EP2581914B1 - Method and facility for producing a radioisotope - Google Patents

Method and facility for producing a radioisotope Download PDF

Info

Publication number
EP2581914B1
EP2581914B1 EP11184551.7A EP11184551A EP2581914B1 EP 2581914 B1 EP2581914 B1 EP 2581914B1 EP 11184551 A EP11184551 A EP 11184551A EP 2581914 B1 EP2581914 B1 EP 2581914B1
Authority
EP
European Patent Office
Prior art keywords
internal pressure
pressure
given
hermetic cell
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11184551.7A
Other languages
German (de)
French (fr)
Other versions
EP2581914A1 (en
Inventor
Eric Kral
Xavier Wilputte
Michel Ghyoot
Jean-Michel Geets
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ion Beam Applications SA
Original Assignee
Ion Beam Applications SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ion Beam Applications SA filed Critical Ion Beam Applications SA
Priority to EP11184551.7A priority Critical patent/EP2581914B1/en
Priority to US14/350,524 priority patent/US9941027B2/en
Priority to PCT/EP2012/070013 priority patent/WO2013064342A1/en
Priority to CN201280058343.2A priority patent/CN104011803A/en
Priority to CA2851126A priority patent/CA2851126C/en
Priority to JP2014535039A priority patent/JP6301254B2/en
Publication of EP2581914A1 publication Critical patent/EP2581914A1/en
Application granted granted Critical
Publication of EP2581914B1 publication Critical patent/EP2581914B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/10Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by bombardment with electrically charged particles

Definitions

  • the present invention relates to a method for producing a radioisotope and an installation for carrying out this method.
  • positron emission tomography is an imaging technique that requires positron-emitting radioisotopes or molecules labeled with these same radioisotopes.
  • the 18 F radioisotope is one of the most commonly used radioisotopes. Other radioisotopes commonly used are: 13 N; 15 O; and 11 C.
  • the 18 F radioisotope has a half-life of 109.6 min and can thus be transported to other sites than its production site.
  • a device for producing radioisotopes comprises a proton accelerator and a target cooled by a cooling device. This target comprises a cavity sealed by an irradiation window to form a hermetic cell inside which is included a radioisotope precursor in liquid or gaseous form.
  • the energy of the proton beam directed on the target is of the order of a few MeV to about twenty MeV.
  • Such a beam energy causes a heating of the target and a vaporization of the liquid containing the radioisotope precursor. Since the vapor phase has a lower stopping power, more particles of the irradiation beam pass through the hermetic cell without being absorbed by the radioisotope precursor, which decreases not only the production efficiency of the radioisotope. radioisotopes, but also warms the target further. This well-known phenomenon is commonly called tunneling effect.
  • the document JP2009103611 discloses a device for producing radioisotopes comprising a system for pressurizing the hermetic cell capable of maintaining a constant internal pressure inside the hermetic cell.
  • the document JP 2009103611 proposes to equip the hermetic cell with a control valve allowing a controlled discharge of radioisotope precursor fluid if the pressure in the hermetic cell exceeds a threshold value.
  • This solution has the particular disadvantage of causing the loss of volume of radioisotope precursor fluid contained in the hermetic cell.
  • some precursor fluids of radioisotopes can be very expensive, so that it is necessary at all costs to avoid untimely discharges.
  • the working pressure in the sealed cell of the target must be substantially less than the discharge pressure.
  • a target for the production of radioisotopes When a target for the production of radioisotopes is irradiated daily by a proton beam for several hours, some areas of the target may become weaker over time. The heating of the irradiation cell can thus damage the seals sealing the cavity closed by the irradiation window, causing leaks. Leaks may also appear at the irradiation window.
  • the irradiation of the target produces secondary radiation that can damage nearby parts, such as ducts, valves or a pressure sensor fitted to the target, which also causes leaks.
  • the aforementioned pressurizing device has the advantage of keeping the radioisotope precursor fluid in a condensed or semi-condensed state, possible leaks in the irradiation cell and / or poor filling of the target of the example to a defective valve, can not be detected in time. Indeed, if the device for monitoring the internal pressure in the hermetic cell records a decrease in this pressure, the pressurizing device will normally inject inert gas into the target to re-increase its internal pressure. It will also be noted that impurities resulting from a washing of the target followed by poor drying may also cause an overpressure, which may be masked by the aforementioned pressurizing device.
  • An object of the present invention is, in the production of radioisotopes, to detect in time the problems of leakage or poor filling of a target and to avoid deterioration of the target either by said tunneling effect or by an increase in excessive pressure.
  • a method according to the invention comprises, in a manner known per se, an irradiation of a volume of radioisotope precursor fluid contained in a hermetic cell of a target, this using a particle beam of a given current, which is produced by a particle accelerator.
  • the target is cooled, and internal pressure is measured in the airtight cell.
  • the internal pressure (P) is allowed to freely establish itself in the hermetic cell during the irradiation, without trying to control it by an injection of a pressurizing gas and / or a depressurization valve.
  • the irradiation is interrupted or its intensity reduced, when the internal pressure (P) in the hermetic cell comes out of a first tolerance interval, which is defined according to different parameters having an influence on the evolution of the internal pressure in the hermetic cell during irradiation.
  • Such parameters include, for a given target and radioisotope precursor fluid, including the degree of filling of the hermetic cell, the cooling power of the target and the beam current (I).
  • This lower limit corresponds to an excessively large deviation from an optimum internal pressure determined for a hermetic cell containing a given volume of radioisotope precursor fluid and irradiated by a given beam current.
  • the irradiation is interrupted or its intensity is reduced so as to also prevent a rupture of the irradiation window due to an excessive increase of the pressure in the hermetic cell.
  • This upper limit can indeed be defined so that it represents a sufficient security with respect to the breaking pressure of the irradiation window.
  • this procedure does not require any injection of a pressurizing gas, which would increase the total pressure in the airtight cell, i.e. the nominal pressure for which the target is to be designed, and would also risk hide leaks. It also does not require depressurization by a discharge causing an expensive radioisotope precursor fluid loss.
  • the particle accelerator acts normally directly on the particle accelerator.
  • This nominal pressure value (Pmax) is supposed to represent the maximum pressure value for which the hermetic cell is guaranteed.
  • the upper limit of internal pressure of the first tolerance interval is advantageously at least 20% lower than the nominal pressure value (Pmax) of the hermetic cell. This normally provides sufficient security against rupture of the irradiation window.
  • a control device advantageously triggers an alarm when the internal pressure (P) in said hermetic cell exits a given second tolerance interval for said given beam current (I), a given volume of radioisotope precursor fluid and a radiating power. given cooling of said target, said second tolerance interval being included in the first tolerance interval. The operator is thus warned that the evolution of the pressure in the hermetic cell may soon cause an interruption of irradiation, and it may possibly still prevent this automatic interruption.
  • the degree of filling of the hermetic cell is advantageously optimized so as to obtain a high radioisotope production yield.
  • the radioisotope precursor is advantageously a precursor of 11 C, 13 N, 15 O or 18 F.
  • This installation comprises a target with a hermetic cell capable of containing a volume of precursor fluid, this hermetic cell being guaranteed to withstand a nominal pressure (Pmax), a particle accelerator capable of producing and directing an accelerated particle beam. a given current (I) on the target, a system for monitoring the internal pressure of the cell hermetic, and a control device programmed to interrupt the particle beam or reduce its intensity when the internal pressure (P) in the hermetic cell comes out of a first tolerance range determined according to different parameters having an influence on the evolution internal pressure in the hermetic cell during irradiation.
  • the control device is advantageously programmed to trigger an alarm when the internal pressure of the hermetic cell is outside a second interval in said first tolerance range.
  • the control device may also be advantageously programmed to cause a decrease in the intensity of the beam current when the internal pressure (P) in said airtight cell exceeds an upper limit of internal pressure.
  • FIG. Fig. 1 A non-limiting embodiment of a radioisotope production installation 10 according to the present invention is illustrated on the basis of the diagram of FIG. Fig. 1 .
  • This installation 10 comprises a target, globally identified by the reference sign 12.
  • This target 12 comprises a hermetic cell 14 enclosing a volume of radioisotope precursor fluid. It is equipped, in known manner, with a cooling circuit 16.
  • the plant 10 further comprises a particle accelerator 18 capable of producing an accelerated particle beam 20 which is directed at the target 12 to irradiate the radioisotope precursor in the airtight cell 14.
  • the beam 20 enters the airtight cell 14 by an irradiation window 22 having a thickness of the order of a few tens of micrometers.
  • the maximum internal pressure that the target 12 can withstand depends in particular on the thickness of this irradiation window.
  • the nominal pressure (Pmax) of the target 12 is the maximum internal pressure in the hermetic cell 14 guaranteed by the producer of the target. As long as the internal pressure in the airtight cell 14 remains below the nominal pressure (Pmax), the producer of the target ensures that the irradiation window 22 is pressure-resistant.
  • This nominal pressure (Pmax) is of course a function of the geometry of the hermetic cell 14.
  • the reference sign 24 identifies a schematic representation of a pressure sensor, which measures the internal pressure in the hermetic cell 14. A signal representative of this measured pressure is transmitted, for example through a data bus 26, to a control device 28. On the basis of this pressure signal, the control device 28 monitors the pressure in the hermetic cell 14 in a continuous or quasi-continuous manner.
  • the installation 10 advantageously comprises a multi-way valve 30, which makes it possible to communicate the hermetic cell 14 with different auxiliary equipment.
  • a first port A of this valve 30 is for example connected to a three-way valve 32, itself connected to a reservoir 34 containing the radioisotope precursor and to a pipetting device 36, such as a syringe.
  • a second port B is connected to a first port of the hermetic cell 14 by a conduit 38 for filling and emptying the hermetic cell 14.
  • a third port C is connected to a container 40, intended to receive the irradiated product when the irradiation is complete.
  • a fourth port D is connected to an overflow vessel 42 for collecting the excess fluid introduced into the airtight cell 14.
  • a fifth port E is connected to a second port of the airtight cell 14, via a conduit 44.
  • conduit 44 which serves to evacuate the excess fluid introduced into the hermetic cell 14, respectively to the introduction of a purge gas gas in the hermetic cell 14.
  • This purge gas is contained in a reservoir 46, connected to a sixth port F.
  • the control system 12 controls the various valves 30, 32, the pipetting device 36, the cooling device 16, the flow of the purge gas cylinder 10 and the particle accelerator 18.
  • the valve 30 When filling the hermetic cell 14, the valve 30 connects the port A with port B and port D with port E.
  • the three-way valve 32 connects reservoir 34 containing the radioisotope precursor with pipetting device 36 which draws a quantity of fluid including the radioisotope precursor.
  • the three-way valve 32 then connects the pipetting device 36 to the port A of the valve 30.
  • the pipetting device 36 can now inject the fluid containing the radioisotope precursor into the airtight cell 14, any excess liquid being discharged. to the overflow vessel 42.
  • valve 30 closes all the ports, and the accelerator 18 produces the beam irradiating the target 12.
  • the valve 30 connects the port F with the port E, and the port B with the port C, so that the purge gas is injected into the hermetic cell 14, and the irradiated fluid is removed from the target 12 to be then collected in the irradiated product container 40.
  • the internal pressure (P) is freely allowed to establish in the airtight cell 14. This means that no device for adjusting the pressure is required. internal in the airtight cell 14, on the basis of a pressurization system using a pressurizing gas and a depressurization system using a purge valve.
  • the internal pressure (P) in the airtight cell 14 is measured by the pressure sensor 24 and monitored by the control device 28.
  • the controller 28 interrupts simply irradiating the target 12 or reducing its intensity.
  • this first tolerance interval is defined specifically for the current I of the beam 20, the volume V of the radioisotope precursor fluid contained in the hermetic cell 14 and the cooling power of the target 12. (Normally, the cooling power is kept constant.)
  • the control system 12 is therefore programmed to interrupt the irradiation of the target 12, when the internal pressure (P) in the sealed cell 14 comes out of a first defined tolerance range. It is also advantageously programmed to trigger a prior alarm, and / or reduce the intensity of irradiation, when the internal pressure (P) in the hermetic cell 14 comes out of a second fixed tolerance range, which is included in the first tolerance interval.
  • the beam current was gradually increased by measuring the internal pressure of the target using the pressure sensor 24. These measurements were made until the value of nominal pressure (Pmax) guaranteed for the target 12 for a beam current I of approximately 60 pA. During all the measurements, the coolant flow rate was kept substantially constant, as was the coolant inlet temperature in the target 12.
  • FIG. 2 An example of a second tolerance interval is also shown on the Fig. 2 .
  • a radioisotope production efficiency curve is plotted against the degree of cell filling which in practice shows a constant yield above a critical degree of filling and a large yield drop below that same degree of filling. critical.
  • a degree of filling of the hermetic cell corresponding to this degree of critical filling or a slightly higher degree of filling is established. either experimentally or theoretically the curve of the pressure P as a function of the beam current I for this degree of filling of the hermetic cell.
  • radioisotope production facility 32 three way valve 34 tank containing the radioisotope precursor 12 target 14 hermetic cell 36 pipetting device 16 cooling system 38 pipe 40 container for receiving the irradiated product 18 particle accelerator 20 particle beam 42 overflow container 22 irradiation window 24 Pressure sensor 44 pipe 26 data bus 46 tank with purge gas 28 control device 30 multi-way valve

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)

Description

Domaine techniqueTechnical area

La présente invention concerne un procédé de production d'un radioisotope et une installation pour la mise en oeuvre de ce procédé.The present invention relates to a method for producing a radioisotope and an installation for carrying out this method.

Etat de la techniqueState of the art

En médecine nucléaire, la tomographie à émission de positrons est une technique d'imagerie nécessitant des radio-isotopes émetteurs de positrons ou des molécules marquées par ces mêmes radio-isotopes. Le radioisotope 18F est un des radioisotopes les plus couramment utilisés. D'autres radioisotopes couramment utilisés sont : 13N ; 15O ; et 11C. Le radioisotope 18F possède un temps de demi-vie de 109,6 min et peut ainsi être acheminé vers d'autres sites que son site de production.In nuclear medicine, positron emission tomography is an imaging technique that requires positron-emitting radioisotopes or molecules labeled with these same radioisotopes. The 18 F radioisotope is one of the most commonly used radioisotopes. Other radioisotopes commonly used are: 13 N; 15 O; and 11 C. The 18 F radioisotope has a half-life of 109.6 min and can thus be transported to other sites than its production site.

Le 18F est le plus souvent produit sous sa forme ionique. Il est obtenu par le bombardement de protons accélérés sur une cible comprenant de l'eau enrichie en 18O. De nombreuses cibles ont été développées, toutes ayant pour même but de produire du 18F en un temps réduit avec le meilleur rendement. Généralement, un dispositif de production de radio-isotopes comprend un accélérateur de protons et une cible refroidie par un dispositif de refroidissement. Cette cible comprend une cavité fermée hermétiquement par une fenêtre d'irradiation pour constituer une cellule hermétique à l'intérieur de laquelle est inclus un précurseur de radio-isotope sous forme liquide ou gazeuse. 18 F is most often produced in its ionic form. It is obtained by the bombardment of accelerated protons on a target comprising water enriched in 18 O. Many targets have been developed, all having the same goal to produce 18 F in a reduced time with the best performance. Generally, a device for producing radioisotopes comprises a proton accelerator and a target cooled by a cooling device. This target comprises a cavity sealed by an irradiation window to form a hermetic cell inside which is included a radioisotope precursor in liquid or gaseous form.

Généralement, l'énergie du faisceau de protons dirigé sur la cible est de l'ordre de quelques MeV à une vingtaine de MeV. Une telle énergie de faisceau provoque un échauffement de la cible ainsi qu'une vaporisation du liquide contenant le précurseur de radio-isotope. Vu que la phase vapeur a un pouvoir d'arrêt moins élevé, une plus grande quantité de particules du faisceau d'irradiation traversent la cellule hermétique sans être absorbées par le précurseur de radio-isotope, ce qui diminue non seulement le rendement de production de radioisotopes, mais échauffe aussi davantage la cible. Ce phénomène bien connu est couramment appelé « tunneling effect ».Generally, the energy of the proton beam directed on the target is of the order of a few MeV to about twenty MeV. Such a beam energy causes a heating of the target and a vaporization of the liquid containing the radioisotope precursor. Since the vapor phase has a lower stopping power, more particles of the irradiation beam pass through the hermetic cell without being absorbed by the radioisotope precursor, which decreases not only the production efficiency of the radioisotope. radioisotopes, but also warms the target further. This well-known phenomenon is commonly called tunneling effect.

Il est connu de réduire l'importance du « tunneling effect » à l'aide d'un système de pressurisation de la cellule hermétique, comme par exemple décrit dans les documents WO2010007174 . Un tel système pressurise la cellule hermétique de la cible avec un gaz inerte, de sorte à augmenter la température d'évaporation du liquide précurseur à l'intérieur de la cellule hermétique. Cette solution a cependant le désavantage de devoir travailler avec une pression plus élevée dans la cellule hermétique de la cible, ce qui nécessite une cible conçue pour résister à des pressions plus élevées. Une telle cible a pour désavantage d'avoir une paroi de plus grande épaisseur par rapport aux cibles traditionnelles. Elle nécessite par conséquent une énergie de faisceau relativement élevée pour irradier le précurseur de radioisotope.It is known to reduce the importance of the "tunneling effect" by means of a pressurization system of the hermetic cell, as for example described in the documents WO2010007174 . Such a system pressurizes the hermetic cell of the target with an inert gas, so as to increase the evaporation temperature of the precursor liquid inside the hermetic cell. However, this solution has the disadvantage of having to work with a higher pressure in the hermetic cell of the target, which requires a target designed to withstand higher pressures. Such a target has the disadvantage of having a wall of greater thickness compared to traditional targets. It therefore requires a relatively high beam energy to irradiate the radioisotope precursor.

Le document JP2009103611 décrit un dispositif de production de radioisotopes comprenant un système de pressurisation de la cellule hermétique apte à maintenir une pression interne constante à l'intérieur de la cellule hermétique. Pour éviter une rupture de la fenêtre d'irradiation suite à un accroissement de pression, le document JP 2009103611 propose d'équiper la cellule hermétique d'une vanne de contrôle permettant une décharge contrôlée de fluide précurseur de radioisotope si la pression dans la cellule hermétique dépasse une valeur seuil. Cette solution a notamment le désavantage de causer la perte du volume de fluide précurseur de radioisotope contenu dans la cellule hermétique. Or, certains fluides précurseurs de radioisotopes peuvent être très chers, de sorte qu'il faut à tout prix éviter des décharges intempestives. Pour éviter des décharges intempestives, il faut que la pression de travail dans la cellule hermétique de la cible soit substantiellement inférieure à la pression de décharge.The document JP2009103611 discloses a device for producing radioisotopes comprising a system for pressurizing the hermetic cell capable of maintaining a constant internal pressure inside the hermetic cell. To avoid breaking the irradiation window due to an increase in pressure, the document JP 2009103611 proposes to equip the hermetic cell with a control valve allowing a controlled discharge of radioisotope precursor fluid if the pressure in the hermetic cell exceeds a threshold value. This solution has the particular disadvantage of causing the loss of volume of radioisotope precursor fluid contained in the hermetic cell. However, some precursor fluids of radioisotopes can be very expensive, so that it is necessary at all costs to avoid untimely discharges. To avoid inadvertent discharges, the working pressure in the sealed cell of the target must be substantially less than the discharge pressure.

Lorsqu'une cible destinée à la production de radioisotopes est journellement irradiée par un faisceau de protons pendant plusieurs heures, certaines zones de la cible peuvent se fragiliser au cours du temps. L'échauffement de la cellule d'irradiation peut ainsi endommager les joints assurant l'étanchéité de la cavité fermée par la fenêtre d'irradiation, causant des fuites. Des fuites peuvent également apparaître au niveau de la fenêtre d'irradiation. D'autre part, l'irradiation de la cible produit des radiations secondaires susceptibles d'endommager des pièces avoisinantes, comme par exemple des conduits, des vannes ou un capteur de pression équipant la cible, causant également des fuites. Or, si le dispositif de pressurisation susmentionné a pour avantage de maintenir le fluide précurseur de radio-isotope dans un état condensé ou semi-condensé, d'éventuelles fuites dans la cellule d'irradiation et/ou un mauvais remplissage de la cible du par exemple à une vanne défectueuse, ne peuvent pas être détectées à temps. En effet, si le dispositif de surveillance de la pression interne dans la cellule hermétique enregistre une diminution de cette pression, le dispositif de pressurisation va normalement injecter du gaz inerte dans la cible pour ré-augmenter sa pression interne. Il sera aussi noté que des impuretés résultant d'un lavage de la cible suivi d'un mauvais séchage peuvent également causer une surpression, qui risque d'être masquée par le dispositif de pressurisation susmentionné.When a target for the production of radioisotopes is irradiated daily by a proton beam for several hours, some areas of the target may become weaker over time. The heating of the irradiation cell can thus damage the seals sealing the cavity closed by the irradiation window, causing leaks. Leaks may also appear at the irradiation window. On the other hand, the irradiation of the target produces secondary radiation that can damage nearby parts, such as ducts, valves or a pressure sensor fitted to the target, which also causes leaks. However, if the aforementioned pressurizing device has the advantage of keeping the radioisotope precursor fluid in a condensed or semi-condensed state, possible leaks in the irradiation cell and / or poor filling of the target of the example to a defective valve, can not be detected in time. Indeed, if the device for monitoring the internal pressure in the hermetic cell records a decrease in this pressure, the pressurizing device will normally inject inert gas into the target to re-increase its internal pressure. It will also be noted that impurities resulting from a washing of the target followed by poor drying may also cause an overpressure, which may be masked by the aforementioned pressurizing device.

Lorsque l'on irradie une cible qui n'est pas suffisamment remplie, outre les mauvais rendements de radioisotopes obtenus, certaines parties de la cible peuvent s'échauffer rapidement à cause du « tunneling effect » jusqu'à déformer la cible, les joints assurant l'étanchéité ou la fenêtre d'irradiation. Des fuites peuvent apparaitre sans être détectées à temps à cause du système de pressurisation qui ré-augmente la pression interne de la cible suite à la variation de pression.When irradiating a target that is not sufficiently filled, in addition to the poor yields of radioisotopes obtained, some parts of the target can heat up quickly because of the "tunneling effect" to deform the target, the joints ensuring the watertightness or the irradiation window. Leaks can occur without being detected in time because of the pressurization system which re-increases the internal pressure of the target due to pressure variation.

Plus le degré de remplissage de la cellule hermétique avec le fluide précurseur de radioisotope est élevé, plus la pression interne dans la cellule hermétique augmente lors de l'irradiation. Or, si la pression interne dans la cellule hermétique dépasse un certain seuil, ceci peut provoquer une rupture de la fenêtre d'irradiation, entraînant des conséquences extrêmement néfastes.The higher the degree of filling of the hermetic cell with the radioisotope precursor fluid, the greater the internal pressure in the hermetic cell increases upon irradiation. However, if the internal pressure in the hermetic cell exceeds a certain threshold, this can cause a rupture of the irradiation window, with extremely harmful consequences.

Il faut dès lors aussi bien éviter une rupture de la fenêtre d'irradiation suite à un accroissement de pression que détecter à temps des problèmes de fuites ou de remplissage inadéquat.It is therefore also necessary to avoid a rupture of the irradiation window as a result of an increase in pressure than to detect in time problems of leakage or inadequate filling.

Exposé de l'inventionPresentation of the invention

Un objectif de la présente invention est, dans la production de radioisotopes, de détecter à temps des problèmes de fuites ou de mauvais remplissage d'une cible et d'éviter une détérioration de la cible soit par ledit « tunneling effect » soit par un accroissement excessif de pression.An object of the present invention is, in the production of radioisotopes, to detect in time the problems of leakage or poor filling of a target and to avoid deterioration of the target either by said tunneling effect or by an increase in excessive pressure.

Cet objectif est atteint par un procédé selon la revendication 1, respectivement une installation selon la revendication 10.This object is achieved by a method according to claim 1, respectively an installation according to claim 10.

Un procédé selon l'invention comprend, de façon connue en soi, une irradiation d'un volume de fluide précurseur de radioisotope contenu dans une cellule hermétique d'une cible, ceci à l'aide d'un faisceau de particules d'un courant donné, qui est produit par un accélérateur de particules. La cible est refroidie, et on mesure de la pression interne dans la cellule hermétique. Selon un aspect de l'invention, on laisse la pression interne (P) librement s'établir dans la cellule hermétique pendant l'irradiation, sans essayer de la contrôler par une injection d'un gaz de pressurisation et/ou une vanne de dépressurisation, et on interrompt l'irradiation ou on réduit son intensité, lorsque la pression interne (P) dans la cellule hermétique sort d'un premier intervalle de tolérance, qui est défini en fonction de différents paramètres ayant une influence sur l'évolution de la pression interne dans la cellule hermétique lors de l'irradiation. De tels paramètres comprennent, pour une cible et un fluide précurseur de radioisotope donnés, notamment le degré de remplissage de la cellule hermétique, la puissance de refroidissement de la cible et le courant de faisceau (I).A method according to the invention comprises, in a manner known per se, an irradiation of a volume of radioisotope precursor fluid contained in a hermetic cell of a target, this using a particle beam of a given current, which is produced by a particle accelerator. The target is cooled, and internal pressure is measured in the airtight cell. According to one aspect of the invention, the internal pressure (P) is allowed to freely establish itself in the hermetic cell during the irradiation, without trying to control it by an injection of a pressurizing gas and / or a depressurization valve. , and the irradiation is interrupted or its intensity reduced, when the internal pressure (P) in the hermetic cell comes out of a first tolerance interval, which is defined according to different parameters having an influence on the evolution of the internal pressure in the hermetic cell during irradiation. Such parameters include, for a given target and radioisotope precursor fluid, including the degree of filling of the hermetic cell, the cooling power of the target and the beam current (I).

Par cette façon de procéder, lorsque la pression tombe en-dessous de la limite inférieure du premier intervalle de tolérance, on interrompt l'irradiation ou on réduit son intensité de manière à éviter une surchauffe de la cible. Cette limite inférieure correspond à un écart trop important par rapport à une pression interne optimale déterminée pour une cellule hermétique contenant un volume donné de fluide précurseur de radioisotopes et irradiée par un courant de faisceau donné.By this way of proceeding, when the pressure falls below the lower limit of the first tolerance interval, the irradiation is interrupted or its intensity is reduced so as to avoid overheating of the target. This lower limit corresponds to an excessively large deviation from an optimum internal pressure determined for a hermetic cell containing a given volume of radioisotope precursor fluid and irradiated by a given beam current.

Lorsque la pression dépasse la limite supérieure du premier intervalle de tolérance on interrompt l'irradiation ou on réduit son intensité de manière à éviter aussi une rupture de la fenêtre d'irradiation due à un accroissement excessif de la pression dans la cellule hermétique. Cette limite supérieure peut en effet être définie de façon-à-ce qu'elle représente une sécurité suffisante par rapport à la pression de rupture de la fenêtre d'irradiation.When the pressure exceeds the upper limit of the first tolerance interval the irradiation is interrupted or its intensity is reduced so as to also prevent a rupture of the irradiation window due to an excessive increase of the pressure in the hermetic cell. This upper limit can indeed be defined so that it represents a sufficient security with respect to the breaking pressure of the irradiation window.

Il sera apprécié que cette façon de procéder ne nécessite aucune injection d'un gaz de pressurisation, qui augmenterait la pression totale dans la cellule hermétique, c'est-à-dire la pression nominale pour laquelle la cible doit être conçue, et risquerait aussi de masquer des fuites. Elle ne nécessite pas non plus une dépressurisation par une décharge causant une perte de fluide de précurseur de radioisotope coûteux.It will be appreciated that this procedure does not require any injection of a pressurizing gas, which would increase the total pressure in the airtight cell, i.e. the nominal pressure for which the target is to be designed, and would also risk hide leaks. It also does not require depressurization by a discharge causing an expensive radioisotope precursor fluid loss.

Pour interrompre l'irradiation ou réduire son intensité, on agit normalement directement sur l'accélérateur de particules. On peut cependant aussi agir sur le faisceau de particules (par exemple en déviant le faisceau ou en intercalant un obstacle sur son chemin), soit sur la cible (par exemple en l'écartant de la trajectoire du faisceau de particules).To interrupt the irradiation or reduce its intensity, it acts normally directly on the particle accelerator. However, it is also possible to act on the particle beam (for example by deflecting the beam or by interposing an obstacle in its path) or on the target (for example by moving it away from the trajectory of the particle beam).

De façon préférée, on détermine, par exemple expérimentalement ou à l'aide d'un modèle mathématique, une courbe P = f(I), fournissant la pression interne (P) dans la cellule hermétique pour différents courants de faisceau (I), ceci pour une cible donnée, un volume donné d'un fluide précurseur de radioisotope donné et une puissance de refroidissement donnée de la cible. Le premier intervalle de tolérance présente alors une limite inférieure de pression et une limite supérieure de pression, définies pour le courant de faisceau donné (I) sur base de la courbe P = f(I). La limite inférieure de pression interne est définie de façon-à-ce qu'elle soit inférieure, de préférence entre 5% à 20% inférieure, à la valeur de pression déduite de ladite courbe P = f(I) pour le courant de faisceau donné (I). La limite supérieure de pression interne est une pression comprise entre la valeur de pression déduite de la courbe P = f(I) pour le courant de faisceau donné (I) et une valeur de pression nominale (Pmax) de la cellule hermétique. Cette valeur de pression nominale (Pmax) étant censée représenter la valeur de pression maximale pour laquelle la cellule hermétique est garantie.In a preferred manner, a curve P = f (I), providing the internal pressure (P) in the hermetic cell for different beam currents (I), is determined, for example experimentally or with the aid of a mathematical model, this for a given target, a given volume of a given radioisotope precursor fluid and a given cooling power of the target. The first tolerance interval then has a lower pressure limit and an upper pressure limit, defined for the given beam current (I) based on the curve P = f (I). The lower limit of internal pressure is defined so that it is lower, preferably between 5% to 20% lower, than the pressure value deduced from said curve P = f (I) for the beam current. given (I). The upper limit of internal pressure is a pressure between the pressure value derived from the curve P = f (I) for the given beam current (I) and a nominal pressure value (Pmax) of the hermetic cell. This nominal pressure value (Pmax) is supposed to represent the maximum pressure value for which the hermetic cell is guaranteed.

La limite supérieure de pression interne du premier intervalle de tolérance est avantageusement inférieure d'au moins 20% par rapport à la valeur de pression nominale (Pmax) de la cellule hermétique. Ceci procure normalement une sécurité suffisante contre une rupture de la fenêtre d'irradiation.The upper limit of internal pressure of the first tolerance interval is advantageously at least 20% lower than the nominal pressure value (Pmax) of the hermetic cell. This normally provides sufficient security against rupture of the irradiation window.

De façon préférée, la limite supérieure de pression interne du premier intervalle de tolérance est entre 5 et 10 bars plus élevée que la valeur de pression déduite de la courbe P = f(I) pour le courant de faisceau donné (I) et est de surcroît plafonnée à une valeur de pression (P2) inférieure d'une valeur de X bar à la valeur de pression nominale (Pmax) de ladite cellule hermétique. Cette façon de procéder permet de détecter un mauvais remplissage de la cellule hermétique ou d'éventuelles impuretés provenant du lavage de la cellule et d'éviter ainsi une montée trop rapide de la pression à haute valeur de courant de faisceau..Preferably, the upper limit of internal pressure of the first tolerance interval is between 5 and 10 bars higher than the pressure value deduced from the curve P = f (I) for the given beam current (I) and is additionally capped at a pressure value (P2) lower than a value of X bar to the nominal pressure value (Pmax) of said hermetic cell. This way of proceeding makes it possible to detect a bad filling of the hermetic cell or of any impurities coming from the washing of the cell and thus to avoid a too fast rise of the pressure with high value of beam current.

Un dispositif de contrôle déclenche avantageusement une alarme lorsque la pression interne (P) dans ladite cellule hermétique sort d'un deuxième intervalle de tolérance déterminé pour ledit courant de faisceau (I) donné, un volume donné de fluide précurseur de radioisotope et une puissance de refroidissement donnée de ladite cible, ce deuxième intervalle de tolérance étant inclus dans le premier intervalle de tolérance. L'opérateur est ainsi averti que l'évolution de la pression dans la cellule hermétique risque de provoquer prochainement une interruption de l'irradiation, et il peut éventuellement encore prévenir cette interruption automatique.A control device advantageously triggers an alarm when the internal pressure (P) in said hermetic cell exits a given second tolerance interval for said given beam current (I), a given volume of radioisotope precursor fluid and a radiating power. given cooling of said target, said second tolerance interval being included in the first tolerance interval. The operator is thus warned that the evolution of the pressure in the hermetic cell may soon cause an interruption of irradiation, and it may possibly still prevent this automatic interruption.

Le second intervalle de tolérance présente une limite inférieure de pression et une limite supérieure de pression, fixées sur base de la courbe P = f(I), mentionnée plus haut. La limite inférieure de pression interne du second intervalle de tolérance est fixée de façon-à-ce qu'elle soit inférieure, de préférence d'au moins 2%, à la valeur de pression déduite de ladite courbe P = f(I) pour le courant de faisceau (I) donné, tout en restant cependant supérieure à la limite inférieure de pression interne du premier intervalle de tolérance. La limite supérieure de pression interne du second intervalle de tolérance est fixée de façon-à-ce qu'elle soit supérieure à la valeur de pression déduite de la courbe P = f(I) pour le courant de faisceau (I) donné, tout en restant inférieure à la limite supérieure de pression interne du premier intervalle de tolérance.The second tolerance range has a lower pressure limit and an upper pressure limit, based on the P = f (I) curve mentioned above. The lower internal pressure limit of the second tolerance interval is set so that it is lower, preferably at least 2%, than the pressure value derived from said curve P = f (I) for the beam current (I) given, while nevertheless remaining higher than the lower limit of internal pressure of the first tolerance interval. The upper internal pressure limit of the second tolerance interval is set so that it is greater than the pressure value deduced from the curve P = f (I) for the given beam current (I), all remaining below the upper limit of internal pressure of the first tolerance range.

Lorsque la pression interne (P) dans la cellule hermétique dépasse une limite supérieure de pression interne qui est fixée de façon-à-ce qu'elle soit supérieure à la valeur de pression déduite de ladite courbe P = f(I) pour le courant de faisceau (I) donné, mais inférieure à la limite supérieure de pression interne du premier intervalle de tolérance, on diminue avantageusement le courant de faisceau. De cette façon on peut éventuellement encore prévenir une interruption de l'irradiation.When the internal pressure (P) in the airtight cell exceeds an upper limit of internal pressure which is set so that it is greater than the pressure value deduced from said curve P = f (I) for the current beam (I) given, but lower than the upper limit of internal pressure of the first tolerance interval, advantageously decreases the beam current. In this way it is possible to prevent interruption of the irradiation.

Le degré de remplissage de la cellule hermétique est avantageusement optimisé de façon à obtenir un rendement de production de radioisotopes élevé.The degree of filling of the hermetic cell is advantageously optimized so as to obtain a high radioisotope production yield.

Le précurseur de radioisotope est avantageusement un précurseur de 11C, 13N, 15O ou 18F.The radioisotope precursor is advantageously a precursor of 11 C, 13 N, 15 O or 18 F.

On présente aussi une installation pour la mise en oeuvre du procédé décrit. Cette installation comprend une cible avec une cellule hermétique apte à contenir un volume de fluide précurseur, cette cellule hermétique étant garantie pour résister à une pression nominale (Pmax), un accélérateur de particules apte à produire et à diriger un faisceau de particules accélérées d'un courant donné (I) sur la cible, un système de surveillance de la pression interne de la cellule hermétique, et un dispositif de contrôle programmé pour interrompre le faisceau de particules ou réduire son intensité lorsque la pression interne (P) dans la cellule hermétique sort d'un premier intervalle de tolérance déterminé en fonction de différents paramètres ayant une influence sur l'évolution de la pression interne dans la cellule hermétique lors de l'irradiation.There is also an installation for implementing the method described. This installation comprises a target with a hermetic cell capable of containing a volume of precursor fluid, this hermetic cell being guaranteed to withstand a nominal pressure (Pmax), a particle accelerator capable of producing and directing an accelerated particle beam. a given current (I) on the target, a system for monitoring the internal pressure of the cell hermetic, and a control device programmed to interrupt the particle beam or reduce its intensity when the internal pressure (P) in the hermetic cell comes out of a first tolerance range determined according to different parameters having an influence on the evolution internal pressure in the hermetic cell during irradiation.

Le dispositif de contrôle est avantageusement programmé pour déclencher une alarme lorsque la pression interne de la cellule hermétique se situe en dehors d'un second intervalle compris dans ledit premier intervalle de tolérance.The control device is advantageously programmed to trigger an alarm when the internal pressure of the hermetic cell is outside a second interval in said first tolerance range.

Le dispositif de contrôle peut aussi être avantageusement programmé pour causer une diminution du de l'intensité du courant de faisceau lorsque la pression interne (P) dans ladite cellule hermétique dépasse une limite supérieure de pression interne.The control device may also be advantageously programmed to cause a decrease in the intensity of the beam current when the internal pressure (P) in said airtight cell exceeds an upper limit of internal pressure.

Dans une exécution préférée, le dispositif de contrôle est programmé avec une courbe P = f(I), fournissant la pression interne (P) de la cellule hermétique pour différents courants de faisceau (I), ceci pour un volume donné de fluide précurseur de radioisotope et une puissance de refroidissement donnée de ladite cible ; cette courbe P = f(I) étant utilisée par ledit dispositif de contrôle pour déterminer ledit premier intervalle de tolérance en fonction du courant de faisceau (I).In a preferred embodiment, the control device is programmed with a curve P = f (I), supplying the internal pressure (P) of the hermetic cell for different beam currents (I), for a given volume of precursor fluid. radioisotope and a given cooling power of said target; this curve P = f (I) being used by said control device to determine said first tolerance interval as a function of the beam current (I).

Brève description des dessinsBrief description of the drawings

D'autres caractéristiques et avantages ressortiront de la description détaillée de différents modes de réalisation de l'invention, qui sont décrits ci-après, à titre d'illustration, en se référant aux dessins en annexe, dans lesquels :

Fig. 1
est un schéma d'une installation de production de radioisotopes selon la présente invention ;
Fig. 2
est un graphique montrant une courbe expérimentale P =f(I), représentant l'évolution de la pression interne en fonction du courant de faisceau (I), et des courbes d'intervalles de tolérance de pression interne, ceci pour une cible de géométrie donnée, une puissance de refroidissement donnée et un volume de précurseur de radioisotope donné.
Other features and advantages will be apparent from the detailed description of various embodiments of the invention, which are hereinafter described by way of illustration with reference to the accompanying drawings, in which:
Fig. 1
is a diagram of a radioisotope production facility according to the present invention;
Fig. 2
is a graph showing an experimental curve P = f (I), representing the evolution of the internal pressure as a function of the beam current (I), and internal pressure tolerance interval curves, for a geometry target given, a given cooling power and a given radioisotope precursor volume.

Description de modes de réalisation de l'inventionDescription of Embodiments of the Invention

Un mode d'exécution non limitatif d'une installation 10 de production de radioisotopes selon la présente invention est illustré sur base du schéma de la Fig. 1. Cette installation 10 comprend une cible, globalement identifiée par le signe de référence 12. Cette cible 12 comprend une cellule hermétique 14 renfermant un volume de fluide précurseur de radioisotope. Elle est équipée, de façon connue en soi, d'un circuit de refroidissement 16.A non-limiting embodiment of a radioisotope production installation 10 according to the present invention is illustrated on the basis of the diagram of FIG. Fig. 1 . This installation 10 comprises a target, globally identified by the reference sign 12. This target 12 comprises a hermetic cell 14 enclosing a volume of radioisotope precursor fluid. It is equipped, in known manner, with a cooling circuit 16.

L'installation 10 comprend en outre un accélérateur de particules 18 apte à produire un faisceau 20 de particules accélérées, qui est dirigé sur la cible 12 pour irradier le précurseur de radioisotope dans la cellule hermétique 14. Le faisceau 20 entre dans la cellule hermétique 14 par une fenêtre d'irradiation 22 d'une épaisseur de l'ordre de quelques dizaines de micromètres. La pression interne maximale que peut supporter la cible 12 dépend en particulier de l'épaisseur de cette fenêtre d'irradiation. On appelle pression nominale (Pmax) de la cible 12, la pression interne maximale dans la cellule hermétique 14 garantie par le producteur de la cible. Aussi longtemps que la pression interne dans la cellule hermétique 14 reste inférieure à la pression nominale (Pmax), le producteur de la cible garantit que la fenêtre d'irradiation 22 résiste à la pression. Cette pression nominale (Pmax) est bien entendu fonction de la géométrie de la cellule hermétique 14.The plant 10 further comprises a particle accelerator 18 capable of producing an accelerated particle beam 20 which is directed at the target 12 to irradiate the radioisotope precursor in the airtight cell 14. The beam 20 enters the airtight cell 14 by an irradiation window 22 having a thickness of the order of a few tens of micrometers. The maximum internal pressure that the target 12 can withstand depends in particular on the thickness of this irradiation window. The nominal pressure (Pmax) of the target 12 is the maximum internal pressure in the hermetic cell 14 guaranteed by the producer of the target. As long as the internal pressure in the airtight cell 14 remains below the nominal pressure (Pmax), the producer of the target ensures that the irradiation window 22 is pressure-resistant. This nominal pressure (Pmax) is of course a function of the geometry of the hermetic cell 14.

Le signe de référence 24 repère une représentation schématique d'un capteur de pression, qui mesure de la pression interne dans la cellule hermétique 14. Un signal représentatif de cette pression mesurée est transmise, par exemple à travers un bus de données 26, à un dispositif de contrôle 28. Sur base de ce signal de pression, le dispositif de contrôle 28 surveille la pression dans la cellule hermétique 14 de façon continue ou quasi-continue.The reference sign 24 identifies a schematic representation of a pressure sensor, which measures the internal pressure in the hermetic cell 14. A signal representative of this measured pressure is transmitted, for example through a data bus 26, to a control device 28. On the basis of this pressure signal, the control device 28 monitors the pressure in the hermetic cell 14 in a continuous or quasi-continuous manner.

L'installation 10 comprend avantageusement une vanne 30 à plusieurs voies, qui permet de faire communiquer la cellule hermétique 14 avec différents équipements auxiliaires. Un premier port A de cette vanne 30 est par exemple connecté à une vanne à trois voies 32, elle-même connectée à un réservoir 34 contenant le précurseur de radioisotope et à un dispositif de pipetage 36, comme par exemple une seringue. Un second port B est connecté à un premier port de la cellule hermétique 14 par un conduit 38 destiné au remplissage et à la vidange de la cellule hermétique 14. Un troisième port C est connecté à un récipient 40, destiné à recevoir le produit irradié lorsque l'irradiation est terminée. Un quatrième port D est connecté à un récipient de trop-plein 42 destiné à la récolte du fluide excédentaire introduit dans la cellule hermétique 14. Un cinquième port E est connecté à un second port de la cellule hermétique 14, par un conduit 44. Ce conduit 44 qui sert à l'évacuation du fluide excédentaire introduit dans la cellule hermétique 14, respectivement à l'introduction d'un gaz de gaz de purge dans la cellule hermétique 14. Ce gaz de purge est contenu dans un réservoir 46, connecté à un sixième port F.The installation 10 advantageously comprises a multi-way valve 30, which makes it possible to communicate the hermetic cell 14 with different auxiliary equipment. A first port A of this valve 30 is for example connected to a three-way valve 32, itself connected to a reservoir 34 containing the radioisotope precursor and to a pipetting device 36, such as a syringe. A second port B is connected to a first port of the hermetic cell 14 by a conduit 38 for filling and emptying the hermetic cell 14. A third port C is connected to a container 40, intended to receive the irradiated product when the irradiation is complete. A fourth port D is connected to an overflow vessel 42 for collecting the excess fluid introduced into the airtight cell 14. A fifth port E is connected to a second port of the airtight cell 14, via a conduit 44. conduit 44 which serves to evacuate the excess fluid introduced into the hermetic cell 14, respectively to the introduction of a purge gas gas in the hermetic cell 14. This purge gas is contained in a reservoir 46, connected to a sixth port F.

Le système de contrôle 12 contrôle les différentes vannes 30, 32, le dispositif de pipetage 36, le dispositif de refroidissement 16, le débit de la bombonne de gaz de purge 10 et l'accélérateur de particules 18. Lors du remplissage de la cellule hermétique 14, la vanne 30 connecte le port A avec le port B et le port D avec le port E. La vanne à trois voies 32 connecte le réservoir 34 contenant le précurseur de radioisotope avec le dispositif de pipetage 36 qui prélève une quantité de fluide comprenant le précurseur de radioisotope. La vanne à trois voies 32 connecte ensuite le dispositif de pipetage 36 avec le port A de la vanne 30. Le dispositif de pipetage 36 peut maintenant injecter le fluide contenant le précurseur de radioisotope dans la cellule hermétique 14, l'éventuel liquide excédentaire étant évacué vers le récipient de trop-plein 42. Lorsque la cellule hermétique 14 est remplie, la vanne 30 ferme tous les ports, et l'accélérateur 18 produit le faisceau irradiant la cible 12. Lorsque l'irradiation de la cible 12 est terminée, la vanne 30 connecte le port F avec le port E, et le port B avec le port C, de sorte que le gaz de purge soit injecté dans la cellule hermétique 14, et le fluide irradié soit évacué de la cible 12 pour être ensuite récolté dans le récipient de produit irradié 40.The control system 12 controls the various valves 30, 32, the pipetting device 36, the cooling device 16, the flow of the purge gas cylinder 10 and the particle accelerator 18. When filling the hermetic cell 14, the valve 30 connects the port A with port B and port D with port E. The three-way valve 32 connects reservoir 34 containing the radioisotope precursor with pipetting device 36 which draws a quantity of fluid including the radioisotope precursor. The three-way valve 32 then connects the pipetting device 36 to the port A of the valve 30. The pipetting device 36 can now inject the fluid containing the radioisotope precursor into the airtight cell 14, any excess liquid being discharged. to the overflow vessel 42. When the airtight cell 14 is filled, the valve 30 closes all the ports, and the accelerator 18 produces the beam irradiating the target 12. When the irradiation of the target 12 is complete, the valve 30 connects the port F with the port E, and the port B with the port C, so that the purge gas is injected into the hermetic cell 14, and the irradiated fluid is removed from the target 12 to be then collected in the irradiated product container 40.

Il sera noté que pendant l'opération d'irradiation de la cible 12, on laisse librement s'établir la pression interne (P) dans la cellule hermétique 14. Ceci signifie qu'on n'a pas besoin de dispositif pour régler la pression interne dans la cellule hermétique 14, sur base d'un système pressurisation à l'aide d'un gaz de pressurisation et d'un système de dépressurisation à l'aide d'une vanne de purge.It will be noted that during the irradiation operation of the target 12, the internal pressure (P) is freely allowed to establish in the airtight cell 14. This means that no device for adjusting the pressure is required. internal in the airtight cell 14, on the basis of a pressurization system using a pressurizing gas and a depressurization system using a purge valve.

La pression interne (P) dans la cellule hermétique 14 est mesurée par le capteur de pression 24 et surveillée par le dispositif de contrôle 28. Lorsque la pression interne (P), sort d'un premier intervalle de tolérance défini, le contrôleur 28 interrompt simplement l'irradiation de la cible 12 ou réduit son intensité. Il sera noté que, pour une cible 12 donnée, ce premier intervalle de tolérance est défini de façon spécifique pour le courant I du faisceau 20, le volume V de fluide précurseur de radioisotope contenu dans la cellule hermétique 14 et la puissance de refroidissement de la cible 12. (Normalement, la puissance de refroidissement est gardée constante.)The internal pressure (P) in the airtight cell 14 is measured by the pressure sensor 24 and monitored by the control device 28. When the internal pressure (P) comes out of a first defined tolerance range, the controller 28 interrupts simply irradiating the target 12 or reducing its intensity. It will be noted that, for a given target 12, this first tolerance interval is defined specifically for the current I of the beam 20, the volume V of the radioisotope precursor fluid contained in the hermetic cell 14 and the cooling power of the target 12. (Normally, the cooling power is kept constant.)

Le système de contrôle 12 est par conséquent programmé pour interrompre l'irradiation de la cible 12, lorsque la pression interne (P) dans la cellule hermétique 14 sort d'un premier intervalle de tolérance défini. Il est par ailleurs avantageusement programmé pour déclencher une alarme préalable, , et/ou réduire l'intensité d'irradiation, lorsque la pression interne (P) dans la cellule hermétique 14 sort d'un deuxième intervalle de tolérance fixé, qui est inclus dans le premier intervalle de tolérance.The control system 12 is therefore programmed to interrupt the irradiation of the target 12, when the internal pressure (P) in the sealed cell 14 comes out of a first defined tolerance range. It is also advantageously programmed to trigger a prior alarm, and / or reduce the intensity of irradiation, when the internal pressure (P) in the hermetic cell 14 comes out of a second fixed tolerance range, which is included in the first tolerance interval.

Une définition avantageuse de ces intervalles de tolérance est maintenant décrite en se référant à la Fig. 2, qui montre notamment une courbe expérimentale P = f(I), représentant l'évolution de la pression interne (P) dans la cellule hermétique 14 en fonction du courant de faisceau (I), ceci pour une cible 12 donnée, un certain volume de liquide précurseur de radioisotope dans la cellule hermétique 14 et une certaine puissance de refroidissement de la cible 12. L'exemple de courbe P = f(I) représenté sur la Fig. 2 a par exemple été déterminé pour une cellule hermétique 14 de géométrie donnée, d'un volume de 3,5 ml, remplie avec un volume de fluide précurseur de radioisotope de 2,5 ml. Pour enregistrer cette courbe P = f(I), on a augmenté graduellement le courant de faisceau, en mesurant la pression interne de la cible à l'aide du capteur de pression 24. Ces mesures ont été effectuées jusqu'à atteindre la valeur de pression nominale (Pmax) garantie pour la cible 12 pour un courant faisceau I d'environ 60 pA. Pendant toute les mesures, le débit de liquide de refroidissement a été gardé sensiblement constant, de même que la température d'entrée du liquide de refroidissement dans la cible 12.An advantageous definition of these tolerance ranges is now described with reference to the Fig. 2 , which shows in particular an experimental curve P = f (I), representing the evolution of the internal pressure (P) in the hermetic cell 14 as a function of the beam current (I), this for a given target 12, a certain volume of radioisotope precursor liquid in the hermetic cell 14 and a certain cooling power of the target 12. The example of curve P = f (I) shown in FIG. Fig. 2 has for example been determined for a hermetic cell 14 of given geometry, a volume of 3.5 ml, filled with a volume of 2.5 ml radioisotope precursor fluid. To record this curve P = f (I), the beam current was gradually increased by measuring the internal pressure of the target using the pressure sensor 24. These measurements were made until the value of nominal pressure (Pmax) guaranteed for the target 12 for a beam current I of approximately 60 pA. During all the measurements, the coolant flow rate was kept substantially constant, as was the coolant inlet temperature in the target 12.

Il sera noté que la courbe P = f(I) représentée sur la Fig. 2 ne constitue pas une limitation de l'invention. En effet, la courbe P = f(I) varie en fonction de la qualité du faisceau produit par l'accélérateur, de la géométrie de la cible, de la puissance de refroidissement, du volume et de la nature liquide précurseur de radioisotope. La courbe P = f(I) peut également être déterminée théoriquement par simulation, en tenant compte des paramètres du faisceau, du volume de fluide précurseur de radioisotope, de la puissance du système de refroidissement et de la géométrie de la cible 1, des caractéristiques du liquide précurseur de radioisotope.It will be noted that the curve P = f (I) represented on the Fig. 2 does not constitute a limitation of the invention. Indeed, the curve P = f (I) varies according to the quality of the beam produced by the accelerator, the geometry of the target, the cooling power, the volume and the liquid nature precursor radioisotope. The curve P = f (I) can also be determined theoretically by simulation, taking into account the parameters of the beam, the volume of radioisotope precursor fluid, the power of the cooling system and the geometry of the target 1, characteristics radioisotope precursor liquid.

Le premier intervalle de tolérance présente une limite inférieure de pression et une limite supérieure de pression, toutes les deux définies pour ledit courant de faisceau donné (I) sur base de la courbe P = f(I). La limite inférieure de pression interne est définie de façon-à-ce qu'elle soit de préférence entre 5% à 20% inférieure à la valeur de pression déduite de la courbe P = f(I) pour le courant de faisceau donné (I). Sur la Fig. 2, la courbe f(I) = P-(0,2*P) représente par exemple le cas d'une limite inférieure de pression interne définie de façon-à-ce qu'elle soit 20% inférieure à la valeur de pression déduite de la courbe P = f(I) pour un courant de faisceau donné (I). La limite supérieure de pression interne est une pression comprise entre la valeur de pression déduite de la courbe P = f(I) pour le courant de faisceau donné et une valeur de pression nominale (Pmax) de la cellule hermétique. Elle est avantageusement entre 5 et 10 bars plus élevée que la valeur de pression déduite de ladite courbe P = f(I) pour un courant de faisceau donné (I), et est plafonnée à une valeur de pression (P2) inférieure à la valeur de pression nominale (Pmax) de la cellule hermétique 14. La courbe f(I) = P+5 sur la Fig. 2 représente par exemple le cas d'une limite supérieure de pression interne fixée de façon-à-ce qu'elle soit 5 bar plus élevée que la pression déduite de la courbe P = f(I) pour un courant de faisceau donné (I). Sur la Fig. 2, la limite supérieure de pression interne est de préférence limitée vers le haut à un valeur P2 = 30 bar, ce qui représente 75% de la pression nominale Pmax, qui est égale à 40 bar.The first tolerance interval has a lower pressure limit and an upper pressure limit, both defined for said given beam current (I) based on the P = f (I) curve. The lower limit of internal pressure is defined so that it is preferably between 5% to 20% lower than the pressure value deduced from the curve P = f (I) for the given beam current (I ). On the Fig. 2 the curve f (I) = P- (0.2 * P) represents for example the case of a lower limit of internal pressure defined so that it is 20% lower than the pressure value deduced of the curve P = f (I) for a given beam current (I). The upper limit of internal pressure is a pressure between the pressure value derived from the curve P = f (I) for the given beam current and a nominal pressure value (Pmax) of the hermetic cell. It is advantageously between 5 and 10 bars higher than the pressure value deduced from said curve P = f (I) for a given beam current (I), and is capped at a pressure value (P2) less than the value nominal pressure (Pmax) of the hermetic cell 14. The curve f (I) = P + 5 on the Fig. 2 represents, for example, the case of an upper limit of internal pressure set so that it or 5 bar higher than the pressure deduced from the curve P = f (I) for a given beam current (I). On the Fig. 2 , the upper limit of internal pressure is preferably limited upwards to a value P2 = 30 bar, which represents 75% of the nominal pressure Pmax, which is equal to 40 bar.

Le second intervalle de pression est compris dans le premier intervalle de tolérance se situe également autour de la courbe f(I) = P. La limite inférieure de pression interne du second intervalle de tolérance est définie de façon-à-ce qu'elle soit inférieure, de préférence d'au moins 2%, à la valeur de pression déduite de la courbe P = f(I) pour le courant de faisceau (I) donné, tout en restant supérieure à la limite inférieure de pression interne du premier intervalle de tolérance. La limite supérieure de pression interne du second intervalle de tolérance est déterminée de façon-à-ce qu'elle soit supérieure à la valeur de pression déduite de la courbe P = f(I) pour le courant de faisceau (I) donné, tout en restant inférieure à la limite supérieure de pression interne du premier intervalle de tolérance.The second pressure range is within the first tolerance range and is also around the curve f (I) = P. The lower internal pressure limit of the second tolerance interval is defined so that it is lower, preferably at least 2%, to the pressure value deduced from the curve P = f (I) for the given beam current (I), while remaining greater than the lower limit of internal pressure of the first interval of tolerance. The upper limit of internal pressure of the second tolerance interval is determined so that it is greater than the pressure value deduced from the curve P = f (I) for the given beam current (I), all remaining below the upper limit of internal pressure of the first tolerance range.

Un exemple de second intervalle de tolérance est également illustré sur la Fig. 2. La limite inférieure de pression interne est représentée par la courbe f(I) = P- (0,1*P) et la limite supérieure de pression interne est représentée par la courbe f(I) = P+2.An example of a second tolerance interval is also shown on the Fig. 2 . The lower limit of internal pressure is represented by the curve f (I) = P- (0.1 * P) and the upper limit of internal pressure is represented by the curve f (I) = P + 2.

Le dispositif de contrôle 12, qui contrôle également l'intensité du courant de faisceau, est avantageusement programmé pour causer une diminution du de l'intensité du courant de faisceau lorsque la pression interne (P) dans la cellule hermétique 14 dépasse une limite supérieure de pression interne. Cette limite supérieure est alors définie de façon-à-ce qu'elle soit supérieure à la valeur de pression déduite de ladite courbe P = f(I) pour le courant de faisceau (I) donné, mais inférieure à la limite supérieure de pression interne dudit premier intervalle de tolérance.The control device 12, which also controls the intensity of the beam current, is advantageously programmed to cause a decrease in the intensity of the beam current when the internal pressure (P) in the airtight cell 14 exceeds an upper limit of internal pressure. This upper limit is then defined so that it is greater than the pressure value deduced from said curve P = f (I) for the beam current. (I) given but less than the upper limit of internal pressure of said first tolerance range.

Pour optimiser le procédé, on peut notamment jouer sur le degré de remplissage de la cellule hermétique 14. En effet, afin d'optimiser le rendement de production de radioisotopes, il est utile d'optimiser le degré de remplissage de la cellule hermétique.. En connaissant la valeur de la pression nominale (Pmax) de la cellule hermétique, tout en mesurant la pression interne de la cellule hermétique, on irradie pendant une période définie (par exemple deux heures), pour différents volumes de fluide précurseur de radioisotopes, la cible avec un courant de faisceau I de telle sorte à ne pas dépasser la pression nominale (Pmax). On calcule alors le rendement de radioisotopes produit pour chacun des volumes. On établit une courbe du rendement de production de radioisotopes en fonction du degré de remplissage de la cellule qui en pratique montre un rendement constant au-dessus d'un degré de remplissage critique et une forte chute de rendement en dessous de ce même degré de remplissage critique . Afin de minimiser les contraintes de pression dans la cible, tout en minimisant le « tunneling effect », on se fixe un degré de remplissage de la cellule hermétique correspondant à ce degré de remplissage critique ou à un degré de remplissage légèrement supérieur, et on établit soit expérimentalement, soit théoriquement la courbe de la pression P en fonction du courant de faisceau I pour ce degré de remplissage de la cellule hermétique.To optimize the process, it is possible in particular to play on the degree of filling of the airtight cell 14. Indeed, in order to optimize the production yield of radioisotopes, it is useful to optimize the degree of filling of the airtight cell. By knowing the value of the nominal pressure (Pmax) of the hermetic cell, while measuring the internal pressure of the hermetic cell, irradiating for a defined period (for example two hours), for different volumes of radioisotope precursor fluid, the target with a beam current I so as not to exceed the nominal pressure (Pmax). The yield of radioisotopes produced for each of the volumes is then calculated. A radioisotope production efficiency curve is plotted against the degree of cell filling which in practice shows a constant yield above a critical degree of filling and a large yield drop below that same degree of filling. critical. In order to minimize the pressure stresses in the target, while minimizing the tunneling effect, a degree of filling of the hermetic cell corresponding to this degree of critical filling or a slightly higher degree of filling is established. either experimentally or theoretically the curve of the pressure P as a function of the beam current I for this degree of filling of the hermetic cell.

Reste à noter que l'installation et le procédé décrits sont particulièrement adaptés pour produire des radioisotopes tels que 11C, 13N, 15O ou 18F. Liste des signes de référence 10 installation de production de radioisotopes 32 vanne à trois voies 34 réservoir contenant le précurseur de radioisotope 12 cible 14 cellule hermétique 36 dispositif de pipetage 16 circuit de refroidissement 38 conduit 40 récipient destiné à recevoir le produit irradié 18 accélérateur de particules 20 faisceau de particules 42 récipient de trop-plein 22 fenêtre d'irradiation 24 capteur de pression 44 conduit 26 bus de données 46 réservoir avec gaz de purge 28 dispositif de contrôle 30 vanne à plusieurs voies It should be noted that the installation and the method described are particularly suitable for producing radioisotopes such as 11 C, 13 N, 15 O or 18 F. <b> List of reference signs </ b> 10 radioisotope production facility 32 three way valve 34 tank containing the radioisotope precursor 12 target 14 hermetic cell 36 pipetting device 16 cooling system 38 pipe 40 container for receiving the irradiated product 18 particle accelerator 20 particle beam 42 overflow container 22 irradiation window 24 Pressure sensor 44 pipe 26 data bus 46 tank with purge gas 28 control device 30 multi-way valve

Claims (13)

  1. A method for producing a radioisotope, comprising:
    irradiating a volume of radioisotope precursor fluid contained in a hermetic cell of a target, using a beam of particles of given current intensity which is produced by a particle accelerator;
    cooling the said target; and
    measuring the internal pressure inside said hermetic cell;
    characterized in that:
    the internal pressure (P) inside the said hermetic cell is allowed to be freely established during the said irradiation; and
    the said irradiation is interrupted or its intensity reduced when the internal pressure (P) in said hermetic cell moves out of a first tolerance range determined as a function of different parameters having an influence on changes in internal pressure inside the hermetic cell during irradiation, the said parameters for a given target, given beam of particles and given radioisotope precursor fluid, comprising the extent of filling of the said hermetic cell, the cooling power of the target and the beam current intensity (I).
  2. The method according to claim 1 wherein:
    a curve P = f(I) is defined giving the internal pressure (P) of the hermetic cell at different beam current intensities (I), for a given volume of radioisotope precursor fluid and a given cooling power of the said target;
    the said first tolerance range has a lower pressure and an upper pressure limit defined for the said given beam current intensity (I) based on the said curve P = f(I);
    the said lower limit of internal pressure is defined so that it is lower, preferably between 5 % and 20 % lower, that the pressure value inferred from the said curve P = f(I) for the said given beam current intensity (I); and
    the said upper limit of internal pressure is a pressure between the pressure value inferred from the said curve P = f(I) for said given beam current intensity and a nominal pressure value (Pmax) of said hermetic cell, the said nominal pressure value (Pmax) being assumed to represent the maximum pressure value at which the said hermetic cell is guaranteed.
  3. The method according to claim 2 wherein the said upper limit of internal pressure in the said first tolerance range is lower by at least 20 % than the said nominal pressure value (Pmax) of the said hermetic cell.
  4. The method according to claim 2 or 3 wherein the said upper limit of internal pressure in the said first tolerance range is between 5 and 10 bars higher than the pressure value inferred from the said curve P = f(I) for the said given beam current intensity (I) and its ceiling is a pressure value (P2) that is lower than the said nominal pressure value (Pmax) of the said hermetic cell.
  5. The method according to any of the preceding claims wherein a control device triggers an alarm when the internal pressure (P) in the said hermetic cell moves out of a second tolerance range defined as a function of different parameters having an influence on changes in internal pressure in the hermetic cell during irradiation, the said second tolerance range being included within the said first tolerance range.
  6. The method according to claim 5 wherein:
    a curve P = f(I) is determined giving the internal pressure (P) of the hermetic cell at different beam current intensities (I), for a given volume of radioisotope precursor fluid and given cooling power of the said target;
    the said first tolerance range has a lower pressure limit and upper pressure limit defined for the said given beam current intensity (I) on the basis of the said curve P = f(I);
    the said second tolerance range has a lower pressure limit and a higher pressure limit defined on the basis of the said curve P = f(I);
    the said lower limit of internal pressure in the said second tolerance range is defined so that it is lower, preferably by at least 2 %, than the pressure value inferred from the said curve P = f(I) for the given beam current intensity (I) whilst remaining higher than the said lower limit of internal pressure in the said first tolerance range; and
    the said upper limit of internal pressure in the said second tolerance range is defined so that it is higher than the pressure value inferred from the said curve P = f(I) for the given beam current intensity (I) whilst remaining lower than the said upper limit of internal pressure in the said first tolerance range.
  7. The method according to any of the preceding claims wherein, when the internal pressure (P) in said hermetic cell exceeds an upper limit of internal pressure fixed inside the said first tolerance range, the beam current is decreased.
  8. The method according to any of the preceding claims wherein the extent of filling of the hermetic cell is optimised experimentally for a range of envisaged beam currents.
  9. The method according to any of the preceding claims wherein the said radioisotope precursor is a precursor of 11C, 13N, 15O or 18F.
  10. An installation for implementing the method according to any of the preceding claims, comprising:
    a target with a hermetic cell capable of containing a volume of precursor fluid, the said hermetic cell being guaranteed to withstand a nominal pressure (Pmax);
    a particle accelerator capable of producing and directing a beam of accelerated particles of a given current intensity (I) onto the said target;
    a system to monitor the internal pressure of the said hermetic cell;
    characterized in that it comprises a control device programmed to interrupt the said beam of particles when the internal pressure (P) inside the said hermetic cell moves out of a first tolerance range determined as a function of different parameters having an influence on changes in internal pressure in the hermetic cell during irradiation.
  11. The installation according to claim 10 wherein the said control device is programmed to trigger an alarm when the internal pressure in the said hermetic lies outside a second range included within the said first tolerance range.
  12. The installation according to claim 10 or 11 wherein the said control device is programmed to cause a reduction in the intensity of the beam current when the internal pressure (P) in the said hermetic cell exceeds an upper limit of internal pressure included in the said second range.
  13. The installation according to any of claims 10 to 12 wherein the said control device is programmed with a curve P = f(I) giving the internal pressure (P) of the hermetic cell at different beam current intensities (I), for a given volume of radioisotope precursor fluid and a given cooling power of the said target, the said curve P = f(I) being used by the said control device to define the said first tolerance range as a function of beam current intensity (I).
EP11184551.7A 2011-10-10 2011-10-10 Method and facility for producing a radioisotope Active EP2581914B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11184551.7A EP2581914B1 (en) 2011-10-10 2011-10-10 Method and facility for producing a radioisotope
US14/350,524 US9941027B2 (en) 2011-10-10 2012-10-10 Process and installation for producing radioisotopes
PCT/EP2012/070013 WO2013064342A1 (en) 2011-10-10 2012-10-10 Process and installation for producing radioisotopes
CN201280058343.2A CN104011803A (en) 2011-10-10 2012-10-10 Process and installation for producing radioisotopes
CA2851126A CA2851126C (en) 2011-10-10 2012-10-10 Process and installation for producing radioisotopes
JP2014535039A JP6301254B2 (en) 2011-10-10 2012-10-10 Method and apparatus for generating radioisotopes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11184551.7A EP2581914B1 (en) 2011-10-10 2011-10-10 Method and facility for producing a radioisotope

Publications (2)

Publication Number Publication Date
EP2581914A1 EP2581914A1 (en) 2013-04-17
EP2581914B1 true EP2581914B1 (en) 2014-12-31

Family

ID=47178581

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11184551.7A Active EP2581914B1 (en) 2011-10-10 2011-10-10 Method and facility for producing a radioisotope

Country Status (6)

Country Link
US (1) US9941027B2 (en)
EP (1) EP2581914B1 (en)
JP (1) JP6301254B2 (en)
CN (1) CN104011803A (en)
CA (1) CA2851126C (en)
WO (1) WO2013064342A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112017016340B1 (en) * 2015-01-29 2022-12-27 Framatome Gmbh SINTERIZED RARE EARTH METAL OXIDE TARGET TO PRODUCE A RADIOISOTOPE, METHOD FOR PREPARING SAID TARGET AND USE OF SAID TARGET TO PRODUCE A RADIOISOTOPE
NL2016110A (en) * 2015-03-03 2016-09-30 Asml Netherlands Bv Radioisotope Production.
CN106948810B (en) * 2017-04-10 2020-05-05 河南省科学院同位素研究所有限责任公司 Preparation method of hydrophobic liquid radioactive tracer
EP3706141A4 (en) * 2017-10-31 2021-08-11 National Institutes for Quantum and Radiological Science and Technology Radioisotope production method and radioisotope production device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055463A (en) * 1975-08-18 1977-10-25 Combustion Engineering, Inc. Automatic motion inhibit system for a nuclear power generating system
US4179100A (en) * 1977-08-01 1979-12-18 University Of Pittsburgh Radiography apparatus
JPS60104300A (en) * 1983-11-11 1985-06-08 株式会社日本製鋼所 Operation system of medical radioactive isotope production unit
DE19500395A1 (en) * 1995-01-09 1996-07-18 Siemens Ag Method and device for operating a reactor in an unstable state
JP3333465B2 (en) * 1999-03-05 2002-10-15 住友重機械工業株式会社 Method and apparatus for producing radioactive material
EP1216715A1 (en) * 2000-12-22 2002-06-26 Ion Beam Applications S.A. Synthesing device von radiopharmaceuticals
US6567492B2 (en) * 2001-06-11 2003-05-20 Eastern Isotopes, Inc. Process and apparatus for production of F-18 fluoride
KR100854965B1 (en) * 2001-06-13 2008-08-28 트라이엄프,오퍼레이팅애즈어조인트벤쳐바이더거버너스 오브더유니버시티오브알버타더유니버시티오브브리티시콜롬비아 칼레톤유니버시티시몬프레이저유니버시티더유니버시티 오브토론토앤드더유니버시티오브빅토리아 Apparatus and Method for generating 18F-Fluoride by ion beams
JP2003098295A (en) * 2002-06-24 2003-04-03 Sumitomo Heavy Ind Ltd Apparatus of manufacturing radioactive material and method of manufacturing radioactive material
EP1429345A1 (en) * 2002-12-10 2004-06-16 Ion Beam Applications S.A. Device and method of radioisotope production
ATE468589T1 (en) * 2004-09-28 2010-06-15 Soreq Nuclear Res Ct Israel At METHOD AND SYSTEM FOR PRODUCING RADIOISOTOPES
US20070040115A1 (en) * 2005-08-05 2007-02-22 Publicover Julia G Method for calibrating particle beam energy
WO2008070693A1 (en) * 2006-12-06 2008-06-12 Hammersmith Imanet Limited Non-aqueous extraction of [18f] fluoride from cyclotron targets
WO2008149600A1 (en) * 2007-06-08 2008-12-11 Sumitomo Heavy Industries, Ltd. Radioisotope production system and radioisotope production method
JP5179142B2 (en) 2007-10-24 2013-04-10 行政院原子能委員会核能研究所 Target material conveyor system
EP2146555A1 (en) * 2008-07-18 2010-01-20 Ion Beam Applications S.A. Target apparatus for production of radioisotopes

Also Published As

Publication number Publication date
EP2581914A1 (en) 2013-04-17
CA2851126A1 (en) 2013-05-10
WO2013064342A1 (en) 2013-05-10
JP6301254B2 (en) 2018-03-28
CA2851126C (en) 2019-07-09
US9941027B2 (en) 2018-04-10
JP2014529089A (en) 2014-10-30
US20140376677A1 (en) 2014-12-25
CN104011803A (en) 2014-08-27

Similar Documents

Publication Publication Date Title
EP2581914B1 (en) Method and facility for producing a radioisotope
EP1674812B1 (en) Apparatus and process for controlling the dehydration operation during a freeze-drying treatment.
EP2179236B1 (en) Method of treating a transport support for the atmospheric storage and conveyance of semiconductor substrates
TW201430219A (en) A vacuum pump system for evacuating a chamber and method for controlling a vacuum pump system
de Aguiar Francisco et al. Evaporative CO2 microchannel cooling for the LHCb VELO pixel upgrade
US20180249582A1 (en) Method for manufacturing electronic devices
CN104638314B (en) Phase transformation battery pack vacuum pumping method
EP2636041B1 (en) Method for filling water into a primary cooling circuit of a nuclear reactor
EP0553002B1 (en) Protecting device for a primary pump
EP3234949B1 (en) Method for managing stoppage of a pressurised-water nuclear reactor
FR3071179B1 (en) COOLING HOT ISOSTATIC PRESS RELIEF
FR3061549A1 (en) DETECTOR FOR ELECTROMAGNETIC RADIATION AND IN PARTICULAR INFRARED RADIATION AND METHOD FOR PRODUCING THE SAME
FR2871925A1 (en) OXYGEN RECHARGING TECHNIQUE 180 [02] IN 18F FLUOR PRODUCTION [F2]
CA2997996C (en) Device for converting a liquid into vapour
FR3041545B1 (en) DEVICE FOR CONVERTING A STEAM LIQUID AND METHOD FOR REGULATING AN ASSOCIATED HEATING POWER
FR2936374A1 (en) HIGH ENERGY LASER DEVICE WITH DOPING GRADIENT GAIN MEDIUM
EP2466299A1 (en) Method and device for regenerating a hydrogen detector
EP2682695B1 (en) Device and method for extruding a solid body
FR3033049A1 (en) METHOD AND DEVICE FOR CONTROLLING THE TEMPERATURE OF A FLUID FLOW TO BE USED BY AN NMR ANALYZE PROBE AND CORRESPONDING NMR ANALYSIS SYSTEM
EP2959171A1 (en) Pump including a shield for protecting a pump wheel against a coolant leak along the hub of the wheel
WO2006108976A2 (en) Method for controlling filling of gas cylinders
WO2016038176A1 (en) Device for regulating the temperature of a module for driving an electronic component
WO2017089419A1 (en) Fuel cell comprising heating plates and facility comprising such a cell
WO2017089679A1 (en) Power generation system intended to be mounted in an aircraft
WO2016097374A1 (en) Method for passivating a nickel-alloy element, element obtained by said method, and method for manufacturing an associated primary circuit of a nuclear reactor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140127

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140327

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140722

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 704816

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011012651

Country of ref document: DE

Effective date: 20150219

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150331

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141231

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 704816

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150430

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011012651

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151010

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111010

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231027

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231027

Year of fee payment: 13

Ref country code: FR

Payment date: 20231025

Year of fee payment: 13

Ref country code: DE

Payment date: 20231027

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231027

Year of fee payment: 13