TW201636267A - 用於製作微型衛星的最佳化模組架構 - Google Patents

用於製作微型衛星的最佳化模組架構 Download PDF

Info

Publication number
TW201636267A
TW201636267A TW104141970A TW104141970A TW201636267A TW 201636267 A TW201636267 A TW 201636267A TW 104141970 A TW104141970 A TW 104141970A TW 104141970 A TW104141970 A TW 104141970A TW 201636267 A TW201636267 A TW 201636267A
Authority
TW
Taiwan
Prior art keywords
type
module
microsatellite
modules
height
Prior art date
Application number
TW104141970A
Other languages
English (en)
Inventor
法蘭西斯可 露馬卡
喬瑟匹 歐隆索
Original Assignee
泰雷茲阿萊尼亞宇航義大利股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰雷茲阿萊尼亞宇航義大利股份有限公司 filed Critical 泰雷茲阿萊尼亞宇航義大利股份有限公司
Publication of TW201636267A publication Critical patent/TW201636267A/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/223Modular spacecraft systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Photovoltaic Devices (AREA)
  • Details Of Aerials (AREA)
  • Micromachines (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

本發明係關於一種用於製作一微型衛星之方法,該方法包含提供:一第一類型模組,其經組配來容納一微型衛星之電子板;一第二類型模組,其經組配來容納一微型衛星之裝置及系統;以及一第三類型模組,其包含第一介面構件及第二介面構件,該第一介面構件及該第二介面構件經組配來分別耦接至一發射載具及耦接至一微型衛星之外部附件;該等第三類型模組經設計來致使一微型衛星之一主體具有一預定高度;其中所有該等第一類型模組、該等第二類型模組及該等第三類型模組經組配來以不考慮類型的方式堆疊。該方法進一步包含:藉由堆疊不同類型之模組來製作一微型衛星之一主體,其中該等堆疊模組包括至少一個該第二類型模組及至少一個該第三類型模組。

