬實境影像與實境影像之間的焦點不一致性,此是藉由將主動元件設置於側表面上以免防礙眼睛1102的前方視場。In the present embodiment, the optical axis of the active element 1101 can be placed in a range from 0 degrees to +/- 15 degrees with respect to the optical axis of the eye on the exit pupil axis, the Z axis. Therefore, the head mounted display 100 can be established in the form of thin glasses to improve the focus inconsistency between the virtual reality image and the real image, by placing the active component on the side surface to prevent The front field of view of the eye 1102 is impeded.

以上X偏光光射線以及Y偏光光射線僅僅是用於解釋本發明的實施例的其中之一者;本發明並不限於以上內容,且可實施其他各種修改。The above X-polarized light ray and Y-polarized light ray are only one of the embodiments for explaining the present invention; the present invention is not limited to the above, and various other modifications can be implemented.

圖12是依照本發明的一實施例的一種使用頭戴式顯示器的主動元件而量測以及校正使用者的視力的方法的流程圖。12 is a flow chart of a method of measuring and correcting a user's vision using an active component of a head mounted display, in accordance with an embodiment of the present invention.

執行步驟S1200,頭戴式顯示器100可藉由使用由多個微鏡組成的主動元件來偵測使用者的視力。用於偵測視力的方法已在上文予以具體解釋,且將不在下文予以進一步描述。In step S1200, the head mounted display 100 can detect the user's vision by using an active component composed of a plurality of micromirrors. Methods for detecting vision have been specifically explained above and will not be further described below.

執行步驟S1210,頭戴式顯示器100可儲存偵測到的使用者的視力資訊以及使用者的生物特徵資訊。舉例而言,使用者的生物特徵資訊可包括諸如虹膜辨識、語音辨識、面部辨識以及指紋辨識等多種資訊。因此,當使用者重新使用頭戴式顯示器100時,頭戴式顯示器100可基於使用者的生物特徵資訊來自動地校正視力以適合於使用者的視力資訊。Step S1210 is performed, and the head mounted display 100 can store the detected visual information of the user and the biometric information of the user. For example, the biometric information of the user may include various information such as iris recognition, speech recognition, face recognition, and fingerprint recognition. Therefore, when the user re-uses the head mounted display 100, the head mounted display 100 can automatically correct the vision based on the user's biometric information to suit the user's vision information.

執行步驟S1220,當基於所儲存的使用者資訊辨識出使用者時,頭戴式顯示器100可基於偵測到的視力資訊而控制多個微鏡中的至少一部分的梯度,以藉此調整提供至顯示器的影像的焦距。上文已經描述用於調整焦距的方法,故將不在下文予以進一步描述。Step S1220, when the user is identified based on the stored user information, the head mounted display 100 can control a gradient of at least a portion of the plurality of micromirrors based on the detected vision information, thereby providing the adjustment to The focal length of the image of the display. The method for adjusting the focal length has been described above and will not be further described below.

如上文所描述,在本發明的一實施例中,頭戴式顯示器可使用主動元件而量測以及校正使用者的視力,以藉此提供使用者經最佳化的影像。此外,頭戴式顯示器可藉由使用主動元件而小型化,並提供使用者高清晰度顯示螢幕。As described above, in an embodiment of the invention, the head mounted display can measure and correct the user's vision using the active components to thereby provide the user with an optimized image. In addition, the head mounted display can be miniaturized by using active components and provides a user with a high definition display screen.

此外,除了儲存體(未繪示)以外,用以執行上文所描述的控制方法的程式亦可儲存於各種記錄媒體中,且其具備顯示裝置。Further, in addition to the storage body (not shown), the program for executing the control method described above may be stored in various recording media, and it is provided with a display device.

舉例而言,可提供一種儲存此程式的非暫時性電腦可讀媒體,其經由顯示裝置的處理器(未繪示)來執行所述方法。For example, a non-transitory computer readable medium storing the program can be provided that executes the method via a processor (not shown) of the display device.

