TW201627723A - Methods for mura mitigation in curved liquid crystal displays - Google Patents

Methods for mura mitigation in curved liquid crystal displays Download PDF

Info

Publication number
TW201627723A
TW201627723A TW105100202A TW105100202A TW201627723A TW 201627723 A TW201627723 A TW 201627723A TW 105100202 A TW105100202 A TW 105100202A TW 105100202 A TW105100202 A TW 105100202A TW 201627723 A TW201627723 A TW 201627723A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
curved
glass
crystal layer
glass plate
Prior art date
Application number
TW105100202A
Other languages
Chinese (zh)
Inventor
格林瑞蒙葛洛
石川智弘
費帕柯瑪克利斯南希曼
Original Assignee
康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 康寧公司 filed Critical 康寧公司
Publication of TW201627723A publication Critical patent/TW201627723A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133761Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different pretilt angles

Abstract

Disclosed herein are methods for manufacturing curved liquid crystal display devices, the methods comprising determining the stress-retardance of a curved glass sheet in the liquid crystal display, determining a modified pre-tilt retardance for at least one layer of the liquid crystal layer, and adjusting the pre-tilt retardance of the liquid crystal layer. Methods for reducing light leakage in curved liquid crystal display devices are also disclosed herein as well as curved liquid crystal display devices manufactured according to these methods.

Description

減輕彎曲液晶顯示器中之色斑的方法 Method for mitigating stains in curved liquid crystal displays 【相關申請案之交互參照】 [Reciprocal Reference of Related Applications]

本申請案根據專利法主張申請於2015年1月6日之美國臨時申請案第62/100,347號之優先權權益,本申請案依據該申請案之內容,且該申請案之內容以參考之方式全部併入本文中。 The present application claims the priority of the U.S. Provisional Application Serial No. 62/100,347, filed on Jan. 6, 2015, the content of which is hereby incorporated by All incorporated herein.

本揭示案大體係關於彎曲液晶顯示器,及更特定而言係關於用於減輕彎曲、垂直對齊的液晶顯示器中之色斑的方法。 The present disclosure is directed to curved liquid crystal displays, and more particularly to methods for mitigating stains in curved, vertically aligned liquid crystal displays.

諸如液晶顯示器(liquid crystal display;LCD)及有機發光二極體(organic light-emitting diode;OLED)顯示器之高效能顯示器裝置通常用於多種電子裝置,如蜂巢式電話、膝上型電腦、電子平板電腦、電視機,及電腦監測器。僅舉數例,目前市售的顯示器裝置可使用例如一或更多個高精度玻璃板以作為電子電路組件的基板或濾色片的基板。 High-performance display devices such as liquid crystal displays (LCDs) and organic light-emitting diode (OLED) displays are commonly used in a variety of electronic devices, such as cellular phones, laptops, and electronic tablets. Computers, televisions, and computer monitors. To cite a few examples, currently commercially available display devices may use, for example, one or more high precision glass sheets as substrates for the electronic circuit components or as a substrate for the color filters.

LCD是目前使用的最常用類型之平板顯示器,且通常包括兩個大體上平坦的顯示面板及中間液晶層,該等面板配有場發生電極,如像素電極及共用電極。 LCD之子像素電路系統藉由在整個場發生電極施加對應電壓而供應及傳送遍及整個液晶層的電場。此電場決定在液晶層中液晶分子之定向並控制穿過液晶之偏振入射光的相位延遲(阻滯)。由此,除前後偏光器之外,液晶層可能是LCD中唯一的其他偏振改變組件,但一些LCD可採用額外的靜態補償薄膜,該等薄膜層壓至該等偏光器中一或更多者之內表面,以改良視角效能。 LCDs are the most commonly used types of flat panel displays currently in use, and typically include two substantially flat display panels and an intermediate liquid crystal layer that is equipped with field generating electrodes such as pixel electrodes and common electrodes. The sub-pixel circuitry of the LCD supplies and delivers an electric field throughout the liquid crystal layer by applying a corresponding voltage across the field generating electrodes. This electric field determines the orientation of the liquid crystal molecules in the liquid crystal layer and controls the phase retardation (blocking) of the polarized incident light passing through the liquid crystal. Thus, in addition to the front and rear polarizers, the liquid crystal layer may be the only other polarization changing component in the LCD, but some LCDs may employ additional static compensation films that are laminated to one or more of the polarizers. The inner surface is used to improve the viewing angle performance.

在製造期間,可小心控制LCD玻璃基板以限制或消除固有應力(阻滯)不均勻性,例如固有的應力阻滯可經限制以小於阻滯波的一小部分。LCD玻璃基板中應力阻滯之外質來源可包括不均勻溫度,例如來自背光;玻璃上之外力,例如來自將LCD面板安裝在其框架上;及面板從其天然平面形狀發生之幾何形狀變形,例如來自彎曲面板以用於特殊設計。在LCD之設計及製造期間管理該種應力阻滯外質來源以限制影像畸變可十分重要。 During fabrication, the LCD glass substrate can be carefully controlled to limit or eliminate inherent stress (blocking) non-uniformities, such as inherent stress relief can be limited to less than a fraction of the blocking wave. Sources of stress retardation in LCD glass substrates may include non-uniform temperatures, such as from backlights; external forces on the glass, such as from mounting an LCD panel on its frame; and deformation of the panel from its natural planar shape. For example from curved panels for special designs. It is important to manage this type of stress-blocking external source during the design and manufacture of the LCD to limit image distortion.

LCD往往用作電視機接收器中之顯示器裝置,且市場趨勢已導致顯示器尺寸增大以提供更類似於影院的家庭觀影體驗。此趨勢的近期發展是使LCD顯示器配備彎曲配置,而非習用的平板設計。該種配置可減輕在被安排從顯示器中心正面觀察的觀察者與被安排從顯示器左側或右側觀察的觀察者之間體驗的觀察差異。彎曲的顯示器裝置可藉由將顯示器面板以凹或凸方式而形成,以補償觀察差異。顯示器裝置可為縱向類型,在 該情況下,垂直高度大於水平寬度且監測器圍繞垂直軸彎曲,或為橫向類型,在該情況下,垂直高度小於水平寬度且監測器圍繞水平軸彎曲。 LCDs are often used as display devices in television receivers, and market trends have led to increased display sizes to provide a more cinema-like home viewing experience. A recent development in this trend has been to make LCD displays with a curved configuration rather than a conventional flat design. This configuration can alleviate the difference in observation experienced between an observer arranged to be viewed from the front of the display center and an observer arranged to be viewed from the left or right side of the display. The curved display device can be formed by recessing or convexly displaying the display panel to compensate for the difference in viewing. The display device can be of the vertical type, at In this case, the vertical height is greater than the horizontal width and the monitor is curved about the vertical axis, or is of the lateral type, in which case the vertical height is less than the horizontal width and the monitor is curved about the horizontal axis.

儘管如此,如先前所論述,當顯示器裝置面板彎曲或變彎時,可發生外質應力阻滯,且漏光或「色斑」可能在可感知水平上向使用者產生可見假影。該種變彎或彎曲可能導致LCD基板玻璃中之應力阻滯,該等基板之雙折射率與液晶光耦合,從而導致顯示器裝置中之漏光。例如,在黑色(零灰階)及低灰階中,缺陷等級的有害漏光區域可存在於彎曲LCD中,如顯示器之轉角附近。相應地,提供用於減輕或消除變彎或彎曲顯示器表面中的漏光的方法將是有利的。在各種實施例中,本案中揭示的方法可使彎曲多域垂直對齊(vertically aligned;VA)LCD中的色斑減至最少或防止產生色斑。根據某些實施例,藉由使用本案中揭示方法製造的彎曲VA LCD可在對比度及低灰階影像品質方面展現卓越效能,及/或在低灰階均勻性方面展現卓越效能。 Nonetheless, as discussed previously, when the display device panel is bent or bent, an external stress relief can occur, and light leakage or "spots" can produce visible artifacts to the user at a perceptible level. Such buckling or bending may cause stress retardation in the LCD substrate glass, and the birefringence of the substrates is coupled to the liquid crystal light, resulting in light leakage in the display device. For example, in black (zero gray scale) and low gray scale, the harmful light leakage area of the defect level may exist in the curved LCD, such as near the corner of the display. Accordingly, it would be advantageous to provide a method for mitigating or eliminating light leakage in curved or curved display surfaces. In various embodiments, the methods disclosed herein minimize the occurrence of stains in curved multi-domain vertically aligned (VA) LCDs or prevent the generation of stains. According to certain embodiments, a curved VA LCD fabricated using the methods disclosed herein can exhibit superior performance in contrast and low grayscale image quality, and/or exhibit superior performance in low grayscale uniformity.