Description

用於製作微型衛星的最佳化模組架構 發明領域
本發明總體係關於一種用於製作微型衛星的最佳化模組架構,且尤其係關於一種用於基於該模組架構製作微型衛星之方法及系統。
發明背景
如已知,即便使用合併技術(consolidated technology),如今建造衛星之平均時間亦仍需要至少24-30個月。此等時間標度被視為適用於戰略性太空任務,但對於無法提前很長時間計劃的諸如像為戰術軍事操作或為短期監視要求設計的太空任務之任務而言明顯太長。
實際上,一般而言,每一衛星通常明確地設計用於其經指定之特定任務,以此方式表示用於該任務之最佳解決方案,但同時表示嚴格系於該任務之解決方案。
詳言之,目前,對於每一新任務而言必須幾乎全部地重做指定給該任務之一或多個衛星以及安裝在一或多個衛星上之電子、機械及其他系統的設計、開發及試驗,因為預存在的解決方案難以再次利用,即使在它們可再次 利用的情況下,亦仍需要修改並因此亦需要新試驗。
此之全部必然伴有極高的成本與極長時間標度來完成該製程,亦即,將衛星發射在軌道上。
近年來,技術發展已允許製作就質量及大小而言愈來愈小的衛星,該等衛星能夠執行愈來愈多的功能。一般而言,相對於傳統「較大(larger)」衛星,小質量及大小的衛星提供一系列優點,尤其基本上必然伴有更低的成本及更少的製造時間。因此,諸如像所謂微型衛星之小質量及大小的衛星愈來愈多地用於具有有限任務預算及/或不能較好地提前計劃的太空任務(例如,因為該等太空任務設定為回應於不可預見之突然需要)。
然而,遺憾的是,目前即使諸如像所謂微型衛星之此等小質量及大小的衛星亦繼續使用用於傳統「較大」衛星之上述傳統設計、開發及試驗方法製作。很容易猜測,此方法不允許將製造時間及成本減少超過某一限度,因此有效地限制此類型衛星之使用。
因此,如今在太空/衛星工業中愈來愈感到需要進一步減少小質量及大小之衛星且尤其微型衛星之製造時間及成本,以便回應於相關市場之日益緊迫的需求。
針對此需求之一個潛在解決方案提供於US 2007/0029446 A1中,US 2007/0029446 A1描述一種實行用於衛星及其他太空平台之構造的模組平台之方法。
詳言之,US 2007/0029446 A1中所描述之方法包含: ˙識別多個功能元件及其相關聯的潛在可用於衛星上之功能常式;˙以戰略性方式使功能常式彼此相關聯;˙劃分功能常式以限定多個子系統;以及˙自多個子系統得到多個模組,該等模組中之每一者經組配來與至少一個其他模組可操作地介接,以便構造能夠實施預定數量的該等功能常式之工作衛星。
換言之,為提供針對用於減少衛星之製造時間及成本之上述需求的解決方案,US 2007/0029446 A1提出模組架構之使用。然而,遺憾地,在US 2007/0029446 A1中描述的上述解決方案係如此類屬(generic)的且抽象的以至就各點看來,該解決方案無法事實上由諸如申請人之在太空/衛星工業中的操作者應用及使用來有效減少衛星且尤其微型衛星之製造時間及成本。
發明概要
如已知,「微型衛星(microsatellite)」一詞通常用來表明具有10kg至100kg質量之人造衛星。然而,此非法定慣例,且有時微型衛星一詞亦用來表明具有小於10kg或大於100kg之質量的衛星。因此,出於清晰之目的,欲在此規定,在本發明之形成本專利申請案之標的之以下描述及定義中,微型衛星一詞將用來表明具有小於或至多等於150kg質量的人造衛星。
申請人已實施深入研究,以便成功開發針對用於 減少微型衛星之製造時間及成本之上述需求的解決方案。由於此深入研究,申請人已開發出本發明,本發明係關於一種用於製作微型衛星的最佳化模組架構,不同於在US 2007/0029446 A1中所描述之類屬的且抽象的解決方案,本發明之該模組架構真正合適且可用,並允許有效減少微型衛星之製造時間及成本。
因此,本發明之目標係提供一種針對用於減少微型衛星之製造時間及成本的上述需求之解決方案。
只要係關於如在隨附申請專利範圍中所定義之用於製作微型衛星之方法及模組系統,則本發明之此目標及其他目標得以達成。
詳言之,根據本發明之用於製作微型衛星的方法包含提供:˙第一類型模組,其經組配來容納微型衛星之電子板;˙第二類型模組,其經組配來容納微型衛星之裝置及系統;以及˙第三類型模組,其- 包含第一介面構件,該第一介面構件經組配來耦接至發射載具,- 包含第二介面構件,該第二介面構件經組配來耦接至微型衛星之外部附件,以及- 經設計來致使微型衛星之主體具有預定高度;其中所有第一類型模組、第二類型模組及第三類型模組經組配來以不考慮類型的方式堆疊。
該方法進一步包含:藉由堆疊不同類型之模組來製作微型衛星之主體,其中堆疊模組包括至少一個第二類型模組及至少一個第三類型模組。
較佳地,該等堆疊模組亦包括至少一個第一類型模組。
便利地,製作微型衛星之主體包含執行以下操作:˙提供電子板、裝置及系統,該等電子板、裝置及系統經設計來安裝在微型衛星上且當安裝在微型衛星上時,致使該微型衛星變得經組配來實施預定任務;˙將該等電子板容納在該等第一類型模組中之一或多者中,進而獲得用來製作微型衛星之主體的一或多個對應第一模組;˙將該等裝置及該等系統容納在該等第二類型模組中之一或多者中,進而獲得用來製作微型衛星之主體的一或多個對應第二模組;˙提供該等第一模組及第二模組之堆疊順序,亦將該等第三類型模組中之一或多者插入該堆疊順序中,進而獲得用來製作微型衛星之主體的一或多個對應第三模組,其中每一第三模組插入該堆疊順序來實施以下功能中之至少一者:- 致使微型衛星之主體具有預定高度,- 將根據該堆疊順序欲堆疊在該第三模組正上方及正下方的兩個模組間隔分開, - 增加根據該堆疊順序欲堆疊在該第三模組正下方的第二模組之容納容積,- 增加根據該堆疊順序欲堆疊在該第三模組正下方的第一模組或第二模組的內熱之處理,- 提供用於將微型衛星之主體耦接至外部附件及/或耦接至發射載具之介面點;以及˙藉由根據該堆疊順序堆疊該等第一模組、第二模組及第三模組來製作微型衛星之主體。
便利地,該方法進一步包含:藉由將外部附件耦接至至少一個堆疊的第三類型模組之第二介面構件來將微型衛星之主體耦接至外部附件。更加便利地,耦接至微型衛星之主體的該等外部附件包含以下元件中之至少一者:一或多個太陽能板、一或多個感測器、一或多個天線及一或多個遠程感測系統。