特定言之,以上各種應用程式或程式可儲存以及提供於非暫時性電腦可讀記錄媒體中,諸如光碟(compact disc, CD)、數位多功能光碟(digital versatile disc, DVD)、硬碟、藍光光碟、USB、記憶體卡或ROM,但本發明並不限於此。In particular, the above various applications or programs can be stored and provided in a non-transitory computer readable recording medium such as a compact disc (CD), a digital versatile disc (DVD), a hard disc, a blue light. A disc, a USB, a memory card or a ROM, but the invention is not limited thereto.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧頭戴式顯示器
101‧‧‧控制器
210‧‧‧顯示器
220‧‧‧處理器
230‧‧‧記憶體
240‧‧‧主動元件
260‧‧‧光學切片
270‧‧‧顯示螢幕
275‧‧‧光束分光器
280‧‧‧透鏡
285‧‧‧透鏡鏡面
290‧‧‧偏光鏡
295‧‧‧稜鏡
300‧‧‧顯示螢幕
301‧‧‧透鏡鏡面
302‧‧‧使用者的眼睛
400‧‧‧顯示器
401‧‧‧第一透鏡組
402‧‧‧中間影像
403‧‧‧第二透鏡組
404‧‧‧眼睛
500‧‧‧顯示器
501‧‧‧主動元件
502‧‧‧稜鏡
503‧‧‧偏光光束分光器
504‧‧‧透鏡鏡面
505‧‧‧使用者的視網膜
506‧‧‧透鏡
507‧‧‧第一偏光鏡/1/4波片
508‧‧‧第二偏光鏡/1/2波片
509‧‧‧第三偏光鏡/1/4波片
600‧‧‧點P
601‧‧‧微鏡
610‧‧‧微機電系統(MEMS)鏡面
620‧‧‧微鏡
700‧‧‧顯示螢幕
701‧‧‧像素/點狀光射線
702‧‧‧點狀光射線/點狀影像
703‧‧‧特定區域光射線/光罩圖案
704‧‧‧點狀影像/光射線
705‧‧‧點/光射線
706‧‧‧光射線
710‧‧‧透鏡
720‧‧‧主動元件
730‧‧‧使用者的視網膜
800‧‧‧顯示器
801‧‧‧主動元件
802‧‧‧微鏡
810‧‧‧低解析度顯示器
820‧‧‧低解析度影像/低解析度螢幕
830‧‧‧高解析度影像
900‧‧‧顯示螢幕
901‧‧‧主動元件
902‧‧‧使用者的眼睛
904-1‧‧‧虛擬實境層
904-i‧‧‧層/指定距離
904-n‧‧‧虛擬實境層
905‧‧‧二維影像
1000-1‧‧‧眼睛
1000-2‧‧‧眼睛
1001‧‧‧虛擬實境影像
1002‧‧‧物件
1002-1‧‧‧物件
1002-2‧‧‧物件
1003‧‧‧物件
1003-1‧‧‧物件
1003-2‧‧‧物件
1004‧‧‧虛擬實境影像層
1005‧‧‧虛擬實境影像層
1100‧‧‧顯示螢幕
1101‧‧‧主動元件
1102‧‧‧使用者的視網膜
1103‧‧‧第一繞射元件
1104‧‧‧第二繞射元件
1105‧‧‧光導
1106‧‧‧透鏡
1107‧‧‧1/4波片
1108‧‧‧光射線
S1200‧‧‧步驟
S1210‧‧‧步驟
S1220‧‧‧步驟
100‧‧‧ head mounted display
101‧‧‧ Controller
210‧‧‧ display
220‧‧‧ processor
230‧‧‧ memory
240‧‧‧Active components
260‧‧‧ optical sectioning
270‧‧‧ display screen
275‧‧‧beam splitter
280‧‧‧ lens
285‧‧‧ lens mirror
290‧‧‧ polarizer
295‧‧‧稜鏡
300‧‧‧ display screen
301‧‧‧ lens mirror
302‧‧‧User's eyes
400‧‧‧ display
401‧‧‧First lens group
402‧‧‧Intermediate imagery
403‧‧‧second lens group
404‧‧‧ eyes
500‧‧‧ display
501‧‧‧Active components
502‧‧‧稜鏡
503‧‧‧Polarized beam splitter
504‧‧‧ lens mirror
505‧‧‧ User's retina
506‧‧‧ lens
507‧‧‧First polarizer/1/4 wave plate
508‧‧‧Second polarizer/1/2 wave plate
509‧‧‧third polarizer/1/4 wave plate
600‧‧ ‧ point P
601‧‧‧Micromirror
610‧‧‧Microelectromechanical systems (MEMS) mirrors
620‧‧‧Micromirror
700‧‧‧ display screen
701‧‧‧pixel/dot light rays
702‧‧‧ spot light ray/dot image
703‧‧‧Specific area light ray/mask pattern
704‧‧‧ Point image / light ray
705‧‧ points/light rays
706‧‧‧Light rays
710‧‧ lens
720‧‧‧Active components
730‧‧‧ User's retina
800‧‧‧ display
801‧‧‧Active components
802‧‧‧micromirror
810‧‧‧Low-resolution display
820‧‧‧Low-resolution image/low resolution screen
830‧‧‧High resolution image
900‧‧‧display screen
901‧‧‧Active components
902‧‧‧User's eyes
904-1‧‧‧Virtual Reality Layer
904-i‧‧‧layer/designated distance
904-n‧‧‧Virtual Reality Layer
905‧‧‧2D image
1000-1‧‧‧ eyes
1000-2‧‧‧ eyes
1001‧‧‧virtual reality imagery
1002‧‧‧ objects
1002-1‧‧‧ objects
1002-2‧‧‧ objects
1003‧‧‧ objects
1003-1‧‧‧ objects
1003-2‧‧‧ objects
1004‧‧‧Virtual Reality Image Layer
1005‧‧‧Virtual Reality Image Layer
1100‧‧‧display screen
1101‧‧‧Active components
1102‧‧‧ User's retina
1103‧‧‧First diffractive element
1104‧‧‧second diffractive element
1105‧‧‧Light Guide
1106‧‧‧ lens
1107‧‧‧1/4 wave plate
1108‧‧‧Light rays
S1200‧‧‧Steps
S1210‧‧‧Steps
S1220‧‧‧Steps

