TW201639001A - Memory device and method of fabricating the same - Google Patents

Memory device and method of fabricating the same Download PDF

Info

Publication number
TW201639001A
TW201639001A TW104112566A TW104112566A TW201639001A TW 201639001 A TW201639001 A TW 201639001A TW 104112566 A TW104112566 A TW 104112566A TW 104112566 A TW104112566 A TW 104112566A TW 201639001 A TW201639001 A TW 201639001A
Authority
TW
Taiwan
Prior art keywords
substrate
semiconductor layer
layer
bit lines
contact plug
Prior art date
Application number
TW104112566A
Other languages
Chinese (zh)
Other versions
TWI636491B (en
Inventor
朴哲秀
江明崇
董大衛
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW104112566A priority Critical patent/TWI636491B/en
Publication of TW201639001A publication Critical patent/TW201639001A/en
Application granted granted Critical
Publication of TWI636491B publication Critical patent/TWI636491B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

Provided is a memory device including a plurality of bit lines, a plurality of capacitors, a plurality of contact plugs, and a plurality of semiconductor layers. The bit lines are located on a substrate. The capacitors are located on the substrate between the bit lines. The contact plugs are located between the capacitors and the substrate. The semiconductor layers are located between the contact plugs and the substrate.

Description

記憶元件及其製造方法 Memory element and method of manufacturing same

本發明是有關於一種半導體元件及其製造方法,且特別是有關於一種記憶元件及其製造方法。 The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a memory device and a method of fabricating the same.

一般而言,記憶元件中常利用摻雜多晶矽(Doped Poly)填入儲存節點接觸窗(Storage Node Contact)中,以電性連接儲存電容(Storage Capacitor)與主動區(Active Area,AA)。但隨著科技日新月異,提高記憶元件的積集度且縮小關鍵尺寸已然逐漸成為一種趨勢。因此,在記憶元件的積集度提高與關鍵尺寸縮小的情況下,記憶元件中的接觸窗尺寸亦逐漸縮小,其導致記憶元件中的儲存節點接觸窗與主動區之間的接觸電阻增加,產生較慢的電阻-電容延遲(RC Delay),進而影響所述記憶元件的操作速度。因此,如何降低儲存節點接觸窗與主動區之間的電阻值,以提高記憶元件的操作速度將變成相當重要的一門課題。 In general, the memory element is often filled with a doped poly (Doped Poly) into a storage node contact (Storage Node Contact) to electrically connect a storage capacitor (Storage Capacitor) and an active area (AA). However, with the rapid development of technology, it has become a trend to increase the accumulation of memory components and reduce the critical size. Therefore, in the case where the degree of integration of the memory element is increased and the critical size is reduced, the size of the contact window in the memory element is also gradually reduced, which leads to an increase in contact resistance between the storage node contact window and the active area in the memory element, resulting in an increase in contact resistance. The slower resistance-capacitance delay (RC Delay), which in turn affects the operating speed of the memory element. Therefore, how to reduce the resistance value between the storage node contact window and the active area to improve the operating speed of the memory element will become a very important issue.

本發明提供一種記憶元件及其製造方法,其可降低儲存節點接觸窗與主動區之間的電阻值,以提高記憶元件的操作速度。 The invention provides a memory element and a manufacturing method thereof, which can reduce the resistance value between the contact window and the active area of the storage node to improve the operating speed of the memory element.

本發明提供一種記憶元件包括:多條位元線、多個電容器、多個接觸插塞以及多個半導體層。所述位元線位於基底上。所述電容器位於所述位元線之間的所述基底上。所述接觸插塞位於所述電容器與所述基底之間。所述半導體層位於所述接觸插塞與所述基底之間。所述半導體層的材料包括矽鍺(SiGe)、碳化矽(SiC)或其組合。 The present invention provides a memory device comprising: a plurality of bit lines, a plurality of capacitors, a plurality of contact plugs, and a plurality of semiconductor layers. The bit line is on the substrate. The capacitor is located on the substrate between the bit lines. The contact plug is located between the capacitor and the substrate. The semiconductor layer is between the contact plug and the substrate. The material of the semiconductor layer includes germanium (SiGe), tantalum carbide (SiC), or a combination thereof.

在本發明的一實施例中,所述半導體層的厚度為5nm至30nm。 In an embodiment of the invention, the semiconductor layer has a thickness of 5 nm to 30 nm.

在本發明的一實施例中,所述接觸插塞的材料包括鎢(W)。 In an embodiment of the invention, the material of the contact plug comprises tungsten (W).

在本發明的一實施例中,更包括多個阻障層位於所述接觸插塞與所述半導體層之間。所述阻障層的材料包括鈦(Ti)、氮化鈦(TiN)或其組合。 In an embodiment of the invention, a plurality of barrier layers are further disposed between the contact plug and the semiconductor layer. The material of the barrier layer includes titanium (Ti), titanium nitride (TiN), or a combination thereof.

在本發明的一實施例中,更包括多個隔離結構,位於所述位元線下方的所述基底中。 In an embodiment of the invention, a plurality of isolation structures are further included in the substrate below the bit line.