較佳地,微型衛星之主體包括佈置於預定位置中之至少兩個第三類型模組,且該方法進一步包含:將佈置於該等預定位置中之該等至少兩個第三類型模組之第一介面構件耦接至其他介面構件,該其他介面構件經設計來將該微型衛星耦接至在分配器模式中操作的發射載具。替代地,微型衛星之主體的底部止於第三類型模組,該第三類型模組在底部耦接至介面結構,該介面結構經組配來耦接至用於發射載具之環形配接器。
便利地,所有第一類型模組、第二類型模組及第三類型模組具有同一基底大小、同一基底形狀及同一機械 耦接點,進而經組配來以不考慮類型的方式堆疊。
較佳地,所有第一類型模組具有同一第一高度,所有第二類型模組具有同一第二高度,且所有第三類型模組具有同一第三高度;且其中第一高度大於第三高度,且第二高度大於第一高度。便利地,該第一高度係如此以至確保第一類型模組之該內部溫度不超過預定最大溫度。
H1‧‧‧第一預定高度
H2‧‧‧第二預定高度
H3‧‧‧第三預定高度
L1‧‧‧第一預定長度
L2‧‧‧第二預定長度
1、56、65、95‧‧‧第一類型模組
2‧‧‧第二類型模組
3‧‧‧第三類型模組
4~9‧‧‧微型衛星
11~14‧‧‧電子板
15‧‧‧母板
16~17、25~26、921~961‧‧‧連接 器
21~24‧‧‧裝置/系統
31~32‧‧‧介面部分/介面構件
33‧‧‧介面點
41、51、61、71、81、91‧‧‧第三類型之第一模組
42、52、62、72、82、92‧‧‧第二類型之第一模組
43、53、63、73、83、93‧‧‧第二類型之第二模組
44、75、84‧‧‧第一類型之第一模組
45、54、67、76、85、97‧‧‧第三類型之第二模組
46、55、64、74、94‧‧‧第二類型之第三模組
47、77、86‧‧‧第一類型之第二模組
57、78‧‧‧第三類型之第三模組
58、66、96‧‧‧第二類型之第四模組
59‧‧‧第三類型之第四模組
87‧‧‧第一類型之第三模組
98‧‧‧鋁板
501~502、601~602、701~702、801~802‧‧‧太陽能板
503‧‧‧SAR系統
603‧‧‧光學遠程感測系統
703‧‧‧無線電通訊系統
803‧‧‧介面結構
811~812、851~852‧‧‧介面部分
為更好地理解本發明,現將參考隨附圖式(不按比例繪製)描述藉由非限定實例之方式提供的一些較佳實施例,在隨附圖式中:˙圖1、2及3分別展示根據本發明之較佳實施例的第一類型模組、第二類型模組及第三類型模組;˙圖4展示根據本發明之實施例的微型衛星之主體;˙圖5、6及7分別展示根據本發明之三個實施例之用於SAR遠程感測之微型衛星、用於光學遠程感測之微型衛星及用於無線電通訊之微型衛星;˙圖8及9展示根據本發明之兩個實施例之經組配來分別藉助於環形發射載具配接器及分配器介面耦接至發射載具之同一微型衛星;以及˙圖10及11展示根據本發明之實施例之同一微型衛星之主體。
較佳實施例之詳細說明
提供以下描述以使本領域專家能夠體現及使用 本發明。所示實施例之各種修改對專家而言將為顯而易見的,且本文所述之一般原理可應用於其他實施例及應用而不脫離本發明之如隨附申請專利範圍所定義之保護範疇。
因此,本發明非旨在限於本文中所闡述之實施例,而是要符合與本文所揭示之以及在隨附申請專利範圍中定義之原理及特徵一致的最大範疇。
本發明係關於一種用於製作微型衛星的最佳化模組架構。詳言之,根據本發明之模組架構允許藉由根據所執行的特定功能堆疊可屬於三種不同類型的標準模組來製作微型衛星之主體,該等模組亦即:˙第一類型模組,其由申請人指代為電子功能托盤(EFT)並經組配來容納電子元件,該等電子元件為高消耗的(亦即,產生大量熱量的)且為實質上二維(2D)的,一般而言,該等電子元件亦即電子板,且詳言之,該等電子元件亦即印刷電路板(PCB);˙第二類型模組,其由申請人指代為容積功能托盤(VFT)且經組配來容納需要安裝在微型衛星上的具有各種形狀及大小的三維(3D)裝置及系統,該等裝置及系統諸如像航空電子致動器(反作用輪、姿態控制迴轉儀等)、推進元件(罐、管道、閥門等)、電池,等等;以及˙第三類型模組,其由申請人指代為幾何功能托盤(GFT)並經設計來執行以下功能中之一或多者:- 致使微型衛星之主體具有預定高度,及/或- 將堆疊在正上方及正下方的第一類型及/或第二類 型之兩個模組間隔分開,及/或- 增加堆疊在正下方之第二類型模組的容納容積,及/或- 增加堆疊在正下方的第一類型模組或第二類型之模組之輻射表面,以便增加由佈置於該第一類型模組或第二類型模組內側之元件產生的熱量之外部消耗或處理,及/或- 提供介面點,該等介面點用於將微型衛星之主體耦接至發射載具(或發射器)及/或耦接至外部附件(諸如像太陽能板)及/或耦接至酬載物件(諸如合成孔徑雷達(SAR)天線/裝置/系統、無線電通訊天線/裝置/系統、光學遠程感測天線/裝置/系統、感測器,等等)。
具體而言,所有三種類型之所有模組為內部中空的,具有直稜柱形狀並具有同一基本形狀及同一基本大小,以便允許模組以不考慮類型的方式堆疊。
便利地,第一類型模組及第二類型模組可根據要求具備或不具備頂壁。實際上,在某些情況下,使用不具有頂壁之第一類型模組及第二類型模組可為適宜的,且在此等情況下,此類「容器(container)」模組之頂部由堆疊在正上方的模組之基壁閉合。替代地,在其他情況下,使用裝配有頂壁之第一類型模組及第二類型模組可為適宜的,例如以便增加各種堆疊「容器」模組之間的熱及/或電磁絕緣或增加某些內部容積之宇宙輻射屏蔽。
此外,且再次便利地,第三類型模組可根據要求具備或不具備頂壁並可根據要求具備或不具備基壁。
便利地,所有三種類型之所有模組在頂部及在底部處具有同一機械耦接點以允許堆疊模組以不考慮類型的方式耦接。