本發明的部分實施例之上述及其他態樣、特徵以及優點將結合附圖進行的以下描述,以使其更清楚呈現,其中: 圖1是依照本發明的一實施例的頭戴式顯示器(head mounted display, HMD)的一般配置的示意圖。 圖2A是依照本發明的一實施例的一種頭戴式顯示器的配置的方塊圖。 圖2B是依照本發明的一實施例的一種頭戴式顯示器中的一光學切片的配置的方塊圖。 圖3是習知的一種可校正使用者的視力的頭戴式顯示器的示意圖。 圖4是瞳孔成像設計的示意圖,其中瞳孔成像設計是依照本發明的一實施例的頭戴式顯示器的一光學設計。 圖5是說明根據本發明的一實施例的頭戴式顯示器的顯示光學器件的詳細組態的圖。 圖6A以及圖6B是構成依照本發明的一實施例的一種頭戴式顯示器的主動元件的示意圖。 圖7A至圖7E是使用依照本發明的一實施例的一種頭戴式顯示器的主動元件來量測使用者的視力之方法的示意圖。 圖8A以及圖8B是依照本發明的一實施例的一種利用頭戴式顯示器的主動元件的高速傾斜來實施的高清晰度顯示器的示意圖。 圖9A至圖9C是依照本發明的一實施例的一種藉由主動元件而控制虛擬實境影像的焦點以控制一個眼睛的視覺調節/收斂的頭戴式顯示器的示意圖。 圖10A以及圖10B是依照本發明的一實施例的一種藉由主動元件以根據虛擬實境影像的距離而執行視覺調節/收斂的頭戴式顯示器的示意圖。 圖11是依照本發明的一實施例的一種使用主動元件以及繞射元件的用於擴增實境影像的頭戴式顯示器的配置示意圖。 圖12是依照本發明的一實施例的一種使用頭戴式顯示器的主動元件而量測以及校正使用者的視力的方法的流程圖。 在所有圖式中,相似的標號應理解為是用以標示相似的零件、組件以及結構。The above and other aspects, features and advantages of some embodiments of the present invention will be described in conjunction with the accompanying drawings in which: FIG. Schematic diagram of the general configuration of head mounted display, HMD). 2A is a block diagram of a configuration of a head mounted display in accordance with an embodiment of the present invention. 2B is a block diagram of a configuration of an optical slice in a head mounted display in accordance with an embodiment of the present invention. 3 is a schematic diagram of a conventional head mounted display that corrects the user's vision. 4 is a schematic illustration of a pupil imaging design in which the pupil imaging design is an optical design of a head mounted display in accordance with an embodiment of the present invention. FIG. 5 is a diagram illustrating a detailed configuration of display optics of a head mounted display according to an embodiment of the present invention. 6A and 6B are schematic views of an active element constituting a head mounted display in accordance with an embodiment of the present invention. 7A-7E are schematic diagrams of a method of measuring a user's vision using an active component of a head mounted display in accordance with an embodiment of the present invention. 8A and 8B are schematic diagrams of a high definition display implemented using high speed tilting of active elements of a head mounted display, in accordance with an embodiment of the present invention. 9A-9C are schematic diagrams of a head mounted display that controls the focus of a virtual reality image by an active component to control visual adjustment/convergence of an eye, in accordance with an embodiment of the present invention. 10A and 10B are schematic diagrams of a head mounted display that performs visual adjustment/convergence according to the distance of a virtual reality image by an active component, in accordance with an embodiment of the present invention. 11 is a block diagram showing a configuration of a head mounted display for augmenting a real-world image using an active element and a diffractive element, in accordance with an embodiment of the present invention. 12 is a flow chart of a method of measuring and correcting a user's vision using an active component of a head mounted display, in accordance with an embodiment of the present invention. In all the figures, like reference numerals are used to refer to the like parts, components, and structures.