本發明提供一種記憶元件的製造方法,其步驟如下。於基底上形成多條位元線。進行選擇性磊晶成長製程,以於所述位元線之間的所述基底上形成多個半導體層,其中所述半導體層的材料包括矽鍺、碳化矽或其組合。所述位元線之間的所述半導體 層上形成多個接觸插塞。於所述接觸插塞上形成多個電容器。 The present invention provides a method of manufacturing a memory element, the steps of which are as follows. A plurality of bit lines are formed on the substrate. A selective epitaxial growth process is performed to form a plurality of semiconductor layers on the substrate between the bit lines, wherein the material of the semiconductor layer comprises tantalum, tantalum carbide or a combination thereof. The semiconductor between the bit lines A plurality of contact plugs are formed on the layer. A plurality of capacitors are formed on the contact plug.

本發明提供另一種記憶元件的製造方法,其步驟如下。於基底上形成多條位元線。於所述基底上共形形成半導體層。所述半導體層覆蓋所述位元線的表面,其中所述半導體層的材料包括矽鍺、碳化矽或其組合。進行回蝕刻製程,移除部份所述半導體層,以暴露所述位元線的頂面。所述位元線之間的所述半導體層上形成多個接觸插塞。於所述接觸插塞上形成多個電容器。 The present invention provides a method of manufacturing another memory element, the steps of which are as follows. A plurality of bit lines are formed on the substrate. A semiconductor layer is conformally formed on the substrate. The semiconductor layer covers a surface of the bit line, wherein a material of the semiconductor layer includes germanium, tantalum carbide, or a combination thereof. An etch back process is performed to remove a portion of the semiconductor layer to expose a top surface of the bit line. A plurality of contact plugs are formed on the semiconductor layer between the bit lines. A plurality of capacitors are formed on the contact plug.

在本發明的一實施例中,所述半導體層的厚度為5nm至30nm。 In an embodiment of the invention, the semiconductor layer has a thickness of 5 nm to 30 nm.

在本發明的一實施例中,所述接觸插塞的材料包括鎢。 In an embodiment of the invention, the material of the contact plug comprises tungsten.

在本發明的一實施例中,在形成所述接觸插塞之前,更包括於所述半導體層上形成多個阻障層,其中所述阻障層的材料包括鈦、氮化鈦或其組合。 In an embodiment of the invention, before the forming the contact plug, forming a plurality of barrier layers on the semiconductor layer, wherein the material of the barrier layer comprises titanium, titanium nitride or a combination thereof .

基於上述,本發明利用選擇性磊晶成長製程,在位元線之間的基底上形成多個半導體層,或是在位元線之間的基底上共形形成半導體層。所述半導體層的材料可例如是低電阻值的矽鍺、碳化矽或其組合。相較於先前技術中的摻雜多晶矽,本發明之半導體層可降低儲存節點接觸窗與主動區之間的電阻值,產生較快的電阻-電容延遲,進而提升所述記憶元件的操作速度。 Based on the above, the present invention utilizes a selective epitaxial growth process to form a plurality of semiconductor layers on a substrate between bit lines or conformal formation of a semiconductor layer on a substrate between bit lines. The material of the semiconductor layer may be, for example, a low resistance value of tantalum, tantalum carbide or a combination thereof. Compared to the prior art doped polysilicon, the semiconductor layer of the present invention can reduce the resistance between the storage node contact window and the active region, resulting in a faster resistance-capacitance delay, thereby increasing the operating speed of the memory device.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

10‧‧‧開口 10‧‧‧ openings

100‧‧‧基底 100‧‧‧Base

101‧‧‧隔離結構 101‧‧‧Isolation structure

102‧‧‧位元線 102‧‧‧ bit line

104‧‧‧閘介電層 104‧‧‧gate dielectric layer

106‧‧‧導體層 106‧‧‧Conductor layer

108、120‧‧‧阻障層 108, 120‧‧‧ barrier layer

110‧‧‧導體層 110‧‧‧ conductor layer

112‧‧‧頂蓋層 112‧‧‧Top cover

114、128‧‧‧介電層 114, 128‧‧‧ dielectric layer

116‧‧‧間隙壁 116‧‧‧ spacer

118‧‧‧半導體層 118‧‧‧Semiconductor layer

118a‧‧‧半導體結構 118a‧‧‧Semiconductor structure

122‧‧‧接觸插塞 122‧‧‧Contact plug

124‧‧‧電容器 124‧‧‧ capacitor

124a‧‧‧下電極 124a‧‧‧ lower electrode

124b‧‧‧介電層 124b‧‧‧ dielectric layer

124c‧‧‧上電極 124c‧‧‧Upper electrode

126‧‧‧保護層 126‧‧‧Protective layer

圖1A至圖1F為本發明之第一實施例的記憶元件之製造流程的剖面示意圖。 1A to 1F are schematic cross-sectional views showing a manufacturing process of a memory element according to a first embodiment of the present invention.

圖2A至圖2G為本發明之第二實施例的記憶元件之製造流程的剖面示意圖。 2A to 2G are schematic cross-sectional views showing a manufacturing process of a memory element according to a second embodiment of the present invention.

圖1A至圖1F為本發明之第一實施例的記憶元件之製造流程的剖面示意圖。 1A to 1F are schematic cross-sectional views showing a manufacturing process of a memory element according to a first embodiment of the present invention.

