TW201623638A - 基於銀奈米粒子之複合太陽能金屬化漿料 - Google Patents

基於銀奈米粒子之複合太陽能金屬化漿料 Download PDF

Info

Publication number
TW201623638A
TW201623638A TW103144538A TW103144538A TW201623638A TW 201623638 A TW201623638 A TW 201623638A TW 103144538 A TW103144538 A TW 103144538A TW 103144538 A TW103144538 A TW 103144538A TW 201623638 A TW201623638 A TW 201623638A
Authority
TW
Taiwan
Prior art keywords
silver
slurry
layer
inorganic material
particles
Prior art date
Application number
TW103144538A
Other languages
English (en)
Inventor
布萊恩 哈汀
詹姆士 潤迪 格羅夫斯
史戴芬T 康娜
約瑟M 波爾蒂利亞
奎格H 彼得斯
Original Assignee
普蘭特太陽能光電公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 普蘭特太陽能光電公司 filed Critical 普蘭特太陽能光電公司
Priority to TW103144538A priority Critical patent/TW201623638A/zh
Publication of TW201623638A publication Critical patent/TW201623638A/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Conductive Materials (AREA)

Abstract

揭露用於半導體裝置之金屬化漿料。該等漿料包含銀奈米粒子、銀微粒以及不可變形之無機材料粒子。已經研發出具體的配製物,該等配製物產生具有低孔隙率和高剝離強度之印刷線。