500‧‧‧顯示器 500‧‧‧ display

501‧‧‧主動元件 501‧‧‧Active components

502‧‧‧稜鏡 502‧‧‧稜鏡

503‧‧‧偏光光束分光器 503‧‧‧Polarized beam splitter

504‧‧‧透鏡鏡面 504‧‧‧ lens mirror

505‧‧‧使用者的視網膜 505‧‧‧ User's retina

506‧‧‧透鏡 506‧‧‧ lens

507‧‧‧第一偏光鏡/1/4波片 507‧‧‧First polarizer/1/4 wave plate

508‧‧‧第二偏光鏡/1/2波片 508‧‧‧Second polarizer/1/2 wave plate

509‧‧‧第三偏光鏡/1/4波片 509‧‧‧third polarizer/1/4 wave plate

Claims (15)

一種頭戴式顯示裝置,所述裝置包括: 一顯示器,用以提供一影像; 一主動元件,包括多個微鏡且用以反射提供於所述顯示器上的所述影像;以及 一處理器,用以進行以下操作: 偵測一使用者的視力,以及 基於偵測到的所述使用者的視力而控制所述多個微鏡中的至少一部分的一梯度,以調整提供於所述顯示器上的所述影像的一焦距。A head mounted display device, the device comprising: a display for providing an image; an active component comprising a plurality of micromirrors for reflecting the image provided on the display; and a processor For performing the following operations: detecting a user's vision, and controlling a gradient of at least a portion of the plurality of micromirrors based on the detected visual force of the user to adjust for being provided on the display a focal length of the image. 如申請專利範圍第1項所述的頭戴式顯示裝置,其中所述處理器更用以進行以下操作: 在所述主動元件上產生一光罩圖案,以使自所述顯示器發射之用於視力量測的一光射線的僅一特定區域形成為所述使用者的一視網膜上的一影像,以及 藉由變化所述主動元件的一光功率來偵測所述使用者的視力。The head-mounted display device of claim 1, wherein the processor is further configured to: generate a mask pattern on the active component to enable transmission from the display Only a specific area of a light ray that is measured by force is formed as an image on a retina of the user, and the visual power of the user is detected by varying an optical power of the active element. 如申請專利範圍第1項所述的頭戴式顯示裝置,其中所述處理器更用以基於偵測到的所述使用者的視力而調整所述主動元件的一光功率,以校正所述使用者的視力。The head-mounted display device of claim 1, wherein the processor is further configured to adjust an optical power of the active component based on the detected visual force of the user to correct the The user's vision. 如申請專利範圍第1項所述的頭戴式顯示裝置,其中所述處理器更用以進行以下操作: 在一指定時間變化顯示於所述顯示器上的一虛擬實境影像的一焦點,或 使用影像辨識而估計顯示於所述顯示器上的所述虛擬實境影像的一物件位置,以變化所述虛擬實境影像的一焦距。The head-mounted display device of claim 1, wherein the processor is further configured to: change a focus of a virtual reality image displayed on the display at a specified time, or An object location of the virtual reality image displayed on the display is estimated using image recognition to vary a focal length of the virtual reality image. 如申請專利範圍第1項所述的頭戴式顯示裝置,其中所述處理器更用以進行以下操作: 藉由使所述主動元件的一光功率隨著所述虛擬實境影像的一物距成比例地變化來分別地調整所述虛擬實境影像的每一層的一焦點,以及 當所述使用者為近視時,藉由指定一透鏡的一光功率上的一偏移量以使得所述主動元件的所述光功率發生變化來擴展所述使用者的一視力調整範圍。The head-mounted display device of claim 1, wherein the processor is further configured to: perform an operation by: causing an optical power of the active component to follow an object of the virtual reality image a proportional change to adjust a focus of each layer of the virtual reality image, and when the user is nearsighted, by specifying an offset of an optical power of a lens to cause The optical power of the active component changes to extend a range of vision adjustments of the user. 如申請專利範圍第1項所述的頭戴式顯示裝置,其中所述處理器用以高速傾斜驅動所述主動元件以擴展所述顯示器的解析度。The head mounted display device of claim 1, wherein the processor is configured to drive the active device at a high speed to expand the resolution of the display. 如申請專利範圍第1項所述的頭戴式顯示裝置,其中所述主動元件相對於所述顯示器以及一光路徑在垂直方向上設置。The head mounted display device of claim 1, wherein the active component is disposed in a vertical direction with respect to the display and a light path. 如申請專利範圍第1項所述的頭戴式顯示裝置,更包括: 一記憶體,用以儲存偵測到的所述使用者的一視力資訊以及所述使用者的一生物特徵資訊。The head-mounted display device of claim 1, further comprising: a memory for storing the detected visual information of the user and a biometric information of the user. 如申請專利範圍第1項所述的頭戴式顯示裝置,更包括: 多個偏光鏡, 其中所述頭戴式顯示裝置藉由以下各者而獲得一虛擬實境影像:一第一偏光鏡,其設置於所述主動元件與一透鏡之間;一第二偏光鏡,其設置於一透鏡鏡面與一第二偏光光束分光器的一前表面之間;以及一第三偏光鏡,其垂直於所述第二偏光鏡,並平行於所述主動元件而設置,且設置於所述第二偏光光束分光器的一側表面上。