請參照圖1A,本發明之第一實施例提供一種記憶元件的製造方法,其步驟如下。首先,提供基底100(可例如是主動區)。在本實施例中,基底100可例如為半導體基底、半導體化合物基底或是絕緣層上有半導體基底(SOI)。 Referring to FIG. 1A, a first embodiment of the present invention provides a method of fabricating a memory device, the steps of which are as follows. First, a substrate 100 (which may be, for example, an active region) is provided. In the present embodiment, the substrate 100 may be, for example, a semiconductor substrate, a semiconductor compound substrate, or a semiconductor substrate (SOI) on the insulating layer.

接著,於基底100上形成多條位元線102,相鄰位元線102之間具有開口10。詳細地說,位元線102由閘介電層104、導體層106、阻障層108、導體層110、頂蓋層112以及介電層114依序堆疊而成。在本實施例中,閘介電層104的材料可例如是氧化矽,其形成方法可以是化學氣相沉積法、熱氧化法等。導體層106的材料可例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以是化學氣相沈積法。阻障層108的材料可例如是鈦(Ti)、氮化鈦(TiN)或其組合,其形成方法可以是化學氣相沈積法。導 體層110的材料可例如是鎢(W),其形成方法可以是物理氣相沈積法。頂蓋層112的材料可例如是氮化矽,其形成方法可以是化學氣相沈積法。介電層114的材料可例如是氧化矽,其形成方法可以是化學氣相沉積法、熱氧化法等。位元線102的兩側具有間隙壁116。間隙壁116的材料可例如是氧化矽、氮化矽或其組合,其形成方法為本領域具有通常知識者所習知,於此便不再詳述。 Next, a plurality of bit lines 102 are formed on the substrate 100, and openings 10 are formed between the adjacent bit lines 102. In detail, the bit line 102 is sequentially stacked by the gate dielectric layer 104, the conductor layer 106, the barrier layer 108, the conductor layer 110, the cap layer 112, and the dielectric layer 114. In the present embodiment, the material of the gate dielectric layer 104 may be, for example, hafnium oxide, and the formation method may be a chemical vapor deposition method, a thermal oxidation method, or the like. The material of the conductor layer 106 may be, for example, doped polysilicon, undoped polysilicon or a combination thereof, and the formation method may be a chemical vapor deposition method. The material of the barrier layer 108 may be, for example, titanium (Ti), titanium nitride (TiN), or a combination thereof, which may be formed by chemical vapor deposition. guide The material of the bulk layer 110 may be, for example, tungsten (W), which may be formed by physical vapor deposition. The material of the cap layer 112 may be, for example, tantalum nitride, which may be formed by chemical vapor deposition. The material of the dielectric layer 114 may be, for example, ruthenium oxide, and the formation method thereof may be a chemical vapor deposition method, a thermal oxidation method, or the like. The bit line 102 has spacers 116 on both sides. The material of the spacers 116 may be, for example, hafnium oxide, tantalum nitride or a combination thereof, which is well known to those of ordinary skill in the art and will not be described in detail herein.

此外,本實施例更包括於位元線102下方的基底100中形成隔離結構101。所述隔離結構101的材料可例如是摻雜或未摻雜的氧化矽、高密度電漿氧化物、氮氧化矽、旋塗式氧化矽、低介電常數介電材料或其組合。隔離結構101可例如是淺溝渠隔離結構。 In addition, the present embodiment further includes forming the isolation structure 101 in the substrate 100 below the bit line 102. The material of the isolation structure 101 can be, for example, doped or undoped cerium oxide, high density plasma oxide, cerium oxynitride, spin-on yttria, low dielectric constant dielectric material, or a combination thereof. The isolation structure 101 can be, for example, a shallow trench isolation structure.

請參照圖1B,進行選擇性磊晶成長(SEG)製程,以於開口10中形成半導體層118。詳細地說,由於選擇性磊晶成長製程僅會在被暴露的基底100的表面上進行,因此,半導體層118僅位於位元線102之間的基底100上。在本實施例中,半導體層118的材料可例如是矽鍺(SiGe)、碳化矽(SiC)或其組合。半導體層118的厚度可介於5nm至30nm之間。以矽鍺為例,由於矽鍺的電阻值小於摻雜多晶矽的電阻值,因此,本實施例將具有矽鍺的半導體層118填入開口10中,其可降低後續接觸插塞122與基底100(可例如是主動區)之間的電阻值,產生較快的電阻-電容延遲,進而提升所述記憶元件的操作速度。在另一實施例中,在形成半導體層118之前,亦可在基底100上形成摻雜多晶矽層 (未繪示),使得所述摻雜多晶矽層位於基底100與後續形成的半導體層118之間。 Referring to FIG. 1B, a selective epitaxial growth (SEG) process is performed to form the semiconductor layer 118 in the opening 10. In detail, since the selective epitaxial growth process is performed only on the surface of the exposed substrate 100, the semiconductor layer 118 is only on the substrate 100 between the bit lines 102. In the present embodiment, the material of the semiconductor layer 118 may be, for example, germanium (SiGe), tantalum carbide (SiC), or a combination thereof. The thickness of the semiconductor layer 118 may be between 5 nm and 30 nm. Taking 矽锗 as an example, since the resistance value of ruthenium is smaller than the resistance value of the doped polysilicon, this embodiment fills the semiconductor layer 118 having germanium into the opening 10, which can reduce the subsequent contact plug 122 and the substrate 100. The resistance value between (for example, the active region) produces a faster resistance-capacitance delay, which in turn increases the operating speed of the memory element. In another embodiment, a doped polysilicon layer may also be formed on the substrate 100 before the semiconductor layer 118 is formed. (not shown) such that the doped polysilicon layer is between the substrate 100 and the subsequently formed semiconductor layer 118.

