TW201623174A - Glass, glass material for press molding, optical element blank, and optical element - Google Patents

Glass, glass material for press molding, optical element blank, and optical element Download PDF

Info

Publication number
TW201623174A
TW201623174A TW104136795A TW104136795A TW201623174A TW 201623174 A TW201623174 A TW 201623174A TW 104136795 A TW104136795 A TW 104136795A TW 104136795 A TW104136795 A TW 104136795A TW 201623174 A TW201623174 A TW 201623174A
Authority
TW
Taiwan
Prior art keywords
glass
content
total content
ratio
refractive index
Prior art date
Application number
TW104136795A
Other languages
Chinese (zh)
Other versions
TWI610900B (en
Inventor
根岸智明
Original Assignee
Hoya股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya股份有限公司 filed Critical Hoya股份有限公司
Publication of TW201623174A publication Critical patent/TW201623174A/en
Application granted granted Critical
Publication of TWI610900B publication Critical patent/TWI610900B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/10Compositions for glass with special properties for infrared transmitting glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

An embodiment of the present invention relates to a glass which is an oxide glass in which, in terms of cation %, the total content of B3+ and Si4+ is 43-65%, the total content of La3+, Y3+, Gd3+, and Yb3+ is 25-50%, the total content of Nb5+, Ti4+, Ta5+, and W6+ is 3-12%, the Zr4+ content is 2-8%, the cation ratio of the total content of B3+ and Si4+ with respect to the total content of La3+, Y3+, Gd3+, and Yb3+ is 0.70-1.75, the cation ratio of the total content of B3+ and Si4+ with respect to the total content of Nb5+, Ti4+, Ta5+, and W6+ is 9.00 or less, the cation ratio of the Zn2+ content with respect to the total content of La3+, Y3+, Gd3+, and Yb3+ is less than 0.2, the cation ratio of the La3+ content with respect to the total content of La3+, Y3+, Gd3+, and Yb3+ is 0.50-0.95, the cation ratio of the Y3+ content with respect to the total content of La3+, Y3+, Gd3+, and Yb3+ is 0.10-0.50, the cation ratio of the Gd3+ content with respect to the total content of La3+, Y3+, Gd3+, and Yb3+ is 0.10 or less, the cation ratio of the Nb5+ content with respect to the total content of Nb5+, Ti4+, and W6+ is 0.80 or greater, the cation ratio of the Ta5+ content with respect to the total content of Nb5+, Ti4+, Ta5+, and W6+ is 0.20 or less, the Abbe number of the oxide glass is in the range of 39.5-41.5, and the refractive index nd of the oxide glass satisfies the relationship nd ≥ 2.0927-0.0058 x [nu]d with respect to the Abbe number νd.

Description

玻璃、壓製成型用玻璃材料、光學元件坯件及光學元件 Glass, glass material for press molding, optical component blanks and optical components

本發明關於一種玻璃、壓製成型用玻璃材料、光學元件坯件及光學元件。 The present invention relates to a glass, a glass material for press molding, an optical element blank, and an optical element.

由高折射率低色散玻璃構成的透鏡藉由與由超低色散玻璃構成的透鏡等組合而成為膠合透鏡,從而能夠校正色像差並且使光學系統緊湊化。因此,高折射率低色散玻璃作為構成攝像光學系統、投影儀等投射光學系統的光學元件而佔據非常重要的地位。這樣的高折射率低色散玻璃記載於例如專利文獻1~20中。 A lens composed of a high refractive index low-dispersion glass is combined with a lens made of ultra-low dispersion glass to form a cemented lens, whereby chromatic aberration can be corrected and the optical system can be made compact. Therefore, the high refractive index low dispersion glass plays an important role as an optical element constituting a projection optical system such as an imaging optical system or a projector. Such high refractive index low dispersion glass is described, for example, in Patent Documents 1 to 20.

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

專利文獻1:日本特開2007-063071號公報。 Patent Document 1: Japanese Laid-Open Patent Publication No. 2007-063071.

專利文獻2:日本特開2007-230835號公報。 Patent Document 2: Japanese Laid-Open Patent Publication No. 2007-230835.

專利文獻3:日本特開2007-249112號公報。 Patent Document 3: Japanese Laid-Open Patent Publication No. 2007-249112.

專利文獻4:日本特開2007-261826號公報。 Patent Document 4: Japanese Laid-Open Patent Publication No. 2007-261826.

專利文獻5:日本特開2003-267748號公報。 Patent Document 5: Japanese Laid-Open Patent Publication No. 2003-267748.

專利文獻6:日本特開2009-203083號公報。 Patent Document 6: Japanese Laid-Open Patent Publication No. 2009-203083.

專利文獻7:日本特開2011-230992號公報。 Patent Document 7: Japanese Laid-Open Patent Publication No. 2011-230992.

專利文獻8:日本特開2012-025638號公報。 Patent Document 8: Japanese Laid-Open Patent Publication No. 2012-025638.

專利文獻9:日本特開昭54-090218號公報。 Patent Document 9: Japanese Laid-Open Patent Publication No. SHO 54-090218.

專利文獻10:日本特開昭56-160340號公報。 Patent Document 10: Japanese Laid-Open Patent Publication No. SHO 56-160340.

專利文獻11:日本特開2001-348244號公報。 Patent Document 11: Japanese Laid-Open Patent Publication No. 2001-348244.

專利文獻12:日本特開2008-001551號公報。 Patent Document 12: Japanese Laid-Open Patent Publication No. 2008-001551.

專利文獻13:日本特表2013-536791號公報。 Patent Document 13: Japanese Laid-Open Patent Publication No. 2013-536791.

專利文獻14:WO10/053214。 Patent Document 14: WO10/053214.

專利文獻15:日本特開2012-180278號公報。 Patent Document 15: Japanese Laid-Open Patent Publication No. 2012-180278.

專利文獻16:日本特開2012-236754號公報。 Patent Document 16: Japanese Laid-Open Patent Publication No. 2012-236754.

專利文獻17:日本特開2014-084235號公報。 Patent Document 17: Japanese Laid-Open Patent Publication No. 2014-084235.

專利文獻18:日本特開2014-062025號公報。 Patent Document 18: Japanese Laid-Open Patent Publication No. 2014-062025.

專利文獻19:日本特開2014-062026號公報。 Patent Document 19: Japanese Laid-Open Patent Publication No. 2014-062026.

專利文獻20:日本特開2011-93780號公報。 Patent Document 20: Japanese Laid-Open Patent Publication No. 2011-93780.

對於光學元件用的玻璃,為了顯示光學特性的分佈,廣泛使用光學特性圖(或者也稱為阿貝圖表)。光學特性圖以如下方式製作:橫軸為阿貝數(Abbe number,νd),縱軸為折射率(nd),阿貝數(νd)從橫軸的右側向左側增加,折射率從縱軸的下方向上方增加。另外,以下只要沒有特別說明,折射率、阿貝數就設為指對氦的d線(波長為587.56nm)的折射率(nd)、對氦的d線(波長為587.56nm)的阿貝數(νd)。 For the glass for optical elements, an optical characteristic map (also referred to as an Abbe chart) is widely used in order to display the distribution of optical characteristics. The optical characteristic map is produced in such a manner that the horizontal axis is the Abbe number (νd), the vertical axis is the refractive index (nd), and the Abbe number (νd) is increased from the right side to the left side of the horizontal axis, and the refractive index is from the vertical axis. The bottom direction increases above. In addition, unless otherwise specified, the refractive index and the Abbe number are referred to as the refractive index (nd) of the d-line (wavelength: 587.56 nm) and the d-line of the 氦 (wavelength: 587.56 nm). Number (νd).

在光學特性圖中,高折射率低色散玻璃(高nd高νd玻璃)的光學特性一般顯示向右上升的分佈。即,當阿貝數減小時折射率增加,當阿貝數增加時折射率降低。認為其理由如下。 In the optical characteristic diagram, the optical characteristics of the high refractive index low dispersion glass (high nd high νd glass) generally show a distribution that rises to the right. That is, the refractive index increases as the Abbe number decreases, and the refractive index decreases as the Abbe number increases. The reason is considered as follows.

高折射率低色散玻璃大多含有氧化硼和氧化鑭等稀土類氧化物。在這樣的玻璃中,為了在不降低阿貝數的情況下提高折射率,需要提高稀土類氧化物的含量。但是,當在先前技術的高折射率低色散玻璃中提高稀土類氧化物的含量時,玻璃的熱穩定性會降低,在製造玻璃的過程中玻璃會示出失透(Devitrification)傾向。因此,在先前技術的高折射率低色散玻璃中,難以為了用作光學元件材料,而在抑制玻璃的失透的同時一同提高阿貝數和折射率。認為這一點是先前技術的高折射率低色散玻璃在光學特性圖中示出上述那樣的分佈的理由。 The high refractive index low dispersion glass mostly contains rare earth oxides such as boron oxide and cerium oxide. In such a glass, in order to increase the refractive index without lowering the Abbe number, it is necessary to increase the content of the rare earth oxide. However, when the content of the rare earth oxide is increased in the high refractive index low dispersion glass of the prior art, the thermal stability of the glass is lowered, and the glass exhibits a tendency to devitrification during the process of producing the glass. Therefore, in the prior art high refractive index low dispersion glass, it is difficult to increase the Abbe number and the refractive index together while suppressing devitrification of the glass in order to be used as an optical element material. This is considered to be the reason why the high-refractive-index low-dispersion glass of the prior art shows the above-described distribution in the optical characteristic diagram.

另一方面,在光學系統的設計中,折射率高、阿貝數也大(色散低)的玻璃是對於色像差的校正、光學系統的高功能化、緊湊化極其有效的光學元件用的材料。因此,在光學特性圖上設定向右上升的直線,提供在該直線上和折射率比直線高(在圖上,位於直線的左側的區域)的玻璃的意義非常大。 On the other hand, in the design of an optical system, a glass having a high refractive index and a large Abbe number (low dispersion) is an optical element which is extremely effective for correcting chromatic aberration, high function of an optical system, and compactness. material. Therefore, it is very important to set a straight line that rises to the right on the optical characteristic diagram, and to provide a glass having a higher refractive index than a straight line on the straight line (in the figure, a region on the left side of the straight line).

從以上的方面考慮,阿貝數(νd)為39.5~41.5且折射率(nd)為對該阿貝數用2.0927-0.0058×νd求出的值以上的玻璃,即滿足nd2.0927-0.0058×νd的關係的玻璃是在光學系統中有用的高折射率低色散玻璃。 From the above viewpoints, the Abbe number (νd) is 39.5 to 41.5 and the refractive index (nd) is a glass having a value obtained by using the value of 2.0927-0.0058 × νd for the Abbe number, that is, satisfying nd A glass having a relationship of 2.0927-0.0058 x νd is a high refractive index low dispersion glass useful in an optical system.

相對於此,在專利文獻1~20所記載的玻璃之中,阿貝數(νd)的範圍為39.5~41.5且滿足nd2.0927-0.0058×νd的關係的高折射率低色散玻璃包含釓(Gd)、鉭(Ta)中的任一種成分。然而,Gd、Ta均為稀少、價值高的元素,因為近年來在各種產業領域中的需求增加,所以相對於市場的需求其供給不足。因此,從穩定地供給高折射率低色散玻璃的觀點出發, 期望在高折射率低色散玻璃中降低Gd、Ta的含量。 On the other hand, among the glasses described in Patent Documents 1 to 20, the Abbe number (νd) ranges from 39.5 to 41.5 and satisfies nd. The high refractive index low dispersion glass having a relationship of 2.0927 to 0.0058 x νd contains any one of bismuth (Gd) and strontium (Ta). However, both Gd and Ta are rare and high-value elements. Since demand in various industrial fields has increased in recent years, supply is insufficient relative to market demand. Therefore, from the viewpoint of stably supplying the high refractive index low dispersion glass, it is desirable to reduce the content of Gd and Ta in the high refractive index low dispersion glass.

另一方面,在先前技術的高折射率低色散玻璃的玻璃組成中,當想要在降低Gd、Ta的含量的同時一同維持光學特性和熱穩定性時,存在玻璃的短波長側的光吸收端長波長化、紫外線的透射率大幅降低的傾向。 On the other hand, in the glass composition of the prior art high refractive index low dispersion glass, when it is desired to maintain optical properties and thermal stability while reducing the contents of Gd and Ta, there is light absorption on the short wavelength side of the glass. The wavelength of the end length is increased, and the transmittance of ultraviolet light is greatly lowered.

可是,為了校正色像差,已知有如下方法,即,使用分別具有不同的光學特性的玻璃製作多個透鏡,使這些透鏡貼合,製作成膠合透鏡。在製作膠合透鏡的過程中,為了使透鏡彼此貼合,通常使用紫外線固化型黏接劑。具體如下所述。在使透鏡彼此貼合的面塗敷紫外線固化型黏接劑,使透鏡貼合。此時,通常可在透鏡之間形成紫外線固化型黏接劑的極薄的塗敷層。接著,藉由透鏡對上述塗敷層照射紫外線而使紫外線固化型黏接劑固化。因此,當透鏡的紫外線透射率低時,不能使足夠光通量的紫外線藉由透鏡到達上述塗敷層,固化會變得不充分。或者固化所需的時間長。 However, in order to correct chromatic aberration, a method is known in which a plurality of lenses are produced using glass having different optical characteristics, and these lenses are bonded together to form a cemented lens. In the process of making a cemented lens, in order to bond the lenses to each other, an ultraviolet curing type adhesive is usually used. The details are as follows. An ultraviolet curable adhesive is applied to the surface on which the lenses are bonded to each other to bond the lenses. At this time, an extremely thin coating layer of an ultraviolet curable adhesive can usually be formed between the lenses. Next, the coating layer is irradiated with ultraviolet rays by a lens to cure the ultraviolet curable adhesive. Therefore, when the ultraviolet transmittance of the lens is low, ultraviolet rays having a sufficient luminous flux cannot reach the coating layer by the lens, and the curing becomes insufficient. Or it takes a long time to cure.

此外,在使用紫外線固化型黏接劑將透鏡黏接固定於透鏡鏡筒等的情況下也一樣,當透鏡的紫外線透射率低時,固化會變得不充分,或者固化所需時間長。 Further, the same applies to the case where the lens is adhered and fixed to the lens barrel or the like by using an ultraviolet curable adhesive, and when the ultraviolet transmittance of the lens is low, the curing becomes insufficient or the curing takes a long time.

因此,為了做成為具有適合於製作光學系統的透射率特性的玻璃,期望抑制玻璃的短波長側的光吸收端的長波長化。 Therefore, in order to make the glass having the transmittance characteristic suitable for the optical system, it is desirable to suppress the long wavelength of the light absorption end on the short-wavelength side of the glass.

本發明的一個實施形態的目的在於提供一種玻璃,該玻璃的阿貝數(νd)為39.5~41.5,且滿足nd2.0927-0.0058×νd的關 係,該玻璃能夠穩定地進行供給,且適合於製作光學系統。 An object of one embodiment of the present invention is to provide a glass having an Abbe number (νd) of 39.5 to 41.5 and satisfying nd With a relationship of 2.0927-0.0058 × νd, the glass can be stably supplied and is suitable for fabricating an optical system.

本發明的一個實施形態關於一種玻璃(以下稱為“玻璃A”),該玻璃為氧化物玻璃,其中,以陽離子%表示,B3+和Si4+的合計含量為43~65%;La3+、Y3+、Gd3+及Yb3+的合計含量為25~50%;Nb5+、Ti4+、Ta5+及W6+的合計含量為3~12%;Zr4+的含量為2~8%;B3+和Si4+的合計含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{(B3++Si4+)/(La3++Y3++Gd3++Yb3+)}為0.70~1.75;B3+和Si4+的合計含量相對於Nb5+、Ti4+、Ta5+及W6+的合計含量的陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}為9.00以下;Zn2+的含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}為不足0.2;La3+的含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{La3+/(La3++Y3++Gd3++Yb3+)}為0.50~0.95;Y3+的含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{Y3+/(La3++Y3++Gd3++Yb3+)}為0.10~0.50;Gd3+的含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{Gd3+/(La3++Y3++Gd3++Yb3+)}為0.10以下;Nb5+的含量相對於Nb5+、Ti4+及W6+的合計含量的陽離子比{Nb5+/(Nb5++Ti4++W6+)}為0.80以上;Ta5+的含量相對於Nb5+、Ti4+、Ta5+及W6+的合計含量的陽離子比{Ta5+/(Nb5++Ti4++Ta5++W6+)}為0.2以下;阿貝數(νd)的範圍為39.5~41.5,且折射率(nd)與阿貝數(νd)滿足下述式(1):nd2.0927-0.0058×νd。 An embodiment of the present invention relates to a glass (hereinafter referred to as "glass A"), wherein the glass is an oxide glass, wherein the total content of B 3+ and Si 4+ is 43 to 65% in terms of cationic %; The total content of 3+ , Y 3+ , Gd 3+ and Yb 3+ is 25 to 50%; the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ is 3 to 12%; Zr 4+ The content of 2 to 8%; the total content of B 3+ and Si 4+ relative to the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ cation ratio {(B 3+ +Si 4+ ) / (La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is 0.70 to 1.75; the total content of B 3+ and Si 4+ is relative to Nb 5+ , Ti 4+ , Ta 5+ and W The cation ratio of the total content of 6+ is {(B 3+ +Si 4+ )/(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is 9.00 or less; the content of Zn 2+ is relative to La 3 The cation ratio of the total content of + , Y 3+ , Gd 3+ and Yb 3+ is {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is less than 0.2; La 3+ The cation ratio of {La 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} to the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ is 0.50~ Cation ratio of 0.95; Y 3+ content relative to the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ {Y 3+ /(La 3+ +Y 3+ + Gd 3+ + Yb 3+)} is 0.10 to 0.50; Gd 3+ content with respect to the La 3+, Y 3+, Gd 3+ cations and the total content ratio of Yb 3+ {Gd 3+ / (La 3+ + Y 3+ + Gd 3+ + Yb 3+)} is 0.10 or less; the content of Nb 5+ respect Nb 5+, Ti 4+ cation and the total content ratio of W 6+ {Nb 5+ / ( nb 5+ + Ti 4+ + W 6+ )} is 0.80 or more; Ta 5+ content with respect to the nb 5+, cationic Ti 4+, Ta 5+, and the total content of W 6+ ratio {Ta 5+ / (Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is 0.2 or less; the Abbe number (νd) ranges from 39.5 to 41.5, and the refractive index (nd) and the Abbe number (νd) satisfy Description (1): nd 2.0927-0.0058×νd.

此外,本發明的一個實施形態關於一種玻璃(以下 稱為“玻璃B”),該玻璃為氧化物玻璃,其中,以質量%表示,B2O3和SiO2的合計含量為17.5~35%;La2O3、Y2O3、Gd2O3及Yb2O3的合計含量為45~70%;Nb2O5、TiO2、Ta2O5及WO3的合計含量為3~16%;ZrO2的含量為2~10%;B2O3和SiO2的合計含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{(B2O3+SiO2)/(La2O3+Y2O3+Gd2O3+Yb2O3)}為0.2~0.5;B2O3和SiO2的合計含量相對於Nb2O5、TiO2、Ta2O5及WO3的合計含量的質量比{(B2O3+SiO2)/(Nb2O5+TiO2+Ta2O5+WO3)}為2.8以下;ZnO的含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{ZnO/(La2O3+Y2O3+Gd2O3+Yb2O3)}為不足0.10;La2O3的含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{La2O3/(La2O3+Y2O3+Gd2O3+Yb2O3)}為0.55~0.98;Y2O3的含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{Y2O3/(La2O3+Y2O3+Gd2O3+Yb2O3)}為0.02~0.45;Gd2O3的含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{Gd2O3/(La2O3+Y2O3+Gd2O3+Yb2O3)}為0.10以下;Nb2O5的含量相對於Nb2O5、TiO2及WO3的合計含量的質量比{Nb2O5/(Nb2O5+TiO2+WO3)}為0.81以上;Ta2O5的含量相對於Nb2O5、TiO2、Ta2O5及WO3的合計含量的質量比{Ta2O5/(Nb2O5+TiO2+Ta2O5+WO3)}為0.3以下;阿貝數(νd)的範圍為39.5~41.5,且折射率(nd)與阿貝數(νd)滿足上述式(1)。 Further, an embodiment of the present invention relates to a glass (hereinafter referred to as "glass B") which is an oxide glass in which the total content of B 2 O 3 and SiO 2 is 17.5 to 35% in mass%. The total content of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 is 45 to 70%; the total content of Nb 2 O 5 , TiO 2 , Ta 2 O 5 and WO 3 is 3~ 16%; the content of ZrO 2 is 2 to 10%; the mass ratio of the total content of B 2 O 3 and SiO 2 to the total content of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 {(B 2 O 3 + SiO 2 ) / (La 2 O 3 + Y 2 O 3 + Gd 2 O 3 + Yb 2 O 3 )} is 0.2 to 0.5; the total content of B 2 O 3 and SiO 2 is relative to Mass ratio of total content of Nb 2 O 5 , TiO 2 , Ta 2 O 5 and WO 3 {(B 2 O 3 + SiO 2 ) / (Nb 2 O 5 + TiO 2 + Ta 2 O 5 + WO 3 )} 2.8 or less; mass ratio of ZnO content to total content of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 {ZnO/(La 2 O 3 +Y 2 O 3 +Gd 2 O 3 + Yb 2 O 3) } is less than 0.10; the content of La 2 O 3 with respect to La 2 O 3, Y 2 O 3, Gd mass total content 2 O 3 and Yb 2 O 3 ratio {La 2 O 3 /(La 2 O 3 +Y 2 O 3 +Gd 2 O 3 +Yb 2 O 3 )} is 0 .55 ~ 0.98; Y 2 O 3 content with respect to La 2 O 3, Y 2 O 3, Gd total content mass 2 O 3 and Yb 2 O 3 ratio of {Y 2 O 3 / (La 2 O 3 + Y 2 O 3 +Gd 2 O 3 +Yb 2 O 3 )} is 0.02 to 0.45; the content of Gd 2 O 3 is relative to the total of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 The mass ratio of the content is {Gd 2 O 3 /(La 2 O 3 +Y 2 O 3 +Gd 2 O 3 +Yb 2 O 3 )} is 0.10 or less; the content of Nb 2 O 5 is relative to Nb 2 O 5 , TiO The mass ratio of the total content of 2 and WO 3 is {Nb 2 O 5 /(Nb 2 O 5 +TiO 2 +WO 3 )} is 0.81 or more; the content of Ta 2 O 5 is relative to Nb 2 O 5 , TiO 2 , Ta The mass ratio of the total content of 2 O 5 and WO 3 is {Ta 2 O 5 /(Nb 2 O 5 +TiO 2 +Ta 2 O 5 +WO 3 )} is 0.3 or less; the Abbe number (νd) is 39.5. ~41.5, and the refractive index (nd) and the Abbe number (νd) satisfy the above formula (1).

玻璃A是阿貝數(νd)的範圍為39.5~41.5且滿足nd2.0927-0.0058×νd的關係的玻璃,其中,包含Gd3+的各種 成分(即,La3+、Y3+、Gd3+、Yb3+)的合計含量和包含Ta5+的各種成分(即,Nb5+、Ti4+、Ta5+、W6+)的合計含量在上述範圍中滿足分母或分子中包含Gd3+、Ta5+的上述陽離子比。因此,在玻璃組成中降低了Gd、Ta所占的比例。上述玻璃藉由在滿足這樣的合計含量和陽離子比的組成中進行滿足上述的含量、合計含量及陽離子比的組成調整,從而能夠在實現高的熱穩定性(不易失透的性質)的同時抑制短波長側的光吸收端的長波長化。 Glass A has an Abbe number (νd) ranging from 39.5 to 41.5 and satisfies nd a glass having a relationship of 2.0927-0.0058×νd, wherein the total content of various components including Gd 3+ (ie, La 3+ , Y 3+ , Gd 3+ , Yb 3+ ) and various components including Ta 5+ ( In other words, the total content of Nb 5+ , Ti 4+ , Ta 5+ , and W 6 +) satisfies the above-described cation ratio in which the denominator or the molecule contains Gd 3+ and Ta 5+ in the above range. Therefore, the proportion of Gd and Ta is reduced in the glass composition. By adjusting the composition satisfying the above-described content, total content, and cation ratio in the composition satisfying such a total content and the cation ratio, the glass can be suppressed while achieving high thermal stability (non-devitrification property). The long wavelength of the light absorption end on the short wavelength side.

玻璃B是阿貝數(νd)的範圍為39.5~41.5且滿足nd2.0927-0.0058×νd的關係的玻璃,其中,包含Gd2O3的各種成分(即,La2O3、Y2O3、Gd2O3、Yb2O3)的合計含量和包含Ta2O5的各種成分(即,Nb2O5、TiO2、Ta2O5、WO3)的合計含量在上述範圍之中滿足分母或分子中包含Gd2O3、Ta2O5的上述質量比。因此,在玻璃組成中降低了Gd、Ta所占的比例。上述玻璃藉由在滿足這樣的合計含量和質量比的組成中進行滿足上述的含量、合計含量及質量比的組成調整,從而能夠在實現高的熱穩定性(不易失透的性質)的同時抑制短波長側的光吸收端的長波長化。 Glass B has an Abbe number (νd) ranging from 39.5 to 41.5 and satisfies nd a glass having a relationship of 2.0927-0.0058×νd, wherein a total content of various components including Gd 2 O 3 (ie, La 2 O 3 , Y 2 O 3 , Gd 2 O 3 , Yb 2 O 3 ) and containing Ta 2 The total content of various components of O 5 (i.e., Nb 2 O 5 , TiO 2 , Ta 2 O 5 , and WO 3 ) satisfies the above-mentioned range in which the denominator or the molecule contains Gd 2 O 3 or Ta 2 O 5 . ratio. Therefore, the proportion of Gd and Ta is reduced in the glass composition. By adjusting the composition satisfying the above-described content, total content, and mass ratio in the composition satisfying such a total content and mass ratio, the glass can be suppressed while achieving high thermal stability (non-devitrification property). The long wavelength of the light absorption end on the short wavelength side.

根據本發明的一個實施形態,能夠提供一種玻璃,該玻璃具有在光學系統中有用的光學特性,能夠穩定地供給,且具有適合於製作光學系統的透射率特性。進而,根據本發明的一個實施形態,能夠提供由上述玻璃構成的壓製成型用玻璃材料、光學元件坯件及光學元件。 According to an embodiment of the present invention, it is possible to provide a glass which has optical characteristics useful in an optical system, can be stably supplied, and has transmittance characteristics suitable for fabricating an optical system. Further, according to an embodiment of the present invention, it is possible to provide a glass material for press molding, an optical element blank, and an optical element which are made of the above glass.

圖1是在比較例6中評價的玻璃的照片。 1 is a photograph of a glass evaluated in Comparative Example 6.

本發明中的玻璃組成能夠藉由例如ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry:電感耦合電漿-原子發射光譜法)等方法進行定量。藉由ICP-AES求出的分析值有時包含分析值的±5%左右的測定誤差。此外,在本說明書和本發明中,構成成分的含量為0%、不包含或者不導入意味著實質上不包含該構成成分,指的是該構成成分的含量為雜質水準程度以下。 The glass composition in the present invention can be quantified by a method such as ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). The analysis value obtained by ICP-AES sometimes includes a measurement error of about ±5% of the analysis value. Further, in the present specification and the present invention, the content of the constituent component is 0%, and the inclusion or non-introduction means that the constituent component is not substantially contained, and the content of the constituent component is not more than the impurity level.

關於數值範圍,以下有時用表來記載(更)較佳的下限和(更)較佳的上限。在表中,越記載在下方的數值越佳,記載在最下方的數值最佳。此外,只要沒有特別說明,(更)較佳的下限指的是(更)較佳為所記載的值以上,(更)較佳的上限指的是(更)較佳為所記載的值以下。能夠任意地組合表中的記載在(更)較佳的下限的列的數值和記載在(更)較佳的上限的列的數值來規定數值範圍。 Regarding the numerical range, the (more) preferred lower limit and the (more preferred upper limit) are sometimes described below. In the table, the numerical value described below is better, and the numerical value described at the bottom is the best. Further, unless otherwise specified, the (better) preferred lower limit means that (more preferably) the above-described value is more or less, and the (more) preferred upper limit means (more preferably) the stated value or less. . The numerical value range can be arbitrarily combined with the numerical value of the column of the (more preferable lower limit) and the numerical value of the column of the (more preferable upper limit).

[玻璃A] [Glass A]

本發明的一個實施形態的玻璃A是一種氧化物玻璃,其具有上述玻璃組成,阿貝數(νd)的範圍為39.5~41.5,且折射率(nd)與阿貝數(νd)滿足上述式(1)。以下對上述玻璃A進行詳細說明。 The glass A according to an embodiment of the present invention is an oxide glass having the above glass composition, the Abbe number (νd) is in the range of 39.5 to 41.5, and the refractive index (nd) and the Abbe number (νd) satisfy the above formula. (1). The above glass A will be described in detail below.

在本發明中,對於陽離子成分以陽離子%來表示玻 璃A的玻璃組成。眾所周知,陽離子%指的是將玻璃所包含的全部的陽離子成分的合計含量設為100%的百分率。 In the present invention, the cationic component is represented by a cationic % The glass composition of the glass A. As is well known, the cation % means a percentage in which the total content of all the cation components contained in the glass is 100%.

以下,只要沒有特別說明,就用陽離子%來表示玻璃A的陽離子成分的含量、多種陽離子成分的含量的合計(合計含量)。進而,在陽離子%表示中,將陽離子成分彼此的含量(也包括多種陽離子成分的合計含量)的比稱為陽離子比。 Hereinafter, the content of the cationic component of the glass A and the total content (the total content) of the plurality of cationic components are represented by the cation % unless otherwise specified. Further, in the cation % expression, the ratio of the content of the cation components (including the total content of the plurality of cation components) is referred to as a cation ratio.

<玻璃組成> <glass composition>

B3+、Si4+是玻璃的網路形成成分。當B3+和Si4+的合計含量(B3++Si4+)為43%以上時,玻璃的熱穩定性提高,能夠抑制製造過程中的玻璃的晶化。另一方面,當B3+和Si4+的合計含量為65%以下時,能夠抑制折射率(nd)的降低,因此能夠製作具有上述的光學特性的玻璃。因此,上述玻璃中的B3+和Si4+的合計含量的範圍設為43~65%。B3+和Si4+的合計含量的較佳的下限和較佳的上限如下表1所示。 B 3+ and Si 4+ are the network forming components of glass. When the total content of B 3+ and Si 4+ (B 3+ + Si 4+ ) is 43% or more, the thermal stability of the glass is improved, and crystallization of the glass in the production process can be suppressed. On the other hand, when the total content of B 3+ and Si 4+ is 65% or less, the decrease in the refractive index (nd) can be suppressed, and thus the glass having the above optical characteristics can be produced. Therefore, the range of the total content of B 3+ and Si 4+ in the above glass is set to 43 to 65%. A preferred lower limit and a preferred upper limit of the total content of B 3+ and Si 4+ are shown in Table 1 below.

La3+、Y3+、Gd3+及Yb3+是具有在抑制阿貝數(νd)的降低的同時提高折射率的作用的成分。此外,這些成分還具有改善玻璃的化學耐久性、耐候性及提高玻璃化轉變溫度的作用。 La 3+ , Y 3+ , Gd 3+ , and Yb 3+ are components having an effect of increasing the refractive index while suppressing a decrease in the Abbe number (νd). Further, these components have an effect of improving the chemical durability, weather resistance, and glass transition temperature of the glass.

當La3+、Y3+、Gd3+及Yb3+的合計含量(La3++Y3++Gd3++Yb3+)為25%以上時,能夠抑制折射率(nd)的降低,因此能夠製作具有上述的光學特性的玻璃。進而,還能夠抑制玻璃的化學耐久性、耐候性的降低。另外,若玻璃化轉變溫度降低,則在對玻璃進行機械加工(切斷、切削、研磨、拋光等)時玻璃容易破損(機械加工性降低),當La3+、Y3+、Gd3+及Yb3+的合計含量為25%以上時,能夠抑制玻璃化轉變溫度的降低,因此還能夠提高機械加工性。另一方面,如果La3+、Y3+、Gd3+及Yb3+的各成分的合計含量為50%以下,就能夠提高玻璃的熱穩定性,因此還能夠抑制製造玻璃時的晶化、減少將玻璃熔融時的原料的熔融殘留。此外,還能夠抑制比重的上升。因此,在上述玻璃中,La3+、Y3+、Gd3+及Yb3+的合計含量的範圍設為25~50%。在下表2示出La3+、Y3+、Gd3+及Yb3+的合計含量的較佳的下限和較佳的上限。 When the total content of La 3+ , Y 3+ , Gd 3+ , and Yb 3+ (La 3+ +Y 3+ +Gd 3+ +Yb 3+ ) is 25% or more, the refractive index (nd) can be suppressed. Since it is lowered, it is possible to produce a glass having the above optical characteristics. Further, it is also possible to suppress chemical durability and deterioration of weather resistance of the glass. In addition, when the glass transition temperature is lowered, the glass is easily broken (machineability is lowered) when the glass is machined (cut, cut, polished, polished, etc.), when La 3+ , Y 3+ , Gd 3+ When the total content of Yb 3+ is 25% or more, the decrease in the glass transition temperature can be suppressed, so that the machinability can be improved. On the other hand, when the total content of each component of La 3+ , Y 3+ , Gd 3+ , and Yb 3+ is 50% or less, the thermal stability of the glass can be improved, and thus the crystallization at the time of glass production can be suppressed. And reducing the melting residue of the raw material when the glass is melted. In addition, it is also possible to suppress an increase in the specific gravity. Therefore, in the above glass, the total content of La 3+ , Y 3+ , Gd 3+ , and Yb 3+ is in the range of 25 to 50%. The lower limit and the preferred upper limit of the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ are shown in Table 2 below.

Nb5+、Ti4+、Ta5+及W6+是具有提高折射率的作用的成分,藉由適量地含有,從而還具有改善玻璃的熱穩定性的作用。如果Ti4+、Nb5+、Ta5+及W6+的合計含量(Nb5++Ti4++Ta5++W6+)為3%以上,就能夠在維持熱穩定性的同時實現上述的光 學特性。另一方面,如果Nb5+、Ti4+、Ta5+及W6+的合計含量為12%以下,就能夠抑制熱穩定性的降低和阿貝數νd的降低。此外,還能夠抑制後述的著色度(λ5)的增加而提高玻璃的紫外線透射率。因此,在上述玻璃中,將Nb5+、Ti4+、Ta5+及W6+的合計含量的範圍設為3~12%。在下表3示出Nb5+、Ti4+、Ta5+及W6+的合計含量的較佳的下限和較佳的上限。 Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ are components having an effect of increasing the refractive index, and are contained in an appropriate amount to further improve the thermal stability of the glass. When the total content of Ti 4+ , Nb 5+ , Ta 5+ , and W 6+ (Nb 5+ + Ti 4+ + Ta 5+ + W 6+ ) is 3% or more, it is possible to maintain thermal stability while maintaining thermal stability. The above optical characteristics are achieved. On the other hand, when the total content of Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ is 12% or less, it is possible to suppress a decrease in thermal stability and a decrease in Abbe number νd. Further, it is also possible to suppress an increase in the coloring degree (λ5) to be described later and increase the ultraviolet transmittance of the glass. Therefore, in the above glass, the total content of Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ is set to be 3 to 12%. The lower limit and the preferred upper limit of the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ are shown in Table 3 below.

Zr4+是具有提高折射率的作用的成分,藉由適量地含有,從而還具有改善玻璃的熱穩定性的作用。此外,Zr4+還具有藉由提高玻璃化轉變溫度而在機械加工時使玻璃不易破損的作用。為了良好地得到這些效果,在上述玻璃中,將Zr4+的含量設為2%以上。另一方面,如果Zr4+的含量為8%以下,就能夠改善玻璃的熱穩定性,因此能夠抑制製造玻璃時的晶化,抑制玻璃熔融時產生熔融殘留。因此,上述玻璃中的Zr4+的含量的範圍設為2~8%。在下表4示出Zr4+的含量的較佳的下限和較佳的上限。 Zr 4+ is a component having an effect of increasing the refractive index, and has an effect of improving the thermal stability of the glass by being contained in an appropriate amount. In addition, Zr 4+ also has the effect of making the glass less susceptible to breakage during machining by increasing the glass transition temperature. In order to obtain these effects favorably, the content of Zr 4+ is set to 2% or more in the above glass. On the other hand, when the content of Zr 4+ is 8% or less, the thermal stability of the glass can be improved. Therefore, it is possible to suppress crystallization during the production of glass and to suppress the occurrence of melting residue when the glass is melted. Therefore, the range of the content of Zr 4+ in the above glass is set to 2 to 8%. A preferred lower limit and a preferred upper limit of the content of Zr 4+ are shown in Table 4 below.

為了在改善玻璃的熱穩定性的同時實現阿貝數(νd)為39.5~41.5且折射率(nd)與阿貝數(νd)滿足上述式(1)的關係的光學特性,在上述玻璃中,將B3+和Si4+的合計含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{(B3++Si4+)/(La3++Y3++Gd3++Yb3+)}設為0.70~1.75。如果陽離子比((B3++Si4+)/(La3++Y3++Gd3++Yb3+))為0.70以上,就能夠改善玻璃的熱穩定性,因此能夠抑制玻璃的失透。此外,還能夠抑制玻璃的比重增大。當玻璃的比重增大時,使用該玻璃製作的光學元件就會變重。其結果是,組裝了該光學元件的光學系統變重。例如,當將重的光學元件組裝在自動對焦式的相機中時,驅動自動對焦時的功耗會增加,電池會快速消耗。從使用該玻璃製作的光學元件和組裝了該光學元件的光學系統的輕量化的觀點出發,較佳能夠抑制玻璃的比重增加。另一方面,如果陽離子比{(B3++Si4+)/(La3++Y3++Gd3++Yb3+)}為1.75以下,就能夠實現上述的光學特性。在下表5示出陽離子比{(B3++Si4+)/(La3++Y3++Gd3++Yb3+)}的較佳的下限和較佳的上限。 In order to improve the thermal stability of the glass, the optical characteristics of the relationship between the refractive index (nd) and the Abbe number (νd) satisfying the above formula (1) are achieved while the Abbe number (νd) is 39.5 to 41.5, in the above glass. The cation ratio of the total content of B 3+ and Si 4+ to the total content of La 3+ , Y 3+ , Gd 3+ , and Yb 3+ is {(B 3+ +Si 4+ )/(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is set to 0.70~1.75. If the cation ratio ((B 3+ +Si 4+ )/(La 3+ +Y 3+ +Gd 3+ +Yb 3+ ))) is 0.70 or more, the thermal stability of the glass can be improved, and thus the glass can be suppressed. Destruction. In addition, it is also possible to suppress an increase in the specific gravity of the glass. When the specific gravity of the glass increases, the optical element made using the glass becomes heavy. As a result, the optical system in which the optical element is assembled becomes heavy. For example, when a heavy optical component is assembled in an auto-focusing camera, the power consumption when driving autofocus increases, and the battery is quickly consumed. From the viewpoint of reducing the weight of the optical element produced using the glass and the optical system in which the optical element is assembled, it is preferable to suppress an increase in the specific gravity of the glass. On the other hand, if the cation ratio {(B 3+ + Si 4+ ) / (La 3+ + Y 3+ + Gd 3+ + Yb 3+ )} is 1.75 or less, the above optical characteristics can be achieved. The lower limit and the preferred upper limit of the cation ratio {(B 3+ + Si 4+ ) / (La 3+ + Y 3+ + Gd 3+ + Yb 3+ )} are shown in Table 5 below.

為了在改善玻璃的熱穩定性的同時抑制折射率(nd)的降低而實現上述的光學特性,在上述玻璃中,將B3+和Si4+的合計含量相對於Nb5+、Ti4+、Ta5+及W6+的合計含量的陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}設為9.00以下。 In order to achieve the above optical characteristics while suppressing the decrease in the refractive index (nd) while improving the thermal stability of the glass, in the above glass, the total content of B 3+ and Si 4+ is relative to Nb 5+ , Ti 4+ The cation ratio {(B 3+ + Si 4+ ) / (Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} of the total content of Ta 5+ and W 6+ is 9.00 or less.

為了在抑制阿貝數(νd)的降低的同時改善玻璃的熱穩定性,較佳使陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}為5.00以上。進而,為了進一步抑制玻璃的短波長側的光吸收端的長波長化,較佳使陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}為5.00以上。其結果是,在使用紫外線固化型黏接劑對玻璃制透鏡進行膠合時,紫外線變得更容易藉由透鏡到達黏接劑的塗敷層。由此,變得更容易藉由紫外線照射使黏接劑固化。 In order to improve the thermal stability of the glass while suppressing the decrease in the Abbe number (νd), it is preferred to make the cation ratio {(B 3+ + Si 4+ ) / (Nb 5+ + Ti 4+ + Ta 5+ + W) 6+ )} is 5.00 or more. Further, in order to further suppress the long wavelength of the light absorption end on the short-wavelength side of the glass, it is preferable to make the cation ratio {(B 3+ + Si 4+ ) / (Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} is 5.00 or more. As a result, when the glass lens is glued using the ultraviolet curable adhesive, the ultraviolet rays are more easily reached by the lens to the coating layer of the adhesive. Thereby, it becomes easier to cure the adhesive by ultraviolet irradiation.

在下表6示出陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}的更佳的下限和較佳的上限。 A lower limit and a preferred upper limit of the cation ratio {(B 3+ + Si 4+ ) / (Nb 5 + + Ti 4 + + Ta 5 + + W 6+ )} are shown in Table 6 below.

為了在改善玻璃的熱穩定性而抑制玻璃的晶化的同時實現上述的光學特性,在上述玻璃中,將Zn2+的含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}設為不足0.2。在下表7示出陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}的較佳的下限和較佳的上限。 In order to achieve the above optical characteristics while suppressing the crystallization of the glass while improving the thermal stability of the glass, the content of Zn 2+ in the above glass is relative to La 3+ , Y 3+ , Gd 3+ and Yb 3+ . The cation ratio {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} of the total content is set to be less than 0.2. The lower limit and the preferred upper limit of the cation ratio {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} are shown in Table 7 below.

在稀土類元素鑭(La)、釔(Y)、釓(Gd)及鐿(Yb)之中,Gd屬於重稀土類元素,從穩定地供給玻璃的觀點出發,是要求在玻璃中降低含量的成分。此外,Gd的原子量大,還是使玻璃的比重增加的成分。 Among the rare earth elements lanthanum (La), yttrium (Y), yttrium (Gd), and yttrium (Yb), Gd is a heavy rare earth element, and from the viewpoint of stably supplying glass, it is required to reduce the content in the glass. ingredient. Further, Gd has a large atomic weight and is a component which increases the specific gravity of the glass.

Yb也屬於重稀土類元素,且原子量大。此外,Yb對近紅 外區域進行吸收。另一方面,在單反相機用的交換透鏡、監視攝錄影機的透鏡中,期望對近紅外區域的光線透射率高。因此,為了成為對於製作這些透鏡有用的玻璃,期望降低Yb的含量。 Yb is also a heavy rare earth element and has a large atomic weight. In addition, Yb is near red The outer area is absorbed. On the other hand, in the interchangeable lens for a SLR camera and the lens of the surveillance video camera, it is desirable that the light transmittance in the near-infrared region is high. Therefore, in order to become a glass useful for producing these lenses, it is desirable to reduce the content of Yb.

相對於此,La、Y不會對近紅外區域的光線透射率帶來不良影響,藉由相對於稀土類元素的合計含量適量地進行分配,從而在改善熱穩定性的同時抑制比重的增加,是對於提供高折射率低色散玻璃有用的成分。 On the other hand, La and Y do not adversely affect the light transmittance in the near-infrared region, and are appropriately distributed with respect to the total content of the rare earth elements, thereby suppressing an increase in specific gravity while improving thermal stability. It is a useful component for providing high refractive index low dispersion glass.

因此在上述玻璃中,關於La3+,將La3+的含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{La3+/(La3++Y3++Gd3++Yb3+)}的範圍設為0.50~0.95。在下表8示出陽離子比{La3+/(La3++Y3++Gd3++Yb3+)}的較佳的下限和較佳的上限。 Therefore, in the above glass, on La 3+, the content of La 3+ cations with respect to La 3+, Y 3+, Gd 3+ and the total content ratio of Yb 3+ {La 3+ / (La 3+ + The range of Y 3+ + Gd 3+ + Yb 3+ )} is set to 0.50 to 0.95. A preferred lower limit and a preferred upper limit of the cation ratio {La 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} are shown in Table 8 below.

此外,關於Y3+,將Y3+的含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{Y3+/(La3++Y3++Gd3++Yb3+)}的範圍設為0.10~0.50。在下表9示出陽離子比{Y3+/(La3++Y3++Gd3++Yb3+)}的較佳的下限和較佳的上限。 Further, regarding Y 3+, the content of Y 3+ cations with respect to La 3+, Y 3+, Gd 3+ and the total content ratio of Yb 3+ {Y 3+ / (La 3+ + Y 3+ + The range of Gd 3+ + Yb 3+ )} is set to 0.10 to 0.50. The lower limit and the preferred upper limit of the cation ratio {Y 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} are shown in Table 9 below.

如前所述,從穩定地供給玻璃的觀點出發,Gd3+是應當在玻璃中降低含量的成分。在上述玻璃中,Gd3+的含量藉由La3+、Y3+、Gd3+及Yb3+的合計含量和相對於該合計含量的Gd3+的含量來確定。在上述玻璃中,為了穩定地供給具有上述的光學特性的高折射率低色散玻璃,將Gd3+的含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{Gd3+/(La3++Y3++Gd3++Yb3+)}設為0.10以下。另外,滿足上述陽離子比還能夠有助於玻璃的低比重化。在下表10示出陽離子比{Gd3+/(La3++Y3++Gd3++Yb3+)}的較佳的下限和較佳的上限。 As described above, Gd 3+ is a component which should be reduced in glass from the viewpoint of stably supplying glass. In the above glass, the content of Gd 3+ is determined by the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ and the content of Gd 3+ with respect to the total content. In the above glass, in order to stably supply the high refractive index low dispersion glass having the above optical characteristics, the content of Gd 3+ is relative to the total content of La 3+ , Y 3+ , Gd 3+ , and Yb 3+ . The ratio {Gd 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is set to 0.10 or less. Further, satisfying the above cation ratio can also contribute to the low specific gravity of the glass. The lower limit and the preferred upper limit of the cation ratio {Gd 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} are shown in Table 10 below.

La3+、Y3+、Gd3+及Yb3+的合計含量以及La3+的含量、Y3+的含量、Gd3+的含量相對於該合計含量的陽離子比,如上所述。在下表11~14示出La3+、Y3+、Gd3+及Yb3+的各成 分的含量的較佳的下限和較佳的上限。另外,關於Y3+的含量,從改善玻璃的熱穩定性和熔融性的觀點出發,也較佳下表12示出的下限。 The total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ , and the content of La 3+ , the content of Y 3+ , and the content of Gd 3+ with respect to the cation ratio of the total content are as described above. Preferred lower limits and preferred upper limits of the contents of the respective components of La 3+ , Y 3+ , Gd 3+ and Yb 3+ are shown in Tables 11 to 14 below. Further, as for the content of Y 3+ , from the viewpoint of improving the thermal stability and the meltability of the glass, the lower limit shown in Table 12 below is also preferable.

Nb5+、Ti4+、Ta5+及W6+藉由適量地含有,發揮提高折射率、改善玻璃的熱穩定性的作用。但是,當提高Ti4+、W6+的含量時,可見光區域的短波長側的吸收端會向長波長側移動。其結果是,玻璃的短波長側的光吸收端會長波長化。因此在上述光學玻璃中,為了在改善玻璃的熱穩定性的同時抑制玻璃的短波長側的光吸收端的長波長化,在考慮Nb5+、Ti4+、Ta5+、W6+的各性質的基礎上,確定這些含量的比例。具體如下所述。 Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ are contained in an appropriate amount, and exhibit an effect of improving the refractive index and improving the thermal stability of the glass. However, when the content of Ti 4+ and W 6+ is increased, the absorption end on the short-wavelength side of the visible light region moves toward the long wavelength side. As a result, the light absorption end of the short-wavelength side of the glass is long-wavelength. Therefore, in the optical glass described above, in order to suppress the long-wavelength of the light-absorbing end of the short-wavelength side of the glass while improving the thermal stability of the glass, each of Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ is considered. Based on the nature, determine the proportion of these contents. The details are as follows.

Nb5+具有在不使玻璃的比重、著色、製造成本增加的情況下提高折射率(nd)、改善玻璃的熱穩定性的作用。此外,與Ti4+、W6+相比較,Nb5+還是不易使玻璃的短波長側的吸收端長波長化的成分。眾所周知,玻璃的短波長側的吸收端能夠用被稱為λ5的指標來表示。也就是說,與Ti4+、W6+相比較,Nb5+是不易使λ5增加的成分。關於λ5,將在後面進行詳細敘述。 Nb 5+ has an effect of improving the refractive index (nd) and improving the thermal stability of the glass without increasing the specific gravity, coloring, and manufacturing cost of the glass. Further, Nb 5+ is a component which is less likely to cause a longer wavelength of the absorption end on the short-wavelength side of the glass than Ti 4+ and W 6+ . It is known that the absorption end of the short-wavelength side of glass can be represented by an index called λ5. That is to say, Nb 5+ is a component which is less likely to increase λ5 than Ti 4+ and W 6+ . Λ5 will be described in detail later.

另一方面,當Ti4+的含量增多時,λ5會增大。此外,存在玻璃的可見光區域的透射率降低、玻璃的著色增加的傾向。 On the other hand, when the content of Ti 4+ is increased, λ5 is increased. Further, there is a tendency that the transmittance in the visible light region of the glass is lowered and the color of the glass is increased.

Ta5+具有提高折射率的作用,進而與Nb5+、Ti4+、W6+相比較,還是不易使玻璃的短波長側的吸收端長波長化的成分,但 是是極其昂貴的成分。因此,從穩定地供給玻璃的觀點出發,不是較佳積極地使用Ta5+。此外,當Ta5+的含量多時,在將玻璃熔融時原料容易產生熔融殘留。此外,玻璃的比重會增加。 Ta 5+ has a function of increasing the refractive index, and is a component which is less likely to cause a longer wavelength of the absorption end of the short-wavelength side of the glass than Nb 5+ , Ti 4+ , and W 6+ , but is an extremely expensive component. Therefore, from the viewpoint of stably supplying the glass, it is not preferable to use Ta 5+ actively. Further, when the content of Ta 5+ is large, the raw material is liable to be melted and left when the glass is melted. In addition, the specific gravity of the glass will increase.

關於W6+,當其含量增多時,λ5會增大。此外,在可見光區域的透射率會降低,比重會增加。 Regarding W 6+ , when its content increases, λ5 increases. In addition, the transmittance in the visible light region is lowered, and the specific gravity is increased.

如上所述,Ta5+是應當降低含量的成分。因此,不是較佳積極地使用Ta5+。為了改善熱穩定性、抑制短波長側的光吸收端的長波長化(較佳減小λ5),在上述玻璃中,將Nb5+的含量相對於在Nb5+、Ti4+、Ta5+及W6+中除Ta5+之外的Nb5+、Ti4+及W6+的合計含量的陽離子比{Nb5+/(Nb5++Ti4++W6+)}設為0.80以上。在下表15示出陽離子比{Nb5+/(Nb5++Ti4++W6+)}的較佳的下限和較佳的上限。 As described above, Ta 5+ is a component which should be reduced in content. Therefore, Ta 5+ is not preferably used actively. In order to improve thermal stability and suppress long-wavelength (preferably reduce λ5) of the light-absorbing end on the short-wavelength side, in the above glass, the content of Nb 5+ is relative to that in Nb 5+ , Ti 4+ , Ta 5+ Nb 5+, and W 6+ the addition of Ta 5+, Ti 4+ cation and the total content ratio of W 6+ {Nb 5+ / (Nb 5+ + Ti 4+ + W 6+)} to 0.80 or more. A preferred lower limit and a preferred upper limit of the cation ratio {Nb 5+ /(Nb 5+ + Ti 4+ + W 6+ )} are shown in Table 15 below.

關於Ta5+,為了在改善玻璃的熱穩定性的同時謀求高折射率低色散化和削減Ta的使用量,將Ta5+的含量相對於Nb5+、Ti4+、Ta5+及W6+的合計含量的陽離子比{Ta5+/(Nb5++Ti4++Ta5++W6+)}設為0.2以下。在下表16示出陽離子比{Ta5+/(Nb5++Ti4++Ta5++W6+)}的較佳的下限和更佳的上限。 Ta 5+ is a content of Ta 5+ relative to Nb 5+ , Ti 4+ , Ta 5+ and W in order to improve the thermal stability of the glass while achieving high refractive index and low dispersion and reducing the amount of Ta used. the cation ratio of the total content of 6+ {Ta 5+ / (Nb 5+ + Ti 4+ + Ta 5+ + W 6+)} is set to 0.2 or less. A preferred lower limit and a better upper limit of the cation ratio {Ta 5+ /(Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} are shown in Table 16 below.

此外,關於Nb5+,為了能夠穩定地供給玻璃,降低Gd3+、Ta5+的含量,期望降低Gd3+、Ta5+和Yb3+的含量,並且為了提供抑制了短波長側的光吸收端的長波長化(較佳減小λ5)、熱穩定性優秀的高折射率低色散玻璃,在考慮了Nb5+、Ti4+、Ta5+、W6+的上述作用的基礎上,較佳將Nb5+的含量相對於Nb5+、Ti4+、Ta5+及W6+的合計含量的陽離子比{Nb5+/(Nb5++Ti4++Ta5++W6+)}設為0.4以上。此外,為了進一步抑制短波長側的光吸收端的長波長化,較佳增大陽離子比{Nb5+/(Nb5++Ti4++Ta5++W6+)}。在下表17示出陽離子比{Nb5+/(Nb5++Ti4++Ta5++W6+)}的更佳的下限和較佳的上限。 Further, with respect to Nb 5+ , in order to stably supply the glass and reduce the content of Gd 3+ and Ta 5+ , it is desirable to lower the contents of Gd 3+ , Ta 5+ and Yb 3+ , and to provide suppression of the short-wavelength side. The long wavelength of the light absorption end (preferably λ5) and the high refractive index low dispersion glass excellent in thermal stability are based on the above effects of Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ . , the preferred Nb 5+ cation content relative to Nb 5+, Ti 4+, Ta 5+, and W 6+ total content ratio {Nb 5+ / (Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} is set to 0.4 or more. Further, in order to further suppress the long wavelength of the light absorption end on the short wavelength side, it is preferable to increase the cation ratio {Nb 5+ /(Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )}. A lower limit and a preferred upper limit of the cation ratio {Nb 5+ /(Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} are shown in Table 17 below.

進而,為了進一步抑制短波長側的光吸收端的長波長化(較佳進一步抑制λ5的增加)、促進紫外線照射對紫外線 固化型黏接劑的固化,較佳使Ti4+的含量相對於Nb5+、Ti4+、Ta5+及W6+的合計含量的陽離子比{Ti4+/(Nb5++Ti4++Ta5++W6+)}為0.6以下。在下表18示出陽離子比{Ti4+/(Nb5++Ti4++Ta5++W6+)}的較佳的下限和更佳的上限。 Further, in order to further suppress the long wavelength of the light absorption end on the short-wavelength side (preferably further suppressing the increase of λ5) and to promote the curing of the ultraviolet curable adhesive by ultraviolet irradiation, it is preferred to make the content of Ti 4+ relative to Nb 5 . The cation ratio of the total content of + , Ti 4+ , Ta 5+ and W 6+ is {Ti 4+ /(Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} is 0.6 or less. A preferred lower limit and a better upper limit of the cation ratio {Ti 4+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} are shown in Table 18 below.

同樣地,為了進一步抑制短波長側的光吸收端的長波長化(較佳進一步抑制λ5的增加),較佳使W6+的含量相對於Nb5+、Ti4+、Ta5+及W6+的合計含量的陽離子比{W6+/(Nb5++Ti4++Ta5++W6+)}為0.2以下。在下表19示出陽離子比{W6+/(Nb5++Ti4++Ta5++W6+)}的較佳的下限和更佳的上限。 Similarly, in order to further suppress the long wavelength of the light absorption end on the short wavelength side (preferably further suppressing the increase of λ5), it is preferred to make the content of W 6+ relative to Nb 5+ , Ti 4+ , Ta 5+ and W 6 . + cation total content ratio {W 6+ / (Nb 5+ + Ti 4+ + Ta 5+ + W 6+)} is 0.2 or less. A preferred lower limit and a better upper limit of the cation ratio {W 6+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} are shown in Table 19 below.

在Nb5+、Ti4+、W6+之中,Ti4+使玻璃的著色增大 的傾向強,此外,使λ5增加的作用也比較強。為了抑制λ5的增加,較佳使Ti4+的含量相對於Nb5+、Ti4+及W6+的合計含量(Nb5++Ti4++W6+)的陽離子比{Ti4+/(Nb5++Ti4++W6+)}的上限為下表20所示的較佳的上限的值。另外,也能夠使陽離子比{Ti4+/(Nb5++Ti4++W6+)}為0。 Among Nb 5+ , Ti 4+ , and W 6+ , Ti 4+ tends to increase the coloration of the glass, and the effect of increasing λ5 is also strong. In order to suppress an increase λ5, preferably the content of Ti 4+ cation with respect to the total content of Nb 5+, Ti 4+ and W 6+ and (Nb 5+ + Ti 4+ + W 6+) ratio of Ti 4+ { The upper limit of /(Nb 5+ +Ti 4+ +W 6+ )} is a value of the preferred upper limit shown in Table 20 below. Further, the cation ratio {Ti 4+ /(Nb 5+ +Ti 4+ +W 6+ )} can also be made zero.

為了在維持玻璃的熱穩定性的同時抑制阿貝數(νd)的降低,較佳使La3+、Y3+、Gd3+及Yb3+的合計含量(La3++Y3++Gd3++Yb3+)相對於Nb5+、Ti4+、Ta5+及W6+的合計含量(Nb5++Ti4++Ta5++W6+)的陽離子比{(La3++Y3++Gd3++Yb3+)/(Nb5++Ti4++Ta5++W6+)}的下限為下表21所示的較佳的下限的值。 In order to suppress the decrease in the Abbe number (νd) while maintaining the thermal stability of the glass, it is preferable to make the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ (La 3+ + Y 3+ + Cd ratio of Gd 3+ +Yb 3+ ) relative to the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ (Nb 5+ + Ti 4+ + Ta 5+ + W 6+ ) {( The lower limit of La 3+ +Y 3+ +Gd 3+ +Yb 3+ )/(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is the preferred lower limit value shown in Table 21 below. .

另一方面,為了在抑制折射率的降低的同時維持玻璃的熱穩定性,較佳使陽離子比{(La3++Y3++Gd3++Yb3+)/(Nb5++Ti4++Ta5++W6+)}的上限為下表21所示的較佳的上限的值。 On the other hand, in order to maintain the thermal stability of the glass while suppressing the decrease in the refractive index, it is preferred to make the cation ratio {(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )/(Nb 5+ +Ti) The upper limit of 4+ + Ta 5+ + W 6+ )} is the value of the preferred upper limit shown in Table 21 below.

以下對玻璃A的玻璃組成進行進一步說明。 The glass composition of the glass A will be further described below.

作為玻璃的網路形成成分的B3+和Si4+的合計含量等如前所述。關於B3+和Si4+,雖然B3+改善熔融性的作用比Si4+優秀,但是在熔融時易揮發。另一方面,Si4+具有改善玻璃的化學耐久性、耐候性、機械加工性以及提高熔融時的玻璃的黏性的作用。 The total content of B 3+ and Si 4+ as the network forming component of the glass is as described above. Regarding B 3+ and Si 4+ , although B 3+ is superior to Si 4+ in improving the meltability, it is volatilized at the time of melting. On the other hand, Si 4+ has an effect of improving chemical durability, weather resistance, machinability, and viscosity of glass at the time of melting.

一般來說,在包含B3+和La3+等稀土類元素的高折射率低色散玻璃中,熔融時的玻璃的黏性低。但是,當熔融時的玻璃的黏性低時,會變得容易晶化。製造玻璃時的晶化是由於以下原因而產生的,即,晶化比無定形態(非晶態)更穩定,構成玻璃的離子在玻璃中移動而排列為具有晶體結構。因此,藉由調整B3+和Si4+的各成分的含量的比例而使得熔融時的黏性提高,從而能夠使上述離子不易排列成具有晶體結構,進一步抑制玻璃的晶化而進一步改善玻璃的耐失透性。 In general, in a high refractive index low dispersion glass containing a rare earth element such as B 3+ and La 3+ , the viscosity of the glass at the time of melting is low. However, when the viscosity of the glass at the time of melting is low, it becomes easy to crystallize. The crystallization during the production of glass is caused by the fact that the crystallization is more stable than the amorphous state (amorphous state), and the ions constituting the glass move in the glass to be arranged to have a crystal structure. Therefore, by adjusting the ratio of the content of each component of B 3+ and Si 4+ to improve the viscosity at the time of melting, the ions can be hardly arranged to have a crystal structure, and the crystallization of the glass can be further suppressed to further improve the glass. Resistance to devitrification.

從以上的觀點出發,B3+的含量相對於B3+和Si4+的合計含量的陽離子比{B3+/(B3++Si4+)}的較佳的下限和較佳的上限如下表22所示。從改善玻璃的熔融性的觀點出發,也較佳設為下表22所示的下限以上。此外,為了提高熔融時的玻璃的黏性,較佳設為下表22所示的上限以下。進而,為了降低熔融時的揮發導致的玻璃組成的變動及由此導致的光學特性的變動,此外從改善玻璃的化學耐久性、耐候性及機械加工性中的一種以上的觀點出發,也較佳設為下表22所示的上限以下。 From the above viewpoint, the content of B 3+ and B 3+ cations with respect to the total content of Si 4+ preferred lower limit of the ratio of {B 3+ / (B 3+ + Si 4+)} and preferred The upper limit is shown in Table 22 below. From the viewpoint of improving the meltability of the glass, it is also preferable to set the lower limit or more as shown in Table 22 below. Further, in order to increase the viscosity of the glass during melting, it is preferably set to be equal to or lower than the upper limit shown in Table 22 below. Furthermore, in order to reduce fluctuations in the glass composition and fluctuations in optical characteristics due to volatilization during melting, it is also preferable from the viewpoint of improving one or more of chemical durability, weather resistance, and machinability of the glass. Set to the upper limit shown in Table 22 below.

從改善玻璃的耐失透性、熔融性、成型性、化學耐久性、耐候性、機械加工性等的方面考慮,分別在下表23~24示出B3+的含量、Si4+的含量的較佳的下限和較佳的上限。 From the viewpoints of improving the devitrification resistance, the meltability, the moldability, the chemical durability, the weather resistance, the machinability, and the like of the glass, the contents of B 3+ and the content of Si 4+ are shown in Tables 23 to 24, respectively. A preferred lower limit and a preferred upper limit.

Zn2+具有在將玻璃熔融時促進玻璃原料的熔融的作用,即,具有改善熔融性的作用。此外,還具有調整折射率(nd)、阿貝數(νd)、降低玻璃化轉變溫度的作用。從抑制阿貝 數(νd)的降低、改善玻璃的熱穩定性、抑制玻璃化轉變溫度的降低(由此改善機械加工性)的觀點出發,將Zn2+的含量除以B3+和Si4+的合計含量的值,即陽離子比{Zn2+/(B3++Si4+)}較佳設為0.15以下。另外,在上述玻璃中,Zn是可以包含也可以不包含的任選成分,因此較佳陽離子比{Zn2+/(B3++Si4+)}為0以上,但是為了提高熔融性、容易地製作均質的玻璃,更佳含有鋅(Zn)且將陽離子比{Zn2+/(B3++Si4+)}設為超過0。在下表25示出陽離子比{Zn2+/(B3++Si4+)}的更佳的下限和更佳的上限。 Zn 2+ has an effect of promoting melting of the glass raw material when the glass is melted, that is, has an effect of improving meltability. Further, it has an effect of adjusting the refractive index (nd), the Abbe number (νd), and lowering the glass transition temperature. From the viewpoint of suppressing the decrease in the Abbe number (νd), improving the thermal stability of the glass, and suppressing the decrease in the glass transition temperature (thus improving the machinability), the content of Zn 2+ is divided by B 3+ and Si. The value of the total content of 4+ , that is, the cation ratio {Zn 2+ /(B 3+ +Si 4+ )} is preferably set to 0.15 or less. Further, in the above glass, Zn may or may not contain optional components. Therefore, the cation ratio {Zn 2+ /(B 3+ +Si 4+ )} is preferably 0 or more, but in order to improve the meltability, It is easy to produce a homogeneous glass, more preferably containing zinc (Zn) and setting the cation ratio {Zn 2+ /(B 3+ +Si 4+ )} to more than zero. A lower limit and a better upper limit of the cation ratio {Zn 2+ /(B 3+ +Si 4+ )} are shown in Table 25 below.

為了改善玻璃的熔融性、熱穩定性、成型性、機械加工性等以及實現上述的光學特性,Zn2+的含量的較佳的下限和較佳的上限如下表26所示。 In order to improve the meltability, thermal stability, moldability, machinability, and the like of the glass and to realize the above optical characteristics, a preferred lower limit and a preferred upper limit of the content of Zn 2+ are shown in Table 26 below.

從進一步改善玻璃的熱穩定性、抑制玻璃化轉變 溫度的降低(由此改善機械加工性)、改善化學耐久性的觀點出發,Zn2+的含量相對於Nb5+、Ti4+、Ta5+及W6+的合計含量的陽離子比{Zn2+/(Ti4++Nb5++Ta5++W6+)}較佳為1.0以下。另一方面,Zn是任選成分,因此陽離子比{Zn2+/(Nb5++Ti4++Ta5++W6+)}的下限較佳為0,但是從提高熔融性、進一步抑制短波長側的光吸收端的長波長化(較佳進一步抑制λ5的增加)的觀點出發,更佳設為超過0。當考慮以上的方面時,陽離子比{Zn2+/(Ti4++Nb5++Ta5++W6+)}的更佳的下限和更佳的上限如下表27所示。 The content of Zn 2+ is relative to Nb 5+ , Ti 4+ , Ta 5 from the viewpoint of further improving the thermal stability of the glass, suppressing the decrease in the glass transition temperature (thereby improving the machinability), and improving the chemical durability. The cation ratio {Zn 2+ /(Ti 4+ + Nb 5+ + Ta 5+ + W 6+ )} of the total content of + and W 6+ is preferably 1.0 or less. On the other hand, Zn is an optional component, so the lower limit of the cation ratio {Zn 2+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is preferably 0, but from the improvement of the meltability, further From the viewpoint of suppressing the long wavelength of the light absorption end on the short wavelength side (preferably, further suppressing the increase of λ5), it is more preferable to exceed zero. When considering the above aspects, a lower limit and a higher upper limit of the cation ratio {Zn 2+ /(Ti 4+ + Nb 5+ + Ta 5+ + W 6+ )} are shown in Table 27 below.

關於Nb5+、Ti4+、Ta5+、W6+,在考慮了上述作用、效果的基礎上,將Nb5+、Ti4+、Ta5+、W6+的各成分的含量的較佳的範圍示於下表28~31。 About Nb 5+, Ti 4+, Ta 5+ , W 6+, in consideration of the above effect based on the effect, the Nb 5+, Ti 4+, 5+ content of Ta, and W 6+ is a component The preferred ranges are shown in Tables 28 to 31 below.

接著,對以上說明的成分以外的任選成分進行說明。 Next, optional components other than the components described above will be described.

Li+使玻璃化轉變溫度降低的作用強,因此當其含量增多時會示出機械加工性降低的傾向。此外,化學耐久性、耐候性也示出降低的傾向。因此,較佳將Li+的含量設為5%以下。在下表32示出Li+的含量的較佳的下限和更佳的上限。Li+的含量也可以設為0%。 Since Li + has a strong effect of lowering the glass transition temperature, when the content thereof is increased, the tendency of the machinability is lowered. Further, chemical durability and weather resistance also tend to decrease. Therefore, the content of Li + is preferably made 5% or less. A preferred lower limit and a better upper limit of the content of Li + are shown in Table 32 below. The content of Li + can also be set to 0%.

Na+、K+、Rb+、Cs+均具有改善玻璃的熔融性的作用,但是當它們的含量增多時,會示出玻璃的熱穩定性、化學耐久性、耐候性、機械加工性降低的傾向。因此,Na+、K+、Rb+、Cs+的各含量的下限和上限分別較佳設為如下表33~36所示。 Na + , K + , Rb + , and Cs + all have an effect of improving the meltability of the glass. However, when the content thereof is increased, the thermal stability, chemical durability, weather resistance, and machinability of the glass are lowered. tendency. Therefore, the lower limit and the upper limit of the respective contents of Na + , K + , Rb + and Cs + are preferably set as shown in the following Tables 33 to 36, respectively.

為了在維持玻璃的熱穩定性、化學耐久性、耐候性、機械加工性的同時改善玻璃的熔融性,Li+、Na+及K+的合計含量(Li++Na++K+)的較佳的下限和較佳的上限如下表37所示。 In order to improve the glass meltability while maintaining the thermal stability, chemical durability, weather resistance and machinability of the glass, the total content of Li + , Na + and K + (Li + + Na + + K + ) The lower limit and the preferred upper limit are shown in Table 37 below.

Mg2+、Ca2+、Sr2+、Ba2+均為具有改善玻璃的熔融性的作用的成分。但是,當這些成分的含量增多時,玻璃的熱穩定性會降低,示出失透傾向。因此,這些成分的各自的含量 較佳分別設為下表38~41所示的下限以上、上限以下。 Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ are all components having an effect of improving the meltability of the glass. However, when the content of these components is increased, the thermal stability of the glass is lowered, showing a tendency to devitrification. Therefore, the content of each of these components is preferably set to be equal to or higher than the lower limit and lower limit shown in the following Tables 38 to 41, respectively.

此外,為了維持玻璃的熱穩定性,Mg2+、Ca2+、Sr2+及Ba2+的合計含量(Mg2++Ca2++Sr2++Ba2+)較佳設為下表42所示的下限以上、上限以下。 Further, in order to maintain the thermal stability of the glass, the total content of Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ (Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ ) is preferably set to The lower limit or more and the upper limit shown in

Al3+是具有改善玻璃的化學耐久性、耐候性的作用的成分。但是,當Al3+的含量增多時,有時會表現出折射率(nd)降低的傾向、玻璃的熱穩定性降低的傾向、熔融性降低的傾向。考慮以上方面,Al3+的含量較佳設為下表43所示的下限以上、上限以下。 Al 3+ is a component having an effect of improving the chemical durability and weather resistance of the glass. However, when the content of Al 3+ is increased, the refractive index (nd) tends to decrease, the thermal stability of the glass tends to decrease, and the meltability tends to decrease. In view of the above, the content of Al 3+ is preferably set to be equal to or higher than the lower limit and lower than the upper limit shown in Table 43 below.

Ga3+、In3+、Sc3+、Hf4+均具有提高折射率(nd)的作用。但是,這些成分昂貴,且不是為了得到上述光學玻璃而必要的成分。因此,Ga3+、In3+、Sc3+、Hf4+的各含量較佳設為下表44~47所示的下限以上、上限以下。 Ga 3+ , In 3+ , Sc 3+ , and Hf 4+ all have an effect of increasing the refractive index (nd). However, these components are expensive and are not essential components for obtaining the above optical glass. Therefore, the content of each of Ga 3+ , In 3+ , Sc 3+ , and Hf 4+ is preferably set to be equal to or higher than the lower limit and lower than the upper limit shown in Tables 44 to 47 below.

Lu3+具有提高折射率(nd)的作用,但其還是使玻璃 的比重增加的成分。此外,鑥(Lu)與Gd、Yb同樣是重稀土類元素,因此較佳降低Lu的含量。從以上的方面出發,Lu3+的含量的較佳的下限和較佳的上限如下表48所示。 Lu 3+ has an effect of increasing the refractive index (nd), but it is also a component that increases the specific gravity of the glass. Further, since Lu (Lu) is a heavy rare earth element similarly to Gd and Yb, it is preferable to reduce the content of Lu. From the above aspects, a preferred lower limit and a preferred upper limit of the content of Lu 3+ are shown in Table 48 below.

Ge4+具有提高折射率(nd)的作用,但是在通常使用的玻璃成分之中,其是尤為昂貴的成分。為了降低玻璃的製造成本,Ge4+的含量的較佳的下限和較佳的上限如下表49所示。 Ge 4+ has an effect of increasing the refractive index (nd), but it is a particularly expensive component among the commonly used glass components. In order to reduce the manufacturing cost of the glass, a preferred lower limit and a preferred upper limit of the content of Ge 4+ are shown in Table 49 below.

Bi3+是提高折射率(nd)並且使阿貝數(νd)降低的成分。此外,還是容易使玻璃的著色增加的成分。為了製作具有上述的光學特性且著色少的玻璃,Bi3+的含量的較佳的下限和較佳的上限如下表50所示。 Bi 3+ is a component that increases the refractive index (nd) and lowers the Abbe number (νd). In addition, it is a component that easily increases the color of the glass. In order to produce a glass having the above optical characteristics and having little coloration, a preferred lower limit and a preferred upper limit of the content of Bi 3+ are shown in Table 50 below.

為了良好地得到以上說明的各種作用、效果,以上記載的陽離子成分的各含量的合計(合計含量)較佳大於95%,更佳大於98%,進一步較佳大於99%,再進一步較佳大於99.5%。 In order to satisfactorily obtain the various actions and effects described above, the total content (total content) of each of the cationic components described above is preferably more than 95%, more preferably more than 98%, still more preferably more than 99%, still more preferably more than 99.5%.

在以上記載的陽離子成分以外的陽離子成分中,P5+是使折射率(nd)降低的成分,還是使玻璃的熱穩定性降低的成分,但是極少量的導入有時會使玻璃的熱穩定性提高。為了製作具有上述的光學特性並且熱穩定性優秀的玻璃,P5+的含量的較佳的下限和較佳的上限如下表51所示。 In the cationic component other than the cationic component described above, P 5+ is a component that lowers the refractive index (nd) or a component that lowers the thermal stability of the glass. However, introduction of a small amount may thermally stabilize the glass. Sexual improvement. In order to produce a glass having the above optical characteristics and excellent thermal stability, a preferred lower limit and a preferred upper limit of the content of P 5+ are shown in Table 51 below.

Te4+是提高折射率(nd)的成分,但是因為是具有毒性的成分,所以較佳減少Te4+的含量。Te4+的含量的較佳的下限和較佳的上限如下表52所示。 Te 4+ is a component that increases the refractive index (nd), but since it is a toxic component, it is preferable to reduce the content of Te 4+ . A preferred lower limit and a preferred upper limit of the content of Te 4+ are shown in Table 52 below.

另外,在上述的各表中在(更)較佳的下限或者上限中記載有0%的成分,其含量也較佳為0%。對於多種成分的合計含量也是同樣的。 Further, in each of the above tables, a component of 0% is described in a (better) lower limit or upper limit, and the content thereof is preferably 0%. The same is true for the total content of various components.

鉛(Pb)、砷(As)、鎘(Cd)、鉈(Tl)、鈹(Be)、硒(Se)都具有毒性。因此,較佳不含有這些元素,即,較佳不將這些元素作為玻璃成分而導入到玻璃中。 Lead (Pb), arsenic (As), cadmium (Cd), strontium (Tl), strontium (Be), and selenium (Se) are all toxic. Therefore, it is preferred not to contain these elements, that is, it is preferable not to introduce these elements into the glass as a glass component.

鈾(U)、釷(Th)、鐳(Ra)均為放射性元素。因此,較佳不含有這些元素,即,較佳不將這些元素作為玻璃成分而導入到玻璃中。 Uranium (U), thorium (Th), and radium (Ra) are all radioactive elements. Therefore, it is preferred not to contain these elements, that is, it is preferable not to introduce these elements into the glass as a glass component.

釩(V)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、錯(Pr)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鈰(Ce)會使玻璃的著色增大,或者成為螢光的產生源,作為在光學元件用的玻璃中含有的元素是不較佳的。因此,較佳不含有這些元素,即,較佳不將這些元素作為玻璃成分而導入到玻璃中。 Vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), mal (Pr), niobium (Nd), niobium (Pm), Sm, Eu, Tb, Dy, Ho, Er, Tm The source of light is not preferable as an element contained in the glass for an optical element. Therefore, it is preferred not to contain these elements, that is, it is preferable not to introduce these elements into the glass as a glass component.

銻(Sb)、錫(Sn)是作為澄清劑發揮功能的能夠任選地添加的元素。 Sb (Sb) and tin (Sn) are elements which can be optionally added as a clarifying agent.

在換算為三氧化二銻(Sb2O3)並將Sb2O3以外的玻璃成分 的含量的合計設為100質量%時,Sb的添加量的範圍較佳為0~0.11質量%,更佳為0.01~0.08質量%,進一步較佳為0.02~0.05質量%。 In terms of antimony trioxide (Sb 2 O 3) is set and the total content of the glass component other than Sb 2 O 3 100 mass%, Sb in the range of the addition amount is preferably from 0 to 0.11% by mass, and more It is preferably 0.01 to 0.08 mass%, more preferably 0.02 to 0.05 mass%.

在換算為三氧化二錫(SnO2)並將SnO2以外的玻璃成分的含量的合計設為100質量%時,Sn的添加量的範圍較佳為0~0.5質量%,更佳為0~0.2質量%,進一步較佳為0質量%。 When terms of tin oxide (SnO 2) and the content of the glass component other than 2 SnO total of 100% by mass, the range of Sn is preferably added in an amount of 0 to 0.5% by mass, more preferably from 0 to 0.2% by mass, further preferably 0% by mass.

以上對陽離子成分進行了說明。接著,對陰離子成分進行說明。 The cationic component has been described above. Next, the anion component will be described.

上述玻璃是氧化物玻璃,因此作為陰離子成分包含O2-。O2-的含量的範圍較佳為98~100陰離子%,更佳為99~100陰離子%,進一步較佳為100陰離子%。 The glass is an oxide glass, so as an anionic component comprising O 2-. The content of O 2- is preferably in the range of 98 to 100 anionic %, more preferably 99 to 100 anionic %, still more preferably 100 anionic %.

作為O2-以外的陰離子成分,能夠例示F-、Cl-、Br-、I-。在此,F-、Cl-、Br-、I-均容易在玻璃的熔融中揮發。由於這些成分的揮發,有玻璃的特性變動、玻璃的均質性降低、或者熔融設備的消耗變得顯著的傾向。因此,較佳將F-、Cl-、Br-及I-的合計含量抑制為從100陰離子%中減去O2-的含量的量。 Examples of the anion component other than O 2− are F , Cl , Br , and I . Here, F - , Cl - , Br - , and I - are all easily volatilized in the melting of the glass. Due to the volatilization of these components, there is a tendency that the characteristics of the glass fluctuate, the homogeneity of the glass is lowered, or the consumption of the melting equipment becomes remarkable. Therefore, it is preferred to suppress the total content of F - , Cl - , Br - and I - to an amount obtained by subtracting the content of O 2- from 100 anions %.

另外,眾所周知,陰離子%是指將玻璃所包含的全部的陰離子成分的合計含量設為100%的百分率。 Further, it is known that the percentage of anion is a percentage of the total content of all the anionic components contained in the glass to 100%.

[玻璃B] [Glass B]

接著,對玻璃B進行說明。 Next, the glass B will be described.

本發明的一個實施形態的玻璃B是一種氧化物玻璃,其具有上述玻璃組成,阿貝數(νd)的範圍為39.5~41.5,且折射率(nd)與阿貝數(νd)滿足上述式(1)。以下對玻璃B進行詳細說明。 The glass B according to an embodiment of the present invention is an oxide glass having the above glass composition, the Abbe number (νd) is in the range of 39.5 to 41.5, and the refractive index (nd) and the Abbe number (νd) satisfy the above formula. (1). The glass B will be described in detail below.

在本發明中,以氧化物為基準來表示玻璃B的玻璃組成。在此,“以氧化物為基準的玻璃組成”是指,藉由設玻璃原料在熔融時全部被分解而作為氧化物存在於玻璃中而進行換算,從而得到的玻璃組成。此外,只要沒有特別說明,玻璃B的玻璃組成設為以質量為基準(質量%、質量比)來表示。 In the present invention, the glass composition of the glass B is represented by an oxide. Here, the "glass composition based on an oxide" means a glass composition obtained by converting a glass raw material into a glass by being completely decomposed at the time of melting and being present as an oxide in the glass. In addition, unless otherwise indicated, the glass composition of the glass B is represented by mass (mass %, mass ratio).

<玻璃組成> <glass composition>

三氧化二硼(B2O3)、二氧化矽(SiO2)是玻璃的網路形成成分。當B2O3和SiO2的合計含量(B2O3+SiO2)為17.5%以上時,玻璃的熱穩定性提高,能夠抑制製造過程中的玻璃的晶化。另一方面,當B2O3和SiO2的合計含量為35%以下時,能夠抑制折射率(nd)的降低,因此能夠製作具有上述的光學特性的玻璃。因此,在上述玻璃中的B2O3和SiO2的合計含量的範圍設為17.5~35%。B2O3和SiO2的合計含量的較佳的下限和較佳的上限如下表53所示。 Boron trioxide (B 2 O 3 ) and cerium oxide (SiO 2 ) are network forming components of glass. When the total content of B 2 O 3 and SiO 2 (B 2 O 3 + SiO 2 ) is 17.5% or more, the thermal stability of the glass is improved, and crystallization of the glass in the production process can be suppressed. On the other hand, when the total content of B 2 O 3 and SiO 2 is 35% or less, the decrease in the refractive index (nd) can be suppressed, and thus the glass having the above optical characteristics can be produced. Therefore, the range of the total content of B 2 O 3 and SiO 2 in the above glass is set to be 17.5 to 35%. A preferred lower limit and a preferred upper limit of the total content of B 2 O 3 and SiO 2 are shown in Table 53 below.

三氧化二鑭(La2O3)、三氧化二釔(Y2O3)、三氧化二釓(Gd2O3)及三氧化二鐿(Yb2O3)是具有在抑制阿貝數(νd)的降低的同時提高折射率的作用的成分。此外,這些成分還具有改善玻璃的化學耐久性、耐候性以及提高玻璃化轉變溫度的作 用。 Antimony trioxide (La 2 O 3 ), antimony trioxide (Y 2 O 3 ), antimony trioxide (Gd 2 O 3 ) and antimony trioxide (Yb 2 O 3 ) have an Abbe number in suppression A component that reduces the effect of the refractive index while reducing (νd). In addition, these ingredients also have an effect of improving the chemical durability, weather resistance, and glass transition temperature of the glass.

當La2O3、Y2O3、Gd2O3及Yb2O3的合計含量(La2O3+Y2O3+Gd2O3+Yb2O3)為45%以上時,能夠抑制折射率(nd)的降低,因此能夠製作具有上述的光學特性的玻璃。進而,還能夠抑制玻璃的化學耐久性、耐候性的降低。另外,若玻璃化轉變溫度降低,則在對玻璃進行機械加工(切斷、切削、研磨、拋光等)時玻璃容易破損(機械加工性降低),當La2O3、Y2O3、Gd2O3及Yb2O3的合計含量為45%以上時,能夠抑制玻璃化轉變溫度的降低,因此還能夠提高機械加工性。另一方面,如果La2O3、Y2O3、Gd2O3及Yb2O3的各成分的含量的合計為70%以下,就能夠提高玻璃的熱穩定性,因此還能夠抑制製造玻璃時的晶化、減少將玻璃熔融時原料的熔融殘留。此外,還能夠抑制比重的上升。因此,在上述玻璃中,La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的範圍設為45~70%。在下表54示出La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的較佳的下限和較佳的上限。 When the total content of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 , and Yb 2 O 3 (La 2 O 3 + Y 2 O 3 + Gd 2 O 3 + Yb 2 O 3 ) is 45% or more, Since the decrease in the refractive index (nd) can be suppressed, it is possible to produce a glass having the above optical characteristics. Further, it is also possible to suppress chemical durability and deterioration of weather resistance of the glass. Further, when the glass transition temperature is lowered, the glass is easily broken (machineability is lowered) when the glass is machined (cut, cut, polished, polished, etc.), when La 2 O 3 , Y 2 O 3 , Gd When the total content of 2 O 3 and Yb 2 O 3 is 45% or more, the decrease in the glass transition temperature can be suppressed, so that the machinability can be improved. On the other hand, when the total content of each component of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 , and Yb 2 O 3 is 70% or less, the thermal stability of the glass can be improved, and thus the production can be suppressed. Crystallization in the case of glass reduces the melting of the raw material when the glass is melted. In addition, it is also possible to suppress an increase in the specific gravity. Therefore, in the above glass, the total content of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 is in the range of 45 to 70%. The lower limit and the preferred upper limit of the total content of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 are shown in Table 54 below.

五氧化二鈮(Nb2O5)、二氧化鈦(TiO2)、五氧化二鉭(Ta2O5)及氧化鎢(WO3)是具有提高折射率的作用的成分,藉由適量地含有,從而還具有改善玻璃的熱穩定性的作用。如果 Nb2O5、TiO2、Ta2O5及WO3的合計含量(Nb2O5+TiO2+Ta2O5+WO3)為3%以上,就能夠在維持熱穩定性的同時實現上述的光學特性。另一方面,如果Nb2O5、TiO2、Ta2O5及WO3的合計含量為16%以下,就能夠抑制熱穩定性的降低和阿貝數(νd)的降低。此外,還能夠抑制後述的著色度(λ5)的增加、提高玻璃的紫外線透射率。因此,在上述玻璃中,將Nb2O5、TiO2、Ta2O5及WO3的合計含量的範圍設為3~16%。在下表55示出Nb2O5、TiO2、Ta2O5及WO3的合計含量的較佳的下限和較佳的上限。 Bismuth pentoxide (Nb 2 O 5 ), titanium dioxide (TiO 2 ), tantalum pentoxide (Ta 2 O 5 ), and tungsten oxide (WO 3 ) are components having an effect of increasing the refractive index, and are contained in an appropriate amount. It also has the effect of improving the thermal stability of the glass. When the total content of Nb 2 O 5 , TiO 2 , Ta 2 O 5 and WO 3 (Nb 2 O 5 + TiO 2 + Ta 2 O 5 + WO 3 ) is 3% or more, it is possible to maintain thermal stability while maintaining thermal stability. The above optical characteristics are achieved. On the other hand, when the total content of Nb 2 O 5 , TiO 2 , Ta 2 O 5 and WO 3 is 16% or less, it is possible to suppress a decrease in thermal stability and a decrease in Abbe number (νd). Further, it is also possible to suppress an increase in the coloring degree (λ5) to be described later and to increase the ultraviolet transmittance of the glass. Therefore, in the above glass, the total content of Nb 2 O 5 , TiO 2 , Ta 2 O 5 and WO 3 is in the range of 3 to 16%. The lower limit and the preferred upper limit of the total content of Nb 2 O 5 , TiO 2 , Ta 2 O 5 and WO 3 are shown in Table 55 below.

二氧化鋯(ZrO2)是具有提高折射率的作用的成分,藉由適量地含有,從而還具有改善玻璃的熱穩定性的作用。此外,ZrO2還具有藉由提高玻璃化轉變溫度而使玻璃在機械加工時不易破損的作用。為了良好地得到這些效果,在上述玻璃中,將ZrO2的含量設為2%以上。另一方面,如果ZrO2的含量為10%以下,就能夠改善玻璃的熱穩定性,因此能夠抑制製造玻璃時的晶化、玻璃熔融時產生熔融殘留。因此,上述玻璃中的ZrO2的含量的範圍設為2~10%。在下表56示出ZrO2的含量的較佳的下限和較佳的上限。 Zirconium dioxide (ZrO 2 ) is a component having an effect of increasing the refractive index, and has an effect of improving the thermal stability of the glass by being contained in an appropriate amount. Further, ZrO 2 also has an effect of making the glass less susceptible to breakage during machining by increasing the glass transition temperature. In order to obtain these effects favorably, the content of ZrO 2 in the above glass is 2% or more. On the other hand, when the content of ZrO 2 is 10% or less, the thermal stability of the glass can be improved. Therefore, it is possible to suppress crystallization during the production of glass and to cause melt residue during glass melting. Therefore, the range of the content of ZrO 2 in the above glass is set to 2 to 10%. A preferred lower limit and a preferred upper limit of the content of ZrO 2 are shown in Table 56 below.

為了在改善玻璃的熱穩定性的同時實現阿貝數(νd)為39.5~41.5且折射率(nd)和阿貝數(νd)滿足上述式(1)的關係的光學特性,在上述玻璃中,將三氧化二硼(B2O3)和二氧化矽(SiO2)的合計含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{(B2O3+SiO2)/(La2O3+Y2O3+Gd2O3+Yb2O3)}設為0.2~0.5。如果質量比{(B2O3+SiO2)/(La2O3+Y2O3+Gd2O3+Yb2O3)}為0.2以上,就能夠改善玻璃的熱穩定性,因此能夠抑制玻璃的失透。此外,還能夠抑制玻璃的比重增大。當玻璃的比重增大時,使用該玻璃製作的光學元件會變重。其結果是,組裝了該光學元件的光學系統變重。例如,當將重的光學元件組裝到自動對焦式的相機中時,驅動自動對焦時的功耗會增加,電池會快速消耗。從使用該玻璃製作的光學元件和組裝了該光學元件的光學系統的輕量化的觀點出發,較佳能夠抑制玻璃的比重增大。另一方面,如果質量比{(B2O3+SiO2)/(La2O3+Y2O3+Gd2O3+Yb2O3)}為0.5以下,就能夠實現上述的光學特性。在下表57示出質量比{(B2O3+SiO2)/(La2O3+Y2O3+Gd2O3+Yb2O3)}的較佳的下限和較佳的上限。 In order to improve the thermal stability of the glass, the Abbe number (νd) is 39.5 to 41.5 and the refractive index (nd) and the Abbe number (νd) satisfy the optical characteristics of the above formula (1), in the above glass. a mass ratio of the total content of boron trioxide (B 2 O 3 ) and cerium oxide (SiO 2 ) to the total content of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 {(B 2 O 3 + SiO 2 ) / (La 2 O 3 + Y 2 O 3 + Gd 2 O 3 + Yb 2 O 3 )} is set to 0.2 to 0.5. If the mass ratio {(B 2 O 3 + SiO 2 ) / (La 2 O 3 + Y 2 O 3 + Gd 2 O 3 + Yb 2 O 3 )} is 0.2 or more, the thermal stability of the glass can be improved, so It can suppress the devitrification of the glass. In addition, it is also possible to suppress an increase in the specific gravity of the glass. When the specific gravity of the glass is increased, the optical element made using the glass becomes heavy. As a result, the optical system in which the optical element is assembled becomes heavy. For example, when a heavy optical component is assembled into an autofocus camera, the power consumption when driving autofocus increases, and the battery is quickly consumed. From the viewpoint of reducing the weight of the optical element produced using the glass and the optical system in which the optical element is assembled, it is preferable to suppress an increase in the specific gravity of the glass. On the other hand, if the mass ratio {(B 2 O 3 + SiO 2 ) / (La 2 O 3 + Y 2 O 3 + Gd 2 O 3 + Yb 2 O 3 )} is 0.5 or less, the above optical can be realized. characteristic. The lower limit and the preferred upper limit of the mass ratio {(B 2 O 3 + SiO 2 ) / (La 2 O 3 + Y 2 O 3 + Gd 2 O 3 + Yb 2 O 3 )} are shown in Table 57 below. .

為了在改善玻璃的熱穩定性的同時抑制折射率(nd)的降低、實現上述的光學特性,在上述玻璃中,將B2O3和SiO2的合計含量相對於Nb2O5、TiO2、Ta2O5及WO3的合計含量的質量比{(B2O3+SiO2)/(Nb2O5+TiO2+Ta2O5+WO3)}設為2.8以下。 In order to suppress the decrease in the refractive index (nd) and to achieve the above optical characteristics while improving the thermal stability of the glass, the total content of B 2 O 3 and SiO 2 in the above glass is relative to Nb 2 O 5 , TiO 2 . The mass ratio {(B 2 O 3 + SiO 2 ) / (Nb 2 O 5 + TiO 2 + Ta 2 O 5 + WO 3 )} of the total content of Ta 2 O 5 and WO 3 was 2.8 or less.

為了在抑制阿貝數(νd)的降低的同時改善玻璃的熱穩定性,較佳使質量比{(B2O3+SiO2)/(Nb2O5+TiO2+Ta2O5+WO3)}為1.2以上。進而,為了進一步抑制玻璃的短波長側的光吸收端的長波長化,較佳使質量比{(B2O3+SiO2)/(Nb2O5+TiO2+Ta2O5+WO3)}為1.2以上。其結果是,在使用紫外線固化型黏接劑對玻璃制透鏡進行膠合時,紫外線變得更容易藉由透鏡到達黏接劑的塗敷層。由此,變得更容易藉由紫外線照射使黏接劑固化。 In order to improve the thermal stability of the glass while suppressing the decrease in the Abbe number (νd), it is preferred to make the mass ratio {(B 2 O 3 + SiO 2 ) / (Nb 2 O 5 + TiO 2 + Ta 2 O 5 + WO 3 )} is 1.2 or more. Further, in order to further suppress the long wavelength of the light absorption end on the short-wavelength side of the glass, it is preferable to make the mass ratio {(B 2 O 3 + SiO 2 ) / (Nb 2 O 5 + TiO 2 + Ta 2 O 5 + WO 3 )} is 1.2 or more. As a result, when the glass lens is glued using the ultraviolet curable adhesive, the ultraviolet rays are more easily reached by the lens to the coating layer of the adhesive. Thereby, it becomes easier to cure the adhesive by ultraviolet irradiation.

在下表58示出質量比{(B2O3+SiO2)/(Nb2O5+TiO2+Ta2O5+WO3)}的更佳的下限和較佳的上限。 A lower limit and a preferred upper limit of the mass ratio {(B 2 O 3 + SiO 2 ) / (Nb 2 O 5 + TiO 2 + Ta 2 O 5 + WO 3 )} are shown in Table 58 below.

為了改善玻璃的熱穩定性、實現上述的光學特性,在上述玻璃中,將氧化鋅(ZnO)含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{ZnO/(La2O3+Y2O3+Gd2O3+Yb2O3)}設為不足0.10。在下表59示出質量比{ZnO/(La2O3+Y2O3+Gd2O3+Yb2O3)}的較佳的下限和較佳的上限。 In order to improve the thermal stability of the glass and achieve the above optical characteristics, the content of zinc oxide (ZnO) in the above glass is relative to the total content of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 . The mass ratio {ZnO/(La 2 O 3 +Y 2 O 3 +Gd 2 O 3 +Yb 2 O 3 )} was set to be less than 0.10. The lower limit and the preferred upper limit of the mass ratio {ZnO/(La 2 O 3 + Y 2 O 3 + Gd 2 O 3 + Yb 2 O 3 )} are shown in Table 59 below.

在稀土類元素La、Y、Gd及Yb之中,Gd屬於重稀土類元素,從穩定地供給玻璃的觀點出發,是要求降低玻璃中的含量的成分。此外,Gd的原子量大,還是使玻璃的比重增加的成分。 Among the rare earth elements La, Y, Gd, and Yb, Gd is a heavy rare earth element, and is a component that is required to lower the content in the glass from the viewpoint of stably supplying the glass. Further, Gd has a large atomic weight and is a component which increases the specific gravity of the glass.

Yb也屬於重稀土類元素,且原子量大。此外,Yb對近紅外區域進行吸收。另一方面,在單反相機用的交換透鏡、監視攝錄影機的透鏡中,期望對近紅外區域的光線透射率高。因 此,為了成為對於製作這些透鏡有用的玻璃,期望降低Yb的含量。 Yb is also a heavy rare earth element and has a large atomic weight. In addition, Yb absorbs the near-infrared region. On the other hand, in the interchangeable lens for a SLR camera and the lens of the surveillance video camera, it is desirable that the light transmittance in the near-infrared region is high. because Therefore, in order to become a glass useful for producing these lenses, it is desirable to reduce the content of Yb.

相對於此,La、Y不會對近紅外區域的光線透射率產生不良影響,藉由相對於稀土類元素的合計含量適量地進行分配,從而在改善熱穩定性的同時抑制比重的增大,是對於提供高折射率低色散玻璃有用的成分。 On the other hand, La and Y do not adversely affect the light transmittance in the near-infrared region, and are appropriately distributed with respect to the total content of the rare earth elements, thereby suppressing an increase in specific gravity while improving thermal stability. It is a useful component for providing high refractive index low dispersion glass.

因此,在上述玻璃中,關於La,將La2O3的含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{La2O3/(La2O3+Y2O3+Gd2O3+Yb2O3)}的範圍設為0.55~0.98。在下表60示出質量比{La2O3/(La2O3+Y2O3+Gd2O3+Yb2O3)}的較佳的下限和較佳的上限。 Therefore, in the glass, on La, the content of La 2 O 3 with respect to La 2 O 3, Y 2 O 3, the quality of the total content of Gd 2 O 3 and Yb 2 O 3 ratio {La 2 O 3 / The range of (La 2 O 3 +Y 2 O 3 +Gd 2 O 3 +Yb 2 O 3 )} is set to 0.55 to 0.98. The lower limit and the preferred upper limit of the mass ratio {La 2 O 3 /(La 2 O 3 +Y 2 O 3 +Gd 2 O 3 +Yb 2 O 3 )} are shown in Table 60 below.

此外,關於Y,將Y2O3的含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{Y2O3/(La2O3+Y2O3+Gd2O3+Yb2O3)}的範圍設為0.02~0.45。在下表61示出質量比{Y2O3/(La2O3+Y2O3+Gd2O3+Yb2O3)}的較佳的下限和較佳的上限。 Further, with respect to Y, the content of Y 2 O 3 with respect to La 2 O 3, Y 2 O 3, Gd mass total content 2 O 3 and Yb 2 O 3 ratio of {Y 2 O 3 / (La 2 O 3 The range of +Y 2 O 3 +Gd 2 O 3 +Yb 2 O 3 )} is set to 0.02 to 0.45. A preferred lower limit and a preferred upper limit of the mass ratio {Y 2 O 3 /(La 2 O 3 +Y 2 O 3 +Gd 2 O 3 +Yb 2 O 3 )} are shown in Table 61 below.

如前所述,從穩定地供給玻璃的觀點出發,Gd是應當降低玻璃中的含量的成分。在上述玻璃中,Gd的含量藉由La2O3、Y2O3、Gd2O3、Yb2O3的合計含量和相對於該合計含量的Gd2O3的含量來確定。在上述玻璃中,為了穩定地供給具有上述的光學特性的高折射率低色散玻璃,將Gd2O3的含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{Gd2O3/(La2O3+Y2O3+Gd2O3+Yb2O3)}設為0.10以下。另外,滿足上述質量比還能夠有助於玻璃的低比重化。在下表62示出質量比{Gd2O3/(La2O3+Y2O3+Gd2O3+Yb2O3)}的較佳的下限和較佳的上限。 As described above, Gd is a component which should lower the content in the glass from the viewpoint of stably supplying the glass. In the above glass, the content of Gd is determined by the total content of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 , Yb 2 O 3 and the content of Gd 2 O 3 relative to the total content. In the above glass, in order to stably supply the high refractive index low dispersion glass having the above optical characteristics, the content of Gd 2 O 3 is relative to La 2 O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 . total content mass ratio of {Gd 2 O 3 / (La 2 O 3 + Y 2 O 3 + Gd 2 O 3 + Yb 2 O 3)} is 0.10 or less. Further, satisfying the above mass ratio can also contribute to the low specific gravity of the glass. The lower limit and the preferred upper limit of the mass ratio {Gd 2 O 3 /(La 2 O 3 +Y 2 O 3 +Gd 2 O 3 +Yb 2 O 3 )} are shown in Table 62 below.

La2O3、Y2O3、Gd2O3及Yb2O3的合計含量以及 La2O3的含量、Y2O3的含量、Gd2O3的含量相對於該合計含量的質量比如上所述。在下表63~66示出La2O3、Y2O3、Gd2O3、Yb2O3的各成分的含量的較佳的下限和較佳的上限。另外,關於Y2O3的含量,從改善玻璃的熱穩定性和熔融性的觀點出發,也較佳下表64示出的下限。 The total content of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 , and the content of La 2 O 3 , the content of Y 2 O 3 , and the content of Gd 2 O 3 with respect to the total content For example, as described above. The lower limit and the preferred upper limit of the content of each component of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 , and Yb 2 O 3 are shown in Tables 63 to 66 below. Further, as for the content of Y 2 O 3 , from the viewpoint of improving the thermal stability and the meltability of the glass, the lower limit shown in Table 64 below is also preferable.

Nb、Ti、Ta及W藉由適量地含有,發揮提高折射率、改善玻璃的熱穩定性的作用。但是,當提高鈦(Ti)、鎢(W)的含量時,可見光區域的短波長側的吸收端會向長波長側移動。其結果是,玻璃的短波長側的光吸收端會長波長化。因此,在上述光學玻璃中,為了在改善玻璃的熱穩定性的同時抑制玻璃的短波長側的光吸收端的長波長化,在考慮了鈮(Nb)、Ti、Ta、W的各性質的基礎上,確定這些含量的比例。具體如下所述。 Nb, Ti, Ta, and W are contained in an appropriate amount, and exhibit an effect of improving the refractive index and improving the thermal stability of the glass. However, when the content of titanium (Ti) or tungsten (W) is increased, the absorption end on the short-wavelength side of the visible light region moves toward the long wavelength side. As a result, the light absorption end of the short-wavelength side of the glass is long-wavelength. Therefore, in the optical glass described above, in order to suppress the long-wavelength of the light-absorbing end of the short-wavelength side of the glass while improving the thermal stability of the glass, the basis of the properties of niobium (Nb), Ti, Ta, and W is considered. Above, determine the ratio of these contents. The details are as follows.

Nb具有在不使玻璃的比重、著色、製造成本增加的情況下提高折射率(nd)、改善玻璃的熱穩定性的作用。此外,與Ti、W相比較,Nb還是不易使玻璃的短波長側的吸收端長波長化的成分。眾所周知,玻璃的短波長側的吸收端能夠藉由被稱為λ5的指標來表示。也就是說,與Ti、W相比較,Nb是不易使λ5增加的成分。關於λ5,將在後面進行詳細敘述。 Nb has an effect of improving the refractive index (nd) and improving the thermal stability of the glass without increasing the specific gravity, coloring, and manufacturing cost of the glass. Further, Nb is a component which is less likely to cause a longer wavelength of the absorption end on the short-wavelength side of the glass than Ti and W. It is known that the absorption end of the short-wavelength side of the glass can be represented by an index called λ5. That is to say, Nb is a component which is less likely to increase λ5 than Ti and W. Λ5 will be described in detail later.

另一方面,當Ti的含量增多時,λ5會增加。此外,存在玻璃的可見光區域的透射率降低、玻璃的著色增大的傾向。 On the other hand, when the content of Ti increases, λ5 increases. Further, there is a tendency that the transmittance in the visible light region of the glass is lowered and the color of the glass is increased.

Ta具有提高折射率的作用,進而,與Nb、Ti、W相比較,還是不易使玻璃的短波長側的吸收端長波長化的成分,但其是 極其昂貴的成分。因此,從穩定地供給玻璃的觀點出發,不是較佳積極地使用Ta5+。此外,當Ta的含量多時,在將玻璃熔融時原料容易產生熔融殘留。此外,玻璃的比重會增加。 Ta has a function of increasing the refractive index, and further has a component which is less likely to cause a longer wavelength of the absorption end of the glass on the shorter wavelength side than Nb, Ti, and W, but is an extremely expensive component. Therefore, from the viewpoint of stably supplying the glass, it is not preferable to use Ta 5+ actively. Further, when the content of Ta is large, the raw material is likely to be melted and left when the glass is melted. In addition, the specific gravity of the glass will increase.

關於W,當其含量增多時,λ5會增加。此外,可見光區域中的透射率會降低,比重會增大。 Regarding W, when its content increases, λ5 increases. In addition, the transmittance in the visible light region is lowered, and the specific gravity is increased.

如上所述,Ta是應當降低含量的成分。因此,不是較佳積極地使用Ta。為了改善熱穩定性、抑制短波長側的光吸收端的長波長化(較佳減小λ5),在上述玻璃中,將Nb2O5的含量相對於在Nb2O5、TiO2、Ta2O5、WO3中除Ta2O5之外的Nb2O5、TiO2及WO3的合計含量的質量比{Nb2O5/(Nb2O5+TiO2+WO3)}設為0.81以上。在下表67示出質量比{Nb2O5/(Nb2O5+TiO2+WO3)}的較佳的下限和較佳的上限。 As described above, Ta is a component which should be reduced in content. Therefore, Ta is not preferably used actively. In order to improve thermal stability and suppress long-wavelength (preferably reduce λ5) of the light-absorbing end on the short-wavelength side, in the above glass, the content of Nb 2 O 5 is relative to that in Nb 2 O 5 , TiO 2 , Ta 2 O 5, WO 3 in addition to the Ta 2 O 5 Nb 2 O 5, the total content by mass of TiO 2, and WO 3 ratio {Nb 2 O 5 / (Nb 2 O 5 + TiO 2 + WO 3)} provided It is 0.81 or more. A preferred lower limit and a preferred upper limit of the mass ratio {Nb 2 O 5 /(Nb 2 O 5 +TiO 2 +WO 3 )} are shown in Table 67 below.

關於Ta,為了在改善玻璃的熱穩定性的同時謀求高折射率低色散化、削減Ta的使用量,將Ta2O5的含量相對於Nb2O5、TiO2、Ta2O5及WO3的合計含量的質量比{Ta2O5/(Nb2O5+TiO2+Ta2O5+WO3)}設為0.3以下。在下表68示出質量比{Ta2O5/(Nb2O5+TiO2+Ta2O5+WO3)}的較佳的下限和更佳的上限。 Regarding Ta, while in order to improve the thermal stability of the glass a high refractive index and low dispersion of the seek, reduce the amount of Ta, the content of Ta 2 O 5 with respect to the Nb 2 O 5, TiO 2, Ta 2 O 5 and WO 3, the total content mass ratio of {Ta 2 O 5 / (Nb 2 O 5 + TiO 2 + Ta 2 O 5 + WO 3)} is set to 0.3 or less. A preferred lower limit and a better upper limit of the mass ratio {Ta 2 O 5 /(Nb 2 O 5 +TiO 2 +Ta 2 O 5 +WO 3 )} are shown in Table 68 below.

此外,關於Nb,為了能夠穩定地供給玻璃,降低Gd、Ta的含量,期望降低Gd、Ta和Yb的含量,並且為了提供抑制了短波長側的光吸收端的長波長化(較佳減小λ5)、熱穩定性優秀的高折射率低色散玻璃,在考慮了Nb、Ti、Ta、W的上述作用的基礎上,較佳將Nb2O5的含量相對於Nb2O5、TiO2、Ta2O5及WO3的合計含量的質量比{Nb2O5/(Nb2O5+TiO2+Ta2O5+WO3)}設為0.5以上。此外,為了進一步抑制短波長側的光吸收端的長波長化,較佳增大質量比{Nb2O5/(Nb2O5+TiO2+Ta2O5+WO3)}。在下表69示出質量比{Nb2O5/(Nb2O5+TiO2+Ta2O5+WO3)}的更佳的下限和較佳的上限。 Further, regarding Nb, in order to stably supply the glass, to lower the content of Gd and Ta, it is desirable to lower the contents of Gd, Ta, and Yb, and to provide long-wavelength reduction (preferably to reduce λ5) of the light-absorbing end on the short-wavelength side. ), good thermal stability, high-refractivity low-dispersion glass, in consideration of the basis of the above effects Nb, Ti, Ta, W, based on the preferred content of Nb 2 O 5 with respect to the Nb 2 O 5, TiO 2, The mass ratio {Nb 2 O 5 /(Nb 2 O 5 +TiO 2 +Ta 2 O 5 +WO 3 )} of the total content of Ta 2 O 5 and WO 3 is set to 0.5 or more. Further, in order to further suppress the long wavelength of the light absorption end on the short wavelength side, it is preferable to increase the mass ratio {Nb 2 O 5 /(Nb 2 O 5 +TiO 2 +Ta 2 O 5 +WO 3 )}. A lower limit and a preferred upper limit of the mass ratio {Nb 2 O 5 /(Nb 2 O 5 +TiO 2 +Ta 2 O 5 +WO 3 )} are shown in Table 69 below.

進而,為了進一步抑制短波長側的光吸收端的長 波長化(較佳進一步抑制λ5的增加)、促進紫外線照射對紫外線固化型黏接劑的固化,較佳使TiO2的含量相對於Nb2O5、TiO2、Ta2O5及WO3的合計含量的質量比{TiO2/(Nb2O5+TiO2+Ta2O5+WO3)}為0.40以下。在下表70示出質量比{TiO2/(Nb2O5+TiO2+Ta2O5+WO3)}的較佳的下限和更佳的上限。 Further, in order to further suppress the long wavelength of the light absorption end on the short-wavelength side (preferably further suppressing the increase of λ5) and to promote the curing of the ultraviolet curable adhesive by ultraviolet irradiation, it is preferred to make the content of TiO 2 relative to Nb 2 O. 5, TiO 2, mass of the total content of Ta 2 O 5 and WO 3 ratio {TiO 2 / (Nb 2 O 5 + TiO 2 + Ta 2 O 5 + WO 3)} is 0.40 or less. A preferred lower limit and a higher upper limit of the mass ratio {TiO 2 /(Nb 2 O 5 +TiO 2 +Ta 2 O 5 +WO 3 )} are shown in Table 70 below.

同樣地,為了進一步抑制短波長側的光吸收端的長波長化(較佳進一步抑制λ5的增加),較佳使WO3的含量相對於Nb2O5、TiO2、Ta2O5及WO3的合計含量的質量比{WO3/(Nb2O5+TiO2+Ta2O5+WO3)}為0.3以下。在下表71示出質量比{WO3/(Nb2O5+TiO2+Ta2O5+WO3)}的較佳的下限和更佳的上限。 Likewise, in order to further suppress the short wavelength side of the light absorption of the longer wavelength side (preferably to further suppress the increase in λ5), preferably the content of WO 3 with respect to the Nb 2 O 5, TiO 2, Ta 2 O 5 and WO 3 The mass ratio of the total content of {WO 3 /(Nb 2 O 5 +TiO 2 +Ta 2 O 5 +WO 3 )} is 0.3 or less. A preferred lower limit and a better upper limit of the mass ratio {WO 3 /(Nb 2 O 5 +TiO 2 +Ta 2 O 5 +WO 3 )} are shown in Table 71 below.

在Nb、Ti、W之中,Ti使玻璃的著色增大的傾向強,此外,使λ5增加的作用也比較強。為了抑制λ5的增加,較佳使TiO2的含量相對於Nb2O5、TiO2及WO3的合計含量(Nb2O5+TiO2+WO3)的質量比{TiO2/(Nb2O5+TiO2+WO3)}的上限為下表72所示的較佳的上限的值。另外,也能夠使質量比{TiO2/(Nb2O5+TiO2+WO3)}為0。 Among Nb, Ti, and W, Ti tends to increase the color of the glass, and the effect of increasing λ5 is also strong. In order to suppress the increase in λ5, preferred that the content of TiO 2 with respect to the Nb 2 O 5, the total content mass (Nb 2 O 5 + TiO 2 + WO 3) of TiO 2 and WO 3 ratio {TiO 2 / (Nb 2 The upper limit of O 5 +TiO 2 +WO 3 )} is a value of the preferred upper limit shown in Table 72 below. Further, the mass ratio {TiO 2 /(Nb 2 O 5 +TiO 2 +WO 3 )} can also be made zero.

為了在維持玻璃的熱穩定性的同時抑制阿貝數(νd)的降低,較佳使La2O3、Y2O3、Gd2O3及Yb2O3的合計含量(La2O3+Y2O3+Gd2O3+Yb2O3)相對於Nb2O5、TiO2、Ta2O5及WO3的合計含量(Nb2O5+TiO2+Ta2O5+WO3)的質量比{(La2O3+Y2O3+Gd2O3+Yb2O3)/(Nb2O5+TiO2+Ta2O5+WO3)}的下限為下表73所示的較佳的下限的值。 In order to suppress the decrease in the Abbe number (νd) while maintaining the thermal stability of the glass, it is preferred to make the total content of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 (La 2 O 3 ) +Y 2 O 3 +Gd 2 O 3 +Yb 2 O 3 ) with respect to the total content of Nb 2 O 5 , TiO 2 , Ta 2 O 5 and WO 3 (Nb 2 O 5 +TiO 2 +Ta 2 O 5 + WO 3) the mass ratio of {(La 2 O 3 + Y 2 O 3 + Gd 2 O 3 + Yb 2 O 3) / (Nb 2 O 5 + TiO 2 + Ta 2 O 5 + WO 3)} is a lower limit of The values of the preferred lower limits shown in Table 73 below.

另一方面,為了在抑制折射率的降低的同時維持玻璃的熱穩定性,較佳使質量比{(La2O3+Y2O3+Gd2O3+Yb2O3)/(Nb2O5+TiO2+Ta2O5+WO3)}的上限為下表73所示的較佳的上限的值。 On the other hand, in order to maintain the thermal stability of the glass while suppressing the decrease in the refractive index, it is preferred to make the mass ratio {(La 2 O 3 +Y 2 O 3 +Gd 2 O 3 +Yb 2 O 3 )/(Nb) The upper limit of 2 O 5 +TiO 2 +Ta 2 O 5 +WO 3 )} is a value of the preferred upper limit shown in Table 73 below.

以下對上述玻璃的玻璃組成進行進一步說明。 The glass composition of the above glass will be further described below.

作為玻璃的網路形成成分的B2O3和SiO2的合計含量等如前所述。關於B2O3和SiO2,B2O3改善熔融性的作用比SiO2優秀,但是在熔融時易揮發。另一方面,SiO2具有改善玻璃的化學耐久性、耐候性、機械加工性以及提高熔融時的玻璃的黏性的作用。 The total content of B 2 O 3 and SiO 2 as a network forming component of glass is as described above. Regarding B 2 O 3 and SiO 2 , B 2 O 3 is superior to SiO 2 in improving the meltability, but is volatilized at the time of melting. On the other hand, SiO 2 has an effect of improving chemical durability, weather resistance, machinability, and viscosity of glass at the time of melting.

一般來說,在包含硼(B)和La等稀土類元素的高折射率低色散玻璃中,熔融時的玻璃的黏性低。但是,當熔融時的玻璃的黏性低時,會變得容易晶化。製造玻璃時的晶化是由於以下原因而產生的,即,晶化比無定形態(非晶態)更穩定,構成玻璃的離子在玻璃中移動而排列為具有晶體結構。因此,藉由調整B2O3和SiO2的各成分的含量的比例而使得熔融時的黏性提高,從而使上述離子不易排列為具有晶體結構,能夠進一步抑制玻璃的晶化、進一步改善玻璃的耐失透性。 Generally, in a high refractive index low dispersion glass containing a rare earth element such as boron (B) or La, the viscosity of the glass at the time of melting is low. However, when the viscosity of the glass at the time of melting is low, it becomes easy to crystallize. The crystallization during the production of glass is caused by the fact that the crystallization is more stable than the amorphous state (amorphous state), and the ions constituting the glass move in the glass to be arranged to have a crystal structure. Therefore, by adjusting the ratio of the content of each component of B 2 O 3 and SiO 2 , the viscosity at the time of melting is improved, so that the ions are hardly arranged to have a crystal structure, and crystallization of the glass can be further suppressed, and the glass can be further improved. Resistance to devitrification.

從以上的觀點出發,B2O3的含量相對於B2O3和SiO2的合計含量的質量比{B2O3/(B2O3+SiO2)}的較佳的下限和較佳的上限如下表74所示。從改善玻璃的熔融性的觀點出發,也較佳設為下表74所示的下限以上。此外,為了提高熔融時的玻璃 的黏性,較佳設為下表74所示的上限以下。進而,為了降低熔融時的揮發導致的玻璃組成的變動及由此導致的光學特性的變動,此外從改善玻璃的化學耐久性、耐候性及機械加工性中的一種以上的觀點出發,也較佳設為下表74所示的上限以下。 From the above viewpoint, the content of B 2 O 3 with respect to the lower and more preferred mass B 2 O 3 and SiO 2 ratio of the total content of {B 2 O 3 / (B 2 O 3 + SiO 2)} of The upper limit is shown in Table 74 below. From the viewpoint of improving the meltability of the glass, it is preferably set to be equal to or higher than the lower limit shown in the following Table 74. Further, in order to increase the viscosity of the glass during melting, it is preferably set to be equal to or less than the upper limit shown in the following Table 74. Furthermore, in order to reduce fluctuations in the glass composition and fluctuations in optical characteristics due to volatilization during melting, it is also preferable from the viewpoint of improving one or more of chemical durability, weather resistance, and machinability of the glass. Set to the upper limit shown in Table 74 below.

從改善玻璃的耐失透性、熔融性、成型性、化學耐久性、耐候性、機械加工性等方面考慮,在下表75~76分別示出B2O3的含量、SiO2的含量的較佳的下限和較佳的上限。 From the viewpoints of improving the devitrification resistance, meltability, moldability, chemical durability, weather resistance, and machinability of the glass, the contents of B 2 O 3 and SiO 2 are shown in Tables 75 to 76 below. A preferred lower limit and a preferred upper limit.

ZnO具有在將玻璃熔融時促進玻璃原料的熔融的作用,即,具有改善熔融性的作用。此外,還具有調整折射率(nd)、阿貝數(νd)以及使玻璃化轉變溫度降低的作用。從抑制阿貝數(νd)的降低、改善玻璃的熱穩定性、抑制玻璃化轉變溫度的降低(由此改善機械加工性)的觀點出發,將ZnO的含量除以B2O3和SiO2的合計含量的值,即質量比{ZnO/(B2O3+SiO2)}較佳設為0.30以下。另外,在上述玻璃中ZnO是可以包含也可以不包含的任選成分,因此質量比{ZnO/(B2O3+SiO2)}較佳為0以上,但是為了提高熔融性、容易地製作均質的玻璃,更較佳含有Zn且將質量比{ZnO/(B2O3+SiO2)}設為超過0。在下表77示出質量比{ZnO/(B2O3+SiO2)}的更佳的下限和更佳的上限。 ZnO has an effect of promoting melting of the glass raw material when the glass is melted, that is, has an effect of improving meltability. Further, it has an effect of adjusting the refractive index (nd), the Abbe number (νd), and lowering the glass transition temperature. From the viewpoint of suppressing the decrease in the Abbe number (νd), improving the thermal stability of the glass, and suppressing the decrease in the glass transition temperature (thus improving the machinability), the content of ZnO is divided by B 2 O 3 and SiO 2 . The value of the total content, that is, the mass ratio {ZnO/(B 2 O 3 + SiO 2 )} is preferably set to 0.30 or less. Further, since ZnO is an optional component which may or may not be contained in the glass, the mass ratio {ZnO/(B 2 O 3 + SiO 2 )} is preferably 0 or more, but is easily produced in order to improve the meltability. The homogeneous glass preferably contains Zn and has a mass ratio of {ZnO/(B 2 O 3 + SiO 2 )} exceeding 0. A lower limit and a better upper limit of the mass ratio {ZnO/(B 2 O 3 + SiO 2 )} are shown in Table 77 below.

為了改善玻璃的熔融性、熱穩定性、成型性、機械加工性等以及實現上述的光學特性,ZnO的含量的較佳的下限和較佳的上限如下表78所示。 In order to improve the meltability, thermal stability, moldability, machinability, and the like of the glass and to realize the above optical characteristics, a preferred lower limit and a preferred upper limit of the content of ZnO are shown in Table 78 below.

從進一步改善玻璃的熱穩定性、抑制玻璃化轉變溫度的降低(由此改善機械加工性)、改善化學耐久性的觀點出發,較佳ZnO的含量相對於Nb2O5、TiO2、Ta2O5及WO3的合計含量的質量比{ZnO/(Nb2O5+TiO2+Ta2O5+WO3)}為不足0.61。另一方面,Zn是任選成分,因此質量比{ZnO/(Nb2O5+TiO2+Ta2O5+WO3)}的下限較佳為0,但是從提高熔融性、進一步抑制短波長側的光吸收端的長波長化(較佳進一步抑制λ5的增加)的觀點出發,更佳設為超過0。當考慮以上的方面時,質量比{ZnO/(Nb2O5+TiO2+Ta2O5+WO3)}的更佳的下限和更佳的上限如下表79所示。 From the viewpoint of further improving the thermal stability of the glass, suppressing the decrease in the glass transition temperature (thereby improving the machinability), and improving the chemical durability, the content of ZnO is preferably relative to Nb 2 O 5 , TiO 2 , Ta 2 . The mass ratio {ZnO/(Nb 2 O 5 +TiO 2 +Ta 2 O 5 +WO 3 )} of the total content of O 5 and WO 3 is less than 0.61. On the other hand, since Zn is an optional component, the lower limit of the mass ratio {ZnO/(Nb 2 O 5 +TiO 2 +Ta 2 O 5 +WO 3 )} is preferably 0, but the melting property is further improved and the suppression is further suppressed. From the viewpoint of increasing the wavelength of the light absorption end on the wavelength side (preferably further suppressing the increase of λ5), it is more preferable to exceed zero. When the above considerations, the mass ratio {ZnO / (Nb 2 O 5 + TiO 2 + Ta 2 O 5 + WO 3)} a better and better upper limit as shown in Table 79.

關於Nb2O5、TiO2、Ta2O5、WO3,在考慮了上述作用、效果的基礎上,在下表80~83示出Nb2O5、TiO2、Ta2O5、WO3的各成分的含量的較佳的範圍。 Regarding Nb 2 O 5 , TiO 2 , Ta 2 O 5 , and WO 3 , in consideration of the above actions and effects, Nb 2 O 5 , TiO 2 , Ta 2 O 5 , and WO 3 are shown in the following Tables 80 to 83. A preferred range of the content of each component.

接著,對以上說明的成分以外的任選成分進行說明。 Next, optional components other than the components described above will be described.

氧化鋰(Li2O)使玻璃化轉變溫度降低的作用強,因此當其含量增多時會示出機械加工性降低的傾向。此外,還會示出化學耐久性、耐候性降低的傾向。因此,較佳將Li2O的含量設為5%以下。在下表84示出Li2O的含量的較佳的下限和更佳的上限。Li2O的含量也可以設為0%。 Lithium oxide (Li 2 O) has a strong effect of lowering the glass transition temperature, and therefore, when the content thereof is increased, the mechanical workability tends to be lowered. Further, there is a tendency that chemical durability and weather resistance are lowered. Therefore, the content of Li 2 O is preferably set to 5% or less. A preferred lower limit and a better upper limit of the content of Li 2 O are shown in Table 84 below. The content of Li 2 O can also be set to 0%.

氧化鈉(Na2O)、氧化鉀(K2O)、氧化銣(Rb2O)、氧化銫(Cs2O)均具有改善玻璃的熔融性的作用,但是當它們的含量增多時,會示出玻璃的熱穩定性、化學耐久性、耐候性、機械加工性降低的傾向。因此,Na2O、K2O、Rb2O、Cs2O的各含量的下限和上限分別較佳設為如下表85~88所示。 Sodium oxide (Na 2 O), potassium oxide (K 2 O), lanthanum oxide (Rb 2 O), and cerium oxide (Cs 2 O) all have the effect of improving the meltability of the glass, but when their content is increased, The tendency of the glass to have thermal stability, chemical durability, weather resistance, and machinability is lowered. Therefore, the lower limit and the upper limit of the respective contents of Na 2 O, K 2 O, Rb 2 O, and Cs 2 O are preferably as shown in the following Tables 85 to 88, respectively.

為了在維持玻璃的熱穩定性、化學耐久性、耐候性、機械加工性的同時改善玻璃的熔融性,Li2O、Na2O及K2O的合計含量(Li2O+Na2O+K2O)的較佳的下限和較佳的上限如下表89所示。 In order to improve the glass's meltability while maintaining the thermal stability, chemical durability, weather resistance, and machinability of the glass, the total content of Li 2 O, Na 2 O, and K 2 O (Li 2 O+Na 2 O+ The preferred lower limit and preferred upper limit of K 2 O) are shown in Table 89 below.

氧化鎂(MgO)、氧化鈣(CaO)、氧化鍶(SrO)、氧化鋇(BaO)均為具有改善玻璃的熔融性的作用的成分。但是,當這些成分的含量增多時,玻璃的熱穩定性降低、示出失透傾向。因此,這些成分的各自的含量分別較佳設為下表90~93所示的下限以上、上限以下。 Magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) are all components having an effect of improving the meltability of the glass. However, when the content of these components increases, the thermal stability of the glass decreases, indicating a tendency to devitrification. Therefore, the content of each of these components is preferably set to be equal to or higher than the lower limit and lower limit shown in the following Tables 90 to 93, respectively.

此外,為了維持玻璃的熱穩定性,MgO、CaO、SrO 及BaO的合計含量(MgO+CaO+SrO+BaO)較佳設為下表94所示的下限以上、上限以下。 In addition, in order to maintain the thermal stability of the glass, MgO, CaO, SrO The total content of BaO (MgO+CaO+SrO+BaO) is preferably set to be equal to or higher than the lower limit and lower than the upper limit shown in Table 94 below.

三氧化二鋁(Al2O3)是具有改善玻璃的化學耐久性、耐候性的作用的成分。但是,當Al2O3的含量增多時,有時會表現出折射率(nd)降低的傾向、玻璃的熱穩定性降低的傾向、熔融性降低的傾向。考慮以上的方面,Al2O3的含量較佳設為下表95所示的下限以上、上限以下。 Aluminum oxide (Al 2 O 3 ) is a component having an effect of improving the chemical durability and weather resistance of the glass. However, when the content of Al 2 O 3 is increased, the refractive index (nd) tends to decrease, the thermal stability of the glass tends to decrease, and the meltability tends to decrease. In view of the above, the content of Al 2 O 3 is preferably set to be equal to or higher than the lower limit and lower than the upper limit shown in Table 95 below.

三氧化二鎵(Ga2O3)、三氧化二銦(In2O3)、三氧化二鈧(Sc2O3)、二氧化鉿(HfO2)均具有提高折射率(nd)的作用。但是,這些成分昂貴,且不是為了得到上述光學玻璃而必要的成分。因此,Ga2O3、In2O3、Sc2O3、HfO2的各含量較佳設為下表96~99所示的下限以上、上限以下。 Gallium dioxide (Ga 2 O 3 ), indium trioxide (In 2 O 3 ), antimony trioxide (Sc 2 O 3 ), and hafnium oxide (HfO 2 ) all have an effect of increasing the refractive index (nd). . However, these components are expensive and are not essential components for obtaining the above optical glass. Therefore, the content of each of Ga 2 O 3 , In 2 O 3 , Sc 2 O 3 , and HfO 2 is preferably set to be equal to or higher than the lower limit and lower limit shown in the following Tables 96 to 99.

三氧化二鎦(Lu2O3)具有提高折射率(nd)的作用, 但其也是使玻璃的比重增加的成分。此外,Lu與Gd、Yb同樣是重稀土類元素,因此較佳降低Lu的含量。從以上的方面出發,Lu2O3的含量的較佳的下限和較佳的上限如下表100所示。 Antimony trioxide (Lu 2 O 3 ) has an effect of increasing the refractive index (nd), but it is also a component that increases the specific gravity of the glass. Further, Lu is a heavy rare earth element similarly to Gd and Yb, and therefore it is preferable to reduce the content of Lu. From the above aspects, a preferred lower limit and a preferred upper limit of the content of Lu 2 O 3 are shown in Table 100 below.

二氧化鍺(GeO2)具有提高折射率(nd)的作用,但是在通常使用的玻璃成分之中,其是尤為昂貴的成分。為了降低玻璃的製造成本,GeO2的含量的較佳的下限和較佳的上限如下表101所示。 Cerium dioxide (GeO 2 ) has an effect of increasing the refractive index (nd), but it is a particularly expensive component among the commonly used glass components. In order to lower the manufacturing cost of the glass, a preferred lower limit and a preferred upper limit of the content of GeO 2 are shown in Table 101 below.

三氧化二鉍(Bi2O3)是提高折射率(nd)並且使阿貝數(νd)降低的成分。此外,還是容易使玻璃的著色增大的成分。為了製作具有上述的光學特性且著色少的玻璃,Bi2O3的含量的較佳的下限和較佳的上限如下表102所示。 Bismuth trioxide (Bi 2 O 3 ) is a component that increases the refractive index (nd) and lowers the Abbe number (νd). In addition, it is a component which tends to increase the color of the glass. In order to produce a glass having the above optical characteristics and having little coloration, a preferred lower limit and a preferred upper limit of the content of Bi 2 O 3 are shown in Table 102 below.

為了良好地得到以上說明的各種作用、效果,以上記載的玻璃成分的各含量的合計(合計含量)較佳大於95%,更佳大於98%,進一步較佳大於99%,再進一步較佳大於99.5%。 In order to satisfactorily obtain the various actions and effects described above, the total content (total content) of each of the glass components described above is preferably more than 95%, more preferably more than 98%, still more preferably more than 99%, still more preferably more than 99.5%.

在以上記載的玻璃成分以外的玻璃成分之中,五氧化二磷(P2O5)是使折射率(nd)降低的成分,還是使玻璃的熱穩定性降低的成分,但是有時極少量的導入會使玻璃的熱穩定性提高。為了製作具有上述的光學特性並且熱穩定性優秀的玻璃,P2O3的含量的較佳的下限和較佳的上限如下表103所示。 Among the glass components other than the glass component described above, phosphorus pentoxide (P 2 O 5 ) is a component that lowers the refractive index (nd) or a component that lowers the thermal stability of the glass, but may be extremely small. The introduction of the glass will increase the thermal stability of the glass. In order to produce a glass having the above optical characteristics and excellent thermal stability, a preferred lower limit and a preferred upper limit of the content of P 2 O 3 are shown in Table 103 below.

二氧化碲(TeO2)是提高折射率(nd)的成分,但是因為是具有毒性的成分,所以較佳減少TeO2的含量。TeO2的含量的較佳的下限和較佳的上限如下表104所示。 Cerium oxide (TeO 2 ) is a component that increases the refractive index (nd), but since it is a toxic component, it is preferable to reduce the content of TeO 2 . A preferred lower limit and a preferred upper limit of the content of TeO 2 are shown in Table 104 below.

另外,在上述的各表中在(更)較佳的下限或者上限中記載有0%的成分,其含量也較佳為0%。對於多個成分的合計含量也是同樣的。 Further, in each of the above tables, a component of 0% is described in a (better) lower limit or upper limit, and the content thereof is preferably 0%. The same is true for the total content of a plurality of components.

Pb、As、Cd、Tl、Be、Se均具有毒性。因此,較佳不含有這些元素,即,較佳不將這些元素作為玻璃成分而導入到玻璃中。 Pb, As, Cd, Tl, Be, Se are all toxic. Therefore, it is preferred not to contain these elements, that is, it is preferable not to introduce these elements into the glass as a glass component.

U、Th、Ra均為放射性元素。因此,較佳不含有這些元素,即,較佳不將這些元素作為玻璃成分而導入到玻璃中。 U, Th, and Ra are all radioactive elements. Therefore, it is preferred not to contain these elements, that is, it is preferable not to introduce these elements into the glass as a glass component.

V、Cr、Mn、Fe、Co、Ni、Cu、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Ce會使玻璃的著色增大,或者成為螢光的產生源,作為光學元件用的玻璃所含有的元素是不較佳的。因此,較佳不含有這些元素,即,較佳不將這些元素作為玻璃成分而導入到玻璃中。 V, Cr, Mn, Fe, Co, Ni, Cu, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Ce increase the color of the glass or become a source of fluorescence. The element contained in the glass for the optical element is not preferable. Therefore, it is preferred not to contain these elements, that is, it is preferable not to introduce these elements into the glass as a glass component.

Sb、Sn是作為澄清劑發揮功能的能夠任選地添加的元素。 Sb and Sn are elements which can be optionally added as a clarifying agent.

在換算為Sb2O3並將Sb2O3以外的玻璃成分的含量的合計設為100質量%時,Sb的添加量的範圍較佳為0~0.11質量%,更佳為0.01~0.08質量%,進一步較佳為0.02~0.05質量%。 When Sb in terms of Sb 2 O 3 and the glass component other than the 2 O 3 in the total content 100% by mass, the range of Sb is preferably added in an amount of from 0 to 0.11% by mass, more preferably 0.01 to 0.08 mass % is further preferably 0.02 to 0.05% by mass.

在換算為SnO2並將SnO2以外的玻璃成分的含量的合計設為100質量%時,Sn的添加量的範圍較佳為0~0.5質量%,更佳為0~0.2質量%,進一步較佳為0質量%。 When the content of the glass component in terms other than the SnO 2 SnO 2 and the total of 100% by mass, the range of Sn is preferably added in an amount of 0 to 0.5% by mass, more preferably from 0 to 0.2 mass%, further more Good is 0% by mass.

接著,對玻璃A和玻璃B所共同的玻璃特性進行說明。以下記載的玻璃指的是玻璃A和玻璃B。 Next, the glass characteristics common to the glass A and the glass B will be described. The glass described below refers to glass A and glass B.

<玻璃特性> <glass characteristics> (玻璃的光學特性) (Optical properties of glass)

上述玻璃是阿貝數(νd)的範圍為39.5~41.5、且折射率(nd)與阿貝數(νd)滿足下述式(1)的玻璃。 The glass is a glass having an Abbe number (νd) in the range of 39.5 to 41.5 and having a refractive index (nd) and an Abbe number (νd) satisfying the following formula (1).

式(1)nd2.0927-0.0058×νd Formula (1) nd 2.0927-0.0058×νd

阿貝數(νd)為39.5以上的玻璃作為光學元件的材料對於色像差的校正是有效的。另一方面,當阿貝數(νd)大於41.5時,如果不降低折射率,則玻璃的熱穩定性就會顯著地降低,在製造玻璃的過程中變得容易失透。在下表105示出阿貝數(νd)的較佳的下限和較佳的上限。 A glass having an Abbe number (νd) of 39.5 or more is effective as a material for an optical element for correcting chromatic aberration. On the other hand, when the Abbe number (νd) is more than 41.5, if the refractive index is not lowered, the thermal stability of the glass is remarkably lowered, and it becomes easy to devitrify during the process of manufacturing the glass. The lower limit and the preferred upper limit of the Abbe number (νd) are shown in Table 105 below.

在上述玻璃中,折射率(nd)與阿貝數(νd)滿足式(1)。阿貝數(νd)的範圍為39.5~41.5且折射率(nd)滿足式(1) 的玻璃是在光學系統的設計中利用價值高的玻璃。 In the above glass, the refractive index (nd) and the Abbe number (νd) satisfy the formula (1). The Abbe number (νd) ranges from 39.5 to 41.5 and the refractive index (nd) satisfies the formula (1). The glass is a high-value glass used in the design of optical systems.

折射率(nd)的上限由玻璃組成自然而然地決定。為了改善熱穩定性而得到不易失透的玻璃,較佳折射率(nd)滿足下述式(2)。 The upper limit of the refractive index (nd) is naturally determined by the composition of the glass. In order to improve the thermal stability and obtain a glass which is not easily devitrified, the refractive index (nd) preferably satisfies the following formula (2).

式(2)nd2.1270-0.0058×νd Formula (2) nd 2.1270-0.0058×νd

在下表106示出相對於阿貝數(νd)的折射率(nd)的更佳的下限和更佳的上限。 A lower limit and a better upper limit of the refractive index (nd) with respect to the Abbe number (?d) are shown in Table 106 below.

此外,折射率(nd)還較佳為下表107所示的下限以上、上限以下。 Further, the refractive index (nd) is preferably at least the lower limit and not more than the upper limit shown in Table 107 below.

(部分色散特性) (partial dispersion characteristics)

從校正色像差的觀點出發,在固定了阿貝數(νd)時,上述玻璃較佳是相對部分色散小的玻璃。 From the viewpoint of correcting chromatic aberration, when the Abbe number (νd) is fixed, the glass is preferably a glass having a relatively small dispersion.

在此,相對部分色散(Pg,F)可使用g線、F線、c線中的各折射率(ng)、折射率(nF)、折射率(nc)表示為(ng-nF)/(nF-nc)。 Here, the relative partial dispersion (Pg, F) can be expressed as (ng-nF)/((g-nF)/() using the refractive index (ng), the refractive index (nF), and the refractive index (nc) in the g-line, the F-line, and the c-line. nF-nc).

為了提供適合於高階的色像差校正的玻璃,上述玻璃的相對部分色散(Pg,F)的較佳的下限和較佳的上限如下表108所示。 In order to provide a glass suitable for high-order chromatic aberration correction, a preferred lower limit and a preferred upper limit of the relative partial dispersion (Pg, F) of the above glass are shown in Table 108 below.

(玻璃化轉變溫度) (glass transition temperature)

上述玻璃的玻璃化轉變溫度沒有特別限定,較佳為640℃以上。藉由使玻璃化轉變溫度為640℃以上,從而能夠在對玻璃進行切斷、切削、研磨、拋光等機械加工時使玻璃不易破損。此外,無需大量地含有降低玻璃化轉變溫度的作用強的Li、Zn等成分,因此即使減少Gd、Ta的含量,進而即使還減少Yb的含量,也容易提高熱穩定性。 The glass transition temperature of the above glass is not particularly limited, but is preferably 640 ° C or higher. By setting the glass transition temperature to 640 ° C or higher, it is possible to make the glass less likely to be broken when the glass is subjected to mechanical processing such as cutting, cutting, polishing, and polishing. Further, since it is not necessary to contain a large amount of components such as Li and Zn which have a strong effect of lowering the glass transition temperature, even if the content of Gd and Ta is reduced, and even if the content of Yb is further reduced, the thermal stability is easily improved.

另一方面,當玻璃化轉變溫度過高時,必須在高溫對玻璃進行退火,會顯著地消耗退火爐。此外,在對玻璃進行成型時,必須在高的溫度進行成型,在成型中使用的模具的消耗會變得顯著。 On the other hand, when the glass transition temperature is too high, the glass must be annealed at a high temperature, and the annealing furnace is significantly consumed. Further, when molding glass, it is necessary to perform molding at a high temperature, and the consumption of a mold used for molding becomes remarkable.

為了改善機械加工性、減輕對退火爐、成型模的負擔,玻璃化轉變溫度的較佳的下限和較佳的上限如下表109所示。 In order to improve the machinability and reduce the burden on the annealing furnace and the molding die, a preferred lower limit and a preferred upper limit of the glass transition temperature are shown in Table 109 below.

(玻璃的光線透射性) (light transmission of glass)

玻璃的光線透射性,具體地說,抑制短波長側的光吸收端的長波長化的程度能夠利用著色度(λ5)來進行評價。著色度(λ5)表示從紫外線區域經可見光區域使厚度為10mm的玻璃的光譜透射率(包含表面反射損耗)變為5%的波長。後述的實施例所示的λ5是在250~700nm的波長區域中測定的值。光譜透射率指的是,例如更具體地說,使用拋光成10.0±0.1mm的厚度的具有互相平行的平面的玻璃試樣,從垂直方向對上述拋光的面入射光而得到的光譜透射率。即,是將入射到上述玻璃試樣的光的強度設為Iin、將透射了上述玻璃試樣的光的強度設為Iout時的Iout/Iin。 The light transmittance of the glass, specifically, the degree of suppression of the long wavelength of the light absorption end on the short wavelength side can be evaluated by the degree of coloration (λ5). The degree of coloration (λ5) indicates a wavelength at which the spectral transmittance (including the surface reflection loss) of the glass having a thickness of 10 mm from the ultraviolet region to the visible region is 5%. Λ5 shown in the examples described later is a value measured in a wavelength region of 250 to 700 nm. The spectral transmittance refers to, for example, a spectral transmittance obtained by irradiating light onto the polished surface from the vertical direction using a glass sample having mutually parallel planes polished to a thickness of 10.0 ± 0.1 mm. In other words, Iout/Iin when the intensity of light incident on the glass sample is Iin and the intensity of light transmitted through the glass sample is Iout.

根據著色度(λ5),能夠定量地評價光譜透射率的短波長側的吸收端。如前所述,在為了製作膠合透鏡而利用紫外線固化型黏接劑對透鏡彼此進行膠合時等,會藉由光學元件對黏接劑照射紫外線而使黏接劑固化。為了更高效地進行紫外線固化型黏接劑的固化,較佳光譜透射率的短波長側的吸收端處於短波長區域。作為定量地評價該短波長側的吸收端的指標,能夠使用著色度(λ5)。上述玻璃藉由如前所述的組成調整,能夠較佳 地示出335nm以下的λ5,更佳地示出332nm以下的λ5,進一步較佳地示出330nm以下的λ5,再進一步較佳地示出328nm以下的λ5,更進一步較佳地示出326nm以下的λ5。關於λ5的下限,作為一個例子能夠將315nm設為目標,但是越低越較佳,並沒有特別限定。 According to the degree of coloration (λ5), the absorption end of the short-wavelength side of the spectral transmittance can be quantitatively evaluated. As described above, when the lenses are bonded to each other by the ultraviolet curable adhesive in order to produce a cemented lens, the adhesive is cured by irradiating the adhesive with ultraviolet rays by the optical element. In order to more efficiently cure the ultraviolet curable adhesive, it is preferred that the absorption end on the short wavelength side of the spectral transmittance is in the short wavelength region. As an index for quantitatively evaluating the absorption end on the short-wavelength side, the degree of coloration (λ5) can be used. The above glass can be preferably adjusted by the composition as described above. Λ5 of 335 nm or less is shown, λ5 of 332 nm or less is more preferably shown, λ5 of 330 nm or less is further preferably shown, λ5 of 328 nm or less is further preferably shown, and 326 nm or less is further preferably shown. Λ5. Regarding the lower limit of λ5, 315 nm can be set as a target as an example, but the lower the value, the more preferable, and it is not particularly limited.

另一方面,作為玻璃的著色度的指標可舉出著色度(λ70)。λ70表示用對於λ5記載的方法測定的光譜透射率變成70%的波長。為了做成為著色少的玻璃,λ70的較佳的範圍為420nm以下,更佳的範圍為400nm以下,進一步較佳的範圍為390nm以下,再進一步較佳的範圍為380nm以下。λ70的下限的目標為350nm,但是越低越較佳,並沒有特別限定。 On the other hand, as an index of the coloring degree of glass, the coloring degree (λ70) is mentioned. Λ70 represents a wavelength at which the spectral transmittance measured by the method described in λ5 becomes 70%. In order to form a glass which is less colored, a preferable range of λ70 is 420 nm or less, a more preferable range is 400 nm or less, a still more preferable range is 390 nm or less, and a still more preferable range is 380 nm or less. The target of the lower limit of λ70 is 350 nm, but the lower the value, the more preferable, and it is not particularly limited.

此外,作為玻璃的著色度的指標還可舉出著色度(λ80)。λ80表示用對於λ5記載的方法測定的光譜透射率變成80%的波長。為了做成為著色少的玻璃,λ80的較佳的範圍為550nm以下,更佳的範圍為500nm以下,進一步較佳的範圍為490nm以下,再進一步較佳的範圍為480nm以下。λ80的下限的目標為355nm,但是越低越較佳,並沒有特別限定。 Moreover, as an index of the coloring degree of glass, the coloring degree (λ80) is also mentioned. Λ80 represents a wavelength at which the spectral transmittance measured by the method described in λ5 becomes 80%. In order to form a glass which is less colored, a preferable range of λ80 is 550 nm or less, a more preferable range is 500 nm or less, a still more preferable range is 490 nm or less, and a still more preferable range is 480 nm or less. The target of the lower limit of λ80 is 355 nm, but the lower the value, the more preferable, and it is not particularly limited.

(玻璃的比重) (specific gravity of glass)

在構成光學系統的光學元件(透鏡)中,屈光力由構成透鏡的玻璃的折射率和透鏡的光學功能面(想要控制的光線入射、出射的面)的曲率決定。當想要增大光學功能面的曲率時,透鏡的厚度也會增加。其結果是,透鏡變重。相對於此,如果使用折射率高的玻璃,則即使不增大光學功能面的曲率也能夠得到大的屈光力。 In the optical element (lens) constituting the optical system, the refractive power is determined by the refractive index of the glass constituting the lens and the curvature of the optical functional surface of the lens (the surface on which the light to be controlled is incident and emitted). When it is desired to increase the curvature of the optical functional surface, the thickness of the lens also increases. As a result, the lens becomes heavier. On the other hand, if a glass having a high refractive index is used, a large refractive power can be obtained without increasing the curvature of the optical functional surface.

根據以上,如果能夠在抑制玻璃的比重增加的同時提高折射率,就能夠使具有固定的屈光力的光學元件輕量化。 As described above, if the refractive index can be increased while suppressing an increase in the specific gravity of the glass, the optical element having a fixed refractive power can be made lighter.

關於折射率(nd)對屈光力的貢獻,能夠取玻璃的比重(d)與從玻璃的折射率(nd)減去真空中的折射率(1)的值(nd-1)的比作為謀求光學元件的輕量化時的指標。即,將d/(nd-1)作為謀求光學元件的輕量化時的指標,藉由降低該值,從而能夠謀求透鏡的輕量化。 Regarding the contribution of the refractive index (nd) to the refractive power, the ratio of the specific gravity (d) of the glass to the value (nd-1) of the refractive index (1) in the vacuum from the refractive index (nd) of the glass can be taken as the optical The indicator when the component is lighter. In other words, d/(nd-1) is used as an index for reducing the weight of the optical element, and by reducing the value, it is possible to reduce the weight of the lens.

在上述玻璃中,導致比重的增加的Gd、Ta所占的比例少,此外還能夠減少Yb所占的比例,因此上述玻璃是高折射率低色散玻璃,並且能夠低比重化。因此,上述玻璃的d/(nd-1)能夠為例如5.70以下。但是,當使d/(nd-1)過度地降低時,會示出玻璃的熱穩定性降低的傾向。因此,d/(nd-1)較佳設為5.00以上。在下表110示出d/(nd-1)的更佳的下限和更佳的上限。 In the glass, the proportion of Gd and Ta which contribute to the increase in specific gravity is small, and the ratio of Yb can be reduced. Therefore, the glass is a high refractive index low dispersion glass and can be made low in specific gravity. Therefore, the d/(nd-1) of the above glass can be, for example, 5.70 or less. However, when d/(nd-1) is excessively lowered, the tendency of the thermal stability of the glass to decrease is exhibited. Therefore, d/(nd-1) is preferably set to 5.00 or more. A better lower limit and a better upper limit of d/(nd-1) are shown in Table 110 below.

進而,在下表111示出上述玻璃的比重(d)的較佳的下限和較佳的上限。從使由該玻璃構成的光學元件輕量化的觀點出發,較佳使比重(d)為下表111所示的上限以下。此外,為了進一步改善玻璃的熱穩定性,較佳使比重為下表111的下限以上。 Further, a preferred lower limit and a preferred upper limit of the specific gravity (d) of the above glass are shown in Table 111 below. From the viewpoint of reducing the weight of the optical element made of the glass, the specific gravity (d) is preferably equal to or lower than the upper limit shown in the following Table 111. Further, in order to further improve the thermal stability of the glass, the specific gravity is preferably equal to or higher than the lower limit of the following table 111.

(液相線溫度) (liquidus temperature)

作為玻璃的熱穩定性的指標之一,有液相線溫度。為了抑制製造玻璃時的晶化、失透,較佳的液相線溫度(LT)為1300℃以下,更佳為1250℃以下。關於液相線溫度(LT)的下限,作為一個例子為1100℃以上,但是較佳較低,並沒有特別限定。 As one of the indexes of the thermal stability of glass, there is a liquidus temperature. The liquidus temperature (LT) is preferably 1300 ° C or lower, more preferably 1250 ° C or lower, in order to suppress crystallization and devitrification during glass production. The lower limit of the liquidus temperature (LT) is, for example, 1100 ° C or more, but is preferably low, and is not particularly limited.

以上說明的本發明的一個實施形態的玻璃A和玻璃B的折射率(nd)和阿貝數(νd)大,作為光學元件用的玻璃材料是有用的。進而,還能夠藉由如前所述的組成調整而使玻璃均質化和降低著色。因此,上述玻璃適合於作為光學玻璃。 The glass A and the glass B according to an embodiment of the present invention described above have a large refractive index (nd) and an Abbe number (νd), and are useful as a glass material for optical elements. Further, it is also possible to homogenize the glass and reduce the coloration by the composition adjustment as described above. Therefore, the above glass is suitable as an optical glass.

接著,對玻璃A和玻璃B所共同的玻璃的製造方法進行說明。以下記載的玻璃指的是玻璃A和玻璃B。 Next, a method of producing glass in common with glass A and glass B will be described. The glass described below refers to glass A and glass B.

<玻璃的製造方法> <Method of Manufacturing Glass>

上述玻璃能夠藉由以下方式得到:以可得到目標玻璃組成的方式,稱量並調配作為原料的氧化物、碳酸鹽、硫酸鹽、硝酸鹽、氫氧化物等,充分地混合而製成混合批料,將其在熔融容器內加熱、熔融,進行脫泡、攪拌而製作均質且不包含氣泡的熔融玻璃,對其進行成型。具體地,能夠使用公知的熔融法來製作。上述玻璃是具有上述的光學特性的高折射率低色散玻 璃,並且熱穩定性優秀,因此能夠使用公知的熔融法、成型法來穩定地製造。 The glass can be obtained by weighing and compounding oxides, carbonates, sulfates, nitrates, hydroxides, and the like as raw materials in such a manner that the target glass composition can be obtained, and sufficiently mixing them to prepare a mixed batch. The material is heated and melted in a melting vessel, defoamed and stirred to prepare a molten glass which is homogeneous and does not contain bubbles, and is molded. Specifically, it can be produced by a known melting method. The above glass is a high refractive index low dispersion glass having the above optical characteristics Since glass has excellent thermal stability, it can be stably produced by a known melting method or molding method.

[壓製成型用玻璃材料、光學元件坯件及它們的製造方法] [Glass material for press molding, optical element blank, and method for producing the same]

本發明的另一個實施形態關於一種由上述的玻璃A或玻璃B構成的壓製成型用玻璃材料;以及一種由上述的玻璃A或玻璃B構成的光學元件坯件。 Another embodiment of the present invention relates to a glass material for press molding comprising the above-described glass A or glass B; and an optical element blank comprising the above-described glass A or glass B.

根據本發明的另一個實施形態,還可提供一種壓製成型用玻璃材料的製造方法,其包括將上述的玻璃A或玻璃B成型為壓製成型用玻璃材料的步驟;一種光學元件坯件的製造方法,其包括藉由將上述的壓製成型用玻璃材料用壓製成型模進行壓製成型而製作光學元件坯件的步驟;以及一種光學元件坯件的製造方法,其包括將上述的玻璃A或玻璃B成型為光學元件坯件的步驟。 According to another embodiment of the present invention, there is provided a method of producing a glass material for press molding, comprising the steps of molding the glass A or the glass B described above into a glass material for press molding; and a method for producing an optical element blank And comprising the steps of: producing an optical element blank by press-molding the above-mentioned glass material for press molding with a press molding die; and a method of manufacturing the optical element blank, comprising molding the above-mentioned glass A or glass B The step of the optical component blank.

光學元件坯件指的是,與設為目標的光學元件的形狀近似,在光學元件的形狀上加上了拋光餘量(藉由拋光而被除去的表面層)、根據需要還加上了研磨餘量(藉由研磨而被除去的表面層)的光學元件母材。藉由對光學元件的表面進行研磨、拋光,從而可完成光學元件。在一個實施形態中,能夠藉由對熔融玻璃進行壓製成型的方法(稱為直接壓製法。)來製作光學元件坯件,該熔融玻璃是將適量的上述玻璃熔融而得到的。在另一個實施形態中,還能夠藉由使熔融玻璃固化來製作光學元件坯件,該熔融玻璃是將適量的上述玻璃熔融而得到的。 The optical element blank refers to a shape similar to the shape of the optical element to be targeted, a polishing margin (a surface layer removed by polishing) is added to the shape of the optical element, and grinding is added as needed. The optical element base material of the remaining amount (the surface layer removed by grinding). The optical element can be completed by grinding and polishing the surface of the optical element. In one embodiment, the optical element blank can be produced by a method of press molding a molten glass (referred to as a direct pressing method) obtained by melting an appropriate amount of the glass. In another embodiment, the optical element blank can be produced by curing the molten glass obtained by melting an appropriate amount of the glass.

此外,在另一個實施形態中,能夠藉由製作壓製成型用玻璃材料並對製作的壓製成型用玻璃材料進行壓製成型,從而製作光學元件坯件。 Further, in another embodiment, an optical element blank can be produced by producing a glass material for press molding and press-molding the produced glass material for press molding.

壓製成型用玻璃材料的壓製成型能夠藉由如下的公知的方法來進行,即,用壓製成型模對加熱而處於軟化的狀態的壓製成型用玻璃材料進行壓製。加熱、壓製成型均能夠在大氣中進行。藉由在壓製成型後進行退火來減少玻璃內部的應力,從而能夠得到均質的光學元件坯件。 The press molding of the glass material for press molding can be carried out by a known method of pressing a glass material for press molding which is heated and softened by a press molding die. Both heating and press molding can be carried out in the atmosphere. A uniform optical element blank can be obtained by reducing the stress inside the glass by annealing after press molding.

關於壓製成型用玻璃材料,除了以按其原樣的狀態供用於製作光學元件坯件的壓製成型使用的被稱為壓製成型用玻璃料滴的壓製成型用玻璃材料以外,還包括實施切斷、研磨、拋光等機械加工而經壓製成型用玻璃料滴供壓製成型使用的壓製成型用玻璃材料。作為切斷方法,有如下方法:在玻璃板的表面的擬切斷的部分用被稱為刻劃的方法形成槽,從形成有槽的面的背面對槽的部分施加局部性的壓力,在槽的部分斷開玻璃板的方法;利用切割刀切割玻璃板的方法等。此外,作為研磨、拋光方法,可舉出滾筒拋光等。 In addition to the glass material for press molding which is used for press molding for producing an optical element blank, which is used for press forming of an optical element blank as it is, the glass material for press molding includes cutting and polishing. A glass material for press molding used for press forming by a glass gob for press molding, such as polishing or polishing. As a cutting method, there is a method in which a groove is formed in a portion to be cut at the surface of the glass sheet by a method called scribing, and a partial pressure is applied to a portion of the groove from the back surface of the surface on which the groove is formed. A method of breaking a glass plate by a part of a groove; a method of cutting a glass plate by a cutting blade, and the like. Further, as the polishing and polishing method, barrel polishing or the like can be mentioned.

壓製成型用玻璃材料例如能夠藉由如下方式來製作。即,將熔融玻璃澆鑄到鑄模中而成型為玻璃板,將該玻璃板切斷為多個玻璃片。或者,還能夠對適量的熔融玻璃進行成型而製作壓製成型用玻璃料滴。還能夠藉由將壓製成型用玻璃料滴再加熱、軟化並進行壓製成型而製作光學元件坯件。相對於直接壓製法,將玻璃再加熱、軟化並進行壓製成型而製作光學元件坯件的方法稱為再加熱壓製法。 The glass material for press molding can be produced, for example, as follows. That is, the molten glass is cast into a mold to form a glass plate, and the glass plate is cut into a plurality of glass sheets. Alternatively, it is also possible to mold an appropriate amount of molten glass to prepare a glass gob for press molding. It is also possible to produce an optical element blank by reheating, softening, and press-molding the glass gob for press molding. A method of producing an optical element blank by reheating, softening, and press-molding the glass relative to the direct pressing method is called a reheat pressing method.

[光學元件及其製造方法] [Optical element and its manufacturing method]

本發明的另一個實施形態關於一種由上述的玻璃A或玻璃B構成的光學元件。 Another embodiment of the present invention relates to an optical element comprising the above-described glass A or glass B.

上述光學元件使用上述的玻璃來製作。在上述光學元件中,在玻璃表面可以形成有例如防反射膜等多層膜等一層以上的塗層。 The above optical element is produced using the above glass. In the above optical element, one or more layers of a multilayer film such as an antireflection film may be formed on the surface of the glass.

此外,根據本發明的一個實施形態,還可提供一種光學元件的製造方法,其包括藉由對上述的光學元件坯件進行研磨及/或拋光來製作光學元件的步驟。 Further, according to an embodiment of the present invention, there is provided a method of manufacturing an optical element comprising the step of fabricating an optical element by grinding and/or polishing the above-described optical element blank.

在上述光學元件的製造方法中,關於研磨、拋光,只要應用公知的方法即可,藉由在加工後將光學元件表面充分洗淨並使其乾燥等,從而能夠得到內部質量和表面質量高的光學元件。這樣,能夠得到由上述玻璃構成的光學元件。作為光學元件,能夠例示球面透鏡、非球面透鏡、微透鏡等各種透鏡、棱鏡等。 In the method for producing an optical element described above, a known method can be applied to polishing and polishing, and the surface of the optical element can be sufficiently washed and dried after the processing, whereby internal quality and surface quality can be obtained. Optical element. Thus, an optical element composed of the above glass can be obtained. As the optical element, various lenses such as a spherical lens, an aspherical lens, and a microlens, a prism, and the like can be exemplified.

此外,由上述玻璃構成的光學元件還適合於作為構成膠合光學元件的透鏡。作為膠合光學元件,能夠例示出將透鏡彼此膠合起來的膠合光學元件(膠合透鏡)、將透鏡和棱鏡膠合起來的膠合光學元件等。例如,膠合光學元件能夠藉由如下方式來製作:對要膠合的2個光學元件的膠合面以使其形狀成為反轉形狀的方式進行精密加工(例如,球面拋光加工),塗敷用於黏接膠合透鏡的紫外線固化型黏接劑,貼合後藉由透鏡照射紫外線使黏接劑固化。對於像這樣製作膠合光學元件,上述玻璃是較佳的。藉由使用阿貝數(νd)不同的多種玻璃分別製 作要膠合的多個光學元件並將其膠合,從而能夠做成為適合於色像差的校正的元件。 Further, an optical element composed of the above glass is also suitable as a lens constituting a cemented optical element. As the glue optical element, a glue optical element (glued lens) in which lenses are glued to each other, a glue optical element in which a lens and a prism are glued together, and the like can be exemplified. For example, a glued optical element can be produced by precision machining (for example, spherical polishing) of a bonding surface of two optical elements to be bonded in such a manner that the shape thereof is reversed, and coating for adhesion An ultraviolet-curable adhesive that is bonded to a cemented lens, and after bonding, the adhesive is cured by irradiating ultraviolet rays with a lens. The above glass is preferable for producing a cemented optical element as described above. By using a variety of glass with different Abbe numbers (νd) A plurality of optical elements to be glued and glued together can be made into an element suitable for correction of chromatic aberration.

有時以氧化物為基準來表示玻璃組成的定量分析的結果、玻璃成分,以質量%來表示玻璃成分的含量。像這樣以氧化物為基準以質量%表示的組成例如能夠藉由如下方法換算為以陽離子%、陰離子%表示的組成。 The result of the quantitative analysis of the glass composition and the glass component are expressed on the basis of the oxide, and the content of the glass component is represented by mass%. The composition expressed by mass% based on the oxide as described above can be converted into a composition represented by cation % and anion %, for example, by the following method.

在玻璃中包含N種玻璃成分的情況下,將第k種玻璃成分表示為A(k)mOn。其中,k是1以上、N以下的任意整數。 In the case where N kinds of glass components are contained in the glass, the kth glass component is represented by A(k) m O n . Here, k is an arbitrary integer of 1 or more and N or less.

A(k)為陽離子,O為氧,m和n是按照化學計量確定的整數。例如,在以氧化物為基準表示為B2O3的情況下,m=2,n=3;在SiO2的情況下,m=1,n=2。 A(k) is a cation, O is oxygen, and m and n are stoichiometrically determined integers. For example, in the case where B 2 O 3 is represented by an oxide, m=2, n=3; in the case of SiO 2 , m=1, n=2.

接著,將A(k)mOn的含量設為X(k)[質量%]。在此,當將A(k)的原子量設為P(k)、氧O的原子量設為Q時,A(k)mOn的形式上的分子量R(k)為R(k)=P(k)×m+Q×n。 Next, the content of A(k) m O n is set to X (k) [% by mass]. Here, when the atomic weight of A(k) is P(k) and the atomic weight of oxygen O is Q, the molecular weight R(k) of A(k) m O n is R(k)=P. (k) × m + Q × n.

進而,當設B=100/{Σ[m×X(k)/R(k)]}時,陽離子成分A(k)s+的含量(陽離子%)為[X(k)/R(k)]×m×B(陽離子%)。在此,Σ意味著k=1至N的m×X(k)/R(K)的合計。m根據k而變化。s為2n/m。 Further, when B=100/{Σ[m×X(k)/R(k)]}, the content (cation %) of the cationic component A(k) s+ is [X(k)/R(k) ] × m × B (cation %). Here, Σ means the total of m × X (k) / R (K) of k = 1 to N. m varies according to k. s is 2n/m.

此外,關於分子量R(k),只要對小數點後第4位進行四捨五入而使用小數點後3位表示的值進行計算即可。另外,對幾種玻璃成分、添加劑,將以氧化物為基準表示的分子量示於下表112。 Further, the molecular weight R(k) may be calculated by rounding off the fourth digit after the decimal point and using a value represented by three decimal places. Further, the molecular weights represented by oxides for several glass components and additives are shown in Table 112 below.

[實施例] [Examples]

以下,基於實施例對本發明進行進一步說明。但是,本發明並不限定於實施例所示的方式。 Hereinafter, the present invention will be further described based on examples. However, the present invention is not limited to the embodiment shown in the embodiment.

(實施例1) (Example 1)

以可得到具有下表113~114所示的組成的玻璃的方式,稱量氧化物、硼酸等化合物作為原料,將其充分混合而製成批料原料。 A compound such as an oxide or a boric acid is weighed as a raw material so that a glass having a composition shown in the following Tables 113 to 114 can be obtained, and this is sufficiently mixed to prepare a batch raw material.

將該批料原料放入到鉑坩堝中,連同坩堝一起加熱至1350~1450℃的溫度,經2~3小時將玻璃熔融並澄清。在將熔融玻璃進行攪拌而均質化後,將熔融玻璃澆鑄到預熱了的成型模,放置冷卻至玻璃化轉變溫度附近後立即將玻璃連同成型模一起放入到退火爐內。然後,在玻璃化轉變溫度附近進行大約1小時的退火。退火後,在退火爐內放置冷卻至室溫。 The batch material was placed in a platinum crucible, heated together with hydrazine to a temperature of 1350 to 1450 ° C, and the glass was melted and clarified over 2 to 3 hours. After the molten glass was stirred and homogenized, the molten glass was cast into a preheated molding die, and placed in a vicinity of the glass transition temperature, and immediately placed in the annealing furnace together with the molding die. Then, annealing was performed for about 1 hour near the glass transition temperature. After annealing, it was placed in an annealing furnace and cooled to room temperature.

對像這樣製作的玻璃進行觀察,結果沒有發現晶體的析出、氣泡、條紋、原料的熔融殘留。這樣,能夠製作均質性高的玻璃。 When the glass produced in this manner was observed, no precipitation of crystals, bubbles, streaks, and melting of the raw material were observed. In this way, it is possible to produce a glass having high homogeneity.

表113中的No.1~52為玻璃A,表114中的No.1~52為玻璃B。 Nos. 1 to 52 in Table 113 are glass A, and Nos. 1 to 52 in Table 114 are glass B.

(比較例1~4) (Comparative examples 1 to 4)

除了以可得到具有下表所示的比較例1~4的各組成的玻璃的方式,稱量氧化物、硼酸等化合物作為原料,將其充分混合而製成批料原料以外,用與實施例1同樣的方法得到了玻璃。 A compound such as an oxide or a boric acid was weighed as a raw material in such a manner as to obtain a glass having the respective compositions of Comparative Examples 1 to 4 shown in the following table, and the mixture was sufficiently mixed to prepare a batch raw material. 1 The same method was used to obtain the glass.

比較例1的組成是將專利文獻20的玻璃No.11的組成換算為以陽離子%表示的玻璃組成的組成。 The composition of Comparative Example 1 is a composition in which the composition of the glass No. 11 of Patent Document 20 is converted into a composition of a glass represented by a cationic %.

比較例2是將專利文獻20的玻璃No.25的組成換算為以陽離子%表示的玻璃組成的組成。 In the comparative example 2, the composition of the glass No. 25 of the patent document 20 is converted into the composition of the glass composition represented by the cationic %.

比較例3是將專利文獻20的玻璃No.45的組成換算為以陽離子%表示的玻璃組成的組成。 In Comparative Example 3, the composition of the glass No. 45 of Patent Document 20 was converted into a composition of a glass composition represented by a cationic %.

比較例4是將專利文獻20的玻璃No.49的組成換算為以陽離子%表示的玻璃組成的組成。 In the comparative example 4, the composition of the glass No. 49 of the patent document 20 is converted into the composition of the glass composition represented by the cationic %.

用如下方法測定了所得到的玻璃的玻璃特性。將測定結果示於下表113~114。 The glass characteristics of the obtained glass were measured by the following methods. The measurement results are shown in the following Tables 113 to 114.

(1)折射率(nd)、折射率(nF)、折射率(nc)、折射率(ng)、阿貝數(νd) (1) Refractive index (nd), refractive index (nF), refractive index (nc), refractive index (ng), Abbe number (νd)

藉由日本光學玻璃工業會標準的折射率測定法對以-30℃/小時的降溫速度進行降溫而得到的玻璃測定折射率(nd)、折射率(nF)、折射率(nc)、折射率(ng)。使用折射率(nd)、折射率(nF)、 折射率(nc)的各測定值算出阿貝數(νd)。 The refractive index (nd), refractive index (nF), refractive index (nc), and refractive index of the glass obtained by lowering the temperature at a temperature drop rate of -30 ° C / hour by the refractive index measurement method of the Japan Optical Glass Industry Association standard (ng). Use refractive index (nd), refractive index (nF), The Abbe number (νd) was calculated for each measured value of the refractive index (nc).

(2)玻璃化轉變溫度(Tg) (2) Glass transition temperature (Tg)

使用差示掃描熱量分析裝置(DSC),使升溫速度為10℃/分來進行測定。 The measurement was carried out by using a differential scanning calorimeter (DSC) at a temperature increase rate of 10 ° C / min.

(3)比重 (3) Specific gravity

藉由阿基米德法進行測定。 The measurement was carried out by the Archimedes method.

(4)著色度(λ5)、著色度(λ70)、著色度(λ80) (4) Degree of coloration (λ5), degree of coloration (λ70), degree of coloration (λ80)

使用具有彼此相向的2個進行了光學拋光的平面的、厚度為10±0.1mm的玻璃試樣,利用分光光度計從相對於拋光的面垂直的方向入射強度為Iin的光並測定透射了玻璃試樣的光的強度Iout,算出光譜透射率Iout/Iin,將光譜透射率變為5%的波長作為λ5,將光譜透射率變為70%的波長作為λ70,將光譜透射率變為80%的波長作為λ80。 A glass sample having a thickness of 10 ± 0.1 mm having two planes optically polished toward each other was used, and a light having a intensity of Iin was incident from a direction perpendicular to the polished surface by a spectrophotometer and the transmitted glass was measured. The light intensity Iout of the sample is calculated as the spectral transmittance Iout/Iin, the wavelength at which the spectral transmittance is 5% is λ5, the wavelength at which the spectral transmittance is 70% is λ70, and the spectral transmittance is changed to 80%. The wavelength is taken as λ80.

(5)相對部分色散(Pg,F) (5) Relative partial dispersion (Pg, F)

利用在上述(1)中測定的nF、nc、ng的值來算出。 The value of nF, nc, and ng measured in the above (1) was calculated.

(6)液相線溫度 (6) Liquidus temperature

將玻璃放入到加熱至規定溫度的爐內保持2小時,冷卻後,用100倍的光學顯微鏡觀察玻璃內部,根據有無晶體來決定液相線溫度。 The glass was placed in a furnace heated to a predetermined temperature for 2 hours. After cooling, the inside of the glass was observed with a 100-fold optical microscope, and the liquidus temperature was determined depending on the presence or absence of crystals.

(實施例2) (Example 2)

使用在實施例1中得到的各種玻璃製作壓製成型用玻璃塊(玻璃料滴)。將該玻璃塊在大氣中加熱、軟化,用壓製成型模進行壓製成型,製作透鏡坯件(光學元件坯件)。將製作的透鏡坯件從壓製成型模取出,進行退火,進行包括拋光的機械加工,製作由在實施例1中製作的各種玻璃構成的球面透鏡。 A glass block for press molding (glass gob) was produced using the various glasses obtained in Example 1. The glass block was heated and softened in the atmosphere, and press-molded by a press molding die to prepare a lens blank (optical element blank). The produced lens blank was taken out from the press molding die, annealed, and subjected to mechanical processing including polishing to produce a spherical lens composed of various glasses produced in Example 1.

(實施例3) (Example 3)

將所需量的在實施例1中製作的熔融玻璃用壓製成型模進行壓製成型,製作透鏡坯件(光學元件坯件)。將製作的透鏡坯件從壓製成型模取出,進行退火,進行包括拋光的機械加工,製作由在實施例1中製作的各種玻璃構成的球面透鏡。 The required amount of the molten glass produced in Example 1 was compression-molded by a press molding die to prepare a lens blank (optical element blank). The produced lens blank was taken out from the press molding die, annealed, and subjected to mechanical processing including polishing to produce a spherical lens composed of various glasses produced in Example 1.

(實施例4) (Example 4)

將在實施例1中製作的熔融玻璃固化而製作玻璃塊(光學元件坯件),進行退火,進行包括拋光的機械加工,製作由在實施例1中製作的各種玻璃構成的球面透鏡。 The molten glass produced in Example 1 was solidified to prepare a glass block (optical element blank), annealed, and subjected to mechanical processing including polishing to produce a spherical lens composed of various glasses produced in Example 1.

(實施例5) (Example 5)

將在實施例2~4中製作的球面透鏡與由另一種玻璃構成的球面透鏡貼合,製作膠合透鏡。在實施例2~4中製作的球面透鏡的膠合面是凸面,由另一種光學玻璃構成的球面透鏡的膠合面是凹面。上述2個膠合面製作成彼此的曲率半徑的絕對值相等。在膠合面塗敷光學元件膠合用的紫外線固化型黏接劑,將2個透鏡的膠合面彼此貼合。此後,藉由在實施例2~4中製作的球面透鏡對塗敷在膠合面的黏接劑照射紫外線,使黏接劑固化。 The spherical lenses produced in Examples 2 to 4 were bonded to a spherical lens made of another glass to produce a cemented lens. The cemented surface of the spherical lens produced in Examples 2 to 4 was a convex surface, and the cemented surface of a spherical lens composed of another optical glass was a concave surface. The two cemented surfaces are formed such that the absolute values of the curvature radii of each other are equal. An ultraviolet curable adhesive for bonding an optical element is applied to the bonding surface, and the bonding surfaces of the two lenses are bonded to each other. Thereafter, the adhesive applied to the bonding surface was irradiated with ultraviolet rays by the spherical lenses produced in Examples 2 to 4 to cure the adhesive.

像上述那樣製作膠合透鏡。膠合透鏡的膠合強度足夠高, 光學性能也達到了足夠的水準。 A cemented lens is produced as described above. The cemented strength of the cemented lens is high enough. Optical performance has also reached a sufficient level.

(比較例5) (Comparative Example 5)

重現了日本特開2014-62026號公報的表8所示的No.51的玻璃(以下稱為玻璃I)。日本特開2014-62026號公報表8所記載的No.51的玻璃的λ5為337nm。 The glass of No. 51 (hereinafter referred to as glass I) shown in Table 8 of JP-A-2014-62026 is reproduced. The λ5 of the glass of No. 51 described in Japanese Laid-Open Patent Publication No. 2014-62026 is 337 nm.

接著,與上述實施例5同樣地,製作由玻璃I構成的球面透鏡,嘗試使用製作的球面透鏡來製作膠合透鏡。但是,在藉由由玻璃I構成的透鏡對塗敷在膠合面的紫外線固化型黏接劑照射紫外線時,因為玻璃I的紫外線透射率低,所以未能使黏接劑充分地固化。 Next, in the same manner as in the above-described Example 5, a spherical lens made of glass I was produced, and it was attempted to produce a cemented lens using the produced spherical lens. However, when the ultraviolet curable adhesive applied to the bonding surface is irradiated with ultraviolet rays by the lens made of the glass I, since the ultraviolet transmittance of the glass I is low, the adhesive cannot be sufficiently cured.

(比較例6) (Comparative Example 6)

本發明的一個實施形態的玻璃A的陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}為不足0.2。 The cation ratio of {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} of the glass A according to an embodiment of the present invention is less than 0.2.

本發明的一個實施形態的玻璃B的質量比{ZnO/(La2O3+Y2O3+Gd2O3+Yb2O3)}為不足0.10。 The mass ratio of the glass B according to an embodiment of the present invention is {ZnO/(La 2 O 3 +Y 2 O 3 +Gd 2 O 3 +Yb 2 O 3 )} is less than 0.10.

相對於此,日本特開2014-62026號公報的表1所示的No.6的玻璃的上述陽離子比為0.578,上述質量比為0.325。 On the other hand, the cation ratio of the glass of No. 6 shown in Table 1 of JP-A-2014-62026 is 0.578, and the mass ratio is 0.325.

為了在該日本特開2014-62026號公報的表1所示的No.6的玻璃的玻璃組成中使上述陽離子比為不足0.2且上述質量比為不足0.10,減少Zn2+(ZnO)的量,以其它成分的含量的平衡不會大幅變化的方式將減少的量分配給其它成分,如下表115和表116所示地進行組成調整而製作玻璃。表115中的玻璃成分彼此的比是陽離子比,表116中的玻璃成分彼此的比是以氧化物為基準的玻璃組成中的各成分的含量的質量比。具體地說,調配玻璃原料,將170g調 配原料放入到鉑坩堝中,在1400℃進行2小時的熔融、澄清。在對熔融玻璃進行攪拌而使其均質化後,將熔融玻璃澆鑄到預熱了的成型模,放置冷卻至玻璃化轉變溫度附近,然後立即將玻璃連同成型模一起放入到退火爐內。然後,在玻璃化轉變溫度附近進行大約1小時的退火。進行退火後,在退火爐內放置冷卻至室溫。 In the glass composition of the glass of No. 6 shown in Table 1 of JP-A-2014-62026, the cation ratio is less than 0.2 and the mass ratio is less than 0.10, and the amount of Zn 2+ (ZnO) is decreased. The amount of reduction was distributed to the other components in such a manner that the balance of the contents of the other components did not largely change, and the composition was adjusted as shown in Tables 115 and 116 below to prepare the glass. The ratio of the glass components in Table 115 to each other is a cation ratio, and the ratio of the glass components in Table 116 is a mass ratio of the content of each component in the glass composition based on the oxide. Specifically, the glass raw material was blended, and 170 g of the blended raw material was placed in a platinum crucible, and melted and clarified at 1400 ° C for 2 hours. After the molten glass was stirred and homogenized, the molten glass was cast into a preheated molding die, left to cool to near the glass transition temperature, and then immediately placed in the annealing furnace together with the molding die. Then, annealing was performed for about 1 hour near the glass transition temperature. After annealing, it was placed in an annealing furnace and cooled to room temperature.

此後,觀察玻璃的內部。 Thereafter, the inside of the glass was observed.

圖1是在比較例6中評價的玻璃的照片。從圖1可明顯看出,在玻璃中析出了許多晶體,白濁而失去了透明性。 1 is a photograph of a glass evaluated in Comparative Example 6. As is apparent from Fig. 1, many crystals are precipitated in the glass, which is cloudy and loses transparency.

相對於此,在本發明的一個實施形態的玻璃A和玻璃B中,藉由進行如前所述的組成調整,從而能夠抑制晶體析出。 On the other hand, in the glass A and the glass B according to the embodiment of the present invention, crystal deposition can be suppressed by performing the composition adjustment as described above.

最後,對前述的各實施形態進行總結。 Finally, the above embodiments are summarized.

根據一個實施形態,能夠提供玻璃A,該玻璃A是氧化物玻璃,其中,以陽離子%表示,B3+和Si4+的合計含量為43~65%;La3+、Y3+、Gd3+及Yb3+的合計含量為25~50%;Nb5+、Ti4+、Ta5+及W6+的合計含量為3~12%;Zr4+的含量為2~8%;B3+和Si4+的合計含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{(B3++Si4+)/(La3++Y3++Gd3++Yb3+)}為0.70~1.75;B3+和Si4+的合計含量相對於Nb5+、Ti4+、Ta5+及W6+的合計含量的陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)} 為9.00以下;Zn2+的含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}為不足0.2;La3+的含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{La3+/(La3++Y3++Gd3++Yb3+)}為0.50~0.95;Y3+的含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{Y3+/(La3++Y3++Gd3++Yb3+)}為0.10~0.50;Gd3+的含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{Gd3+/(La3++Y3++Gd3++Yb3+)}為0.10以下;Nb5+的含量相對於Nb5+、Ti4+及W6+的合計含量的陽離子比{Nb5+/(Nb5++Ti4++W6+)}為0.80以上;Ta5+的含量相對於Nb5+、Ti4+、Ta5+及W6+的合計含量的陽離子比{Ta5+/(Nb5++Ti4++Ta5++W6+)}為0.2以下;阿貝數(νd)的範圍為39.5~41.5,且折射率(nd)與阿貝數(νd)滿足上述的式(1)。 According to one embodiment, it is possible to provide glass A which is an oxide glass in which the total content of B 3+ and Si 4+ is 43 to 65% in terms of cationic %; La 3+ , Y 3+ , Gd The total content of 3+ and Yb 3+ is 25~50%; the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ is 3~12%; the content of Zr 4+ is 2~8%; the total content of B 3+ and Si 4+ with respect to La 3+, Y 3+, Gd 3+ cations and the total content of Yb 3+ ratio {(B 3+ + Si 4+) / (La 3+ + Y 3+ +Gd 3+ +Yb 3+ )} is 0.70 to 1.75; the ratio of the total content of B 3+ and Si 4+ to the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ {(B 3+ +Si 4+ )/(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is 9.00 or less; the content of Zn 2+ is relative to La 3+ , Y 3+ , Gd 3 The cation ratio of {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} of the total content of + and Yb 3+ is less than 0.2; the content of La 3+ is relative to La 3+ , Y The cation ratio of the total content of 3+ , Gd 3+ and Yb 3+ is {La 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is 0.50-0.95; the content of Y 3+ is relative The cation ratio of the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ is {Y 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is 0.10-0.5 0; with respect to the content of Gd 3+ La 3+, Y 3+, Gd 3+ cations and the total content ratio of Yb 3+ {Gd 3+ / (La 3+ + Y 3+ + Gd 3+ + Yb 3 +)} is 0.10 or less; the content of Nb 5+ cation with respect to the total content of Nb 5+, Ti 4+ and W 6+ ratio {Nb 5+ / (Nb 5+ + Ti 4+ + W 6+)} less than 0.80; Ta 5+ content with respect to the Nb 5+, cationic Ti 4+, total content of Ta 5+ + Ta and W 6+ ratio {Ta 5+ / (Nb 5+ + Ti 4+ 5+ + W 6+ )} is 0.2 or less; the Abbe number (νd) ranges from 39.5 to 41.5, and the refractive index (nd) and the Abbe number (νd) satisfy the above formula (1).

此外,根據一個實施形態,能夠提供玻璃B,該玻璃B是氧化物玻璃,其中,以質量%表示,B2O3和SiO2的合計含量為17.5~35%;La2O3、Y2O3、Gd2O3及Yb2O3的合計含量為45~70%;Nb2O5、TiO2、Ta2O5及WO3的合計含量為3~16%;ZrO2的含量為2~10%;B2O3和SiO2的合計含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{(B2O3+SiO2)/(La2O3+Y2O3+Gd2O3+Yb2O3)}為0.2~0.5;B2O3和SiO2的合計含量相對於Nb2O5、TiO2、Ta2O5及WO3的合計含量的質量比{(B2O3+SiO2)/(Nb2O5+TiO2+Ta2O5+WO3)}為2.8以下;ZnO的含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{ZnO/(La2O3+Y2O3+Gd2O3+Yb2O3)}為不足0.10;La2O3的含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量 的質量比{La2O3/(La2O3+Y2O3+Gd2O3+Yb2O3)}為0.55~0.98;Y2O3的含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{Y2O3/(La2O3+Y2O3+Gd2O3+Yb2O3)}為0.02~0.45;Gd2O3的含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{Gd2O3/(La2O3+Y2O3+Gd2O3+Yb2O3)}為0.10以下;Nb2O5的含量相對於Nb2O5、TiO2及WO3的合計含量的質量比{Nb2O5/(Nb2O5+TiO2+WO3)}為0.81以上;Ta2O5的含量相對於Nb2O5、TiO2、Ta2O5及WO3的合計含量的質量比{Ta2O5/(Nb2O5+TiO2+Ta2O5+WO3)}為0.3以下;阿貝數(νd)的範圍為39.5~41.5,且折射率(nd)與阿貝數(νd)滿足上述的式(1)。 Further, according to one embodiment, it is possible to provide glass B which is an oxide glass in which the total content of B 2 O 3 and SiO 2 is 17.5 to 35% in terms of mass%; La 2 O 3 , Y 2 The total content of O 3 , Gd 2 O 3 and Yb 2 O 3 is 45 to 70%; the total content of Nb 2 O 5 , TiO 2 , Ta 2 O 5 and WO 3 is 3 to 16%; the content of ZrO 2 is 2 to 10%; the mass ratio of the total content of B 2 O 3 and SiO 2 to the total content of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 {(B 2 O 3 + SiO) 2 ) / (La 2 O 3 + Y 2 O 3 + Gd 2 O 3 + Yb 2 O 3 )} is 0.2 to 0.5; the total content of B 2 O 3 and SiO 2 is relative to Nb 2 O 5 , TiO 2 , The mass ratio of the total content of Ta 2 O 5 and WO 3 is {(B 2 O 3 + SiO 2 ) / (Nb 2 O 5 + TiO 2 + Ta 2 O 5 + WO 3 )} is 2.8 or less; the content of ZnO is relatively to La 2 O 3, Y 2 O 3, Gd mass total content 2 O 3 and Yb 2 O 3 ratio {ZnO / (La 2 O 3 + Y 2 O 3 + Gd 2 O 3 + Yb 2 O 3) } is less than 0.10; the content of La 2 O 3 with respect to La 2 O 3, the quality of the total content of Y 2 O 3, Gd 2 O 3 and Yb 2 O 3 ratio {La 2 O 3 / (La 2 O 3 + Y 2 O 3 + Gd 2 O 3 + Yb 2 O 3)} 0.55 to 0.98; the content of Y 2 O 3 For the La 2 O 3, Y 2 O 3, Gd mass total content 2 O 3 and Yb 2 O 3 ratio of {Y 2 O 3 / (La 2 O 3 + Y 2 O 3 + Gd 2 O 3 + Yb 2 O 3)} 0.02 to 0.45; the content of Gd 2 O 3 with respect to La 2 O 3, Y 2 O 3, Gd mass total content 2 O 3 and Yb 2 O 3 ratio of {Gd 2 O 3 / (La 2 O 3 + Y 2 O 3 + Gd 2 O 3 + Yb 2 O 3)} is 0.10 or less; of Nb 2 O 5 content with respect to the Nb 2 O 5, mass of the total content of TiO 2 and WO 3 ratio {Nb 2 O 5 / (Nb 2 O 5 + TiO 2 + WO 3)} is 0.81 or more; the content of Ta 2 O 5 with respect to the Nb 2 O 5, TiO 2, mass of Ta 2 O 5 and WO total content 3 ratio {Ta 2 O 5 /(Nb 2 O 5 +TiO 2 +Ta 2 O 5 +WO 3 )} is 0.3 or less; Abbe number (νd) ranges from 39.5 to 41.5, and refractive index (nd) and Abbe The number (νd) satisfies the above formula (1).

上述玻璃是滿足式(1)的玻璃,是在光學系統中有用的高折射率低色散玻璃。在上述玻璃中,降低了以陽離子%表示的玻璃組成中的Gd、Ta所占的比例或者以質量%表示的玻璃組成中的Gd2O3、Ta2O5所占的比例,因此能夠穩定地供給,並且藉由滿足上述的含量、合計含量及陽離子比或質量比,從而能夠得到高的熱穩定性且能夠抑制短波長側的光吸收端的長波長化。 The above glass is a glass satisfying the formula (1) and is a high refractive index low dispersion glass useful in an optical system. In the above glass, the ratio of Gd and Ta in the glass composition represented by the cationic % or the ratio of Gd 2 O 3 and Ta 2 O 5 in the glass composition expressed by mass% is lowered, and thus it is stable. By supplying the above-mentioned content, total content, and cation ratio or mass ratio, high thermal stability can be obtained and the long wavelength of the light absorption end on the short-wavelength side can be suppressed.

在一個實施形態中,從穩定地供給玻璃的觀點出發,玻璃A中的Gd3+的含量較佳為3陽離子%以下,玻璃B中的Gd2O3的含量較佳為6質量%以下。 In one embodiment, the content of Gd 3+ in the glass A is preferably 3 cationic % or less, and the content of Gd 2 O 3 in the glass B is preferably 6% by mass or less from the viewpoint of stably supplying the glass.

在一個實施形態中,從穩定地供給玻璃的觀點出發,玻璃A中的Ta5+的含量較佳為3.0陽離子%以下,玻璃B中的Ta2O5的含量較佳為5質量%以下。 In one embodiment, the content of Ta 5+ in the glass A is preferably 3.0 cation % or less, and the content of Ta 2 O 5 in the glass B is preferably 5% by mass or less from the viewpoint of stably supplying the glass.

在一個實施形態中,關於玻璃A和玻璃B,較佳 以使著色度(λ5)為335nm以下的方式抑制玻璃的短波長側的光吸收端的長波長化。 In one embodiment, with respect to glass A and glass B, it is preferred The long wavelength of the light absorption end on the short-wavelength side of the glass is suppressed so that the degree of coloration (λ5) is 335 nm or less.

能夠用以上說明的玻璃A或玻璃B製作壓製成型用玻璃材料、光學元件坯件及光學元件。即,根據另一個實施形態,可提供由玻璃A或玻璃B構成的壓製成型用玻璃材料、光學元件坯件及光學元件。 The glass material for press molding, the optical element blank, and the optical element can be produced from the glass A or the glass B described above. That is, according to another embodiment, a glass material for press molding composed of glass A or glass B, an optical element blank, and an optical element can be provided.

此外,根據另一個實施形態,還可提供壓製成型用玻璃材料的製造方法,其包括將玻璃A或玻璃B成型為壓製成型用玻璃材料的步驟。 Further, according to another embodiment, a method for producing a glass material for press molding including a step of molding glass A or glass B into a glass material for press molding may be provided.

進而,根據另一個實施形態,還可提供光學元件坯件的製造方法,其包括藉由將上述壓製成型用玻璃材料使用壓製成型模進行壓製成型來製作光學元件坯件的步驟。 Further, according to another embodiment, there is provided a method of producing an optical element blank comprising the step of producing an optical element blank by press-molding the above-mentioned glass material for press molding using a press molding die.

進而,根據另一個實施形態,還可提供光學元件坯件的製造方法,其包括將玻璃A或玻璃B成型為光學元件坯件的步驟。 Further, according to another embodiment, a method of manufacturing an optical element blank including the step of molding glass A or glass B into an optical element blank can be provided.

進而,根據另一個實施形態,還可提供光學元件的製造方法,其包括藉由對上述光學元件坯件進行研磨和/或拋光來製作光學元件的步驟。 Further, according to another embodiment, there is provided a method of manufacturing an optical element comprising the step of fabricating an optical element by grinding and/or polishing the optical element blank.

應認為,此次揭露的實施形態在所有的方面都是例示性的,而不是限制性的。本發明的範圍不是由上述的說明來示出,而是由申請專利範圍示出,包括與申請專利範圍等同的意思和範圍內的所有的變更。 It is to be understood that the embodiments disclosed herein are illustrative and not restrictive. The scope of the present invention is defined by the scope of the claims, and is intended to be

例如,藉由對上述例示的玻璃組成進行說明書所記載的組成調整,從而能夠得到本發明的一個實施形態的玻璃。 For example, the glass of one embodiment of the present invention can be obtained by subjecting the glass composition exemplified above to the composition adjustment described in the specification.

此外,當然能夠對在說明書中作為例示或者較佳的範圍而記載的事項中的2項以上進行任意組合。 In addition, it is of course possible to arbitrarily combine two or more of the items described as an example or a preferred range in the specification.

此外,有時某種玻璃符合玻璃A和玻璃B這兩者。 In addition, sometimes certain glasses conform to both glass A and glass B.

[產業利用性] [Industry Utilization]

本發明在各種光學元件的製造領域中是有用的。 The invention is useful in the field of manufacture of various optical components.

Claims (10)

一種玻璃,該玻璃是氧化物玻璃,以陽離子%表示,B3+和Si4+的合計含量為43~65%;La3+、Y3+、Gd3+及Yb3+的合計含量為25~50%;Nb5+、Ti4+、Ta5+及W6+的合計含量為3~12%;以及Zr4+的含量為2~8%;B3+和Si4+的合計含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{(B3++Si4+)/(La3++Y3++Gd3++Yb3+)}為0.70~1.75;B3+和Si4+的合計含量相對於Nb5+、Ti4+、Ta5+及W6+的合計含量的陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}為9.00以下;Zn2+的含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}為不足0.2;La3+的含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{La3+/(La3++Y3++Gd3++Yb3+)}為0.50~0.95;Y3+的含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{Y3+/(La3++Y3++Gd3++Yb3+)}為0.10~0.50;Gd3+的含量相對於La3+、Y3+、Gd3+及Yb3+的合計含量的陽離子比{Gd3+/(La3++Y3++Gd3++Yb3+)}為0.10以下;Nb5+的含量相對於Nb5+、Ti4+及W6+的合計含量的陽離子比{Nb5+/(Nb5++Ti4++W6+)}為0.80以上;Ta5+的含量相對於Nb5+、Ti4+、Ta5+及W6+的合計含量的陽離子比{Ta5+/(Nb5++Ti4++Ta5++W6+)}為0.2以下;阿貝數(νd)的範圍為39.5~41.5,且折射率(nd)與阿貝數(νd) 滿足下述式:nd2.0927-0.0058×νd。 A glass which is an oxide glass, expressed as a cationic %, and a total content of B 3+ and Si 4+ is 43 to 65%; a total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ is 25~50%; the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ is 3~12%; and the content of Zr 4+ is 2~8%; the total of B 3+ and Si 4+ The ratio of the cation to the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ is {(B 3+ +Si 4+ )/(La 3+ +Y 3+ +Gd 3+ +Yb 3 + )} is 0.70 to 1.75; the total content of B 3+ and Si 4+ is cation ratio to the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ {(B 3+ +Si 4+ ) / (Nb 5+ + Ti 4+ + Ta 5+ + W 6+)} is 9.00 or less; Zn 2+ content with respect to the La 3+, the total content of Y 3+, Gd 3+ and Yb 3+ is The cation ratio {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is less than 0.2; the content of La 3+ is relative to La 3+ , Y 3+ , Gd 3+ and Yb 3 + cation total content ratio {La 3+ / (La 3+ + Y 3+ + Gd 3+ + Yb 3+)} 0.50 to 0.95; with respect to the content of Y 3+ La 3+, Y 3+, The cation ratio of the total content of Gd 3+ and Yb 3+ is {Y 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is 0.10 to 0.50; the content of Gd 3+ is relative to La 3 + , Y 3 The cation ratio of the total content of + , Gd 3+ and Yb 3+ is {Gd 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is 0.10 or less; the content of Nb 5+ is relative to Nb The cation ratio of {Nb 5+ /(Nb 5+ +Ti 4+ +W 6+ )} of the total content of 5+ , Ti 4+ and W 6+ is 0.80 or more; the content of Ta 5+ is relative to Nb 5+ , The cation ratio of the total content of Ti 4+ , Ta 5+ and W 6+ is {Ta 5+ /(Nb 5+ + Ti 4+ +Ta 5+ +W 6+ )} is 0.2 or less; Abbe number (νd) The range is 39.5~41.5, and the refractive index (nd) and the Abbe number (νd) satisfy the following formula: nd 2.0927-0.0058×νd. 如申請專利範圍第1項所述之玻璃,其中Gd3+的含量為3陽離子%以下。 The glass according to claim 1, wherein the content of Gd 3+ is 3 cationic % or less. 如申請專利範圍第1項所述之玻璃,其中Ta5+的含量為3.0陽離子%以下。 The glass according to claim 1, wherein the content of Ta 5+ is 3.0 cation % or less. 一種玻璃,該玻璃是氧化物玻璃,以質量%表示,B2O3和SiO2的合計含量為17.5~35%;La2O3、Y2O3、Gd2O3及Yb2O3的合計含量為45~70%;Nb2O5、TiO2、Ta2O5及WO3的合計含量為3~16%;ZrO2的含量為2~10%;B2O3和SiO2的合計含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{(B2O3+SiO2)/(La2O3+Y2O3+Gd2O3+Yb2O3)}為0.2~0.5;B2O3和SiO2的合計含量相對於Nb2O5、TiO2、Ta2O5及WO3的合計含量的質量比{(B2O3+SiO2)/(Nb2O5+TiO2+Ta2O5+WO3)}為2.8以下;ZnO的含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{ZnO/(La2O3+Y2O3+Gd2O3+Yb2O3)}為不足0.10;La2O3的含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{La2O3/(La2O3+Y2O3+Gd2O3+Yb2O3)}為0.55~0.98;Y2O3的含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計含量的質量比{Y2O3/(La2O3+Y2O3+Gd2O3+Yb2O3)}為0.02~0.45;Gd2O3的含量相對於La2O3、Y2O3、Gd2O3及Yb2O3的合計 含量的質量比{Gd2O3/(La2O3+Y2O3+Gd2O3+Yb2O3)}為0.10以下;Nb2O5的含量相對於Nb2O5、TiO2及WO3的合計含量的質量比{Nb2O5/(Nb2O5+TiO2+WO3)}為0.81以上;Ta2O5的含量相對於Nb2O5、TiO2、Ta2O5及WO3的合計含量的質量比{Ta2O5/(Nb2O5+TiO2+Ta2O5+WO3)}為0.3以下;阿貝數(νd)的範圍為39.5~41.5,且折射率(nd)與阿貝數(νd)滿足下述式:nd2.0927-0.0058×νd。 A glass, the glass is an oxide glass, by mass%, B 2 O 3 and the total content of SiO 2 is 17.5 ~ 35%; La 2 O 3, Y 2 O 3, Gd 2 O 3 and Yb 2 O 3 total content of 45 ~ 70%; Nb 2 O 5, TiO 2, Ta total content 2 O 5 and WO 3 is 3 to 16%; the content of ZrO 2 of 2 ~ 10%; B 2 O 3 and SiO 2 Mass ratio of the total content to the total content of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 {(B 2 O 3 + SiO 2 ) / (La 2 O 3 + Y 2 O 3 + Gd 2 O 3 + Yb 2 O 3 )} is 0.2 to 0.5; the total content of B 2 O 3 and SiO 2 is relative to the mass of the total content of Nb 2 O 5 , TiO 2 , Ta 2 O 5 and WO 3 The ratio of {(B 2 O 3 + SiO 2 ) / (Nb 2 O 5 + TiO 2 + Ta 2 O 5 + WO 3 )} is 2.8 or less; the content of ZnO is relative to La 2 O 3 , Y 2 O 3 , Gd The mass ratio of the total content of 2 O 3 and Yb 2 O 3 is {ZnO/(La 2 O 3 +Y 2 O 3 +Gd 2 O 3 +Yb 2 O 3 )} is less than 0.10; the content of La 2 O 3 is relatively Mass ratio of total content of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 {La 2 O 3 /(La 2 O 3 +Y 2 O 3 +Gd 2 O 3 +Yb 2 O 3 )} is 0.55 to 0.98; the content of Y 2 O 3 is relative to that of La 2 O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 The mass ratio of the total content is {Y 2 O 3 /(La 2 O 3 +Y 2 O 3 +Gd 2 O 3 +Yb 2 O 3 )} is 0.02 to 0.45; the content of Gd 2 O 3 is relative to La 2 O 3 The mass ratio of the total content of Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 is {Gd 2 O 3 /(La 2 O 3 +Y 2 O 3 +Gd 2 O 3 +Yb 2 O 3 )}. 0.10; of Nb 2 O 5 content with respect to the Nb 2 O 5, by mass TiO total content 2 and WO 3 ratio {Nb 2 O 5 / (Nb 2 O 5 + TiO 2 + WO 3)} is 0.81 or more; content of Ta 2 O 5 with respect to the Nb 2 O 5, 2 mass of the total content of Ta 2 O 5 and WO 3 is TiO, than {Ta 2 O 5 / (Nb 2 O 5 + TiO 2 + Ta 2 O 5 + WO 3 )} is 0.3 or less; the Abbe number (νd) ranges from 39.5 to 41.5, and the refractive index (nd) and the Abbe number (νd) satisfy the following formula: nd 2.0927-0.0058×νd. 如申請專利範圍第4項所述之玻璃,其中Gd2O3的含量為6質量%以下。 The glass according to claim 4, wherein the content of Gd 2 O 3 is 6% by mass or less. 如申請專利範圍第4項所述之玻璃,其中Ta2O5的含量為5質量%以下。 The glass according to claim 4, wherein the content of Ta 2 O 5 is 5% by mass or less. 如申請專利範圍第1至6項中任一項所述之玻璃,其中著色度(λ5)為335nm以下。 The glass according to any one of claims 1 to 6, wherein the degree of coloration (λ5) is 335 nm or less. 一種壓製成型用玻璃材料,由申請專利範圍1至6項中任一項所述之玻璃構成。 A glass material for press molding, comprising the glass according to any one of claims 1 to 6. 一種光學元件坯件,由申請專利範圍1至6項中任一項所述之玻璃構成。 An optical element blank comprising the glass of any one of claims 1 to 6. 一種光學元件,由申請專利範圍1至6項中任一項所述之玻璃構成。 An optical element comprising the glass of any one of claims 1 to 6.
TW104136795A 2014-11-07 2015-11-06 Glass, glass material for press molding, optical component blanks and optical components TWI610900B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014227588 2014-11-07
JP2014-227587 2014-11-07
JP2014227587 2014-11-07
JP2014-227588 2014-11-07

Publications (2)

Publication Number Publication Date
TW201623174A true TW201623174A (en) 2016-07-01
TWI610900B TWI610900B (en) 2018-01-11

Family

ID=55909246

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104136795A TWI610900B (en) 2014-11-07 2015-11-06 Glass, glass material for press molding, optical component blanks and optical components

Country Status (4)

Country Link
JP (1) JP6587286B2 (en)
CN (3) CN111233318A (en)
TW (1) TWI610900B (en)
WO (1) WO2016072523A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107311447A (en) * 2017-08-24 2017-11-03 重庆品信玻璃有限公司 A kind of optics safety glass
JP7394523B2 (en) * 2018-10-11 2023-12-08 Hoya株式会社 Optical glass, glass materials for press molding, optical element blanks and optical elements
CN109574503A (en) * 2018-12-20 2019-04-05 温州大学 A kind of Cs1-xRbxPbBr3Quantum dot devitrified glass
CN110028239B (en) * 2019-05-23 2022-08-09 成都光明光电股份有限公司 Optical glass, glass preform, optical element and optical instrument
CN117425627A (en) * 2021-06-07 2024-01-19 日本光硝子株式会社 Optical glass, optical element, optical system, junction lens, interchangeable lens for camera, objective lens for microscope, and optical device
CN114455831A (en) * 2022-01-24 2022-05-10 成都光明光电股份有限公司 Optical glass

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1854100B (en) * 2005-03-30 2012-05-09 Hoya株式会社 Optical glass, press-molding preform, process for the production thereof, optical element and process for the production thereof
JP5336035B2 (en) * 2006-06-21 2013-11-06 Hoya株式会社 OPTICAL GLASS, GLASS MOLDED ARTICLE, OPTICAL ELEMENT AND METHOD FOR PRODUCING THEM
JP5275674B2 (en) * 2007-04-24 2013-08-28 パナソニック株式会社 Optical glass composition, preform and optical element
CN101613184B (en) * 2008-06-27 2013-07-24 Hoya株式会社 Optical glass
US8661853B2 (en) * 2008-11-10 2014-03-04 Hoya Corporation Method for producing glass, optical glass, glass material for press molding, optical element and methods for producing same
JP5624832B2 (en) * 2009-09-30 2014-11-12 Hoya株式会社 Optical glass, glass material for press molding, optical element and manufacturing method thereof
JP5695336B2 (en) * 2010-04-15 2015-04-01 Hoya株式会社 Optical glass, precision press-molding preform, optical element and manufacturing method thereof
JP6095260B2 (en) * 2010-07-26 2017-03-15 株式会社オハラ Optical glass, preform and optical element
JP5827067B2 (en) * 2010-08-23 2015-12-02 株式会社オハラ Optical glass and optical element
JP2012229148A (en) * 2011-04-27 2012-11-22 Ohara Inc Optical glass and optical element
CN102311229A (en) * 2011-09-07 2012-01-11 成都光明光电股份有限公司 Optical glass and optical element
CN103930383B (en) * 2011-11-08 2016-08-31 Hoya株式会社 Optical glass, compressing glass material and optical element and manufacture method thereof
CN107285622A (en) * 2011-12-20 2017-10-24 株式会社小原 Optical glass and optical element
JP6096501B2 (en) * 2011-12-28 2017-03-15 株式会社オハラ Optical glass and optical element
JP6095356B2 (en) * 2011-12-28 2017-03-15 株式会社オハラ Optical glass and optical element
CN105884188B (en) * 2012-02-28 2020-04-07 Hoya株式会社 Optical glass and use thereof
JP2013209232A (en) * 2012-03-30 2013-10-10 Ohara Inc Optical glass and optical element
JP2013209233A (en) * 2012-03-30 2013-10-10 Ohara Inc Optical glass and optical element

Also Published As

Publication number Publication date
CN106966589A (en) 2017-07-21
TWI610900B (en) 2018-01-11
WO2016072523A1 (en) 2016-05-12
CN106255672A (en) 2016-12-21
CN111233318A (en) 2020-06-05
CN106255672B (en) 2020-03-03
CN106966589B (en) 2020-06-16
JP6587286B2 (en) 2019-10-09
JPWO2016072523A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6603449B2 (en) Glass, glass material for press molding, optical element blank, and optical element
TWI610900B (en) Glass, glass material for press molding, optical component blanks and optical components
TWI765868B (en) Glass, glass materials for press molding, optical element blanks and optical elements
JP6738243B2 (en) Glass, glass material for press molding, optical element blank and optical element
TWI663137B (en) Glass, glass materials for press molding, blanks for optical elements, and optical elements
JP7514351B2 (en) Glass, glass materials for press molding, optical element blanks, and optical elements
JP6396622B1 (en) Glass, glass material for press molding, optical element blank, and optical element
JP6280284B1 (en) Glass, glass material for press molding, optical element blank, and optical element
JP6808555B2 (en) Glass, press-molded glass materials, optic blanks, and optics
JP6693726B2 (en) Glass, glass material for press molding, optical element blank, and optical element
JP2014015384A (en) Optical glass, preform and optical element
CN111039562A (en) Optical glass, glass material for press molding, optical element blank, and optical element
JP6626907B2 (en) Glass, glass material for press molding, optical element blank, and optical element
JP6600702B2 (en) Glass, glass material for press molding, optical element blank, and optical element