便利地,每一類型之模組之高度經大小設定以符合關於所執行的相應功能之相應要求,亦即:˙所有第一類型模組具有同一第一高度,該第一高度經定義諸如以確保對於80W之最大總內部消耗而言,此等模組之內部溫度不超過由容納在此等模組中之電子板所耐受的最大溫度(在給定由可能的軌道及姿態強加的邊界條件之情況下);˙所有第二類型模組具有同一第二高度,藉助於基於硬體矩陣繼而取決於任務要求實施的用於佈置及容納板載單元之組態運用(exercise)來計算該第二高度;以及˙所有第三類型模組具有同一第三高度,該第三高度表示用於管理起源於介面點之集中載荷的大小與此等模組之厚度的最小化之間的折衷,(實際上,如前文所提及的,第三類型模組可用來稍微增加微型衛星之主體的內部容積及/或高度,及/或用來將微型衛星之主體耦接至發射器及/或耦接至外部附件及/或耦接至酬載物件,及/或用來增加輻射表面)。
便利地,第二高度大於第一高度及第三高度兩者,且第一高度大於第三高度。
一旦模組相對於由總體而言的「最壞情況」組態(詳言之,就質量、重心及熱功率而言)決定的系統級要求而 充分地調整大小,則該等模組之使用變得主要為組態之問題。以此方式,根據本發明之模組架構允許在定義微型衛星之熱機械佈局中減少設計工作。
換言之,歸咎於根據本發明之模組架構之使用,微型衛星之組態的設計(詳言之,對微型衛星之主體高度及內部元件、外部附件及酬載物件之佈局的定義)在基於任務要求及相關聯的硬體矩陣將模組之堆疊排序中變為簡單運用。
詳言之,藉由使用根據本發明之模組架構,製作微型衛星之主體意味著根據為微型衛星指定的任務之要求,且詳言之,基於下者來表示的任務要求來選擇並堆疊標準模組:˙關於衛星本體(satellite bus)之功能的選擇(例如,插入或不插入含有推進子系統之模組或具有敏捷致動器之模組等的可能性);˙酬載單元之矩陣;˙外部附件;˙微型衛星之總質量及功率;˙飛行姿態及軌道;以及˙發射模式。
此外,藉助於安裝於模組外部並連接至連接器的標準布纜便利地實行用於交換各種堆疊模組之間的資料信號及/或功率信號(亦即供電)之電互連,該等連接器亦為標準的,定位於模組上。詳言之,在形成微型衛星之主體之 堆疊模組中,所有連接器可沿一或多個垂直線或確切而言一或多個主幹佈置,以使得該等連接器可容易地斷開連接及移除以用於維護/試驗操作(如將在下文中更加詳細描述的)。例如,連接器之全部經組配來允許資料信號之通路可沿位於藉由各種堆疊模組形成的微型衛星之主體的側向側面上之同一主幹有利地放置,而連接器之全部經組配來允許功率信號(亦即,供電)之通路可沿佈置於該微型衛星之主體的另一側向側面上的同一主幹有利地放置。
在形成微型衛星之主體的各別堆疊模組之可及性方面,應注意,每疊模組可在各層面上容易打開以用於對所有內部元件容易觸及。
為更好地理解本發明,將在下文中詳細描述本發明之一或多個較佳實施例之特定態樣及特定特徵。
為此,圖1、2及3分別展示根據本發明之較佳實施例的第一類型模組(整體表明為參考數字1)、第二類型模組(整體表明為參考數字2)及第三類型模組(整體表明為參考數字3)。
詳言之,如圖1所示,第一類型模組1具有類似於不具有頂壁之直稜柱的形狀(但,如前文中所提及的,其亦可有利地具備一個頂壁),該形狀內側中空並具有非規則八角形基底,該基底具有擁有外部第一預定長度L1之兩對相對側及擁有外部第二預定長度L2之兩對相對側,第二預定長度L2比第一預定長度L1小得多。換言之,第一類型模組1可有利地亦被視為一種「抽屜(drawer)」結構,該結構具有 「修圓的(rounded off)」拐角及具有「斜切(bevelled)」頂點之大體方形基底(但其亦可有利地為矩形)。
此外,第一類型模組1具有第一預定高度H1,以使得確保,對於來自容納在該第一類型模組1內側的電子板之80W的最大總消耗而言,該第一類型模組1內側的溫度不超過由容納在該模組內側的電子板所耐受的最大溫度。
第一類型模組1經組配來容納多達八個電子板且尤其為八個PCB,該等電子板經分成兩組平坦的四個板,一組在另一組之頂部上並經由橫向母板互連,以便強有力地減少電纜數量。在此方面,圖1極示意性地展示四個電子板(分別表明為參考數字11、12、13及14),該等電子板連接至沿第一類型模組1之基底的中央佈置之母板15。
另外,該第一類型模組1亦包含連接器16及17,連接器16及17佈置於具有上述第一預定長度L1之兩個相對側壁之中心區域中。
因此,本發明較佳考慮捨棄用於當前用於衛星之電子單元之傳統「箱(box)」組態並替代地使用具有標準型式之高度整合的電子板。為此,諸如圖1所示之第一類型模組經組配來容納某一數量的標準型式電子板且尤其標準型式PCB,由該等標準型式電子板執行的功能彼此獨立。
在任何情況下,應注意事實上在某些情況下,可能仍必需使用不以標準型式PCB之形式製作的電子部件/裝置/系統,且因此將此等電子部件/裝置/系統容納在一或多個第二類型模組中。例如,在其中特定任務必需要求使用 「成品(off-the-shelf)」電子單元之情況下,就PCB而言的該電子單元之重新設計及製造決不適當,則在此情況下,該「成品」電子單元可有利地容納在第二類型模組中。
更概括而言,應注意事實上在某些情況下,第一類型模組可甚至不被使用。例如,在其中特定任務專門要求使用「成品」電子單元之情況下,就PCB而言的該等電子單元之重新設計及製造決不適當,則在此情形下,可藉由堆疊僅第二類型模組及第三類型模組(因此,不使用任何第一類型模組)及藉由將該等「成品」電子單元插入一或多個第二類型模組中來有利地製作微型衛星之主體。
參考圖2,第二類型模組2具有類似於不具有頂壁之直稜柱的形狀(但,如前文中所提及的,其亦可有利地具備一個頂壁),該形狀內側中空並具有非規則八角形基底,該基底具有擁有外部的上述第一預定長度L1之兩對相對側及擁有外部的上述第二預定長度L2之兩對相對側。換言之,第二類型模組2可亦有利地被視為一種「抽屜」結構,該結構具有「修圓的」拐角及具有「斜切」頂點之大體方形基底(但其亦可有利地為矩形)。
此外,第二類型模組2具有第二預定高度H2,第二預定高度H2大於第一類型模組1之第一預定高度H1並係如此以至:˙允許將各種形狀及大小的、非可客製及常為「成品」的彼等裝置及系統容納在第二類型模組2內側,該等裝置及系統將安裝在微型衛星上,該等裝置及系統諸如像航空電 子致動器(反作用輪、姿態控制迴轉儀等)、推進元件(罐、管道、閥門等)、電池,等等;以及˙允許第二類型模組2支援由容納於其內側之裝置及系統產生的熱負載。
換言之,如圖2所示第二類型模組之尤其關於高度的設計表示就容納裝置及系統之體積而言的容納容量與用以支援由此等裝置及系統產生的熱負載之容量之間的平衡。