請參照圖1B與圖1C,於開口10中共形地形成阻障層120,阻障層120覆蓋半導體層118的表面。在本實施例中,阻障層120的材料可例如是鈦(Ti)、氮化鈦(TiN)或其組合,其厚度可介於5nm至30nm之間,其形成方法可以是物理氣相沈積法。 Referring to FIG. 1B and FIG. 1C , a barrier layer 120 is conformally formed in the opening 10 , and the barrier layer 120 covers the surface of the semiconductor layer 118 . In this embodiment, the material of the barrier layer 120 may be, for example, titanium (Ti), titanium nitride (TiN), or a combination thereof, and the thickness thereof may be between 5 nm and 30 nm, and the formation method may be physical vapor deposition. law.

接著,請參照圖1C與圖1D,於開口10中形成接觸插塞122。詳細來說,於基底100上形成導體材料層(未繪示),導體材料層填入開口10中。導體材料層的材料可包括金屬,所述金屬可例如是鎢,其形成方法可以是物理氣相沈積法。之後,利用化學機械研磨法(CMP)移除介電層114表面上的導體材料層,以在開口10中形成接觸插塞122。在本實施例中,每一開口10中的接觸插塞122以及阻障層120可視為儲存節點接觸窗,其可用以電性連接基底100(可例如是主動區)、半導體層118以及後續形成的電容器124(如下圖1F所示)。 Next, referring to FIG. 1C and FIG. 1D, a contact plug 122 is formed in the opening 10. In detail, a layer of a conductor material (not shown) is formed on the substrate 100, and a layer of the conductor material is filled in the opening 10. The material of the conductor material layer may include a metal, which may be, for example, tungsten, which may be formed by physical vapor deposition. Thereafter, a layer of conductive material on the surface of dielectric layer 114 is removed by chemical mechanical polishing (CMP) to form contact plugs 122 in opening 10. In this embodiment, the contact plug 122 and the barrier layer 120 in each opening 10 can be regarded as a storage node contact window, which can be used to electrically connect the substrate 100 (which can be, for example, an active region), the semiconductor layer 118, and subsequent formation. Capacitor 124 (shown in Figure 1F below).

請參照圖1E與圖1F,於接觸插塞122上形成多個電容器124。詳細地說,先於位元線102與接觸插塞122上形成保護層126。在本實施例中,保護層126的材料可例如是氧化矽、氮化矽或其組合。之後,再於保護層126上形成介電層128。介電層128可例如是氧化矽、氮化矽、硼磷矽玻璃(BPSG)等,其形成方法可以是化學氣相沈積法(如圖1E所示)。接著,再於保護層126與介電層128中形成電容器124(如圖1F所示)。具體來說,每一 電容器124包括下電極124a、上電極124c以及介電層124b。每一介電層124b位於下電極124a與上電極124c之間。每一下電極124a與所對應的接觸插塞122電性連接。在一實施例中,介電層124b可包括高介電常數材料層,其材料可例如是氧化鉿(HfO)、氧化鋯(ZrO)、氧化鋁(AlO)、氮化鋁(AlN)、氧化鈦(TiO)、氧化鑭(LaO)、氧化釔(YO)、氧化釓(GdO)、氧化鉭(TaO)或其組合。下電極124a與上電極124c的材料可例如是氮化鈦(TiN)、氮化鉭(TaN)、鎢(W)、鈦鎢(TiW)、鋁(Al)、銅(Cu)或金屬矽化物。所述下電極124a、上電極124c以及介電層124b的形成方法為本領域具有通常知識者所習知,於此便不再詳述。 Referring to FIG. 1E and FIG. 1F, a plurality of capacitors 124 are formed on the contact plugs 122. In detail, the protective layer 126 is formed on the bit line 102 and the contact plug 122. In the present embodiment, the material of the protective layer 126 may be, for example, hafnium oxide, tantalum nitride or a combination thereof. Thereafter, a dielectric layer 128 is formed over the protective layer 126. The dielectric layer 128 may be, for example, hafnium oxide, tantalum nitride, borophosphoquinone glass (BPSG), or the like, which may be formed by chemical vapor deposition (as shown in FIG. 1E). Next, a capacitor 124 is formed in the protective layer 126 and the dielectric layer 128 (as shown in FIG. 1F). Specifically, each The capacitor 124 includes a lower electrode 124a, an upper electrode 124c, and a dielectric layer 124b. Each dielectric layer 124b is located between the lower electrode 124a and the upper electrode 124c. Each of the lower electrodes 124a is electrically connected to the corresponding contact plug 122. In an embodiment, the dielectric layer 124b may comprise a high dielectric constant material layer, the material of which may be, for example, hafnium oxide (HfO), zirconium oxide (ZrO), aluminum oxide (AlO), aluminum nitride (AlN), oxidation. Titanium (TiO), lanthanum oxide (LaO), yttrium oxide (YO), yttrium oxide (GdO), yttrium oxide (TaO), or a combination thereof. The material of the lower electrode 124a and the upper electrode 124c may be, for example, titanium nitride (TiN), tantalum nitride (TaN), tungsten (W), titanium tungsten (TiW), aluminum (Al), copper (Cu) or metal telluride. . The method of forming the lower electrode 124a, the upper electrode 124c, and the dielectric layer 124b is well known to those of ordinary skill in the art and will not be described in detail herein.