The head-mounted display device of claim 1, further comprising: a plurality of polarizers, wherein the head-mounted display device obtains a virtual reality image by: a first polarizer Provided between the active component and a lens; a second polarizer disposed between a lens mirror and a front surface of a second polarizing beam splitter; and a third polarizer perpendicular to The second polarizer is disposed parallel to the active component and disposed on a side surface of the second polarizing beam splitter. 如申請專利範圍第9項所述的頭戴式顯示裝置,其中所述第一偏光鏡以及所述第二偏光鏡各包括一四分之一波片,且所述第三偏光鏡包括一二分之一波片。The head-mounted display device of claim 9, wherein the first polarizer and the second polarizer each comprise a quarter-wave plate, and the third polarizer comprises one or two One wave plate. 如申請專利範圍第1項所述的頭戴式顯示裝置,更包括: 一準直透鏡,用以產生自所述顯示器發射而成為一平行射線的一光射線; 所述主動元件,用以收斂或發散自所述透鏡發射的所述光射線; 第一繞射元件,用以使自所述主動元件發射的所述光射線產生繞射; 一四分之一波片,設置於所述第一繞射元件與所述主動元件之間以改變所述光射線的一偏光狀態; 一光導,用以使用一全反射來導引所述經繞射的光射線;以及 一第二繞射元件,用以使用所述繞射而將所述光射線發射至所述使用者。The head-mounted display device of claim 1, further comprising: a collimating lens for generating a light ray emitted from the display to become a parallel ray; the active component for converging Or diverging the light ray emitted from the lens; a first diffractive element for diffracting the light ray emitted from the active element; a quarter-wave plate disposed at the Between a diffractive element and the active element to change a polarized state of the light ray; a light guide for guiding the diffracted light ray using a total reflection; and a second diffractive element And using the diffraction to emit the light rays to the user. 如申請專利範圍第11項所述的頭戴式顯示裝置,其中所述第一繞射元件更用以進行以下操作: 使自所述顯示器發射的一第一線性偏光光射線通過,以及 使垂直於所述第一線性偏光光射線的一第二線性偏光光射線產生繞射。The head mounted display device of claim 11, wherein the first diffractive element is further configured to: pass a first linear polarized light ray emitted from the display, and A second linearly polarized light ray perpendicular to the first linearly polarized light ray produces a diffraction. 如申請專利範圍第11項所述的頭戴式顯示裝置,其中所述裝置藉由以下操作來調整一擴增實境影像的一焦點:將所述第一繞射元件設置成平行於所述主動元件;將所述第二繞射元件設置成平行於所述使用者的眼睛;以及將所述主動元件的一光軸設置成相對於所述使用者的眼睛的一光軸成一指定角度。The head mounted display device of claim 11, wherein the device adjusts a focus of an augmented reality image by: positioning the first diffractive element parallel to the An active element; the second diffractive element is disposed parallel to the eye of the user; and an optical axis of the active element is disposed at a specified angle relative to an optical axis of the user's eye. 一種頭戴式顯示裝置的顯示方法,所述方法包括: 藉由使用包括多個微鏡的一主動元件來偵測一使用者的視力資訊; 儲存偵測到的所述使用者的視力資訊至所述使用者的資訊;以及 當經由所述使用者的資訊辨識出所述使用者時,基於偵測到的所述使用者的視力資訊而控制所述多個微鏡中的至少一部分的一梯度,以調整提供至一顯示器的一影像的一焦距。A display method of a head mounted display device, the method comprising: detecting a user's vision information by using an active component including a plurality of micromirrors; storing the detected visual information of the user to And the information of the user; and when the user is identified by the information of the user, controlling one of the plurality of micromirrors based on the detected visual information of the user Gradient to adjust a focal length of an image provided to a display. 如申請專利範圍第14項所述的頭戴式顯示裝置的顯示方法,其中偵測所述使用者的視力的步驟包括: 產生一光罩圖案以使自所述顯示器發射的一光射線的僅一特定區域形成於所述主動元件的一中心上,以用於所述使用者的一視力量測,且多個區域形成為所述使用者的一視網膜上的一影像;以及 藉由變化所述主動元件的一光功率來量測所述視力。The display method of the head mounted display device of claim 14, wherein the detecting the visual force of the user comprises: generating a reticle pattern to cause only one light ray emitted from the display a specific area is formed on a center of the active element for a visual force measurement of the user, and a plurality of areas are formed as an image on a retina of the user; The optical power of the active component is measured to measure the vision.
TW105116945A 2015-06-15 2016-05-31 Head mounted display apparatus and display method thereof TWI718151B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562175627P 2015-06-15 2015-06-15
US62/175,627 2015-06-15
KR10-2016-0006427 2016-01-19
KR1020160006427A KR20160147636A (en) 2015-06-15 2016-01-19 Head Mounted Display Apparatus