本揭示案係關於用於製造彎曲液晶顯示器裝置之方法,該等方法包括圍繞預定軸彎曲顯示器組合件以形成彎曲顯示器組合件,其中該顯示器組合件包括第一玻璃板、第二玻璃板,及安置在第一玻璃板與第二玻璃板之間的液晶層;決定第一玻璃板或第二玻璃板中至少一個區域的應力阻滯;決定液晶層中至少一個對應區 域中經修正的預傾斜阻滯;及將液晶層之至少一個對應區域之預傾斜阻滯調整至經修正的預傾斜阻滯。 The present disclosure relates to a method for fabricating a curved liquid crystal display device, the method comprising bending a display assembly about a predetermined axis to form a curved display assembly, wherein the display assembly comprises a first glass sheet, a second glass sheet, and a liquid crystal layer disposed between the first glass plate and the second glass plate; determining a stress retardation of at least one of the first glass plate or the second glass plate; determining at least one corresponding region in the liquid crystal layer The corrected pre-tilt block in the domain; and adjusting the pre-tilt block of at least one corresponding region of the liquid crystal layer to the corrected pre-tilt block.

本揭示案亦係關於用於製造彎曲液晶顯示器裝置之方法,該等方法包括決定彎曲測試玻璃板中至少一個區域的應力阻滯;決定液晶層中至少一個對應區域中經修正的預傾斜阻滯;將至少一個對應液晶層區域之至少一個區域中的預傾斜阻滯調整至經修正的預傾斜阻滯;將第一玻璃板之第一表面附於第二玻璃板的第二表面,在第一玻璃板與第二玻璃板之間安置液晶層以形成顯示器組合件;及圍繞預定軸彎曲顯示器組合件以形成彎曲液晶顯示器裝置。在各種實施例中,測試玻璃板與第一玻璃板及第二玻璃板具有大體上相同的特性(例如尺寸、曲率半徑及曲率軸,及組成物)。 The present disclosure is also directed to a method for fabricating a curved liquid crystal display device, the method comprising determining a stress retardation of at least one region of a curved test glass sheet; determining a modified pre-tilt retardation in at least one corresponding region of the liquid crystal layer Adjusting a pre-tilt block in at least one of the at least one corresponding liquid crystal layer region to the corrected pre-tilt block; attaching the first surface of the first glass plate to the second surface of the second glass plate, at A liquid crystal layer is disposed between a glass sheet and the second glass sheet to form a display assembly; and the display assembly is bent about a predetermined axis to form a curved liquid crystal display device. In various embodiments, the test glass sheet has substantially the same characteristics as the first glass sheet and the second glass sheet (eg, size, radius of curvature, and axis of curvature, and composition).

本案中進一步揭示的是根據該等方法製造的彎曲液晶顯示器裝置。本案中更進一步揭示的是用於減少彎曲液晶顯示器裝置中之漏光的方法,該等方法包括本案中揭示的步驟中之一或更多個步驟,如決定彎曲液晶顯示器或測試玻璃板中玻璃板的至少一個區域中之應力阻滯,決定液晶層的經修正的預傾斜阻滯,及將液晶層中至少一個區域的預傾斜阻滯調整至經修正的預傾斜阻滯。 Further disclosed in the present disclosure are curved liquid crystal display devices fabricated in accordance with such methods. Further disclosed in the present disclosure is a method for reducing light leakage in a curved liquid crystal display device, the method comprising one or more of the steps disclosed in the present invention, such as determining a curved liquid crystal display or a glass plate in a test glass plate. The stress retardation in at least one region determines the corrected pre-tilt block of the liquid crystal layer and adjusts the pre-tilt block of at least one region of the liquid crystal layer to the corrected pre-tilt block.

本揭示案中的額外特徵及優勢將在下文之詳細描述中闡述,且熟習該項技術者根據該描述將易於部分地顯而易見該等額外特徵及優勢,或可藉由如本案(包 括下文中之詳細描述、申請專利範圍,及所附圖式)所述藉由實施該等方法來認可該等額外特徵及優勢。 The additional features and advantages of the present disclosure are set forth in the Detailed Description of the <RTIgt; </RTI> <RTIgt; </ RTI> <RTIgt; These additional features and advantages are recognized by the implementation of the methods described in the following detailed description, the scope of the claims, and the accompanying drawings.

將理解,前述一般描述及下文之詳細描述介紹本揭示案之各種實施例,且意欲為理解申請專利範圍之屬性及特性而提供概述或框架範圍。本案包括附圖以提供對本揭示案之進一步瞭解,且附圖併入本說明書及構成本說明書之一部分。圖式說明本揭示案之各種揭示案,且該等圖式結合說明書一起用以說明本揭示案之原理及操作。 It is to be understood that the foregoing general description and the claims The accompanying drawings are included to provide a further understanding of this disclosure, The drawings illustrate various disclosures of the present disclosure, and together with the specification,

100‧‧‧顯示器單元 100‧‧‧Display unit

110‧‧‧第一基板 110‧‧‧First substrate

120‧‧‧第二基板 120‧‧‧second substrate

130‧‧‧液晶層 130‧‧‧Liquid layer

140‧‧‧密封劑 140‧‧‧Sealant

150‧‧‧後偏光器 150‧‧‧ rear polarizer

160‧‧‧前偏光器 160‧‧‧ front polarizer

170‧‧‧液晶分子 170‧‧‧liquid crystal molecules

180‧‧‧背光單元 180‧‧‧Backlight unit

在結合以下圖式閱讀時了可最佳地理解以下詳細說明,該等圖式中,類似結構儘可能用類似元件符號指示,該等圖式中:第1圖是根據一示例性實施例之彎曲顯示器裝置的透視圖;第2圖是第1圖中彎曲顯示器裝置之橫剖面視圖;第3A圖及第3B圖是示意圖,該等圖式圖示VA LCD的操作原理;第4圖是具有沿水平軸之曲率半徑的彎曲玻璃片之阻滯定向的示意圖;第5圖是一示例性液晶層的預傾斜定向示意圖; 第6圖是受測彎曲玻璃的透射及+45度VA液晶預傾斜定向的圖示說明;第7圖是受測彎曲玻璃的透射及-45度VA液晶預傾斜定向的圖示說明;及第8圖是受測彎曲玻璃的透射及局部等量的+45度與-45度VA液晶預傾斜定向的圖示說明。 May be best understood in the following description when read in conjunction with the following drawings in detail, those drawings, similar structure as indicated by reference numeral Similarly, these drawings: FIG. 1 is an exemplary embodiment of a A perspective view of the curved display device; FIG. 2 is a cross-sectional view of the curved display device of FIG . 1; FIGS. 3A and 3B are schematic views illustrating the operation principle of the VA LCD; FIG. 4 has Schematic diagram of the retardation orientation of a curved glass sheet along the radius of curvature of the horizontal axis; Figure 5 is a schematic diagram of the pre-tilt orientation of an exemplary liquid crystal layer; Figure 6 is a transmission of the tested curved glass and a +45 degree VA liquid crystal pretilt illustration of the orientation; FIG. 7 is a VA liquid crystal transmittance and -45 degrees tested curved glass pretilt orientation illustrated; and FIG. 8 is equal measure by transmission and local bending of the glass and +45 degrees Graphical illustration of -45 degree VA liquid crystal pre-tilt orientation.

本案中揭示用於製造彎曲液晶顯示器裝置之方法及用於減少彎曲液晶顯示器裝置中漏光的方法。藉由測量或計算(例如藉由使用有限元法)液晶顯示器裝置中彎曲玻璃板的一或更多個區域中之應力阻滯及/或定向,有可能藉由使用本案中揭示的方法計算裝置中液晶層的對應區域的經修正的預傾斜角度及/或定向,此舉在一些實施例中可能減少或消除彎曲顯示器裝置中之漏光(色斑)。在各種實施例中,液晶層之經修正的預傾斜阻滯可經選擇以便抵抗由顯示器裝置中一或更多個區域中之玻璃彎曲引起的應力阻滯,由此減少或消除該等區域中之漏光。例如,藉由改變液晶預傾斜角度及定向,液晶的殘餘阻滯在低灰階下可在彼等區域中大體上抵銷來自彎曲玻璃基板之應力阻滯,若沒有該等修正彼等區域中會存在不可接受的漏光。本案中亦揭示根據該等方法生產之LCD,如多域垂直對齊(multi-domain vertically aligned;MVA)LCD。 Methods for fabricating curved liquid crystal display devices and methods for reducing light leakage in curved liquid crystal display devices are disclosed in the present disclosure. By measuring or calculating (eg, by using a finite element method) the stress retardation and/or orientation in one or more regions of a curved glass sheet in a liquid crystal display device, it is possible to calculate the device by using the method disclosed in the present disclosure. The corrected pre-tilt angle and/or orientation of the corresponding region of the middle liquid crystal layer may, in some embodiments, reduce or eliminate light leakage (stain) in the curved display device. In various embodiments, the modified pre-tilt retardation of the liquid crystal layer can be selected to resist stress retardation caused by glass bending in one or more regions of the display device, thereby reducing or eliminating such regions. Light leakage. For example, by changing the liquid crystal pretilt angle and orientation, the residual retardation of the liquid crystal can substantially offset the stress retardation from the curved glass substrate in these regions at low gray levels, if there is no such correction in the region There is unacceptable light leakage. LCDs produced according to such methods, such as multi-domain vertically aligned (MVA) LCDs, are also disclosed in this disclosure.

阻滯兼具方向(定向)及量值。由此,如同使用本案中,「應力阻滯」意欲包含玻璃板阻滯之量值及/或定向。同樣,「預傾斜阻滯」意欲包含液晶阻滯之量值及定向。預傾斜角度可藉由使用下式利用預傾斜阻滯量值計算得出:PreTiltRetMag=△n x sin(PreTiltAngle)其中△n=ne-no,其中ne是異常的,且no為液晶之一般普通折射率。 Blocking has both direction (orientation) and magnitude. Thus, as used herein, "stress retardation" is intended to include the magnitude and/or orientation of the glass sheet retardation. Similarly, "pretilt block" is intended to include the magnitude and orientation of the liquid crystal block. The pretilt angle can be calculated by using the pretilt block value using the following formula: PreTiltRetMag=Δnx sin(PreTiltAngle) where Δn=n e -n o , where n e is abnormal and n o is liquid crystal The general ordinary refractive index.

應注意,術語「平板」、「板材」、「基板」、「裝置」及該等術語之變體在本揭示案中可互換使用,且該種使用不應限制本案所附申請專利範圍的範疇。應進一步注意,術語「變彎」、「彎曲」及該等術語之變體在本揭示案中可互換使用,且該種使用不應限制本案所附申請專利範圍的範疇。 It should be noted that the terms "flat", "sheet", "substrate", "device" and variations of these terms are used interchangeably in this disclosure, and such use should not limit the scope of the patent application scope of the present application. . It should be further noted that the terms "bending", "bending" and variations of these terms are used interchangeably in this disclosure, and such use should not limit the scope of the patent application scope of the present application.

本揭示案之實施例將參考第1-2圖進行論述,該等圖式繪示一示例性彎曲顯示器裝置之視圖。第1圖是彎曲顯示器裝置的透視圖,而第2圖是第1圖中彎曲顯示器裝置沿線A-A截取的橫剖面視圖。參考第1-2圖,根據一些實施例之彎曲顯示器裝置可包括顯示器單元100,該單元包括第一基板110、第二基板120,以及定位於第一基板110與第二基板120之間的液晶層130,該第二基板120面對第一基板110且與第一基板110相間隔。 Embodiments of the present disclosure will be discussed with reference to Figures 1-2, which show views of an exemplary curved display device. 1 is a perspective view of a curved display device, and FIG. 2 is a cross-sectional view of the curved display device taken along line A-A in FIG. 1. Referring to FIGS. 1-2, a curved display device according to some embodiments may include a display unit 100 including a first substrate 110, a second substrate 120, and a liquid crystal positioned between the first substrate 110 and the second substrate 120. The layer 130 faces the first substrate 110 and is spaced apart from the first substrate 110.

可沿第一基板110及第二基板120的邊緣提供邊緣環形密封劑140以將液晶材料密封在顯示器單元100內部。第一基板110及第二基板120可藉由密封劑140彼此黏接,由此形成空腔,該空腔包含基板110與基板120之間的液晶層130。示例性彎曲顯示器裝置亦可包括一或更多個固定構件(未圖示),該等固定構件經配置以固定基板110、120的形狀以具有相對於預定曲率軸之預定曲率。在一些實施例中,密封劑140的橫剖面寬度可為約2mm或更少。 An edge annular encapsulant 140 may be provided along the edges of the first substrate 110 and the second substrate 120 to seal the liquid crystal material inside the display unit 100. The first substrate 110 and the second substrate 120 may be bonded to each other by a sealant 140, thereby forming a cavity including a liquid crystal layer 130 between the substrate 110 and the substrate 120. The exemplary curved display device can also include one or more securing members (not shown) that are configured to secure the shape of the substrate 110, 120 to have a predetermined curvature relative to a predetermined axis of curvature. In some embodiments, the sealant 140 can have a cross-sectional width of about 2 mm or less.

如第1-2圖所示,彎曲顯示器裝置100之第一基板110及第二基板120可經變彎或彎曲以具有相對於共同中心垂直軸或水平軸的預定曲率。此曲率可為單個簡單半徑,或為具有多個半徑的更複雜形狀。在一些實施例中,顯示器之使用者可面對以水平方向(觀測者的左側及右側方向)凹面彎曲的部分。更特定而言,使用者在第二基板120之側面對顯示器裝置。第一基板110及第二基板120亦可經變彎以具有共享共同中點或中心軸之各自的預定曲率半徑。在所圖示的非限制性實施例中,在第2圖中,水平方向的曲率半徑中心定位在第二基板120下方,亦即位於使用者經定位為觀測顯示器上影像之位置一側。 As shown in FIGS. 1-2, the first substrate 110 and the second substrate 120 of the curved display device 100 may be bent or bent to have a predetermined curvature with respect to a common central vertical axis or a horizontal axis. This curvature can be a single simple radius or a more complex shape with multiple radii. In some embodiments, the user of the display may face a portion that is concavely curved in a horizontal direction (the left and right directions of the observer). More specifically, the user faces the display device on the side of the second substrate 120. The first substrate 110 and the second substrate 120 may also be bent to have respective predetermined radii of curvature sharing a common midpoint or a central axis. In the illustrated non-limiting embodiment, in FIG. 2, the center of curvature radius in the horizontal direction is positioned below the second substrate 120, that is, on the side of the position where the user is positioned to view the image on the display.

被注入第一基板110與第二基板120之間的示例性液晶層130可包括該項技術中已知的任一或所有類型之液晶材料,僅舉數例,如扭轉向列(twisted nematic;TN)模式、垂直對齊(vertically aligned;VA)模式、平面內切換(in plane switching;IPS)模式、藍色相位(blue phase;BP)模式、邊緣電場切換(Fringe Field Switching;FFS)模式,及高級超維切換(AdvancedSuper Dimension Switch;ADS)模式。根據多個實施例,液晶層130可為垂直對齊(vertically aligned;VA)液晶材料。此外,儘管圖式中未圖示,但初始液晶對齊層可包括在第一基板110及第二基板120中之至少一者上。此外,對齊層可在預定方向上摩擦,或經光對齊以在電場不存在的情況下使液晶分子具有初始對齊(例如傾斜及定向)。或者,液晶層130及對齊層中至少一者可包括可光聚合材料。 The exemplary liquid crystal layer 130 implanted between the first substrate 110 and the second substrate 120 may comprise any or all types of liquid crystal materials known in the art, such as twisted nematics, to name a few. Nematic; TN) mode, vertically aligned (VA) mode, in plane switching (IPS) mode, blue phase (BP) mode, fringe field switching (FFS) mode , and Advanced Super Dimension Switch (ADS) mode. According to various embodiments, the liquid crystal layer 130 may be a vertically aligned (VA) liquid crystal material. Moreover, although not shown in the drawings, the initial liquid crystal alignment layer may be included on at least one of the first substrate 110 and the second substrate 120. Furthermore, the alignment layer can be rubbed in a predetermined direction or optically aligned to provide initial alignment (e.g., tilt and orientation) of the liquid crystal molecules in the absence of an electric field. Alternatively, at least one of the liquid crystal layer 130 and the alignment layer may comprise a photopolymerizable material.

如上所述,當顯示器裝置面板變彎或彎曲時,來自顯示器裝置的漏光可導致使用者可見的假影。玻璃曲率可導致LCD基板玻璃中應力阻滯,該等玻璃的雙折射率與液晶光耦合,從而在諸如VA模式之眾多實施例中產生漏光。第3圖是示意圖,該圖圖示具有平面基板之VA LCD的操作原理。參考第3圖,後偏光器150及前偏光器160之透射軸位於正交方向。在沒有施加電場(關閉位置)時,第一基板110與第二基板120之間的液晶層130中之液晶分子170可相對於基板以直角對齊(直列式對齊)。 As noted above, when the display device panel is bent or bent, light leakage from the display device can cause artifacts that are visible to the user. The curvature of the glass can cause stress retardation in the glass of the LCD substrate, the birefringence of which is coupled to the liquid crystal light, thereby producing light leakage in numerous embodiments such as the VA mode. Figure 3 is a schematic diagram showing the principle of operation of a VA LCD having a planar substrate. Referring to Fig. 3, the transmission axes of the rear polarizer 150 and the front polarizer 160 are in the orthogonal direction. When no electric field is applied (closed position), the liquid crystal molecules 170 in the liquid crystal layer 130 between the first substrate 110 and the second substrate 120 may be aligned at right angles with respect to the substrate (in-line alignment).

對於VA或MVA,當未施加電壓時,背光單元180之光L穿過後偏光器150,然後穿過液晶層,不改 變偏振,並因此被前偏光器160阻斷,前偏光器160相對於後偏光器150為90度定向。施加電壓(開啟位置)時,第一基板110及第二基板120上之電極產生平行於基板之電場。依據電場強度,可相對於偏光器為45度定向的液晶分子170可旋轉至傾斜位置及變更光L的偏振,由此允許光穿過前偏光器160。第3圖圖示在開啟位置下位於完全水平位置之液晶分子170,但將理解,多種傾斜角度亦有可能,且意欲符合本揭示案範疇。 For VA or MVA, when no voltage is applied, the light L of the backlight unit 180 passes through the rear polarizer 150 and then passes through the liquid crystal layer without change. The polarization is polarized and thus blocked by the front polarizer 160, which is oriented 90 degrees relative to the rear polarizer 150. When a voltage (on position) is applied, the electrodes on the first substrate 110 and the second substrate 120 generate an electric field parallel to the substrate. Depending on the electric field strength, the liquid crystal molecules 170, which are oriented at 45 degrees with respect to the polarizer, can be rotated to an oblique position and the polarization of the light L can be changed, thereby allowing light to pass through the front polarizer 160. Figure 3 illustrates liquid crystal molecules 170 in a fully horizontal position in the open position, although it will be understood that a variety of tilt angles are also possible and are intended to be within the scope of the present disclosure.

如第3圖中圖示,在傳統(平坦)VA LCD配置中,在關閉位置情況下,光被前偏光器阻斷,且LCD理論上顯示黑色影像。然而,當使用彎曲基板時,具有曲率的玻璃區域可對漏光易感,此可被使用者感知為模糊或色彩失真。例如,彎曲玻璃基板可具有顯著的±45度定向應力阻滯(相位延遲),例如,在接近拐角的區域中。第4圖圖示曲率半徑近似等於1300mm之0.5mm厚測試玻璃板(約160mm x 200mm)之測得的阻滯定向。圓形區域A-D大體指示某種區域,該等區域中之±45度應力阻滯可存在於玻璃板中。鑒於0度/90度可能藉由0度/90度交叉的前偏光器及後偏光器而消除,±45度應力阻滯可導致拐角漏光(色斑)。 As illustrated in Figure 3, in a conventional (flat) VA LCD configuration, in the off position, the light is blocked by the front polarizer and the LCD theoretically displays a black image. However, when a curved substrate is used, a glass region having a curvature may be susceptible to light leakage, which may be perceived by the user as blurring or color distortion. For example, a curved glass substrate can have a significant ±45 degree directional stress retardation (phase retardation), for example, in a region near the corner. Figure 4 illustrates the measured retardation orientation of a 0.5 mm thick test glass sheet (approximately 160 mm x 200 mm) having a radius of curvature approximately equal to 1300 mm. The circular regions A-D generally indicate regions in which ±45 degrees of stress retardation may be present in the glass sheet. Since 0 degrees/90 degrees may be eliminated by a 0 to 90 degree cross front polarizer and a rear polarizer, a ±45 degree stress block may cause corner leakage (stain).

在習用VA LCD中,每一子像素可具有一定數量個不同域,該等域具有各種預傾斜定向以提供液晶在查看方向的方向性平均。液晶分子的預傾斜對齊可藉由例如利用對齊層處理第一基板及第二基板之內表面以 在所需角度下對齊毗連液晶分子而實現。例如,第5圖繪示一般示意圖,該圖圖示示例性液晶層之預傾斜定向。基板S(例如第一基板及/或第二基板)的內表面可塗覆聚合物P及在所需方向R摩擦,以使得在液晶分子LC充填單元時,分子自身沿摩擦方向對齊。產生的液晶分子傾斜θ P 被視作預傾斜角度。適合對齊層可包括例如諸如聚醯亞胺之聚合物。 In conventional VA LCDs, each sub-pixel can have a number of different domains with various pre-tilt orientations to provide a directional average of the liquid crystal in the viewing direction. The pre-tilt alignment of the liquid crystal molecules can be achieved by, for example, treating the inner surfaces of the first substrate and the second substrate with an alignment layer to align adjacent liquid crystal molecules at a desired angle. For example, Figure 5 illustrates a general schematic diagram illustrating the pre-tilt orientation of an exemplary liquid crystal layer. The inner surface of the substrate S (for example, the first substrate and/or the second substrate) may be coated with the polymer P and rubbed in a desired direction R such that the molecules themselves are aligned in the rubbing direction when the liquid crystal molecules LC are filled. The resulting liquid crystal molecule tilt θ P is regarded as a pretilt angle. Suitable alignment layers can include, for example, polymers such as polyimine.

申請人已發現,彎曲玻璃的應力阻滯(或相位延遲)可以加法及/或減法方式與液晶之預傾斜阻滯結合,具體視該二者相對定向及量值而定。申請人由此認為,彎曲VA LCD中之漏光或色斑可藉由以下方式減輕或消除:將液晶之預傾斜定向定向為與彎曲玻璃的阻滯定向成約90度,及/或調整液晶預傾斜角度以給定與彎曲玻璃的阻滯量值大約匹配的阻滯量值。實際上,具有水平偏光器及垂直偏光器的VA及MVA LCD可在彎曲玻璃應力阻滯為約±45度的區域中經受有害漏光。在不意欲受理論束縛的情況下,咸信,預傾斜定向及量值可改變以使得液晶預傾斜阻滯抵銷由彎曲玻璃區域中之應力所引起的阻滯。 Applicants have discovered that the stress retardation (or phase retardation) of curved glass can be combined with the pre-tilt block of the liquid crystal in addition and/or subtraction mode, depending on the relative orientation and magnitude of the two. Applicants therefore believe that light leakage or staining in a curved VA LCD can be mitigated or eliminated by orienting the pre-tilt orientation of the liquid crystal to a retardation orientation of about 90 degrees with the curved glass, and/or adjusting the liquid crystal pretilt. The angle is given a value that is approximately matched to the amount of retardation of the curved glass. In fact, VA and MVA LCDs with horizontal polarizers and vertical polarizers can experience unwanted light leakage in areas where the bending glass stress is retarded by about ±45 degrees. Without wishing to be bound by theory, the pre-tilt orientation and magnitude may be varied such that the liquid crystal pre-tilt block counteracts the retardation caused by the stress in the curved glass region.

鑒於彎曲玻璃之應力阻滯定向可能以公分數量級改變,因此液晶面板的預傾斜定向可能以數十微米之數量級改變。在通常情況下,可觀察到每一子像素在±45度預傾斜定向域上平均後的局部±45度彎曲玻璃應力阻滯定向的複合效應。此效應可分為三個不同情況研究。 Since the stress retardation orientation of the curved glass may vary by the order of centimeters, the pretilt orientation of the liquid crystal panel may vary on the order of tens of microns. Under normal circumstances, the composite effect of local ±45 degree curved glass stress retardation orientation after each sub-pixel averaged over a ±45 degree pre-tilt orientation domain can be observed. This effect can be divided into three different situations.

情況1:+45度預傾斜LC定向,其中拐角應力阻滯為±45度定向Case 1: +45 degree pre-tilt LC orientation with corner stress retardation of ±45 degrees orientation

解出+45度定向預傾斜阻滯(孤度)之透射方程式,該預傾斜阻滯向無玻璃阻滯的理想VA LC給定對比度5000黑色狀態,該方程式得出1.621度預傾斜阻滯量值。針對+45度預傾斜之密勒矩陣黑色狀態VA LC因此為: Solving the transmission equation of +45 degree directional pre-tilt block (degree of latitude), which gives a contrast 5000 black state to the ideal VA LC without glass block, which gives a pre-tilt block of 1.621 degrees value. The Miller matrix black state VA LC for a +45 degree pretilt is therefore:

用以下密勒矩陣透射方程式得出透射色斑影像,該方程式使用針對+45度預傾斜、對具有黑色狀態VA LC之0.5mm厚度彎曲測得的玻璃阻滯資料,以產生第6圖中之影像。 A transmitted color patch image is obtained using the following Miller matrix transmission equation, which uses the glass retardation data measured for a +45 degree pretilt, 0.5 mm thickness bend with a black state VA LC to produce the image in Figure 6 image.

如第6圖中可見,對應於彎曲玻璃應力阻滯-45度定向的拐角中幾乎沒有或沒有色斑,然而具有彎曲玻璃應力阻滯之+45度定向的拐角中則有色斑(大體由圓形區域B、C指示)。藉由簡化+45度預傾斜定向及-45度彎曲玻璃應力阻滯定向的透射模型,可獲得以下公式: 在此情況中,相互作用項是負的,例如指示來自玻璃及預傾斜阻滯的漏光減少。藉由解出零色斑條件,可獲得以下公式:CurvedGlassRetNm=(5/18)*Pi*VApretiltDeg As can be seen in Fig. 6, there is almost no or no stain in the corner corresponding to the bending stress-45 degree orientation of the curved glass, but there is a color plaque in the corner with a curved glass stress retardation of +45 degrees (substantially Circular areas B, C indicate). By simplifying the +45 degree pre-tilt orientation and the transmission model of the -45 degree curved glass stress-blocking orientation, the following formula can be obtained: In this case, the interaction term is negative, such as indicating a decrease in light leakage from the glass and pre-tilt block. By solving the zero-spot condition, the following formula can be obtained: CurvedGlassRetNm=(5/18)*Pi*VApretiltDeg

同樣,藉由簡化+45度預傾斜定向及+45度彎曲玻璃應力阻滯定向的透射模型,可獲得以下公式: 在此情況中,相互作用項是正的,例如,指示來自玻璃及預傾斜阻滯之漏光是加性的(組合漏光大於任一單獨組件的漏光)。 Similarly, by simplifying the transmission model of +45 degree pre-tilt orientation and +45 degree curved glass stress retardation orientation, the following formula can be obtained: In this case, the interaction term is positive, for example, indicating that the light leakage from the glass and the pre-tilt block is additive (the combined leakage is greater than the leakage of either individual component).

情況2:-45度預傾斜LC定向,其中拐角應力阻滯為±45度定向Case 2: -45 degree pre-tilt LC orientation with corner stress retardation of ±45 degrees orientation

類似於上述情況1,針對-45度定向(LC預傾斜定向弧度)解出透射方程式。同樣,無玻璃阻滯的理想VA LC在對比度5000黑色狀態下產生1.621度預傾斜阻滯量值。針對-45度預傾斜之密勒矩陣黑色狀態VA LC下因此為: Similar to case 1 above, for -45 degree orientation (LC pre-tilt orientation) Radian) solves the transmission equation. Similarly, an ideal VA LC without glass block produces a pre-tilt block value of 1.621 degrees in a contrast of 5000 black. For the -45 degree pre-tilt Miller matrix black state VA LC is therefore:

用密勒矩陣透射方程式產生透射色斑影像,該方程式使用針對-45度預傾斜、對具有黑色狀態VA LC之0.5mm厚度彎曲玻璃測得的阻滯資料,以產生第 7圖中之影像。如第7圖中可見,對應於彎曲玻璃應力阻滯+45度定向的拐角中幾乎沒有或沒有色斑,然而具有彎曲玻璃應力阻滯-45度定向的拐角中則有色斑(大體由圓形區域A、D指示)。藉由簡化-45度預傾斜定向及+45度彎曲玻璃應力阻滯定向的透射模型,可獲得以下公式: 在此情況中,相互作用項是負的,例如指示玻璃漏光及預傾斜阻滯減少。同樣,藉由簡化-45度預傾斜定向及-45度彎曲玻璃應力阻滯定向的透射模型,可獲得以下公式: 在此情況中,相互作用項是正的,例如,指示來自玻璃及預傾斜阻滯之漏光是加性的(組合漏光大於任一單獨組件的漏光)。 A transmission color patch image was generated using a Miller matrix transmission equation using a retardation data measured for a -45 degree pretilt, 0.5 mm thick curved glass having a black state VA LC to produce the image in FIG. As can be seen in Fig. 7, there is almost no or no stain in the corner corresponding to the curved glass stress retardation +45 degree orientation, but there is a stain in the corner with curved glass stress retardation -45 degree orientation (generally by the circle) Shape areas A, D indicate). By simplifying the transmission model of -45 degree pre-tilt orientation and +45 degree curved glass stress retardation orientation, the following formula can be obtained: In this case, the interaction term is negative, such as indicating glass leakage and pre-tilt block reduction. Similarly, by simplifying the -45 degree pre-tilt orientation and the -45 degree bending glass stress-blocking orientation transmission model, the following formula can be obtained: In this case, the interaction term is positive, for example, indicating that the light leakage from the glass and the pre-tilt block is additive (the combined leakage is greater than the leakage of either individual component).

情況3:+45度預傾斜LC定向,其中拐角應力阻滯為±45度定向Case 3: +45 degree pre-tilt LC orientation with corner stress retardation of ±45 degrees orientation

「實際」上,例如商用VA LCD,每一像素具有相同數目之兩個預傾斜定向之LC域。由此,基於+45度與-45度LC預傾斜域的局部平均而產生影像,該等域作用於相同的局部彎曲玻璃應力阻滯定向。 In "real", such as a commercial VA LCD, each pixel has the same number of two pre-tilt oriented LC domains. Thus, images are generated based on the local averaging of the +45 degrees and -45 degrees LC pre-tilt domains, which act on the same locally curved glass stress-blocking orientation.

用密勒矩陣透射方程式產生透射色斑影像,該方程式使用針對+45度及-45度預傾斜定向(假定每一者貢獻為50%的加權平均)、對具有黑色狀態VA LC 之0.5mm厚度彎曲玻璃測得的阻滯資料,以產生第8圖中之影像。如第8圖中可見,全部四拐角處都有色斑(大體由圓形區域A-D指示)。同樣,藉由簡化±45度預傾斜定向及+45度或-45度彎曲玻璃應力阻滯定向的透射模型,可獲得以下公式: 相互作用項在兩種情況中抵銷,由此產生相同結果,無論彎曲玻璃應力阻滯定向為何。 A transmitted color patch image is generated using a Miller matrix transmission equation using a pre-tilt orientation for +45 degrees and -45 degrees (assuming a weighted average of 50% for each contribution), a thickness of 0.5 mm for a black state VA LC The blockage data measured by the curved glass is used to produce the image in Figure 8. As can be seen in Figure 8, there are spots on all four corners (generally indicated by the circular area AD). Similarly, by simplifying the ±45 degree pre-tilt orientation and the transmission model of the +45 degree or -45 degree curved glass stress-blocking orientation, the following formula can be obtained: The interaction term is offset in both cases, resulting in the same result regardless of the bending retardation orientation of the curved glass.

根據上述內容,申請人已研發藉由控制對應於彎曲玻璃應力阻滯的域中之LC預傾斜定向角度及量值來減少或消除彎曲LCD中色斑的方法。如上所示,所產生之透射(漏光)可增強(正相互作用項)、減輕(負相互作用項),或可為每一組件(LC及玻璃)之個別漏光之獨立和。在某些實施例中,LC預傾斜定向可經修正以抵抗或平衡彎曲玻璃應力阻滯,由此減輕或消除有害的漏光。 In light of the foregoing, Applicants have developed a method of reducing or eliminating stains in curved LCDs by controlling the LC pre-tilt orientation angles and magnitudes corresponding to the stresses in the curved glass. As indicated above, the resulting transmission (light leakage) can be enhanced (positive interaction term), mitigated (negative interaction term), or can be an independent sum of individual light leakage for each component (LC and glass). In certain embodiments, the LC pre-tilt orientation can be modified to resist or balance the bending stress of the curved glass, thereby mitigating or eliminating unwanted light leakage.