請參照圖1F,本實施例提供一種記憶元件包括:多條位元線102、多個接觸插塞122、多個電容器124以及多個半導體層118。位元線102位於基底100上,且位元線102由閘介電層104、導體層106、阻障層108、導體層110、頂蓋層112以及介電層114依序堆疊而成。接觸插塞122位於相鄰位元線102之間的基底100上。半導體層118位於接觸插塞122與基底100之間。所述半導體層118的材料可例如是矽鍺、碳化矽或其組合。電容器124位於位元線102之間的基底100上,且接觸插塞122位於電容器124與基底100之間。在本實施例中更包括多個阻障層120位於接觸插塞122與半導體層118之間。 Referring to FIG. 1F , the memory device includes a plurality of bit lines 102 , a plurality of contact plugs 122 , a plurality of capacitors 124 , and a plurality of semiconductor layers 118 . The bit line 102 is located on the substrate 100, and the bit line 102 is sequentially stacked by the gate dielectric layer 104, the conductor layer 106, the barrier layer 108, the conductor layer 110, the cap layer 112, and the dielectric layer 114. Contact plugs 122 are located on substrate 100 between adjacent bit lines 102. The semiconductor layer 118 is located between the contact plug 122 and the substrate 100. The material of the semiconductor layer 118 may be, for example, tantalum, tantalum carbide or a combination thereof. Capacitor 124 is located on substrate 100 between bit lines 102 and contact plug 122 is located between capacitor 124 and substrate 100. In the present embodiment, a plurality of barrier layers 120 are further disposed between the contact plugs 122 and the semiconductor layer 118.

由於本實施例之具有低電阻值的半導體層118位於接觸插塞122與基底100之間,因此,其可降低接觸插塞122與基底 100(可例如是主動區)之間的電阻值,產生較快的電阻-電容延遲,進而提升所述記憶元件的操作速度。此外,本實施例中的半導體層118的材料可例如是矽鍺、碳化矽或其組合。矽鍺或是碳化矽不僅具有較低的電阻值,其與基底100(可例如是主動區)的材料的性質接近。因此,相較於其他金屬材料而言,具有矽鍺或是碳化矽的半導體層118亦可降低接觸插塞122與基底100之間的漏電流。 Since the semiconductor layer 118 having a low resistance value of the present embodiment is located between the contact plug 122 and the substrate 100, it can reduce the contact plug 122 and the substrate. A resistance value between 100 (which may be, for example, the active region) produces a faster resistance-capacitance delay, which in turn increases the operating speed of the memory element. In addition, the material of the semiconductor layer 118 in this embodiment may be, for example, tantalum, tantalum carbide or a combination thereof. Tantalum or tantalum carbide not only has a lower resistance value, it is close to the properties of the material of the substrate 100 (which may be, for example, the active region). Therefore, the semiconductor layer 118 having germanium or tantalum carbide can also reduce leakage current between the contact plug 122 and the substrate 100 compared to other metal materials.

圖2A至圖2G為本發明之第二實施例的記憶元件之製造流程的剖面示意圖。 2A to 2G are schematic cross-sectional views showing a manufacturing process of a memory element according to a second embodiment of the present invention.

以下的實施例中,相同或相似的元件、構件、層以相似的元件符號來表示。舉例來說,圖1A之位元線102與圖2A之位元線102為相同或相似的構件。於後便不再逐一贅述。 In the following embodiments, the same or similar elements, members, and layers are denoted by like reference numerals. For example, bit line 102 of FIG. 1A is the same or similar component as bit line 102 of FIG. 2A. After that, they will not be repeated one by one.

請參照圖2A,本發明之第二實施例提供另一種記憶元件的製造方法,其步驟如下。由於圖1A與圖2A的基底100、隔離結構101、位元線102、閘介電層104、導體層106、阻障層108、導體層110、頂蓋層112、介電層114以及間隙壁116的配置、材料以及形成方法相似,於此便不再贅述。 Referring to FIG. 2A, a second embodiment of the present invention provides another method of fabricating a memory device, the steps of which are as follows. Because of the substrate 100, the isolation structure 101, the bit line 102, the gate dielectric layer 104, the conductor layer 106, the barrier layer 108, the conductor layer 110, the cap layer 112, the dielectric layer 114, and the spacers of FIGS. 1A and 2A The configuration, materials, and formation methods of 116 are similar, and will not be described herein.