第二類型模組2經組配來根據可替代地使用或一起使用之兩種模式,亦即,藉由以下兩種模式容納上述類型的裝置及系統:˙將裝置及系統緊固至第二類型模組2之側壁及/或緊固至第二類型模組2之基壁;及/或˙將裝置及系統緊固在佈置於該第二類型模組2內側且可根據要求修改之鋁框架上。
在此方面,圖2極示意性地展示緊固於第二類型模組2之側壁的兩個裝置/系統(分別表明為參考數字21及22)及緊固於該第二類型模組2之基壁的兩個裝置/系統(分別表明為參考數字23及24)。
更概括而言,在製作微型衛星之製程中,將執行相同或類似功能(例如,推進、姿態控制、電功率等)之所有裝置及系統容納在單個第二類型模組中可為適當的。
即使相對於容納在第一類型模組中之電子板,容納在第二類型模組中之裝置及系統就熱消耗而言具有較低 要求,第二類型模組亦歸咎於存在於其內側之更大質量而必須承受更高的局部機械負載。
最後,如圖2所示,第二類型模組2亦包含連接器25及26,連接器25及26佈置於具有上述第一預定長度L1之兩個相對側壁之中心區域中。
參考圖3,第三類型模組3具有類似於不具有頂壁(但,如前文中所提及的,其亦可有利地具備一個頂壁)的直稜柱之形狀,該形狀內部中空並具有非規則八角形基底,該基底具有:˙擁有外部的上述第一預定長度L1之兩對相對側;˙擁有外部的上述第二預定長度L2之兩個側面;˙且其中,在與具有外部的上述第二預定長度L2之側面相對之兩個側面處,介面部分31及32佈置為向外,亦即,朝向外側突出且經組配來允許將微型衛星之主體耦接至發射器(如將在下文中更加詳細描述的)。
另外,第三類型模組3包含多個介面點33(例如,以具有預定大小之孔洞之形式實行),該等多個介面點33沿該第三類型模組3之側壁佈置並經組配來耦接至微型衛星之外部附件,該等外部附件諸如像太陽能板、感測器、天線、遠程感測裝置/系統,等等。
此外,第三類型模組3具有第三預定高度H3,第三預定高度H3小於第一類型模組1之第一預定高度H1及第二類型模組2之第二預定高度H2。詳言之,該第三預定高度H3表示對減小微型衛星之主體之總高度的需要與對操縱自 介面點33及介面構件31及32得到的集中機械負載的需要之間的最佳折衷,其中微型衛星之主體經由介面點33與介面構件31及32可在使用中分別耦接至外部附件及耦接至發射器。
如前文中所描述的,第三類型模組3經設計來實施一系列功能,亦即:˙幾何結構功能,尤其為以下目的:- 合適地定義微型衛星之主體高度,及/或- 隔開堆疊模組,及/或- 增加特別填充的第二類型模組之容納容積,及/或- 用發射器及/或外部附件(例如太陽能板)及/或酬載物件(諸如SAR天線/裝置/系統、光學遠程感測天線/裝置/系統、無線電通訊天線/裝置/系統等)在合適位置中定義介面點;以及˙熱支援功能,尤其為了提供放置於給定第一類型模組或第二類型模組內側之特別具消耗性的物件之其他輻射表面。
此外,圖4展示根據本發明之實施例的微型衛星(整體表明為參考數字4)之主體。詳言之,如圖4所示,微型衛星4之主體包括一個堆疊在另一個頂部上之多個第一類型模組、第二類型模組及第三類型模組。具體而言,形成微型衛星4之主體之該等堆疊模組自下至上包括:˙第三類型之第一模組41;˙第二類型之第一模組42,其佈置於第三類型之第一 模組41上;˙第二類型之第二模組43,其佈置於第二類型之第一模組42上;˙第一類型之第一模組44,其佈置於第二類型之第二模組43上;˙第三類型之第二模組45,其佈置於第一類型之第一模組44上;˙第二類型之第三模組46,其佈置於第三類型之第二模組45上;以及˙第一類型之第二模組47,其佈置於第二類型之第三模組46上。
此外,圖5、6及7展示根據本發明之實施例之分別表明為參考數字5、6及7的三種微型衛星。
詳言之,圖5所示之微型衛星5為用於SAR類型遠程感測應用之微型衛星,微型衛星5之主體包括一個堆疊在另一個頂部上之多個第一類型模組、第二類型模組及第三類型模組。
具體而言,形成微型衛星5之主體之該等堆疊模組自下至上包括:˙第三類型之第一模組51;˙第二類型之第一模組52,其佈置於第三類型之第一模組51上;˙第二類型之第二模組53,其佈置於第二類型之第一模組52上; ˙第三類型之第二模組54,其佈置於第二類型之第二模組53上;˙第二類型之第三模組55,其佈置於第三類型之第二模組54上;˙第一類型模組56,其佈置於第二類型之第三模組55上;˙第三類型之第三模組57,其佈置於第一類型模組56上;˙第二類型之第四模組58,其佈置於第三類型之第三模組57上;以及˙第三類型之第四模組59,其佈置於第二類型之第四模組58上。
另外,微型衛星5亦包括耦接至第三類型之第一模組51的兩組太陽能板501及502,以及安裝在第三類型之第四模組59上的SAR系統503。
參考圖6,微型衛星6為用於光學遠程感測應用之微型衛星,微型衛星6之主體包括一個堆疊在另一個頂部上之多個第一類型模組、第二類型模組及第三類型模組。
具體而言,形成微型衛星6之主體之該等堆疊模組自下至上包括:˙第三類型之第一模組61;˙第二類型之第一模組62,其佈置於第三類型之第一模組61上;˙第二類型之第二模組63,其佈置於第二類型之第一 模組62上;˙第二類型之第三模組64,其佈置於第二類型之第二模組63上;˙第一類型模組65,其佈置於第二類型之第三模組64上;˙第二類型之第四模組66,其佈置於第一類型模組65上;以及˙第三類型之第二模組67,其佈置於第二類型之第四模組66上。
此外,微型衛星6亦包括耦接至第三類型之第一模組61及耦接至第三類型之第二模組67的兩個太陽能板601及602,以及安裝在第三類型之第二模組67上的光學遠程感測系統603。
參考圖7,微型衛星7為用於無線電通訊之微型衛星,微型衛星7之主體包括一個堆疊在另一個頂部上之多個第一類型模組、第二類型模組及第三類型模組。
具體而言,形成微型衛星7之主體之該等堆疊模組自下至上包括:˙第三類型之第一模組71;˙第二類型之第一模組72,其佈置於第三類型之第一模組71上;˙第二類型之第二模組73,其佈置於第二類型之第一模組72上;˙第二類型之第三模組74,其佈置於第二類型之第二 模組73上;˙第一類型之第一模組75,其佈置於第二類型之第三模組74上;˙第三類型之第二模組76,其佈置於第一類型之第一模組75上;˙第一類型之第二模組77,其佈置於第三類型之第二模組76上;以及˙第三類型之第三模組78,其佈置於第一類型之第二模組77上。
此外,微型衛星7亦包括耦接至第三類型之第一模組71及耦接至第三類型之第二模組76的兩組太陽能板701及702,以及安裝在第三類型之第三模組78上的無線電通訊系統703。
根據本發明之模組架構確保用於經構造的微型衛星之二重發射能力;詳言之,該模組架構允許製作可經由主發射方法亦即所謂「分配器(dispenser)」及「背載(piggyback)」模式兩者發射到軌道上的微型衛星。詳言之,由於一或多個第三類型模組之合適佈置,微型衛星可合適地經組配來經由以下各者耦接至發射器:˙典型的環形發射載具配接器(LVA)(在此情況下,第三類型模組放置於微型衛星之主體的最低位置並經由特定端部連接結構耦接至環形LVA);或˙分配器介面(在此情況下,藉由以堆疊順序合適地定位兩個或更多個第三類型模組,將具有分配器之介面佈置 於微型衛星之主體的合適位置中)。
在此方面,圖8及9展示根據本發明之兩個實施例之同一微型衛星(整體表明為參考數字8),該微型衛星經組配來分別經由環形LVA及分配器介面耦接至發射器。
詳言之,如圖8及9兩者所示,微型衛星8之主體自下至上包括:˙第三類型之第一模組81;˙第二類型之第一模組82,其佈置於第三類型之第一模組81上;˙第二類型之第二模組83,其佈置於第二類型之第一模組82上;˙第一類型之第一模組84,其佈置於第二類型之第二模組83上;˙第三類型之第二模組85,其佈置於第一類型之第一模組84上;˙第一類型之第二模組86,其佈置於第三類型之第二模組85上;以及˙第一類型之第三模組87,其佈置於第一類型之第二模組86上。
此外,微型衛星8亦包括兩個太陽能板801及802,太陽能板801及802耦接至第三類型之第一模組81並沿該微型衛星8之主體折疊(亦即,在用於發射衛星所採用之典型組態中)。
在圖8所示之實例中,微型衛星8包括介面結構 803,介面結構803佈置於第三類型之第一模組81之下並經組配來耦接至LVA環(未在圖8中展示),而在圖9中之實例中,第三類型之第一模組81及第三類型之第二模組85各包含相應成對側向突出介面部分(分別表明為參考數字811及812以及參考數字851及852)並經組配來耦接至專門提供的分配器介面構件。
基於根據本發明之模組架構所構造的微型衛星之上述二重介接及因此的二重發射能力確保顯著的發射靈活性。實際上,基於根據本發明之模組架構所構造的微型衛星可作為以下發射:˙主酬載(使用環形LVA);˙次酬載(在背載模式中及/或使用環形LVA);以及還有˙經由分配器之多重發射之部分。
因此,歸咎於此靈活性,本發明允許:˙在緊急情況下,尋找且然後使用第一可利用發射解決方案;以及˙評估大範圍的發射解決方案,以便選擇最低成本及/或性能最適合於特定任務之解決方案。
此外,由於本發明,有可能在單個動作中執行多個微型衛星之多重發射(例如,在星座之情況下)。
本發明之其他態樣係關於各種堆疊模組之布纜。在此方面,圖10及11展示根據本發明之實施例的同一微型衛星9之主體,該微型衛星9之主體自下至上包括: ˙第三類型之第一模組91;˙第二類型之第一模組92,其佈置於第三類型之第一模組91上並包含佈置於相應側壁之中心區域中的連接器921;˙第二類型之第二模組93,其佈置於第二類型之第一模組92上並包含佈置於相應側壁之中心區域中的連接器931;˙第二類型之第三模組94,其佈置於第二類型之第二模組93上並包含佈置於相應側壁之中心區域中的連接器941;˙第一類型模組95,其佈置於第二類型之第三模組94上並包含佈置於相應側壁之中心區域中的連接器951;˙第二類型之第四模組96,其佈置於第一類型模組95上並包含佈置於相應側壁之中心區域中的連接器961;以及˙第三類型之第二模組97,其佈置於第二類型之第四模組96上。
如圖10所示,歸咎於連接器921、931、941、951及961在相應模組91、93、94、95及96上之標準化佈置(亦即,在此等模組之相應側壁之相同預定中心區域中),以及歸咎於此等模組之合適堆疊,該等連接器921、931、941、951及961全部變得沿同一垂直線或主幹佈置,該垂直線或主幹隨後如圖11所示地藉由專用鋁板98適當覆蓋。
以此方式,每一模組內側的佈線延伸至該模組之相應連接器,之後資料信號及功率信號可沿模組外部的上 述主幹在模組間行進。
由於此特徵,堆疊靈活性及適應性得以保證,以便在必要時促進堆疊順序之重組。
根據前文之描述,本發明之無數技術優點顯而易見。
首先,重要的是強調歸咎於有限數量類型的模組之使用(該等類型模組此外亦為標準的),根據本發明之模組架構允許:˙減少用於微型衛星之設計、製造、整合及試驗工作,從而減少相關聯的建造時間及成本;˙在組裝級下達成高水平標準化;以及˙使用有限數量的生產工具及製程並使此等工具及製程標準化及最佳化,以此方式,基於根據本發明之模組架構提供解決方案實行起來極廉價且快速。
此外,由於本發明,有可能在各別模組上以及在含有為給定任務所必需的裝置、系統及電子板之模組的總成甚至部分總成上執行初步台試驗(bench testing)及環境試驗,以此方式減少在一旦微型衛星整合而成時在系統級下實施的試驗次數。自然地,此之全部導致進一步減少用於微型衛星之實行時間。換言之,由於本發明,整合及試驗操作可並行執行在各別模組及在模組總成(甚至部分總成)上,以便提供此等模組及此等模組總成之預驗證,以此方式獲得使系統級整合及試驗操作快得多的「成品」模組及模組總成。
此外,根據本發明之模組架構具高度靈活性且適應性強,該模組架構允許:˙製作可用於多種任務之微型衛星;以及˙使用不同發射模式。
概括而言,根據本發明之模組架構最終允許在微型衛星之構造中達成極其大量的優點,該等優點例如:˙減少製造時間及成本;˙任務靈活性;以及˙發射靈活性。
總之,很明顯,各種修改可應用於本發明而不脫離本發明之如在隨附申請專利範圍中所定義之範疇。
4‧‧‧微型衛星
41‧‧‧第三類型之第一模組
42‧‧‧第二類型之第一模組
43‧‧‧第二類型之第二模組
44‧‧‧第一類型之第一模組
45‧‧‧第三類型之第二模組
46‧‧‧第二類型之第三模組
47‧‧‧第一類型之第二模組

Claims (20)

  1. 一種用於製作一微型衛星之方法,該方法包含提供:˙一第一類型模組,其經組配來容納一微型衛星之電子板;˙一第二類型模組,其經組配來容納一微型衛星之裝置及系統;以及˙一第三類型模組,其- 包含第一介面構件,該第一介面構件經組配來耦接至一發射載具,- 包含第二介面構件,該第二介面構件經組配來耦接至一微型衛星之外部附件,以及- 經設計來致使一微型衛星之一主體具有一預定高度;其中所有該等第一類型模組、第二類型模組及第三類型模組經組配來以不考慮類型的方式堆疊;該方法進一步包含:藉由堆疊不同類型之模組來製作一微型衛星之一主體,其中該等堆疊模組包括至少一個該第二類型模組及至少一個該第三類型模組。
  2. 如請求項1之方法,其中該等堆疊模組亦包括至少一個該第一類型模組。
  3. 如請求項2之方法,其中製作一微型衛星之一主體包含執行以下操作:˙提供電子板、裝置及系統,該等電子板、裝置及 系統經設計來安裝在一微型衛星上且當安裝在一微型衛星上時,致使該微型衛星變得經組配來實施一預定任務;˙將該等電子板容納在該等第一類型模組中之一或多者中,進而獲得用來製作該微型衛星之該主體的一或多個對應第一模組;˙將該等裝置及該等系統容納在該等第二類型模組中之一或多者中,進而獲得用來製作該微型衛星之該主體的一或多個對應第二模組;˙提供該等第一模組及第二模組之一堆疊順序,亦將該等第三類型模組中之一或多者插入該堆疊順序中,進而獲得用來製作該微型衛星之該主體的一或多個對應第三模組,其中每一第三模組插入該堆疊順序來實施以下功能中之至少一者:- 致使該微型衛星之該主體具有一預定高度,- 將根據該堆疊順序欲堆疊在該第三模組正上方及正下方的兩個模組間隔分開,- 增加根據該堆疊順序欲堆疊在該第三模組正下方的一第二模組之一容納體積,- 增加根據該堆疊順序欲堆疊在該第三模組正下方的一第一模組或一第二模組的內熱之處理,- 提供用於將該微型衛星之該主體耦接至外部附件及/或耦接至一發射載具之介面點;以及˙藉由根據該堆疊順序堆疊該等第一模組、第二模 組及第三模組來製作該微型衛星之該主體。
  4. 如請求項1至3中任一項之方法,其進一步包含:藉由將外部附件耦接至至少一個堆疊的第三類型模組之該第二介面構件來將該微型衛星之該主體耦接至該外部附件。
  5. 如請求項4之方法,其中耦接至該微型衛星之該主體的該等外部附件包含以下元件中之至少一者:一或多個太陽能板、一或多個感測器、一或多個天線及一或多個遠程感測系統。
  6. 如請求項1至5中任一項之方法,其中該微型衛星之該主體包括佈置於預定位置中之至少兩個該等第三類型模組;該方法進一步包含:將佈置於該等預定位置中之該等至少兩個第三類型模組之該第一介面構件耦接至其他介面構件,該其他介面構件經設計來將該微型衛星耦接至在分配器模式中操作的一發射載具。
  7. 如請求項1至5中任一項之方法,其中該微型衛星之該主體的底部止於一第三類型模組,該第三類型模組在該底部耦接至一介面結構,該介面結構經組配來耦接至用於一發射載具之一環形配接器。
  8. 如請求項1至7中任一項之方法,其進一步包含:將一合成孔徑雷達系統及/或一光學遠程感測系統及/或一無線電通訊系統安裝在該微型衛星之該主體上。
  9. 如請求項1至8中任一項之方法,其中所有該等第一類型 模組、第二類型模組及第三類型模組具有同一基底大小、同一基底形狀及同一機械耦接點,進而經組配來以不考慮類型的方式堆疊。
  10. 如請求項1至9中任一項之方法,其中所有該等第一類型模組具有同一第一高度,所有該等第二類型模組具有同一第二高度,且所有該等第三類型模組具有同一第三高度;且其中該第一高度大於該第三高度,且該第二高度大於該第一高度。
  11. 如請求項10之方法,其中該第一高度係如此以至確保該等第一類型模組之該內部溫度不超過一預定最大溫度。
  12. 一種用於製作一微型衛星之模組系統,該模組系統包含:˙一第一類型模組,其經組配來容納一微型衛星之電子板;˙一第二類型模組,其經組配來容納一微型衛星之裝置及系統;以及˙一第三類型模組,其- 包含第一介面構件,該第一介面構件經組配來耦接至一發射載具,- 包含第二介面構件,該第二介面構件經組配來耦接至一微型衛星之外部附件,以及- 經設計來致使一微型衛星之一主體具有一預定高度;其中所有該等第一類型模組、第二類型模組及第三 類型模組經組配來以不考慮類型的方式堆疊,以製作一微型衛星之一主體。
  13. 如請求項12之系統,其中每一該第三類型模組經設計來實施以下功能中之至少一者:˙致使一微型衛星之一主體具有一預定高度;˙將堆疊在該第三類型模組正上方及正下方的兩個模組間隔分開;˙增加堆疊在該第三類型模組正下方之一第二類型模組的一容納容積;˙增加堆疊在該第三類型模組正下方之一第一類型模組或一第二類型模組的內熱之處理;˙提供用於將一微型衛星之一主體耦接至外部附件及/或耦接至一發射載具之介面點。
  14. 如請求項12或13之系統,其中該第二介面構件經組配來耦接至以下元件中之至少一者:一或多個太陽能板、一或多個感測器、一或多個天線及一或多個遠程感測系統。
  15. 如請求項12至14中任一項之系統,其中該第一介面構件經組配來耦接至其他介面構件,該其他介面構件經設計來將一微型衛星耦接至在分配器模式中操作的一發射載具。
  16. 如請求項12至15中任一項之系統,其中每一該第三類型模組經組配來在底部耦接至一介面結構,該介面結構經組配來耦接至用於一發射載具之一環形配接器。
  17. 如請求項12至16中任一項之系統,其中所有該等第一類型模組、第二類型模組及第三類型模組具有同一基底大小、同一基底形狀及同一機械耦接點,進而經組配來以不考慮類型的方式堆疊。
  18. 如請求項12至17中任一項之系統,其中所有該等第一類型模組具有同一第一高度,所有該等第二類型模組具有同一第二高度,且所有該等第三類型模組具有同一第三高度;且其中該第一高度大於該第三高度,且該第二高度大於該第一高度。
  19. 如請求項18之系統,其中該第一高度係如此以至確保該等第一類型模組之該內部溫度不超過一預定最大溫度。
  20. 一種藉由實施如請求項1至11中任一項方法製作的微型衛星。
TW104141970A 2014-12-15 2015-12-14 用於製作微型衛星的最佳化模組架構 TW201636267A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ITTO20141042 2014-12-15

Publications (1)

Publication Number Publication Date
TW201636267A true TW201636267A (zh) 2016-10-16

Family

ID=52597161

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104141970A TW201636267A (zh) 2014-12-15 2015-12-14 用於製作微型衛星的最佳化模組架構

Country Status (12)

Country Link
US (1) US10906671B2 (zh)
EP (1) EP3233637B1 (zh)
JP (1) JP6853175B2 (zh)
KR (1) KR102422173B1 (zh)
CN (1) CN107000854B (zh)
AR (1) AR103029A1 (zh)
EA (1) EA036142B1 (zh)
ES (1) ES2697905T3 (zh)
IL (1) IL252724B (zh)
PL (1) PL3233637T3 (zh)
TW (1) TW201636267A (zh)
WO (1) WO2016097955A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10745152B2 (en) 2017-06-01 2020-08-18 Swarm Technologies, Inc. Attitude stabilization and orbital distribution for small satellites
CN107554818A (zh) * 2017-09-20 2018-01-09 上海微小卫星工程中心 卫星主承力结构
RO133557B1 (ro) * 2018-02-19 2020-11-27 Mazarom Impex S.R.L. Satelit artificial cu dimensiuni reduse
ES2926318T3 (es) * 2018-05-24 2022-10-25 European Union Represented By The European Commission Concepto de estructura de satélite eficiente para lanzamientos individuales o de apilamiento múltiple
CN111409878B (zh) * 2020-03-19 2021-08-24 上海卫星工程研究所 开放式可组装模块平台舱构型
CN112591144B (zh) * 2020-12-28 2023-07-07 中国科学院微小卫星创新研究院 一种层叠式卫星阵列构型及其发射方法
CN113619812A (zh) * 2021-09-10 2021-11-09 赛德雷特(珠海)航天科技有限公司 一种标准模块化微小卫星系统
KR102409410B1 (ko) * 2021-12-29 2022-06-15 한화시스템 주식회사 위성용 송수신 장치 및 위성
US20230406548A1 (en) * 2022-05-31 2023-12-21 Sidus Space, Inc. System for a modular satellite testing platform
US20240003804A1 (en) * 2022-06-30 2024-01-04 Sidus Space, Inc. Test platform apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6260804B1 (en) * 1999-03-04 2001-07-17 Lockheed Martin Missiles & Space Functionally and structurally modular parallelogram-shaped spacecraft
US6206327B1 (en) 1999-03-31 2001-03-27 Lockheed Martin Corporation Modular spacecraft bus
US20070029446A1 (en) 2005-05-02 2007-02-08 Mosher Todd J Modular platform architecture for satellites
RU2338233C2 (ru) 2006-12-13 2008-11-10 Валерий Александрович Меньшиков Многофункциональная космическая система автоматизированного управления и оперативного контроля (мониторинга) критически важных объектов и территорий союзного государства "россия-беларусь"
DK2373878T3 (en) 2008-12-10 2017-08-28 Manzoni Guilio Microsatellite comprising a propulsion model and an imaging apparatus
FR2959490B1 (fr) 2010-04-28 2012-07-13 Astrium Sas Satellite a structure simplifiee, allegee et economique, et son procede de mise en oeuvre
CN102975867B (zh) 2012-11-13 2014-12-31 上海微小卫星工程中心 卫星模块以及模块化卫星
CN103612775B (zh) 2013-11-20 2016-01-06 西北工业大学 一种微型卫星用多功能承力结构

Also Published As

Publication number Publication date
JP6853175B2 (ja) 2021-03-31
CN107000854A (zh) 2017-08-01
KR102422173B1 (ko) 2022-07-18
AR103029A1 (es) 2017-04-12
PL3233637T3 (pl) 2019-03-29
ES2697905T3 (es) 2019-01-29
CN107000854B (zh) 2019-08-16
JP2017537838A (ja) 2017-12-21
EA201791314A1 (ru) 2017-09-29
EA036142B1 (ru) 2020-10-05
KR20170110585A (ko) 2017-10-11
IL252724B (en) 2021-10-31
US10906671B2 (en) 2021-02-02
IL252724A0 (en) 2017-08-31
WO2016097955A1 (en) 2016-06-23
US20170361948A1 (en) 2017-12-21
EP3233637A1 (en) 2017-10-25
EP3233637B1 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
TW201636267A (zh) 用於製作微型衛星的最佳化模組架構
US11878816B2 (en) Reusable modular spacecraft and related systems
US20060185277A1 (en) Modular platform system
US5152482A (en) Modular mother satellite bus for subsidiary payloads
CN110062551B (zh) 用于无人驾驶运载器的控制箱和模块上系统电路板
US20160324019A1 (en) Common bus structure for avionics and satellites (cbsas)
EP3515160B1 (en) Control boxes and system-on-module circuit boards for unmanned vehicles
EP3515156A1 (en) Control boxes and system-on-module circuit boards for unmanned vehicles
US5931418A (en) Functionally independent spacecraft module
Marinan From CubeSats to constellations: systems design and performance analysis
CN110920934A (zh) 对地遥感卫星结构
Gao et al. Optimization design of configuration and layout for Queqiao relay satellite
US20220017238A1 (en) Process for rapid re-configuration and customization of small satellites
CN117022659B (zh) 一种应用于光电吊舱的刚柔结合板
Bouwmeester et al. A new approach on the physical architecture of CubeSats & PocketQubes
US11053029B1 (en) Modular high thermal capacity spacecraft
Chung Mechanical subsystem development for the CanX-7 nanosatellite, the NEMO-HD microsatellite, and the XPOD mass dummy
Gwozdecky Wiring harness design methodologies and assembly integration and test for a modular microsatellite platform
Gwozdecky Methodologies for Development of a Modular Wiring Harness for Use in Small Satellite Constellations
Westley et al. Modular spacecraft standards: supporting low-cost, responsive space
WO2017134686A2 (en) System and method for interfacing a payload with an onboard device in a spacecraft
Jaeger et al. Mayflower: Next generation CubeSat flight testbed
CN113348746B (zh) 一种大型外承力筒多次分离运输航天器构型
Kanji Mechanical Aspects of Design, Analysis, and Testing for the NORSAT-1 Microsatellite
Lin et al. Structure design for TUUSAT-1A Microsatellite