以非限制性實例之方式,經修正的預傾斜阻滯量值(及由此經修正的預傾斜角度)可經計算以抗衡歸因於玻璃彎曲區域中應力阻滯作用導致的漏光。經修正的預傾斜角度可基於彎曲LCD中玻璃板或測試彎曲玻璃板的應力阻滯測量結果而計算得出。例如,具有與彎曲LCD中所用玻璃板大體類似或相同特性的測試玻璃板可經成形以獲得一曲率,該曲率與彎曲LCD之所需 曲率(例如參看第4圖)大體上類似或相同。可測量彎曲LCD或測試玻璃板中一或更多個區域中之應力阻滯,如拐角區域,但亦可測量諸如中心區域及周邊區域之其他區域。 By way of non-limiting example, the corrected pre-tilt block magnitude (and thus the corrected pre-tilt angle) can be calculated to counteract light leakage due to stress retardation in the glass bend region. The corrected pretilt angle can be calculated based on the stress retardation measurement of the glass plate in the curved LCD or the test curved glass plate. For example, a test glass sheet having substantially similar or identical characteristics to a glass sheet used in a curved LCD can be shaped to obtain a curvature that is required for bending the LCD. The curvature (see, for example, Figure 4) is generally similar or identical. Stress retardation in one or more regions of the curved LCD or test glass sheet can be measured, such as corner regions, but other regions such as the central region and surrounding regions can also be measured.

藉由使用本案中揭示的公式及方法,可計算液晶層中對應區域的經修正之預傾斜阻滯。由此,液晶層中至少一個區域(例如液晶層中至少一個域)可經調節以獲得計算得出的經修正的預傾斜阻滯。在非限制性實施例中,本案中揭示的關係及模型可在彎曲LCD的設計、處理及/或製造期間應用,以生產具有減少色斑及/或優良對比度、低灰階影像品質及/或低灰階均勻性的顯示器。 The corrected pre-tilt block of the corresponding region in the liquid crystal layer can be calculated by using the formula and method disclosed in the present application. Thus, at least one region of the liquid crystal layer (eg, at least one of the liquid crystal layers) can be adjusted to obtain a calculated corrected pre-tilt block. In a non-limiting embodiment, the relationships and models disclosed in this disclosure can be applied during the design, processing, and/or fabrication of curved LCDs to produce reduced color spots and/or excellent contrast, low grayscale image quality, and/or Low gray level uniformity display.

儘管已描述本案中揭示實施例用於減輕或消除VA LCD漏光的方法,但申請專利範圍不應限定於此。例如,額外的方法可包括在以不同模式操作的LCD中使用一或更多個玻璃板或玻璃面板,或單獨使用或結合本案中揭示的實施例使用具有不同特性之不同顯示器單元。 Although the method disclosed in the present application for reducing or eliminating VA LCD light leakage has been described, the scope of the patent application should not be limited thereto. For example, additional methods may include the use of one or more glass sheets or glass panels in LCDs operating in different modes, or using different display units having different characteristics, either alone or in combination with the embodiments disclosed herein.

本案中描述的玻璃面板、板件或基板可包括該項技術中已知用於諸如LCD之背光式顯示器的任何玻璃,包括但不限於鹼石灰矽酸鹽、鋁矽酸鹽、鹼性鋁矽酸鹽、硼矽酸鹽、鹼性硼矽酸鹽、鋁硼矽酸鹽、鹼性鋁硼矽酸鹽,及其他適合玻璃。在各種實施例中,玻璃基板可經化學增強及/或經熱回火。僅舉數例,適合的市 售基板的非限制性實例包括美國康寧公司的EAGLE XG®、LotusTM、Willow®,及Gorilla®玻璃。該種化學增強玻璃例如可依據美國專利案第7,666,511號、第4,483,700號,及第5,674,790號而提供,該等專利案以引用之方式全部併入本案中。 The glass panels, panels or substrates described in this disclosure may comprise any glass known in the art for use in backlit displays such as LCDs, including but not limited to soda lime citrate, aluminosilicate, alkaline bismuth Acid salts, borosilicates, basic borosilicates, aluminum borosilicates, basic aluminum borosilicates, and other suitable glasses. In various embodiments, the glass substrate can be chemically enhanced and/or thermally tempered. To name a few, non-limiting examples of suitable substrates include commercially available Corning's EAGLE XG®, Lotus TM, Willow®, and Gorilla® glass. Such a chemically reinforced glass is provided, for example, in accordance with U.S. Patent Nos. 7,666,511, 4,483,700, and 5,674,790 each incorporated herein by reference.

在非限制性實施例中,玻璃板、面板或基板可具有以下範圍之厚度:例如小於或等於約3mm、自約0.1mm至約2mm、自約0.3mm至約1.5mm、自約0.5mm至約1.1mm,或自約0.7mm至約1mm,包括其中所有範圍及範圍之間的子範圍。根據各種實施例,玻璃基板可能具有以下範圍的厚度:小於或等於0.3mm,如0.2mm,或0.1mm,包括其中所有範圍及範圍之間的子範圍。在某些非限制性實施例中,玻璃基板可具有以下範圍之厚度:自約0.3mm至約1.5mm,如自約0.5至約1mm,包括其中所有範圍及範圍之間的子範圍。 In a non-limiting embodiment, the glass sheet, panel or substrate can have a thickness in the range of, for example, less than or equal to about 3 mm, from about 0.1 mm to about 2 mm, from about 0.3 mm to about 1.5 mm, from about 0.5 mm to Approximately 1.1 mm, or from about 0.7 mm to about 1 mm, including subranges of all ranges and ranges therein. According to various embodiments, the glass substrate may have a thickness in the range of less than or equal to 0.3 mm, such as 0.2 mm, or 0.1 mm, including subranges between all ranges and ranges therein. In certain non-limiting embodiments, the glass substrate can have a thickness ranging from about 0.3 mm to about 1.5 mm, such as from about 0.5 to about 1 mm, including subranges of all ranges and ranges therein.

玻璃板、面板或基板可具有適合用於LCD中之任何形狀及/或尺寸。例如,玻璃基板可為具有矩形、正方形、圓形或任何其他適合形狀之玻璃板。在各種實施例中,玻璃基板可為透明或大體上透明。如本案中所使用,術語「透明」意欲指示厚度為約1mm之玻璃基板在大於可見光譜區(420-700mm)具有約80%之透射率。例如,示例性透明玻璃基板可在可見光範圍中具有大於約85%之透射率,如大於約90%,或大於約 95%,包括所有範圍及範圍之間的子範圍。在某些實施例中,示例性玻璃基板可在紫外線區域(200-410mm)中具有大於約50%之透射率,如大於約55%,大於約60%,大於約65%,大於約70%,大於約75%,大於約80%,大於約85%,大於約90%,大於約95%,或大於約99%之透射率,包括所有範圍及範圍之間的子範圍。 The glass sheet, panel or substrate can have any shape and/or size suitable for use in an LCD. For example, the glass substrate can be a glass sheet having a rectangular, square, circular or any other suitable shape. In various embodiments, the glass substrate can be transparent or substantially transparent. As used in this context, the term "transparent" is intended to indicate that a glass substrate having a thickness of about 1 mm has a transmittance of greater than about 80% over a region of the visible spectrum (420-700 mm). For example, an exemplary transparent glass substrate can have a transmittance of greater than about 85% in the visible range, such as greater than about 90%, or greater than about 95%, including subranges across all ranges and ranges. In certain embodiments, an exemplary glass substrate can have a transmittance of greater than about 50% in an ultraviolet region (200-410 mm), such as greater than about 55%, greater than about 60%, greater than about 65%, greater than about 70%. , greater than about 75%, greater than about 80%, greater than about 85%, greater than about 90%, greater than about 95%, or greater than about 99% transmittance, including subranges across all ranges and ranges.

將理解,本案所揭示之多個實施例可涉及特定特徵、元件或步驟,該等特徵、元件或步驟結合該特定實施例而進行描述。亦將理解,儘管特定特徵、元件或步驟相對於一個特定實施例而進行描述,但可以各種未說明的組合或排列互換或與替代實施例組合。 It will be appreciated that the various embodiments disclosed herein may be described in terms of specific features, elements or steps, which are described in connection with the particular embodiments. It is also to be understood that the specific features, elements, or steps are described in the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;

亦將理解,如本案中所使用,術語「該(the)」、「一(a)」或「一(an)」意謂著「至少一個」,且將不限於「唯一一個」,除非文中有明確的相反指示。由此,例如對「組件」之引用包括具有兩個或兩個以上該種組件之實例,除非上下文中明確另行指示。 It will also be understood that, as used in this context, the terms "the", "a" or "an" mean "at least one" and are not limited to "the only one" unless There are clear opposite instructions. Thus, for example, reference to "a component" includes instances of two or more such components, unless the context clearly indicates otherwise.

在本案中,範圍可表示為自「約(about)」一個特定值起,及/或至「約(about)」另一個特定值。當表示該種範圍時,實例包括從該一個特定值及/或至另一特定值。同樣,當值表示為近似值時,藉由使用前述「約(about)」,將理解該特定值形成另一態樣。將進一步理解,每一範圍之端點相對於另一端點是有顯著區別的,而獨立於該另一端點。 In the present case, the range may be expressed as "about" from a particular value, and/or to "about" another particular value. When such a range is expressed, an instance includes from the one particular value and/or to another particular value. Similarly, when values are expressed as approximations, by using the aforementioned "about", it will be understood that the particular value forms another aspect. It will be further understood that the endpoint of each range is significantly different from the other endpoint and is independent of the other endpoint.

術語「大體(substantial)」、「大體上(substantially)」及其變體,如本案中所使用,意欲指示所述特徵等同於或近似等同於一值或描述。此外,「大體類似(substantially similar)」意欲指示兩個值相同或近似相同。在一些實施例中,「大體上類似(substantially similar)」可指示彼此相差在約10%內的值,如彼此相差在約510%內,或彼此相差在約2%內。 The terms "substantial", "substantially" and variations thereof, as used in this context, are intended to indicate that the feature is equivalent or approximately equivalent to a value or description. Further, "substantially similar" is intended to indicate that the two values are the same or approximately the same. In some embodiments, "substantially similar" may indicate values that differ within about 10% of each other, such as within about 510% of each other, or within about 2% of each other.

除非另行明確說明,否則本案中闡述之任何方法決不意欲被視作要求其步驟以特定次序執行。因此,在一方法請求項實際上未陳述由該方法之步驟遵循之一次序,或申請專利範圍或描述中未另行具體說明該等步驟將限定於一具體次序之情況下,決不意欲推斷任何特定次序。 Unless otherwise expressly stated, any method set forth in this application is in no way intended to be construed as requiring the steps to be performed in a particular order. Therefore, in the event that a method request item does not actually state an order followed by the steps of the method, or the scope of the patent application or the description does not specifically state that the steps are limited to a specific order, it is in no way intended to infer any Specific order.

儘管特定實施例之多個特徵、元件或步驟可藉由使用過渡短語「包括(comprising)」來揭示,但將理解,暗示了替代性實施例,該等實施例包括可藉由過渡短語「由...組成(consisting)」或「主要由...組成(consisting essentially)」來描述的彼等實施例。由此,例如,包括A+B+C之方法的所暗示之替代性實施例包括方法由A+B+C組成之實施例,且方法主要由A+B+C組成之實施例。 Although a plurality of features, elements or steps of a particular embodiment may be disclosed by the use of the transition phrase "comprising", it will be understood that alternative embodiments are suggested that include transitional phrases "Examples of "consisting" or "consisting essentially". Thus, for example, an implied alternative embodiment of the method comprising A+B+C includes an embodiment in which the method consists of A+B+C, and the method consists essentially of A+B+C.

熟習該項技術者將顯而易見,可在不脫離本揭示案之精神及範疇之情況下對本揭示案進行各種修改 及更動。由於熟習該項技術者可理解結合本揭示案之精神及主旨所揭示的實施例之修正組合、次組合及更動,因此本揭示案應被視作包括所附申請專利範圍及其同等內容範疇內的所有內容。 It will be apparent to those skilled in the art that various modifications may be made to the present disclosure without departing from the spirit and scope of the disclosure. And change. The present disclosure is to be understood as being included in the scope of the appended claims and the equivalents thereof. All content.

110‧‧‧第一基板 110‧‧‧First substrate

120‧‧‧第二基板 120‧‧‧second substrate

130‧‧‧液晶層 130‧‧‧Liquid layer

140‧‧‧密封劑 140‧‧‧Sealant

Claims (20)

一種用於製造一彎曲液晶顯示器裝置之方法,該方法包括以下步驟:(a)圍繞一預定軸彎曲一顯示器組合件,以形成一彎曲顯示器組合件,其中該顯示器組合件包括一第一玻璃板、一第二玻璃板,及安置在該第一玻璃板與該第二玻璃板之間的一液晶層;(b)決定該第一玻璃板或該第二玻璃板中至少一個區域的一應力阻滯;(c)決定該液晶層中對應於該第一玻璃板或該第二玻璃板中該等區域之至少一個區域之一經修正的預傾斜阻滯;及(d)將該液晶層之該至少一個區域的一預傾斜阻滯調整至該經修正的預傾斜阻滯。 A method for manufacturing a curved liquid crystal display device, the method comprising the steps of: (a) bending a display assembly about a predetermined axis to form a curved display assembly, wherein the display assembly comprises a first glass plate a second glass plate, and a liquid crystal layer disposed between the first glass plate and the second glass plate; (b) determining a stress of at least one of the first glass plate or the second glass plate Blocking; (c) determining a corrected pre-tilt retardation in the liquid crystal layer corresponding to one of at least one of the regions of the first glass sheet or the second glass sheet; and (d) the liquid crystal layer A pre-tilt block of the at least one region is adjusted to the corrected pre-tilt block. 如請求項1所述之方法,其中該第一玻璃板包括一薄膜電晶體陣列且該第二玻璃板包括一濾色片陣列。 The method of claim 1 wherein the first glass sheet comprises a thin film transistor array and the second glass sheet comprises a color filter array. 如請求項1所述之方法,其中該預定軸是一中心縱軸、一中心水平軸,或同時為一中心縱軸及一中心水平軸。 The method of claim 1, wherein the predetermined axis is a central longitudinal axis, a central horizontal axis, or both a central longitudinal axis and a central horizontal axis. 如請求項1所述之方法,其中決定該第一玻璃板、該第二玻璃板或該第一玻璃板及第二玻璃板中 一或更多個拐角區域的該應力阻滯經。 The method of claim 1, wherein the first glass plate, the second glass plate or the first glass plate and the second glass plate are determined The stress retardation of one or more corner regions. 如請求項4所述之方法,其中該決定之應力阻滯具有一±45度定向。 The method of claim 4, wherein the determined stress block has an orientation of ±45 degrees. 如請求項1所述之方法,其中該經修正的預傾斜阻滯藉由使用以下公式而決定CurvedGlassRetNm=(5/18)*Pi*VApretiltDeg。 The method of claim 1, wherein the corrected pre-tilt block is determined by using the following formula: CurvedGlassRetNm=(5/18)*Pi*VApretiltDeg. 如請求項1所述之方法,其中調整該液晶層中至少一個拐角區域中至少一個域的該預傾斜阻滯。 The method of claim 1, wherein the pre-tilt block of at least one of the at least one corner region of the liquid crystal layer is adjusted. 如請求項1所述之方法,其中調整該預傾斜阻滯之步驟包括以下步驟:調整該液晶層區域的該定向、該預傾斜角度,或該定向及預傾斜角度。 The method of claim 1, wherein the step of adjusting the pretilt block comprises the step of adjusting the orientation of the liquid crystal layer region, the pretilt angle, or the orientation and pretilt angle. 一種彎曲液晶顯示器裝置,該裝置根據請求項1-8中任一項而製造。 A curved liquid crystal display device manufactured according to any one of claims 1-8. 如請求項9所述之彎曲液晶顯示器裝置,其中該彎曲液晶顯示器裝置處於一垂直對齊模式。 The curved liquid crystal display device of claim 9, wherein the curved liquid crystal display device is in a vertical alignment mode. 一種用於製造一彎曲液晶顯示器裝置之方法,該方法包括以下步驟:(a)決定一彎曲測試玻璃板中至少一個區域的一應力阻滯;(b)決定一液晶層中至少一個對應區域之一經修正 的預傾斜角度;(c)將該至少一個對應液晶層區域的一預傾斜阻滯調整至該經修正的預傾斜阻滯;(d)將該玻璃板之該第一表面附於該第二玻璃板之該第二表面,其中該液晶層安置在該第一玻璃板與該第二玻璃板之間,以形成一顯示器組合件;及(e)圍繞一預定軸彎曲該顯示器組合件以形成一彎曲液晶顯示器裝置,其中該測試玻璃板的尺寸、曲率軸及曲率半徑,及組成物與該第一玻璃板及第二玻璃板之尺寸、曲率軸及曲率半徑大體相同。 A method for fabricating a curved liquid crystal display device, the method comprising the steps of: (a) determining a stress retardation of at least one region of a curved test glass sheet; and (b) determining at least one corresponding region of a liquid crystal layer Once corrected (c) adjusting a pre-tilt block of the at least one corresponding liquid crystal layer region to the corrected pre-tilt block; (d) attaching the first surface of the glass plate to the second a second surface of the glass sheet, wherein the liquid crystal layer is disposed between the first glass sheet and the second glass sheet to form a display assembly; and (e) bending the display assembly about a predetermined axis to form A curved liquid crystal display device, wherein the size, curvature axis, and radius of curvature of the test glass plate, and the composition are substantially the same as the size, curvature axis, and radius of curvature of the first glass plate and the second glass plate. 如請求項11所述之方法,其中決定該彎曲測試玻璃板的至少一個拐角的該應力阻滯。 The method of claim 11, wherein the stress retardation of at least one corner of the bending test glass sheet is determined. 如請求項11所述之方法,其中該經修正的預傾斜阻滯藉由使用以下公式而決定:CurvedGlassRetNm=(5/18)*Pi*VApretiltDeg。 The method of claim 11, wherein the corrected pre-tilt block is determined by using the following formula: CurvedGlassRetNm=(5/18)*Pi*VApretiltDeg. 如請求項11所述之方法,其中調整該至少一個對應液晶層區域之該預傾斜阻滯的步驟包括以下步驟:向該第一表面或該第二表面應用一對齊層,及視情況在一預定方向摩擦該對齊層,以用一經修正的預傾斜角度對齊將該液晶層。 The method of claim 11, wherein the step of adjusting the pre-tilt block of the at least one corresponding liquid crystal layer region comprises the step of applying an alignment layer to the first surface or the second surface, and optionally The alignment layer is rubbed in a predetermined direction to align the liquid crystal layer with a corrected pretilt angle. 如請求項14所述之方法,其中該對齊層包括一聚醯亞胺。 The method of claim 14, wherein the alignment layer comprises a polyimine. 如請求項11所述之方法,其中該彎曲液晶顯示器裝置處於一垂直對齊模式。 The method of claim 11, wherein the curved liquid crystal display device is in a vertical alignment mode. 一種用於減輕一彎曲液晶顯示器裝置中之漏光之方法,該方法包括以下步驟:(a)決定該彎曲顯示器裝置中一玻璃板中至少一個區域的一應力阻滯;(b)計算該彎曲顯示器裝置中一液晶層的至少一個對應區域的一經修正的預傾斜阻滯;及(c)將該液晶層之該至少一個對應區域的一預傾斜阻滯調整至該經修正的預傾斜阻滯。 A method for mitigating light leakage in a curved liquid crystal display device, the method comprising the steps of: (a) determining a stress retardation in at least one region of a glass sheet in the curved display device; (b) calculating the curved display And a (c) adjusting a pre-tilt block of the at least one corresponding region of the liquid crystal layer to the modified pre-tilt block. 如請求項17所述之方法,其中調整該預傾斜阻滯之步驟包括以下步驟:調整該液晶層區域的定向、預傾斜角度,或定向及預傾斜角度。 The method of claim 17, wherein the step of adjusting the pretilt block comprises the steps of: adjusting an orientation of the liquid crystal layer region, a pretilt angle, or an orientation and a pretilt angle. 如請求項18所述之方法,進一步包括以下步驟:藉由將一玻璃板之一第一表面附於一第二玻璃板的一第二表面來製造一顯示器組合件,其中一液晶層安置在該兩個玻璃板之間。 The method of claim 18, further comprising the steps of: fabricating a display assembly by attaching a first surface of a glass sheet to a second surface of a second glass sheet, wherein a liquid crystal layer is disposed Between the two glass plates. 如請求項19所述之方法,進一步包括以下步驟:圍繞一預定軸彎曲該顯示器組合件以形成一彎曲液晶顯示器裝置。 The method of claim 19, further comprising the step of bending the display assembly about a predetermined axis to form a curved liquid crystal display device.
TW105100202A 2015-01-06 2016-01-05 Methods for mura mitigation in curved liquid crystal displays TW201627723A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201562100347P 2015-01-06 2015-01-06

Publications (1)

Publication Number Publication Date
TW201627723A true TW201627723A (en) 2016-08-01

Family

ID=56356388

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105100202A TW201627723A (en) 2015-01-06 2016-01-05 Methods for mura mitigation in curved liquid crystal displays

Country Status (5)

Country Link
JP (1) JP2018506750A (en)
KR (1) KR20170102346A (en)
CN (1) CN107407840A (en)
TW (1) TW201627723A (en)
WO (1) WO2016112102A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105652500A (en) * 2016-03-25 2016-06-08 京东方科技集团股份有限公司 Curved surface liquid crystal display panel and display device
TWI575486B (en) * 2016-06-27 2017-03-21 友達光電股份有限公司 Curved display and method of manufacturing curved display
CN108803124B (en) * 2018-06-27 2021-05-28 武汉华星光电技术有限公司 Curved liquid crystal display screen and manufacturing method thereof
CN111025774A (en) * 2019-12-16 2020-04-17 深圳市华星光电半导体显示技术有限公司 Alignment method of curved surface display device
CN113562962B (en) * 2020-04-28 2023-09-22 广州汽车集团股份有限公司 Display screen panel bonding method and device and glass display screen panel
CN114545667B (en) * 2022-02-09 2023-10-17 Tcl华星光电技术有限公司 Curved surface display screen light leakage analysis method and device, electronic equipment and storage medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2147555Y (en) * 1993-02-17 1993-11-24 中国科学院长春物理研究所 Liquid crystal display device
US20070058118A1 (en) * 2003-05-27 2007-03-15 Cirkel Peter A Compensation film for flexible displays
JP4586781B2 (en) * 2006-09-14 2010-11-24 ソニー株式会社 Phase difference compensation plate, phase difference compensator, liquid crystal display device and projection type image display device
JP2010072505A (en) * 2008-09-22 2010-04-02 Hitachi Displays Ltd Liquid crystal display device
US9010148B2 (en) * 2012-05-31 2015-04-21 Corning Incorporated Method of reducing distortion in a sheet of glass
US9128327B2 (en) * 2012-09-19 2015-09-08 Apple Inc. Stress insensitive liquid crystal display
US20140098328A1 (en) * 2012-10-10 2014-04-10 Shenzhen China Star Optoelectronics Technology Co., Ltd. VA Display Mode Compensation Architecture and VA Display Mode Liquid Crystal Display Device
KR20140091100A (en) * 2012-12-26 2014-07-21 삼성디스플레이 주식회사 Curved liquid crystal display device

Also Published As

Publication number Publication date
JP2018506750A (en) 2018-03-08
KR20170102346A (en) 2017-09-08
CN107407840A (en) 2017-11-28
WO2016112102A1 (en) 2016-07-14

Similar Documents

Publication Publication Date Title
JP3926072B2 (en) Liquid crystal display
TW201627723A (en) Methods for mura mitigation in curved liquid crystal displays
US7646456B2 (en) Liquid crystal display device
US7532288B2 (en) Liquid crystal display device
US9933654B2 (en) Polarising plate for a planar-switch mode LCD, and a planar-switch mode LCD comprising the same
JP6266769B2 (en) Optical compensation method for liquid crystal display
TWI506343B (en) Liquid crystal display panel
US20140300847A1 (en) Display apparatus
US20140218668A1 (en) Liquid crystal display device
WO2011030596A1 (en) Liquid crystal display device
US8659728B2 (en) Liquid crystal display device comprising compensation films having negative photo-elastic constant
US20160334662A1 (en) Liquid crystal panel compensation structure and liquid crystal display apparatus
JP2006313342A (en) Ocb mode liquid crystal display device
JP3597446B2 (en) Liquid crystal display
US11048123B2 (en) Reflective liquid crystal display device
JP2006106338A (en) Liquid crystal display device
US20160246096A1 (en) Liquid crystal panel compensation structure and liquid crystal display apparatus
US11099434B2 (en) Liquid crystal display panel
US20140098329A1 (en) VA Display Mode Compensation Architecture and VA Display Mode Liquid Crystal Display Device
US20140098328A1 (en) VA Display Mode Compensation Architecture and VA Display Mode Liquid Crystal Display Device
TWI296348B (en) Liquid crystal display device
TW201331679A (en) Electrical control birefringence type liquid crystal panel and liquid crystal display
JP2011112952A (en) Liquid crystal display element and optical compensation method thereof
JP2004227006A (en) Liquid crystal display device
US8681294B2 (en) Optical compensation film for LCD viewing angles reduction