請參照圖2B,於基底100上共形形成半導體層118。半導體層118覆蓋位元線102的表面。詳細地說,半導體層118覆蓋基底100、間隙壁116以及介電層114的表面。所述半導體層118的材料可例如是矽鍺、碳化矽或其組合,其厚度可介於5nm至30nm之間。在本實施例中,半導體層118的形成方法可例如 是在爐管(Furnace)中通入反應氣體,在反應溫度介於400℃至550℃之間,並且持續進行60分鐘至600分鐘。以矽鍺為例,所述反應氣體至少包括含矽氣體、含鍺氣體或其組合。含矽氣體可例如是矽甲烷、矽乙烷或二氯矽甲烷;含鍺氣體可例如是鍺烷。 Referring to FIG. 2B, a semiconductor layer 118 is conformally formed on the substrate 100. The semiconductor layer 118 covers the surface of the bit line 102. In detail, the semiconductor layer 118 covers the surfaces of the substrate 100, the spacers 116, and the dielectric layer 114. The material of the semiconductor layer 118 may be, for example, tantalum, tantalum carbide or a combination thereof, and may have a thickness of between 5 nm and 30 nm. In the present embodiment, the method of forming the semiconductor layer 118 can be, for example, The reaction gas is introduced into the Furnace at a reaction temperature of between 400 ° C and 550 ° C and is continued for 60 minutes to 600 minutes. Taking hydrazine as an example, the reaction gas includes at least a ruthenium-containing gas, a ruthenium-containing gas, or a combination thereof. The helium-containing gas may, for example, be methane, hydrazine or dichloromethane; the helium-containing gas may, for example, be decane.

請參照圖2B與圖2C,進行回蝕刻製程,移除部份半導體層118,以暴露位元線102的頂面。詳細地說,回蝕刻製程暴露介電層114的表面以及部分間隙壁116的表面,其使得連續的半導體層118變成多個不連續的半導體結構118a。所述半導體結構118a位於位元線102之間(亦即開口10中)的基底100上。在本實施例中,回蝕刻製程可例如是乾式蝕刻製程。 Referring to FIG. 2B and FIG. 2C, an etch back process is performed to remove a portion of the semiconductor layer 118 to expose the top surface of the bit line 102. In detail, the etch back process exposes the surface of the dielectric layer 114 and the surface of a portion of the spacers 116 that cause the continuous semiconductor layer 118 to become a plurality of discrete semiconductor structures 118a. The semiconductor structure 118a is located on the substrate 100 between the bit lines 102 (i.e., in the opening 10). In this embodiment, the etch back process can be, for example, a dry etch process.

請參照圖2C與圖2D,於基底100上共形地形成阻障層120。阻障層120覆蓋介電層114、部分間隙壁116以及半導體層118的表面。在本實施例中,阻障層120的材料可例如是鈦、氮化鈦或其組合,其厚度可介於5nm至30nm之間,其形成方法可以是物理氣相沈積法。 Referring to FIG. 2C and FIG. 2D, the barrier layer 120 is conformally formed on the substrate 100. The barrier layer 120 covers the dielectric layer 114, a portion of the spacers 116, and a surface of the semiconductor layer 118. In this embodiment, the material of the barrier layer 120 may be, for example, titanium, titanium nitride or a combination thereof, and the thickness thereof may be between 5 nm and 30 nm, and the formation method may be physical vapor deposition.

接著,請參照圖2D與圖2E,於開口10中形成接觸插塞122。詳細來說,於基底100上形成導體材料層(未繪示),導體材料層填入開口10中。導體材料層的材料可包括金屬,所述金屬可例如是鎢,其形成方法可以是物理氣相沈積法。之後,利用化學機械研磨法(CMP)移除介電層114表面上的導體材料層以及部分阻障層120,以在開口10中形成接觸插塞122。在本實施例中,每一開口10中的接觸插塞122以及阻障層120可視為儲存節 點接觸窗,其可用以電性連接基底100(可例如是主動區)、半導體層118以及後續形成的電容器124(如下圖2G所示)。 Next, referring to FIG. 2D and FIG. 2E, a contact plug 122 is formed in the opening 10. In detail, a layer of a conductor material (not shown) is formed on the substrate 100, and a layer of the conductor material is filled in the opening 10. The material of the conductor material layer may include a metal, which may be, for example, tungsten, which may be formed by physical vapor deposition. Thereafter, the conductive material layer on the surface of the dielectric layer 114 and the partial barrier layer 120 are removed by chemical mechanical polishing (CMP) to form the contact plugs 122 in the openings 10. In this embodiment, the contact plug 122 and the barrier layer 120 in each opening 10 can be regarded as a storage section. A point contact window can be used to electrically connect the substrate 100 (which can be, for example, an active region), the semiconductor layer 118, and a subsequently formed capacitor 124 (as shown in Figure 2G below).

請參照圖2F與圖2G,於接觸插塞122上形成多個電容器124。具體來說,先於位元線102與接觸插塞122上依序形成保護層126以及介電層128(如圖2F所示)。接著,再於保護層126與介電層128中形成電容器124(如圖2G所示)。每一電容器124與所對應的接觸插塞122電性連接。由於圖2G之保護層126、介電層128以及電容器124的結構、材料以及形成方法與所述圖1F之保護層126、介電層128以及電容器124的結構、材料以及形成方法相同,於此便不再贅述。 Referring to FIG. 2F and FIG. 2G, a plurality of capacitors 124 are formed on the contact plugs 122. Specifically, a protective layer 126 and a dielectric layer 128 (shown in FIG. 2F) are sequentially formed on the bit line 102 and the contact plug 122. Next, a capacitor 124 is formed in the protective layer 126 and the dielectric layer 128 (as shown in FIG. 2G). Each capacitor 124 is electrically connected to a corresponding contact plug 122. The structure, material, and formation method of the protective layer 126, the dielectric layer 128, and the capacitor 124 of FIG. 2G are the same as those of the protective layer 126, the dielectric layer 128, and the capacitor 124 of FIG. 1F. I won't go into details.