Publications (2)

Publication Number Publication Date
TW201643506A true TW201643506A (en) 2016-12-16
TWI718151B TWI718151B (en) 2021-02-11

Family

ID=57736080

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105116945A TWI718151B (en) 2015-06-15 2016-05-31 Head mounted display apparatus and display method thereof

Country Status (4)

Country Link
US (1) US10656423B2 (en)
KR (1) KR20160147636A (en)
AU (1) AU2016279665B2 (en)
TW (1) TWI718151B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164583A (en) * 2018-11-07 2019-01-08 深圳珑璟光电技术有限公司 A kind of underwater AR device
TWI661229B (en) * 2017-06-15 2019-06-01 美商谷歌有限責任公司 Near-eye display systems, methods used in a near-eye display system, and processing systems
TWI666570B (en) * 2017-04-06 2019-07-21 宏達國際電子股份有限公司 System and method for providing simulated environment
TWI669654B (en) * 2017-04-06 2019-08-21 宏達國際電子股份有限公司 System and method for providing simulated environment
TWI677709B (en) * 2018-01-09 2019-11-21 瑞軒科技股份有限公司 Display device assembly
US10546518B2 (en) 2017-05-15 2020-01-28 Google Llc Near-eye display with extended effective eyebox via eye tracking
TWI685682B (en) * 2017-09-26 2020-02-21 南韓商Lg化學股份有限公司 Optical film, optical element and imaging device
TWI765197B (en) * 2019-03-29 2022-05-21 宏達國際電子股份有限公司 Head-mounted device and strap structure thereof
TWI778097B (en) * 2017-07-12 2022-09-21 美商元平台技術有限公司 An apparatus for compensation of defective microled and method thereof

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180144554A1 (en) 2016-11-18 2018-05-24 Eyedaptic, LLC Systems for augmented reality visual aids and tools
IL307602A (en) 2017-02-23 2023-12-01 Magic Leap Inc Variable-focus virtual image devices based on polarization conversion
CN108663803B (en) * 2017-03-30 2021-03-26 腾讯科技(深圳)有限公司 Virtual reality glasses, lens barrel adjusting method and device
US20190012841A1 (en) * 2017-07-09 2019-01-10 Eyedaptic, Inc. Artificial intelligence enhanced system for adaptive control driven ar/vr visual aids
KR102486833B1 (en) 2017-08-23 2023-01-11 삼성전자주식회사 Method for controlling power between electronic devices and electronic device
KR101947372B1 (en) * 2017-09-04 2019-05-08 주식회사 그루크리에이티브랩 Method of providing position corrected images to a head mount display and method of displaying position corrected images to a head mount display, and a head mount display for displaying the position corrected images
US10984508B2 (en) 2017-10-31 2021-04-20 Eyedaptic, Inc. Demonstration devices and methods for enhancement for low vision users and systems improvements
KR102005508B1 (en) 2017-12-01 2019-07-30 김태경 Image display optical apparatus and image generation method thereof
KR102065233B1 (en) * 2018-01-19 2020-01-10 전자부품연구원 Foveated Near-Eye Display System for Relieving Vergence-Accommodation Conflict
KR102626922B1 (en) 2018-09-21 2024-01-18 삼성전자주식회사 See-through type display apparatus including the same
WO2020068819A1 (en) 2018-09-24 2020-04-02 Eyedaptic, Inc. Enhanced autonomous hands-free control in electronic visual aids
US11300776B2 (en) * 2018-12-07 2022-04-12 Beijing Voyager Technology Co., Ltd. Coupled and synchronous mirror elements in a lidar-based micro-mirror array
US10880542B1 (en) * 2018-12-19 2020-12-29 Facebook Technologies, Llc Near-eye optical element with embedded hot mirror
FR3097423A1 (en) * 2019-06-21 2020-12-25 Eyesoft METHOD OF MEASURING THE CONVERGENCE OF THE EYES OF A PATIENT
WO2021002641A1 (en) 2019-07-04 2021-01-07 Samsung Electronics Co., Ltd. Electronic device and method for displaying augmented reality
US11662581B2 (en) * 2019-11-13 2023-05-30 Google Llc Head mounted display with lightguide and holographic element
KR102244445B1 (en) * 2019-11-22 2021-04-26 인하대학교 산학협력단 Apparatus and method for occlusion capable near-eye display for augmented reality using single dmd
CN112987297B (en) * 2019-12-17 2024-04-02 中强光电股份有限公司 Light field near-to-eye display device and light field near-to-eye display method
KR20220068377A (en) * 2020-11-19 2022-05-26 주식회사 홀로랩 Holographic head-up display operation method and system based on micromirror array element
EP4321923A1 (en) 2021-08-05 2024-02-14 Samsung Electronics Co., Ltd. Augmented reality device and method for detecting gaze of user
WO2023172266A1 (en) * 2022-03-11 2023-09-14 Hewlett-Packard Development Company, L.P. Head-mountable display (hmd) virtual image distance adjustment based on eye tiredness of hmd wearer

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982343A (en) 1903-11-29 1999-11-09 Olympus Optical Co., Ltd. Visual display apparatus
JP2893599B2 (en) * 1989-10-05 1999-05-24 セイコーエプソン株式会社 Polarized light source and projection display
US4997269A (en) 1990-02-28 1991-03-05 The United States Of America As Represented By The Secretary Of The Navy Scheiner-principle pocket optometer for self evaluation and bio-feedback accommodation training
JPH09127458A (en) 1995-10-26 1997-05-16 Matsushita Electric Works Ltd On-head display with eyeball image measuring function
US5959780A (en) 1996-04-15 1999-09-28 Olympus Optical Co., Ltd. Head-mounted display apparatus comprising a rotationally asymmetric surface
JP2000089157A (en) 1998-09-11 2000-03-31 Hiroshi Katagawa Head mount display
DE19958436B4 (en) 1999-12-03 2014-07-17 Carl Zeiss Meditec Ag Apparatus and method for active, physiologically evaluated, comprehensive correction of the aberrations of the human eye
DE10219512B4 (en) 2002-04-30 2004-05-06 Rodenstock Gmbh Compensation for ametropia using a deformed / deformable mirror and / or corrective optics in a virtual reality display
JP2004038012A (en) * 2002-07-05 2004-02-05 Minolta Co Ltd Image display device
US7350922B2 (en) * 2004-02-13 2008-04-01 Angstrom, Inc. Three-dimensional display using variable focal length micromirror array lens
KR20070021154A (en) 2004-02-13 2007-02-22 스테레오 디스플레이, 인크. Three-dimensional display using variable focusing lens
KR101128635B1 (en) 2004-03-29 2012-03-26 소니 주식회사 Optical device and virtual image display device
US6977777B1 (en) * 2004-06-18 2005-12-20 Sandia Corporation Active optical zoom system
US7931373B2 (en) 2004-12-03 2011-04-26 The Invention Science Fund I, Llc Vision modification with reflected image
US20060126181A1 (en) 2004-12-13 2006-06-15 Nokia Corporation Method and system for beam expansion in a display device
US7486341B2 (en) 2005-11-03 2009-02-03 University Of Central Florida Research Foundation, Inc. Head mounted display with eye accommodation having 3-D image producing system consisting of, for each eye, one single planar display screen, one single planar tunable focus LC micro-lens array, one single planar black mask and bias lens
WO2008129539A2 (en) 2007-04-22 2008-10-30 Lumus Ltd. A collimating optical device and system
JP5341462B2 (en) 2008-10-14 2013-11-13 キヤノン株式会社 Aberration correction method, image processing apparatus, and image processing system
US20100169108A1 (en) 2008-12-31 2010-07-01 Microsoft Corporation Distributed networks used for health-based data collection
JP5545076B2 (en) 2009-07-22 2014-07-09 ソニー株式会社 Image display device and optical device
US20120013988A1 (en) 2010-07-16 2012-01-19 Hutchin Richard A Head mounted display having a panoramic field of view
KR101890328B1 (en) 2010-12-24 2018-08-21 매직 립, 인코포레이티드 An ergonomic head mounted display device and optical system
US8934160B2 (en) 2011-10-25 2015-01-13 National Central University Optical head-mounted display with mechanical one-dimensional scanner
US20130258486A1 (en) * 2012-03-27 2013-10-03 Dumitru Mihai Ionescu Head-mount display
US8724206B2 (en) 2012-09-28 2014-05-13 Google Inc. Photo-chromic coating for optics
WO2014169148A1 (en) 2013-04-10 2014-10-16 Eyenetra, Inc. Methods and apparatus for refractive condition assessment
US10228561B2 (en) 2013-06-25 2019-03-12 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism and gaze-detection light
WO2014209431A1 (en) * 2013-06-27 2014-12-31 Fusao Ishii Wearable display
KR20150009852A (en) 2013-07-17 2015-01-27 엘지전자 주식회사 Method for displaying information using eyesight information and wearable device therefor
KR20150026336A (en) * 2013-09-02 2015-03-11 엘지전자 주식회사 Wearable display device and method of outputting content thereof
KR102160017B1 (en) 2013-11-18 2020-09-25 한국전자통신연구원 Glass appratus using eyesignt-based virtual screen
JP6566541B2 (en) 2014-11-26 2019-08-28 株式会社トプコン Ophthalmic equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI666570B (en) * 2017-04-06 2019-07-21 宏達國際電子股份有限公司 System and method for providing simulated environment
TWI669654B (en) * 2017-04-06 2019-08-21 宏達國際電子股份有限公司 System and method for providing simulated environment
US10401957B2 (en) 2017-04-06 2019-09-03 Htc Corporation System and method for providing simulated environment
US10609025B2 (en) 2017-04-06 2020-03-31 Htc Corporation System and method for providing simulated environment
US10546518B2 (en) 2017-05-15 2020-01-28 Google Llc Near-eye display with extended effective eyebox via eye tracking
TWI661229B (en) * 2017-06-15 2019-06-01 美商谷歌有限責任公司 Near-eye display systems, methods used in a near-eye display system, and processing systems
US10629105B2 (en) 2017-06-15 2020-04-21 Google Llc Near-eye display with frame rendering based on reflected wavefront analysis for eye characterization
TWI778097B (en) * 2017-07-12 2022-09-21 美商元平台技術有限公司 An apparatus for compensation of defective microled and method thereof
TWI685682B (en) * 2017-09-26 2020-02-21 南韓商Lg化學股份有限公司 Optical film, optical element and imaging device
TWI677709B (en) * 2018-01-09 2019-11-21 瑞軒科技股份有限公司 Display device assembly
CN109164583A (en) * 2018-11-07 2019-01-08 深圳珑璟光电技术有限公司 A kind of underwater AR device
TWI765197B (en) * 2019-03-29 2022-05-21 宏達國際電子股份有限公司 Head-mounted device and strap structure thereof

Also Published As

Publication number Publication date
TWI718151B (en) 2021-02-11
KR20160147636A (en) 2016-12-23
AU2016279665A1 (en) 2017-10-12
US10656423B2 (en) 2020-05-19
AU2016279665B2 (en) 2020-12-17
US20190331922A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US10656423B2 (en) Head mounted display apparatus
US10386638B2 (en) Head mounted display apparatus
TWI688789B (en) Virtual image generator and method to project a virtual image
US10409082B2 (en) Adjustable focal plane optical system
US10852817B1 (en) Eye tracking combiner having multiple perspectives
US8873149B2 (en) Projection optical system for coupling image light to a near-eye display
JP2021532392A (en) Switchable Reflective Circular Polarizer in Head Mounted Display
EP3500887B1 (en) Scanning in optical systems
JP2021532393A (en) Reflective circular polarizing element for head-mounted display
US10712576B1 (en) Pupil steering head-mounted display
WO2020041067A1 (en) Diffractive gratings for eye-tracking illumination through a light-guide
CN113302431A (en) Volume Bragg grating for near-eye waveguide displays
JP2017531817A (en) Waveguide eye tracking using a switching grating
US20220155588A1 (en) Virtual Reality System
US11070785B2 (en) Dynamic focus 3D display
CN113940055A (en) Imaging device with field of view movement control
US11157072B1 (en) Direct retinal projector
CN114144717A (en) Apodized optical element for reducing optical artifacts
US10955677B1 (en) Scene camera
JP7275124B2 (en) Image projection system, image projection device, optical element for image display light diffraction, instrument, and image projection method
US10809537B1 (en) Varifocal waveguide display with dynamically bent waveguide
CN117957479A (en) Compact imaging optics with distortion compensation and image sharpness enhancement using spatially positioned freeform optics
US20240168299A1 (en) Kaleidoscopic waveguide as small-form-factor pupil expander
WO2022146904A1 (en) Layered waveguide fabrication by additive manufacturing

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees