TW201633327A - Radioisotope production - Google Patents

Radioisotope production Download PDF

Info

Publication number
TW201633327A
TW201633327A TW105103549A TW105103549A TW201633327A TW 201633327 A TW201633327 A TW 201633327A TW 105103549 A TW105103549 A TW 105103549A TW 105103549 A TW105103549 A TW 105103549A TW 201633327 A TW201633327 A TW 201633327A
Authority
TW
Taiwan
Prior art keywords
electron
target
electron beam
linear accelerator
radioisotope
Prior art date
Application number
TW105103549A
Other languages
Chinese (zh)
Other versions
TWI712054B (en
Inventor
賈格 皮耶特 威廉 荷曼 德
凡丁 葉弗真葉米希 白尼
艾瑞克 羅勒夫 洛卜史塔
Original Assignee
Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asml荷蘭公司 filed Critical Asml荷蘭公司
Publication of TW201633327A publication Critical patent/TW201633327A/en
Application granted granted Critical
Publication of TWI712054B publication Critical patent/TWI712054B/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/10Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by bombardment with electrically charged particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H6/00Targets for producing nuclear reactions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/0903Free-electron laser
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • H05H2007/041Magnet systems, e.g. undulators, wigglers; Energisation thereof for beam bunching, e.g. undulators

Abstract

A system comprising a free electron laser and a radioisotope production apparatus, wherein the free electron laser comprises an electron injector, an energy recovery linear accelerator and an undulator, and the radioisotope production apparatus comprises a further linear accelerator, an electron target support structure configured to hold an electron target and a photon target support structure configured to hold a photon target, wherein the further linear accelerator is positioned to receive an electron beam after it has been accelerated then decelerated by the energy recovery linear accelerator, the further linear accelerator being configured to accelerate electrons of the electron beam to an energy of around 14 MeV or more for subsequent delivery to the electron target.

Description

放射性同位素產生 Radioisotope production

本發明係關於放射性同位素產生裝置及相關聯方法。本發明亦係關於一種系統,其包含自由電子雷射及放射性同位素產生裝置。 The present invention relates to radioisotope generating devices and associated methods. The invention also relates to a system comprising a free electron laser and a radioisotope generating device.

放射性同位素為不穩定之同位素。放射性同位素將由於發射質子及/或中子在一段時間後衰減。放射性同位素用於醫療診斷及用於醫學治療,且亦用於工業應用中。 Radioisotopes are unstable isotopes. The radioisotope will decay due to the emission of protons and/or neutrons over time. Radioisotopes are used for medical diagnosis and for medical treatment, and are also used in industrial applications.

最常用的醫療放射性同位素為Tc-99m(鎝),其用於診斷應用中。Tc-99m之產生使用高通量核反應器。包含U-238與U-235之混合物之高濃縮鈾在核反應器中用中子加以轟擊。此使得U-235中之一些經受裂變且分離為Mo-99+Sn(x13)+中子。Mo-99自其他裂變產物分離出且運送至放射性藥物。Mo-99具有66小時之半衰期且衰變至Tc-99m。Tc-99m具有僅6小時之半衰期(其適用於醫療診斷技術)在放射性藥物處,Tc-99m與Mo-99分離且隨後用於醫療診斷技術。 The most commonly used medical radioisotope is Tc-99m (鎝), which is used in diagnostic applications. The production of Tc-99m uses a high throughput nuclear reactor. The highly enriched uranium comprising a mixture of U-238 and U-235 is bombarded with neutrons in a nuclear reactor. This causes some of U-235 to undergo fission and separate into Mo-99+Sn(x13)+neutrons. Mo-99 is separated from other fission products and delivered to the radiopharmaceutical. Mo-99 has a half-life of 66 hours and decays to Tc-99m. Tc-99m has a half-life of only 6 hours (which is suitable for medical diagnostic techniques). At radiopharmaceuticals, Tc-99m is separated from Mo-99 and subsequently used in medical diagnostic techniques.

Mo-99廣泛地在全球使用以產生用於醫療診斷技術之Tc-99m。然而,僅存在可用以產生Mo-99之少數高通量核反應器。其他放射性同位素亦使用此等高通量核反應器製成。所有高通量核反應器在40年以上,且無法預期繼續無限期地操作。 Mo-99 is widely used worldwide to produce Tc-99m for medical diagnostic technology. However, there are only a few high-throughput nuclear reactors that can be used to produce Mo-99. Other radioisotopes are also made using these high throughput nuclear reactors. All high-throughput nuclear reactors have been in operation for more than 40 years and are not expected to continue to operate indefinitely.

其可認為需要提供替代放射性同位素產生裝置及相關聯方法及/或相關聯系統。 It may be considered desirable to provide alternative radioisotope generating devices and associated methods and/or associated systems.

根據本發明之一態樣,提供一種系統,其包含自由電子雷射及放射性同位素產生裝置,其中自由電子雷射包含電子注入器、能量回收線性加速器及波盪器,且放射性同位素產生裝置包含另一線性加速器、經組態以固持電子靶之電子靶支撐結構及經組態以固持光子靶之光子靶支撐結構,其中另一線性加速器經定位以在其已藉由能量回收線性加速器加速接著減速之後接收電子束,該另一線性加速器經組態以將電子束之電子加速至大約14MeV或以上之能量以供後續遞送至電子靶。 According to one aspect of the present invention, a system is provided comprising a free electron laser and a radioisotope generating apparatus, wherein the free electron laser comprises an electron injector, an energy recovery linear accelerator, and a undulator, and the radioisotope generating apparatus comprises another a linear accelerator, an electronic target support structure configured to hold the electronic target, and a photon target support structure configured to hold the photon target, wherein the other linear accelerator is positioned to accelerate and then decelerate by the linear accelerator that has been recovered by the energy recovery An electron beam is then received, the other linear accelerator being configured to accelerate the electrons of the electron beam to an energy of about 14 MeV or more for subsequent delivery to the electronic target.

該系統為有利的,係因為自由電子雷射(其可用於產生EUV輻射以供微影裝置使用)亦使用用於放射性同位素產生之組件。相較於在放射性同位素產生裝置及自由電子雷射經提供為與彼此完全分離(例如,在不同位置處)時將導致之成本,此提供成本節省。放射性同位素產生可與自由電子雷射之操作並行地(例如,與EUV輻射光束之產生並行地)進行。電子束可用於產生EUV輻射且接著用於產生放射性同位素。 This system is advantageous because free electron lasers (which can be used to generate EUV radiation for use by lithographic apparatus) also use components for radioisotope generation. This provides cost savings compared to the cost that would result if the radioisotope generating device and the free electron laser were provided to be completely separate from each other (eg, at different locations). The radioisotope production can be performed in parallel with the operation of the free electron laser (e.g., in parallel with the generation of the EUV radiation beam). An electron beam can be used to generate EUV radiation and then used to generate a radioisotope.

反衝器可經組態以在另一線性加速器與光束捕集器之間切換電子束。 The kicker can be configured to switch the electron beam between another linear accelerator and the beam trap.

根據本發明之第二態樣,提供一種系統,其包含自由電子雷射及放射性同位素產生裝置,其中自由電子雷射包含複數個電子注入器、線性加速器及波盪器,且放射性同位素產生裝置包含另一線性加速器、經組態以固持電子靶之電子靶支撐結構及經組態以固持光子靶之光子靶支撐結構,其中另一線性加速器經定位以在其不用於將電子束提供至線性加速器時自電子注入器中之一者接收電子束,該另一線性加速器經組態以將電子束之電子加速至14MeV或以上之能量以供後續遞送至電子靶及光子靶。 According to a second aspect of the present invention, there is provided a system comprising a free electron laser and a radioisotope generating apparatus, wherein the free electron laser comprises a plurality of electron injectors, a linear accelerator and a undulator, and the radioisotope generating apparatus comprises Another linear accelerator, an electronic target support structure configured to hold the electronic target, and a photonic target support structure configured to hold the photon target, wherein the other linear accelerator is positioned to be used to provide the electron beam to the linear accelerator The electron beam is received from one of the electron injectors, the other linear accelerator being configured to accelerate electrons of the electron beam to energy of 14 MeV or more for subsequent delivery to the electron target and the photon target.

該系統亦為有利的,係因為自由電子雷射(其可用於產生EUV輻射以供微影裝置使用)亦使用用於放射性同位素產生之組件。相較於在放射性同位素產生裝置及自由電子雷射經提供為與彼此完全分離(例如,在不同位置處)時將導致之成本,此提供成本節省。放射性同位素產生可與自由電子雷射之操作並行地(例如,與EUV輻射光束之產生並行地)進行。亦即,一個線性注入器可用於產生放射性同位素,而另一者用於提供用於自由電子雷射之電子束。 This system is also advantageous because free electron lasers (which can be used to generate EUV radiation for use by lithographic apparatus) also use components for radioisotope generation. This provides cost savings compared to the cost that would result if the radioisotope generating device and the free electron laser were provided to be completely separate from each other (eg, at different locations). The radioisotope production can be performed in parallel with the operation of the free electron laser (e.g., in parallel with the generation of the EUV radiation beam). That is, one linear injector can be used to generate a radioisotope while the other is used to provide an electron beam for a free electron laser.

可提供複數個放射性同位素產生裝置。 A plurality of radioisotope generating devices can be provided.

反衝器可定位於每一電子注入器後,該反衝器經組態以在自由電子雷射之線性加速器與放射性同位素產生裝置中之一者之間切換由彼電子注入器產生之電子束。 A kickback can be positioned after each electron injector configured to switch the electron beam generated by the electron injector between one of the free electron laser linear accelerator and the radioisotope generating device .

電子注入器之數目可比放射性同位素產生裝置之數目多一個。 The number of electron injectors can be one more than the number of radioisotope generating devices.

自由電子雷射之線性加速器可為能量回收線性加速器。 The free electron laser linear accelerator can be an energy recovery linear accelerator.

另一線性加速器可經組態以將電子束之電子加速至大約30MeV或以上之能量。 Another linear accelerator can be configured to accelerate the electrons of the electron beam to an energy of about 30 MeV or more.

系統可進一步包含由電子靶支撐結構固持之電子靶,該電子靶包含將使電子減速且產生光子的材料,且該系統可進一步包含由光子靶支撐結構固持之光子靶,該光子靶包含將在光子入射於其上時射出中子且從而將形成放射性同位素的材料。 The system can further comprise an electron target held by the electron target support structure, the electron target comprising a material that will decelerate the electrons and generate photons, and the system can further comprise a photon target held by the photon target support structure, the photon target comprising A material upon which a photon is incident when it is incident on the photon and thus will form a radioisotope.

光子靶可包含Mo-100。 The photon target can comprise Mo-100.

根據本發明之第三態樣,提供一種系統,其包含自由電子雷射及放射性同位素產生裝置,其中自由電子雷射包含電子注入器、線性加速器及波盪器,且放射性同位素產生裝置包含另一線性加速器、經組態以固持電子靶之電子靶支撐結構及經組態以固持光子靶之光子靶支撐結構,其中電子注入器經組態以產生具有10mA或以上之電流之電子束,且另一線性加速器經組態以將電子束之電子加速至14MeV 或以上以供後續遞送至電子靶及光子靶。 According to a third aspect of the present invention, there is provided a system comprising a free electron laser and a radioisotope generating apparatus, wherein the free electron laser comprises an electron injector, a linear accelerator and a undulator, and the radioisotope generating apparatus comprises another line An accelerator, an electronic target support structure configured to hold an electronic target, and a photon target support structure configured to hold a photon target, wherein the electron injector is configured to generate an electron beam having a current of 10 mA or more, and A linear accelerator is configured to accelerate electrons from the electron beam to 14 MeV Or above for subsequent delivery to the electronic target and photon target.

提供具有10mA或以上之電流之電子束相較於提供較低電子束電流為有利的,此係因為其增加可使用電子束產生之放射性同位素之放射性比度。 It is advantageous to provide an electron beam having a current of 10 mA or more as compared to providing a lower beam current because it increases the radioactivity ratio of the radioactive isotope which can be generated by the electron beam.

電子注入器可經組態以產生具有30mA或以上之電流之電子束。電子注入器可經組態以產生具有100mA或以上之電流之電子束。 The electron injector can be configured to generate an electron beam having a current of 30 mA or more. The electron injector can be configured to generate an electron beam having a current of 100 mA or more.

另一線性加速器可經組態以將電子束之電子加速至大約30MeV或以上之能量。 Another linear accelerator can be configured to accelerate the electrons of the electron beam to an energy of about 30 MeV or more.

根據本發明之第四態樣,提供一種放射性同位素產生裝置,其包含線性加速器、經組態以固持電子靶之電子靶支撐結構及經組態以固持光子靶之光子靶支撐結構,其中電子束分佈裝置經配置以接收藉由線性加速器加速之後的電子束,且在電子束入射於電子靶上之前,該電子束分佈裝置經組態以控制電子束入射於其上之電子靶之表面積。 According to a fourth aspect of the present invention, there is provided a radioisotope generating apparatus comprising a linear accelerator, an electronic target support structure configured to hold an electron target, and a photon target support structure configured to hold a photon target, wherein the electron beam The distribution device is configured to receive an electron beam after being accelerated by the linear accelerator, and the electron beam distribution device is configured to control a surface area of the electron target on which the electron beam is incident before the electron beam is incident on the electron target.

分佈電子束為有利的,此係因為其分佈由電子束遞送之熱量,由此減少電子靶之局部加熱。 It is advantageous to distribute the electron beam because it distributes the heat delivered by the electron beam, thereby reducing local heating of the electron target.

電子束分佈裝置可包含經組態以增加電子束之橫截面積的透鏡。 The electron beam distribution device can include a lens configured to increase the cross-sectional area of the electron beam.

透鏡可包含散焦四極磁體。 The lens can include a defocused quadrupole magnet.

電子束分佈裝置可包含光束反衝器,其經組態以使電子束掃描遍及電子靶之表面上。 The electron beam distribution device can include a beam recoiler configured to scan the electron beam across the surface of the electron target.

根據本發明之第五態樣,提供一種放射性同位素產生裝置,其包含線性加速器、光束反衝器、經組態以固持電子靶之複數個電子靶支撐結構及經組態以固持光子靶之複數個相關聯光子靶支撐結構,其中光束反衝器經組態以接收藉由線性加速器之加速之後的電子束且經組態以依序將電子束引導至電子靶支撐結構中之每一者。 According to a fifth aspect of the present invention, there is provided a radioisotope generating apparatus comprising a linear accelerator, a beam recoil, a plurality of electron target support structures configured to hold an electron target, and a plurality configured to hold a photon target An associated photon target support structure, wherein the beam recoiler is configured to receive an electron beam after acceleration by a linear accelerator and is configured to sequentially direct the electron beam to each of the electron target support structures.

將電子束分佈至不同電子靶支撐結構以使得電子束入射於不同電子靶上為有利的,係因為其分佈由電子束遞送之熱量,由此減少電子靶之局部加熱。 It is advantageous to distribute the electron beams to different electron target support structures such that the electron beams are incident on different electron targets because they distribute the heat delivered by the electron beams, thereby reducing localized heating of the electron targets.

根據本發明之第六態樣,提供一種放射性同位素產生裝置,其包含線性加速器、經組態以固持電子靶之電子靶支撐結構及經組態以固持光子靶之光子靶支撐結構,其中放射性同位素產生裝置進一步包含一或多個冷卻劑流體管道,其經組態以輸送冷卻劑流體通過由支撐結構固持之光子靶及/或電子靶,且由此自光子靶及/或電子靶移除熱量,且其中放射性同位素產生裝置進一步包含廢熱回收系統,其經組態以回收自光子靶及/或電子靶移除之熱量中之一些。 According to a sixth aspect of the present invention, there is provided a radioisotope generating apparatus comprising a linear accelerator, an electron target support structure configured to hold an electron target, and a photon target support structure configured to hold a photon target, wherein the radioisotope The generating device further includes one or more coolant fluid conduits configured to deliver a coolant fluid through the photon target and/or the electron target held by the support structure, and thereby removing heat from the photon target and/or the electron target And wherein the radioisotope generating device further comprises a waste heat recovery system configured to recover some of the heat removed from the photon target and/or the electron target.

廢熱回收系統有利地允許回收用以產生放射性同位素之一些功率。 The waste heat recovery system advantageously allows for the recovery of some of the power used to produce the radioisotope.

廢熱回收系統可經組態以使用所回收熱量發電。 The waste heat recovery system can be configured to generate electricity using the recovered heat.

廢熱回收系統可包含使用工作流體之封閉迴路。 The waste heat recovery system can include a closed loop using a working fluid.

封閉迴路之工作流體可不同於用以冷卻光子靶及/或電子靶之冷卻劑流體,且其中該系統進一步包含熱交換器,其經組態以將熱量自冷卻劑流體轉移至工作流體。 The closed loop working fluid may be different than the coolant fluid used to cool the photon target and/or the electron target, and wherein the system further includes a heat exchanger configured to transfer heat from the coolant fluid to the working fluid.

封閉迴路可包括經組態以驅動發電器之膨脹渦輪機。 The closed loop may include an expansion turbine configured to drive a generator.

根據本發明之第七態樣,提供一種系統,其包含本發明之第四至第六態樣中之任一者之放射性同位素產生裝置,且進一步包含自由電子雷射。 According to a seventh aspect of the invention, there is provided a system comprising the radioisotope generating device of any one of the fourth to sixth aspects of the invention, and further comprising a free electron laser.

本發明之態樣中之任一者之系統可進一步包含複數個微影裝置。 The system of any of the aspects of the invention may further comprise a plurality of lithography devices.

根據本發明之第八態樣,提供一種放射性同位素產生之方法,其包含:將電子束注入至自由電子雷射之能量回收線性加速器中;使用能量回收線性加速器加速接著減速電子束;使用另一線性加速器來 加速減速後之電子束,該電子束經加速至大約14MeV或以上之能量;及將電子束引導至電子靶上以產生光子,該等光子隨後入射於光子靶上以產生放射性同位素。 According to an eighth aspect of the present invention, a method of producing a radioisotope comprising: injecting an electron beam into an energy recovery linear accelerator of a free electron laser; using an energy recovery linear accelerator to accelerate the subsequent deceleration of the electron beam; using another line Sex accelerator Accelerating the decelerated electron beam, the electron beam is accelerated to an energy of about 14 MeV or more; and directing the electron beam onto the electron target to generate photons, which are then incident on the photon target to produce a radioisotope.

根據本發明之第九態樣,提供一種在自由電子雷射之注入器不用於將電子提供至自由電子雷射時使用該注入器的放射性同位素產生之方法,該方法包含:使用注入器產生電子束;使用線性加速器將電子束加速至大約14MeV或以上之能量;及將電子束引導至電子靶上以產生光子,該等光子隨後入射於光子靶上以產生放射性同位素。 According to a ninth aspect of the present invention, there is provided a method of producing a radioisotope using the injector when the injector of the free electron laser is not used to provide electrons to a free electron laser, the method comprising: generating an electron using the injector Beam; accelerates the electron beam to an energy of about 14 MeV or more using a linear accelerator; and directs the electron beam onto the electron target to produce photons that are then incident on the photon target to produce a radioisotope.

注入器可為複數個注入器中之一者,且其他注入器中之一者可同時將電子提供至自由電子雷射。 The injector can be one of a plurality of injectors, and one of the other injectors can simultaneously provide electrons to the free electron laser.

經引導至電子靶之電子束可具有10mA或以上之電流。 The electron beam guided to the electron target may have a current of 10 mA or more.

根據本發明之第十態樣,提供一種放射性同位素產生之方法,其包含:將電子束注入至線性加速器中;使用線性加速器來加速電子束,使電子束通過電子束分佈裝置;及將電子束引導至電子靶上以產生光子,該等光子隨後入射於光子靶上以產生放射性同位素,其中電子束分佈裝置控制電子束入射於其上之電子靶之表面積。 According to a tenth aspect of the present invention, a method of producing a radioisotope, comprising: injecting an electron beam into a linear accelerator; using a linear accelerator to accelerate an electron beam, passing the electron beam through an electron beam distribution device; and e. Light is directed onto the electron target to generate photons that are then incident on the photon target to produce a radioisotope, wherein the electron beam distribution device controls the surface area of the electron target onto which the electron beam is incident.

根據本發明之第十一態樣,提供一種放射性同位素產生之方法,其包含:將電子束注入至線性加速器中;使用線性加速器來加速電子束;及使用光束反衝器依序將電子束引導至複數個電子靶中之每一者上以產生光子,該等光子隨後入射於相關聯光子靶上以產生放射性同位素。 According to an eleventh aspect of the present invention, a method of producing a radioisotope, comprising: injecting an electron beam into a linear accelerator; using a linear accelerator to accelerate an electron beam; and sequentially guiding the electron beam using a beam recoiler Each of the plurality of electron targets is generated to generate photons that are then incident on the associated photon target to produce a radioisotope.

根據本發明之第十二態樣,提供一種放射性同位素產生之方法,其包含:將電子束注入至線性加速器中;使用線性加速器來加速電子束;及將電子束引導至電子靶上以產生光子,該等光子隨後入射於光子靶上以產生放射性同位素,其中該方法進一步包含:輸送冷卻劑流體通過電子靶及/或光子靶以自電子靶及/或光子靶移除熱量;及 使用廢熱回收系統回收自電子靶及/或光子靶移除之熱量中之一些。 According to a twelfth aspect of the present invention, a method of producing a radioisotope, comprising: injecting an electron beam into a linear accelerator; using a linear accelerator to accelerate an electron beam; and guiding the electron beam onto the electron target to generate a photon The photons are then incident on the photon target to produce a radioisotope, wherein the method further comprises: transporting the coolant fluid through the electron target and/or the photon target to remove heat from the electron target and/or the photon target; Some of the heat removed from the electron target and/or photon target is recovered using a waste heat recovery system.

本發明之任何給定態樣之特徵可與本發明之其他態樣之特徵組合。 Features of any given aspect of the invention may be combined with features of other aspects of the invention.

如將對熟習此項技術者易於顯而易見,可將上文或下文所闡述之本發明之各種態樣及特徵與本發明之各種其他態樣及特徵組合。 The various aspects and features of the invention described above or below may be combined with various other aspects and features of the invention as will be readily apparent to those skilled in the art.

21a‧‧‧電子注入器 21a‧‧‧Electronic injector

21b‧‧‧電子注入器 21b‧‧‧Electronic injector

22‧‧‧線性加速器 22‧‧‧ Linear Accelerator

24‧‧‧波盪器 24‧‧‧ undulator

30a‧‧‧線性加速器 30a‧‧‧ Linear Accelerator

30b‧‧‧線性加速器 30b‧‧‧ Linear Accelerator

30c‧‧‧線性加速器 30c‧‧‧ Linear Accelerator

31‧‧‧反衝器 31‧‧‧Backlash

32‧‧‧反衝器 32‧‧‧Backlash

33‧‧‧反衝器 33‧‧‧Backflush

40a‧‧‧組件/靶 40a‧‧‧Components/targets

40b‧‧‧靶 40b‧‧‧ target

40c‧‧‧靶 40c‧‧ Target

42a-c‧‧‧電子靶 42a-c‧‧‧Electronic target

43a-c‧‧‧支撐結構 43a-c‧‧‧Support structure

44a-c‧‧‧光子靶 44a-c‧‧‧Photon target

45a-c‧‧‧支撐結構 45a-c‧‧‧Support structure

100‧‧‧光束捕集器 100‧‧‧beam trap

121a‧‧‧電子注入器 121a‧‧‧Electronic injector

121b‧‧‧電子注入器 121b‧‧‧Electronic injector

121c‧‧‧電子注入器 121c‧‧‧Electronic injector

121d‧‧‧電子注入器 121d‧‧‧Electronic injector

122‧‧‧線性加速器 122‧‧‧ Linear Accelerator

122a‧‧‧電子源 122a‧‧‧Electronic source

122b‧‧‧電子源 122b‧‧‧Electronic source

122c‧‧‧電子源 122c‧‧‧Electronic source

122d‧‧‧電子源 122d‧‧‧Electronic source

123a‧‧‧升壓器 123a‧‧‧ booster

123b‧‧‧升壓器 123b‧‧‧ booster

123c‧‧‧升壓器 123c‧‧‧ booster

123d‧‧‧升壓器 123d‧‧‧ booster

130a‧‧‧線性加速器 130a‧‧‧ Linear Accelerator

130b‧‧‧線性加速器 130b‧‧‧ Linear Accelerator

130c‧‧‧線性加速器 130c‧‧‧ Linear Accelerator

240‧‧‧靶 240‧‧‧ target

242‧‧‧電子靶 242‧‧‧Electronic target

244‧‧‧光子靶 244‧‧‧Photon target

251‧‧‧板 251‧‧‧ board

252‧‧‧管道 252‧‧‧ Pipes

253‧‧‧板 253‧‧‧ board

254‧‧‧管道 254‧‧‧ Pipes

257‧‧‧支撐件 257‧‧‧Support

260‧‧‧加熱器 260‧‧‧heater

261‧‧‧膨脹渦輪機 261‧‧‧Expansion turbine

262‧‧‧冷凝器 262‧‧‧Condenser

263‧‧‧泵 263‧‧‧ pump

264‧‧‧發電器 264‧‧‧Power generator

300‧‧‧透鏡 300‧‧‧ lens

301‧‧‧透鏡 301‧‧‧ lens

305‧‧‧反衝器 305‧‧‧Backlash

306‧‧‧反衝器 306‧‧‧Backlash

340a‧‧‧靶 340a‧‧ Target

340b‧‧‧靶 340b‧‧‧ target

340c‧‧‧靶 340c‧‧‧ target

現將參考隨附示意性圖式而僅藉由實例來描述本發明之實施例,在該等圖式中:- 圖1為包含自由電子雷射及放射性同位素產生裝置之系統的示意性說明;- 圖2為根據本發明之實施例之放射性同位素產生裝置的示意性說明;- 圖3為包含根據本發明之實施例之自由電子雷射及放射性同位素產生裝置之系統之部分的示意性說明;- 圖4為根據本發明之實施例之放射性同位素產生裝置之電子靶及光子靶的示意性說明;- 圖5為根據本發明之實施例之可形成系統之部分之廢熱回收系統的示意性說明;- 圖6為根據本發明之實施例之可形成放射性同位素產生裝置之部分之電子束分佈裝置的示意性說明;- 圖7為根據本發明之實施例之可形成放射性同位素產生裝置之部分之替代電子束分佈裝置的示意性說明;及- 圖8為根據本發明之實施例之可形成放射性同位素產生裝置之部分之另一替代電子束分佈裝置的示意性說明。 Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings in which: FIG. 1 is a schematic illustration of a system including a free electron laser and radioisotope generating apparatus; - Figure 2 is a schematic illustration of a radioisotope generating apparatus in accordance with an embodiment of the present invention; - Figure 3 is a schematic illustration of a portion of a system including a free electron laser and radioisotope generating apparatus in accordance with an embodiment of the present invention; - Figure 4 is a schematic illustration of an electronic target and a photon target of a radioisotope generating device in accordance with an embodiment of the present invention; - Figure 5 is a schematic illustration of a waste heat recovery system that can form part of a system in accordance with an embodiment of the present invention - Figure 6 is a schematic illustration of an electron beam distribution device that can form part of a radioisotope generating device in accordance with an embodiment of the present invention; - Figure 7 is a portion of a radioisotope generating device that can be formed in accordance with an embodiment of the present invention Illustrative illustration of an alternative electron beam distribution device; and - Figure 8 is a diagram of a radioisotope generating device that can be formed in accordance with an embodiment of the present invention Per schematically illustrates another alternative means of electron beam distribution.

圖1示意性地展示包含自由電子雷射FEL及放射性同位素產生裝 置RIa-c的系統。自由電子雷射FEL能夠產生EUV輻射光束BFEL,該EUV輻射光束充分強力以供應具有可用以將圖案投射至基板上之EUV輻射光束的複數個微影裝置LA1-nFigure 1 schematically shows a system comprising a free electron laser FEL and a radioisotope generating device RI ac . The free electron laser FEL is capable of generating an EUV radiation beam B FEL that is sufficiently strong to supply a plurality of lithographic devices LA 1 - n having an EUV radiation beam that can be used to project a pattern onto the substrate.

自由電子雷射FEL包含兩個電子注入器21a、21b、線性加速器22、波盪器24及光束捕集器100。自由電子雷射亦可包含聚束壓縮機(未圖示)。圖1中之系統可在不同操作模式之間切換,其中電子束E遵循不同路徑。在所說明模式中,電子束E藉由實線描繪,其中替代電子束路徑藉由虛線描繪。 The free electron laser FEL includes two electron injectors 21a, 21b, a linear accelerator 22, a undulator 24, and a beam trap 100. The free electron laser may also include a bunching compressor (not shown). The system of Figure 1 can be switched between different modes of operation in which the electron beam E follows a different path. In the illustrated mode, the electron beam E is depicted by a solid line, wherein the alternate electron beam path is depicted by a dashed line.

每一電子注入器21a、21b經配置以產生聚束式電子束且包含電子源(例如,由脈衝式雷射光束照射之光電陰極)及提供加速電場之升壓器。由升壓器提供之加速電場可(例如)將電子束之電子加速至大約10MeV之能量。放射性同位素產生裝置RIa-b包含在電子注入器21a、21b之下游之組件30a、30b、40a、40b,在下文進一步描述該等組件。在所描繪操作模式中,第二電子注入器21b提供電子束E,該電子束E藉由自由電子雷射使用以產生EUV輻射光束BFEL。第一電子注入器21a提供用以產生放射性同位素(如下文進一步描述)之電子束EIEach of the electron injectors 21a, 21b is configured to produce a bunched electron beam and includes an electron source (eg, a photocathode illuminated by a pulsed laser beam) and a booster that provides an accelerating electric field. The accelerating electric field provided by the booster can, for example, accelerate the electrons of the electron beam to an energy of about 10 MeV. The radioisotope generating device RI ab comprises components 30a, 30b, 40a, 40b downstream of the electron injectors 21a, 21b, which are further described below. In the depicted mode of operation, the second electron injector 21b provides an electron beam E that is used by a free electron laser to produce an EUV radiation beam B FEL . The first electron injector 21a provides an electron beam E I for generating a radioisotope (as described further below).

藉由磁體(未展示)使電子束E中之電子轉向至線性加速器22。線性加速器使電子束E加速。在一實例中,線性加速器22可包含軸向間隔之複數個射頻腔,及一或多個射頻電源,其可操作以在電子聚束在電磁場之間傳遞時沿著共同軸線控制該等電磁場以便加速每一電子聚束。該等腔可為超導射頻腔。有利地,此情形允許:以高工作循環施加相對大電磁場;較大光束孔徑,從而引起歸因於尾流場之較少損耗;且允許增加經傳輸至光束(與經由腔壁耗散相反)之射頻能量之分率。替代地,該等腔可習知地為傳導的(亦即,非超導的),且可由(例如)銅形成。可使用其他類型之線性加速器,諸如,雷射尾流場加速器或逆向自由電子雷射加速器。 The electrons in the electron beam E are diverted to the linear accelerator 22 by a magnet (not shown). The linear accelerator accelerates the electron beam E. In one example, linear accelerator 22 can include an axially spaced plurality of RF cavities, and one or more RF power sources operable to control the electromagnetic fields along a common axis as they are transferred between the electromagnetic fields so that Accelerate each electron bunching. The cavities can be superconducting radio frequency cavities. Advantageously, this situation allows for the application of a relatively large electromagnetic field with a high duty cycle; a larger beam aperture, resulting in less loss due to the wake field; and allowing for increased transmission to the beam (as opposed to dissipation via the cavity wall) The fraction of RF energy. Alternatively, the cavities may be conventionally conductive (ie, non-superconducting) and may be formed of, for example, copper. Other types of linear accelerators can be used, such as a laser wake field accelerator or a reverse free electron laser accelerator.

儘管線性加速器22描繪為沿沿圖1中之單一軸線擱置,但線性加速器可包含不位於單一軸線上之模組。舉例而言,在一些線性加速器模組與其他線性加速器模組之間可存在彎曲。 Although the linear accelerator 22 is depicted as being placed along a single axis in Figure 1, the linear accelerator may include modules that are not located on a single axis. For example, there may be bends between some linear accelerator modules and other linear accelerator modules.

在藉由線性加速器22之加速之後,藉由磁體(未展示)使電子束E轉向至波盪器24。視情況地,電子束E可穿過安置於線性加速器22與波盪器24之間的聚束壓縮機(未展示)。聚束壓縮機可經組態以在空間上壓縮電子束E中之現有電子聚束。 After acceleration by the linear accelerator 22, the electron beam E is diverted to the undulator 24 by a magnet (not shown). Optionally, the electron beam E can pass through a bunching compressor (not shown) disposed between the linear accelerator 22 and the undulator 24. The bunched compressor can be configured to spatially compress the existing electron bunching in the electron beam E.

電子束E接著穿過波盪器24。通常,波盪器24包含複數個模組。每一模組包含週期性磁體結構,該週期性磁體結構可操作以產生週期性磁場且經配置以便沿著該模組內之週期性路徑來導引由電子注入器21a、21b及線性加速器22產生的電子束E。由每一波盪器模組產生之週期性磁場使電子遵循圍繞中心軸線之振盪路徑。因此,在每一波盪器模組內,電子通常在彼波盪器模組之中心軸線的方向上輻射電磁輻射。經輻射之電磁輻射形成EUV輻射光束BFEL,該光束經傳遞至微影裝置LA1-n且由彼等微影裝置使用以將圖案投射至基板上。 The electron beam E then passes through the undulator 24. Typically, undulator 24 includes a plurality of modules. Each module includes a periodic magnet structure operable to generate a periodic magnetic field and configured to be guided by the electron injectors 21a, 21b and the linear accelerator 22 along a periodic path within the module The generated electron beam E. The periodic magnetic field generated by each undulator module causes the electrons to follow an oscillating path around the central axis. Thus, in each undulator module, electrons typically radiate electromagnetic radiation in the direction of the central axis of the undulator module. The irradiated electromagnetic radiation forms an EUV radiation beam B FEL which is transmitted to the lithography apparatus LA 1-n and used by its lithography apparatus to project a pattern onto the substrate.

電子所遵循之路徑可為正弦的及平面的,其中電子週期性地橫穿中心軸線。替代地,路徑可為螺旋的,其中電子圍繞中心軸線旋轉。振盪路徑之類型可影響由自由電子雷射發射之輻射之偏振。舉例而言,使電子沿著螺旋路徑傳播之自由電子雷射可發射橢圓偏振輻射,其對於藉由一些微影裝置進行基板W之曝露而言可係合乎需要的。 The path followed by the electrons can be sinusoidal and planar, with electrons periodically traversing the central axis. Alternatively, the path can be helical with the electrons rotating about a central axis. The type of oscillating path can affect the polarization of the radiation emitted by the free electron laser. For example, a free electron laser that propagates electrons along a helical path can emit elliptically polarized radiation, which may be desirable for exposure of substrate W by some lithography apparatus.

在電子移動通過每一波盪器模組時,其與輻射之電場相互作用,從而與輻射交換能量。大體而言,除非條件接近於諧振條件,否則在電子與輻射之間交換的能量之量將快速振盪。在諧振條件下,電子與輻射之間的相互相用使電子聚束在一起成為在波盪器內之輻射之波長處調變的微聚束,且刺激沿著中心軸線之輻射的相干發射。諧振 條件可由下者給定: 其中λ em 為輻射之波長,λ u 為用於電子所傳播通過之波盪器模組之波盪器週期,γ為電子之勞倫茲(Lorentz)因數,且K為波盪器參數。A取決於波盪器24之幾何形狀:對於產生圓形偏振之輻射的螺旋波盪器,A=1,對於平面波盪器,A=2,且對於產生橢圓偏振之輻射(其既非圓形偏振,亦非線性偏振)之螺旋波盪器,1<A<2。實務上,每一電子聚束將具有一能量展開,但可儘可能地最小化此展開(藉由產生具有低發射率之電子束E)。波盪器參數K通常為大約1且係由如下者給定: 其中qm分別為電荷及電子質量、B 0 為週期性磁場之振幅,且c為光速。 As the electron moves through each of the undulator modules, it interacts with the electric field of the radiation to exchange energy with the radiation. In general, the amount of energy exchanged between electrons and radiation will oscillate rapidly unless the conditions are close to the resonant condition. Under resonant conditions, the mutual interaction between electrons and radiation causes the electrons to bunch together into a micro-convergence that is modulated at the wavelength of the radiation within the undulator and stimulates the coherent emission of radiation along the central axis. The resonance condition can be given by the following: Where λ em is the wavelength of the radiation, λ u is the undulator period for the undulator module through which the electron propagates, γ is the Lorentz factor of the electron, and K is the undulator parameter. A depends on the geometry of the undulator 24: for a spiral undulator that produces circularly polarized radiation, A = 1, for a planar undulator, A = 2, and for radiation that produces elliptically polarized (which is neither circular Polarized, non-linearly polarized) spiral undulator, 1 < A < 2. In practice, each electron bunching will have an energy spread, but this expansion can be minimized as much as possible (by generating an electron beam E with a low emissivity). The undulator parameter K is typically about 1 and is given by: Where q and m are the charge and electron mass, B 0 is the amplitude of the periodic magnetic field, and c is the speed of light.

諧振波長λ em 等於由移動通過每一波盪器模組之電子自發地輻射之第一諧波波長。自由電子雷射FEL可在自行放大自發發射(SASE)模式中操作。在SASE模式中之操作可要求在電子束E進入每一波盪器模組之前,該電子束E中之電子聚束之低能量展開。替代地,自由電子雷射FEL可包含可藉由波盪器24內之經刺激發射放大之晶種輻射源。自由電子雷射FEL可作為再循環放大器自由電子雷射(RAFEL)而操作,其中由自由電子雷射FEL產生之輻射之一部分係用以接種輻射之進一步產生。 The resonant wavelength λ em is equal to the first harmonic wavelength radiated spontaneously by the electrons moving through each undulator module. The free electron laser FEL operates in self-amplifying spontaneous emission (SASE) mode. Operation in the SASE mode may require low energy expansion of the electron bunching in the electron beam E before the electron beam E enters each undulator module. Alternatively, the free electron laser FEL can include a seed radiation source that can be amplified by the stimulated emission within the undulator 24. The free electron laser FEL can operate as a recirculating amplifier free electron laser (RAFEL), wherein a portion of the radiation produced by the free electron laser FEL is used to further generate the inoculated radiation.

藉由磁體(未展示)使出射波盪器24之電子束E轉向回至線性加速器22中。電子束E相對於藉由電子注入器21a、21b產生之電子束以180度之相位差進入線性加速器22。因此,線性加速器中之RF場用以減速自波盪器24輸出之電子且加速自電子注入器21a、21b輸出之電子。 當電子在線性加速器22中減速時,其能量中之一些經轉移至線性加速器22中之RF場。來自減速電子之能量因此由線性加速器22回收且用以加速自電子注入器21輸出之電子束E。此配置被稱為能量回收線性加速器(ERL)。 The electron beam E of the exit undulator 24 is turned back into the linear accelerator 22 by a magnet (not shown). The electron beam E enters the linear accelerator 22 with a phase difference of 180 degrees with respect to the electron beams generated by the electron injectors 21a, 21b. Therefore, the RF field in the linear accelerator is used to decelerate the electrons output from the undulator 24 and accelerate the electrons output from the electron injectors 21a, 21b. As the electrons decelerate in the linear accelerator 22, some of their energy is transferred to the RF field in the linear accelerator 22. The energy from the decelerating electrons is thus recovered by the linear accelerator 22 and used to accelerate the electron beam E output from the electron injector 21. This configuration is known as the Energy Recovery Linear Accelerator (ERL).

在藉由線性加速器22之減速後,由光束捕集器100吸收電子束ER。在下文中進一步描述包含組件30c、40c之放射性同位素產生裝置RIc。光束捕集器100可包含足夠數量之材料以吸收電子束ER。該材料可具有用於誘發放射性之臨限能量。進入光束捕集器100之能量低於臨限能量的電子可僅產生γ射線簇射,但將不誘發任何顯著等級之放射性。材料可具有高臨限能量以用於藉由電子衝擊誘發放射性之。舉例而言,光束捕集器100可包含鋁(Al),其具有大約17MeV之臨限能量。在離開線性加速器22後之電子束E之電子能量可少於17MeV(其可為(例如)大約10MeV),且因此可低於光束捕集器100之臨限能量。此情形移除或至少減少自光束捕集器100移除及安置放射性廢料之需要。 After deceleration by the linear accelerator 22, the electron beam E R is absorbed by the beam trap 100. Further comprising the components described hereinafter 30c, 40c of the radioisotope generator RI c. Beam trap 100 can include a sufficient amount of material to absorb electron beam E R . The material can have a threshold energy for inducing radioactivity. Electrons entering the beam trap 100 with energy below the threshold energy can only produce gamma ray showers, but will not induce any significant level of radioactivity. The material can have a high threshold energy for inducing radioactivity by electron impact. For example, beam trap 100 can comprise aluminum (Al) having a threshold energy of approximately 17 MeV. The electron energy of the electron beam E after exiting the linear accelerator 22 may be less than 17 MeV (which may be, for example, about 10 MeV), and thus may be lower than the threshold energy of the beam trap 100. This situation removes or at least reduces the need to remove and place radioactive waste from the beam trap 100.

除包含自由電子雷射FEL及微影裝置LA1-n之外,圖1中所描繪之系統進一步包含放射性同位素產生裝置RIa-c。描繪三個放射性同位素產生裝置RIa-c,該等裝置中之每一者具有相同的一般組態。第一放射性同位素產生裝置RIa包含線性加速器30a,該線性加速器經組態以加速由電子注入器21a提供之電子。線性加速器30a可(例如)將電子加速至大約14MeV或以上之能量。線性加速器可將電子加速至大約30MeV或以上(例如,至多大約45MeV)之能量。不將電子加速至大於約45MeV之能量可為有益的,因為在此等能量處,可產生除所需放射性同位素以外的大量非所欲產物。在實施例中,線性加速器30a可將電子加速至大約35MeV之能量。 In addition to the free electron laser FEL and lithography apparatus LA 1-n , the system depicted in Figure 1 further comprises a radioisotope generating device RI ac . Three radioisotope generating devices RI ac are depicted, each of which has the same general configuration. The first radioisotope generating device RI a includes a linear accelerator 30a configured to accelerate electrons supplied by the electron injector 21a. Linear accelerator 30a can, for example, accelerate electrons to an energy of about 14 MeV or more. Linear accelerators can accelerate electrons to an energy of about 30 MeV or more (eg, up to about 45 MeV). It may be beneficial not to accelerate the electrons to an energy greater than about 45 MeV because at these energies a large amount of undesired products other than the desired radioisotope may be produced. In an embodiment, linear accelerator 30a can accelerate electrons to an energy of approximately 35 MeV.

放射性同位素產生裝置RIa進一步包含靶40a,其經組態以接收電 子及使用電子將源材料轉化為放射性同位素。在圖2中示意性地描繪靶40a-c之實例(該靶具有相同的構造以用於放射性同位素產生裝置RIa-c中之每一者)。在圖2中,電子束E入射於電子靶42a-c上。電子靶42a-c可(例如)由鎢、鉭或將使電子減速且產生光子之一些其他材料形成。電子靶藉由支撐結構43a-c固持。電子靶可由與光子靶(例如,Mo-100)相同之材料形成。光子產生所經由之機制為制動輻射(Bremsstrahlung radiation)(在英國:制動(braking)輻射)。以此方式產生之光子之能量可(例如)大於100keV,可大於1MeV,且可大於10MeV。光子可描述為極硬的X射線。 The radioisotope generating device RI a further comprises a target 40a configured to receive electrons and to convert the source material to a radioisotope using electrons. An example of targets 40a-c are schematically depicted in Figure 2 (the targets have the same configuration for each of the radioisotope generating devices RI ac ). In Fig. 2, electron beam E is incident on electronic targets 42a-c. The electronic targets 42a-c can be formed, for example, from tungsten, tantalum, or some other material that will decelerate electrons and produce photons. The electronic target is held by the support structures 43a-c. The electron target can be formed from the same material as the photon target (eg, Mo-100). The mechanism through which photons are generated is Bramsstrahlung radiation (in the UK: braking radiation). The energy of photons produced in this manner can be, for example, greater than 100 keV, can be greater than 1 MeV, and can be greater than 10 MeV. Photons can be described as extremely hard X-rays.

在實施例中,光子靶為Mo-100,其將經由光子誘發之中子發射轉化成Mo-99。此反應具有8.29MeV之臨限能量,且因此將不在入射於光子靶上之光子具有少於8.29MeV之能量時發生。該反應具有橫截面,該橫截面在大約14MeV處達到峰值(反應橫截面指示由具有給定能量之光子誘發之反應的機率)。換言之,反應具有在大約14MeV處之諧振峰值。因此,在實施例中,具有大約14MeV或以上之能量之光子可用於將Mo-100光子靶轉化成Mo-99。 In an embodiment, the photon target is Mo-100, which will be converted to Mo-99 via photon induced neutron emission. This reaction has a threshold energy of 8.29 MeV and will therefore not occur when photons incident on the photon target have an energy of less than 8.29 MeV. The reaction has a cross section that peaks at about 14 MeV (the reaction cross section indicates the probability of a reaction induced by photons of a given energy). In other words, the reaction has a resonance peak at about 14 MeV. Thus, in an embodiment, photons having an energy of about 14 MeV or more can be used to convert the Mo-100 photon target to Mo-99.

由光子靶產生之光子之能量具有上限,該上限由電子束中之電子的能量設定。光子將具有能量分佈,但彼分佈之上限將不延伸超出電子束中之電子的能量。因此,在用於將Mo-100光子靶轉化成Mo-99的實施例中,電子束將具有至少8.29MeV之能量。在實施例中,電子束可具有大約14MeV或以上之能量。 The energy of a photon generated by a photon target has an upper limit that is set by the energy of the electrons in the electron beam. Photons will have an energy distribution, but the upper limit of the distribution will not extend beyond the energy of the electrons in the electron beam. Thus, in an embodiment for converting a Mo-100 photon target to Mo-99, the electron beam will have an energy of at least 8.29 MeV. In an embodiment, the electron beam can have an energy of about 14 MeV or more.

當電子束之能量增加時,將產生具有足以引起所需反應之能量之以上光子(用於電子之相同電流)。舉例而言,如上所述,Mo-99產生具有在大約14MeV處達到峰值之橫截面。若電子束具有大約28MeV之能量,則每一電子可產生具有大約14MeV能量之兩個光子,從而增加光子靶至Mo-99之轉化。然而,當電子束之能量增加時,具 有較高能量之光子將誘發其他非所欲之反應。舉例而言,光子誘發之中子及質子之發射具有18MeV之臨限能量。此反應係非所需的,因為其不產生Mo-99,而是產生非所欲之反應產物。 As the energy of the electron beam increases, the photons above (the same current for the electrons) will be produced with enough energy to cause the desired reaction. For example, as described above, Mo-99 produces a cross section that peaks at approximately 14 MeV. If the electron beam has an energy of about 28 MeV, each electron can produce two photons with an energy of about 14 MeV, thereby increasing the conversion of the photon target to Mo-99. However, when the energy of the electron beam increases, Photons with higher energy will induce other unintended reactions. For example, photon-induced neutrons and proton emission have a threshold energy of 18 MeV. This reaction is undesirable because it does not produce Mo-99, but rather produces an undesired reaction product.

大體而言,電子束之能量之選擇(且因此光子之最大能量)可基於所欲之產物(例如,Mo-99)之產率與非所欲之產物之產率之間的比較。在實施例中,電子束可具有大約14MeV或以上之能量。電子束可(例如)具有大約30MeV或以上(例如,至多大約45MeV)之能量。此範圍之電子束能量可提供具有大約14MeV之反應諧振峰值之能量的光子之良好生產率。電子束可(例如)具有大約35MeV之能量。 In general, the choice of energy of the electron beam (and thus the maximum energy of the photon) can be based on a comparison between the yield of the desired product (e.g., Mo-99) and the yield of the undesired product. In an embodiment, the electron beam can have an energy of about 14 MeV or more. The electron beam can, for example, have an energy of about 30 MeV or more (e.g., up to about 45 MeV). This range of electron beam energies provides good productivity of photons with an energy of the reaction resonance peak of about 14 MeV. The electron beam can, for example, have an energy of about 35 MeV.

光子自電子靶42a-c發射,且入射於藉由支撐結構45a-c固持之光子靶44a-c上。在圖2中由波浪線γ示意性地描繪光子。光子靶44a-c包含複數個板,其包含Mo-100(Mo-100為穩定的且天然產生Mo之同位素)。當光子γ入射於Mo-100胞核時,其引起中子自胞核射出所經由之光核反應。Mo-100原子由此轉化為Mo-99原子。 Photons are emitted from the electron targets 42a-c and are incident on the photon targets 44a-c held by the support structures 45a-c. Photons are schematically depicted by wavy line γ in FIG. Photon targets 44a-c comprise a plurality of plates comprising Mo-100 (Mo-100 is a stable and naturally occurring isotope of Mo). When the photon γ is incident on the Nu-100 nucleus, it causes a photonuclear reaction through which the neutron is emitted from the nucleus. The Mo-100 atom is thus converted to a Mo-99 atom.

光子靶44a-c在一時間段內接收光子γ,在該時間段期間,光子靶中之Mo-99之比例增加且光子靶中之Mo-100之比例減少。光子靶44a-c隨後自放射性同位素產生裝置RIa移除以用於對放射性藥物進行處理及輸送。為Mo-99之衰變產物的Tc-99經提取且用於醫療診斷應用中。 Photon targets 44a-c receive photons γ over a period of time during which the proportion of Mo-99 in the photon target increases and the proportion of Mo-100 in the photon target decreases. 44a-c then target photons from a radioisotope generator RI a removed for processing and delivery of radiopharmaceuticals. Tc-99, which is a decay product of Mo-99, is extracted and used in medical diagnostic applications.

儘管圖2中所展示之光子靶44a-c包含三個板,但光子靶可包含任何合適數目之板。儘管所描述光子靶包含Mo-100,但光子靶可包含任何合適之材料。類似地,光子靶之材料可以任何合適形狀及/或組態提供。屏蔽(例如,鉛屏蔽)可提供在電子靶42a-c及光子靶44a-c周圍。 Although the photon targets 44a-c shown in Figure 2 comprise three plates, the photon target can comprise any suitable number of plates. Although the photon target described comprises Mo-100, the photon target can comprise any suitable material. Similarly, the material of the photon target can be provided in any suitable shape and/or configuration. A shield (eg, a lead shield) can be provided around the electronic targets 42a-c and the photon targets 44a-c.

儘管電子靶42a-c經描繪為材料之單一區塊,但其可提供為複數個板。板可(例如)具有與上文所描述之光子靶板44a-c對應之構造。類似地,支撐結構43a-c可經組態以固持複數個電子靶板。 Although the electronic targets 42a-c are depicted as a single block of material, they can be provided in a plurality of plates. The plates may, for example, have configurations corresponding to the photon targets 44a-c described above. Similarly, the support structures 43a-c can be configured to hold a plurality of electronic targets.

電子靶42a-c及光子靶44a-c可提供於冷卻劑液體所流經之管道中,如下文進一步描述。 Electronic targets 42a-c and photon targets 44a-c can be provided in the conduit through which the coolant liquid flows, as further described below.

再次參考圖1,在藉由第一電子注入器21a產生之電子束EI並不由自由電子雷射FEL使用以產生EUV輻射光束BFEL時,執行使用第一放射性同位素產生裝置RIa之放射性同位素之產生。反衝器31引導電子束EI朝向第一放射性同位素產生裝置RIa。第二電子注入器21b可操作以在此時間期間將電子束E提供至自由電子雷射FEL。在第二電子注入器21b之後提供之反衝器32不引導電子束E朝向第二放射性同位素產生裝置,而是允許電子束行進至線性加速器22。兩個電子注入器21a、21b同時操作,第一電子注入器21a提供用於產生放射性同位素之電子束且第二電子注入器21b提供由自由電子雷射FEL使用以產生EUV輻射光束BFEL之電子束。 Referring again to FIG. 1, when the electron beam E I generated by the first electron injector 21a is not used by the free electron laser FEL to generate the EUV radiation beam B FEL , the radioisotope using the first radioisotope generating device RI a is performed . Produced. The recoiler 31 directs the electron beam E I toward the first radioisotope generating device RI a . The second electron injector 21b is operable to provide an electron beam E to the free electron laser FEL during this time. The backflush 32 provided after the second electron injector 21b does not direct the electron beam E toward the second radioisotope generating device, but allows the electron beam to travel to the linear accelerator 22. The two electron injectors 21a, 21b operate simultaneously, the first electron injector 21a provides an electron beam for generating a radioisotope and the second electron injector 21b provides an electron used by the free electron laser FEL to generate an EUV radiation beam B FEL bundle.

第二放射性同位素產生裝置RIb具有與第一放射性同位素產生裝置RIa相同之組態,且因此包含線性加速器30b及靶40b。當第二電子注入器21b提供由放射性同位素產生裝置RIb使用以產生放射性同位素之電子束時,第一電子注入器21a提供由自由電子雷射FEL使用以產生EUV輻射光束BFEL之電子束。電子束E所行進之路徑因此與圖1中描繪之彼等路徑相反。藉由切換反衝器31、32之組態達成電子束路徑之切換。第一反衝器31不再將由第一電子注入器21a產生之電子束引導至第一放射性同位素產生裝置RIa,而是允許電子束行進至自由電子雷射之線性加速器22。第二反衝器32將由第二電子注入器21b產生之電子束引導至第二放射性同位素產生裝置RIbThe second radioisotope generating device RI b has the same configuration as the first radioisotope generating device RI a and thus comprises a linear accelerator 30b and a target 40b. When the second electron injecting 21b is provided by the generating means RI b radioisotopes used in the generation of an electron beam radioisotopes, electron injector 21a provides a first free electrons using FEL laser beam to generate EUV radiation of the electron beam B FEL. The path traveled by the electron beam E is thus opposite to the path depicted in Figure 1. The switching of the electron beam path is achieved by switching the configuration of the recoilers 31, 32. A first electron beam 21a of a recoil generating device 31 is no longer guided by the first electron injection to the first generating means radioisotope RI a, but allows linear accelerator electron beam travels to the free electron laser 22. The second electron beam 32 by the recoil electron injector second guide 21b to the second generation of radioisotopes generating means RI b.

第三放射性同位素產生裝置RIc定位在線性加速器22之後。線性加速器22為能量回收線性加速器,且提供已自其回收能量之電子束ER。此電子束ER具有一能量,該能量實質上對應於自電子注入器21a、21b提供之電子束E在藉由線性加速器22加速之前的能量。如自 電子注入器21a、21b輸出及在線性加速器22中之能量回收之後的電子束的能量可(例如)為大約10MeV。 The third radioisotope generating device RI c is positioned after the linear accelerator 22. The linear accelerator 22 is an energy recovery linear accelerator and provides an electron beam E R from which energy has been recovered. The electron beam E R has an energy substantially corresponding to the energy of the electron beam E supplied from the electron injectors 21a, 21b before being accelerated by the linear accelerator 22. The energy of the electron beam, such as output from the electron injectors 21a, 21b and after energy recovery in the linear accelerator 22, can be, for example, about 10 MeV.

與先前所描述之放射性同位素產生裝置相同,第三放射性同位素產生裝置RIc包含線性加速器30c,其經組態以增加電子束中之電子之能量。線性加速器30c可(例如)將電子加速至15MeV或以上之能量。線性加速器30c可將電子加速至30MeV或以上(例如,至多大約45MeV)之能量。在實施例中,線性加速器30c可將電子加速至大約35MeV之能量。放射性同位素產生裝置進一步包含靶40c。靶40c與上文結合圖2描述之靶對應,且包含電子靶42a-c及光子靶44a-c(參見圖2)。 Radioisotopes generating the same as the previously described apparatus, the third generating means RI c radioisotope comprises a linear accelerator 30c, which was configured to increase the energy of the electron beam of electrons. The linear accelerator 30c can, for example, accelerate electrons to an energy of 15 MeV or more. Linear accelerator 30c can accelerate electrons to an energy of 30 MeV or more (eg, up to about 45 MeV). In an embodiment, linear accelerator 30c can accelerate electrons to an energy of approximately 35 MeV. The radioisotope generating device further comprises a target 40c. Target 40c corresponds to the target described above in connection with Figure 2 and comprises electronic targets 42a-c and photon targets 44a-c (see Figure 2).

當放射性同位素產生不需要使用第三放射性同位素產生裝置RIc時,將電子束ER引導至光束捕集器100,而非引導至第三放射性同位素產生裝置。在圖1中,電子束經引導至光束捕集器100(如藉由實線所指示),且不引導至第三放射性同位素產生裝置RIc(如藉由虛線所指示)。然而,電子束ER可藉由反衝器33引導朝向第三放射性同位素產生裝置RIc。在實施例中,第三放射性同位素產生裝置RIc可為可操作以與第一(或第二)放射性同位素產生裝置RIa、RIb同時產生無線電同位素。 When the radioisotope is generated without the use of a third means generating a radioisotope RI c, E R electron beam directed to the beam trap 100 rather than a radioisotope guided to the third generation means. In FIG 1, an electron beam 100 (as indicated by a solid line) is channeled to the beam trap, and not directed to the third generating means radioisotope RI c (as indicated by a broken line). However, the electron beam E R can be directed toward the third radioisotope generating device RI c by the recoil 33. In an embodiment, the third radioisotope generating device RI c may be operable to simultaneously generate a radio isotope with the first (or second) radioisotope generating device RI a , RI b .

合併器(未展示)可用於組合由電子注入器21a、21b提供之電子束與再循環電子束E。拆分器(未展示)可用於分離已自其回收能量之電子束ER與已藉由線性加速器22加速之電子束E。 A combiner (not shown) can be used to combine the electron beam provided by the electron injectors 21a, 21b with the recycled electron beam E. A splitter (not shown) can be used to separate the electron beam E R from which energy has been recovered and the electron beam E that has been accelerated by the linear accelerator 22.

儘管圖1展示在自由電子雷射FEL之線性加速器22之前及之後定位之放射性同位素產生裝置RIa-c,但在其他實施例中,放射性同位素產生裝置可僅提供於彼等位置中之一者中(亦即,僅提供在線性加速器之前或僅提供在線性加速器之後)。 Although FIG. 1 shows a radioisotope generating device RI ac positioned before and after the linear accelerator 22 of the free electron laser FEL, in other embodiments, the radioisotope generating device may be provided only in one of its positions ( That is, it is provided only before the linear accelerator or only after the linear accelerator).

儘管圖1中所說明之實施例為能量回收線性加速器,但放射性同 位素產生裝置可經提供作為系統之部分,該系統包含具有不為能量回收線性加速器之加速器的自由電子雷射FEL。舉例而言,放射性同位素產生裝置可提供在自由電子雷射之一或多個電子注入器之後,該自由電子雷射包含不為能量回收線性加速器之線性加速器。 Although the embodiment illustrated in Figure 1 is an energy recovery linear accelerator, the radioactivity is the same The morphogenetic device can be provided as part of a system comprising a free electron laser FEL having an accelerator that is not an energy recovery linear accelerator. For example, a radioisotope generating device can be provided after one or more electron injectors of a free electron laser that includes a linear accelerator that is not an energy recovery linear accelerator.

雖然圖1中僅描繪單一線性加速器22,但自由電子雷射FEL可包含兩個或兩個以上線性加速器。舉例而言,線性加速器可提供在波盪器24描繪於圖1中之位置處。在此情況下,電子束可穿過線性加速器複數次,以使得電子束藉由每一線性加速器加速兩次或兩次以上。在此配置中,光束拆分器可用於分離經加速之電子束,以使得其穿過波盪器以產生EUV輻射光束。光束合併器可接著用於將電子束自波盪器引導返回至線性加速器中以用於後續減速。 Although only a single linear accelerator 22 is depicted in FIG. 1, a free electron laser FEL may include two or more linear accelerators. For example, a linear accelerator can be provided at the location of undulator 24 depicted in FIG. In this case, the electron beam can pass through the linear accelerator a plurality of times such that the electron beam is accelerated twice or more by each linear accelerator. In this configuration, the beam splitter can be used to separate the accelerated electron beam such that it passes through the undulator to produce an EUV radiation beam. The beam combiner can then be used to direct the electron beam from the undulator back into the linear accelerator for subsequent deceleration.

圖3示意性地描繪根據本發明之實施例之電子注入器及放射性同位素產生裝置的配置。在圖3中,展示四個電子注入器121a-d,且展示三個放射性同位素產生裝置RId-f。每一電子注入器121a-d包含電子源122a-d及提供加速電場之升壓器123a-d。每一電子源可(例如)包含藉由雷射(未展示)所產生之脈衝式雷射光束照射的光電陰極。由每一升壓器123a-d提供之加速電場可(例如)將由電子源122a-d提供之電子加速至大約10MeV之能量(或一些其他相對論能量)。 FIG. 3 schematically depicts an arrangement of an electron injector and a radioisotope generating apparatus according to an embodiment of the present invention. In Figure 3, four electron injectors 121a-d are shown and three radioisotope generating devices RIdf are shown . Each of the electron injectors 121a-d includes electron sources 122a-d and boosters 123a-d that provide an accelerating electric field. Each electron source can, for example, comprise a photocathode that is illuminated by a pulsed laser beam generated by a laser (not shown). The accelerating electric field provided by each of the boosters 123a-d can, for example, accelerate the electrons provided by the electron sources 122a-d to an energy of about 10 MeV (or some other relativistic energy).

每一放射性同位素產生裝置RId-f包含線性加速器130a-c。每一線性加速器經描繪為三個模組,但可包含任何合適數目之模組(包括(例如)單一模組)。每一線性加速器130a-c可將電子束中之電子加速至15MeV或以上之能量。每一線性加速器130a-c可將電子加速至30MeV或以上(例如,至多大約45MeV)之能量。在實施例中,每一線性加速器130a-c可將電子加速至大約35MeV之能量。 Each radioisotope generating device RI df includes linear accelerators 130a-c. Each linear accelerator is depicted as three modules, but may include any suitable number of modules (including, for example, a single module). Each linear accelerator 130a-c can accelerate electrons in the electron beam to an energy of 15 MeV or more. Each linear accelerator 130a-c can accelerate electrons to an energy of 30 MeV or more (eg, up to about 45 MeV). In an embodiment, each linear accelerator 130a-c can accelerate electrons to an energy of approximately 35 MeV.

每一放射性同位素產生裝置RId-f進一步包含靶140a-c。靶可與圖2中所展示之靶對應。靶140a-c接收已藉由線性加速器130a-c加速之電 子且將源材料轉化為放射性同位素。 Each radioisotope generating device RI df further comprises targets 140a-c. The target can correspond to the target shown in Figure 2. Targets 140a-c receive electrons that have been accelerated by linear accelerators 130a-c and convert the source material to a radioisotope.

亦在圖3中描繪形成自由電子雷射FEL之部分的線性加速器122。線性加速器122接收由電子注入器121a-d中之一者產生之電子束並以上文結合圖1進一步描述之方式使用波盪器(未展示)對其加速以用於EUV產生。 A linear accelerator 122 that forms part of a free electron laser FEL is also depicted in FIG. Linear accelerator 122 receives the electron beam generated by one of electron injectors 121a-d and accelerates it for EUV generation using a undulator (not shown) in the manner described further above in connection with FIG.

如將自圖3所瞭解,由於存在四個電子注入器121a-d及僅三個放射性同位素產生裝置RId-f,所有放射性同位素產生裝置可為可操作以在EUV輻射光束藉由自由電子雷射產生的同時產生放射性同位素。反衝器(未描繪)可用於在放射性同位素產生裝置RId-f與自由電子雷射之線性加速器122之間切換電子束。電子束路徑經配置以使得每一放射性同位素產生裝置RId-f可自兩個不同電子注入器121a-d接收電子束。舉例而言,第一放射性同位素產生裝置RId可自第一電子注入器121a或自第二電子注入器121b接收電子束。因此,例如,第一電子注入器121a可用於將電子束提供至線性加速器122,而第二電子注入器121b用於將電子束提供至第一放射性同位素產生裝置RId。替代地,第一電子注入器121a可用於將電子束提供至第一放射性同位素產生裝置RId,而第二電子注入器121b用於將電子束提供至線性加速器122。電子束路徑之各種組合為可能的,如將自圖3之考量所理解。 As will be understood from Figure 3, due to the presence of four electron injectors 121a-d and only three radioisotope generating devices RIdf , all radioisotope generating devices can be operable to generate EUV radiation beams by free electron lasers. At the same time, radioisotopes are produced. A backflush (not depicted) can be used to switch the electron beam between the radioisotope generating device RI df and the free electron laser linear accelerator 122. The electron beam path is configured such that each radioisotope generating device RI df can receive an electron beam from two different electron injectors 121a-d. For example, the first generating means RI d may be a radioisotope from the first electron injector 121a or 121b is received a second electron injection from the electron beam. Thus, for example, a first electron injector 121a may be used to provide an electron beam to the linear accelerator 122, and the second electronic device 121b for injecting an electron beam generating means provided to the first radioisotope RI d. Alternatively, the first electron injector 121a may be used to provide an electron beam generating means to the first radioisotope RI d, 121b and the second electron injection is used to provide an electron beam 122 to a linear accelerator. Various combinations of electron beam paths are possible, as will be understood from the considerations of FIG.

在實施例中,包含自由電子雷射及放射性同位素產生裝置之系統可經組態以提供具有10mA或以上之電流的電子束。由系統提供之電流可(例如)為20mA或以上或可為30mA或以上。電流可(例如)至多100mA或以上。具有高電流(例如,10mA或以上)之電子束為有利的,因為其增加藉由放射性同位素產生裝置產生之放射性同位素之放射性比度。 In an embodiment, a system comprising a free electron laser and radioisotope generating device can be configured to provide an electron beam having a current of 10 mA or more. The current provided by the system can be, for example, 20 mA or more or can be 30 mA or more. The current can be, for example, at most 100 mA or more. An electron beam having a high current (e.g., 10 mA or more) is advantageous because it increases the radioactivity ratio of the radioisotope produced by the radioisotope generating device.

如上文進一步所解釋,可使用藉由電子束擊中電子靶產生之極硬X射線光子將Mo-100轉化為Mo-99(所需放射性同位素)。Mo-99之 半衰期為66個小時。由於此半衰期,存在對Mo-99之放射性比度之限制,該放射性比度可在開始於Mo-100時提供,該限制由產生Mo-99之速率判定。若Mo-99以相對較低的速率產生(例如,使用大約1至3mA之電子束電流),則其可不可能在靶中提供超過Mo-99之大約40Ci/g的放射性比度。此係由於儘管輻照時間可增加以便允許產生更多Mo-99原子,但顯著比例之彼等原子將在輻照時間期間衰變。在歐洲用於醫療應用之Mo-99之放射性比度的臨限值應為100Ci/g,且因此具有40Ci/g或以下之放射性比度之Mo-99不適用。 As explained further above, Mo-100 can be converted to Mo-99 (the desired radioisotope) using extremely hard X-ray photons generated by electron beam hitting the electron target. Mo-99 The half-life is 66 hours. Due to this half-life, there is a limit to the radioactivity ratio of Mo-99, which can be provided at the beginning of Mo-100, which is determined by the rate at which Mo-99 is produced. If Mo-99 is produced at a relatively low rate (e.g., using a beam current of about 1 to 3 mA), it may not be possible to provide a radioactivity ratio in the target that exceeds about 40 Ci/g of Mo-99. This is due to the fact that although the irradiation time can be increased to allow for the production of more Mo-99 atoms, a significant proportion of their atoms will decay during the irradiation time. The radioactivity ratio of Mo-99 for medical applications in Europe should be 100 Ci/g, and thus Mo-99 having a radioactivity ratio of 40 Ci/g or less is not applicable.

當使用較高電子束電流時,產生Mo-99原子之速率相應地增加(假定接收光子之Mo-99之容積保持不變)。因此,例如,對於Mo-99之給定容積,10mA之電子束電流將以由1mA之電子束電流提供之產生速率的10倍產生Mo-99。由本發明之實施例使用之電子束電流可為充分高的,使得達成超過100Ci/g之Mo-99之放射性比度。舉例而言,本發明之實施例可提供具有大約30mA之光束電流的電子束。模擬指示對於大約30mA之光束電流,若電子束具有大約35MeV之能量且Mo-100靶之容積係大約5000mm3,則可獲得超過100Ci/g之Mo-99之放射性比度。Mo-100靶可(例如)包含具有大約25mm之直徑及大約0.5mm之厚度的20個板。可使用其他數目之可具有非圓形形狀且可具有其他厚度之板。 When a higher beam current is used, the rate at which Mo-99 atoms are produced increases correspondingly (assuming that the volume of Mo-99 receiving photons remains the same). Thus, for example, for a given volume of Mo-99, a beam current of 10 mA will produce Mo-99 at a rate 10 times that produced by a beam current of 1 mA. The beam current used by embodiments of the present invention can be sufficiently high to achieve a radioactivity ratio of Mo-99 in excess of 100 Ci/g. For example, embodiments of the present invention can provide an electron beam having a beam current of approximately 30 mA. The simulation indicates that for a beam current of about 30 mA, if the electron beam has an energy of about 35 MeV and the volume of the Mo-100 target is about 5000 mm 3 , a radioactivity ratio of Mo-99 exceeding 100 Ci/g can be obtained. The Mo-100 target can, for example, comprise 20 plates having a diameter of about 25 mm and a thickness of about 0.5 mm. Other numbers of plates that may have a non-circular shape and may have other thicknesses may be used.

如上文進一步所述,本發明之實施例之電子注入器可為由脈衝式雷射光束照射之光電陰極。雷射可(例如)包含Nd:YAG雷射連同相關聯光學放大器。雷射可經組態以產生皮秒雷射脈衝。電子束之電流可藉由調整脈衝式雷射光束之功率而調整。舉例而言,增加脈衝式雷射光束之功率將增加自光電陰極發射之電子的數目且因此增加電子束電流。 As further described above, the electron injector of an embodiment of the invention may be a photocathode illuminated by a pulsed laser beam. The laser can, for example, comprise a Nd:YAG laser along with an associated optical amplifier. The laser can be configured to generate picosecond laser pulses. The current of the electron beam can be adjusted by adjusting the power of the pulsed laser beam. For example, increasing the power of a pulsed laser beam will increase the number of electrons emitted from the photocathode and thus increase the beam current.

由根據本發明之實施例之放射性同位素產生裝置接收之電子束 可(例如)具有1毫米之直徑及1毫雷得之發散度。增加電子束中之電流將往往會使電子歸因於空間電荷效應而分散開,且因此可增加電子束之直徑。增加電子束之電流可因此降低電子束之亮度。然而,放射性同位素產生裝置不需要具有(例如)1mm之直徑之電子束且可利用具有更大直徑之電子束。因此,增加電子束之電流可不將光束之亮度降低至明顯不利地影響放射性同位素產生的此範圍。實際上,如下文進一步所解釋,由於其散佈藉由電子束遞送之熱負荷,提供具有大於1mm之直徑之電子束可為有利的。 Electron beam received by a radioisotope generating device according to an embodiment of the present invention It may, for example, have a diameter of 1 mm and a divergence of 1 milliretre. Increasing the current in the electron beam will tend to disperse the electrons due to the space charge effect and thus increase the diameter of the electron beam. Increasing the current of the electron beam can thus reduce the brightness of the electron beam. However, the radioisotope generating device does not require an electron beam having a diameter of, for example, 1 mm and can utilize an electron beam having a larger diameter. Therefore, increasing the current of the electron beam may not reduce the brightness of the beam to such a range that significantly adversely affects the production of the radioisotope. In fact, as explained further below, it may be advantageous to provide an electron beam having a diameter greater than 1 mm due to its thermal loading by electron beam delivery.

圖4示意性地展示根據本發明之實施例之放射性同位素產生裝置的靶240。靶240包含光子靶242及電子靶244。光子靶包含由支撐結構(未展示)固持之四個板251。儘管展示四個板,但可提供任何數目之板。板251可(例如)為碟形。板可具有任何合適之形狀。板251可由鎢、鉭或將減速電子且產生光子之一些其他材料形成。板251位於管道252中,該管道連接至冷卻劑流體源(未展示)。在放射性同位素產生裝置之操作期間,電子束將遞送大量熱量至板251。流經管道252之冷卻劑流體自板251移除此熱量中之一些並將其載離。冷卻劑流體可為水或一些其他合適液體,或可為諸如氦之氣體。 Figure 4 schematically shows a target 240 of a radioisotope generating device in accordance with an embodiment of the present invention. Target 240 includes a photon target 242 and an electron target 244. The photon target comprises four plates 251 held by a support structure (not shown). Although four panels are shown, any number of panels can be provided. The plate 251 can be, for example, in the shape of a dish. The board can have any suitable shape. Plate 251 may be formed of tungsten, tantalum, or some other material that will decelerate electrons and produce photons. Plate 251 is located in conduit 252 that is connected to a source of coolant fluid (not shown). During operation of the radioisotope generating device, the electron beam will deliver a significant amount of heat to the plate 251. The coolant fluid flowing through conduit 252 removes some of this heat from plate 251 and carries it away. The coolant fluid can be water or some other suitable liquid, or can be a gas such as helium.

在替代配置中,鉛鉍共晶(LBE)可被用作電子靶及冷卻劑液體兩者。LBE提供優勢其具有比其他冷卻劑液體(例如,水)更高之沸點的優勢。其他合適的液體可被用作電子靶及冷卻劑液體兩者。 In an alternative configuration, lead-bismuth eutectic (LBE) can be used as both an electron target and a coolant liquid. LBE offers the advantage of having a higher boiling point than other coolant liquids (eg, water). Other suitable liquids can be used as both the electron target and the coolant liquid.

圖4中所展示之光子靶包含由一材料形成之二十個板253,該材料將在極硬X射線入射於其上時轉化成放射性同位素。材料可(例如)為Mo-100。儘管展示二十個板,但可提供任何數目之板。板253可(例如)為碟形。板可具有任何合適之形狀。板253由包含一對支撐件257之支撐結構固持。板253位於經組態以輸送冷卻劑液體之管道254中。管道254在橫向於圖之平面的方向上延伸。入射於板253上之光子將遞 送大量熱量至板。此熱量中之一些經轉移至流經管道254之冷卻劑液體,且冷卻劑液體將熱量載離板253。冷卻劑液體可為水或可為一些其他合適流體。 The photon target shown in Figure 4 comprises twenty plates 253 formed of a material that will be converted to a radioisotope upon the incidence of very hard X-rays thereon. The material can be, for example, Mo-100. Although twenty boards are shown, any number of boards can be provided. Plate 253 can be, for example, a dish. The board can have any suitable shape. The plate 253 is held by a support structure including a pair of supports 257. Plate 253 is located in conduit 254 that is configured to deliver coolant liquid. The conduit 254 extends in a direction transverse to the plane of the drawing. The photons incident on the plate 253 will be handed over Send a lot of heat to the board. Some of this heat is transferred to the coolant liquid flowing through conduit 254, and the coolant liquid carries heat away from plate 253. The coolant liquid can be water or can be some other suitable fluid.

光子靶板253藉由支撐結構固持,該支撐結構包含具備凹槽之一對支撐件257。板253嵌入凹槽中且由此藉由支撐件257固持在適當的位置。支撐件257經組態以使得其不防止冷卻液體之流經管道254(支撐件主要在冷卻劑流體流動方向上延伸,而非跨越冷卻劑流體流動之方向延伸)。任何合適的支撐結構可用於支撐光子靶板253。儘管未說明,但支撐結構亦用於支撐電子靶板251。支撐結構可具有與光子板支撐結構對應之組態,或可具有任何其他合適形式。 The photon target plate 253 is held by a support structure comprising a pair of supports 257 having a groove. The plate 253 is embedded in the recess and is thus held in place by the support 257. The support 257 is configured such that it does not prevent the flow of cooling liquid through the conduit 254 (the support extends primarily in the direction of coolant fluid flow, rather than extending across the direction of coolant fluid flow). Any suitable support structure can be used to support the photon target plate 253. Although not illustrated, the support structure is also used to support the electronic target plate 251. The support structure can have a configuration corresponding to the photonic board support structure, or can have any other suitable form.

圖5示意性地描繪根據本發明之實施例之可形成放射性同位素產生裝置之部分的蘭金(Rankine)循環廢熱回收系統。廢熱回收系統包含封閉迴路,流體圍繞該封閉迴路循環(流體循環之方向藉由箭頭指示)。封閉迴路具備加熱器260、膨脹渦輪機261、冷凝器262及泵263。膨脹渦輪機261連接至發電器264,且在其旋轉時驅動發電器。 Figure 5 schematically depicts a Rankine cycle waste heat recovery system that can form part of a radioisotope generating device in accordance with an embodiment of the present invention. The waste heat recovery system includes a closed circuit around which the fluid circulates (the direction of fluid circulation is indicated by arrows). The closed circuit includes a heater 260, an expansion turbine 261, a condenser 262, and a pump 263. The expansion turbine 261 is coupled to the generator 264 and drives the generator as it rotates.

加熱器260自電子靶242及/或光子靶244接收熱量。在實施例中,封閉迴路之冷卻劑液體藉由流經圖4中描繪之管道252、254中之任一者或兩者加熱。生成之經加熱流體傳遞至膨脹渦輪機261且流經膨脹渦輪機,由此使其旋轉。膨脹渦輪機261驅動發電器264旋轉,由此產生電力。由於經加熱流體藉由驅動膨脹渦輪機261及發電器264執行工作,由此自流體移除能量。流體隨後藉由冷凝器262冷凝。所得液體藉由泵263泵送至加熱器260中。隨後重複廢熱回收循環。 Heater 260 receives heat from electronic target 242 and/or photon target 244. In an embodiment, the closed loop coolant liquid is heated by flowing through either or both of the conduits 252, 254 depicted in FIG. The generated heated fluid is transferred to expansion turbine 261 and through the expansion turbine, thereby causing it to rotate. The expansion turbine 261 drives the generator 264 to rotate, thereby generating electric power. Since the heated fluid performs work by driving the expansion turbine 261 and the generator 264, energy is removed from the fluid. The fluid is then condensed by condenser 262. The resulting liquid is pumped into heater 260 by pump 263. The waste heat recovery cycle is then repeated.

在上文所描述之實施例中,冷卻電子靶及光子靶之液體為廢熱回收系統之工作流體。在任何替代配置中,用於冷卻電子靶及光子靶之液體可保持與廢熱回收系統之工作流體分離。在此情況下,熱交換器可用於自用以冷卻電子靶及廢熱回收系統之工作流體之液體轉移熱 量。具有兩個分離流體之優勢在於此避免材料自電子靶或光子靶進入膨脹渦輪機261或廢熱回收系統之其他部分的可能性。另一優勢在於流體可用於廢熱回收系統中,該系統具有與用於冷卻電子靶及光子靶之流體不同之性質。舉例而言,廢熱回收系統可使用有機工作流體,諸如HFC(例如,R134a或R245fa),該有機工作流體可不適合作為用於電子靶242或光子靶244之冷卻液體。 In the embodiments described above, the liquid that cools the electronic target and the photon target is the working fluid of the waste heat recovery system. In any alternative configuration, the liquid used to cool the electronic target and the photon target can remain separated from the working fluid of the waste heat recovery system. In this case, the heat exchanger can be used for liquid transfer heat of the working fluid used to cool the electronic target and the waste heat recovery system. the amount. The advantage of having two separate fluids here avoids the possibility of the material entering the expansion turbine 261 or other parts of the waste heat recovery system from the electronic target or photon target. Another advantage is that the fluid can be used in a waste heat recovery system that has properties different from those used to cool the electronic target and the photon target. For example, the waste heat recovery system may use an organic working fluid, such as HFC (eg, R134a or R245fa), which may not be suitable as a cooling liquid for electronic target 242 or photon target 244.

儘管圖5中所展示之廢熱回收系統為蘭金循環系統,但可使用任何合適的廢熱回收系統。舉例而言,可使用史特林引擎或佈雷頓循環系統。 Although the waste heat recovery system shown in Figure 5 is a Rankine cycle system, any suitable waste heat recovery system can be used. For example, a Stirling engine or a Brayton cycle system can be used.

在實施例中,入射於電子靶上之電子束E包含具有大約35MeV之能量的電子,且電子束電流在30mA與100mA之間。因此,大約1MW與大約3.5MW之間的功率可遞送至電子靶及光子靶。此顯著比例之功率可使用本發明之實施例轉化成電力。電力可被用作用於產生及加速電子束之電源之組件。 In an embodiment, the electron beam E incident on the electron target comprises electrons having an energy of about 35 MeV, and the beam current is between 30 mA and 100 mA. Thus, power between about 1 MW and about 3.5 MW can be delivered to the electronic target and photon target. This significant proportion of power can be converted to electricity using embodiments of the present invention. Power can be used as a component for generating and accelerating the power of the electron beam.

如上所述,電子束可遞送大量功率(例如,至多大約3.5MW)至電子靶。電子束可(例如)具有大約1mm之直徑。為了避免對電子靶可能的損害,放射性同位素產生裝置可包含電子束分佈裝置,其經組態以控制電子束入射於其上之電子靶的表面積。 As noted above, the electron beam can deliver a significant amount of power (eg, up to about 3.5 MW) to the electron target. The electron beam can, for example, have a diameter of about 1 mm. To avoid possible damage to the electronic target, the radioisotope generating device can include an electron beam distribution device configured to control the surface area of the electron target onto which the electron beam is incident.

電子束分佈裝置之實施例示意性地在圖6中描繪。在此實施例中,透鏡300用於散焦電子束E,且因此增加其直徑。電子束E之直徑可(例如)增加了10倍或更多倍。電子束之直徑可(例如)增加至若干公分(例如,至多大約10cm)。電子束之直徑可增加至通常與電子靶板之大小對應的大小。增加電子束E之直徑係有利的,係因為其增加熱負荷所施加至之電子靶板之面積。 An embodiment of an electron beam distribution device is schematically depicted in Figure 6. In this embodiment, the lens 300 is used to defocus the electron beam E and thus increase its diameter. The diameter of the electron beam E can be increased, for example, by a factor of 10 or more. The diameter of the electron beam can be increased, for example, to a few centimeters (e.g., up to about 10 cm). The diameter of the electron beam can be increased to a size generally corresponding to the size of the electronic target. Increasing the diameter of the electron beam E is advantageous because it increases the area of the electron target to which the thermal load is applied.

在圖6中,第二透鏡301用於準直由第一透鏡300所引起之散焦之後的電子束E。由於發散電子束將增加藉由電子靶產生之光子的發散 度,電子束E之準直為適用的。此又將需要較大光子以便收集光子,其將減少在光子靶處產生之Mo-99(或其他放射性同位素)之放射性比度。 In FIG. 6, the second lens 301 is used to collimate the electron beam E after defocusing caused by the first lens 300. Since the diverging electron beam will increase the divergence of photons generated by the electron target Degree, the collimation of the electron beam E is applicable. This in turn will require larger photons to collect photons, which will reduce the radioactivity ratio of Mo-99 (or other radioisotope) produced at the photon target.

透鏡300、301可(例如)由磁體形成。透鏡可(例如)為四極透鏡。 The lenses 300, 301 can be formed, for example, from a magnet. The lens can be, for example, a quadrupole lens.

圖7展示電子束分佈裝置之另一實施例。此實施例包含反衝器305,該反衝器經組態以移動電子束E跨越電子束靶(未展示)之表面。反衝器可(例如)經組態以在掃描運動中使電子束移動遍及電子束靶之表面。此可藉由施加連續改變電壓至反衝器之板來達成。 Figure 7 shows another embodiment of an electron beam distribution device. This embodiment includes a recoil 305 that is configured to move the electron beam E across the surface of an electron beam target (not shown). The kickback can, for example, be configured to move the electron beam throughout the surface of the electron beam target during the scanning motion. This can be achieved by applying a plate that continuously changes the voltage to the backflush.

圖8描繪電子束分佈裝置之另一實施例。在此實施例中,反衝器306移動電子束E,以使得其經引導朝向三個靶340a-c中之一者。每一靶包含電子靶及光子靶(例如,如上文進一步描述)。反衝器306經組態以週期性地在三個靶340a-c之間切換電子束E的方向。此可藉由在施加至反衝器306之三個不同電壓之間週期性地切換來達成。在三個不同靶340a-c之間切換電子束E係有利的,係因為其在彼等三個靶之間分佈電子束之熱負荷。 Figure 8 depicts another embodiment of an electron beam distribution device. In this embodiment, the recoiler 306 moves the electron beam E such that it is directed toward one of the three targets 340a-c. Each target comprises an electron target and a photon target (eg, as further described above). The kicker 306 is configured to periodically switch the direction of the electron beam E between the three targets 340a-c. This can be achieved by periodically switching between three different voltages applied to the kickback 306. Switching the electron beam E between three different targets 340a-c is advantageous because it distributes the thermal load of the electron beam between the three targets.

圖6中所描繪之實施例可與圖7及圖8中所描繪之實施例組合使用。亦即,電子束E之橫截面積可在使用反衝器之分佈之前增加。 The embodiment depicted in Figure 6 can be used in combination with the embodiments depicted in Figures 7 and 8. That is, the cross-sectional area of the electron beam E can be increased before the distribution of the backflush is used.

儘管本發明之實施例已結合放射性同位素Mo-99之產生描述,但本發明之實施例可用於產生其他放射性同位素。大體而言,本發明之實施例可用於產生可經由極硬X射線之方向形成至源材料上之任何放射性同位素。 Although embodiments of the invention have been described in connection with the generation of the radioisotope Mo-99, embodiments of the invention can be used to generate other radioisotopes. In general, embodiments of the invention can be used to create any radioisotope that can be formed onto the source material via the direction of the extremely hard X-rays.

本發明之優勢為其在不需要使用高通量核反應器的情況下提供放射性同位素之產生。另一優勢在於其不需要使用高度濃縮之鈾(受制於非增殖規則之危險材料)。 An advantage of the present invention is that it provides for the production of radioisotopes without the need to use high throughput nuclear reactors. Another advantage is that it does not require the use of highly concentrated uranium (dangerous materials subject to non-proliferation rules).

由於其已利用自由電子雷射所需之裝置,提供放射性同位素產生裝置作為亦包含自由電子雷射之系統之部分係有利的。亦即,放射 性同位素產生使用已部分提供之裝置。類似地,放射性同位素產生裝置可位於地下空間(該地下空間可被稱為料倉)中,該地下空間包括含有輻射且防止輻射擴散至環境之屏蔽件。地下空間及屏蔽件中之至少一些可已提供作為自由電子雷射之部分,且因此避免提供用於放射性同位素產生裝置之完全獨立之地下空間及相關聯屏蔽件的費用。 Since it has utilized the means required for free electron lasers, it is advantageous to provide a radioisotope generating device as part of a system that also includes free electron lasers. That is, radiation Sex isotope production uses a device that has been partially provided. Similarly, a radioisotope generating device can be located in an underground space (which can be referred to as a silo) that includes a shield that contains radiation and prevents radiation from diffusing to the environment. At least some of the underground space and the shield may have been provided as part of a free electron laser and thus avoid the expense of providing a completely separate underground space and associated shield for the radioisotope generating device.

在實施例中,系統可包含能夠彼此獨立地操作之自由電子雷射及放射性同位素產生裝置。舉例而言,自由電子雷射可能夠在無放射性同位素產生裝置操作之情況下操作,且放射性同位素產生裝置可能夠在無自由電子雷射操作之情況下操作。自由電子雷射及放射性同位素產生裝置可提供於共同料倉中。 In an embodiment, the system can include free electron laser and radioisotope generating devices that can operate independently of each other. For example, a free electron laser can operate without the operation of a radioisotope generating device, and the radioisotope generating device can operate without a free electron laser operation. Free electron laser and radioisotope generating devices can be provided in a common silo.

雖然已將輻射源SO之實施例描述並描繪為包含自由電子雷射FEL,但應瞭解,輻射源可包含任何數目之自由電子雷射FEL。舉例而言,輻射源可包含一個以上自由電子雷射FEL。舉例而言,兩個自由電子雷射可經配置以將EUV輻射提供至複數個微影裝置。此係為了允許一些冗餘。此可允許在一個自由電子雷射正被修復或經歷維修時使用另一自由電子雷射。 While the embodiment of the radiation source SO has been described and depicted as including a free electron laser FEL, it should be understood that the radiation source can include any number of free electron laser FELs. For example, the radiation source can include more than one free electron laser FEL. For example, two free electron lasers can be configured to provide EUV radiation to a plurality of lithography devices. This is to allow some redundancy. This may allow for the use of another free electron laser while a free electron laser is being repaired or undergoing maintenance.

儘管本發明之實施例已描述為使用Mo-100以產生衰變成Tc-99之Mo-99放射性同位素,但其他醫療適用之放射性同位素可使用本發明之實施例產生。舉例而言,本發明之實施例可用於產生衰變成Ga-68之Ge-68。本發明之實施例可用於產生衰變成Re-188之W-188。本發明之實施例可用於產生衰變成Bi-213之Ac-225。 Although embodiments of the invention have been described as using Mo-100 to produce a Mo-99 radioisotope that decays to Tc-99, other medically applicable radioisotopes can be produced using embodiments of the invention. For example, embodiments of the invention may be used to generate Ge-68 that decays into Ga-68. Embodiments of the invention can be used to generate W-188 that decays into Re-188. Embodiments of the invention can be used to generate Ac-225 which decays into Bi-213.

儘管微影系統LS之所描述實施例包含八個微影裝置LA1-LAn,但微影系統LS可包含任何數目個微影裝置。舉例而言,形成微影系統LS之微影裝置之數目可取決於自輻射源SO輸出之輻射量及在光束遞送系統BDS中損耗之輻射量。形成微影系統LS之微影裝置之數目可另外或替代地取決於微影系統LS之佈局及/或複數個微影系統LS之佈局。 Although lithography system LS of the described embodiment includes eight lithographic apparatus LA 1 -LA n, but lithography system may include any number of LS lithography apparatus. For example, the number of lithographic devices that form the lithography system LS may depend on the amount of radiation output from the radiation source SO and the amount of radiation lost in the beam delivery system BDS. The number of lithography devices forming the lithography system LS may additionally or alternatively depend on the layout of the lithography system LS and/or the layout of the plurality of lithography systems LS.

微影系統LS之實施例亦可包括一或多個光罩檢測裝置MIA及/或一或多個空中檢測量測系統(AIMS)。在一些實施例中,微影系統LS可包含複數個光罩檢測裝置以允許一些冗餘。此可允許一個光罩檢測裝置在另一光罩檢測裝置被修復或經歷維修時使用。因此,一個光罩檢測裝置始終可供使用。與微影裝置相比,光罩檢測裝置可使用較低功率輻射光束。另外,應瞭解,使用本文所描述之類型之自由電子雷射FEL而產生的輻射可用於除微影或微影相關應用以外的應用。 Embodiments of the lithography system LS may also include one or more reticle inspection devices MIA and/or one or more airborne detection measurement systems (AIMS). In some embodiments, the lithography system LS can include a plurality of reticle detection devices to allow for some redundancy. This may allow one reticle detecting device to be used when another reticle detecting device is repaired or undergoes maintenance. Therefore, a reticle inspection device is always available. The reticle detecting device can use a lower power radiation beam than a lithography device. Additionally, it should be appreciated that radiation generated using free electron laser FEL of the type described herein can be used for applications other than lithographic or lithographic related applications.

應進一步瞭解,包含如上文所描述之波盪器之自由電子雷射可用作之輻射源以用於多種用途(包括但不限於微影)。 It should be further appreciated that a free electron laser comprising an undulator as described above can be used as a source of radiation for a variety of uses including, but not limited to, lithography.

術語「相對論電子」應被解譯為意謂具有相對論能量之電子。電子可被視為在其動能比得上或大於其靜止質量能量(511keV,以自然單位計)時具有相對論能量。實務上,形成自由電子雷射之部件之粒子加速器可將電子加速至比其靜止質量能量大得多的能量。舉例而言,粒子加速器可將電子加速至>10MeV、>100MeV、>1GeV或更大之能量。 The term "relativistic electrons" should be interpreted as an electron that has relativistic energy. Electrons can be considered to have relativistic energies when their kinetic energy is comparable to or greater than their resting mass energy (511 keV, in natural units). In practice, a particle accelerator that forms a component of a free electron laser can accelerate electrons to a much greater energy than their rest mass energy. For example, a particle accelerator can accelerate electrons to an energy of >10 MeV, >100 MeV, >1 GeV or greater.

已在輸出EUV輻射光束之自由電子雷射FEL之上下文中描述了本發明之實施例。然而,自由電子雷射FEL可經組態以輸出具有任何波長之輻射。因此,本發明之一些實施例可包含輸出不為EUV輻射光束之輻射光束之自由電子。 Embodiments of the invention have been described in the context of a free electron laser FEL that outputs an EUV radiation beam. However, a free electron laser FEL can be configured to output radiation having any wavelength. Accordingly, some embodiments of the invention may include free electrons that output a radiation beam that is not an EUV radiation beam.

術語「EUV輻射」可被視為涵蓋具有在4nm至20nm之範圍內(例如,在13nm至14nm之範圍內)之波長之電磁輻射。EUV輻射可具有小於10nm之波長,例如,在4nm至10nm之範圍內(諸如6.7nm或6.8nm)之波長。 The term "EUV radiation" can be considered to encompass electromagnetic radiation having a wavelength in the range of 4 nm to 20 nm (eg, in the range of 13 nm to 14 nm). The EUV radiation can have a wavelength of less than 10 nm, for example, a wavelength in the range of 4 nm to 10 nm, such as 6.7 nm or 6.8 nm.

微影裝置LAa至LAn可用於IC之製造中。替代地,本文中描述之微影裝置LAa至LAn可具有其他應用。可能之其他應用包括製造整合式光學系統、用於磁域記憶體之導引及偵測圖案、平板顯示器、液晶 顯示器(LCD)、薄膜磁頭等。 The lithography devices LA a to LA n can be used in the manufacture of ICs. Alternatively, the micro described herein Movies to LA n LA a device may have other applications. Other applications include the fabrication of integrated optical systems, guidance and detection patterns for magnetic domain memories, flat panel displays, liquid crystal displays (LCDs), thin film magnetic heads, and the like.

不同實施例可彼此組合。實施例之特徵可與其他實施例之特徵組合。 Different embodiments may be combined with each other. Features of the embodiments may be combined with features of other embodiments.

雖然上文已描述本發明之特定實施例,但應瞭解,可以與所描述之方式不同的其他方式來實踐本發明。以上描述意欲為說明性而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下對如所描述之本發明進行修改。 Although the specific embodiments of the invention have been described above, it is understood that the invention may be practiced otherwise than as described. The above description is intended to be illustrative, and not restrictive. Therefore, it will be apparent to those skilled in the art that the invention as described herein may be modified without departing from the scope of the appended claims.

21a‧‧‧電子注入器 21a‧‧‧Electronic injector

21b‧‧‧電子注入器 21b‧‧‧Electronic injector

22‧‧‧線性加速器 22‧‧‧ Linear Accelerator

24‧‧‧波盪器 24‧‧‧ undulator

30a‧‧‧線性加速器 30a‧‧‧ Linear Accelerator

30b‧‧‧線性加速器 30b‧‧‧ Linear Accelerator

30c‧‧‧線性加速器 30c‧‧‧ Linear Accelerator

31‧‧‧反衝器 31‧‧‧Backlash

32‧‧‧反衝器 32‧‧‧Backlash

33‧‧‧反衝器 33‧‧‧Backflush

40a‧‧‧組件/靶 40a‧‧‧Components/targets

40b‧‧‧靶 40b‧‧‧ target

40c‧‧‧靶 40c‧‧ Target

100‧‧‧光束捕集器 100‧‧‧beam trap

Claims (32)

一種系統,其包含一自由電子雷射及一放射性同位素產生裝置,其中:該自由電子雷射包含一電子注入器、一能量回收線性加速器及一波盪器;且該放射性同位素產生裝置包含一另一線性加速器、經組態以固持一電子靶之一電子靶支撐結構,及經組態以固持一光子靶之一光子靶支撐結構;其中該另一線性加速器經定位以在其已藉由該能量回收線性加速器加速接著減速之後接收一電子束,該另一線性加速器經組態以將該電子束之電子加速至大約14MeV或以上之一能量以供後續遞送至該電子靶。 A system comprising a free electron laser and a radioisotope generating device, wherein: the free electron laser comprises an electron injector, an energy recovery linear accelerator and a undulator; and the radioisotope generating device comprises another a linear accelerator configured to hold an electronic target support structure of an electronic target, and configured to hold a photon target support structure of a photon target; wherein the other linear accelerator is positioned to have been The energy recovery linear accelerator accelerates and then decelerates to receive an electron beam that is configured to accelerate the electrons of the electron beam to one of about 14 MeV or more for subsequent delivery to the electronic target. 如請求項1之系統,其中一反衝器經組態以在該另一線性加速器與一光束捕集器之間切換該電子束。 A system as claimed in claim 1, wherein a backflush is configured to switch the electron beam between the other linear accelerator and a beam trap. 一種系統,其包含一自由電子雷射及一放射性同位素產生裝置,其中:該自由電子雷射包含複數個電子注入器、一線性加速器及一波盪器;且該放射性同位素產生裝置包含一另一線性加速器、經組態以固持一電子靶之一電子靶支撐結構,及經組態以固持一光子靶之一光子靶支撐結構;其中該另一線性加速器經定位以在其不用於將一電子束提供至該線性加速器時,自該等電子注入器中之一者接收一電子束,該另一線性加速器經組態以將該電子束之電子加速至14MeV或以上之一能量以供後續遞送至該電子靶及該光子靶。 A system comprising a free electron laser and a radioisotope generating device, wherein: the free electron laser comprises a plurality of electron injectors, a linear accelerator and a undulator; and the radioisotope generating device comprises a further line An accelerator, configured to hold an electronic target support structure of an electronic target, and configured to hold a photon target support structure of a photon target; wherein the other linear accelerator is positioned to not be used for an electron When the beam is supplied to the linear accelerator, an electron beam is received from one of the electron injectors, the other linear accelerator being configured to accelerate the electrons of the electron beam to one of 14 MeV or more for subsequent delivery To the electron target and the photon target. 如請求項3之系統,其中提供複數個放射性同位素產生裝置。 A system of claim 3, wherein a plurality of radioisotope generating devices are provided. 如請求項4之系統,其中在每一電子注入器後定位一反衝器,該反衝器經組態以在該自由電子雷射之該線性加速器與該等放射性同位素產生裝置中之一者之間切換藉由彼電子注入器產生之該電子束。 The system of claim 4, wherein a backflush is positioned after each electron injector, the recoil being configured to be one of the linear accelerator and the radioisotope generating device of the free electron laser The electron beam generated by the electron injector is switched between. 如請求項4或5之系統,其中電子注入器之數目比放射性同位素產生裝置之數目多一個。 The system of claim 4 or 5, wherein the number of electron injectors is one more than the number of radioisotope generating devices. 如請求項3至5中任一項之系統,其中該自由電子雷射之該線性加速器為一能量回收線性加速器。 The system of any one of claims 3 to 5, wherein the linear accelerator of the free electron laser is an energy recovery linear accelerator. 如請求項3至5中任一項之系統,其中該另一線性加速器經組態以將該電子束之電子加速至大約30MeV或以上之一能量。 The system of any one of claims 3 to 5, wherein the another linear accelerator is configured to accelerate electrons of the electron beam to one of about 30 MeV or more. 如請求項3至5中任一項之系統,其進一步包含藉由該電子靶支撐結構固持之一電子靶,該電子靶包含將使該等電子減速且產生光子的材料,且該系統進一步包含藉由該光子靶支撐結構固持之一光子靶,該光子靶包含將在該等光子入射於其上時射出中子且從而將形成一放射性同位素的材料。 The system of any one of claims 3 to 5, further comprising holding, by the electronic target support structure, an electronic target comprising a material that will decelerate the electrons and generate photons, and the system further comprises A photon target is held by the photon target support structure, the photon target comprising a material that will emit neutrons when the photons are incident thereon and thereby form a radioisotope. 如請求項9之系統,其中該光子靶包含Mo-100。 The system of claim 9, wherein the photon target comprises Mo-100. 一種系統,其包含一自由電子雷射及一放射性同位素產生裝置,其中:該自由電子雷射包含一電子注入器、一線性加速器及一波盪器;及該放射性同位素產生裝置包含一另一線性加速器、經組態以固持一電子靶之一電子靶支撐結構,及經組態以固持一光子靶之一光子靶支撐結構;其中該電子注入器經組態以產生具有10mA或以上之一電流之一電子束,且該另一線性加速器經組態以將該電子束之電子加速至 14MeV或以上以供後續遞送至該電子靶及該光子靶。 A system comprising a free electron laser and a radioisotope generating device, wherein: the free electron laser comprises an electron injector, a linear accelerator and a undulator; and the radioisotope generating device comprises a further linear An accelerator, an electronic target support structure configured to hold an electronic target, and configured to hold a photon target support structure of a photon target; wherein the electron injector is configured to generate a current having a current of 10 mA or more One electron beam, and the other linear accelerator is configured to accelerate the electrons of the electron beam to 14 MeV or more for subsequent delivery to the electronic target and the photon target. 如請求項11之系統,其中該電子注入器經組態以產生具有30mA或以上之一電流之一電子束。 The system of claim 11, wherein the electronic injector is configured to generate an electron beam having one of currents of 30 mA or more. 如請求項11或請求項12之系統,其中該另一線性加速器經組態以將該電子束之電子加速至大約30MeV或以上之一能量。 A system of claim 11 or claim 12, wherein the another linear accelerator is configured to accelerate electrons of the electron beam to one of about 30 MeV or more. 一種放射性同位素產生裝置,其包含一線性加速器、經組態以固持一電子靶之一電子靶支撐結構,及經組態以固持一光子靶之一光子靶支撐結構;其中一電子束分佈裝置經配置以接收藉由該線性加速器之加速之後的一電子束,且在該電子束入射於該電子靶上之前,該電子束分佈裝置經組態以控制該電子束入射於其上之該電子靶之表面積。 A radioisotope generating apparatus comprising a linear accelerator, an electronic target supporting structure configured to hold an electronic target, and a photon target supporting structure configured to hold a photon target; wherein an electron beam distributing device Configuring to receive an electron beam after acceleration by the linear accelerator, and before the electron beam is incident on the electron target, the electron beam distribution device is configured to control the electron target on which the electron beam is incident Surface area. 如請求項14之放射性同位素產生裝置,其中該電子束分佈裝置包含一透鏡,其經組態以增加該電子束之該橫截面積。 The radioisotope generating device of claim 14, wherein the electron beam distributing device comprises a lens configured to increase the cross-sectional area of the electron beam. 如請求項15之放射性同位素產生裝置,其中該透鏡包含一散焦四極磁體。 A radioisotope generating apparatus according to claim 15, wherein the lens comprises a defocused quadrupole magnet. 如請求項14至16中任一項之放射性同位素產生裝置,其中該電子束分佈裝置包含一光束反衝器,其經組態以使該電子束掃描遍及該電子靶之表面。 The radioisotope generating device of any one of claims 14 to 16, wherein the electron beam distributing device comprises a beam recoil device configured to scan the electron beam across a surface of the electron target. 一種放射性同位素產生裝置,其包含一線性加速器、一光束反衝器、經組態以固持電子靶之複數個電子靶支撐結構,及經組態以固持光子靶之複數個相關聯光子靶支撐結構;其中該光束反衝器經組態以接收藉由該線性加速器之加速之後的一電子束且經組態以依序將該電子束引導至該等電子靶支撐結構中之每一者。 A radioisotope generating apparatus comprising a linear accelerator, a beam recoiler, a plurality of electron target support structures configured to hold an electron target, and a plurality of associated photon target support structures configured to hold the photon target Wherein the beam recoil is configured to receive an electron beam after acceleration by the linear accelerator and is configured to sequentially direct the electron beam to each of the electronic target support structures. 一種放射性同位素產生裝置,其包含一線性加速器、經組態以 固持一電子靶之一電子靶支撐結構,及經組態以固持一光子靶之一光子靶支撐結構;其中該放射性同位素產生裝置進一步包含一或多個冷卻劑流體管道,其經組態以輸送一冷卻劑流體通過藉由該等支撐結構固持之一光子靶及/或一電子靶,且由此自該光子靶及/或該電子靶移除熱量,且其中該放射性同位素產生裝置進一步包含一廢熱回收系統,其經組態以回收自該光子靶及/或該電子靶移除之該熱量中之一些。 A radioisotope generating device comprising a linear accelerator configured to Holding an electronic target support structure of an electronic target, and configured to hold a photon target support structure of a photon target; wherein the radioisotope generating device further comprises one or more coolant fluid conduits configured to deliver a coolant fluid by holding a photon target and/or an electron target by the support structures, and thereby removing heat from the photon target and/or the electron target, and wherein the radioisotope generating device further comprises a A waste heat recovery system configured to recover some of the heat removed from the photonic target and/or the electronic target. 如請求項19之系統,其中該廢熱回收系統經組態以使用該經回收熱量產生電力。 The system of claim 19, wherein the waste heat recovery system is configured to generate electricity using the recovered heat. 如請求項19或請求項20之系統,其中該廢熱回收系統包含使用一工作流體之一封閉迴路。 The system of claim 19 or claim 20, wherein the waste heat recovery system comprises a closed loop using one of the working fluids. 如請求項21之系統,其中該封閉迴路之該工作流體不同於用以冷卻該光子靶及/或一電子靶之該冷卻劑流體,且其中系統進一步包含一熱交換器,其經組態以將熱量自該冷卻劑流體轉移至該工作流體。 The system of claim 21, wherein the working fluid of the closed loop is different from the coolant fluid used to cool the photon target and/or an electronic target, and wherein the system further comprises a heat exchanger configured to Heat is transferred from the coolant fluid to the working fluid. 如請求項21之系統,其中該封閉迴路包括經組態以驅動一發電器的一膨脹渦輪機。 The system of claim 21, wherein the closed loop includes an expansion turbine configured to drive a generator. 一種系統,其包含如請求項14至24中任一項之放射性同位素產生裝置,且進一步包含一自由電子雷射。 A system comprising the radioisotope generating device of any one of claims 14 to 24, and further comprising a free electron laser. 如請求項24之系統,其中該系統進一步包含複數個微影裝置。 The system of claim 24, wherein the system further comprises a plurality of lithography devices. 一種放射性同位素產生之方法,其包含:將一電子束注入至一自由電子雷射之一能量回收線性加速器中;使用該能量回收線性加速器加速接著減速該電子束;使用一另一線性加速器來加速減速後之該電子束,該電子束 經加速至大約14MeV或以上之一能量;及將該電子束引導至一電子靶上以產生光子,該等光子隨後入射於一光子靶上以產生該放射性同位素。 A method of producing a radioisotope, comprising: injecting an electron beam into an energy recovery linear accelerator of a free electron laser; using the energy recovery linear accelerator to accelerate and then decelerating the electron beam; using another linear accelerator to accelerate The electron beam after deceleration, the electron beam Accelerating to one of about 14 MeV or more; and directing the electron beam onto an electron target to produce photons, which are then incident on a photon target to produce the radioisotope. 一種在一自由電子雷射之一注入器不用於將電子提供至該自由電子雷射時使用該注入器的放射性同位素產生之方法,該方法包含:使用該注入器產生一電子束;使用一線性加速器將該電子束加速至大約14MeV或以上之一能量;及將該電子束引導至一電子靶上以產生光子,該等光子隨後入射於一光子靶上以產生該放射性同位素。 A method of producing a radioisotope using the injector when an injector is not used to provide electrons to the free electron laser, the method comprising: using the injector to generate an electron beam; using a linear The accelerator accelerates the electron beam to an energy of about 14 MeV or more; and directs the electron beam onto an electron target to generate photons, which are then incident on a photon target to produce the radioisotope. 如請求項27之方法,其中該注入器為複數個注入器中之一者,且其中其他注入器中之一者同時將電子提供至該自由電子雷射。 The method of claim 27, wherein the injector is one of a plurality of injectors, and wherein one of the other injectors simultaneously supplies electrons to the free electron laser. 如請求項27或請求項28之方法,其中經引導至該電子靶之該電子束具有10mA或以上之一電流。 The method of claim 27 or claim 28, wherein the electron beam directed to the electron target has a current of 10 mA or more. 一種放射性同位素產生之方法,其包含:將一電子束注入至線性加速器中;使用該線性加速器加速該電子束;使該電子束通過一電子束分佈裝置;及將該電子束引導至一電子靶上以產生光子,該等光子隨後入射於一光子靶上以產生該放射性同位素;其中該電子束分佈裝置控制該電子束入射於其上之該電子靶之表面積。 A method of producing a radioisotope, comprising: injecting an electron beam into a linear accelerator; accelerating the electron beam using the linear accelerator; passing the electron beam through an electron beam distribution device; and directing the electron beam to an electron target Generating to generate photons, which are then incident on a photon target to produce the radioisotope; wherein the electron beam distribution device controls the surface area of the electron target on which the electron beam is incident. 一種放射性同位素產生之方法,其包含:將一電子束注入至線性加速器中; 使用該線性加速器加速該電子束;及使用一光束反衝器依序將該電子束引導至複數個電子靶中之每一者上以產生光子,該等光子隨後入射於相關聯光子靶上以產生該放射性同位素。 A method of producing a radioisotope, comprising: injecting an electron beam into a linear accelerator; Using the linear accelerator to accelerate the electron beam; and sequentially directing the electron beam to each of the plurality of electron targets using a beam recoiler to generate photons, which are then incident on the associated photon target The radioisotope is produced. 一種放射性同位素產生之方法,其包含:將一電子束注入至線性加速器中;使用該線性加速器加速該電子束;及將該電子束引導至一電子靶上以產生光子,該等光子隨後入射於一光子靶上以產生該放射性同位素;其中該方法進一步包含輸送一冷卻劑流體通過該電子靶及/或該光子靶以自該電子靶及/或該光子靶移除熱量,及使用一廢熱回收系統回收自該電子靶及/或該光子靶移除的該熱量中之一些。 A method of producing a radioisotope, comprising: injecting an electron beam into a linear accelerator; using the linear accelerator to accelerate the electron beam; and directing the electron beam onto an electron target to generate photons, which are then incident on the electron beam Generating a radioactive isotope on a photon target; wherein the method further comprises transporting a coolant fluid through the electron target and/or the photon target to remove heat from the electron target and/or the photon target, and using a waste heat recovery The system recovers some of the heat removed from the electronic target and/or the photon target.
TW105103549A 2015-03-03 2016-02-03 System for radioisotope production, radioisotope production apparatus, and method of radioisotope production TWI712054B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15157433 2015-03-03
EP15157433.2 2015-03-03

Publications (2)

Publication Number Publication Date
TW201633327A true TW201633327A (en) 2016-09-16
TWI712054B TWI712054B (en) 2020-12-01

Family

ID=52669464

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105103549A TWI712054B (en) 2015-03-03 2016-02-03 System for radioisotope production, radioisotope production apparatus, and method of radioisotope production

Country Status (3)

Country Link
NL (1) NL2016110A (en)
TW (1) TWI712054B (en)
WO (1) WO2016139008A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473645A (en) * 2019-08-20 2019-11-19 西安迈斯拓扑科技有限公司 99Mo production method and equipment based on bremstrahlen and the difunctional target of photonuclear reaction
CN116168870A (en) * 2023-03-06 2023-05-26 中子高新技术产业发展(重庆)有限公司 Proton accelerator-based molybdenum technetium isotope production solid-state target device and use method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3003766C (en) * 2015-11-06 2024-02-20 Asml Netherlands B.V. Radioisotope production system using an electron beam splitter
EP3762947B1 (en) * 2018-03-06 2023-06-21 Mirrotron Kft. Neutron source and method of producing a neutron beam
US10714225B2 (en) 2018-03-07 2020-07-14 PN Labs, Inc. Scalable continuous-wave ion linac PET radioisotope system
EP3637436A1 (en) * 2018-10-12 2020-04-15 ASML Netherlands B.V. Enrichment and radioisotope production

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996036391A2 (en) * 1995-05-01 1996-11-21 Stephen Shapiro High efficiency variable energy and intensity photon radiation source
US6444990B1 (en) * 1998-11-05 2002-09-03 Advanced Molecular Imaging Systems, Inc. Multiple target, multiple energy radioisotope production
US8953731B2 (en) * 2004-12-03 2015-02-10 General Electric Company Method of producing isotopes in power nuclear reactors
JP2007170890A (en) * 2005-12-20 2007-07-05 Hitachi Ltd Target of radioisotope production apparatus and radioisotope production apparatus
AU2011225719B2 (en) * 2010-03-10 2014-05-22 The South African Nuclear Energy Corporation Limited Method of producing radionuclides
CA2713972A1 (en) * 2010-07-27 2012-01-27 Mevex Corporation Power concentrator for electron and/or x-ray beams
EP2421006A1 (en) * 2010-08-20 2012-02-22 Ludwig-Maximilians-Universität München Method for producing isotopes, in particular method for producing radioisotopes by means of gamma-beam irradiation
CN102441238A (en) * 2010-09-30 2012-05-09 上海世鹏实验室科技发展有限公司 Radiotherapy device, radiation device and collimating device
US20120281799A1 (en) * 2011-05-04 2012-11-08 Wells Douglas P Irradiation Device and Method for Preparing High Specific Activity Radioisotopes
IL214846A0 (en) * 2011-08-25 2011-10-31 Univ Ben Gurion Molybdenum-converter based electron linear accelerator and method for producing radioisotopes
US9129714B2 (en) * 2011-09-29 2015-09-08 Uchicago Argonne, Llc Electron linac for medical isotope production with improved energy efficiency and isotope recovery
EP2581914B1 (en) * 2011-10-10 2014-12-31 Ion Beam Applications S.A. Method and facility for producing a radioisotope
CA2816453C (en) * 2013-05-23 2019-09-17 Canadian Light Source Inc. Production of molybdenum-99 using electron beams
CN103745760B (en) * 2014-01-16 2018-03-23 上海交通大学 Gamma ray projector based on full ray laser plasma accelerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473645A (en) * 2019-08-20 2019-11-19 西安迈斯拓扑科技有限公司 99Mo production method and equipment based on bremstrahlen and the difunctional target of photonuclear reaction
CN110473645B (en) * 2019-08-20 2024-03-01 西安迈斯拓扑科技有限公司 Based on bremsstrahlung and photonuclear dual-function targets 99 Mo production method and equipment
CN116168870A (en) * 2023-03-06 2023-05-26 中子高新技术产业发展(重庆)有限公司 Proton accelerator-based molybdenum technetium isotope production solid-state target device and use method
CN116168870B (en) * 2023-03-06 2024-03-29 中子高新技术产业发展(重庆)有限公司 Proton accelerator-based molybdenum technetium isotope production solid-state target device and use method

Also Published As

Publication number Publication date
WO2016139008A1 (en) 2016-09-09
NL2016110A (en) 2016-09-30
TWI712054B (en) 2020-12-01

Similar Documents

Publication Publication Date Title
TWI712054B (en) System for radioisotope production, radioisotope production apparatus, and method of radioisotope production
Wang et al. Power scaling for collimated γ-ray beams generated by structured laser-irradiated targets and its application to two-photon pair production
US20210375498A1 (en) Radioisotope production
NL2013663A (en) Free electron laser.
TWI811463B (en) Enrichment and radioisotope production
Wang et al. Obliquely incident laser and electron beam interaction in an undulator
Shiltsev Ultimate colliders for particle physics: Limits and possibilities
Zhang et al. Generation of bright collimated vortex γ-ray via laser driven cone-fan target
EP0715381B1 (en) Method and apparatus for generating gamma-ray laser
Li et al. Collimated gamma rays from laser wakefield accelerated electrons
JPS63207190A (en) Method and apparatus for generating free positronium-laser
Hübner et al. The largest accelerators and colliders of their time
Carmignani Principles of synchrotron radiation
Si et al. Research progress on advanced positron acceleration
Tazzari et al. Trends in high energy particle accelerators
Schöning A High Intensity Linear e+ e-Collider Facility at Low Energy
Viccaro Power distribution from insertion device x-ray sources
Balakin et al. The VLEPP Project Status Report
Scott et al. Status of the HeLiCal contribution to the polarised positron source for the International Linear Collider
TAKAHASHJ MULTI BUNCH GMMA RAY GENERATION EXPERHVIENT AT ATF'
Delahaye Linear colliders: ILC and CLIC
Gai et al. Positron sources for linear colliders
Rostoker¹ et al. Colliding beam fusion reactors with pulsed injection
Dzhilavyan et al. Source of monochromatic photons driven by positron in-flight annihilation using internal target of storage ring VEPP-3
Blewett Linacs of the future

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees