TW201624890A - Current sensing circuit and method thereof for power converting device - Google Patents

Current sensing circuit and method thereof for power converting device Download PDF

Info

Publication number
TW201624890A
TW201624890A TW103144515A TW103144515A TW201624890A TW 201624890 A TW201624890 A TW 201624890A TW 103144515 A TW103144515 A TW 103144515A TW 103144515 A TW103144515 A TW 103144515A TW 201624890 A TW201624890 A TW 201624890A
Authority
TW
Taiwan
Prior art keywords
current
sensing
coupled
switch
circuit
Prior art date
Application number
TW103144515A
Other languages
Chinese (zh)
Other versions
TWI669890B (en
Inventor
張志廉
Original Assignee
力智電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力智電子股份有限公司 filed Critical 力智電子股份有限公司
Priority to TW103144515A priority Critical patent/TWI669890B/en
Priority to CN201510039708.2A priority patent/CN105991026B/en
Publication of TW201624890A publication Critical patent/TW201624890A/en
Application granted granted Critical
Publication of TWI669890B publication Critical patent/TWI669890B/en

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

A current sensing circuit and a method thereof for a power converting device are provided. The current sensing circuit includes a sensing unit, an amplifier, a sensing switch and a compensating circuit. The sensing unit detects an output current of the power converting device and provides a sensing signal. The amplifier has an output end and is coupled to the sensing unit to receive the sensing signal. The sensing switch is coupled to the output end of the amplifier. The compensating circuit is coupled to the sensing switch and a first input end of the amplifier. When the sensing signal is smaller than a threshold value, the compensating circuit activates a current compensation mechanism so as to maintain the sensing switch in a turned-on state.

Description

電源轉換裝置的電流感測電路與方法 Current sensing circuit and method of power conversion device

本發明是有關於一種電流感測電路與方法,且特別是有關於一種適用於電源轉換裝置的電流感測電路與方法。 The present invention relates to a current sensing circuit and method, and more particularly to a current sensing circuit and method suitable for use in a power conversion device.

一般而言,電源轉換裝置設有電流感測電路。藉此,電源轉換裝置將可利用電流感測電路所產生的回授訊號來進行回授控制,以提升系統的可靠性與穩定度。舉例來說,當電源轉換裝置所驅動的負載過小時,電流感測電路將可檢測出電源轉換裝置中的逆向電流(亦即,負電流),進而致使電源轉換裝置切換至不同的操作模式。 In general, the power conversion device is provided with a current sensing circuit. Thereby, the power conversion device can use the feedback signal generated by the current sensing circuit to perform feedback control to improve the reliability and stability of the system. For example, when the load driven by the power conversion device is too small, the current sensing circuit can detect the reverse current (ie, the negative current) in the power conversion device, thereby causing the power conversion device to switch to a different operation mode.

然而,當電源轉換裝置中的逆向電流過大時,現有的電流感測電路中的感測開關往往會被關閉(turn off),進而導致電流感測電路無法正常操作。相對地,當電源轉換裝置停止產生逆向電流時,現有的電流感測電路也將無法及時地開啟(turn on)感測開關,進而導致電源轉換裝置無法利用現有的電流感測電路來進行 回授控制,從而降低系統的可靠性與穩定度。 However, when the reverse current in the power conversion device is excessive, the sensing switch in the existing current sensing circuit tends to be turned off, thereby causing the current sensing circuit to fail to operate normally. In contrast, when the power conversion device stops generating reverse current, the existing current sensing circuit will not turn on the sensing switch in time, thereby causing the power conversion device to fail to utilize the existing current sensing circuit. Feedback control to reduce system reliability and stability.

本發明提供一種電源轉換裝置的電流感測電路與方法,利用電流補償機制來避免感測開關被切換至不導通狀態,進而有助於提升電源轉換裝置的可靠性與穩定度。 The invention provides a current sensing circuit and method for a power conversion device, which utilizes a current compensation mechanism to prevent the sensing switch from being switched to a non-conducting state, thereby contributing to improving the reliability and stability of the power conversion device.

本發明之電源轉換裝置的電流感測電路,包括感測單元、放大器、感測開關與補償電路。感測單元用以感測電源轉換裝置的輸出電流,並提供感測訊號。放大器具有一輸出端,並耦接感測單元以接收感測訊號。感測開關耦接放大器的輸出端。補償電路耦接感測開關與放大器的第一輸入端。當感測訊號小於臨界值時,補償電路啟動電流補償機制,以致使感測開關維持在導通狀態。 The current sensing circuit of the power conversion device of the present invention comprises a sensing unit, an amplifier, a sensing switch and a compensation circuit. The sensing unit is configured to sense an output current of the power conversion device and provide a sensing signal. The amplifier has an output and is coupled to the sensing unit to receive the sensing signal. The sense switch is coupled to the output of the amplifier. The compensation circuit is coupled to the sensing switch and the first input of the amplifier. When the sense signal is less than the threshold, the compensation circuit activates the current compensation mechanism to maintain the sense switch in an on state.

本發明之電源轉換裝置的電流感測方法,包括下列步驟。透過感測單元感測電源轉換裝置的輸出電流,並提供感測訊號。其中,電源轉換裝置包括感測單元、放大器與感測開關,放大器耦接感測單元,且感測開關耦接放大器的第一輸入端與輸出端。當感測訊號小於臨界值時,啟動電流補償機制,以致使感測開關維持在導通狀態。 The current sensing method of the power conversion device of the present invention includes the following steps. The output current of the power conversion device is sensed through the sensing unit, and a sensing signal is provided. The power conversion device includes a sensing unit, an amplifier, and a sensing switch. The amplifier is coupled to the sensing unit, and the sensing switch is coupled to the first input end and the output end of the amplifier. When the sense signal is less than the threshold, the current compensation mechanism is activated to maintain the sense switch in an on state.

基於上述,本發明是透過感測單元提供一感測訊號,並在感測訊號小於臨界值時,啟動電流補償機制以致使感測開關維持在導通狀態。藉此,壓控電流源將可適時地提供補償電流,進 而避免感測開關被切換至不導通狀態,從而提升電源轉換裝置的可靠性與穩定度。 Based on the above, the present invention provides a sensing signal through the sensing unit, and when the sensing signal is less than the threshold, the current compensation mechanism is activated to maintain the sensing switch in an on state. Thereby, the voltage-controlled current source will provide the compensation current in a timely manner. The sensing switch is prevented from being switched to the non-conducting state, thereby improving the reliability and stability of the power conversion device.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧電源轉換裝置 100‧‧‧Power conversion device

10‧‧‧控制器 10‧‧‧ Controller

11‧‧‧切換電路 11‧‧‧Switching circuit

12‧‧‧阻抗電路 12‧‧‧ Impedance circuit

13‧‧‧電流感測電路 13‧‧‧ Current sensing circuit

PU11、PU12‧‧‧脈波訊號 PU11, PU12‧‧‧ pulse wave signal

VI‧‧‧輸入電壓 VI‧‧‧Input voltage

VO‧‧‧輸出電壓 VO‧‧‧ output voltage

SW11、SW12‧‧‧開關 SW11, SW12‧‧‧ switch

L1‧‧‧電感 L1‧‧‧Inductance

C11、C12、C4‧‧‧電容 C11, C12, C4‧‧‧ capacitors

IL‧‧‧輸出電流 IL‧‧‧Output current

110‧‧‧感測單元 110‧‧‧Sensor unit

120‧‧‧放大器 120‧‧‧Amplifier

130‧‧‧感測開關 130‧‧‧Sensing switch

140、412‧‧‧電流源 140, 412‧‧‧ current source

150‧‧‧補償電路 150‧‧‧compensation circuit

151‧‧‧壓控電流源 151‧‧‧voltage controlled current source

S11、S12‧‧‧感測訊號 S11, S12‧‧‧ sensing signals

R11、R12、R41‧‧‧電阻 R11, R12, R41‧‧‧ resistance

ND1‧‧‧節點 ND1‧‧‧ node

Isen‧‧‧感測電流 Isen‧‧‧Sensing current

I11‧‧‧第一電流 I11‧‧‧First current

I12‧‧‧第二電流 I12‧‧‧second current

Icp‧‧‧補償電流 Icp‧‧‧compensation current

VT‧‧‧控制電壓 VT‧‧‧ control voltage

210、220、310、320‧‧‧曲線 210, 220, 310, 320‧‧‧ curves

VG‧‧‧感測開關之控制端的電壓 VG‧‧‧ sense the voltage at the control terminal

Vth‧‧‧臨界電壓 Vth‧‧‧ threshold voltage

410‧‧‧電流偵測器 410‧‧‧ Current Detector

420‧‧‧電流補償器 420‧‧‧current compensator

430‧‧‧穩定電路 430‧‧‧Stable circuit

411、413‧‧‧電流鏡 411, 413‧‧‧current mirror

421‧‧‧控制單元 421‧‧‧Control unit

MP41~MP44‧‧‧P型電晶體 MP41~MP44‧‧‧P type transistor

MN41~MN44‧‧‧N型電晶體 MN41~MN44‧‧‧N type transistor

R41‧‧‧負載元件 R41‧‧‧ load components

Ist‧‧‧啟動電流 Ist‧‧‧Starting current

S510、S520、S521~S524‧‧‧圖5中的各步驟 S510, S520, S521~S524‧‧‧ steps in Figure 5

圖1為依據本發明一實施例之電源轉換裝置的示意圖。 1 is a schematic diagram of a power conversion device in accordance with an embodiment of the present invention.

圖2與圖3分別為依據本發明一實施例之訊號示意圖。 2 and 3 are schematic diagrams of signals according to an embodiment of the invention, respectively.

圖4為依據本發明一實施例之電流感測電路的示意圖。 4 is a schematic diagram of a current sensing circuit in accordance with an embodiment of the present invention.

圖5為依據本發明一實施例之電源轉換裝置的電流感測方法流程圖。 FIG. 5 is a flow chart of a current sensing method of a power conversion device according to an embodiment of the invention.

圖1為依據本發明一實施例之電源轉換裝置的示意圖。如圖1所示,電源轉換裝置100包括控制器10、切換電路11、阻抗電路12與電流感測電路13。其中,控制器10會產生脈波訊號PU11與PU12。切換電路11會依據脈波訊號PU11與PU12切換多個傳輸路徑,以控制流經阻抗電路12的電流。藉此,電源轉換裝置100將可把輸入電壓VI轉換成輸出電壓VO。 1 is a schematic diagram of a power conversion device in accordance with an embodiment of the present invention. As shown in FIG. 1, the power conversion device 100 includes a controller 10, a switching circuit 11, an impedance circuit 12, and a current sensing circuit 13. The controller 10 generates pulse signals PU11 and PU12. The switching circuit 11 switches a plurality of transmission paths in accordance with the pulse signals PU11 and PU12 to control the current flowing through the impedance circuit 12. Thereby, the power conversion device 100 can convert the input voltage VI into the output voltage VO.

舉例來說,切換電路11包括開關SW11與開關SW12。此外,圖1實施例是以降壓式的阻抗電路12為例,故阻抗電路120 包括電感L1以及電容C11。其中,開關SW11與SW12相互串聯,並用以形成所述多個傳輸路徑。電感L1的第一端耦接開關SW11與SW12之間的節點。電容C11的第一端耦接電感L1的第二端,且電容C11的第二端耦接至接地端。此外,控制器10利用脈波訊號PU11與PU12控制開關SW11與SW12。藉此,隨著開關SW11與SW12的切換,流經電感L1的輸出電流IL將產生相應的變動,進而致使電源轉換裝置100產生相應的輸出電壓VO。 For example, the switching circuit 11 includes a switch SW11 and a switch SW12. In addition, the embodiment of FIG. 1 is an example of a buck impedance circuit 12, so the impedance circuit 120 Including inductor L1 and capacitor C11. The switches SW11 and SW12 are connected in series with each other and used to form the plurality of transmission paths. The first end of the inductor L1 is coupled to a node between the switches SW11 and SW12. The first end of the capacitor C11 is coupled to the second end of the inductor L1, and the second end of the capacitor C11 is coupled to the ground. Further, the controller 10 controls the switches SW11 and SW12 using the pulse signals PU11 and PU12. Thereby, as the switches SW11 and SW12 are switched, the output current IL flowing through the inductor L1 will be correspondingly varied, thereby causing the power conversion device 100 to generate a corresponding output voltage VO.

另一方面,電流感測電路13可用以感測電源轉換裝置100的輸出電流IL,並可依據感測結果產生相應的回授訊號。此外,控制器10可依據來自電流感測電路13的回授訊號來產生脈波訊號PU11與PU12。換言之,電源轉換裝置100可利用電流感測電路13的回授訊號來進行回授控制。 On the other hand, the current sensing circuit 13 can be used to sense the output current IL of the power conversion device 100, and can generate a corresponding feedback signal according to the sensing result. In addition, the controller 10 can generate the pulse signals PU11 and PU12 according to the feedback signals from the current sensing circuit 13. In other words, the power conversion device 100 can perform feedback control using the feedback signal of the current sensing circuit 13.

更進一步來看,電流感測電路13包括感測單元110、放大器120、感測開關130、偏移電流140與補償電路150。其中,感測開關130可例如是一N型電晶體。感測單元110可感測輸出電流IL,並據以提供感測訊號S11與S12。此外,在一實施例中,如圖1所示,感測單元110包括電阻R11、電阻R12與電容C12。其中,電阻R11的第一端耦接電感L1的第一端,且電阻R11的第二端耦接放大器120的第二輸入端。電阻R12的第一端耦接電阻R11的第二端,且電阻R12的第二端耦接放大器120的第一輸入端。電容C12的第一端耦接電感L1的第二端,且電容C12的第二端耦接電阻R11的第二端。此外,感測單元110透過電阻R11 與R12輸出感測訊號S11與S12。換言之,電流感測電路130是依據電感L1的直流阻抗來產生感測訊號S11與S12。雖然圖1實施例列舉了電流感測電路130的實施型態,但其並非用以限定本發明。舉例來說,在另一實施例中,電流感測電路130耦接切換電路11中的開關SW12,並可提供與輸出電流IL相關的感測訊號。相對地,輸出電流IL亦可稱之為負載電流或是電感電流。 Looking further, the current sensing circuit 13 includes a sensing unit 110, an amplifier 120, a sensing switch 130, an offset current 140, and a compensation circuit 150. The sensing switch 130 can be, for example, an N-type transistor. The sensing unit 110 can sense the output current IL and accordingly provide the sensing signals S11 and S12. In addition, in an embodiment, as shown in FIG. 1 , the sensing unit 110 includes a resistor R11 , a resistor R12 , and a capacitor C12 . The first end of the resistor R11 is coupled to the first end of the inductor L1, and the second end of the resistor R11 is coupled to the second input end of the amplifier 120. The first end of the resistor R12 is coupled to the second end of the resistor R11, and the second end of the resistor R12 is coupled to the first input end of the amplifier 120. The first end of the capacitor C12 is coupled to the second end of the inductor L1, and the second end of the capacitor C12 is coupled to the second end of the resistor R11. In addition, the sensing unit 110 transmits the resistor R11. The sensing signals S11 and S12 are outputted with R12. In other words, the current sensing circuit 130 generates the sensing signals S11 and S12 according to the DC impedance of the inductor L1. Although the embodiment of FIG. 1 exemplifies the implementation of current sensing circuit 130, it is not intended to limit the invention. For example, in another embodiment, the current sensing circuit 130 is coupled to the switch SW12 in the switching circuit 11 and can provide a sensing signal related to the output current IL. In contrast, the output current IL can also be referred to as a load current or an inductor current.

放大器120具有第一輸入端、第二輸入端與輸出端。放 大器120的第一輸入端與第二輸入端耦接感測單元110,以接收感測訊號S11與S12。感測開關130的控制端耦接放大器120的輸出端,且感測開關130的第二端耦接放大器120的第一輸入端。藉此,放大器120與感測開關130將可形成一回授迴路,並可透過感測開關130的第一端產生相應的感測電流Isen。此外,偏移電流140耦接感測開關130的第二端。補償電路150耦接感測開關130的第一端與放大器120的第一輸入端。 The amplifier 120 has a first input, a second input, and an output. put The first input end and the second input end of the amplifier 120 are coupled to the sensing unit 110 to receive the sensing signals S11 and S12. The control end of the sense switch 130 is coupled to the output of the amplifier 120, and the second end of the sense switch 130 is coupled to the first input of the amplifier 120. Thereby, the amplifier 120 and the sensing switch 130 will form a feedback loop, and the corresponding sensing current Isen can be generated through the first end of the sensing switch 130. In addition, the offset current 140 is coupled to the second end of the sensing switch 130. The compensation circuit 150 is coupled to the first end of the sensing switch 130 and the first input of the amplifier 120.

在操作上,當電源轉換裝置100的輸出電流IL為正向電流(亦即,正電流)時,感測單元110會響應於正向電流而接收來自節點ND1的第一電流I11,亦即流經電阻R12的電流將如第一電流I11所示。此時,感測開關130將維持在一導通狀態,且感測開關130所產生的感測電流Isen將可大於臨界電流Ith,進而致使補償電路150無法啟動一電流補償機制。此外,正向電流越大,第一電流I11也就越大。由於偏移電流140提供固定的電流,因此感測電流Isen會隨著第一電流I11的變大而相對應地變大。換言之, 當電源轉換裝置100的輸出電流IL為正向電流時,感測開關130將可持續地導通,且補償電路150無須啟動電流補償機制。 In operation, when the output current IL of the power conversion device 100 is a forward current (ie, a positive current), the sensing unit 110 receives the first current I11 from the node ND1 in response to the forward current, that is, the flow. The current through resistor R12 will be as indicated by the first current I11. At this time, the sensing switch 130 will remain in a conducting state, and the sensing current Isen generated by the sensing switch 130 will be greater than the critical current Ith, thereby causing the compensation circuit 150 to fail to initiate a current compensation mechanism. In addition, the larger the forward current, the larger the first current I11. Since the offset current 140 provides a fixed current, the sense current Isen becomes correspondingly larger as the first current I11 becomes larger. In other words, When the output current IL of the power conversion device 100 is a forward current, the sensing switch 130 will be continuously turned on, and the compensation circuit 150 does not need to activate a current compensation mechanism.

另一方面,當電源轉換裝置100的輸出電流IL為負向電流(亦即,負電流)時,感測單元110會響應於負向電流傳送第二電流I12至節點ND1,亦即流經電阻R12的電流將如第二電流I12所示。此外,負向電流越大,流向節點ND1的第二電流I12也就越大,進而導致感測開關130所產生的感測電流Isen相對應地變小。此外,當電源轉換裝置100的負向電流越來越大並達到一預設值時,感測單元110所提供的感測訊號將小於一臨界值,進而致使感測電流Isen小於臨界電流Ith。此時,補償電路150將啟動電流補償機制,以致使感測開關130可以持續地維持在導通狀態。 On the other hand, when the output current IL of the power conversion device 100 is a negative current (ie, a negative current), the sensing unit 110 transmits the second current I12 to the node ND1 in response to the negative current, that is, flows through the resistor. The current of R12 will be as shown by the second current I12. In addition, the larger the negative current, the larger the second current I12 flowing to the node ND1, which in turn causes the sensing current Isen generated by the sensing switch 130 to correspondingly become smaller. In addition, when the negative current of the power conversion device 100 is larger and reaches a preset value, the sensing signal provided by the sensing unit 110 will be less than a threshold, thereby causing the sensing current Isen to be smaller than the critical current Ith. At this point, the compensation circuit 150 will initiate a current compensation mechanism such that the sense switch 130 can be continuously maintained in an on state.

舉例來說,補償電路150包括一壓控電流源151,且壓控電流源151耦接感測開關130的第二端。當電流補償機制啟動時,壓控電流源151將依據控制電壓VT來產生補償電流Icp,進而提供從節點ND1流向接地端的補償電流Icp。隨著補償電流Icp的產生,將可避免感測電流Isen隨著第二電流I12的增加而快速地降低,進而避免感測開關130被切換至不導通狀態。如此一來,當電源轉換裝置100停止產生逆向電流時,電流感測電路13將可即時地依據感測電流Isen回傳回授訊號給控制器10,從而有助於提升電源轉換裝置100的可靠性與穩定度。 For example, the compensation circuit 150 includes a voltage-controlled current source 151, and the voltage-controlled current source 151 is coupled to the second end of the sensing switch 130. When the current compensation mechanism is activated, the voltage controlled current source 151 will generate a compensation current Icp according to the control voltage VT, thereby providing a compensation current Icp flowing from the node ND1 to the ground. As the compensation current Icp is generated, it can be avoided that the sensing current Isen rapidly decreases as the second current I12 increases, thereby preventing the sensing switch 130 from being switched to the non-conducting state. In this way, when the power conversion device 100 stops generating the reverse current, the current sensing circuit 13 can immediately return the feedback signal to the controller 10 according to the sensing current Isen, thereby contributing to the improvement of the reliability of the power conversion device 100. Sex and stability.

值得一提的是,補償電流Icp正比於臨界電流Ith與感測電流Isen之間的差值。亦即,當感測電流Isen小於臨界電流Ith 時,補償電路150除了啟動壓控電流源151以外,還會依據感測電流Isen來調整控制電壓VT,以致使控制電壓VT的準位會隨著感測電流Isen的變小而增加。如此一來,當電源轉換裝置100中的負向電流越大時,壓控電流源151將可響應於感測電流Isen的變小而提供更大的補償電流Icp。藉此,將可有效地擴展電流感測電路13針對負向電流的感測範圍。 It is worth mentioning that the compensation current Icp is proportional to the difference between the critical current Ith and the sensing current Isen. That is, when the sensing current Isen is smaller than the critical current Ith When the compensation circuit 150 starts the voltage-controlled current source 151, the control voltage VT is adjusted according to the sensing current Isen, so that the level of the control voltage VT increases as the sensing current Isen becomes smaller. As such, when the negative current in the power conversion device 100 is larger, the voltage-controlled current source 151 will provide a larger compensation current Icp in response to the smallering of the sensing current Isen. Thereby, the sensing range of the current sensing circuit 13 for the negative current can be effectively expanded.

舉例來說,圖2與圖3分別為依據本發明一實施例之訊 號示意圖。其中,圖2與圖3的X軸用以表示第一電流I11,且圖2與圖3的Y軸分別為感測電流Isen與感測開關130之控制端的電壓VG。值得一提的是,第一電流I11與第二電流I12是用以表示在不同電流方向下流經電阻R12的電流,因此第二電流I12為第一電流I11的負值,亦即圖2與圖3中的負X軸也用以表示第二電流I12的變化。 For example, FIG. 2 and FIG. 3 are respectively a message according to an embodiment of the present invention. No. Schematic. The X axis of FIG. 2 and FIG. 3 is used to represent the first current I11, and the Y axis of FIG. 2 and FIG. 3 is the voltage VG of the sensing current Isen and the control terminal of the sensing switch 130, respectively. It is worth mentioning that the first current I11 and the second current I12 are used to indicate the current flowing through the resistor R12 in different current directions, so the second current I12 is a negative value of the first current I11, that is, FIG. 2 and FIG. The negative X-axis in 3 is also used to indicate the change in the second current I12.

當流經電感L1的輸出電流IL為正向電流時,流經電阻 R12的電流為第一電流I11,亦即此時電流感測電路13的操作將如圖2-3之座標軸中的第一象限所示。因此,參照圖2-3之座標軸中的第一象限來看,當流經電感L1的輸出電流IL為正向電流時,感測電流Isen會隨著第一電流I11的變大而相對應地變大。此外,感測電流Isen大於臨界電流Ith,進而致使補償電路150無法啟動壓控電流源151。再者,感測開關130之控制端的電壓VG大於感測開關130的臨界電壓Vth,進而致使感測開關130維持在導通狀態。 When the output current IL flowing through the inductor L1 is a forward current, flowing through the resistor The current of R12 is the first current I11, that is, the operation of current sensing circuit 13 at this time will be as shown in the first quadrant of the coordinate axis of Figures 2-3. Therefore, referring to the first quadrant in the coordinate axis of FIG. 2-3, when the output current IL flowing through the inductor L1 is a forward current, the sensing current Isen will correspondingly become larger as the first current I11 becomes larger. Become bigger. Furthermore, the sense current Isen is greater than the critical current Ith, which in turn causes the compensation circuit 150 to fail to activate the voltage controlled current source 151. Moreover, the voltage VG at the control terminal of the sense switch 130 is greater than the threshold voltage Vth of the sense switch 130, thereby causing the sense switch 130 to remain in an on state.

另一方面,當流經電感L1的輸出電流IL為負向電流時,流經電阻R12的電流為第二電流112,亦即此時電流感測電路13的操作將如圖2與圖3之座標軸中的第二象限所示。因此,參照圖2之座標軸中的第二象限來看,當電源轉換裝置100中的負向電流產生時,一開始,如曲線210所示,感測電流Isen會隨著第二電流I12的變大而降低。此外,當感測電流Isen小於臨界電流Ith時,補償電路150將啟動壓控電流源151。此時,將如曲線220所示,感測電流Isen的下降幅度將隨著壓控電流源151的啟動而較為緩和。如此一來,第二電流I12在從第一限制電流Ineg上升至第二限制電流Iscp的過程中,電流感測電路13依舊可以偵測到電源轉換裝置100中的負向電流,進而可有效地擴展電流感測電路13針對負向電流的感測範圍。 On the other hand, when the output current IL flowing through the inductor L1 is a negative current, the current flowing through the resistor R12 is the second current 112, that is, the operation of the current sensing circuit 13 at this time will be as shown in FIGS. 2 and 3. The second quadrant in the coordinate axis is shown. Therefore, referring to the second quadrant in the coordinate axis of FIG. 2, when the negative current in the power conversion device 100 is generated, initially, as shown by the curve 210, the sensing current Isen changes with the second current I12. Big and lower. Furthermore, when the sense current Isen is less than the critical current Ith, the compensation circuit 150 will activate the voltage controlled current source 151. At this time, as shown by the curve 220, the magnitude of the decrease in the sense current Isen will be moderated as the voltage-controlled current source 151 is activated. In this way, in the process of the second current I12 rising from the first limiting current Ineg to the second limiting current Iscp, the current sensing circuit 13 can still detect the negative current in the power conversion device 100, thereby effectively The current sensing circuit 13 is extended for the sensing range of the negative current.

相對地,參照圖3之座標軸中的第二象限來看,當電源轉換裝置100中的負向電流產生時,如圖3之曲線310所示,一開始,感測開關130之控制端的電壓VG會隨著第二電流I12的變大而降低。此外,當感測電流Isen小於臨界電流Ith時,如圖3之曲線320所示,感測開關130之控制端的電壓VG的下降幅度會較為緩和,進而避免感測開關130被切換至不導通狀態。 In contrast, referring to the second quadrant in the coordinate axis of FIG. 3, when the negative current in the power conversion device 100 is generated, as shown by the curve 310 of FIG. 3, initially, the voltage VG of the control terminal of the sense switch 130 is generated. It will decrease as the second current I12 becomes larger. In addition, when the sensing current Isen is less than the critical current Ith, as shown by the curve 320 of FIG. 3, the falling amplitude of the voltage VG of the control terminal of the sensing switch 130 is moderated, thereby preventing the sensing switch 130 from being switched to the non-conducting state. .

圖4為依據本發明一實施例之電流感測電路的示意圖。如圖4所示,補償電路150包括電流偵測器410與電流補償器420。其中,電流偵測器410耦接感測開關130的第一端,且電流偵測器410可偵測感測開關130所產生的感測電流Isen。電流補 償器420包括壓控電流源151,且電流補償器420耦接感測開關130的第二端與電流偵測器410。此外,當感測電流Isen小於臨界電流Ith時,電流偵測器410會產生一啟動電流Ist,且電流補償器420會依據啟動電流Ist產生控制電壓VT以藉此啟動壓控電流源151。 4 is a schematic diagram of a current sensing circuit in accordance with an embodiment of the present invention. As shown in FIG. 4, the compensation circuit 150 includes a current detector 410 and a current compensator 420. The current detector 410 is coupled to the first end of the sensing switch 130 , and the current detector 410 can detect the sensing current Isen generated by the sensing switch 130 . Current supplement The compensator 420 includes a voltage controlled current source 151 , and the current compensator 420 is coupled to the second end of the sensing switch 130 and the current detector 410 . In addition, when the sensing current Isen is less than the critical current Ith, the current detector 410 generates a starting current Ist, and the current compensator 420 generates the control voltage VT according to the starting current Ist to thereby activate the voltage-controlled current source 151.

更進一步來看,電流偵測器410包括電流鏡411、電流源412與電流鏡413,且電流補償器420更包括控制單元421。其中,電流鏡411的輸入端耦接感測開關130的第一端,以藉此偵測感測電流Isen。電流源412耦接電流鏡411的輸出端,並用以產生臨界電流Ith。電流鏡413的輸入端耦接電流鏡411的輸出端。控制單元421耦接電流鏡413的輸出端。藉此,當感測電流Isen小於臨界電流Ith時,電流鏡413的輸出端將可產生啟動電流Ist。此外,控制單元421會依據啟動電流Ist產生控制電壓VT,以控制壓控電流源151。 Further, the current detector 410 includes a current mirror 411, a current source 412, and a current mirror 413, and the current compensator 420 further includes a control unit 421. The input end of the current mirror 411 is coupled to the first end of the sensing switch 130 to thereby detect the sensing current Isen. The current source 412 is coupled to the output of the current mirror 411 and is used to generate a critical current Ith. The input end of the current mirror 413 is coupled to the output end of the current mirror 411. The control unit 421 is coupled to the output end of the current mirror 413. Thereby, when the sensing current Isen is smaller than the critical current Ith, the output terminal of the current mirror 413 can generate the starting current Ist. In addition, the control unit 421 generates a control voltage VT according to the startup current Ist to control the voltage control current source 151.

值得一提的是,電流源412是提供固定的臨界電流Ith。因此,當感測電流Isen變小時,電流鏡411之輸出端所產生的電流也就越小。相對地,電流鏡413所產生的啟動電流Ist也就越大,進而致使控制單元421提高控制電壓VT的準位。換言之,當壓控電流源151被啟動時,控制電壓VT的準位會隨著感測電流Isen的變小而增加。藉此,當電源轉換裝置100中的負向電流越大時,感測電流Isen將相對應地變小,且壓控電流源151將響應於感測電流Isen的變小而提供更大的補償電流Icp。 It is worth mentioning that the current source 412 provides a fixed critical current Ith. Therefore, when the sense current Isen becomes small, the current generated at the output of the current mirror 411 is smaller. In contrast, the starting current Ist generated by the current mirror 413 is also larger, thereby causing the control unit 421 to increase the level of the control voltage VT. In other words, when the voltage-controlled current source 151 is activated, the level of the control voltage VT increases as the sense current Isen becomes smaller. Thereby, when the negative current in the power conversion device 100 is larger, the sensing current Isen will correspondingly become smaller, and the voltage-controlled current source 151 will provide greater compensation in response to the smallering of the sensing current Isen. Current Icp.

更進一步來看,電流鏡411包括P型電晶體MP41與P型電晶體MP42。其中,P型電晶體MP41的第一端耦接感測開關130的第一端。P型電晶體MP41的第二端耦接至電源端。P型電晶體MP41的控制端與第一端電性相連。P型電晶體MP42的第一端耦接電流源412。P型電晶體MP42的第二端耦接至電源端。P型電晶體MP42的控制端耦接P型電晶體MP41的控制端。 Further, the current mirror 411 includes a P-type transistor MP41 and a P-type transistor MP42. The first end of the P-type transistor MP41 is coupled to the first end of the sensing switch 130. The second end of the P-type transistor MP41 is coupled to the power terminal. The control end of the P-type transistor MP41 is electrically connected to the first end. The first end of the P-type transistor MP42 is coupled to the current source 412. The second end of the P-type transistor MP42 is coupled to the power terminal. The control end of the P-type transistor MP42 is coupled to the control end of the P-type transistor MP41.

電流鏡413包括P型電晶體MP43與P型電晶體MP44。其中,P型電晶體MP43的第一端耦接P型電晶體MP42的第一端。P型電晶體MP43的第二端耦接至電源端。P型電晶體MP43的控制端與第一端電性相連。P型電晶體MP44的第一端耦接電流補償器420。P型電晶體MP44的第二端耦接至電源端。P型電晶體MP44的控制端耦接P型電晶體MP43的控制端。 The current mirror 413 includes a P-type transistor MP43 and a P-type transistor MP44. The first end of the P-type transistor MP43 is coupled to the first end of the P-type transistor MP42. The second end of the P-type transistor MP43 is coupled to the power terminal. The control end of the P-type transistor MP43 is electrically connected to the first end. The first end of the P-type transistor MP44 is coupled to the current compensator 420. The second end of the P-type transistor MP44 is coupled to the power terminal. The control end of the P-type transistor MP44 is coupled to the control end of the P-type transistor MP43.

控制單元421包括N型電晶體MN41,且壓控電流源151包括N型電晶體MN42。其中,N型電晶體MN41的第一端耦接電流鏡413的輸出端,亦即P型電晶體MP44的第一端。N型電晶體MN41的第二端耦接至接地端。N型電晶體MN41的控制端與第一端電性相連,並用以產生控制電壓VT。N型電晶體MN42的第一端耦接感測開關130的第二端。N型電晶體MN42的第二端耦接至接地端。N型電晶體MN42的控制端耦接N型電晶體MN41的控制端。 The control unit 421 includes an N-type transistor MN41, and the voltage-controlled current source 151 includes an N-type transistor MN42. The first end of the N-type transistor MN41 is coupled to the output end of the current mirror 413, that is, the first end of the P-type transistor MP44. The second end of the N-type transistor MN41 is coupled to the ground. The control end of the N-type transistor MN41 is electrically connected to the first end and used to generate the control voltage VT. The first end of the N-type transistor MN42 is coupled to the second end of the sensing switch 130. The second end of the N-type transistor MN42 is coupled to the ground. The control terminal of the N-type transistor MN42 is coupled to the control terminal of the N-type transistor MN41.

值得一提的是,在一實施例中,P型電晶體MP41的寬長比(width-to-length ratio)等於P型電晶體MP42的寬長比,且P型 電晶體MP43的寬長比等於P型電晶體MP44的寬長比。亦即,在一實施例中,電流鏡411與電流鏡413皆是以1倍的倍率來複製電流。因此,當感測電流Isen小於臨界電流Ith時,電流鏡413所產生的啟動電流Ist等於臨界電流Ith與感測電流Isen之間的差值,亦即Ist=Ith-Isen。此外,N型電晶體MN42的寬長比為N型電晶體MN41之寬長比的N倍,其中N為大於0之數值。換言之,在一實施例中,補償電流Icp為啟動電流Ist的N倍,亦即Icp=N*Ist。 It is worth mentioning that, in an embodiment, the width-to-length ratio of the P-type transistor MP41 is equal to the aspect ratio of the P-type transistor MP42, and the P-type The width to length ratio of the transistor MP43 is equal to the aspect ratio of the P-type transistor MP44. That is, in one embodiment, both the current mirror 411 and the current mirror 413 replicate the current at a magnification of one. Therefore, when the sensing current Isen is smaller than the critical current Ith, the starting current Ist generated by the current mirror 413 is equal to the difference between the critical current Ith and the sensing current Isen, that is, Ist=Ith-Isen. Further, the width-to-length ratio of the N-type transistor MN42 is N times the aspect ratio of the N-type transistor MN41, where N is a value greater than zero. In other words, in one embodiment, the compensation current Icp is N times the starting current Ist, that is, Icp=N*Ist.

此外,就節點ND1的電流來看,Isen+I12=Icp+Ineg,亦即I12=N*(Ith-Isen)+Ineg-Isen,其中Ineg為偏移電流140所提供的電流(亦即,第一限制電流Ineg)。藉此,依照上述等式反觀圖2中的第二限制電流Iscp,將可求得Iscp=N*Ith+Ineg。此外,倘若Ineg=10uA,Ith=5uA,且N=5時,則第二限制電流Iscp將相等於35uA。換言之,倘若壓控電流源151在感測電流Isen小於臨界電流Ith時不啟動的話,如圖2之曲線210所示,第二電流I12上升至10uA(亦即,第一限制電流Ineg)時感測開關130將被關閉(turn off),進而導致電流感測電路13無法正常操作。 In addition, as far as the current of the node ND1 is concerned, Isen+I12=Icp+Ineg, that is, I12=N*(Ith-Isen)+Ineg-Isen, where Ineg is the current supplied by the offset current 140 (ie, the first A limiting current Ineg). Thereby, according to the above equation, the second limiting current Iscp in FIG. 2 can be obtained, and Iscp=N*Ith+Ineg can be obtained. Further, if Ineg=10uA, Ith=5uA, and N=5, the second limiting current Iscp will be equal to 35uA. In other words, if the voltage-controlled current source 151 does not start when the sense current Isen is less than the threshold current Ith, as shown by the curve 210 of FIG. 2, the second current I12 rises to 10 uA (that is, the first limit current Ineg). The test switch 130 will be turned off, which in turn causes the current sensing circuit 13 to fail to operate normally.

相對地,倘若壓控電流源151在感測電流Isen小於臨界電流Ith時啟動的話,如圖2之曲線220所示,第二電流I12在從10uA(亦即,第一限制電流Ineg)上升至35uA(亦即,第二限制電流Iscp)的過程中,感測開關130將可持續地導通,進而致使電流感測電路13依舊可以偵測到電源轉換裝置100中的負向電流。據 此,可以明顯地看出,隨著壓控電流源151的啟動,電流感測電路13針對負向電流的感測範圍可有效地被擴展。 In contrast, if the voltage-controlled current source 151 is activated when the sense current Isen is less than the threshold current Ith, as shown by the curve 220 of FIG. 2, the second current I12 rises from 10 uA (ie, the first limit current Ineg) to During the 35uA (ie, the second limiting current Iscp), the sensing switch 130 will be continuously turned on, thereby causing the current sensing circuit 13 to still detect the negative current in the power conversion device 100. according to Thus, it can be clearly seen that with the activation of the voltage controlled current source 151, the sensing range of the current sensing circuit 13 for the negative current can be effectively expanded.

更進一步來看,電流源412包括負載元件R41、N型電晶體MN43與N型電晶體MN44。其中,負載元件R41的第一端耦接至電源端。N型電晶體MN43的第一端耦接負載元件R41的第二端。N型電晶體MN43的第二端耦接至接地端。N型電晶體MN43的控制端與第一端電性相連。N型電晶體MN44的第一端耦接P型電晶體MP42的第一端。N型電晶體MN44的第二端耦接至接地端。N型電晶體MN44的控制端耦接N型電晶體MN43的控制端。在操作上,負載元件R41可提供一參考電流給N型電晶體MN43。此外,N型電晶體MN43與N型電晶體MN44形成一電流鏡,以依據參考電流映射出臨界電流Ith。其中,臨界電流Ith小於偏移電流140所提供的電流(亦即,第一限制電流Ineg)。 Further, the current source 412 includes a load element R41, an N-type transistor MN43, and an N-type transistor MN44. The first end of the load component R41 is coupled to the power terminal. The first end of the N-type transistor MN43 is coupled to the second end of the load element R41. The second end of the N-type transistor MN43 is coupled to the ground. The control end of the N-type transistor MN43 is electrically connected to the first end. The first end of the N-type transistor MN44 is coupled to the first end of the P-type transistor MP42. The second end of the N-type transistor MN44 is coupled to the ground. The control terminal of the N-type transistor MN44 is coupled to the control terminal of the N-type transistor MN43. In operation, load element R41 can provide a reference current to N-type transistor MN43. In addition, the N-type transistor MN43 and the N-type transistor MN44 form a current mirror to map the critical current Ith according to the reference current. The critical current Ith is smaller than the current supplied by the offset current 140 (that is, the first limiting current Ineg).

更進一步來看,在一實施例中,電流感測電路13更包括一穩定電路430。其中,穩定電路430包括電阻R41與電容C4。電阻R41的第一端耦接放大器120的輸出端。電容C4的第一端耦接電阻R41的第二端,且電容C4的第二端耦接至接地端。藉此,電流感測電路13將可透過穩定電路430來穩定位在感測開關130之控制端的電壓。 Further, in an embodiment, the current sensing circuit 13 further includes a stabilization circuit 430. The stabilization circuit 430 includes a resistor R41 and a capacitor C4. The first end of the resistor R41 is coupled to the output of the amplifier 120. The first end of the capacitor C4 is coupled to the second end of the resistor R41, and the second end of the capacitor C4 is coupled to the ground. Thereby, the current sensing circuit 13 will pass through the stabilization circuit 430 to stabilize the voltage at the control terminal of the sensing switch 130.

從另一角度來看,圖5為依據本發明一實施例之電源轉換裝置的電流感測方法流程圖。請同時參照圖1與圖5來看,如步驟S510所示,可透過電流感測電路13感測電源轉換裝置100 的輸出電流IL,並可依據感測結果據以產生感測訊號。此外,當電源轉換裝置100的負向電流越來越大並達到一預設值時,感測單元110所提供的感測訊號將小於一臨界值。此外,如步驟S520所示,當感測訊號小於臨界值時,補償電路150將啟動一電流補償機制以致使感測開關130可維持在導通狀態。 Viewed from another perspective, FIG. 5 is a flow chart of a current sensing method of a power conversion device according to an embodiment of the invention. Referring to FIG. 1 and FIG. 5 simultaneously, as shown in step S510, the current sensing circuit 13 senses the power conversion device 100. The output current IL is generated according to the sensing result. In addition, when the negative current of the power conversion device 100 is larger and reaches a preset value, the sensing signal provided by the sensing unit 110 will be less than a threshold. In addition, as shown in step S520, when the sensing signal is less than the threshold, the compensation circuit 150 will initiate a current compensation mechanism to cause the sensing switch 130 to remain in the conducting state.

值得一提的是,補償電路150中的放大器120是響應於 感測訊號來控制感測開關130,因此流經感測開關130的感測電流Isen是相關於感測單元110所提供的感測訊號。例如,當感測單元110所提供的感測訊號將小於臨界值時,感測電流Isen也將小於臨界電流Ith。因此,在一實施例中,可依據流經感測開關130的感測電流Isen來決定是否啟動電流補償機制。 It is worth mentioning that the amplifier 120 in the compensation circuit 150 is responsive to The sensing signal is controlled to control the sensing switch 130, so the sensing current Isen flowing through the sensing switch 130 is related to the sensing signal provided by the sensing unit 110. For example, when the sensing signal provided by the sensing unit 110 is less than a critical value, the sensing current Isen will also be less than the critical current Ith. Therefore, in an embodiment, whether to activate the current compensation mechanism may be determined according to the sense current Isen flowing through the sense switch 130.

舉例來說,請同時參照圖4與圖5來看,就步驟S520的細部步驟來看,如步驟S521所示,可透過電流偵測器410偵測流經感測開關130的感測電流Isen。再者,如步驟S522所示,當感測電流Isen小於臨界電流Ith時,則代表感測訊號已小於臨界值。此時,電流偵測器410會產生一啟動電流Ist。此外,如步驟S523與S524所示,電流補償器420會依據啟動電流Ist產生控制電壓VT,並利用控制電壓VT控制壓控電流源151,進而致使壓控電流源151產生一補償電流Icp。隨著補償電流Icp的產生,將可避免感測電流Isen隨著電源轉換裝置100之負電流的增加而快速地降低,進而避免感測開關130被切換至不導通狀態。至於圖5之各步驟的細部說明已包含在上述各實施例中,故在此不予贅述。 For example, referring to FIG. 4 and FIG. 5 simultaneously, as shown in step S521, the current detecting device 410 can detect the sensing current Isen flowing through the sensing switch 130 as shown in step S521. . Moreover, as shown in step S522, when the sensing current Isen is less than the critical current Ith, it means that the sensing signal is less than the critical value. At this time, the current detector 410 generates a starting current Ist. In addition, as shown in steps S523 and S524, the current compensator 420 generates the control voltage VT according to the starting current Ist, and controls the voltage-controlled current source 151 by using the control voltage VT, thereby causing the voltage-controlled current source 151 to generate a compensation current Icp. As the compensation current Icp is generated, it is possible to prevent the sensing current Isen from rapidly decreasing as the negative current of the power conversion device 100 increases, thereby preventing the sensing switch 130 from being switched to the non-conduction state. The detailed description of each step of FIG. 5 has been included in the above embodiments, and thus will not be described herein.

綜上所述,本發明是透過感測單元感測電源轉換裝置的輸出電流,並據以提供感測訊號。此外,當感測訊號小於臨界值時,將啟動電流補償機制以致使感測開關維持在導通狀態。藉此,當電源轉換裝置中的逆向電流過大時,將可適時地提供補償電流,進而避免感測開關被切換至不導通狀態。如此一來,當電源轉換裝置停止產生逆向電流時,電流感測電路將可即時地依據感測電流回傳回授訊號給控制器,從而有助於提升電源轉換裝置的可靠性與穩定度。 In summary, the present invention senses the output current of the power conversion device through the sensing unit and provides a sensing signal accordingly. In addition, when the sense signal is less than the threshold, a current compensation mechanism is activated to cause the sense switch to remain in an on state. Thereby, when the reverse current in the power conversion device is excessively large, the compensation current can be timely provided, thereby preventing the sensing switch from being switched to the non-conduction state. In this way, when the power conversion device stops generating the reverse current, the current sensing circuit can immediately return the feedback signal to the controller according to the sensing current, thereby contributing to improving the reliability and stability of the power conversion device.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧電源轉換裝置 100‧‧‧Power conversion device

10‧‧‧控制器 10‧‧‧ Controller

11‧‧‧切換電路 11‧‧‧Switching circuit

12‧‧‧阻抗電路 12‧‧‧ Impedance circuit

13‧‧‧電流感測電路 13‧‧‧ Current sensing circuit

PU11、PU12‧‧‧脈波訊號 PU11, PU12‧‧‧ pulse wave signal

VI‧‧‧輸入電壓 VI‧‧‧Input voltage

VO‧‧‧輸出電壓 VO‧‧‧ output voltage

SW11、SW12‧‧‧開關 SW11, SW12‧‧‧ switch

L1‧‧‧電感 L1‧‧‧Inductance

C11、C12‧‧‧電容 C11, C12‧‧‧ capacitor

IL‧‧‧輸出電流 IL‧‧‧Output current

110‧‧‧感測單元 110‧‧‧Sensor unit

120‧‧‧放大器 120‧‧‧Amplifier

130‧‧‧感測開關 130‧‧‧Sensing switch

140‧‧‧電流源 140‧‧‧current source

150‧‧‧補償電路 150‧‧‧compensation circuit

151‧‧‧壓控電流源 151‧‧‧voltage controlled current source

S11、S12‧‧‧感測訊號 S11, S12‧‧‧ sensing signals

R11、R12‧‧‧電阻 R11, R12‧‧‧ resistance

ND1‧‧‧節點 ND1‧‧‧ node

Isen‧‧‧感測電流 Isen‧‧‧Sensing current

I11‧‧‧第一電流 I11‧‧‧First current

I12‧‧‧第二電流 I12‧‧‧second current

Icp‧‧‧補償電流 Icp‧‧‧compensation current

VT‧‧‧控制電壓 VT‧‧‧ control voltage

Claims (15)

一種電源轉換裝置的電流感測電路,包括:一感測單元,用以感測該電源轉換裝置的一輸出電流,並提供一感測訊號;一放大器,具有一輸出端,並耦接該感測單元以接收該感測訊號;一感測開關,耦接該放大器的該輸出端;以及一補償電路,耦接該感測開關與該放大器的一第一輸入端,其中,當該感測訊號小於一臨界值時,該補償電路啟動一電流補償機制,以致使該感測開關維持在一導通狀態。 A current sensing circuit of a power conversion device includes: a sensing unit for sensing an output current of the power conversion device and providing a sensing signal; an amplifier having an output coupled to the sense The measuring unit receives the sensing signal; a sensing switch coupled to the output end of the amplifier; and a compensation circuit coupled to the sensing switch and a first input end of the amplifier, wherein when the sensing When the signal is less than a threshold, the compensation circuit initiates a current compensation mechanism to maintain the sense switch in an on state. 如申請專利範圍第1項所述的電流感測電路,其中該臨界值相關於一負電流。 The current sensing circuit of claim 1, wherein the threshold value is related to a negative current. 如申請專利範圍第1項所述的電流感測電路,更包括:一偏移電流,耦接該補償電路、該感測開關與該放大器的該第一輸入端。 The current sensing circuit of claim 1, further comprising: an offset current coupled to the compensation circuit, the sensing switch, and the first input of the amplifier. 如申請專利範圍第1項所述的電流感測電路,其中該補償電路具有耦接該感測開關的一壓控電流源,且當該電流補償機制被啟動時,該補償電路透過該壓控電流源提供一補償電流。 The current sensing circuit of claim 1, wherein the compensation circuit has a voltage-controlled current source coupled to the sensing switch, and when the current compensation mechanism is activated, the compensation circuit transmits the voltage control The current source provides a compensation current. 如申請專利範圍第4項所述的電流感測電路,其中該補償電路包括:一電流偵測器,耦接該感測開關的第一端,並偵測流經該感測開關的一感測電流,其中當該感測電流小於一臨界電流時,該 電流偵測器產生一啟動電流;以及一電流補償器,包括該壓控電流源,並耦接該感測開關的第二端與該電流偵測器,其中該電流補償器依據該啟動電流產生一控制電壓以啟動該壓控電流源。 The current sensing circuit of claim 4, wherein the compensation circuit comprises: a current detector coupled to the first end of the sensing switch and detecting a sense of flowing through the sensing switch Measuring current, wherein when the sensing current is less than a critical current, the The current detector generates a starting current; and a current compensator includes the voltage controlled current source, and is coupled to the second end of the sensing switch and the current detector, wherein the current compensator generates the current according to the starting current A control voltage is applied to activate the voltage controlled current source. 如申請專利範圍第5項所述的電流感測電路,其中當該感測電流小於該臨界電流時,該壓控電流源依據一控制電壓產生該補償電流,且該補償電路依據該感測電流調整該控制電壓,以致使該補償電流正比於該臨界電流與該感測電流之間的差值。 The current sensing circuit of claim 5, wherein when the sensing current is less than the critical current, the voltage-controlled current source generates the compensation current according to a control voltage, and the compensation circuit is based on the sensing current The control voltage is adjusted such that the compensation current is proportional to the difference between the critical current and the sense current. 如申請專利範圍第5項所述的電流感測電路,更包括:一偏移電流,耦接該補償電路、該感測開關與該放大器的該第一輸入端,其中該臨界電流小於該偏移電流所提供的電流。 The current sensing circuit of claim 5, further comprising: an offset current coupled to the compensation circuit, the sensing switch and the first input of the amplifier, wherein the critical current is less than the bias The current supplied by the current is shifted. 如申請專利範圍第5項所述的電流感測電路,其中該電流偵測器包括:一第一電流鏡,其輸入端電性連接該開關元件;一第二電流源,電性連接該第一電流鏡的輸出端,並產生該臨界電流;以及一第二電流鏡,其輸入端電性連接該第一電流鏡的輸出端,且當該感測電流小於該臨界電流時,該第二電流鏡的輸出端產生該啟動電流。 The current sensing circuit of claim 5, wherein the current detector comprises: a first current mirror having an input terminal electrically connected to the switching element; and a second current source electrically connected to the first An output terminal of the current mirror generates the critical current; and a second current mirror having an input end electrically connected to the output end of the first current mirror, and when the sensing current is less than the critical current, the second The starting current is generated at the output of the current mirror. 如申請專利範圍第8項所述的電流感測電路,其中該電流補償器更包括:一控制單元,電性連接該第二電流鏡的輸出端,其中該控制 單元依據該啟動電流產生該控制電壓,以控制該壓控電流源。 The current sensing circuit of claim 8, wherein the current compensator further comprises: a control unit electrically connected to the output end of the second current mirror, wherein the control The unit generates the control voltage according to the starting current to control the voltage controlled current source. 一種電源轉換裝置的電流感測方法,其中該電源轉換裝置包括一感測單元、一放大器與一感測開關,且該電流感測方法包括:透過該感測單元感測該電源轉換裝置的一輸出電流,並提供一感測訊號,其中該放大器耦接該感測單元,且該感測開關耦接該放大器的一第一輸入端與一輸出端;以及當該感測訊號小於一臨界值時,啟動一電流補償機制以致使該感測開關維持在一導通狀態。 A current sensing method for a power conversion device, wherein the power conversion device includes a sensing unit, an amplifier, and a sensing switch, and the current sensing method includes: sensing one of the power conversion devices through the sensing unit Outputting a current, and providing a sensing signal, wherein the amplifier is coupled to the sensing unit, and the sensing switch is coupled to a first input end and an output end of the amplifier; and when the sensing signal is less than a threshold A current compensation mechanism is initiated to cause the sense switch to remain in an on state. 如申請專利範圍第10項所述的電流感測方法,其中該臨界值相關於一負電流。 The current sensing method of claim 10, wherein the threshold value is related to a negative current. 如申請專利範圍第10項所述的電流感測方法,其中啟動該電流補償機制的步驟包括:透過一壓控電流源提供一補償電流,其中該壓控電流源耦接該感測開關。 The current sensing method of claim 10, wherein the step of activating the current compensation mechanism comprises: providing a compensation current through a voltage controlled current source, wherein the voltage control current source is coupled to the sensing switch. 如申請專利範圍第10項所述的電流感測方法,其中當該感測訊號小於該臨界值時,啟動該電流補償機制以致使該感測開關維持在該導通狀態的步驟包括:偵測流經該感測開關的一感測電流;當該感測電流小於一臨界電流時,產生一啟動電流;依據該啟動電流產生一控制電壓;以及依據一控制電壓控制一壓控電流源以產生一補償電流,其中 該壓控電流源耦接該感測開關。 The current sensing method of claim 10, wherein when the sensing signal is less than the threshold, the step of starting the current compensation mechanism to maintain the sensing switch in the conducting state comprises: detecting the flow Passing a sensing current of the sensing switch; generating a starting current when the sensing current is less than a threshold current; generating a control voltage according to the starting current; and controlling a voltage controlled current source according to a control voltage to generate a Compensation current, where The voltage controlled current source is coupled to the sensing switch. 如申請專利範圍第13項所述的電流感測方法,其中該補償電流正比於該臨界電流與該感測電流之間的差值。 The current sensing method of claim 13, wherein the compensation current is proportional to a difference between the critical current and the sensing current. 如申請專利範圍第13項所述的電流感測方法,其中該電源轉換裝置更包括一偏移電流,該偏移電流耦接該感測開關與該放大器的該第一輸入端,且該臨界電流小於該偏移電流所提供的電流。 The current sensing method of claim 13, wherein the power conversion device further includes an offset current coupled to the sensing switch and the first input of the amplifier, and the threshold The current is less than the current provided by the offset current.
TW103144515A 2014-12-19 2014-12-19 Current sensing circuit and method thereof for power converting device TWI669890B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103144515A TWI669890B (en) 2014-12-19 2014-12-19 Current sensing circuit and method thereof for power converting device
CN201510039708.2A CN105991026B (en) 2014-12-19 2015-01-27 Current sensing circuit and method of power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103144515A TWI669890B (en) 2014-12-19 2014-12-19 Current sensing circuit and method thereof for power converting device

Publications (2)

Publication Number Publication Date
TW201624890A true TW201624890A (en) 2016-07-01
TWI669890B TWI669890B (en) 2019-08-21

Family

ID=56984889

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103144515A TWI669890B (en) 2014-12-19 2014-12-19 Current sensing circuit and method thereof for power converting device

Country Status (2)

Country Link
CN (1) CN105991026B (en)
TW (1) TWI669890B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750170B (en) * 2017-05-17 2021-12-21 力智電子股份有限公司 Dc-to-dc controller, dc-to-dc power converter and control method thereof
TWI772032B (en) * 2021-05-21 2022-07-21 茂達電子股份有限公司 Power converter with negative current detection mechanism
TWI798200B (en) * 2018-02-02 2023-04-11 力智電子股份有限公司 Dc-dc converting controller

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572973A (en) * 2009-04-17 2009-11-04 上海晶丰明源半导体有限公司 Circuit and method for improving current precision in LED constant current drive controlled by peak current
TWI509966B (en) * 2010-12-08 2015-11-21 Upi Semiconductor Corp Sensing circuit of power converter
TW201240341A (en) * 2011-03-17 2012-10-01 Anpec Electronics Corp Zero current detecting circuit and related synchronous switching power converter
CN102360234B (en) * 2011-06-21 2013-12-11 成都芯源系统有限公司 Current control circuit and current control method
CN102967755A (en) * 2011-09-01 2013-03-13 鸿富锦精密工业(深圳)有限公司 Inductive current detecting circuit
TWM447633U (en) * 2012-11-01 2013-02-21 Richtek Technology Corp Switching regulator and control circuit thereof
TWI521838B (en) * 2013-01-25 2016-02-11 登豐微電子股份有限公司 Constant on time control circuit and dc-dc converting circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750170B (en) * 2017-05-17 2021-12-21 力智電子股份有限公司 Dc-to-dc controller, dc-to-dc power converter and control method thereof
TWI798200B (en) * 2018-02-02 2023-04-11 力智電子股份有限公司 Dc-dc converting controller
TWI772032B (en) * 2021-05-21 2022-07-21 茂達電子股份有限公司 Power converter with negative current detection mechanism
US11552545B2 (en) 2021-05-21 2023-01-10 Anpec Electronics Corporation Power converter having negative current detection mechanism

Also Published As

Publication number Publication date
CN105991026B (en) 2019-11-26
CN105991026A (en) 2016-10-05
TWI669890B (en) 2019-08-21

Similar Documents

Publication Publication Date Title
JP4765858B2 (en) Temperature detection device
US9837905B2 (en) Switching power supply circuit having a switching element and a free-wheeling element and adapted to turn on or off at least the switching element
TW201707587A (en) Power control circuit and power control for electronic cigarette
JP2010178618A5 (en)
TWI669890B (en) Current sensing circuit and method thereof for power converting device
JP5506281B2 (en) Power supply circuit and electronic equipment
TWI410773B (en) Constant on time switching dc-dc power supply, and control circuit and method thereof
WO2017049710A1 (en) Loop compensation circuit and switching power supply circuit
JP4899528B2 (en) Power supply
JP3610556B1 (en) Constant voltage power supply
TW201925948A (en) Low dropout voltage regulator and power supply device
KR101731652B1 (en) Voltage regulator
US20180054117A1 (en) Control circuit of switching power-supply device and switching power-supply device
US10418896B2 (en) Switching regulator including an offset enabled comparison circuit
JP6395318B2 (en) Switching power supply
KR20170099367A (en) Switching regulator
US8884942B2 (en) Hysteretic mode LED driver with precise average current
JP2008011585A (en) Switching regulator
JP2010220454A (en) Dc-dc converter and semiconductor integrated circuit for control
US8492925B2 (en) Apparatus for charging an external capacitor
JP2019517237A5 (en)
KR102322309B1 (en) Switching power supply
TWI445273B (en) Over current protection circuit
TWI831192B (en) Power supply electronic apparatus and impedance adjustment method thereof
JP2006230038A (en) Linear solenoid driving circuit