綜上所述,本發明利用選擇性磊晶成長製程,在位元線之間的基底上形成多個半導體層,或是在位元線之間的基底上共形形成半導體層。所述半導體層的材料可例如是低電阻值的矽鍺、碳化矽或其組合。相較於先前技術中的摻雜多晶矽,本發明之半導體層可降低儲存節點接觸窗與主動區之間的電阻值,產生較快的電阻-電容延遲,進而提升所述記憶元件的操作速度。 In summary, the present invention utilizes a selective epitaxial growth process to form a plurality of semiconductor layers on a substrate between bit lines or conformal formation of a semiconductor layer on a substrate between bit lines. The material of the semiconductor layer may be, for example, a low resistance value of tantalum, tantalum carbide or a combination thereof. Compared to the prior art doped polysilicon, the semiconductor layer of the present invention can reduce the resistance between the storage node contact window and the active region, resulting in a faster resistance-capacitance delay, thereby increasing the operating speed of the memory device.

此外,由於具有矽鍺或是碳化矽的半導體層與基底(可例如是主動區)的材料的性質接近。因此,相較於其他金屬材料而言,本發明之半導體層亦可降低接觸插塞與基底之間的漏電流。 Further, since the semiconductor layer having germanium or tantalum carbide is close to the properties of the material of the substrate (which may be, for example, an active region). Therefore, the semiconductor layer of the present invention can also reduce the leakage current between the contact plug and the substrate compared to other metal materials.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍 當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of protection of the present invention It is subject to the definition of the scope of the patent application attached.

100‧‧‧基底 100‧‧‧Base

101‧‧‧隔離結構 101‧‧‧Isolation structure

102‧‧‧位元線 102‧‧‧ bit line

104‧‧‧閘介電層 104‧‧‧gate dielectric layer

106‧‧‧導體層 106‧‧‧Conductor layer

108、120‧‧‧阻障層 108, 120‧‧‧ barrier layer

110‧‧‧導體層 110‧‧‧ conductor layer

112‧‧‧頂蓋層 112‧‧‧Top cover

114、128‧‧‧介電層 114, 128‧‧‧ dielectric layer

116‧‧‧間隙壁 116‧‧‧ spacer

118‧‧‧半導體層 118‧‧‧Semiconductor layer

122‧‧‧接觸插塞 122‧‧‧Contact plug

124‧‧‧電容器 124‧‧‧ capacitor

124a‧‧‧下電極 124a‧‧‧ lower electrode

124b‧‧‧介電層 124b‧‧‧ dielectric layer

124c‧‧‧上電極 124c‧‧‧Upper electrode

126‧‧‧保護層 126‧‧‧Protective layer

Claims (10)

一種記憶元件,包括:多條位元線,位於基底上;多個電容器,位於所述位元線之間的所述基底上;多個接觸插塞,位於所述電容器與所述基底之間;以及多個半導體層,位於所述接觸插塞與所述基底之間,其中所述半導體層的材料包括矽鍺、碳化矽或其組合。 A memory element comprising: a plurality of bit lines on a substrate; a plurality of capacitors on the substrate between the bit lines; a plurality of contact plugs between the capacitor and the substrate And a plurality of semiconductor layers between the contact plug and the substrate, wherein the material of the semiconductor layer comprises tantalum, tantalum carbide or a combination thereof. 如申請專利範圍第1項所述的記憶元件,其中所述半導體層的厚度為5nm至30nm。 The memory element according to claim 1, wherein the semiconductor layer has a thickness of 5 nm to 30 nm. 如申請專利範圍第1項所述的記憶元件,其中所述接觸插塞的材料包括鎢。 The memory element of claim 1, wherein the material of the contact plug comprises tungsten. 如申請專利範圍第1項所述的記憶元件,更包括多個阻障層位於所述接觸插塞與所述半導體層之間,其中所述阻障層的材料包括鈦、氮化鈦或其組合。 The memory device of claim 1, further comprising a plurality of barrier layers between the contact plug and the semiconductor layer, wherein the material of the barrier layer comprises titanium, titanium nitride or combination. 如申請專利範圍第1項所述的記憶元件,更包括多個隔離結構,位於所述位元線下方的所述基底中。 The memory element of claim 1, further comprising a plurality of isolation structures located in the substrate below the bit line. 一種記憶元件的製造方法,包括:於基底上形成多條位元線;進行選擇性磊晶成長製程,以於所述位元線之間的所述基底上形成多個半導體層,其中所述半導體層的材料包括矽鍺、碳化矽或其組合;所述位元線之間的所述半導體層上形成多個接觸插塞;以及 於所述接觸插塞上形成多個電容器。 A method of fabricating a memory device, comprising: forming a plurality of bit lines on a substrate; performing a selective epitaxial growth process to form a plurality of semiconductor layers on the substrate between the bit lines, wherein a material of the semiconductor layer comprising germanium, tantalum carbide or a combination thereof; a plurality of contact plugs are formed on the semiconductor layer between the bit lines; A plurality of capacitors are formed on the contact plug. 一種記憶元件的製造方法,包括:於基底上形成多條位元線;於所述基底上共形形成半導體層,所述半導體層覆蓋所述位元線的表面,其中所述半導體層的材料包括矽鍺、碳化矽或其組合;進行回蝕刻製程,移除部份所述半導體層,以暴露所述位元線的頂面;所述位元線之間的所述半導體層上形成多個接觸插塞;以及於所述接觸插塞上形成多個電容器。 A method of fabricating a memory device, comprising: forming a plurality of bit lines on a substrate; conformally forming a semiconductor layer on the substrate, the semiconductor layer covering a surface of the bit line, wherein a material of the semiconductor layer Including ruthenium, tantalum carbide or a combination thereof; performing an etch back process, removing a portion of the semiconductor layer to expose a top surface of the bit line; forming a plurality of layers on the semiconductor layer between the bit lines Contact plugs; and forming a plurality of capacitors on the contact plugs. 如申請專利範圍第6項或第7項所述的記憶元件的製造方法,其中所述半導體層的厚度為5nm至30nm。 The method of manufacturing a memory device according to claim 6 or 7, wherein the semiconductor layer has a thickness of 5 nm to 30 nm. 如申請專利範圍第6項或第7項所述的記憶元件的製造方法,其中所述接觸插塞的材料包括鎢。 The method of manufacturing a memory device according to claim 6 or 7, wherein the material of the contact plug comprises tungsten. 如申請專利範圍第6項或第7項所述的記憶元件的製造方法,在形成所述接觸插塞之前,更包括於所述半導體層上形成多個阻障層,其中所述阻障層的材料包括鈦、氮化鈦或其組合。 The method of manufacturing a memory device according to claim 6 or 7, further comprising forming a plurality of barrier layers on the semiconductor layer before forming the contact plug, wherein the barrier layer Materials include titanium, titanium nitride, or combinations thereof.
TW104112566A 2015-04-20 2015-04-20 Memory device and method of fabricating the same TWI636491B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104112566A TWI636491B (en) 2015-04-20 2015-04-20 Memory device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104112566A TWI636491B (en) 2015-04-20 2015-04-20 Memory device and method of fabricating the same

Publications (2)

Publication Number Publication Date
TW201639001A true TW201639001A (en) 2016-11-01
TWI636491B TWI636491B (en) 2018-09-21

Family

ID=57850388

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104112566A TWI636491B (en) 2015-04-20 2015-04-20 Memory device and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI636491B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162075A (en) * 2018-11-07 2020-05-15 南亚科技股份有限公司 Semiconductor device and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100752644B1 (en) * 2005-04-12 2007-08-29 삼성전자주식회사 Cell region layout of semiconductor device and method of manufacturing contact pad using the same
KR100834739B1 (en) * 2006-09-14 2008-06-05 삼성전자주식회사 Semiconductor device and method for fabricating the same
KR100819001B1 (en) * 2006-10-23 2008-04-02 삼성전자주식회사 Semiconductor device and method for fabricating the same
KR101758312B1 (en) * 2010-10-18 2017-07-17 삼성전자주식회사 Semiconductor device for including buried channel array transistors
KR102001417B1 (en) * 2012-10-23 2019-07-19 삼성전자주식회사 Semiconductor device
US8785283B2 (en) * 2012-12-05 2014-07-22 United Microelectronics Corp. Method for forming semiconductor structure having metal connection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162075A (en) * 2018-11-07 2020-05-15 南亚科技股份有限公司 Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
TWI636491B (en) 2018-09-21

Similar Documents

Publication Publication Date Title
US9614047B2 (en) Gate contact with vertical isolation from source-drain
TWI728205B (en) Resistive random access memory device, memory device, and forming methods thereof
TWI636551B (en) Semiconductor devices and method of manufacturing the same
CN111180449B (en) Method of forming a gate structure of a three-dimensional memory device
KR102146761B1 (en) Recap layer scheme to enhance rram performance
TWI541877B (en) Semiconductor device with gate stacks and method of manufacturing the same
TW202008564A (en) 3D memory device with anti-corrosion composite spacer
CN111092047B (en) Semiconductor device and method for manufacturing the same
CN106960847A (en) Storage arrangement and its manufacture method
US20190096679A1 (en) Gate stack processes and structures
TW201611282A (en) Semiconductor structure and process thereof
CN111554659B (en) Plug structure and manufacturing process thereof
TWI636491B (en) Memory device and method of fabricating the same
TW201807832A (en) Semiconductor device and method for fabricating the same
TWI517467B (en) Method of forming resistive memory
TWI579928B (en) Method for forming interdielectric layer
US20220293595A1 (en) Integrated circuit devices
TWI675460B (en) Memory structure and manufacturing method thereof
TWI625856B (en) Semiconductor device structure and method of manufacturing the same
TW201238046A (en) Metal gate structure and manufacturing method thereof
TWI571937B (en) Semiconductor device and method of manufacturing the same
TW202118053A (en) Semiconductor structure with laminated layer
TWI628721B (en) Oxide semiconductor device and method of fabricating the same
US20180366552A1 (en) Semiconductor device
CN104752606A (en) Method for forming resistive memory