TW201632837A - Correction table creation device, encoder and correction table creation method - Google Patents

Correction table creation device, encoder and correction table creation method Download PDF

Info

Publication number
TW201632837A
TW201632837A TW104140208A TW104140208A TW201632837A TW 201632837 A TW201632837 A TW 201632837A TW 104140208 A TW104140208 A TW 104140208A TW 104140208 A TW104140208 A TW 104140208A TW 201632837 A TW201632837 A TW 201632837A
Authority
TW
Taiwan
Prior art keywords
error
correction table
component
encoder
rotation angle
Prior art date
Application number
TW104140208A
Other languages
Chinese (zh)
Inventor
Hirokatsu Okumura
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Publication of TW201632837A publication Critical patent/TW201632837A/en

Links

Abstract

The disclosure is to provide a correction table creation device that improves detection accuracy of a rotation angle position of an encoder 2. A correction table creation device 1 according to the present invention is a device that creates a correction table correcting an error of an encoder 2 detecting a rotation angle position from a signal of a detection element. A single rotation error calculation unit 110 calculates the error of the rotation angle position to be detected by the encoder 2 serving as a measured object by a single rotation with a highly accurate error detection device 3. An inherent error component calculation unit 120 calculates an inherent error component by performing a Fourier transformation of the calculated error of the single rotation. A correction table creation unit 130 performs an inverse Fourier transformation of only a value of a major error period component of the calculated peculiar error component, and creates a correction table with an amount of error in each rotation angle position as a correction value. A correction table storage unit 140 stores the created correction table in a storage unit of the encoder 2.

Description

修正表製作裝置、編碼器及修正表製作方法 Correction table creation device, encoder, and correction table creation method

本發明係關於一種製作對根據檢測元件之信號檢測旋轉角度位置之編碼器之誤差予以修正之修正表的修正表製作裝置、成為修正表製作對象之編碼器及修正表製作方法。 The present invention relates to a correction table creation device for preparing a correction table for correcting an error of an encoder that detects a rotation angle position based on a signal of a detection element, an encoder to be used as a correction table creation target, and a correction table creation method.

自先前以來,存在一種能夠將馬達等之軸之旋轉角度位置作為旋轉角度位置資料進行檢測之被稱作磁式或光學式之編碼器(旋轉編碼器)之裝置。 Since the past, there has been known a device called a magnetic or optical encoder (rotary encoder) that can detect the rotational angular position of the shaft of a motor or the like as the rotational angular position data.

又,於編碼器,存在能夠將旋轉角度位置轉換為增量信號等並使用被稱作A、B相之2根傳輸線進行發送者、或能夠發送絕對值之旋轉角度位置資料者等。 Further, in the encoder, there is a case where the rotation angle position can be converted into an incremental signal or the like, and the transmission is performed using two transmission lines called A and B phases, or the rotation angle position information capable of transmitting an absolute value.

根據專利文獻1,記載有一種編碼器之補償值修正方法之技術,其係在基於與旋轉體之旋轉連動地變化之感測器元件之輸出信號檢測上述旋轉體之角度位置之編碼器中,於為了消除上述角度位置之檢測結果之誤差而將修正上述輸出信號之補償值最佳化時,進行在每次開始向上述編碼器供給電源時修正上述補償值之修正步驟,於該修正步驟中,進行第1修正步驟及第2修正步驟,該第1修正步驟係檢測上述輸出信號與理想狀態之偏離量,基於該偏離量修正上述補償值,該第2多正步驟係於該第1修正步驟之後,以較該第1修正步驟小之增益修正上述補償值。 According to Patent Document 1, there is described a technique for correcting a compensation value of an encoder, which is an encoder that detects an angular position of the rotating body based on an output signal of a sensor element that changes in conjunction with rotation of a rotating body. In order to correct the error of the detection result of the angular position and to correct the compensation value of the output signal, a correction step of correcting the compensation value every time the power supply to the encoder is started is performed, and in the correction step And performing a first correction step of detecting a deviation amount between the output signal and an ideal state, and correcting the compensation value based on the deviation amount, wherein the second multiple positive step is based on the first correction After the step, the compensation value is corrected by a gain smaller than the first correction step.

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

[專利文獻1]日本專利特開2011-47824號公報 [Patent Document 1] Japanese Patent Laid-Open Publication No. 2011-47824

此處,專利文獻1之編碼器係於工廠出貨時以修正表之形式具備表示編碼器之旋轉角度位置之理想狀態之固定補償值(修正值)。該修正表係製品個別地製作並記憶。 Here, the encoder of Patent Document 1 is provided with a fixed compensation value (correction value) indicating an ideal state of the rotational angle position of the encoder in the form of a correction table at the time of shipment from the factory. The correction sheet products are individually produced and memorized.

然而,於製作該修正表時,即便藉由高精度誤差檢測裝置測定編碼器之旋轉角度位置,亦存在產生測定之隨機之誤差(測定誤差)之問題。因此,難以製作高精度之修正表。 However, when the correction table is produced, even if the position of the rotation angle of the encoder is measured by the high-precision error detecting device, there is a problem that a random error (measurement error) of the measurement is generated. Therefore, it is difficult to produce a high-precision correction table.

本發明係鑒於此種狀況而完成者,其目的在於提供一種能夠製作高精度之修正表之修正表製作裝置。 The present invention has been made in view of such circumstances, and an object thereof is to provide a correction table creating apparatus capable of producing a highly accurate correction table.

本發明之修正表製作裝置之特徵在於:其係製作對根據檢測元件之信號檢測旋轉角度位置之編碼器之誤差予以修正的修正表者,且包括:旋轉一周誤差算出機構,其利用高精度誤差檢測裝置算出每旋轉一周之由上述編碼器檢測出之上述旋轉角度位置之誤差;固有誤差成分算出機構,其藉由對由該旋轉一周誤差算出機構算出之每旋轉一周之誤差進行傅立葉轉換而算出固有誤差成分;修正表製作機構,其僅對由該固有誤差成分算出機構算出之上述固有誤差成分之主要誤差週期成分之值進行傅立葉逆轉換,製作以各上述旋轉角度位置處之誤差量作為修正值之上述修正表;以及修正表保存機構,其將由該修正表製作機構製作之上述修正表保存於上述編碼器之記憶機構。 The correction table creation device of the present invention is characterized in that it is a correction table for correcting an error of an encoder that detects a rotation angle position based on a signal of a detection element, and includes: a rotation one-time error calculation mechanism that utilizes a high-precision error The detecting device calculates an error of the rotation angle position detected by the encoder every one rotation, and the inherent error component calculating means calculates Fourier transform for each rotation error calculated by the one-turn error calculating means. Intrinsic error component; correction table creation means that performs inverse Fourier transform on the value of the main error period component of the inherent error component calculated by the inherent error component calculation means, and creates an error amount at each of the rotation angle positions as a correction The correction table of the value; and the correction table storage unit that stores the correction table created by the correction table creation unit in the memory mechanism of the encoder.

藉由以此方式構成,而利用固有誤差成分中之主要誤差週期成分製作修正表,從而能夠製作高精度之修正表。因此,能夠提供高精度地檢測旋轉角度位置之編碼器。又,藉由將修正表直接保存於編碼 器,可提供能夠縮短調整時間之修正表製作裝置。 According to this configuration, the correction table is created using the main error period components of the inherent error components, and a highly accurate correction table can be produced. Therefore, it is possible to provide an encoder that detects the position of the rotation angle with high precision. Also, by saving the correction table directly to the code A correction table creating device capable of shortening the adjustment time can be provided.

本發明之修正表製作裝置之特徵在於:上述編碼器中,上述檢測元件包含具有一對S極與N極之磁極被磁化之磁鐵之可動被檢測物、以及與上述磁鐵相對向之A相磁感應感測器及B相磁感應感測器,與上述可動被檢測物之位移對應地自上述A相磁感應感測器輸出正弦波狀之A相信號,與上述可動被檢測物之位移對應地自上述B相磁感應感測器輸出正弦波狀之B相信號,且上述A相信號與上述B相信號之相位差大致為π/2,上述編碼器包括旋轉角度位置算出機構,該旋轉角度位置算出機構根據上述A相信號與上述B相信號算出XY平面上之利薩如波形並對其進行解析,藉此檢測上述可動被檢測物之角度位置,上述旋轉角度位置算出機構係針對上述可動被檢測物每旋轉一周算出2個週期之上述利薩如波形。 In the encoder manufacturing apparatus of the present invention, the detecting element includes a movable object to be detected having a magnet having a pair of S poles and N poles magnetized, and an A phase magnetic induction opposite to the magnet a sensor and a B-phase magnetic induction sensor output a sinusoidal A-phase signal from the A-phase magnetic induction sensor corresponding to the displacement of the movable object to be detected, corresponding to the displacement of the movable object to be detected The B-phase magnetic induction sensor outputs a sinusoidal B-phase signal, and the phase difference between the A-phase signal and the B-phase signal is substantially π/2, and the encoder includes a rotation angle position calculation mechanism, and the rotation angle position calculation mechanism The angle position of the movable object to be detected is calculated by analyzing and analyzing the Lissajous waveform on the XY plane based on the A phase signal and the B phase signal, and the rotation angle position calculating means is for the movable object to be detected The above-mentioned Lissajous waveform of 2 cycles is calculated every one rotation.

藉由以此方式構成,能夠依照磁編碼器之特性製作高精度之修正表。又,由於能夠藉由一對磁化之簡單之檢測元件檢測旋轉角度位置,故而能夠簡化製造時之調整步驟。 According to this configuration, it is possible to create a high-precision correction table in accordance with the characteristics of the magnetic encoder. Further, since the position of the rotation angle can be detected by a pair of simple magnetization detecting elements, the adjustment step at the time of manufacture can be simplified.

本發明之修正表製作裝置之特徵在於:上述主要誤差週期成分係每旋轉一周為2的乘方之週期成分。 The correction table creating apparatus of the present invention is characterized in that the main error period component is a periodic component of a power of two per revolution.

A相信號及B相信號係馬達每一周則有2個週期,故而藉由以此方式構成,而以2的乘方決定誤差修正量,藉此,能夠製作可修正大部分主要誤差週期成分之修正表。 The A-phase signal and the B-phase signal system have two cycles per week. Therefore, by configuring in this manner, the error correction amount is determined by a power of two, whereby it is possible to manufacture a component that can correct most of the main error periods. Correct the table.

本發明之修正表製作裝置之特徵在於:上述主要誤差週期成分係每旋轉一周至少為1週期成分、2週期成分、4週期成分及8週期成分。 In the correction table creating apparatus of the present invention, the main error period component is at least one cycle component, two cycle component, four cycle component, and eight cycle component per rotation.

藉由以此方式構成,能夠對包含每旋轉一周之高諧波成分中之自較低者至第3次高諧波成分之成分進行修正,而能夠進行充分之修正,從而能夠製作可進行精度良好之旋轉角度位置檢測之修正表。 According to this configuration, it is possible to correct a component including the lower harmonic component to the third harmonic component of the harmonic component per revolution, and to perform sufficient correction so that accuracy can be produced. Correction table for good rotation angle position detection.

本發明之編碼器之特徵在於:包括修正機構,該修正機構自藉由上述修正表製作裝置製作且保存於上述記憶機構之上述修正表讀出與使用狀態下之上述旋轉角度位置對應之上述修正值,藉由上述修正值修正誤差。 An encoder according to the present invention includes: a correction mechanism that reads the correction corresponding to the rotation angle position in a state in which the correction table is created by the correction table creation device and stored in the memory mechanism in a use state The value is corrected by the above correction value.

以此方式構成,預先使高精度之修正表記憶於記憶部,因此,無需進行除利用修正表進行之修正以外之處理等,便能夠迅速地進行誤差修正。 According to this configuration, since the high-precision correction table is stored in the memory unit in advance, it is not necessary to perform processing other than the correction by the correction table, and the error correction can be quickly performed.

本發明之修正表製作裝置之特徵在於:在上述旋轉一周誤差算出機構中或在旋轉一周誤差算出機構之後,具有將旋轉複數周之誤差平均化之功能。 The correction table creating apparatus according to the present invention is characterized in that the error is calculated in the one-rotation error calculation means or after the one-turn error calculation means is rotated to average the error of the plurality of rotations.

藉由以此方式構成,能夠減少測定誤差,製作確實地反映編碼器之主要誤差週期成分之誤差表。 According to this configuration, the measurement error can be reduced, and an error table that accurately reflects the main error period component of the encoder can be created.

本發明之修正表製作裝置之特徵在於:在上述固有誤差成分算出機構中或固有誤差成分算出機構之後,具有將旋轉複數周之各自之固有誤差成分平均化之功能。 The correction table creation device according to the present invention is characterized in that the inherent error component calculation means or the inherent error component calculation means has a function of averaging the inherent error components of the plurality of rotations.

藉由以此方式構成,能夠減少測定誤差,製作確實地反映編碼器之主要誤差週期成分之誤差表。 According to this configuration, the measurement error can be reduced, and an error table that accurately reflects the main error period component of the encoder can be created.

本發明之修正表製作方法之特徵在於:其係藉由修正表製作裝置執行者,該修正表製作裝置製作對根據檢測元件之信號檢測旋轉角度位置之編碼器之誤差予以修正的修正表,該修正表製作方法係利用高精度誤差檢測裝置,算出每旋轉一周之由成為被測定對象之上述編碼器檢測出之上述旋轉角度位置之誤差,藉由對算出之每旋轉一周之誤差進行傅立葉轉換而測定固有誤差成分,僅對算出之上述固有誤差成分之主要誤差週期成分之值進行傅立葉逆轉換,製作將各上述旋轉角度位置處之誤差量作為修正值之上述修正表,並將所製作之上述修正表保存於上述編碼器之記憶機構。 The method for manufacturing a correction table according to the present invention is characterized in that the correction table creation device creates a correction table for correcting an error of an encoder that detects a rotation angle position based on a signal of the detection element, In the correction table creation method, the error of the rotation angle position detected by the encoder to be measured every one rotation is calculated by using a high-precision error detecting device, and the Fourier transform is performed on the error per revolution. The inherent error component is measured, and only the value of the main error period component of the calculated inherent error component is inverse Fourier transformed, and the correction table in which the error amount at each of the rotation angle positions is used as the correction value is created, and the above-described correction table is created. The correction table is stored in the memory mechanism of the above encoder.

藉由以此方式構成,利用主要誤差週期成分製作修正表,而能夠製作高精度之修正表。 According to this configuration, the correction table is created using the main error period component, and a high-precision correction table can be produced.

根據本發明,藉由製作抽出了編碼器之固有誤差成分之修正表,而能夠提供一種製作測定誤差獲得抑制之高精度之修正表的修正表製作裝置。 According to the present invention, by creating a correction table in which the inherent error component of the encoder is extracted, it is possible to provide a correction table creation device that produces a high-precision correction table in which the measurement error is suppressed.

1‧‧‧修正表製作裝置 1‧‧‧correction table making device

2‧‧‧編碼器 2‧‧‧Encoder

3‧‧‧高精度誤差檢測裝置 3‧‧‧High-precision error detection device

4‧‧‧馬達 4‧‧‧Motor

20‧‧‧信號處理部 20‧‧‧Signal Processing Department

21‧‧‧感測器晶片 21‧‧‧Sensor wafer

22‧‧‧可動被檢測物 22‧‧‧ movable object

110‧‧‧旋轉一周誤差算出部 110‧‧‧Rotation one-week error calculation unit

120‧‧‧固有誤差成分算出部 120‧‧‧Inherent Error Component Calculation Unit

130‧‧‧修正表製作部 130‧‧‧Amendment Table Production Department

140‧‧‧修正表保存部 140‧‧‧Amendment Table Maintenance Department

210‧‧‧旋轉角度位置算出部 210‧‧‧Rotation angle position calculation unit

220‧‧‧修正部 220‧‧‧Amendment

230‧‧‧記憶部 230‧‧‧Memory Department

400‧‧‧修正表 400‧‧‧Revised form

A0‧‧‧A相信號 A0‧‧‧A phase signal

A1‧‧‧A相信號 A1‧‧‧A phase signal

A2‧‧‧A相信號 A2‧‧‧A phase signal

A4‧‧‧A相信號 A4‧‧‧A phase signal

A8‧‧‧A相信號 A8‧‧‧A phase signal

B0‧‧‧B相信號 B0‧‧‧B phase signal

B2‧‧‧B相信號 B2‧‧‧B phase signal

B4‧‧‧B相信號 B4‧‧‧B phase signal

B8‧‧‧B相信號 B8‧‧‧B phase signal

L‧‧‧旋轉中心軸線 L‧‧‧Rotation center axis

N‧‧‧磁極 N‧‧‧ magnetic pole

S‧‧‧磁極 S‧‧‧ magnetic pole

S101‧‧‧步驟 S101‧‧‧Steps

S102‧‧‧步驟 S102‧‧‧Steps

S103‧‧‧步驟 S103‧‧‧Steps

S104‧‧‧步驟 S104‧‧‧Steps

X‧‧‧編碼器調整系統 X‧‧‧Encoder adjustment system

θ‧‧‧角度位置 Θ‧‧‧ angular position

圖1A係本發明之實施形態之編碼器調整系統之系統構成圖。 Fig. 1A is a system configuration diagram of an encoder adjustment system according to an embodiment of the present invention.

圖1B係表示圖1所示之修正表製作裝置之控制構成之方塊圖。 Fig. 1B is a block diagram showing a control structure of the correction table creating apparatus shown in Fig. 1.

圖1C係表示圖1所示之編碼器之控制構成之方塊圖。 Figure 1C is a block diagram showing the control structure of the encoder shown in Figure 1.

圖2係表示本發明之實施形態之編碼器之硬體構成之概略的概念圖。 Fig. 2 is a conceptual diagram showing a schematic configuration of a hardware of an encoder according to an embodiment of the present invention.

圖3(a)、(b)係表示本發明之實施形態之編碼器之旋轉角度位置之算出方式的概念圖。 3(a) and 3(b) are conceptual diagrams showing a manner of calculating the rotational angle position of the encoder according to the embodiment of the present invention.

圖4係本發明之實施形態之修正表製作處理之流程圖。 Fig. 4 is a flow chart showing a process of creating a correction table according to an embodiment of the present invention.

圖5(a)、(b)係本發明之實施形態之編碼器之固有誤差成分的概念圖。 5(a) and 5(b) are conceptual diagrams showing the inherent error components of the encoder according to the embodiment of the present invention.

圖6(a)、(b)係本發明之實施形態之編碼器之固有誤差成分的概念圖。 6(a) and 6(b) are conceptual diagrams showing the inherent error components of the encoder according to the embodiment of the present invention.

圖7A係表示本發明之實施形態中修正表製作處理之結果例之曲線圖。 Fig. 7A is a graph showing an example of the result of the correction table creation processing in the embodiment of the present invention.

圖7B係表示本發明之實施形態中修正表製作處理之結果例之曲線圖。 Fig. 7B is a graph showing an example of the result of the correction table creation processing in the embodiment of the present invention.

圖7C係表示本發明之實施形態中修正表製作處理之結果例之曲線圖。 Fig. 7C is a graph showing an example of the result of the correction table creation processing in the embodiment of the present invention.

<實施形態> <Embodiment>

參照圖1A,對本發明之實施形態之編碼器調整系統X之構成進行說明。編碼器調整系統X係包含修正表製作裝置1、編碼器2、高精度誤差檢測裝置3及馬達4而構成。 The configuration of the encoder adjustment system X according to the embodiment of the present invention will be described with reference to Fig. 1A. The encoder adjustment system X includes a correction table creation device 1, an encoder 2, a high-accuracy error detecting device 3, and a motor 4.

修正表製作裝置1係製作對編碼器2之誤差予以修正之修正表400的裝置。 The correction table creation device 1 is a device for creating a correction table 400 for correcting the error of the encoder 2.

修正表製作裝置1構成為例如在製造編碼器2時或工廠出貨時、藉由維護而進行之調整時使用之製造裝置或調整裝置之一部分。具體而言,修正表製作裝置1係具備專用於PC(Personal Computer,個人電腦)之邏輯板之裝置等。修正表製作裝置1具備例如CPU(Central Processing Unit,中央處理單元)等控制部、以及RAM(Random Access Memory,隨機存取記憶體)、ROM(Read Only Memory,唯讀記憶體)、HDD(Hard Disk Drive,硬碟驅動器)或快閃記憶體等。 The correction table creation device 1 is configured, for example, as part of a manufacturing device or an adjustment device used when the encoder 2 is manufactured or when the factory is shipped and adjusted by maintenance. Specifically, the correction table creation device 1 includes a device dedicated to a logic board of a PC (Personal Computer). The correction table creation device 1 includes a control unit such as a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and an HDD (Hard). Disk Drive, hard drive, or flash memory.

再者,於工廠出貨後或調整後等實際使用編碼器2時,卸除修正表製作裝置1。 Furthermore, when the encoder 2 is actually used after shipment or after adjustment, the correction table creating apparatus 1 is removed.

編碼器2係能夠根據檢測元件之信號檢測旋轉角度位置之編碼器2。編碼器2始終檢測包含與馬達4同軸之軸等之旋轉體之角度作為旋轉角度位置資料。 The encoder 2 is an encoder 2 capable of detecting the rotational angular position based on the signal of the detecting element. The encoder 2 always detects the angle of the rotating body including the shaft coaxial with the motor 4 as the rotation angle position data.

該旋轉角度位置資料包含表示旋轉體旋轉之次數之多周資料、及表示包含可動被檢測物之旋轉體之旋轉角度之旋轉一周內資料。又,旋轉角度位置資料係成為旋轉多周資料與旋轉一周內資料連續而成之位元串之資料。其中,旋轉多周資料為數位元~數十位元之解像度,旋轉一周內資料為數位元~數百位元之解像度。 The rotation angle position data includes a plurality of weeks of data indicating the number of rotations of the rotating body, and a data of one rotation of the rotation indicating the rotation angle of the rotating body including the movable object. Further, the rotation angle position data is data of a bit string in which the multi-week data is rotated and the data is continuously rotated within one week. Among them, the rotating multi-week data is the resolution of the digits to the tens of digits, and the data in one week is the resolution of the digits to hundreds of bits.

又,編碼器2根據來自修正表製作裝置1之指示,將旋轉角度位置資料輸出至修正表製作裝置1。又,編碼器2自修正表製作裝置1取得修正表400(圖1C)。 Further, the encoder 2 outputs the rotation angle position data to the correction table creation device 1 in accordance with an instruction from the correction table creation device 1. Further, the encoder 2 acquires the correction table 400 from the correction table creation device 1 (FIG. 1C).

關於藉由編碼器2進行之旋轉角度檢測之方式之詳細情況,將於下文進行敍述。 Details of the manner of detecting the rotation angle by the encoder 2 will be described below.

高精度誤差檢測裝置3係用於誤差檢測用之高精度之旋轉角度檢測用之編碼器等。因此,高精度誤差檢測裝置3亦被稱作「主編碼器」等。高精度誤差檢測裝置3係以旋轉中心軸與旋轉中心軸線L一致之方式與編碼器2連結,能夠較編碼器2高精度地檢測與編碼器2相同之旋轉角度位置。然而,即便為高精度誤差檢測裝置3,亦存在特定範圍之角度誤差。 The high-precision error detecting device 3 is used for an encoder for detecting a high-precision rotation angle for error detection. Therefore, the high-accuracy error detecting device 3 is also referred to as a "master encoder" or the like. The high-accuracy error detecting device 3 is coupled to the encoder 2 such that the central axis of rotation coincides with the central axis of rotation L, and the encoder 2 can detect the same rotational angle position as that of the encoder 2 with higher accuracy. However, even for the high-precision error detecting device 3, there is a specific range of angular errors.

又,高精度誤差檢測裝置3例如根據來自修正表製作裝置1之控制信號取得旋轉角度位置資料,並將其輸出至修正表製作裝置1。 Further, the high-accuracy error detecting device 3 acquires the rotation angle position data based on the control signal from the correction table creating device 1, for example, and outputs it to the correction table creating device 1.

再者,於使用時,高精度誤差檢測裝置3亦被卸除。 Furthermore, the high-precision error detecting device 3 is also removed during use.

馬達4基於來自編碼器2之旋轉角度位置資料進行控制,使旋轉體繞旋轉中心軸線L旋轉。 The motor 4 is controlled based on the rotational angular position data from the encoder 2 to rotate the rotating body about the central axis of rotation L.

馬達4係具備轉子(rotor)、軸承(bearing)、定子(Stator)及托架(bracket)等且能夠進行高精度之旋轉控制之伺服馬達等。 The motor 4 includes a servo motor such as a rotor, a bearing, a stator, and a bracket, and is capable of performing high-precision rotation control.

參照圖1B及圖1C,對各部分之功能構成進行更加詳細之說明。 The functional configuration of each part will be described in more detail with reference to Figs. 1B and 1C.

根據圖1B,修正表製作裝置1包括旋轉一周誤差算出部110(旋轉一周誤差算出機構)、固有誤差成分算出部120(固有誤差成分算出機構)、修正表製作部130(修正表製作機構)、及修正表保存部140(修正表保存機構)等。 According to FIG. 1B, the correction table creation device 1 includes a rotation one-time error calculation unit 110 (rotation one-time error calculation unit), an inherent error component calculation unit 120 (inherent error component calculation unit), a correction table creation unit 130 (correction table creation unit), and And a correction table storage unit 140 (correction table storage means) and the like.

旋轉一周誤差算出部110藉由高精度誤差檢測裝置3算出每旋轉一周之由編碼器2檢測之旋轉角度位置之誤差。具體而言,旋轉一周誤差算出部110使由編碼器2檢測之旋轉角度位置與由高精度誤差檢測裝置3檢測之旋轉角度位置對應,而算出每旋轉一周之差量(位置誤差)。 The one-rotation error calculation unit 110 calculates the error of the rotational angle position detected by the encoder 2 per revolution by the high-accuracy error detecting device 3. Specifically, the one-rotation error calculation unit 110 compares the rotational angle position detected by the encoder 2 with the rotational angle position detected by the high-accuracy error detecting device 3, and calculates the difference (position error) per one rotation.

固有誤差成分算出部120藉由對由旋轉一周誤差算出部110算出之 每旋轉一周之誤差進行傅立葉轉換而算出固有誤差成分。具體而言,固有誤差成分算出部120對每旋轉一周之誤差係藉由FFT(Fast Fourier Transform,快速傅立葉轉換)等離散傅立葉轉換(Discrete Fourier Transformation,DFT)方法算出頻率成分。固有誤差成分算出部120自算出之頻率成分中抽出特定之週期成分作為固有誤差成分。於本實施形態中,固有誤差成分算出部120藉由取得該頻率成分中之包含20之2的乘方之週期成分,而抽出主要誤差週期成分。又,該主要誤差週期成分至少包含1週期成分、2週期成分、4週期成分及8週期成分。亦即,固有誤差成分算出部120取得2的乘方即20、21、22、23之週期成分。具體而言,固有誤差成分算出部120取得傅立葉級數展開時之與旋轉一周之基本週期對應之項即1週期成分、為2次之項且軸每旋轉一周以2個週期變動之週期成分、為4次之項且軸每旋轉一周以4個週期變動之週期成分、以及為8次之項且軸每旋轉一周以8個週期變動之週期成分。藉由取得該等固有誤差成分,能夠抽出編碼器之主要誤差成分。關於源自各週期之固有誤差成分之誤差之詳細情況,將於下文進行敍述。 The inherent error component calculation unit 120 calculates the inherent error component by performing Fourier transform on the error per rotation calculated by the one-rotation error calculation unit 110. Specifically, the inherent error component calculation unit 120 calculates the frequency component by the Discrete Fourier Transformation (DFT) method such as FFT (Fast Fourier Transform) for the error per rotation. The inherent error component calculation unit 120 extracts a specific periodic component from the calculated frequency component as an inherent error component. In the present embodiment, the inherent error component calculating unit 120 obtains the frequency component by the power of 20 cycles comprising of two components, the main error period component extracted. Further, the main error period component includes at least one cycle component, two cycle component, four cycle component, and eight cycle component. I.e., the inherent error component calculating section 120 obtains a power of 2, i.e. 20, 21, 22, 23 of the periodic component. Specifically, the intrinsic error component calculation unit 120 acquires a one-cycle component that is a term corresponding to the fundamental period of the one-rotation of the Fourier series expansion, is a two-time term, and has a periodic component that changes two cycles per rotation of the axis, It is a period component of four times and that the axis changes by four cycles per rotation of the axis, and a cycle component that is eight times and that changes by eight cycles per rotation of the axis. By obtaining these inherent error components, the main error component of the encoder can be extracted. Details of the error originating from the inherent error components of each cycle will be described below.

再者,固有誤差成分算出部120亦可於抽出主要誤差週期成分時,取得24之成分即16週期成分作為主要誤差成分。又,固有誤差成分算出部120亦可取得18週期成分。 Furthermore, the inherent error component calculating section 120 also at the time of withdrawal main component error period, i.e., the acquisition component 16 cycles of 24 as a main component an error component. Further, the inherent error component calculation unit 120 can also acquire the 18-cycle component.

修正表製作部130僅對由固有誤差成分算出部120算出之固有誤差成分之主要誤差週期成分之值進行傅立葉逆轉換,製作以各旋轉角度位置處之誤差量作為修正值之修正表400(圖1C)。修正表製作部130例如僅取得2的乘方之週期成分作為主要誤差成分。具體而言,修正表製作部130僅對所取得之2的乘方之週期成分藉由IFFT(Inverse Fast Fourier Transform,快速傅立葉逆轉換)等進行離散傅立葉逆轉換(Inverse Discrete Fourier Transformation,IDFT),並製作每旋轉一周 之修正表400。此時,於抽出20、21、22、23之週期成分之情形時,對其進行IFFT計算所得之每旋轉一周之數行資料成為修正表400。如此,藉由僅以主要誤差週期成分製作修正表400,能夠減小高精度誤差檢測裝置3之特定範圍之角度誤差之影響,從而能夠確實地反映編碼器2之固有誤差。 The correction table creation unit 130 performs Fourier inverse conversion on the value of the main error period component of the inherent error component calculated by the inherent error component calculation unit 120, and creates a correction table 400 in which the error amount at each rotation angle position is used as the correction value (Fig. 1C). The correction table creation unit 130 acquires, for example, only the cycle component of the power of 2 as the main error component. Specifically, the correction table creation unit 130 performs the inverse discrete Fourier Transformation (IDFT) by the IFFT (Inverse Fast Fourier Transform) or the like only for the period component of the obtained power of 2, And make a correction table 400 for one rotation per revolution. At this time, when the periodic components of 2 0 , 2 1 , 2 2 , and 2 3 are extracted, the data of the number of rotations per revolution obtained by the IFFT calculation becomes the correction table 400. As described above, by creating the correction table 400 only with the main error period component, it is possible to reduce the influence of the angular error of the specific range of the high-accuracy error detecting device 3, and it is possible to reliably reflect the inherent error of the encoder 2.

修正表保存部140將由修正表製作部130製作之修正表400保存於編碼器2之記憶部230。修正表製作裝置1藉由特定之控制信號使所製作之修正表400記憶於編碼器2之記憶部230。 The correction table storage unit 140 stores the correction table 400 created by the correction table creation unit 130 in the storage unit 230 of the encoder 2. The correction table creating device 1 memorizes the created correction table 400 in the memory unit 230 of the encoder 2 by a specific control signal.

根據圖1C,編碼器2包括旋轉角度位置算出部210(旋轉角度位置算出機構)、修正部220(修正機構)、及記憶部230(記憶機構)。 According to FIG. 1C, the encoder 2 includes a rotation angle position calculation unit 210 (rotation angle position calculation means), a correction unit 220 (correction mechanism), and a memory unit 230 (memory mechanism).

旋轉角度位置算出部210根據檢測元件之信號算出旋轉角度位置。旋轉角度位置算出部210於利用修正表製作裝置1製作修正表400時,不對該算出之旋轉角度位置進行修正,而向修正表製作裝置1發送。 The rotation angle position calculation unit 210 calculates a rotation angle position based on the signal of the detection element. When the correction table 400 is created by the correction table creation device 1 , the rotation angle position calculation unit 210 does not correct the calculated rotation angle position, and transmits it to the correction table creation device 1 .

關於本實施形態中之旋轉角度位置之算出方式,將於下文進行敍述。 The manner of calculating the rotational angle position in the present embodiment will be described below.

修正部220於使用狀態下,自記憶於記憶部230之修正表400讀出與利用旋轉角度位置算出部210在使用狀態下檢測出之旋轉角度位置對應之修正值,並利用該修正值修正誤差。具體而言,修正部220將旋轉角度位置轉換為下述分割角度位置,並自修正表400取得與該分割角度位置對應之修正值。修正部220將該修正值對旋轉角度位置進行加減運算等而進行修正,並作為最終之旋轉角度位置算出。 In the use state, the correction unit 220 reads the correction value corresponding to the rotation angle position detected by the rotation angle position calculation unit 210 in the use state from the correction table 400 stored in the storage unit 230, and corrects the error using the correction value. . Specifically, the correction unit 220 converts the rotation angle position into the following division angle position, and acquires a correction value corresponding to the division angle position from the correction table 400. The correction unit 220 corrects the correction value by adding or subtracting the rotation angle position, and calculates the rotation angle position as the final rotation angle position.

於使用狀態下,該經修正之旋轉角度位置係發送至上位裝置(未圖示)等。此時,修正部220例如於相位分別偏移90度之信號之HL(H表示高位準信號,L表示低位準信號)之邊緣藉由A相、B相之兩根傳輸線等將旋轉角度位置作為增量信號發送。 In the use state, the corrected rotation angle position is transmitted to a host device (not shown) or the like. At this time, the correction unit 220 sets the rotation angle position as the edge of the signal of HL (H indicates a high level signal and L indicates a low level signal), for example, a phase shifted by 90 degrees, respectively, by the two transmission lines of the A phase and the B phase. Incremental signaling.

記憶部230係下述信號處理部20(圖2)所包含之RAM、ROM或快閃記憶體等非暫時性之記憶媒體。於記憶部230中記憶所檢測出之旋轉角度位置資料、暫時資料及控制程式等。 The memory unit 230 is a non-transitory memory medium such as a RAM, a ROM, or a flash memory included in the signal processing unit 20 (FIG. 2) described below. The detected rotation angle position data, temporary data, control program, and the like are stored in the storage unit 230.

記憶部230記憶有由修正表製作裝置1製作之修正表400。 The memory unit 230 stores a correction table 400 created by the correction table creation device 1.

如上所述,修正表400係僅對利用高精度誤差檢測裝置3檢測出之編碼器2之角度位置之固有誤差成分之主要誤差週期成分之值進行傅立葉逆轉換而製作之表。修正表400成為例如對每旋轉一周之高諧波之週期成分中之20、21、22、23之週期成分、亦即包含自較低者至第3次高諧波成分之成分進行修正的表。具體而言,修正表400具備各旋轉角度位置處之誤差量作為修正值。於編碼器2中,藉由使用修正表400修正旋轉角度位置,能夠進行充分之修正,且能夠進行精度良好之位置檢測。 As described above, the correction table 400 is a table created by performing Fourier inverse conversion only on the value of the main error period component of the inherent error component of the angular position of the encoder 2 detected by the high-accuracy error detecting device 3. The correction table 400 is, for example, a periodic component of 2 0 , 2 1 , 2 2 , and 2 3 among the periodic components of the harmonics per revolution, that is, components including the lower to the third harmonic components. A table to make corrections. Specifically, the correction table 400 has an error amount at each rotation angle position as a correction value. In the encoder 2, by correcting the rotation angle position using the correction table 400, it is possible to perform sufficient correction and to perform position detection with high accuracy.

再者,該修正表400亦可不記憶關於與編碼器2之角度解析度對應之所有旋轉角度位置之修正值。於該情形時,修正表400記憶與以特定之分割數將旋轉一周分割所得之分割角度位置對應之修正值。具體而言,修正表400例如即便於編碼器2之角度解析度有20位元以上之情形時,亦記憶與8位元~16位元等分割角度位置對應之修正值。再者,於在使用狀態下讀出此種修正值之情形時,亦可進行線性內插或花鍵內插等而使用。 Furthermore, the correction table 400 may not memorize the correction values for all the rotational angle positions corresponding to the angular resolution of the encoder 2. In this case, the correction table 400 memorizes the correction value corresponding to the division angle position obtained by dividing the rotation by one rotation with a specific division number. Specifically, the correction table 400 stores a correction value corresponding to a divided angular position such as an 8-bit to a 16-bit, for example, even when the angle resolution of the encoder 2 is 20 bits or more. Further, when such a correction value is read in the use state, linear interpolation, spline interpolation, or the like may be used.

〔旋轉角度位置之算出方式〕 [How to calculate the rotation angle position]

此處,利用圖2、圖3,對藉由本發明之實施形態之編碼器2算出旋轉角度位置之方式進行說明。 Here, a method of calculating the rotational angle position by the encoder 2 according to the embodiment of the present invention will be described with reference to FIGS. 2 and 3.

根據圖2,編碼器2包含檢測元件、及信號處理部20。其中,檢測元件包含具有一對S極與N極之磁極被磁化之磁鐵之可動被檢測物22、及與磁鐵相對向之感測器晶片21。 According to FIG. 2, the encoder 2 includes a detecting element and a signal processing unit 20. The detecting element includes a movable object 22 having a pair of magnets in which the magnetic poles of the S pole and the N pole are magnetized, and a sensor wafer 21 facing the magnet.

感測器晶片21係磁阻元件之感測器IC(integrated circuit,積體電 路)等。 The sensor chip 21 is a sensor IC of a magnetoresistive element (integrated circuit) Road) and so on.

如圖2所示,感測器晶片21係配置於磁鐵之旋轉中心軸線L上,且在旋轉中心軸線L之方向上與磁鐵之磁化邊界部分相對向。因此,感測器晶片21之磁感應膜能以電阻值之飽和感度區域以上之磁場強度檢測旋轉磁場。 As shown in FIG. 2, the sensor wafer 21 is disposed on the rotation center axis L of the magnet, and is opposed to the magnetization boundary portion of the magnet in the direction of the rotation center axis L. Therefore, the magnetic induction film of the sensor wafer 21 can detect the rotating magnetic field with the magnetic field intensity above the saturation sensitivity region of the resistance value.

又,感測器晶片21於內部包含相對於磁鐵之相位相互具有90°(π/2)之相位差之A相磁感應感測器、及B相磁感應感測器。來自感測器晶片21之A相信號及B相信號分別被放大器(Amplifier)放大,而輸入至信號處理部20。 Further, the sensor wafer 21 internally includes an A-phase magnetic induction sensor having a phase difference of 90° (π/2) with respect to the phase of the magnet, and a B-phase magnetic induction sensor. The A-phase signal and the B-phase signal from the sensor chip 21 are amplified by an amplifier and input to the signal processing unit 20.

信號處理部20包含具備記錄媒體之微控制器、DSP(Digital Signal Processor,數位信號處理器)、ASIC(Application Specific Integrated Circuit,特殊應用積體電路)等。又,信號處理部20將由放大器放大後之A相信號及B相信號進行A/D(Analog to Digital,類比/數位)轉換。 The signal processing unit 20 includes a microcontroller including a recording medium, a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), and the like. Further, the signal processing unit 20 performs A/D (Analog to Digital) conversion on the A-phase signal and the B-phase signal amplified by the amplifier.

又,信號處理部20基於A/D轉換後之信號檢測旋轉角度位置或旋轉速度等。因此,信號處理部20藉由執行記憶於記憶媒體之控制程式(未圖示),而作為上述旋轉角度位置算出部210及修正部220發揮功能。 Further, the signal processing unit 20 detects a rotation angle position, a rotation speed, and the like based on the A/D converted signal. Therefore, the signal processing unit 20 functions as the rotation angle position calculation unit 210 and the correction unit 220 by executing a control program (not shown) stored in the memory medium.

此處,利用圖3,對藉由旋轉角度位置算出部210根據A相信號及B相信號算出旋轉角度位置之方法進行說明。 Here, a method of calculating the rotational angle position based on the A-phase signal and the B-phase signal by the rotational angle position calculating unit 210 will be described with reference to FIG.

根據圖3(a),自A相磁感應感測器輸出與可動被檢測物22之位移對應之正弦波狀之A相信號(sin),自B相磁感應感測器輸出正弦波狀之B相信號(cos)。又,A相信號與B相信號之相位差大致成為π/2(90°)。再者,於圖3(a)之曲線圖中,橫軸表示角度(°),縱軸表示值。 According to FIG. 3(a), the A-phase magnetic induction sensor outputs a sinusoidal A-phase signal (sin) corresponding to the displacement of the movable object 22, and the B-phase magnetic induction sensor outputs a sinusoidal B-phase. Signal (cos). Further, the phase difference between the A-phase signal and the B-phase signal is approximately π/2 (90°). Further, in the graph of Fig. 3(a), the horizontal axis represents the angle (°), and the vertical axis represents the value.

根據圖3(b),旋轉角度位置算出部210根據A相信號及B相信號算 出將X軸設為B相信號、將Y軸設為A相信號之XY平面上之利薩如波形,並進行解析,藉此,檢測可動被檢測物22之角度位置θ。 According to FIG. 3(b), the rotation angle position calculating unit 210 calculates the phase signal and the phase B signal based on the phase A signal. The angular position θ of the movable object 22 is detected by setting the X-axis as the B-phase signal and the Y-axis as the Lissajous waveform on the XY plane of the A-phase signal and analyzing it.

根據圖3(a)及圖3(b),旋轉角度位置算出部210係可動被檢測物22每旋轉一周則算出2個週期之利薩如波形。其原因在於:A相磁感應感測器及B相磁感應感測器分別僅檢測磁場之強度。因此,旋轉角度位置算出部210利用未圖示之霍爾元件等算出藉由A相信號(sin)、B相信號(cos)形成之利薩如波形位於哪一個區間。旋轉角度位置算出部210根據可動被檢測物22之角度位置θ與該區間算出最終之旋轉角度位置。該旋轉角度位置係絕對之值(絕對值),且係以利用角度解析度R將一周分解所得之值為單位而表示之整數值。該角度解析度R之值於使用20位元之解析度之檢測元件之情形時為220=1048576。又,關於該整數值,亦可使用符號係1位元所含之2之補數。 3(a) and 3(b), the rotation angle position calculation unit 210 calculates a Lissajous waveform of two cycles per rotation of the movable object 22. The reason is that the A-phase magnetic induction sensor and the B-phase magnetic induction sensor respectively detect only the strength of the magnetic field. Therefore, the rotation angle position calculation unit 210 calculates which section the Lissajous waveform formed by the A-phase signal (sin) and the B-phase signal (cos) is located by a Hall element or the like (not shown). The rotation angle position calculation unit 210 calculates the final rotation angle position based on the angular position θ of the movable object 22 and the interval. The rotation angle position is an absolute value (absolute value), and is an integer value expressed by a unit obtained by decomposing one cycle using the angle resolution R. The value of the angle resolution R is 2 ^ 20=1048576 in the case of a detection element using a resolution of 20 bits. Further, as the integer value, the complement of 2 included in the symbol system 1 bit can also be used.

〔修正表製作處理〕 [correction table creation processing]

其次,利用圖4~圖7C,對藉由本發明之實施形態之編碼器調整系統X進行之旋轉角度位置檢測處理進行說明。 Next, the rotation angle position detecting process by the encoder adjusting system X according to the embodiment of the present invention will be described with reference to Figs. 4 to 7C.

於本實施形態之處理中,首先,根據自高精度誤差檢測裝置3與編碼器2取得之旋轉角度位置算出誤差。其次,藉由FFT自算出之誤差中抽出主要誤差成分。藉由僅對該抽出之主要誤差成分進行IFFT而製作修正表400。所製作之修正表400係保存於編碼器2。 In the processing of this embodiment, first, an error is calculated based on the rotational angle position obtained from the high-precision error detecting device 3 and the encoder 2. Second, the main error component is extracted from the error calculated by the FFT. The correction table 400 is created by performing IFFT only on the extracted main error component. The prepared correction table 400 is stored in the encoder 2.

本實施形態之旋轉角度位置檢測處理係主要由修正表製作裝置1之控制部(未圖示)與各部分協動並使用硬體資源執行記憶於記憶部(未圖示)之控制程式(未圖示)。又,於修正表製作裝置1之記憶部暫時記憶自編碼器2及高精度誤差檢測裝置3取得之旋轉角度位置資料、根據該等旋轉角度位置資料而算出之旋轉-周誤差表及修正表400等,用於處理。 The rotation angle position detection processing of the present embodiment mainly uses a control unit (not shown) of the correction table creation device 1 to cooperate with each part and execute a control program stored in a memory unit (not shown) using a hardware resource (not shown). Graphic). Further, the memory unit of the correction table creating device 1 temporarily stores the rotation angle position data acquired from the encoder 2 and the high-accuracy error detecting device 3, and the rotation-circumference error table and the correction table 400 calculated based on the rotation angle position data. Etc., for processing.

以下,利用圖4之流程圖,按照每個步驟說明旋轉角度位置檢測 處理之詳細情況。 Hereinafter, using the flowchart of FIG. 4, the rotation angle position detection will be described in accordance with each step. Details of the processing.

(步驟S101) (Step S101)

首先,旋轉一周誤差算出部110進行旋轉一周誤差算出處理。 First, the one-turn error calculation unit 110 performs a one-turn error calculation process.

旋轉一周誤差算出部110進行使馬達4旋轉一周或者複數周之控制,且對編碼器2與高精度誤差檢測裝置3發送控制信號使其等發送旋轉角度位置。此時,旋轉一周誤差算出部110以串列通信等對編碼器2發送控制信號,使其變更為「調整模式」等動作模式。編碼器2於該「調整模式」下,不使用記憶於記憶部230之修正表400,不進行旋轉角度位置之修正便將旋轉角度位置發送至修正表製作裝置1。 The one-rotation error calculation unit 110 performs control for rotating the motor 4 one or more times, and transmits a control signal to the encoder 2 and the high-accuracy error detecting device 3 to transmit a rotation angle position. At this time, the one-rotation error calculation unit 110 transmits a control signal to the encoder 2 by serial communication or the like, and changes it to an operation mode such as "adjustment mode". In the "adjustment mode", the encoder 2 does not use the correction table 400 stored in the memory unit 230, and transmits the rotation angle position to the correction table creation device 1 without correcting the rotation angle position.

旋轉一周誤差算出部110自編碼器2與高精度誤差檢測裝置3取得各自之旋轉角度位置。旋轉一周誤差算出部110算出高精度誤差檢測裝置3之旋轉角度位置與編碼器2之旋轉角度位置之差量作為誤差E。又,旋轉一周誤差算出部110將算出之各誤差E作為與各旋轉角度位置對應之旋轉一周誤差表並暫時地記憶。此時,旋轉一周誤差算出部110將旋轉一周誤差表記憶為與分割角度位置對應之標本點之集合。 The one-rotation error calculation unit 110 acquires the respective rotation angle positions from the encoder 2 and the high-accuracy error detection device 3. The one-rotation error calculation unit 110 calculates the difference between the rotational angle position of the high-accuracy error detecting device 3 and the rotational angle position of the encoder 2 as the error E. Further, the one-rotation error calculation unit 110 temporarily stores the calculated error E as a one-turn error table corresponding to each rotation angle position. At this time, the one-rotation error calculation unit 110 stores the one-turn error table as a set of sample points corresponding to the division angle position.

(步驟S102) (Step S102)

其次,固有誤差成分算出部120進行固有誤差成分算出處理。 Next, the inherent error component calculation unit 120 performs an inherent error component calculation process.

固有誤差成分算出部120對旋轉一周誤差表執行一維FFT,而算出各頻率成分作為固有誤差成分。又,固有誤差成分算出部120將算出之固有誤差成分中之1週期成分、2週期成分、4週期成分及8週期成分抽出作為主要誤差週期成分。因檢測元件之特性,進行解析之利薩如波形係馬達4每旋轉一周有2個週期,成為2的乘方,故而藉由僅抽出該等週期成分,能夠修正編碼器2之主要誤差。 The inherent error component calculation unit 120 performs one-dimensional FFT on the one-rotation error table, and calculates each frequency component as an inherent error component. Further, the inherent error component calculation unit 120 extracts one cycle component, two cycle component, four cycle component, and eight cycle component among the calculated inherent error components as the main error cycle component. Due to the characteristics of the detecting element, the analysis of the Lissajous wave motor 4 has two cycles per revolution and is a power of two. Therefore, the main error of the encoder 2 can be corrected by extracting only the periodic components.

利用圖5~圖6,對編碼器2之旋轉角度位置檢測中之固有誤差成分之詳細情況進行說明。 The details of the inherent error components in the detection of the rotational angular position of the encoder 2 will be described with reference to Figs. 5 to 6 .

圖5(a)係1週期成分之概念圖。圖5(a)表示繪製有高精度誤差檢測 裝置3之A相信號A0及有1週期成分之誤差之編碼器2之A相信號A1的曲線圖。1週期成分主要為安裝誤差、亦即與編碼器2之可動被檢測物22之旋轉中心軸線L之軸偏離相關之誤差。於圖5(a)之曲線圖中,橫軸表示角度(°),縱軸表示值。若具體進行說明,則該誤差因磁鐵之公轉中心發生偏離而產生。由於磁鐵一面進行自轉一面進行公轉,故而若磁鐵靠近磁阻元件,則值較晚變化,若磁鐵遠離磁阻元件,則值較早變化。 Fig. 5(a) is a conceptual diagram of a one-cycle component. Figure 5 (a) shows the high precision error detection A graph of the A-phase signal A0 of the device 3 and the A-phase signal A1 of the encoder 2 having an error of one cycle component. The one-cycle component is mainly an error associated with the mounting error, that is, the deviation from the axis of the rotation center axis L of the movable object 22 of the encoder 2. In the graph of Fig. 5(a), the horizontal axis represents the angle (°), and the vertical axis represents the value. If specifically stated, the error occurs due to the deviation of the center of the revolution of the magnet. Since the magnet revolves while rotating, the value changes later if the magnet is close to the magnetoresistive element, and the value changes earlier if the magnet is away from the magnetoresistive element.

圖5(b)係2週期成分之概念圖。圖5(b)表示繪製有高精度誤差檢測裝置3之A相信號A0、B相信號B0及有2週期成分之誤差之編碼器2之A相信號A2、B相信號B2的利薩如波形。該2週期成分之誤差主要表示與利薩如波形之中心軸、亦即A相信號與B相信號之波形之偏離相關之誤差。該2週期成分之誤差因經年變化或溫度變化、A相磁感應感測器及B相磁感應感測器之橋接之電阻之誤差等而產生。 Fig. 5(b) is a conceptual diagram of a 2-period component. Fig. 5(b) shows the Lissajous waveform of the A-phase signal A0 and the B-phase signal B0 of the encoder 2 having the high-precision error detecting device 3 and the A-phase signal A2 and the B-phase signal B2 of the encoder 2 having the error of the two-period component . The error of the two-cycle component mainly indicates an error related to the deviation of the central axis of the Lissajous waveform, that is, the waveform of the A-phase signal and the B-phase signal. The error of the two-cycle component is caused by an annual change or a temperature change, an error in the resistance of the bridge of the A-phase magnetic induction sensor and the B-phase magnetic induction sensor, and the like.

圖6(a)係4週期成分之概念圖。圖6(a)表示繪製有與圖5(b)相同之A相信號A0、B相信號B0、及有4週期成分之誤差之編碼器2之A相信號A4、B相信號B4的利薩如波形。該4週期成分之誤差係以利薩如波形呈橢圓狀之方式表現之誤差。該4週期成分之誤差包括因感測器晶片21之形狀、磁鐵之形狀及磁通之關係而產生之誤差等。 Fig. 6(a) is a conceptual diagram of a 4-cycle component. Fig. 6(a) shows Lisa, which has the same A-phase signal A0 and B-phase signal B0 as in Fig. 5(b), and A-phase signal A4 and B-phase signal B4 of the encoder 2 having an error of four periods. Such as waveforms. The error of the 4-cycle component is the error expressed by the Lissajous waveform as an elliptical shape. The error of the four-cycle component includes an error due to the shape of the sensor wafer 21, the shape of the magnet, and the relationship between the magnetic fluxes.

圖6(b)係8週期成分之概念圖。圖6(b)表示繪製有與圖5(b)、圖6(a)相同之A相信號A0、B相信號B0、及有8週期成分之誤差之編碼器2之A相信號A8、B相信號B8的利薩如波形。該8週期成分之誤差係於利薩如波形中以連結π/2之頂點彼此之各1/4圓弧之中點成為內側之方式表現之誤差。該8週期成分之誤差係因磁阻元件之特性而產生之誤差,主要包含因磁阻元件之磁通產生之電阻值變化之飽和所影響之誤差。 Figure 6(b) is a conceptual diagram of the 8-cycle component. Fig. 6(b) shows A-phase signals A0 and B, which are the same as those of Figs. 5(b) and 6(a), and A-phase signals A8 and B of the encoder 2 having an error of 8 cycles. The phase signal B8 has a Lissajous waveform. The error of the 8-cycle component is an error expressed in the Lissajous waveform in such a manner that the point between the 1/4 arcs connecting the vertices of π/2 becomes the inner side. The error of the 8-cycle component is an error due to the characteristics of the magnetoresistive element, and mainly includes an error caused by the saturation of the change in the resistance value generated by the magnetic flux of the magnetoresistive element.

圖7A表示實際針對試製品之磁式編碼器2算出週期成分所得之結 果之例。於曲線圖中,橫軸表示週期成分,縱軸表示各週期成分之值(頻譜強度)。 Fig. 7A shows the result of calculating the periodic component of the magnetic encoder 2 for the prototype. An example of fruit. In the graph, the horizontal axis represents the periodic component, and the vertical axis represents the value of each periodic component (spectral intensity).

可知1、2、4、8週期成分之頻譜強度較高,占支配地位。因此,藉由將各頻率成分中之1週期成分、2週期成分、4週期成分及8週期成分作為固有誤差成分,而能夠抽出編碼器2之主要誤差成分。 It can be seen that the spectral intensity of the 1, 2, 4, and 8 periodic components is relatively high and dominates. Therefore, the main error component of the encoder 2 can be extracted by using one cycle component, two cycle component, four cycle component, and eight cycle component among the respective frequency components as the inherent error component.

再者,在全誤差成分中亦存在1%~2%左右之16週期成分,還存在0.5%左右之18週期成分。關於除此以外之成分,認為係高精度誤差檢測裝置3與編碼器2之測定之隨機誤差(白雜訊)。該隨機誤差包含軸承等之滑動、熱雜音、電源雜訊等。 Further, in the total error component, there are also 16 cycle components of about 1% to 2%, and there are also 18 cycle components of about 0.5%. Regarding the other components, the random error (white noise) of the measurement by the high-precision error detecting device 3 and the encoder 2 is considered. The random error includes sliding of bearings, etc., thermal noise, power noise, and the like.

(步驟S103) (Step S103)

其次,修正表製作部130進行修正表製作處理。 Next, the correction table creation unit 130 performs a correction table creation process.

修正表製作部130僅對算出之固有誤差成分中之所抽出之主要誤差週期成分之值進行傅立葉逆轉換。 The correction table creation unit 130 performs Fourier inverse conversion on only the value of the main error period component extracted from the calculated inherent error component.

具體而言,修正表製作部130僅使用所抽出之固有誤差成分即1週期成分、2週期成分、4週期成分及8週期成分之值執行一維IFFT。 具體而言,修正表製作部130藉由IFFT算出與各旋轉角度位置中之以特定之分割數將旋轉一周分割而成之分割角度位置對應之值。修正表製作部130將該算出之值作為修正值而製作修正表400,並暫時記憶。 Specifically, the correction table creation unit 130 executes the one-dimensional IFFT using only the values of the one-cycle component, the two-cycle component, the four-cycle component, and the eight-cycle component, which are the extracted inherent error components. Specifically, the correction table creation unit 130 calculates a value corresponding to the division angle position at which the rotation is divided by a specific number of divisions in each of the rotation angle positions by the IFFT. The correction table creation unit 130 creates the correction table 400 using the calculated value as the correction value, and temporarily stores it.

圖7B表示顯示由旋轉一周誤差算出部110算出之旋轉一周誤差表之曲線圖、及由修正表製作部130製作之修正表製作之例。於曲線圖中,橫軸表示分割角度位置,縱軸表示修正值。 FIG. 7B is a graph showing a graph of the one-turn error table calculated by the one-turn error calculation unit 110 and an example of the correction table created by the correction table creation unit 130. In the graph, the horizontal axis represents the division angle position, and the vertical axis represents the correction value.

圖7C係將圖7B之一部分放大後之圖。 Fig. 7C is an enlarged view of a portion of Fig. 7B.

如此,藉由修正表製作部130僅對主要誤差週期成分之值進行傅立葉逆轉換而製作之修正表400表示較旋轉一周誤差表更緩和之變化。亦即,可知減少了測定之隨機誤差,而良好地反映了固有誤差成分。若藉由此種緩和之修正表400修正編碼器2,則測定之精度提高。 As described above, the correction table 400 created by the correction table creating unit 130 only performing inverse Fourier transform on the value of the main error period component indicates a more gentle change from the one-turn error table. That is, it can be seen that the random error of the measurement is reduced, and the inherent error component is well reflected. When the encoder 2 is corrected by the mitigation correction table 400, the accuracy of the measurement is improved.

(步驟S104) (Step S104)

其次,修正表保存部140進行修正表保存處理。 Next, the correction table storage unit 140 performs a correction table storage process.

修正表保存部140對編碼器2發送特定之控制信號,例如,以變為「修正表400覆寫模式」之方式進行控制。編碼器2於該「修正表400覆寫模式」中,將自修正表製作裝置1發送之修正表400記憶於記憶部230。 The correction table storage unit 140 transmits a specific control signal to the encoder 2, for example, to control the "correction table 400 overwrite mode". In the "correction table 400 overwrite mode", the encoder 2 stores the correction table 400 transmitted from the correction table creation device 1 in the storage unit 230.

修正表保存部140對變為「修正表400覆寫模式」後之編碼器2發送所製作之修正表400。藉此,修正表保存部140使修正表400記憶於編碼器2之記憶部230。 The correction table storage unit 140 transmits the created correction table 400 to the encoder 2 that has become the "correction table 400 overwrite mode". Thereby, the correction table storage unit 140 causes the correction table 400 to be stored in the storage unit 230 of the encoder 2.

藉由以上步驟,結束本發明之實施形態之修正表製作處理。 By the above steps, the correction table creation processing of the embodiment of the present invention is terminated.

〔本發明之實施形態之主要效果〕 [Main effects of the embodiment of the present invention]

藉由以上述方式構成,能夠獲得如下效果。 By configuring in the above manner, the following effects can be obtained.

先前,於修正編碼器之旋轉角度位置之誤差時,測定各旋轉角度位置上之與高精度誤差檢測裝置之誤差,並將其值作為修正表記憶於編碼器。然而,該測定中包含計測誤差。 Previously, when the error of the rotational angle position of the encoder was corrected, the error between the position of each rotation angle and the high-precision error detecting means was measured, and the value was stored in the encoder as a correction table. However, the measurement error is included in the measurement.

相對於此,本發明之實施形態之修正表製作裝置1的特徵在於:其係製作對根據檢測元件之信號檢測旋轉角度位置之編碼器2之誤差予以修正的修正表400者,且包括:旋轉一周誤差算出部110,其利用高精度誤差檢測裝置3算出每旋轉一周之由編碼器2檢測之旋轉角度位置之誤差;固有誤差成分算出部120,其藉由對由旋轉一周誤差算出部110算出之每旋轉一周之誤差進行傅立葉轉換而算出固有誤差成分;修正表製作部130,其僅對由固有誤差成分算出部120算出之固有誤差成分之主要誤差週期成分之值進行傅立葉逆轉換,製作以各旋轉角度位置處之誤差量作為修正值之修正表400;以及修正表保存部140,其將由修正表製作部130製作之修正表400保存於編碼器2之記憶部230。 On the other hand, the correction table creating apparatus 1 according to the embodiment of the present invention is characterized in that the correction table 400 for correcting the error of the encoder 2 that detects the rotational angle position based on the signal of the detecting element is included, and includes: The one-period error calculating unit 110 calculates an error of the rotational angle position detected by the encoder 2 per revolution by the high-precision error detecting device 3, and the inherent error component calculating unit 120 calculates the error by the one-turn error calculating unit 110. The Fourier transform is performed for each revolution, and the inherent error component is calculated. The correction table creation unit 130 performs Fourier inverse transformation on only the value of the main error period component of the inherent error component calculated by the inherent error component calculation unit 120. The error amount at each rotation angle position is used as a correction value correction table 400; and the correction table storage unit 140 stores the correction table 400 created by the correction table creation unit 130 in the memory unit 230 of the encoder 2.

藉由以此方式構成,而利用自固有誤差成分抽出之主要誤差週期成分算出誤差之修正量,從而能夠製作高精度之修正表400。亦即,藉由利用主要誤差週期成分製作修正表400,能夠抑制藉由高精度誤差檢測裝置3測定誤差時之計測誤差。因此,在具備該修正表400之編碼器2中,能夠精度良好地檢測旋轉角度位置。 According to this configuration, the correction amount of the error can be calculated from the main error period component extracted from the inherent error component, whereby the high-precision correction table 400 can be produced. In other words, by making the correction table 400 using the main error period component, it is possible to suppress the measurement error when the error is measured by the high-accuracy error detecting device 3. Therefore, in the encoder 2 including the correction table 400, the rotation angle position can be accurately detected.

又,本實施形態之修正表製作裝置1能夠直接使誤差之修正值之修正表400記憶於編碼器2之記憶部230。因此,能夠迅速地調整旋轉角度位置。此外,能夠削減誤差調整之勞力及時間,從而削減調整成本。 Further, the correction table creation device 1 of the present embodiment can directly store the error correction table 400 of the error in the memory unit 230 of the encoder 2. Therefore, the rotation angle position can be quickly adjusted. In addition, the labor and time for error adjustment can be reduced, and the adjustment cost can be reduced.

本發明之實施形態之修正表製作裝置1之特徵在於:作為修正表製作對象之編碼器2中,檢測元件包含具有一對S極與N極之磁極被磁化之磁鐵之可動被檢測物22、以及與磁鐵相對向之A相磁感應感測器及B相磁感應感測器,與可動被檢測物22之位移對應地自A相磁感應感測器輸出正弦波狀之A相信號,與可動被檢測物22之位移對應地自B相磁感應感測器輸出正弦波狀之B相信號,且A相信號與B相信號之相位差大致為π/2,編碼器2具備旋轉角度位置算出部210,該旋轉角度位置算出部210根據A相信號與B相信號算出XY平面上之利薩如波形,並對其進行解析,藉此檢測可動被檢測物22之角度位置,旋轉角度位置算出部210係可動被檢測物22每旋轉一周則算出2個週期之利薩如波形。 In the encoder 2 of the embodiment of the present invention, the detection device includes a movable object 22 having a pair of magnets in which the magnetic poles of the S pole and the N pole are magnetized, And the A-phase magnetic induction sensor and the B-phase magnetic induction sensor opposite to the magnet, and output the sinusoidal A-phase signal from the A-phase magnetic induction sensor corresponding to the displacement of the movable object 22, and the movable detection is performed The displacement of the object 22 correspondingly outputs a sinusoidal B-phase signal from the B-phase magnetic induction sensor, and the phase difference between the A-phase signal and the B-phase signal is substantially π/2, and the encoder 2 includes a rotation angle position calculating unit 210. The rotation angle position calculation unit 210 calculates the Lissajous waveform on the XY plane based on the A-phase signal and the B-phase signal, and analyzes the waveform to detect the angular position of the movable object 22, and the rotation angle position calculation unit 210 Each time the movable object 22 is rotated, a two-cycle Lissajous waveform is calculated.

藉由以此方式構成,變得易於算出固有誤差成分之主要誤差週期成分,從而能夠製作高精度之修正表400。又,藉由使用編碼器2,從而製造步驟中之旋轉角度位置之調整變得容易,該編碼器2係利用具有一對磁化之簡單之磁鐵的檢測元件檢測旋轉角度位置。 According to this configuration, it is easy to calculate the main error period component of the inherent error component, and it is possible to produce the correction table 400 with high accuracy. Further, by using the encoder 2, it is easy to adjust the position of the rotation angle in the manufacturing step, and the encoder 2 detects the position of the rotation angle by the detecting element having a pair of magnetized simple magnets.

本發明之實施形態之編碼器2之特徵在於:主要誤差週期成分係每旋轉一周為2的乘方之週期成分。 The encoder 2 according to the embodiment of the present invention is characterized in that the main error period component is a periodic component of a power of two per revolution.

此處,利薩如波形係馬達4每旋轉一周有2個週期。由此,藉由以此方式構成,根據2的乘方之主要誤差成分算出修正量,能夠製作可修正編碼器2之幾乎全部固有誤差之修正表。 Here, the Lissajous wave motor 4 has two cycles per revolution. Thus, by configuring in this manner, the correction amount is calculated based on the main error component of the power of 2, and a correction table that can correct almost all of the inherent errors of the encoder 2 can be created.

本發明之實施形態之修正表製作裝置1之特徵在於:主要誤差週期成分係每旋轉一周至少為1週期成分、2週期成分、4週期成分及8週期成分。 The correction table creating apparatus 1 according to the embodiment of the present invention is characterized in that the main error period component is at least one cycle component, two cycle component, four cycle component, and eight cycle component per rotation.

此處,1週期成分、2週期成分、4週期成分及8週期成分係所謂之2的乘方之20、21、22、23之成分。亦即,藉由將每旋轉一周之高諧波成分中之包含自較低者至第3次高諧波成分之固有誤差成分用作主要誤差成分,能夠進行充分之修正,從而能夠製作良好地反映了固有誤差成分之修正表400。因此,能夠利用編碼器2進行精度良好之旋轉角度位置檢測。 Here, a periodic component, component 2 cycle, 4 cycle-based component and the periodic component 8 2 0, 2 1, 2 2, components of a power of 2, a so-called 23's. In other words, by using the inherent error component including the lower harmonic component to the third harmonic component among the harmonic components per revolution as the main error component, sufficient correction can be performed, and the correction can be performed well. A correction table 400 reflecting the inherent error components is reflected. Therefore, it is possible to perform the rotation angle position detection with high accuracy by the encoder 2.

本發明之實施形態之編碼器2之特徵在於:包括修正部220,該修正部220自藉由修正表製作裝置1製作且保存於記憶部230之修正表400讀出與使用狀態下之旋轉角度位置對應之修正值,並利用該修正值修正誤差。 The encoder 2 according to the embodiment of the present invention includes a correction unit 220 that reads and uses the rotation angle of the correction table 400 prepared by the correction table creation device 1 and stored in the storage unit 230. The position corresponds to the correction value, and the correction value is used to correct the error.

藉由以此方式構成,由於預先使高精度之修正表400記憶於記憶部230,故而僅藉由讀出該修正表400進行誤差修正,便能夠迅速地進行高精度之旋轉角度位置之測定。此時,無需藉由修正表400以外之修正式等進行修正,能夠減輕信號處理部20之修正處理負擔,從而能夠迅速地檢測旋轉角度位置並輸出。又,由於使高精度之修正表400記憶於記憶部230,故而能夠減少因經年裂化等導致之旋轉角度位置檢測之調整頻度。 According to this configuration, since the high-precision correction table 400 is memorized in the memory unit 230 in advance, the error correction can be performed only by reading the correction table 400, so that the measurement of the rotational angle position with high accuracy can be quickly performed. In this case, it is not necessary to perform the correction by the correction formula or the like other than the correction table 400, and the correction processing load of the signal processing unit 20 can be reduced, and the rotation angle position can be quickly detected and output. Moreover, since the high-precision correction table 400 is stored in the memory unit 230, the frequency of adjustment of the rotation angle position detection due to the cracking of the year can be reduced.

〔其他實施形態〕 [Other Embodiments]

再者,於上述實施形態中,記載為修正表製作裝置1取得高精度誤差檢測裝置3及編碼器2之旋轉角度位置而算出誤差。 Furthermore, in the above embodiment, the correction table creation device 1 calculates the rotation angle position of the high-accuracy error detecting device 3 and the encoder 2 to calculate an error.

然而,亦可為如下構成:高精度誤差檢測裝置3直接取得編碼器2之旋轉角度位置並算出誤差,僅將誤差發送至修正表製作裝置1,並由修正表製作裝置1之旋轉一周誤差算出部110取得該誤差。又,高精度誤差檢測裝置3本身亦可為具備修正表製作裝置1之功能之檢查裝置。 However, the high-precision error detecting device 3 may directly acquire the rotational angle position of the encoder 2 and calculate an error, and transmit only the error to the correction table creating device 1 and calculate the rotation error of the correction table creating device 1 The unit 110 obtains the error. Further, the high-accuracy error detecting device 3 itself may be an inspection device having the function of the correction table creating device 1.

又,於上述實施形態中,對修正表製作裝置1在製作修正表400之後直接使其記憶於編碼器2之例進行了記載。 Further, in the above-described embodiment, the correction table creation device 1 is described by directly recording the correction table 400 and storing it in the encoder 2.

然而,亦可於藉由修正表製作裝置1製作修正表400之後,將其保存於快閃記憶卡等外部記憶媒體等,並使該外部記憶媒體等裝載於編碼器2。 However, after the correction table 400 is created by the correction table creation device 1, it may be stored in an external memory medium such as a flash memory card or the like, and the external memory medium or the like may be loaded on the encoder 2.

藉由以此方式構成,能夠使編碼器調整系統之構成靈活,且能夠削減成本 By configuring in this manner, the configuration of the encoder adjustment system can be made flexible, and the cost can be reduced.

又,於上述實施形態中,對修正表製作裝置1取得每旋轉一周之誤差並製作誤差表,然後製作修正表400之例進行了記載。 Moreover, in the above-described embodiment, an example in which the correction table creation device 1 acquires an error per rotation and creates an error table, and then creates the correction table 400 is described.

然而,亦可自高精度誤差檢測裝置3與編碼器2算出複數周之誤差,並以能夠將該等誤差平均化之方式,在旋轉一周誤差算出機構中或旋轉一周誤差算出機構後具有進行平均化之功能。或者,亦可自高精度誤差檢測裝置3與編碼器2算出複數周之誤差,且能夠在藉由固有誤差成分算出機構對該複數周之誤差算出複數周之固有誤差成分後,將各個固有誤差成分平均化,以此方式在固有誤差成分算出機構中或固有誤差成分算出機構之後具有進行平均化之功能。又,所製作之修正表400本身亦可亦進行平滑化等後處理。 However, the error of the complex number may be calculated from the high-accuracy error detecting device 3 and the encoder 2, and may be averaged in the one-turn error calculating means or the one-turn error calculating means so that the errors can be averaged. The function of the transformation. Alternatively, the error of the complex number may be calculated from the high-accuracy error detecting device 3 and the encoder 2, and the inherent error component of the complex number may be calculated by the inherent error component calculating means for the error of the complex number, and each inherent error may be obtained. In this way, the components are averaged, and in this way, the intrinsic error component calculation means or the inherent error component calculation means has a function of averaging. Further, the prepared correction table 400 itself may be subjected to post-processing such as smoothing.

藉此,能夠減少測定誤差,從而製作確實地反映了編碼器2之主要誤差週期成分之誤差表。 Thereby, the measurement error can be reduced, and an error table that accurately reflects the main error period component of the encoder 2 can be produced.

再者,上述實施形態之構成及動作係示例,毋庸置疑,可於不脫離本發明之主旨之範圍內適當進行變更而執行。 In addition, the configuration and the operation of the above-described embodiments are not limited, and may be appropriately modified without departing from the gist of the invention.

1‧‧‧修正表製作裝置 1‧‧‧correction table making device

2‧‧‧編碼器 2‧‧‧Encoder

3‧‧‧高精度誤差檢測裝置 3‧‧‧High-precision error detection device

110‧‧‧旋轉一周誤差算出部 110‧‧‧Rotation one-week error calculation unit

120‧‧‧固有誤差成分算出部 120‧‧‧Inherent Error Component Calculation Unit

130‧‧‧修正表製作部 130‧‧‧Amendment Table Production Department

140‧‧‧修正表保存部 140‧‧‧Amendment Table Maintenance Department

Claims (9)

一種修正表製作裝置,其特徵在於:其係製作對根據檢測元件之信號檢測旋轉角度位置之編碼器之誤差予以修正的修正表者,且包括:旋轉一周誤差算出機構,其利用高精度誤差檢測裝置算出每旋轉一周之由上述編碼器檢測之上述旋轉角度位置之誤差;固有誤差成分算出機構,其藉由對由該旋轉一周誤差算出機構算出之每旋轉一周之誤差進行傅立葉轉換而算出固有誤差成分;修正表製作機構,其僅對由該固有誤差成分算出機構算出之上述固有誤差成分之主要誤差週期成分之值進行傅立葉逆轉換,藉以製作以各上述旋轉角度位置處之誤差量作為修正值之上述修正表;以及修正表保存機構,其將由上述修正表製作機構製作之上述修正表保存於上述編碼器之記憶機構。 A correction table creation device characterized in that it is a correction table for correcting an error of an encoder that detects a rotation angle position based on a signal of a detection element, and includes: a rotation one-time error calculation mechanism that uses high-precision error detection The device calculates an error of the rotation angle position detected by the encoder every one rotation; the inherent error component calculation means calculates the inherent error by performing Fourier transform on the error per revolution calculated by the one-turn error calculation means. a component; a correction table creation unit that performs Fourier inverse transformation on only the value of the main error period component of the inherent error component calculated by the inherent error component calculation means, thereby producing an error amount at each of the rotation angle positions as a correction value The correction table and the correction table storage unit store the correction table created by the correction table creation unit in a memory mechanism of the encoder. 如請求項1之修正表製作裝置,其中上述編碼器中,上述檢測元件包含具有一對S極與N極之磁極被磁化之磁鐵之可動被檢測物、以及與上述磁鐵相對向之A相磁感應感測器及B相磁感應感測器;與上述可動被檢測物之位移對應地自上述A相磁感應感測器輸出正弦波狀之A相信號,且與上述可動被檢測物之位移對應地自上述B相磁感應感測器輸出正弦波狀之B相信號,上述A相信號與上述B相信號之相位差大致為π/2;且上述編碼器包括旋轉角度位置算出機構,該旋轉角度位置算 出機構係根據上述A相信號與上述B相信號算出XY平面上之利薩如波形並對其進行解析,藉此檢測上述可動被檢測物之角度位置;上述旋轉角度位置算出機構係上述可動被檢測物每旋轉一周算出2個週期之上述利薩如波形。 The correction table creating device of claim 1, wherein the detecting element includes a movable object to be detected by a magnet having a pair of S poles and N pole magnetic poles, and an A phase magnetic induction opposite to the magnet a sensor and a B-phase magnetic induction sensor; outputting a sinusoidal A-phase signal from the A-phase magnetic induction sensor corresponding to the displacement of the movable object to be detected, and corresponding to the displacement of the movable object to be detected The B-phase magnetic induction sensor outputs a sinusoidal B-phase signal, and the phase difference between the A-phase signal and the B-phase signal is substantially π/2; and the encoder includes a rotation angle position calculation mechanism, and the rotation angle position is calculated The output mechanism calculates and analyzes the Lissajous waveform on the XY plane based on the A phase signal and the B phase signal, thereby detecting an angular position of the movable object to be detected; and the rotation angle position calculating means is the movable The above-mentioned Lissajous waveform of 2 cycles was calculated every rotation of the test object. 如請求項2之修正表製作裝置,其中上述主要誤差週期成分係每旋轉一周為2的乘方之週期成分。 The correction table creating device of claim 2, wherein the main error period component is a periodic component of a power of two per revolution. 如請求項3之修正表製作裝置,其中上述主要誤差週期成分係每旋轉一周至少為1週期成分、2週期成分、4週期成分及8週期成分。 The correction table creation device of claim 3, wherein the main error period component is at least one cycle component, two cycle component, four cycle component, and eight cycle component per rotation. 一種編碼器,其特徵在於:包括修正機構,該修正機構自藉由如請求項1至4中任一項之修正表製作裝置製作且保存於上述記憶機構之上述修正表,讀出與使用狀態下之上述旋轉角度位置對應之上述修正值,藉由該修正值修正誤差。 An encoder, comprising: a correction mechanism, which is prepared by the correction table creation device according to any one of claims 1 to 4 and stored in the correction table of the memory mechanism, read and used The correction value corresponding to the rotation angle position is corrected by the correction value. 如請求項5之編碼器,其中在上述旋轉一周誤差算出機構中或者在上述旋轉一周誤差算出機構之後具有將旋轉複數周之誤差平均化之功能。 The encoder of claim 5, wherein the rotation one-cycle error calculation means or the one-rotation error calculation means has a function of averaging errors of the plurality of rotations. 如請求項5之編碼器,其中在上述固有誤差成分算出機構中或者在上述固有誤差成分算出機構之後具有將旋轉複數周之各自之固有誤差成分平均化之功能。 The encoder according to claim 5, wherein the intrinsic error component calculating means or the intrinsic error component calculating means has a function of averaging respective intrinsic error components of the plurality of rotations. 如請求項1之修正表製作裝置,其中上述主要誤差週期成分係每旋轉一周為2的乘方之週期成分。 The correction table creating device of claim 1, wherein the main error period component is a periodic component of a power of two per revolution. 一種修正表製作方法,其特徵在於:其係藉由修正表製作裝置執行者,該修正表製作裝置製作對根據檢測元件之信號檢測旋 轉角度位置之編碼器之誤差予以修正的修正表,且該修正表製作方法係:利用高精度誤差檢測裝置,算出每旋轉一周之由成為被測定對象之上述編碼器檢測之上述旋轉角度位置之誤差;藉由對算出之每旋轉一周之誤差進行傅立葉轉換而測定固有誤差成分;僅對算出之上述固有誤差成分之主要誤差週期成分之值進行傅立葉逆轉換,藉以製作將各上述旋轉角度位置處之誤差量作為修正值之上述修正表;且將所製作之上述修正表保存於上述編碼器之記憶機構。 A method for manufacturing a correction table, characterized in that it is performed by a correction table creation device, and the correction table creation device is configured to detect a signal according to a detection element A correction table for correcting an error of an encoder at an angular position, and the correction table is produced by using a high-precision error detecting device to calculate the rotation angle position detected by the encoder to be measured every one rotation Error; the inherent error component is measured by performing Fourier transform on the calculated error per revolution; and only the value of the main error period component of the calculated inherent error component is inverse Fourier transformed, thereby making each of the above rotation angle positions The error amount is used as the correction table of the correction value; and the created correction table is stored in the memory mechanism of the encoder.
TW104140208A 2014-12-02 2015-12-01 Correction table creation device, encoder and correction table creation method TW201632837A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014243803A JP6595755B2 (en) 2014-12-02 2014-12-02 Correction table creation device, encoder, and correction table creation method

Publications (1)

Publication Number Publication Date
TW201632837A true TW201632837A (en) 2016-09-16

Family

ID=56123836

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104140208A TW201632837A (en) 2014-12-02 2015-12-01 Correction table creation device, encoder and correction table creation method

Country Status (4)

Country Link
JP (1) JP6595755B2 (en)
KR (1) KR102502508B1 (en)
CN (1) CN105651324B (en)
TW (1) TW201632837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111044982A (en) * 2019-12-23 2020-04-21 珠海纳睿达科技有限公司 Radar azimuth positioning method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018185863A1 (en) * 2017-04-04 2018-10-11 株式会社五十嵐電機製作所 Control device for dc motor
JP6416983B1 (en) * 2017-05-22 2018-10-31 ファナック株式会社 Rotation axis angle calibration method and angle calibration program
JP2019039704A (en) * 2017-08-23 2019-03-14 Dmg森精機株式会社 Calibration value generation method of encoder, calibration value generation system of encoder, and encoder
JP6419922B1 (en) * 2017-10-23 2018-11-07 株式会社 五十嵐電機製作所 DC motor controller
CN107655511A (en) * 2017-11-03 2018-02-02 常州寻心电子科技有限公司 A kind of magnetic encoder calibrating installation and method
JP7219662B2 (en) * 2018-04-13 2023-02-08 旭化成エレクトロニクス株式会社 ROTATING ANGLE DETECTION DEVICE, ROTATING ANGLE DETECTION METHOD AND PROGRAM
CN109000702A (en) * 2018-05-16 2018-12-14 苏州汇川技术有限公司 Encoder corrects system and method
CN110426071A (en) * 2019-08-30 2019-11-08 新代科技(苏州)有限公司 Rotary encoder precision estimating apparatus and the estimating and measuring method for applying it
CN113758513B (en) * 2020-06-04 2022-11-04 杭州海康威视数字技术股份有限公司 Method for detecting precision of magnetic encoder in equipment and electronic equipment
JP2022179101A (en) * 2021-05-21 2022-12-02 ミネベアミツミ株式会社 Absolute encoder, device for correcting angle error of absolute encoder, and method for correcting angle error of absolute encoder
KR102460007B1 (en) * 2021-08-30 2022-10-27 박성현 Magnetic encoder
CN115355937B (en) * 2022-10-24 2022-12-27 泉州昆泰芯微电子科技有限公司 Self-calibration method of magnetic encoder and motor
JP7432283B1 (en) 2023-05-31 2024-02-16 株式会社マグネスケール Displacement calculation device and displacement calculation method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL124932A0 (en) * 1998-06-16 1999-01-26 Mea Motor Inspection Ltd Method and apparatus for testing rotating machines
JP2003269998A (en) * 2002-03-15 2003-09-25 Tamagawa Seiki Co Ltd Self-calibrating type angle detector with remote correcting function
JP4768248B2 (en) * 2004-10-13 2011-09-07 株式会社ミツトヨ Encoder output signal correction apparatus and method
JP4713123B2 (en) * 2004-10-13 2011-06-29 株式会社ミツトヨ Encoder output signal correction device
CN1257386C (en) * 2005-01-20 2006-05-24 哈尔滨工业大学 Single-transposition roundness fault separating method
JP2006234723A (en) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd Method of correcting rotation angle in rotation angle detector
JP2007064771A (en) * 2005-08-31 2007-03-15 Japan Servo Co Ltd Error correction device for encoder
GB0601174D0 (en) * 2006-01-20 2006-03-01 Renishaw Plc Multiple readhead apparatus
JP4824415B2 (en) * 2006-01-27 2011-11-30 株式会社 ソキア・トプコン Rotary encoder
CN101144757A (en) * 2006-09-11 2008-03-19 青岛高校软控股份有限公司 Tire uniformity testing method
JP5111031B2 (en) * 2007-09-14 2012-12-26 キヤノン株式会社 Displacement detection method and motor control device
JP5249158B2 (en) * 2009-08-27 2013-07-31 日本電産サンキョー株式会社 Encoder offset correction method
US9341500B2 (en) * 2009-11-26 2016-05-17 Leica Geosystems Ag Calibration method and angle measuring method for an angle measuring device, and angle measuring device
JP2013526718A (en) * 2010-05-17 2013-06-24 ファロ テクノロジーズ インコーポレーテッド Self-compensating angle encoder
JP5281102B2 (en) * 2011-01-07 2013-09-04 東芝機械株式会社 Resolver device, resolver angle detection device and method
JP2014153294A (en) * 2013-02-13 2014-08-25 Mitsubishi Heavy Ind Ltd Detected position correction method of electromagnetic induction type position detector
JP6151544B2 (en) * 2013-03-28 2017-06-21 日本電産サンキョー株式会社 Magnetic sensor device and rotary encoder
JP5731569B2 (en) * 2013-05-02 2015-06-10 ファナック株式会社 Encoder with accuracy correction function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111044982A (en) * 2019-12-23 2020-04-21 珠海纳睿达科技有限公司 Radar azimuth positioning method
CN111044982B (en) * 2019-12-23 2021-09-28 广东纳睿雷达科技股份有限公司 Radar azimuth positioning method

Also Published As

Publication number Publication date
CN105651324B (en) 2018-03-30
KR102502508B1 (en) 2023-02-22
JP6595755B2 (en) 2019-10-23
CN105651324A (en) 2016-06-08
KR20160066509A (en) 2016-06-10
JP2016109436A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
TW201632837A (en) Correction table creation device, encoder and correction table creation method
TWI564548B (en) Method for self-calibrating a rotary encoder
JP6163874B2 (en) Rotation angle detection device, image processing device, and rotation angle detection method
US9423281B2 (en) Self-calibrating single track absolute rotary encoder
TWI663383B (en) Encoder and rotation angle position calculation method
JP4858837B2 (en) Rotation angle detector
WO2021114419A1 (en) Calibration method, apparatus and device for rotary magnetoelectric encoder
AU2006336718A1 (en) Rotary encoder
JP7381707B2 (en) Detection device, method, system, calculation device, and calculation method
JP2011033602A (en) Resolver/digital converter, and resolver/digital conversion method
CN109696187B (en) Eccentric correcting device of rotary encoder
JP2018132356A (en) Rotary encoder
JP2005208028A (en) Angle operation method for variable reluctance resolver, and angle operation unit for the same
JP2014025871A (en) Encoder output signal correction apparatus
KR102500090B1 (en) Compensation of angular errors related to offset and gain drift with motor position detectors
CN111089610B (en) Signal processing method and device of encoder and related components
CN111801883A (en) Position estimation method, position estimation device, and motor module
TWI714072B (en) Angle detector
JP6112832B2 (en) Angle correction device and rotation angle sensor
WO2018092416A1 (en) Rotary encoder signal processing device and rotary encoder signal processing method
JP5162739B2 (en) Encoder signal processing method, encoder device, and servo motor
JP2001057761A (en) Assembly device for resolver
WO2022254863A1 (en) Angle detection method and angle detection device
CN117516596B (en) High-precision online compensation method of magnetoelectric encoder
JP2020091104A (en) Absolute rotary encoder