Description

基於銀奈米粒子之複合太陽能金屬化漿料
本揭露之實施方式涉及用於基於矽之太陽能電池和其他半導體裝置之導電金屬化漿料和墨水。
絲網可印刷的金屬化漿料用於形成與矽光伏打(silicon photovoltaic,PV)電池之電接觸並且用於將PV電池連接在一起。該等電池藉由在金屬化層與經焊料塗布之Cu跨接帶之間形成電接觸而串聯連接。三種主要漿料配製物用於基於矽之PV電池中:1)後側鋁漿料,2)後側銀跨接漿料,以及3)前側銀漿料。圖1係示出基於銀的金屬化漿料100的一實例之簡圖。漿料100具有與溶劑混合的銀粒子110、玻璃粉120以及有機黏合劑130。由DuPontTM(Solamet® PV52A)和由Heraeus(SOL230H)製造的純銀、後跨接漿料的實例包含按重量計45%到66%導電粒子,並且經設計以在絲網印刷、乾燥以及共燒之後降低銀負載量並且具有在3μm與10μm之間的所得厚度。在一些實例中,該等銀粒子係直徑為1μm到3μm之銀薄片與尺寸分佈的直徑範圍為從100nm到5μm的銀球之混合物。由DuPontTM(Solamet®(PV17x)和Heraeus(SOL9235H)製造的純銀、前金屬化漿料之實例包含多於90wt%導電粒子。所述前金屬化漿料包含尺寸範圍在300nm與5μm之間之球形銀粒子。所述漿料經配製以印刷具有高縱橫比、密集地壓緊以改善體電導率並且形成與矽太陽能電池發射極層 的歐姆接觸之線。
在最廣泛商品化之Si太陽能電池架構中,鋁漿料在>95%背側上使用以形成與p型Si的歐姆接觸,從而產生背-表面場以改善PV性能。後側銀跨接漿料佔據未用鋁漿料塗布的區域並且用於促進對Si之強黏附力以及對經焊料塗布的Cu跨接帶之焊接性,因為直接焊接到鋁漿料上具有挑戰性。前側銀漿料經配製以穿過抗反射塗層來形成與前部n型矽之歐姆接觸。在矽PV電池加工過程中,每一漿料層經連續絲網印刷並且在低溫(例如,約100℃到250℃)下被乾燥。該三層一經印刷,整個晶圓在空氣中共燒到650℃到900℃持續大致一秒以形成歐姆接觸並且促使漿料黏附到矽。
基於銀之金屬化漿料由於所要求的Ag量和Ag之商品定價而本身就昂貴,Ag之商品定價在2014年接近$625/kg。基於銀之金屬化漿料係SiPV模組之第二大材料成本,並且經估算PV產業目前使用超過5%的全年銀產量。PV電池產量之持續顯著增加將使用越來越多的銀,長此以往其可能變得過於昂貴並且不可持續。
銀奈米粒子可提供更高壓緊度和更低粗糙度之優勢,這使得能夠使用更薄的印刷膜。已知銀奈米粒子在相對低溫(例如,低於300℃)下變形並燒結,並且已知微米尺寸之銀粒子在玻璃粉(例如PbO和Bi2O3)存在下於更高溫度下變形。製造銀膜電極的一種方法為印刷銀粒子並且加熱它們以形成密集的燒結網狀物。銀粒子之尺寸、玻璃料之組成、燒製溫度以及升溫和降溫速率都是影響所得膜之內應力以及其黏附到具有不同熱膨脹係數的基底(例如矽)能力之重要因素。
已經印刷銀奈米粒子以形成薄膜(即,小於1μm)並且在相對 低溫(即,低於600℃)下退火。然而,由漿料(其中按重量計奈米粒子形成粒子的大部分)製造之厚膜具有高內應力,並且當膜變得厚於500nm時,常常開裂並分層,使得它們無法用作太陽能電池電極(參見J.R.格瑞爾(J.R.Greer),“溶液衍生的奈米粒子銀墨水薄膜的機械表徵(Mechanical characterization of solution-derived nanoparticle silver ink thin films)”,應用物理學雜誌(J.App.Phys.),101,103529(2007))。
圖2A為基底220上的這種銀奈米粒子金屬化層210在燒製之前之示意性截面圖解。圖2B為基底220上的這種銀奈米粒子金屬化層215在燒製之後之示意性截面圖解。儘管可以將銀奈米粒子漿料以層210形式印刷到基底220上,但如圖2B中的層215中示出,層210在燒製之後開裂並且向上捲曲,從而在邊緣處失去與基底220之接觸。該等特徵無法用於燒製到高於700℃的溫度之太陽能電池或任何其他半導體裝置,因為其接觸面積縮小並且傾向於甚至進一步剝離。
需要的是一種提供減少之銀含量、易於加工、黏附良好的金屬化漿料,以及可以持續至少與裝置(其用於該等裝置上)一樣長的使用壽命之線。
揭露一可以用於製造電極之金屬化漿料。該漿料含有占漿料的10wt%到50wt%的多個銀粒子。多於50wt%的銀粒子為具有在10nm與1000nm之間的D50直徑的奈米粒子。該等奈米粒子經配置以在高於500℃的溫度燒製時變形。少於50wt%的銀粒子為其中至少一個尺寸大於1000nm的微粒。該漿料還含有占該漿料和玻璃粉超過10wt%的多個不可變形之無機材料粒子。銀 粒子、不可變形之無機材料粒子以及玻璃粉都在有機載體中混合在一起。相較於常規的厚膜金屬化漿料,這類漿料由於其顯著高的銀奈米粒子組分在此將被稱為“銀奈米粒子漿料”。
在一個安排中,在25℃下以及在4sec-1剪切率下,該金屬化漿料具有在10,000 cP與200,000 cP之間之黏度。在一個安排中,該金屬化漿料具有在30wt%與70wt%之間之固體負載量。該等不可變形之無機材料粒子可由金屬製成,例如鎳(Ni)、鈷(Co)、鋁(Al)、硼(B)或其合金。該等不可變形之無機材料粒子可由以下材料製成,如鋁(Al)、錫(Sn)、鋅(Zn)、鉛(Pb)、銻(Sb)、鎳(Ni)、硼(B)、磷(P)、鎂(Mg)、鉬(Mo)、錳(Mn)、鎢(W)或其合金、複合物或其他組合。在一個安排中,該等不可變形之無機材料粒子可由銅(Cu)製成。該等不可變形之無機材料粒子可由包含至少一種以下元素之氧化物製成,如矽(Si)、硼(B)、鎳(Ni)、鈷(Co)、鋁(Al)、鉬(Mo)、錳(Mn)、鎢(W)、鉻(Cr)、錫(Sn)、鋅(Zn)、鉛(Pb)或銻(Sb)。該等不可變形之無機材料粒子可以是芯-殼粒子,其外殼係由不可變形的無機材料(如在此所述的那些中的任一者)製成的。
在不同安排中,該等銀奈米粒子具有在10nm與500nm之間、在10nm與300nm之間、在10nm與200nm之間或在10nm與100nm之間的D50。在一些安排中,該等銀奈米粒子具有在100nm與800nm之間、在150nm與500nm之間或在150nm與300nm之間之D50範圍。
在不同安排中,該等不可變形之無機材料粒子具有在200nm與1000nm之間、在500nm與1000nm之間或在750nm與1000nm之間之D50範圍。
在另外的其他安排中,該等不可變形之無機材料粒子具有在200nm與2500nm之間、在500nm與2000nm之間或在750nm與1500nm之間之D50範圍。
在本發明的一個實施方式中,該金屬化漿料包含40wt%銀奈米粒子、11wt%銀微粒、21wt%不可變形之無機材料粒子、3wt%玻璃粉以及25wt%有機載體。
在本發明的另一個實施方式中,該金屬化漿料包含33wt%銀奈米粒子、9.5wt%銀微粒、17.5wt%不可變形之無機材料粒子、2wt%玻璃粉以及38wt%有機載體。
在本發明的另一個實施方式中,該金屬化漿料包含33wt%銀奈米粒子、0wt%銀微粒、27wt%不可變形之無機材料粒子、1wt%玻璃粉以及39wt%有機載體。
在本發明的另一個實施方式中,該金屬化漿料包含21wt%銀奈米粒子、4wt%銀微粒、25wt%不可變形之無機材料粒子、3wt%玻璃粉以及47wt%有機載體。
在本發明的另一個實施方式中,該金屬化漿料包含12wt%銀奈米粒子、3wt%銀微粒、35wt%不可變形之無機材料粒子、4wt%玻璃粉以及46wt%有機載體。
在本發明的另一個實施方式中,該金屬化漿料包含40wt%銀奈米粒子、8wt%銀微粒、37wt%不可變形之無機材料粒子、5wt%玻璃粉以及10wt%有機載體。
在此描述了一使用金屬化漿料之方法。該方法涉及將金屬化漿 料塗覆或印刷(例如,絲網印刷或噴墨印刷)到基底表面的至少一部分上。在一個安排中,該金屬化漿料含有占該漿料之10wt%到50wt%之多個銀粒子。多於50wt%的銀粒子為具有在10nm與1000nm之間的D50之奈米粒子。該等奈米粒子經配置以在高於500℃之溫度燒製時變形。少於50wt%的銀粒子為其中至少一個尺寸大於1000nm的微粒。該漿料還含有占該漿料和玻璃粉超過10wt%的多個不可變形之無機材料粒子。該等銀粒子、不可變形之無機材料粒子以及玻璃粉都在有機載體中混合在一起以形成漿料。此方法還可以使用如上所述之更具體的漿料配製物。
塗覆該漿料之後,將基底加熱到100℃與250℃之間持續10秒到900秒以乾燥該金屬化漿料。隨後將基底燒製到650℃與900℃之間的峰值燒製溫度以形成金屬化膜。
基底可以是矽太陽能電池。可塗覆金屬化漿料以在矽太陽能電池的前表面上形成精細格線。可塗覆金屬化漿料以在矽太陽能電池的前表面上形成前匯流條。可塗覆金屬化漿料以在矽太陽能電池的前表面上形成浮動匯流條。可塗覆金屬化漿料以在矽太陽能電池的後表面上形成後跨接結構。
在一個安排中,該金屬化膜具有小於40%的孔隙度。該金屬化膜可具有大於6g/cm3的密度。該金屬化膜可具有3.0×10-8ohm-cm2與1.5×10-7ohm-cm2之間之電阻率。該金屬化膜可具有3微米與10微米之間之厚度。在一個安排中,當使用焊劑和跨接帶焊接時,該金屬化膜具有1N/mm與3N/mm之間之剝離強度。當使用焊劑和跨接帶焊接時,該金屬化膜可替代性地具有大於1N/mm、大於1.5N/mm或大於2N/mm的剝離強度。
在本發明之另一個實施方式中,太陽能電池具有在前表面上具 有多個精細格線的矽基底。在矽基底的前表面上存在至少一個前匯流條層,並且該等前匯電條層處於與多個精細格線的電接觸中。在矽基底的後表面上存在一個鋁層和至少一個後跨接層。多個精細格線、前匯流條層或後跨接層中的至少一個具有由分散在銀基質中的不可變形之無機材料粒子組成的壓縮粒子形態,使得銀與不可變形之無機材料粒子的重量比為約5:1。該等不可變形之無機材料粒子(NIMP)包括鋁(Al)、錫(Sn)、鋅(Zn)、鉛(Pb)、銻(Sb)、鎳(Ni)、硼(B)、磷(P)、鎂(Mg)、鉬(Mo)、錳(Mn)、鎢(W)以及其合金、複合物或其他組合。
如果後跨接層具有上述壓縮粒子形態,當使用基於錫的焊料和焊劑焊接到經錫塗布之銅跨接帶時,該後跨接層具有超過1N/mm之剝離強度。後跨接層可具有3μm與10μm之間之厚度。後跨接層可具有比塊體銀的導電性低2到10倍之導電性。
如果前匯流條層具有上述壓縮粒子形態,當使用基於錫的焊料和焊劑焊接到經錫塗布之銅跨接帶時,該前匯流條層具有超過1N/mm之剝離強度。前匯流條層可具有3μm與50μm之間之厚度。前匯流條層可具有比塊體銀的導電性低2到10倍之導電性。該等前匯流條層可彼此平行。該等前匯流條層之間的距離可以是小於4cm。
在一個安排中,矽基底之前表面具有抗反射塗層,並且前匯流條層不穿過抗反射塗層且不形成與矽基底之電接觸。在一個安排中,矽基底的前表面具有矽發射極層,並且前匯流條層形成與矽發射極層的電接觸。
精細格線可以具有上述壓縮粒子形態。精細格線可以具有20μm與50μm之間的厚度。太陽能精細格線可以具有比塊體銀的導電性低1.5倍到7 倍之導電性。
在一個安排中,矽基底的前表面具有矽發射極層,並且精細網格線形成與矽發射極層的電接觸,其中接觸電阻小於100mohm-cm2
在一個安排中,在精細格線與矽基底之間存在一個額外金屬層。在另一個安排中,在精細格線上方存在一個額外金屬層。這類額外金屬層可以是銀。
100‧‧‧漿料
110‧‧‧銀粒子
120‧‧‧玻璃粉
130‧‧‧有機黏合劑
210‧‧‧層
215‧‧‧層
220‧‧‧基底
310‧‧‧銀粒子;球形;形狀
315‧‧‧直徑
320‧‧‧薄片;薄片粒子
322‧‧‧厚度
324‧‧‧最大尺寸
400‧‧‧無機材料粒子
410‧‧‧芯粒子
420‧‧‧殼
425‧‧‧外表面
510‧‧‧Ag粒子
520‧‧‧無機粒子
700‧‧‧矽太陽能電池
710‧‧‧矽晶圓
720‧‧‧後跨接層
730‧‧‧後接觸點
740‧‧‧後側跨接層
810‧‧‧精細格線
820‧‧‧前匯流條層
900‧‧‧太陽能電池
910‧‧‧抗反射塗層
920‧‧‧精細網格層;精細格線層;精細格線;Ag膜
930‧‧‧複合膜;複合層;第二精細格線層
1000‧‧‧太陽能電池
1020‧‧‧第二層
1030‧‧‧精細格線層
當結合附圖來閱讀以下說明性實施方式之描述時,技術人員將容易領會上述方面和其他方面。
圖1為一銀金屬化漿料(先前技術)之簡圖。
圖2A為基底上的銀奈米粒子金屬化層在燒製之前之示意性截面圖解。
圖2B為基底上的銀奈米粒子金屬化層在燒製之後之示意性截面圖解。
圖3A為示出具有球形形狀之銀粒子。
圖3B為示出具有薄片形狀的銀粒子之示意性圖解。
圖4為根據本發明的一實施方式的芯-殼粒子之示意性平面圖解。
圖5為由燒製包含銀微粒和不可變形之無機材料粒子之漿料而產生的膜之SEM圖像。
圖6為根據本發明的一實施方式由燒製包含銀微粒和不可變形之無機材料粒子的漿料而產生的膜之SEM圖像。
圖7為示出矽太陽能電池後側之簡圖。
圖8為示出矽太陽能電池的前(或照明)側之簡圖。
圖9為示出太陽能電池前表面上的金屬化層的一實施方式之示意性截面圖。
圖10為示出太陽能電池前表面上的金屬化層的另一個實施方式之示意性截面圖。
在用於基於矽的太陽能電池之金屬化情形中展示較佳實施方式。然而,熟練的業內人士將容易理解,在此揭露之材料和方法將可應用於多個其他情形,其中形成與半導電或導電材料的良好電接觸係令人希望的,特別是其中良好黏附和低成本為重要的。
本發明之該等和其他目的和優點將從以下與附圖相結合之描述中更明顯地體現。
定義
在此使用的術語“奈米粒子”意指D50大於1nm而小於1000nm的粒子。D50為一用於定義粒子中值直徑之普通度量值;D50值被定義為當一半粒子數具有該值以下的直徑並且一半粒子數具有該值以上的直徑時的值。D10為10%粒子數的體積在該值以下的值,以及D90為90%粒子數的體積在該值以下的值。典型地用雷射粒徑分析儀(如Horiba LA-300)對小於一微米之粒子進行測量。作為實例,球形粒子分散在很好地將其分開的溶劑中,並且透射光的散射直接相關於從最小到最大尺寸之粒度分佈。表現雷射繞射結果之最常見方法係報告基於體積分佈之D10、D50以及D90值。在不同實施方式中,對奈米粒子之尺寸給出更特定範圍。不同形狀之奈米粒子包括在該定義內,並且其尺寸在此被規定。
在此使用之術語“不可變形之無機材料粒子(NIMP)”意指與玻璃粉一起用於漿料中時在玻璃流動溫度(大致500℃到800℃)下經歷極少變化 或不變化之任何粒子。
在此使用之術語“固體負載量”意指金屬化漿料中固體之量或比例。固體包含銀粒子、不可變形之無機材料粒子(NIMP)以及玻璃料。
D10值和D90值還提供經測量的奈米粒子之聚合度分佈性指示。儘管低聚合度分佈性對於用兩種不同粒徑緊密填充之系統重要,但低聚合度分佈性對於奈米粒子系統不太重要,其中不可變形之無機材料粒子的D50可以比銀奈米粒子之D50大到四倍。
在此使用之術語“孔隙度”意指相比於總膜體積,空白空間的膜體積之百分比。可以藉由將所給出的固體負載量(例如,銀、NIMP以及玻璃料組合物)之加權平均密度與經測量之密度進行比較測量孔隙度,該加權平均密度可以藉由經燒製的膜重量除以膜體積(即,如藉由掃描電子顯微法或原子力顯微鏡測量的經燒製之膜厚度乘以印刷面積)獲得。
在整個揭露中,含有銀奈米粒子、銀微粒以及NIMP的漿料將被稱作銀奈米粒子漿料。
太陽能電池中之金屬化漿料
金屬化漿料用於在太陽能電池上形成以下三個不同層:後跨接、精細格線以及前匯流條。該等層具有分成四種主要類別之不同材料特性:
■焊接性
■剝離強度,
■與矽的歐姆接觸之電阻率,以及
■導電性。
焊接性係藉由在低於400℃溫度下在其之間的熔融金屬焊料之 流動在兩種金屬表面之間形成強力物理鍵結之能力。太陽能電池上的所有焊接均在於空氣中加熱到超過750℃持續大致一秒之後進行,並且此處使用的術語“高溫焊接性”意指在空氣中加熱到超過750℃之後被焊接之能力。高溫焊接性具有比焊接性更嚴格之標準並且排除在加熱到750℃時形成厚氧化物層的金屬之使用。高溫焊接性涉及焊劑的使用,該焊劑係在熔融焊料回焊之前清潔或蝕刻表面中的一個或兩個之任何化學試劑。這變得甚至更困難,因為多種金屬氧化物在超過750℃的氧化之後對通常使用的焊劑具有抵抗性。
對於直接接觸跨接帶的層,如果剝離強度大於1N/mm(牛頓每毫米),那麼該等層適用。剝離強度被定義為以與焊接方向呈180°的角剝離焊接帶所需之力除以焊接帶之寬度。與可商購的太陽能電池中的跨接帶接觸時剝離強度通常在1.5N/mm與3N/mm之間。剝離強度係對太陽能電池的焊接點強度之度量值。
太陽能電池的導電性藉由直接測量太陽能電池上的單獨層之電阻來測定。麥爾(Meier)等人描述如何使用四點探針電子測量來測定各金屬化層之電阻率(參考文獻:麥爾等人“從對成品電池的測量測定串聯電阻的組成(Determining components of series resistance from measurements on a finished cell)”IEEE(2006)第1315頁)。因為基於Ag之金屬化層相對緊密(即,具有低孔隙度),所以金屬化層的體電阻率常常被認為是比金屬化層本身的實際電阻率更適用之度量值。然而,對於一些類型之金屬化漿料,膜並不完全是緊密的。因此,體電阻率可能無法提供印刷厚度相同的不同類型之金屬化漿料之間之精確比較,並且最佳應使用麥爾等人描述之方法測量單獨層之電阻進行精確比較。當描述基於鎳與基於銀的金屬化層之間之電阻率差時,無論比較體電阻率還是 比較如使用麥爾等人描述的四點探針方法測量的單獨層之總測量電阻率,我們意味著絕對最低比率。歐姆接觸電阻率係經燒製的金屬膜與矽表面之間之接觸電阻率量度。接觸電阻率可以藉由轉移長度法(transfer length method,TLM)測量並且處於1到100mΩ-cm2範圍中。
目前在太陽能電池上使用的所有銀的約75%以精細格線和匯流條形式處於矽基底前部之銀漿料中(曝露於日光的側);剩餘25%以後跨接層形式用於背側上。先前技術之前側金屬化漿料包含銀、玻璃粉、黏合劑以及溶劑。一些例示性漿料包含超過80wt%純銀粒子。漿料混合物經配製以經過絲網印刷直接印刷到太陽能電池上,接著乾燥,並且隨後在氧化環境中燒製以蒸發並氧化有機分子以便獲得更高導電性。在一些實例中,前部匯流條和精細格線層在相同絲網印刷步驟過程中沈積。
精細格線的用途係收集來自太陽能電池前側的電流並且將其傳輸到匯流條。因此,重要的是對精細格線使用高度導電材料(例如銀)。當使用兩種或三種匯流條架構時,這一點尤其重要,因為在到達匯流條之前電流在精細格線中行進的距離可以大於一釐米。即使當精細格線為銀時,大致75%的具有兩種匯流條架構的太陽能電池之總串聯電阻來自流經精細格線之電流。
前側經燒製時,銀漿料被設計成用最小量之空隙冷凝並且獲得純銀體電阻率(1.5E-8ohm-m)的1.2倍到1.5倍之體電阻率。前側銀漿料還被設計成用高縱橫比印刷以形成20μm到60μm寬並且20μm到50μm高之精細格線。減小格線的寬度可以藉由使更多矽曝露於日光而改進PV電池的光吸收。提高精細格線的高度可以進一步降低串聯電阻。精細格線還形成與矽之歐姆接觸;如果歐姆接觸具有小於約100mΩ-cm2之電阻,那麼精細格線適用。應該指 出,精細格線並未以物理方式連接到跨接帶上,因此焊接性和剝離強度對於精細格線不是重要的度量值。
匯流條之用途則大為不同。匯流條形成與精細格線和跨接帶二者的歐姆接觸。重要的是前部匯流條層係高溫可焊的,並且很好地黏附到太陽能電池的前側。前部匯流條將電流從精細格線傳遞到銅跨接帶以在一模組中連接多個太陽能電池。重要的是,電流傳輸穿過連續突出匯流條層的厚度(該匯流條層為10μm到20μm厚)豎直地進行,並且在精細格線之情況下不會橫向地進行。因此,雖然可能不明顯,但匯流條可以具有小於銀的100倍的體電導率而不顯著影響太陽能電池的性能。如果前部匯流條層在其焊接到跨接帶之後具有大於1N/mm之剝離強度,那麼該匯流條層適用。
在目前之PV電池架構中,匯流條和精細格線使用相同前側金屬化漿料同時印刷。兩個層都乾燥之後,它們在如上所述之相同條件下燒製,在燒製時間內這兩個層部分地分解氮化矽(抗反射)層並且形成與下層矽的電接觸。匯流條形成與矽的歐姆接觸,其中接觸電阻小於100mΩ-cm2
在一些情況下,浮動匯流條為合需要的。浮動匯流條係不形成與矽之顯著直接電接觸而僅形成與矽太陽能電池前側的精細電子格線的顯著直接電接觸之匯流條。這表示經燒製之浮動金屬匯流條與矽表面之間之接觸電阻率超過0.1Ω-cm2。對於這類匯流條,對並不完全穿過燒製後的抗反射塗層之金屬漿料進行配置。
到目前為止,降低矽太陽能電池前側上的銀使用的嘗試已經涉及完全重新設計前部接觸沈積方法以及改變過程流程。一種最近實施方法係連續電鍍鎳層、銅層以及銀層以形成多層網格。這一方法要求雷射劃線穿過氮化 矽抗反射塗層以暴露矽發射極區之表面,隨後電鍍鹼金屬以形成精細格線和匯流條。首先,電鍍薄鎳層以促使其黏附到矽上。隨後,將更厚導電銅層電鍍到鎳層上。隨後,用薄銀層封蓋堆疊以用於焊接到銅跨接帶。這一方法要求新的、非標準之過程步驟和設備。此外,在太陽能電池的常規使用過程中,這種堆疊對溫度波動可能不具有彈性,這可能導致銅氧化以及銅擴散到矽中。銅擴散尤其麻煩,因為銅擴散可以引起藉由發射極區之局部分流。這一方法的一個其他問題係由於鎳與矽反應,可能形成矽化鎳。太陽能電池之發射極區很薄(例如,50nm到500nm),並且存在矽化鎳可能消耗整個發射極層並且分流太陽能電池的風險。除資金花費和廢棄物處置要求之外,該等問題已經限制矽太陽能電池製造中電鍍過程之採用。
後跨接層的用途係形成與矽背側上的Al層之歐姆接觸。Al層收集來自太陽能電池後側之電流。如果後跨接層係高溫可焊的並且很好地黏附到矽,那麼該後跨接層適用。將後跨接層焊接到銅跨接帶以便將電流從太陽能電池的後側傳輸之跨接帶。重要的是,如上所述,電流傳輸穿過後跨接層之厚度(該後跨接層為3μm到10μm厚)豎直地進行,並且在精細格線之情況下不會橫向地進行。因此,雖然可能不明顯,但後跨接層可以具有小於銀的100倍之體電導率而不顯著影響太陽能電池之性能。總體而言,後跨接層不形成與太陽能電池後側之歐姆接觸。如果後跨接層在其焊接到跨接帶之後具有大於1N/mm之剝離強度,那麼該後跨接層適用。
已經研發出一用於太陽能電池金屬化層之替代漿料。替代漿料具有銀奈米粒子和不可變形之無機材料粒子二者。不同於在金屬化漿料中採用不可變形的材料之先前嘗試,在此描述的配製物可以用於形成對大於500nm的 膜厚度而言具有良好特徵並且高度穩定的金屬化層。這類金屬化層可以在750℃以及更高溫度下燒製、具有良好焊接性和剝離強度、形成與矽之低阻值歐姆接觸並且高度導電。將銀奈米粒子添加到替代金屬化漿料在燒製過程中提供更佳粒子壓緊。但必須注意應添加恰好適合量的銀奈米粒子,因為如上所述,過高比例的奈米粒子可能在乾燥或燒製過程中引起機械故障。與不可變形之無機材料粒子組合的銀奈米粒子的最佳比例即使在高溫下也在燒製之後產生壓緊得極好的膜,使得這類膜理想地用於太陽能電池應用中。
先前技術之銀後跨接金屬化漿料包含微米大小的球形和薄片銀粒子與少量銀奈米粒子(例如,少於銀總重量的20%)之混合物。這類漿料印刷在乾燥後具有相對低密度之膜,但藉由在燒製過程中壓緊了高達40%到50%以形成緊致、牢固之膜。因此,從銀金屬化膜的經驗中顯而易見,僅僅提高奈米與微米銀粒子的比例並不會改進所得膜之總剝離強度。與其相反,提高這類膜中的銀奈米粒子含量可能導致降低之膜品質和更低剝離強度。
用不可變形之無機材料粒子補充這類先前技術的銀金屬化漿料破壞了膜之壓緊;混合的Ag/不可變形的粒子系統在燒製後典型地壓緊了少於20%。這類膜可以具有小於純Ag膜密度之密度,同時導致更低剝離強度。應該指出,當在金屬化漿料中將可變形之微米大小不同形狀之Ag粒子與不可變形之非Ag微米大小之粒子混合時,所得膜為多孔的、並未很好地壓緊並且可能在燒製之後變得甚至更加多孔。在焊接到跨接帶時,與先前技術的銀漿料之剝離強度相比,這類膜常常具有顯著更低剝離強度。儘管已經作出許多努力來降低金屬化漿料之銀含量以便降低成本,但已經展示當不可變形之無機材料粒子取代一些銀內容物時,產生不良品質之膜。
基於先前技術的銀金屬化漿料之經驗,當不可變形之無機材料粒子取代銀微粒時或當銀奈米粒子(相比於銀微粒)之比例升高時,產生的膜具有不可接受之不良品質。出人意料地,已經研發出使用不可變形之無機材料粒子和提高的銀奈米粒子負載量二者的具有巨大優點之新型金屬化漿料。由新型金屬化漿料製造的膜產生的金屬化膜具有在1N/mm與4N/mm之間之剝離強度且成本比先前技術之漿料更低。
在本發明的一個實施方式中,後跨接和前匯流條之銀奈米粒子金屬化漿料包含以下組分:
a.粒子(在30總wt%與70總wt%之間);
- 銀奈米粒子(在10總wt%與40總wt%之間)
- 銀微粒(在0總wt%與10總wt%之間);
- 不可變形之無機材料粒子(在10總wt%與60總wt%之間);
b.玻璃粉(在0.1總wt%與6總wt%之間);以及
c.一有機載體(在25總wt%與60總wt%之間)。
在本發明的另一個實施方式中,前側或精細格線的銀奈米粒子金屬化漿料包含以下組分:
a.粒子(在75總wt%與90總wt%之間);
- 銀奈米粒子(在10總wt%與70總wt%之間)
- 銀微粒(在0總wt%與25總wt%之間);
- 不可變形之無機材料粒子(在10總wt%與80總wt%之間);
b.玻璃粉(在0.1總wt%與6總wt%之間);以及
c.一有機載體(在10總wt%與25總wt%之間)。
在一個安排中,銀奈米粒子具有在約10nm與1000nm之間之D50。銀奈米粒子可以具有小於1000nm、或小於500nm、或小於300nm、或小於200nm、或小於100nm或其中任何範圍之D50。在一個安排中,銀奈米粒子具有在100nm與800nm之間、或在150nm與500nm之間、或在150nm與300nm之間或其中任何範圍之D50。在一個例示性實施方式中,銀奈米粒子粉末為具有100nm的D50、50nm的D10以及300nm的D90之球形。在另一個例示性實施方式中,銀奈米粒子粉末為具有200nm的D50、100nm的D10以及500nm的D90之球形。在另一個例示性實施方式中,銀奈米粒子粉末為具有250nm的D50、100nm的D10以及350nm的D90之球形。應該指出,奈米粒子粉末的聚合度分佈性(即,D10和D90)可以取決於合成技術和供應商而顯著變化。存在若干可以產生可接受的緊密膜之D10和D90等級。
球形銀粒子310的一實例展示於圖3A中。這種粒子僅具有一個尺寸、一直徑,由315表示。示出之球形310說明等軸的形狀-這種形狀的最大尺寸與最小尺寸相同。銀粒子不可能呈現這種完美形狀310,但在本發明之實施方式內大致等軸之形狀係可能的。在一個安排中,銀奈米粒子具有在10nm與1000nm之間的D50直徑315。在一個安排中,銀微粒具有至少一個大於1000nm之尺寸。應該指出,奈米粒子並非必需具有球形形狀。在一些情況下,具有更大表面積並且可以具有降低之熔化溫度之非球形粒子可能更合需要。
薄片粒子320的一實例展示於圖3B中。薄片320具有由其厚度322給出的最小尺寸和由324表示之最大尺寸。同樣,銀粒子不可能將呈現這種 極佳的平面形狀,但在本發明之實施方式內近似於這個形狀係可能的。在一個安排中,薄片粒子具有大於1000nm之最大尺寸324並且可以描述為微粒。
圖3A和圖3B中之形狀僅以說明性實例形式給出並且不打算以任何方式限制銀粒子在上文概述之尺寸界限內可以具有可能形狀。
在超過700℃溫度下燒製時,銀粒子(奈米粒子和微粒二者)變形。變形係銀粒子與含重金屬之玻璃粉在超過玻璃粉之玻璃態化溫度的燒製溫度下相互作用之結果。在這類溫度下,流動玻璃能夠快速擴散、燒結並且使得銀粒子以類似熔化方式重組。用包含這類粒子的漿料製造的膜之形態在燒製之後由於因玻璃流動導致之沈降以及銀之晶粒聚結而降低空隙空間。
漿料中的第三粒子組分係不可變形之無機材料粒子(NIMP)。該等粒子在玻璃粉中不是高度可溶的並且在玻璃流動溫度(在約500℃與800℃之間)下經歷極少變化或不變化。在一個實施方式中,不可變形之粒子包含具有高於800℃之熔點並且對玻璃為化學上惰性之均勻材料。在另一個實施方式中,不可變形之粒子具有複合芯-殼形態,其中惰性殼包圍熔化的或與玻璃相互作用之材料,以使得全部粒子在玻璃流動溫度下充當不可變形之材料。不可變形之無機材料粒子的實例包含純的或經塗布的鋁(Al)、錫(Sn)、鋅(Zn)、鉛(Pb)、銻(Sb)、鎳(Ni)、硼(B)、磷(P)、鎂(Mg)、鉬(Mo)、錳(Mn)、鎢(W)的粒子以及其合金、複合物或其他組合。在一個安排中,不可變形之無機材料粒子可以由銅(Cu)製成。另外,不可變形之無機材料粒子還包含具有至少一種以下元素之氧化物,如矽(Si)、硼(B)、鎳(Ni)、鈷(Co)、鋁(Al)、鉬(Mo)、錳(Mn)、鎢(W)、鉻(Cr)、錫(Sn)、鋅(Zn)、鉛(Pb)或銻(Sb)。在一些安排中,不可變形之無機材料粒子不包含Ag。如果小心確保在 漿料中的NIMP與玻璃粉之間存在化學相容性,那麼這尤其適用。
圖4係根據本發明的一實施方式之芯-殼或經塗布之不可變形之無機材料粒子400之簡圖。存在由第一殼420包圍之芯粒子410。殼420的外表面425也被示出。芯粒子410可以由上文所列的金屬或合金中的任一者製成。第一殼420可以由上文所列的任何不可變形之無機材料製成。
一種改善銀奈米粒子圍繞不可變形之無機材料粒子流動之途徑係用銀塗布不可變形之無機材料粒子。銀塗層可以是非保形的(如用銀奈米粒子邊飾(decoration))或保形的(如具有例如藉由還原反應形成的薄銀殼)。奈米粒子邊飾對於熟習該項技術者係已知技術,藉由奈米粒子邊飾,直徑在1nm與50nm之間的較小的銀奈米粒子可以在單個或多個層中連接到其他較大粒子上。用銀塗布不可變形之無機材料粒子還將類似於可商購的那些銀奈米粒子之配位基引入不可變形之無機材料粒子之表面上,由此在有機載體中確保類似含量之分散液。在一例示性實施方式中,不可變形之無機鎳粒子使用行業標準慣例首先經鎳硼殼塗布而隨後經銀保形殼塗布。
在一些安排中,不可變形之無機材料粒子包括可能粒子之混合物,如不同金屬的粒子和合金粒子、或金屬與合金二者之粒子以及氧化合物之粒子。
在一個安排中,不可變形之無機材料粒子具有在約200nm與2500nm之間之D50。不可變形之無機材料粒子可以具有小於2500nm、或小於2000nm、或小於1500nm、或小於1000nm、或小於500nm或其中任何範圍之D50。在一個安排中,不可變形之無機材料粒子具有在500nm與2000nm之間、或在750nm與1500nm之間或其中任何範圍之D50。在一個例示性實施方式中, 不可變形之無機材料粒子為具有500nm的D50、200nm的D10以及1000nm的D90之球形。在另一個例示性實施方式中,不可變形之無機材料粒子粉末為具有1000nm的D50、600nm的D10以及2000nm的D90之球形。在另一個例示性實施方式中,不可變形之無機材料粒子粉末為具有2500nm的D50、1200nm的D10以及4000nm的D90之球形。應該指出,奈米粒子粉末之聚合度分佈性(即,D10和D90)可以取決於合成技術和供應商而顯著變化。存在若干可以產生可接受的密實膜之D10和D90等級。
銀奈米粒子、銀微粒以及不可變形之無機材料粒子都與玻璃粉和有機載體(還包含黏合劑)混合在一起以形成漿料。在一個安排中,該漿料適於絲網印刷。在另一個安排中,該漿料適於噴墨印刷。在本發明各種實施方式中,包括所有粒子的該漿料之總固體組分為在30wt%與90wt%之間、或在30wt%與75wt%之間、或在40wt%與60wt%之間或其中任何範圍。在不同安排中,如藉由黏度計在25℃下以及在4sec-1剪切率下所測量,對於可絲網印刷之漿料而言,該漿料具有在10,000 cP與200,000 cP之間或其中任何範圍之黏度,或對於可噴墨印刷的漿料而言,該漿料具有在1 cP與10,000 cP之間或其中任何範圍之黏度。
在多個實施方式中,由燒製銀奈米粒子金屬化漿料產生之膜被稱為Ag/NIMP複合層或膜。在本發明的一些實施方式中,由燒製在此揭露之金屬化漿料製造的膜具有小於40%、小於30%、小於20%或小於10%之孔隙率。在本發明的一些實施方式中,由在此揭露的金屬化漿料製造之膜具有超過6g/cm3、超過7g/cm3、超過8g/cm3、或超過9g/cm3或其中任何範圍之密度。在一個安排中,金屬化膜具有在3.0×10-8ohm-cm2與1.5×10-7ohm-cm2之間或其 中任何範圍之電阻率。
一些例示性銀奈米粒子金屬化漿料配製物在下表I中給出。
金屬化漿料的剩餘非銀部分由有機載體和玻璃粉組成。可商購之玻璃粉(例如,Ceradyne產品#V2027)以及其他添加劑可以在前側金屬化漿料中使用以穿過抗反射塗層、改進銀燒結並且形成與經摻雜的矽之歐姆接觸。玻璃粉可以是鉍、鋅、碲、鈉、鋰、鉛以及矽的氧化物之混合物,其中最終比率和組成變化以獲得在500℃與800℃之間之熔點。矽中發射極區的摻雜密度以及金屬化漿料中之添加劑可以相對於彼此調節以使電接觸達到最佳。有機載體係有機溶劑與黏合劑之混合物。有機載體可以取決於確切之漿料沈積條件而調節。金屬化漿料的黏度可以藉由調節有機載體中有機黏合劑和溶劑的量以及藉由包含觸變添加劑、有機黏合劑以及溶劑來調諧。以此方式,可以製造不同漿料來塗覆塗層,塗層的經燒製厚度可以在約3μm與10μm之間或在約3μm與15μm之間(例如,用於後跨接和前匯流條層)以及在約20μm與50μm之間(例如用於前側或精細格線)變化。應該指出,有可能藉由在先前印刷線上反復印刷而形成厚得多的膜。常用塗布溶劑包括松油醇以及二醇醚家族(二乙二醇單丁基醚、三乙二醇單丁基醚以及醇酯十二(texanol))。常用有機黏合劑包括乙基纖維素、羧甲基纖維素、聚(乙烯醇)、聚(乙烯)以及聚(乙烯吡咯啶酮)。
第一金屬化漿料係由銀/不可變形之無機材料粒子漿料製造的,其中漿料中銀內容物占微米尺寸粒子(即,銀薄片和1μm尺寸的球形)之大部分(按重量計)。將漿料塗覆到矽晶圓並且在快速熱退火器中燒製到800℃之峰值燒製溫度。圖5係所得膜之SEM圖像。如在圖5中可看出,膜係相對多孔的。微米尺寸之Ag粒子510並未完全包圍不可變形之無機粒子520。發現一些NIMP完全未連接到銀基質,並且容易區分出最小尺寸超過100nm之孔隙。此外,銀區域彼此間隔500nm到5μm,形成具有大節點和低連通性之基質。由該等替代金屬化漿料形成的膜之孔隙率為30%到50%。該等膜具有小於1.5N/mm之剝離強度。
根據本發明的一實施方式,第二金屬化漿料係由奈米銀/不可變形之無機材料粒子漿料製造的,其中漿料中的銀內容物占奈米粒子之大部分(按重量計)。將漿料塗覆到矽晶圓並且在快速熱退火器中燒製到800℃之峰值燒製溫度。圖6係所得膜之SEM圖像。如在圖6中可看出,該膜用低視孔隙率密集地裝填。難以區分單獨的不可變形之無機材料粒子,因為銀粒子已經大面積覆蓋了該等不可變形之無機材料粒子。銀基質與NIMP周圍的許多點以小節點和高連通性連接。由銀奈米粒子漿料產生的經燒製的膜通常具有在15%與35%之間之孔隙率。該等膜具有超過4N/mm之剝離強度。
圖5和圖6中示出之膜由具有類似固體負載量(70wt%到75wt%)、玻璃料濃度(2wt%到3wt%)以及銀與不可變形的無機粒子重量比(70:30)之漿料製造。然而,由於圖6中漿料中的銀奈米粒子之高負載量,該膜更加緻密並且具有顯著更高剝離強度。
使用銀奈米粒子後跨接漿料之太陽能電池製造
圖7係示出矽太陽能電池700的後側之簡圖。該後側用鋁後接觸點730塗布並且具有分佈在矽晶圓710上的後側跨接層740。太陽能電池上之金屬化層藉由首先印刷前側銀漿料、隨後印刷銀後跨接漿料以及接著印刷鋁漿料來製造。各漿料在100℃與250℃之間單獨地乾燥持續10秒到900秒,隨後在650℃與900℃之間的峰值溫度下共同燒製大致一秒。
在某些實施方式中,矽太陽能電池藉由將經錫焊料塗布之銅跨接帶焊接到前匯流條以及後跨接層來彼此連接。在前匯流條和後跨接層上沈積商業上稱為RMA(例如Kester® 186)或者R(例如Kester® 952)之助焊劑。隨後將在1.3mm與3mm寬以及100μm與300μm厚之間之鍍錫銅帶放在太陽能電池上並且在200℃與400℃之間之溫度下用焊鐵接觸到前匯流條和後跨接層。在這個加工過程中形成的焊料接頭具有超過1N/mm之平均剝離強度(例如,一個2mm之跨接帶將要求超過2N之剝離力來移位該跨接帶)。
在此揭露的銀奈米粒子金屬化漿料能夠以滴劑形式使用以替代商用的基於Ag的漿料來形成後跨接層。在一個實施方式中,將可商購之前側金屬化漿料絲網印刷到太陽能電池之前側上並且在100℃到250℃下乾燥以在該晶圓之前表面上形成精細格線和匯流條層。隨後將銀奈米粒子金屬化後跨接漿料(如在表I中描述的那些中之任一者)絲網印刷到太陽能電池的背側上並且在100℃到250℃下乾燥以形成後跨接層720。接著印刷並乾燥後部鋁漿料,並且在空氣中將整個晶圓共燒到650℃到900℃持續大致一秒。
用於太陽能電池的後跨接層之Ag/NIMP漿料可以具有高於純Ag漿料若干倍的體電阻率但具有與純Ag漿料等同之功率轉換效率。表II示出對用純Ag漿料製造之單晶太陽能電池和前側上用純Ag漿料製造而後跨接層使 用Ag/NIMP漿料的那些太陽能電池的10個太陽能電池取平均值而得出的關鍵光伏特性。特性包括開路電壓(Voc)、短路電流(Isc)、短路電流密度(Jsc)、填充因數(FF)、效率(Eff)、理想因數(n-因數)、串聯電阻(RSERIES)以及分流電阻(RSHUNT)。Ag/NIMP漿料包含超過25wt% Ag奈米粒子和超過20wt% NIMP,NIMP為具有Ni芯和Ni:B殼之芯殼粒子。對於所有關鍵PV電池度量值(包含功率轉換效率、開路電壓以及短路電流)而言,Ag/NIMP具有幾乎相同之電子特性和標準差。
使用銀奈米粒子前匯流條漿料之太陽能電池製造
在此揭露的銀奈米粒子金屬化漿料能夠以滴劑形式使用以替代商用的基於Ag之漿料來形成前匯流條層。圖8係示出根據本發明的一實施方式的矽太陽能電池的前(或者照明)側之簡圖。在一個實施方式中,對可商購的前側金屬化漿料進行絲網印刷並且在100℃到250℃下乾燥形成精細格線810。隨後對銀奈米粒子前匯流條漿料進行絲網印刷並且在100℃到250℃下乾燥形成前匯流條層820。接著如上所述印刷並乾燥後跨接漿料和後部鋁漿料,並且在空氣中將整個晶圓共同燒製到650℃到900℃持續大致一秒。在一個安排中,共同燒製之後,絲網印刷的前匯流條塗層在約3μm與15μm之間之厚度中變化。前匯流條層具有導電性比塊體銀低2倍到10倍之體電導率,塊體銀具有約1.5E-8ohms-m之體電阻率。所得前匯流條層的形態係壓縮粒子形態,這一形態被定義 為含有分散的NIMP、來自玻璃粉的元素及/或來自玻璃粉和矽的反應產物之燒結並且壓緊之銀基質。燒結並且壓緊之銀膜被定義為具有孔隙率低於隨機裝填堅硬球形的區域之緊密裝填球形銀或者變形之球形銀區域,並且銀區域之間的接觸面積高於緊密裝填堅硬球形之情況。一些實施方式之形態還可以描述為具有分散NIMP的燒結並且壓緊之銀基質。取決於所希望之導電性和剝離強度,所得前匯流條層可以具有1:9、或1:1、或5:1之銀與不可變形之無機材料粒子(Ag:NIMP)之重量比。精細格線及/或後部跨接層還可以具有1:9、或1:1、或5:1的銀與不可變形之無機材料粒子(Ag:NIMP)之重量比。
圖9係示出根據本發明的一實施方式之太陽能電池前側上的金屬化之示意性截面圖。圖9示出前側上用抗反射塗層910塗布之太陽能電池900。將銀漿料塗覆到抗反射塗層910形成燒穿抗反射塗層之精細格線920。該等格線可以具有約10μm與50μm之間之厚度。精細網格層920可存在於橫截面中並且在頁面穿進和穿出。隨後對銀奈米粒子前匯流條漿料進行絲網印刷並且在100℃到250℃下乾燥以在精細格線層920上方形成第二精細格線層930並且另外形成前匯流條層(未示出)。因此,兩個層在太陽能電池910之前側上構成堆疊之精細網格層。堆疊的精細網格層在抗反射塗層之表面上具有Ag膜920和可用於接觸跨接帶之NIMP/Ag複合膜930。精細格線920上的中等導電之NIMP/Ag複合層930可以進一步降低精細格線之總串聯電阻,因為電流在該等層之間並聯行進。在一例示性實施方式中,堆疊的精細網格層具有體電阻為純Ag體電阻的20μm厚之Ag層和體電阻為純Ag體電阻2倍的20μm厚之NIMP/Ag複合層,並且具有比僅單個Ag層的電阻低67%之總電阻。
圖10係示出根據本發明的另一個實施方式之太陽能電池1000 的前側上的金屬化層和晶圓之示意性截面圖,其中沈積順序係顛倒的。將銀奈米粒子前匯流條漿料絲網印刷到太陽能電池1000上並且隨後在100℃到250℃下乾燥,形成前匯流條層(未示出)並且形成用於堆疊之精細格線結構之第一精細格線層1030。接著,在精細格線層1030上方塗覆銀漿料形成第二層1020。因此,所得堆疊之精細格線層在太陽能電池1000的表面上具有Ag/NIMP複合膜和可用於接觸跨接帶之銀膜。同樣,中等導電的Ag/NIMP複合層1030降低精細格線之總串聯電阻,因為電流在該等層之間並聯行進。
其他PV電池架構
銀奈米粒子漿料可以用於其他更加複雜之SiPV架構中,如發射極穿孔捲繞(emitter wrap through)和選擇性發射極電池架構。其他實例包括僅精細格線(無匯流條)經印刷之架構以及那些使用細線網路技術在模組中連接電池之架構。上述金屬化漿料還可以用於金屬穿孔捲繞(metal wrap through)以及鈍化之發射極後部接觸(passivated emitter rear contact,PERC)太陽能電池。在此描述之銀奈米粒子漿料能夠以滴劑形式使用以在目前使用Ag漿料之任何應用中替代基於Ag之漿料。
太陽能電池上的精細格線負責形成與矽發射極層的良好電接觸並且將電流從發射極經數釐米距離傳輸到太陽能電池之匯流條。兩種重要材料特性影響太陽能電池上的精細格線設計:精細格線與發射極層之間之體電阻率和接觸電阻。當精細格線高度導電(例如,在塊體Ag之兩倍因數以內,塊體Ag係導電性最好的元素)時,隨後格線可以製造得更薄以降低遮蔭(shading)損失。玻璃料和其他添加劑可以用於金屬化漿料中以燒穿抗反射塗層並且形成與經摻雜的矽之歐姆接觸。金屬化漿料中的添加劑確定發射極形成良好電接觸 所要求之最小摻雜密度。發射極之摻雜密度還影響矽太陽能電池上的最佳網格間距。
對於目前標準的兩個和三個匯流條的矽太陽能電池,太陽能電池的總串聯電阻可以藉由單獨精細格線之串聯電阻來控制。作為實例,對於兩個匯流條之電池,即15%多晶PV電池,來自精細格線的串聯電阻占總串聯電阻的73%(D.L.麥爾“從對成品電池的測量測定串聯電阻之組成”IEEE(2006)第1315頁)。精細網格層已經由純Ag粒子組成並且具有導電性比塊體銀低1.1倍到2倍之體電導率,塊體銀具有約1.5E-8ohms-m的體電阻率。如等式(1)中示出,精細格線的串聯電阻與匯流條(a)之間之間距、體電阻率(pf)、精細格線厚度(t)以及精細格線寬度(w)成比例。應該指出,匯流條數量增加兩倍因數使精細格線之串聯電阻減少四倍。
下表III強調了匯流條之數量對精細格線之串聯電阻之作用。對於大量匯流條(例如,>4),串聯電阻顯著降低。當一個六吋太陽能電池具有四個或更多個匯流條時,該等匯流條之間之間距小於4cm或小於2cm。
藉由將額外匯流條添加到太陽能電池,可以降低每個跨接帶之電流,由此降低模組中之總功率損耗。藉由增大太陽能電池上之匯流條密度, 可以大幅度降低電流必須沿精細格線行進的平均距離,這可以降低該電池之總串聯電阻。這還允許將金屬化層用於導電性低於銀之精細格線。如果使用具有比銀略高的體電阻率之精細格線,那麼有可能藉由添加更高密度之匯流條來抵消那些損耗。
使用Ag/NIMP精細格線之太陽能電池製造
在一個實施方式中,對銀奈米粒子漿料進行絲網印刷並且在100℃到250℃下乾燥形成精細格線和前匯流條層。接著印刷並乾燥後Ag漿料和後鋁漿料層,並且在空氣中將整個晶圓燒製到650℃到900℃持續大致一秒形成電阻接觸並且促進黏附。所得精細格線層的形態係包括銀相和由NIMP產生的相之壓縮粒子形態,該銀相可以包含來自玻璃粉之元素。該等相可以使用x射線繞射法測量並且可以使用能量色散x射線光譜法看到單獨元素組成。取決於所希望的導電性和剝離強度,所得精細格線層可以具有1:9、或1:1、或4:1 的銀與NIMP(Ag:NIMP)之重量比。
在一個安排中,經絲網印刷的塗層在約20μm與50μm之間之厚度中變化並且在100℃到250℃下乾燥。應該指出,有可能藉由使用連續印刷步驟形成更厚之膜。所得精細格線層具有比純銀的體電阻率低1.5倍到7倍之導電性。
上文已經描述金屬化漿料之主要組分。取決於用於不同應用的所希望之導電性,銀粒子與NIMP之比率可以從按重量計1:9(即,10wt% Ag粒子比90wt%芯-殼NIMP)變化到按重量計4:1(亦即,80wt% Ag粒子比20wt% NIMP)。在不同實施方式中,NIMP之分數在約80wt%與20wt%之間、在約70wt%與30wt%之間或在約60wt%與40wt%之間。在不同實施方式中,銀粒子與NIMP之重量比為在約1:9與4:1之間、約1:5與4:1之間、在約3:7與7:3之間、在約2:3與3:2之間或為約1:1。當絲網印刷、在100℃到250℃下乾燥大致三分鐘並且在空氣中快速燒製到650℃到900℃時,該等漿料在基底上形成壓縮粒子網路,即其體積在燒製過程中藉由一個或多個過程(如載體蒸發、燒結等)縮小。在一些實施方式中,膜厚度在約4μm與50μm之間,其中在絕緣基底上使用四點凡德波爾法(four point Van der Pauw)測量出體電阻率比純Ag高1.5倍到10倍。體電阻率取決於NIMP:Ag的重量比以及玻璃粉之選擇。在另一個安排中,膜具有超過銀的體電阻率(1.5E-8ohms-m)1.5倍到7倍之體電阻率。在另一個安排中,膜具有在約2 E-8ohms-m與10 E-8ohms-m之間之體電阻率。
在另一個實施方式中,同一漿料組合物經印刷同時用於兩個前側層並且在技術上將被視為前側漿料。還存在可以沈積到矽太陽能電池上的基 於NIMP和Ag的漿料之多個不同組合。一個實例為在用Ag漿料製造精細格線的同時使用銀奈米粒子漿料形成前匯流條和後跨接電極二者。可以使用上文描述的三種類型的銀奈米粒子金屬化漿料製造多個不同的架構。
已在此非常詳細地描述了本發明,以便為那些熟習該項技術者提供與根據需要應用該等新穎原理並構造且利用這類專用之元件相關之資訊。然而,需要理解的是本發明能夠藉由不同裝置、材料和設備執行,並且在不偏離本發明本身的範疇情況下能實現關於裝置和操作程序二者之各種修改。
210‧‧‧層
220‧‧‧基底

Claims (21)

  1. 一種金屬化漿料,該金屬化漿料包含:多個銀粒子,該等銀粒子占該漿料的10wt%與50wt%之間,其中;超過50wt%的該等銀粒子係具有在10nm與1000nm之間的D50直徑之奈米粒子,該等奈米粒子經配置以經超過500℃之溫度燒製後變形;以及少於50wt%的該等銀粒子係其中至少一個尺寸超過1000nm之微粒;多個不可變形之無機材料粒子,該等不可變形之無機材料粒子占該漿料的超過10wt%;以及玻璃粉;其中該等銀粒子、該等不可變形之無機材料粒子以及該等玻璃粉都在一有機載體中混合在一起。
  2. 如請求項1所述之金屬化漿料,其中該漿料在25℃以及4sec-1的剪切率下具有在10,000 cP與200,000 cP之間之黏度。
  3. 如請求項1所述之金屬化漿料,其中該等銀粒子和該等不可變形之無機材料粒子一起占該漿料的30wt%與70wt%之間。
  4. 如請求項1所述之金屬化漿料,其中該等銀粒子和該等不可變形之無機材料粒子一起占該漿料的75wt%與90wt%之間。
  5. 如請求項1所述之金屬化漿料,其中該等不可變形之無機材料粒子包含任何一種或多種選自由以下各項組成之群組之金屬:鎳(Ni)、鈷(Co)、硼(B)、鋁(Al)、錫(Sn)、鋅(Zn)、鉛(Pb)、銻(Sb)、磷(P)、 鎂(Mg)、鉬(Mo)、錳(Mn)、鎢(W)或其合金、複合物或其他組合。
  6. 如請求項1所述之金屬化漿料,其中該等不可變形之無機材料粒子包括一種氧化物,該氧化物包含至少一種選自由以下各項組成之群組之元素:矽(Si)、硼(B)、鎳(Ni)、鈷(Co)、鋁(Al)、鉬(Mo)、錳(Mn)、鎢(W)、鉻(Cr)、錫(Sn)、鋅(Zn)、鉛(Pb)以及銻(Sb)。
  7. 如請求項1所述之金屬化漿料,其中該等不可變形之無機材料粒子包括具有一由不可變形之無機材料製成的外殼之芯-殼粒子。
  8. 如請求項1所述之金屬化漿料,其中該等銀奈米粒子具有在10nm與300nm之間的D50。
  9. 如請求項1所述之金屬化漿料,其中該等不可變形之無機材料粒子具有在500nm與1000nm之間的D50範圍。
  10. 一種太陽能電池,該太陽能電池包含:具有一前表面和一後表面的一矽基底;在該矽基底之該前表面上之多個精細格線;在該矽基底的該前表面上的至少一個前匯流條層,該前匯流條層與該等精細格線電接觸;在該矽基底的該後表面上的一鋁層;以及在該矽基底的該後表面上的至少一個後跨接層;其中該等精細格線、該等前匯流條層或該後跨接層中的至少一個包含: 由分散在一銀基質中的不可變形之無機材料粒子組成的一壓縮粒子形態,從而使銀與不可變形之無機材料粒子之重量比係5:1其中該等不可變形之無機材料粒子包含鋁(Al)、錫(Sn)、鋅(Zn)、鉛(Pb)、銻(Sb)、鎳(Ni)、鈷(Co)、硼(B)、磷(P)、鎂(Mg)、鉬(Mo)、錳(Mn)、鎢(W)以及其合金、複合物或其他組合。
  11. 如請求項10所述之太陽能電池,其中該後跨接層包括由分散在一銀基質中的不可變形之無機材料粒子組成的一壓縮粒子形態並且具有在3μm與10μm之間之厚度。
  12. 如請求項11所述之太陽能電池,其中當被使用基於錫的焊料和焊劑焊接到經錫塗布之銅跨接帶時,該後跨接層具有超過1N/mm之剝離強度。
  13. 如請求項10所述之太陽能電池,其中該等前匯流條層包括由分散在一銀基質中的不可變形之無機材料粒子組成的一壓縮粒子形態並且具有在3μm與15μm之間之厚度。
  14. 如請求項13所述之太陽能電池,其中當被使用基於錫的焊料和焊劑焊接到經錫塗布之銅跨接帶時,該等前匯流條層具有超過1N/mm之剝離強度。
  15. 如請求項13所述之太陽能電池,其中該矽基底之該前表面具有一抗反射塗層,並且該等前匯流條層不穿過該抗反射塗層且不形成與該矽基底之電接觸。
  16. 如請求項13所述之太陽能電池,其中該矽基底的該前表面具有一矽發射極層,並且該等前匯流條層形成與該矽發射極層之電接觸。
  17. 如請求項13所述之太陽能電池,其中該等前匯流條層係彼此平行的並且該等前匯流條層之間的距離小於4cm。
  18. 如請求項10所述之太陽能電池,其中該等精細格線包括由分散在一銀基質中的不可變形之無機材料粒子組成的一壓縮粒子形態並且具有在20μm與50μm之間之厚度。
  19. 如請求項18所述之太陽能電池,其中該矽基底的該前表面具有一矽發射極層,並且該等精細網格線形成與該矽發射極層之電接觸,其中接觸電阻小於100mohm-cm2
  20. 如請求項18所述之太陽能電池,其中在該等精細格線與該矽基底之間存在一額外金屬層,並且其中該額外金屬層由銀組成。
  21. 如請求項18所述之太陽能電池,其中在該等精細格線上方存在一額外金屬層,並且其中該額外金屬層由銀組成。
TW103144538A 2014-12-19 2014-12-19 基於銀奈米粒子之複合太陽能金屬化漿料 TW201623638A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103144538A TW201623638A (zh) 2014-12-19 2014-12-19 基於銀奈米粒子之複合太陽能金屬化漿料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103144538A TW201623638A (zh) 2014-12-19 2014-12-19 基於銀奈米粒子之複合太陽能金屬化漿料

Publications (1)

Publication Number Publication Date
TW201623638A true TW201623638A (zh) 2016-07-01

Family

ID=56984571

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103144538A TW201623638A (zh) 2014-12-19 2014-12-19 基於銀奈米粒子之複合太陽能金屬化漿料

Country Status (1)

Country Link
TW (1) TW201623638A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114269494A (zh) * 2019-08-26 2022-04-01 京瓷株式会社 银粒子、银粒子的制造方法、膏组合物、半导体装置以及电气电子部件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114269494A (zh) * 2019-08-26 2022-04-01 京瓷株式会社 银粒子、银粒子的制造方法、膏组合物、半导体装置以及电气电子部件

Similar Documents

Publication Publication Date Title
US20150243812A1 (en) Silver nanoparticle based composite solar metallization paste
US9698283B2 (en) Core-shell nickel alloy composite particle metallization layers for silicon solar cells
US9331216B2 (en) Core-shell nickel alloy composite particle metallization layers for silicon solar cells
EP2625722B1 (en) Cu paste metallization for silicon solar cells
JP5957546B2 (ja) 導電性組成物
JPWO2008078374A1 (ja) 太陽電池用導電性ペースト
WO2016099562A1 (en) Silver nanoparticle based composite solar metallization paste
TW200727503A (en) Electroconductive thick film composition(s), electrode(s), and semiconductor device(s) formed therefrom
US20110186121A1 (en) Metal-containing composition, method for producing electrical contact structures on electrical components and also electrical component
TWI447186B (zh) 用於太陽能電池上部電極之漿料組成物與包括其之太陽能電池
CN106169318A (zh) 导电膏组合物、导电结构及其形成方法
TW201737502A (zh) 導電性膏及太陽能電池
CN111557036B (zh) 太阳能电池电极用导电性浆料以及使用上述浆料制造的太阳能电池
CN109524482B (zh) 具有多个离散熔块的导电厚膜浆料及其应用
TWI660516B (zh) 機械性變形的金屬粒子
KR101633192B1 (ko) 태양전지의 전면 전극 및 이의 제조 방법
CN111630012B (zh) 太阳能电池电极用导电性浆料以及包含于上述导电性浆料中的玻璃熔块、还有太阳能电池
JP4126215B2 (ja) 太陽電池セルの製造方法
TW201724545A (zh) 用於矽太陽能電池的銀-鉍非接觸金屬化膏劑
TW201623638A (zh) 基於銀奈米粒子之複合太陽能金屬化漿料
CN109661707B (zh) 导电浆料及其制造方法、以及太阳能电池的制造方法
Lee et al. Conductive copper paste for crystalline silicon solar cells
Adachi et al. Development of innovative application films for silicon solar cells using a copper–phosphorus alloy by an atmospheric sintering process
WO2009145386A1 (en) Environment-friendly paste for electrode of solar cell and solar cell using the same
JPH0518268B2 (zh)