TW201620001A - Detecting instrument and detecting method thereof - Google Patents

Detecting instrument and detecting method thereof Download PDF

Info

Publication number
TW201620001A
TW201620001A TW104120758A TW104120758A TW201620001A TW 201620001 A TW201620001 A TW 201620001A TW 104120758 A TW104120758 A TW 104120758A TW 104120758 A TW104120758 A TW 104120758A TW 201620001 A TW201620001 A TW 201620001A
Authority
TW
Taiwan
Prior art keywords
sample
module
motor
optical
electronic scanning
Prior art date
Application number
TW104120758A
Other languages
Chinese (zh)
Other versions
TWI576888B (en
Inventor
陳義昌
蔡濂聲
卓嘉弘
顧逸霞
王浩偉
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to CN201510503799.0A priority Critical patent/CN105651696B/en
Publication of TW201620001A publication Critical patent/TW201620001A/en
Application granted granted Critical
Publication of TWI576888B publication Critical patent/TWI576888B/en

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

A detecting instrument including a vacuum chamber, an electronic scanning module, an optical microscope module and a transmission module is provided. The detecting instrument is adapted to detect a sample. The vacuum chamber has an accommodating space. The sample is disposed in the accommodating space. The electronic scanning module has an electronic scanning axis. The optical microscope module includes a first objective lens. The electronic scanning module and the optical microscope module are disposed on the same side of the vacuum chamber opposite to the sample. In a first optical observation mode, the transmission module transmits the sample, so that the sample is at the position on the axis of the first objective lens. In an electronic observation mode, the transmission module transmits the sample, so that the sample is at the position on the electronic scanning axis, and the sample is fixed at the position by a leaning force. A detecting method is also provided.

Description

檢測儀器及其檢測方法 Testing instrument and its detecting method

本發明是有關於一種檢測儀器及其檢測方法。 The invention relates to a detecting instrument and a detecting method thereof.

一般而言,觀察樣本最常用的工具為光學顯微鏡(Optical Microscopes,OM)。然而,光學顯微鏡受限於光波長繞射的限制,解析度只能到10-6m左右。為了觀察樣本更細部結構(例如細胞的超顯微結構),近數十年來開始有了電子顯微鏡(Electron Microscopes,EM)的發展。 In general, the most commonly used tool for observing samples is Optical Microscopes (OM). However, optical microscopes are limited by the diffraction of light wavelengths, and the resolution is only about 10 -6 m. In order to observe the finer structure of the sample (such as the ultramicrostructure of cells), the development of Electron Microscopes (EM) has begun in recent decades.

由於電子具備的波長比光子的波長小很多,因此它的解析度可以達到10-10m左右。雖然電子顯微鏡的解析度遠大於光學顯微鏡,但電子顯微鏡只能看物理表面資訊,而無法呈現樣本的彩色影像資訊,也無法得到樣本化性功能的檢測(例如螢光反應)。另外,電子顯微鏡因其具有較高倍率,經常造成使用者操作時不易尋找樣本的觀察位置。相較而言,光學顯微鏡可以呈現出樣本的顏色與其結構資訊。在生物學的研究方面,光學顯微鏡更提供許多關於細胞的動態變化方面的重要資訊。 Since the electron has a wavelength much smaller than the wavelength of the photon, its resolution can reach about 10 -10 m. Although the resolution of an electron microscope is much larger than that of an optical microscope, an electron microscope can only look at the physical surface information, and cannot display the color image information of the sample, nor can it detect the sampled function (such as a fluorescent reaction). In addition, because of its high magnification, an electron microscope often causes an observation position where it is difficult to find a sample when the user operates. In comparison, an optical microscope can present the color of the sample and its structural information. In the field of biological research, optical microscopy provides a lot of important information about the dynamic changes of cells.

目前而言,光學顯微鏡與電子顯微鏡分屬兩個分離的檢測平台,其因各自的優缺點,而適於進行不同類型的觀察。舉例而言,光學顯微鏡適合低倍預覽(pre-view)以及進行標定樣本的螢光觀察,而電子顯微鏡適合以高倍率觀察物理表面資訊。在樣本的實際檢測上,必須根據樣本的物理化學性質或者不同的檢測需求,而將樣本置於光學顯微鏡與電子顯微鏡兩個檢測平台上切換地對其進行檢測,甚至是多次或重複檢測,造成量測效能低落。 At present, optical microscopes and electron microscopes belong to two separate detection platforms, which are suitable for different types of observations due to their respective advantages and disadvantages. For example, an optical microscope is suitable for low-preview and for fluorescent observation of a calibrated sample, while an electron microscope is suitable for observing physical surface information at high magnification. In the actual detection of the sample, the sample must be placed on the two detection platforms of the optical microscope and the electron microscope according to the physicochemical properties of the sample or different detection requirements, or even multiple or repeated detection. Resulting in low measurement performance.

本發明提供一種檢測儀器,其在同一平台上具有低倍率預覽以及高倍率解析的功能,具有良好的量測效能。 The invention provides a detecting instrument which has the functions of low magnification preview and high magnification resolution on the same platform, and has good measuring performance.

本發明提供一種檢測方法,其可以在同一平台上實現低倍率預覽以及高倍率解析,提升量測效能。 The invention provides a detection method, which can realize low magnification preview and high magnification analysis on the same platform, and improve measurement performance.

本發明的檢測儀器適於檢測一樣本。檢測儀器包括一真空腔體、一電子掃描模組、一光學顯微鏡模組以及一傳動模組。真空腔體具有一容置空間。樣本配置於容置空間中。電子掃描模組具有一電子掃描軸。光學顯微鏡模組包括一第一物鏡。電子掃描模組與光學顯微鏡模組配置於真空腔體上相對於樣本的同一側。傳動模組配置於容置空間中,用以傳送樣本。檢測儀器具有一第一光學觀測模式與一電子觀測模式。於第一光學觀測模式時,傳動模組傳送樣本,使樣本位於第一物鏡的光軸上的位置。於電子觀測模式時,傳動模組傳送樣本,使樣本位於電子掃描軸 上的位置,並藉由一承靠力使樣本位置固定。 The detection instrument of the present invention is adapted to detect the same. The detecting instrument comprises a vacuum chamber, an electronic scanning module, an optical microscope module and a transmission module. The vacuum chamber has an accommodation space. The sample is placed in the accommodating space. The electronic scanning module has an electronic scanning axis. The optical microscope module includes a first objective lens. The electronic scanning module and the optical microscope module are disposed on the same side of the vacuum chamber relative to the sample. The transmission module is disposed in the accommodating space for transmitting the sample. The detection instrument has a first optical observation mode and an electronic observation mode. In the first optical viewing mode, the drive module transmits the sample such that the sample is positioned on the optical axis of the first objective lens. In the electronic observation mode, the drive module transmits the sample so that the sample is on the electronic scan axis. The upper position and the sample position is fixed by a bearing force.

在本發明的一實施例中,上述的傳動模組包括一第一馬達、一承載部以及一傳送軌。承載部用以承載樣本。傳送軌具有至少一傳送軸以及至少一擋塊。各擋塊配置於一傳送軸對應於電子掃描軸的位置上。第一馬達以一第一定位模式驅動承載部沿著傳送軌傳送樣本。當檢測儀器於電子觀測模式時,第一馬達驅動承載部傳送樣本,使樣本位於電子掃描軸上的位置。當樣本位於電子掃描軸上的位置時,第一馬達輸出承靠力使承載部抵靠至少一擋塊,使樣本位置固定。 In an embodiment of the invention, the transmission module includes a first motor, a carrier, and a transmission rail. The carrying portion is used to carry the sample. The transfer rail has at least one transfer shaft and at least one stop. Each of the stoppers is disposed at a position where the conveying shaft corresponds to the electronic scanning axis. The first motor drives the carrier in a first positioning mode to transport the sample along the transport track. When the instrument is in the electronic observation mode, the first motor drives the carrier to transport the sample such that the sample is on the electronic scan axis. When the sample is in a position on the electronic scanning axis, the first motor outputs a bearing force against the carrier portion against at least one of the stops to fix the sample position.

在本發明的一實施例中,上述的傳動模組更包括一載台以及一第二馬達。載台用以承載樣本,而承載部承載載台。當第一馬達輸出承靠力使承載部抵靠至少一擋塊,使樣本位置固定時,第二馬達以一第二定位模式驅動載台根據一校正值移動,使樣本定位於電子掃描軸上的位置。 In an embodiment of the invention, the transmission module further includes a carrier and a second motor. The stage is used to carry the sample, and the carrier carries the stage. When the first motor outputs the bearing force against the at least one stop to fix the sample position, the second motor drives the stage in a second positioning mode to move according to a correction value to position the sample on the electronic scanning axis. s position.

在本發明的一實施例中,上述的第一馬達以第一定位模式驅動以傳送樣本,使樣本位於電子掃描軸上的位置具有一第一定位精準度。根據第二馬達以第二定位模式驅動以使樣本根據校正值定位於電子掃描軸上的位置具有一第二定位精準度。第二定位精準度大於第一定位精準度。 In an embodiment of the invention, the first motor is driven in a first positioning mode to transmit a sample such that the position of the sample on the electronic scanning axis has a first positioning accuracy. The second positioning accuracy is driven according to the second motor being driven in the second positioning mode to position the sample on the electronic scanning axis according to the correction value. The second positioning accuracy is greater than the first positioning accuracy.

在本發明的一實施例中,上述的第二馬達為壓電(Piezoelectric,PZT)馬達或是音圈馬達(Voice Coil Motor,VCM)。 In an embodiment of the invention, the second motor is a piezoelectric (PZT) motor or a voice coil motor (VCM).

在本發明的一實施例中,上述的第一馬達為伺服馬達(Servomotor)。 In an embodiment of the invention, the first motor is a servo motor (Servomotor).

在本發明的一實施例中,上述的至少一傳送軸為多個傳送軸,至少一擋塊為多個擋塊。 In an embodiment of the invention, the at least one transmission shaft is a plurality of transmission shafts, and the at least one stopper is a plurality of stops.

在本發明的一實施例中,上述的光學顯微鏡模組更包括一第二物鏡。檢測儀器更具有一第二光學觀測模式。於第二光學觀測模式時,傳動模組傳送樣本,使樣本位於第二物鏡的光軸上的位置。 In an embodiment of the invention, the optical microscope module further includes a second objective lens. The detection instrument has a second optical observation mode. In the second optical viewing mode, the drive module transmits the sample such that the sample is positioned on the optical axis of the second objective lens.

在本發明的一實施例中,上述的第二物鏡的倍率大於或等於第一物鏡的倍率。 In an embodiment of the invention, the magnification of the second objective lens is greater than or equal to the magnification of the first objective lens.

在本發明的一實施例中,上述的光學顯微鏡模組更包括至少一物鏡。檢測儀器更具有至少一光學觀測模式。各光學觀測模式對應於一物鏡。於各光學觀測模式時,傳動模組傳送樣本,使樣本位於物鏡的光軸上的位置。 In an embodiment of the invention, the optical microscope module further includes at least one objective lens. The detection instrument further has at least one optical observation mode. Each optical observation mode corresponds to an objective lens. In each optical observation mode, the drive module transmits the sample so that the sample is on the optical axis of the objective lens.

在本發明的一實施例中,上述的樣本根據一入射光產生一樣本激發光。光學顯微鏡模組根據接收樣本激發光檢測樣本。 In an embodiment of the invention, the sample produces the same excitation light based on an incident light. The optical microscope module detects the light based on the received sample excitation light.

在本發明的一實施例中,上述的光學顯微鏡模組更包括一濾光模組,用以濾除入射光的波段的一部分或樣本激發光的波段的一部分。 In an embodiment of the invention, the optical microscope module further includes a filter module for filtering a portion of the wavelength band of the incident light or a portion of the wavelength band of the sample excitation light.

在本發明的一實施例中,上述的光學顯微鏡模組更包括電荷耦合元件(Charge-coupled Device)或互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor,CMOS)感光元件。 In an embodiment of the invention, the optical microscope module further includes a charge-coupled device or a complementary metal-oxide-semiconductor (CMOS) photosensitive element.

在本發明的一實施例中,上述的電子掃描模組為一掃描式電子顯微鏡(Scanning electron microscope,SEM)。 In an embodiment of the invention, the electronic scanning module is a scanning electron microscope (SEM).

本發明的檢測方法適於檢測一樣本。檢測方法包括將樣本配置於一真空腔體的一容置空間中。將一電子掃描模組以及一光學顯微鏡模組配置於真空腔體上相對於樣本的同一側。於一第一光學觀測模式時,傳送樣本,使樣本位於光學顯微鏡模組的一第一物鏡的光軸上的位置。於一電子觀測模式時,傳送樣本,使樣本位於電子掃描模組的一電子掃描軸上的位置,並藉由一承靠力使樣本位置固定。 The detection method of the present invention is suitable for detecting the same. The detecting method includes disposing the sample in an accommodating space of a vacuum chamber. An electronic scanning module and an optical microscope module are disposed on the vacuum chamber with respect to the same side of the sample. In a first optical viewing mode, the sample is transferred such that the sample is positioned on the optical axis of a first objective lens of the optical microscope module. In an electronic observation mode, the sample is transferred so that the sample is located on an electronic scanning axis of the electronic scanning module, and the sample position is fixed by a bearing force.

在本發明的一實施例中,上述的檢測方法中,一傳動模組配置於容置空間中。傳動模組用以傳送樣本。傳動模組的一承載部用以承載樣本,並傳送樣本。檢測方法更包括以一第一定位模式驅動承載部沿著一傳送軌傳送樣本。傳送軌具有至少一傳送軸以及至少一擋塊。各擋塊配置於一傳送軸對應於電子掃描軸的位置上。於電子觀測模式時,驅動承載部傳送樣本,使樣本位於電子掃描軸上的位置。當樣本位於電子掃描軸上的位置時,輸出承靠力使承載部抵靠至少一擋塊,以使樣本位置固定。 In an embodiment of the invention, in the detecting method, a transmission module is disposed in the accommodating space. The drive module is used to transfer samples. A carrier portion of the drive module is used to carry the sample and transport the sample. The detecting method further includes driving the carrying portion to transport the sample along a transport rail in a first positioning mode. The transfer rail has at least one transfer shaft and at least one stop. Each of the stoppers is disposed at a position where the conveying shaft corresponds to the electronic scanning axis. In the electronic observation mode, the drive carrier transmits the sample so that the sample is located on the electronic scan axis. When the sample is in a position on the electronic scanning axis, the output bearing force causes the carrier portion to abut against at least one of the stops to fix the sample position.

在本發明的一實施例中,上述的傳動模組的一第一馬達以第一定位模式驅動承載部沿著傳送軌傳送樣本。第一馬達為伺服馬達。 In an embodiment of the invention, a first motor of the transmission module drives the carrier along the transport rail in a first positioning mode. The first motor is a servo motor.

在本發明的一實施例中,上述輸出承靠力使承載部抵靠至少一擋塊,使樣本位置固定的步驟中,更包括根據一校正值, 以一第二定位模式驅動一載台移動,使樣本定位於電子掃描軸上的位置。載台承載樣本,而承載部承載載台。 In an embodiment of the present invention, the step of the output bearing force abutting the bearing portion against the at least one stopper to fix the sample position further includes: according to a correction value, A stage movement is driven in a second positioning mode to position the sample on the electronic scanning axis. The stage carries the sample and the carrier carries the stage.

在本發明的一實施例中,上述以第一定位模式驅動以傳送樣本,使樣本位於電子掃描軸上的位置具有一第一定位精準度。根據第二定位模式驅動以使樣本根據校正值定位於電子掃描軸上的位置具有一第二定位精準度。第二定位精準度大於第一定位精準度。 In an embodiment of the invention, the first positioning mode is driven to transmit the sample such that the position of the sample on the electronic scanning axis has a first positioning accuracy. Driving according to the second positioning mode to position the sample on the electronic scanning axis according to the correction value has a second positioning accuracy. The second positioning accuracy is greater than the first positioning accuracy.

在本發明的一實施例中,上述的傳動模組的一第二馬達根據校正值,以第二定位模式驅動載台移動,使樣本定位於電子掃描軸上的位置。第二馬達為壓電馬達或是音圈馬達。 In an embodiment of the invention, a second motor of the transmission module drives the stage to move in a second positioning mode according to the correction value to position the sample on the electronic scanning axis. The second motor is a piezoelectric motor or a voice coil motor.

在本發明的一實施例中,上述的檢測方法更包括於一第二光學觀測模式時,傳動模組傳送樣本,使樣本位於光學顯微鏡模組的一第二物鏡的光軸上的位置。 In an embodiment of the invention, the detecting method further includes a second optical observation mode, wherein the transmission module transmits the sample such that the sample is located on an optical axis of a second objective lens of the optical microscope module.

在本發明的一實施例中,上述的檢測方法,其中於至少一光學觀測模式中,各光學觀測模式對應於光學顯微鏡模組的至少一物鏡之中的一物鏡。檢測方法更包括於各光學觀測模式時,傳動模組傳送樣本,使樣本位於光學顯微鏡模組的物鏡的光軸上的位置。 In an embodiment of the invention, the detecting method, wherein, in the at least one optical observation mode, each optical observation mode corresponds to an objective lens of at least one objective lens of the optical microscope module. The detection method is further included in each optical observation mode, the transmission module transmits the sample so that the sample is located on the optical axis of the objective lens of the optical microscope module.

在本發明的一實施例中,上述的檢測方法更包括使樣本根據一入射光產生一樣本激發光。根據接收樣本激發光檢測樣本。 In an embodiment of the invention, the detecting method further comprises causing the sample to generate the same excitation light according to an incident light. The sample is detected based on the received sample excitation light.

在本發明的一實施例中,上述的檢測方法,其中使樣本根據一入射光產生一樣本激發光的步驟中,更包括透過一濾光模 組濾除入射光的波段的一部分或樣本激發光的波段的一部分。 In an embodiment of the invention, the detecting method, wherein the step of generating a sample of the same excitation light according to an incident light further comprises transmitting a filter mode The group filters out a portion of the band of incident light or a portion of the band of sample excitation light.

基於上述,本發明實施例的檢測儀器於第一光學觀測模式時,傳動模組傳送樣本,使樣本位於第一物鏡的光軸上的位置。於電子觀測模式時,傳動模組傳送樣本,使樣本位於電子掃描軸上的位置,並藉由承靠力使樣本位置固定。因此檢測儀器在同一平台上具有低倍率預覽以及高倍率解析的功能,具有良好的量測效能。另外,本發明實施例的檢測方法包括於第一光學觀測模式時,傳送樣本,使樣本位於光學顯微鏡模組的第一物鏡的光軸上的位置。於電子觀測模式時,傳送樣本,使樣本位於電子掃描模組的一電子掃描軸上的位置,並藉由一承靠力使樣本位置固定。因此檢測方法可以在同一平台上實現低倍率預覽以及高倍率解析,提升量測效能。 Based on the above, when the detecting instrument of the embodiment of the present invention is in the first optical observation mode, the transmission module transmits the sample so that the sample is located on the optical axis of the first objective lens. In the electronic observation mode, the transmission module transmits the sample so that the sample is located on the electronic scanning axis, and the sample position is fixed by the bearing force. Therefore, the detection instrument has a low magnification preview and a high magnification analysis function on the same platform, and has good measurement performance. In addition, the detecting method of the embodiment of the invention includes, when in the first optical observation mode, transmitting the sample such that the sample is located on the optical axis of the first objective lens of the optical microscope module. In the electronic observation mode, the sample is transferred so that the sample is located on an electronic scanning axis of the electronic scanning module, and the sample position is fixed by a bearing force. Therefore, the detection method can realize low-magnification preview and high-rate analysis on the same platform, and improve measurement performance.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100、400‧‧‧檢測儀器 100,400‧‧‧Testing instruments

110、410‧‧‧真空腔體 110, 410‧‧‧ vacuum chamber

120、420‧‧‧電子掃描模組 120, 420‧‧‧ electronic scanning module

122、422‧‧‧電磁透鏡組 122, 422‧‧ ‧ electromagnetic lens group

124、424‧‧‧電子顯微鏡模組 124,424‧‧‧Electronic microscope module

126、426‧‧‧接收器 126, 426‧‧‧ Receiver

128、428‧‧‧抽氣幫浦 128, 428‧‧‧ pumping pump

130、430‧‧‧光學顯微鏡模組 130, 430‧‧‧ Optical microscope module

132、432‧‧‧第一物鏡 132, 432‧‧‧ first objective

434‧‧‧第二物鏡 434‧‧‧Second objective

135、435‧‧‧管鏡 135, 435‧‧‧ tube mirror

136、436‧‧‧聚焦透鏡 136, 436‧‧ ‧ focusing lens

137、437、439_2‧‧‧分光鏡 137, 437, 439_2‧‧ ‧ beamsplitter

138、438‧‧‧感光元件 138, 438‧‧‧Photosensitive elements

439‧‧‧濾光模組 439‧‧‧Filter module

439_1‧‧‧濾光片 439_1‧‧‧Filter

140、240、240a、440‧‧‧傳動模組 140, 240, 240a, 440‧‧‧ drive modules

142、242、242a、442‧‧‧承載部 142, 242, 242a, 442‧‧ ‧ carrying parts

144、244、244a、444‧‧‧傳送軌 144, 244, 244a, 444‧‧‧ transmission tracks

145、445‧‧‧傳送軸 145, 445‧‧‧ transmission shaft

146、446‧‧‧擋塊 146, 446‧‧ ‧ blocks

148、248、248a、448‧‧‧載台 148, 248, 248a, 448‧‧‧

A1‧‧‧光軸 A1‧‧‧ optical axis

AS‧‧‧容置空間 AS‧‧‧ accommodating space

Amp‧‧‧放大電路方塊 Amp‧‧‧Amplification Circuit Block

AP‧‧‧定位點 AP‧‧‧Location Point

AM‧‧‧對準標記 AM‧‧ Alignment mark

B(s)‧‧‧校正訊號 B(s)‧‧‧correction signal

C(s)‧‧‧輸出訊號 C(s)‧‧‧ output signal

CP‧‧‧比較器電路方塊 CP‧‧‧ Comparator Circuit Block

E(s)‧‧‧補償誤差訊號 E(s)‧‧‧compensation error signal

EL、EL’、EL’’‧‧‧樣本激發光 EL, EL', EL’’‧‧‧ sample excitation light

ESA‧‧‧電子掃描軸 ESA‧‧‧Electronic scanning axis

F‧‧‧承靠力 F‧‧‧Responsibility

FEB‧‧‧聚焦電子束 FEB‧‧‧ Focused electron beam

G(s)‧‧‧系統電路方塊 G(s)‧‧‧ system circuit block

H(s)‧‧‧校正電路方塊 H(s)‧‧‧correction circuit block

IL、IL’‧‧‧入射光 IL, IL’‧‧‧ incident light

M‧‧‧馬達電路方塊 M‧‧‧Motor Circuit Block

O‧‧‧中心點 O‧‧‧ Center Point

Pos‧‧‧位置電路方塊 Pos‧‧‧ Position Circuit Block

Pos_c‧‧‧位置指令 Pos_c‧‧‧ positional instructions

R(s)‧‧‧輸入訊號 R(s)‧‧‧ input signal

RU、RU1、RU2、RU3‧‧‧解析度單元 RU, RU1, RU2, RU3‧‧‧ resolution unit

S‧‧‧樣本 S‧‧‧ sample

SP‧‧‧設定點 SP‧‧‧Setpoint

SS‧‧‧掃描訊號 SS‧‧‧ scan signal

Torque‧‧‧扭力電路方塊 Torque‧‧‧Torque Circuit Block

Torque_c‧‧‧扭力指令 Torque_c‧‧‧ Torque Command

Vel‧‧‧速度電路方塊 Vel‧‧‧Speed Circuit Block

Vel_c‧‧‧速度指令 Vel_c‧‧‧ speed command

X‧‧‧X軸 X‧‧‧X axis

△X1、△X2‧‧‧X軸偏移量 △X1, △X2‧‧‧X-axis offset

Y‧‧‧Y軸 Y‧‧‧Y axis

△Y1、△Y2‧‧‧Y軸偏移量 △Y1, △Y2‧‧‧Y axis offset

S500、S510、S520、S530、S540、S542、S544、S550、S560、S570、S572‧‧‧檢測方法的步驟 Steps of the detection method of S500, S510, S520, S530, S540, S542, S544, S550, S560, S570, S572‧‧

圖1是本發明一實施例之檢測儀器的示意圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic illustration of a testing apparatus in accordance with an embodiment of the present invention.

圖2A是一般定位系統的閉迴路控制架構的概要方塊圖。 2A is a schematic block diagram of a closed loop control architecture of a general positioning system.

圖2B是圖2A之定位系統的伺服顫振(servo dither)示意圖。 2B is a schematic diagram of a servo dither of the positioning system of FIG. 2A.

圖2C是一比較實施例之傳動模組的概要示意圖。 2C is a schematic diagram of a drive module of a comparative embodiment.

圖2D是圖2C之實施例之傳動模組以堆疊式架構來進行定位 的概要方塊圖。 2D is a schematic diagram of the drive module of the embodiment of FIG. 2C positioned in a stacked architecture Outline block diagram.

圖2E是另一比較實施例之傳動模組的概要示意圖。 2E is a schematic diagram of a drive module of another comparative embodiment.

圖3A是圖1實施例之檢測儀器於第一光學觀測模式的示意圖。 3A is a schematic diagram of the detecting instrument of the embodiment of FIG. 1 in a first optical observation mode.

圖3B是圖1實施例之檢測儀器於電子觀測模式的示意圖。 3B is a schematic diagram of the detecting instrument of the embodiment of FIG. 1 in an electronic observation mode.

圖3C至圖3E是圖1實施例之檢測儀器計算校正值的示意圖。 3C to 3E are schematic diagrams showing the correction values calculated by the detecting instrument of the embodiment of Fig. 1.

圖4A是本發明另一實施例之檢測儀器於第一光學觀測模式的示意圖。 4A is a schematic diagram of a detecting instrument in a first optical observation mode according to another embodiment of the present invention.

圖4B是圖4A實施例之檢測儀器於第二光學觀測模式的示意圖。 4B is a schematic diagram of the detecting instrument of the embodiment of FIG. 4A in a second optical viewing mode.

圖4C是圖4A實施例之檢測儀器於電子觀測模式的示意圖。 4C is a schematic diagram of the detecting instrument of the embodiment of FIG. 4A in an electronic observation mode.

圖5繪示本發明一實施例之檢測方法的步驟流程圖。 FIG. 5 is a flow chart showing the steps of a detecting method according to an embodiment of the present invention.

圖1是本發明一實施例之檢測儀器的示意圖,請參考圖1。在本實施例中,檢測儀器100適於檢測一樣本S。檢測儀器100包括一真空腔體110、一電子掃描模組120、一光學顯微鏡模組130以及一傳動模組140。真空腔體110具有一容置空間AS,而傳動模組140以及樣本S皆配置於容置空間AS中。在本實施例中,電子掃描模組120與光學顯微鏡模組130配置於真空腔體110上相對於樣本S的同一側。電子掃描模組120具有一電子掃描軸ESA。當樣本S位於電子掃描軸ESA上的位置時,電子掃描模組120可 對位於電子掃描軸ESA上的樣本S進行檢測。此外,光學顯微鏡模組130包括一第一物鏡132,而第一物鏡132具有一光軸A1。當樣本S位於第一物鏡132的光軸A1上的位置時,光學顯微鏡模組130可對位於第一物鏡132的光軸A1上的樣本S進行檢測。 1 is a schematic view of a detecting instrument according to an embodiment of the present invention, please refer to FIG. 1. In the present embodiment, the detecting instrument 100 is adapted to detect the same S. The detecting device 100 includes a vacuum chamber 110, an electronic scanning module 120, an optical microscope module 130, and a transmission module 140. The vacuum chamber 110 has an accommodating space AS, and the transmission module 140 and the sample S are disposed in the accommodating space AS. In this embodiment, the electronic scanning module 120 and the optical microscope module 130 are disposed on the same side of the vacuum chamber 110 with respect to the sample S. The electronic scanning module 120 has an electronic scanning axis ESA. When the sample S is located on the electronic scanning axis ESA, the electronic scanning module 120 can The sample S located on the electronic scanning axis ESA is detected. In addition, the optical microscope module 130 includes a first objective lens 132, and the first objective lens 132 has an optical axis A1. When the sample S is located at the position on the optical axis A1 of the first objective lens 132, the optical microscope module 130 can detect the sample S located on the optical axis A1 of the first objective lens 132.

於一實施方式中,電子掃描模組120可以例如是一掃描式電子顯微鏡(Scanning electron microscope,SEM)。在其他實施例中,電子掃描模組120亦可以是一穿透式電子顯微鏡(Transmission Electron Microscopy,TEM)、一能量過濾透過式電子顯微鏡(Energy Filtered Transmission Electron Microscopy,EFTEM)或是一掃描透射電子顯微鏡(Scanning Transmission Electron Microscopy,STEM),本發明並不設限於此。另外在一實施例中,光學顯微鏡模組130可以例如是一光學顯微鏡(Optical Microscopes,OM)或是其他具有光學檢測功能的儀器或裝置。檢測儀器100可以例如是一關聯光學與電子顯微鏡(Correlative Light and Electron Microscope,CLEM),或是其他結合光學與電子檢測功能的儀器或裝置,本發明亦不設限於此。 In one embodiment, the electronic scanning module 120 can be, for example, a scanning electron microscope (SEM). In other embodiments, the electronic scanning module 120 can also be a Transmission Electron Microscopy (TEM), an Energy Filtered Transmission Electron Microscopy (EFTEM), or a scanning transmission electron. Microscope (Scanning Transmission Electron Microscopy, STEM), the present invention is not limited thereto. In another embodiment, the optical microscope module 130 can be, for example, an optical microscope (OM) or other instrument or device having optical detection functions. The detecting device 100 may be, for example, a Correlative Light and Electron Microscope (CLEM), or other instrument or device that combines optical and electronic detecting functions, and the present invention is not limited thereto.

請繼續參考圖1,在本實施例中,傳動模組140包括一承載部142以及一載台148。載台148用以承載樣本S,而承載部142承載載台148。於一實施方式中,承載部142透過承載載台148而同時承載樣本S。在一實施例中,傳動模組140更包括一第一馬達(未繪示)、一第二馬達(未繪示)以及一傳送軌144。第一馬達用以驅動承載部142沿著傳送軌144移動,並傳送樣本S,而第 二馬達用以驅動載台148於承載部142上移動。於一實施方式中,藉由第一馬達驅動承載部142沿著傳送軌144移動,以及第二馬達驅動載台148於承載部142上移動,樣本S可被移動至例如是電子掃描軸ESA上的位置或是第一物鏡132的光軸A1上的位置。另外,承載部142亦可被移動至傳送軌144上的任意位置,而載台148可移動於承載部142上方的任意位置。對此,樣本S也可對應於承載部142於傳送軌144上的移動,以及對應於載台148於承載部142上的移動,而移動至其他的位置。 With reference to FIG. 1 , in the embodiment, the transmission module 140 includes a bearing portion 142 and a carrier 148 . The stage 148 is used to carry the sample S, and the carrier 142 carries the stage 148. In one embodiment, the carrier portion 142 passes through the carrier platform 148 while carrying the sample S. In one embodiment, the transmission module 140 further includes a first motor (not shown), a second motor (not shown), and a transmission rail 144. The first motor is used to drive the carrying portion 142 to move along the transport rail 144 and transmit the sample S, and the first The two motors are used to drive the stage 148 to move on the carrying portion 142. In one embodiment, by moving the first motor drive carrier 142 along the transport rail 144 and the second motor drive carrier 148 moving over the carrier 142, the sample S can be moved to, for example, an electronic scan axis ESA. The position is either the position on the optical axis A1 of the first objective lens 132. Additionally, the carrier portion 142 can also be moved to any position on the transfer rail 144, while the carrier 148 can be moved anywhere above the carrier portion 142. In this regard, the sample S may also correspond to the movement of the carrier portion 142 on the transport rail 144 and the movement of the carrier 148 on the carrier portion 142 to other locations.

在一實施例中,傳送軌144具有一傳送軸145以及一擋塊146。擋塊146配置於傳送軸145對應於電子掃描軸ESA的位置上。於一實施方式中,本實施例之擋塊146限制承載部142於傳送軌144上的部分區段移動。當承載部142移動至其與擋塊146相接觸的傳送軌144上的位置時,承載部142所承載的樣本S位於電子掃描軸ESA上的位置。在一些實施例中,傳送軌144亦可以具有多個傳送軸145以及多個擋塊146。各擋塊146配置於一傳送軸145對應於電子掃描軸ESA的位置上。傳送軸145的數量可以依據承載部142承載樣本S的穩定性的需求,或者其他的設計需求而調整,本發明並不設限於此。 In an embodiment, the transfer rail 144 has a transfer shaft 145 and a stop 146. The stopper 146 is disposed at a position where the conveying shaft 145 corresponds to the electronic scanning axis ESA. In one embodiment, the stop 146 of the present embodiment limits the movement of a portion of the carrier portion 142 on the transfer rail 144. When the carrier portion 142 is moved to a position on the transport rail 144 that it contacts the stopper 146, the sample S carried by the carrier portion 142 is located at the position on the electronic scanning axis ESA. In some embodiments, the transfer rail 144 can also have a plurality of transfer shafts 145 and a plurality of stops 146. Each of the stoppers 146 is disposed at a position where the conveying shaft 145 corresponds to the electronic scanning axis ESA. The number of the transfer shafts 145 may be adjusted according to the requirements of the bearing portion 142 for carrying the stability of the sample S, or other design requirements, and the present invention is not limited thereto.

圖2A是一般定位系統的閉迴路控制架構的概要方塊圖,請參考圖1以及圖2A。在一實施例中,第一馬達以一第一定位模式驅動承載部142沿著傳送軌144傳送樣本S,而第二馬達以一第二定位模式驅動載台148移動。於一實施方式中,第一定位 模式可以例如是以一閉迴路控制架構來控制承載部142於傳送軌144上的位置,而第二定位模式亦可以例如是以閉迴路控制架構來控制載台148的位置。一般而言,閉迴路控制為高精度定位控制系統。在閉迴路控制架構的概要方塊圖中,校正電路方塊H(s)根據輸出訊號C(s)產生校正訊號B(s)。比較器電路方塊CP藉由接收輸入訊號R(s)以及校正訊號B(s)而輸出補償誤差訊號E(s)至系統電路方塊G(s),並由系統電路方塊G(s)再輸出對應調整的輸出訊號C(s)。因此,閉迴路控制架構具有自我修正誤差的功能。在本發明其他實施例中,第一定位模式以及第二定位模式亦可以具備其他類型的控制架構。此外,傳動模組亦可以配合第一定位模式以及第二定位模式的控制架構,而具有其他的馬達構件,或是其他與控制架構相關的構件,本發明並不設限於此。 2A is a schematic block diagram of a closed loop control architecture of a general positioning system, please refer to FIG. 1 and FIG. 2A. In one embodiment, the first motor drives the carrier portion 142 to transport the sample S along the transport rail 144 in a first positioning mode, and the second motor drives the carrier 148 to move in a second positioning mode. In an embodiment, the first positioning The mode may, for example, be a closed loop control architecture to control the position of the carrier 142 on the transfer rail 144, while the second positioning mode may also control the position of the stage 148, for example, in a closed loop control architecture. In general, closed loop control is a high precision positioning control system. In the schematic block diagram of the closed loop control architecture, the correction circuit block H(s) generates a correction signal B(s) based on the output signal C(s). The comparator circuit block CP outputs the compensation error signal E(s) to the system circuit block G(s) by receiving the input signal R(s) and the correction signal B(s), and is output by the system circuit block G(s). Corresponding to the adjusted output signal C(s). Therefore, the closed loop control architecture has the function of self-correcting errors. In other embodiments of the present invention, the first positioning mode and the second positioning mode may also be provided with other types of control architectures. In addition, the transmission module can also cooperate with the control structure of the first positioning mode and the second positioning mode, and has other motor components or other components related to the control architecture, and the invention is not limited thereto.

圖2B是圖2A之定位系統的伺服顫振(servo dither)示意圖,請參考圖2A以及圖2B。一般而言,以閉迴路控制的定位控制系統具有預期定位的設定點SP,使預定位物體或預定位物體的部分區域精準地定位在設定點SP上。然而,定位控制系統具有自身存在的非線性因素,例如是定位過程中螺桿、線軌的摩擦,或是其他構件彼此之間的摩擦、震動。此外,定位控制系統亦可能在操作過程中接收到來自其操作環境的干擾,例如是地震,或是其他不預期因素造成的細微位移。因此,在微觀下,定位控制系統無法維持預定位物體精準地定位在設定點SP上。一般而言,由於閉迴路控制架構具有自我修正誤差的功能,因此定位控制系 統是一個動態系統。也就是說,定位控制系統在一個解析度單元RU的範圍內來回不斷修正。平均而言,定位控制系統實際的定位位置是在設定點SP的前後各二分之一個解析度單元RU的範圍內來回不斷修正,而形成一細微的伺服顫振(servo dither)。再者,定位控制系統的解析度單元RU的大小,可影響檢測儀器的成像品質。以圖1實施例之檢測儀器100為例,其傳動模組140所採用的定位控制系統的解析度單元的大小,會影響例如是光學顯微鏡模組130或是電子掃描模組120的成像品質。 2B is a schematic diagram of servo dither of the positioning system of FIG. 2A, please refer to FIG. 2A and FIG. 2B. In general, the position control system controlled by the closed loop has a set point SP that is intended to be positioned such that a predetermined area or a partial area of the predetermined object is accurately positioned at the set point SP. However, the positioning control system has its own non-linear factors, such as the friction of the screw or the wire rail during the positioning process, or the friction and vibration of other components. In addition, the positioning control system may also receive interference from its operating environment during operation, such as earthquakes, or other minor displacements caused by unexpected factors. Therefore, at the microscopic level, the positioning control system cannot maintain the predetermined position object accurately positioned at the set point SP. In general, because the closed loop control architecture has the function of self-correcting error, the positioning control system The system is a dynamic system. That is to say, the positioning control system is continuously corrected back and forth within the range of one resolution unit RU. On average, the actual positioning position of the positioning control system is corrected back and forth within a range of one-half of the resolution units RU before and after the set point SP to form a fine servo dither. Furthermore, the size of the resolution unit RU of the positioning control system can affect the imaging quality of the detection instrument. Taking the detecting instrument 100 of the embodiment of FIG. 1 as an example, the size of the resolution unit of the positioning control system used by the transmission module 140 affects the imaging quality of the optical microscope module 130 or the electronic scanning module 120, for example.

圖2C是一比較實施例之傳動模組的概要示意圖,請參考圖2C。在本實施例中,傳動模組240類似於圖1之本發明的一實施例的傳動模組140。傳動模組240包括一承載部242、一傳送軌244以及一載台248。承載部242承載載台148,而載台148用以承載一樣本(未繪示)。於一實施方式中,傳動模組240的一第一馬達(未繪示)驅動承載部242沿著傳送軌244移動,並傳送樣本,而傳動模組240的一第二馬達(未繪示)驅動載台248於承載部242上移動。在本實施例中,於一般的操作情況下,第一馬達驅動承載部242移動而傳送樣本的距離,大於第二馬達驅動載台248於承載部242上移動的距離。另外,於一實施例中,第一馬達採用一般精度的馬達,例如是伺服馬達(Servomotor),而第二馬達採用較高精度的馬達,例如是壓電(Piezoelectric,PZT)馬達或是音圈馬達(Voice Coil Motor,VCM)。除此之外,在其他一些實施例中,第一馬達與第二馬達亦可以採用其他類型的馬達。 2C is a schematic diagram of a drive module of a comparative embodiment, please refer to FIG. 2C. In the present embodiment, the transmission module 240 is similar to the transmission module 140 of one embodiment of the present invention of FIG. The transmission module 240 includes a carrier portion 242, a transmission rail 244, and a carrier 248. The carrying portion 242 carries the carrier 148, and the carrier 148 is used to carry the same (not shown). In one embodiment, a first motor (not shown) of the transmission module 240 drives the carrying portion 242 to move along the transport rail 244 and transmits the sample, and a second motor (not shown) of the transmission module 240 The drive stage 248 moves on the carrier 242. In the present embodiment, in a normal operation, the distance that the first motor drive carrier 242 moves to transport the sample is greater than the distance that the second motor drive carrier 248 moves on the carrier 242. In addition, in an embodiment, the first motor uses a motor of a general precision, such as a servo motor (Servomotor), and the second motor uses a motor of higher precision, such as a piezoelectric (Piezoelectric, PZT) motor or a voice coil. Motor (Voice Coil Motor, VCM). In addition, in other embodiments, other types of motors may be employed for the first motor and the second motor.

圖2D是圖2C之實施例之傳動模組以堆疊式架構來進行定位的概要方塊圖,請繼續參考圖2C以及對應參考圖2D。在本實施例中,傳動模組240透過閉迴路控制架構可持續修正誤差,並輸出例如是對應於誤差而調整的輸出訊號C(s)至一堆疊式架構,來操作第一馬達或第二馬達進行定位。於一實施方式中,堆疊式架構包括位置電路方塊Pos、速度電路方塊Vel、扭力電路方塊Torque、放大電路方塊Amp以及馬達電路方塊M。在本實施例中,輸出訊號C(s)包括位置指令Pos_c、速度指令Vel_c以及扭力指令Torque_c的至少其中之一。位置電路方塊Pos根據位置指令Pos_c輸出訊號至速度電路方塊Vel。速度電路方塊Vel根據速度指令Vel_c或位置電路方塊Pos輸出的訊號而輸出訊號至扭力電路方塊Torque。扭力電路方塊Torque根據扭力指令Torque_c或速度電路方塊Vel輸出的訊號而輸出訊號至放大電路方塊Amp。放大電路方塊Amp根據扭力電路方塊Torque輸出的訊號而輸出訊號至馬達電路方塊M。於一實施方式中,馬達電路方塊M根據來自放大電路方塊Amp輸出的訊號而操作第一馬達或第二馬達進行定位。舉例而言,扭力指令Torque_c無須輸入至位置電路方塊Pos或速度電路方塊Vel。扭力指令Torque_c直接輸入至扭力電路方塊Torque,進而使馬達電路方塊M操作第一馬達或第二馬達進行定位。 2D is a schematic block diagram of the positioning of the transmission module of the embodiment of FIG. 2C in a stacked architecture. Please refer to FIG. 2C and the corresponding reference FIG. 2D. In this embodiment, the transmission module 240 can continuously correct the error through the closed loop control architecture, and output, for example, the output signal C(s) adjusted corresponding to the error to a stacked architecture to operate the first motor or the second. The motor is positioned. In an embodiment, the stacked architecture includes a position circuit block Pos, a speed circuit block Vel, a torque circuit block Torque, an amplification circuit block Amp, and a motor circuit block M. In this embodiment, the output signal C(s) includes at least one of a position command Pos_c, a speed command Vel_c, and a torque command Torque_c. The position circuit block Pos outputs a signal to the speed circuit block Vel according to the position command Pos_c. The speed circuit block Vel outputs a signal to the torque circuit block Torque according to the signal output from the speed command Vel_c or the position circuit block Pos. The torque circuit block Torque outputs a signal to the amplifying circuit block Amp according to the signal output by the torque command Torque_c or the speed circuit block Vel. The amplifying circuit block Amp outputs a signal to the motor circuit block M according to the signal outputted by the torque circuit block Torque. In one embodiment, the motor circuit block M operates the first motor or the second motor for positioning based on the signal output from the amplifying circuit block Amp. For example, the torque command Torque_c does not need to be input to the position circuit block Pos or the speed circuit block Vel. The torque command Torque_c is directly input to the torque circuit block Torque, thereby causing the motor circuit block M to operate the first motor or the second motor for positioning.

在本實施例中,傳動模組240的第一馬達的定位控制系統具有一解析度單元RU1,而傳動模組240的第二馬達的定位控 制系統具有一解析度單元RU2。於一實施方式中,第二馬達的精度大於第一馬達的精度,因此解析度單元RU1大於解析度單元RU2。也就是說,第二馬達無法藉由持續地修正誤差而補償第一馬達運作時產生的誤差。再者,第二馬達的絕對精度(accuracy)與重複精度(precision)被第一馬達所侷限。 In this embodiment, the positioning control system of the first motor of the transmission module 240 has a resolution unit RU1, and the positioning control of the second motor of the transmission module 240 The system has a resolution unit RU2. In one embodiment, the accuracy of the second motor is greater than the accuracy of the first motor, so the resolution unit RU1 is greater than the resolution unit RU2. That is to say, the second motor cannot compensate for the error generated when the first motor operates by continuously correcting the error. Furthermore, the absolute accuracy and precision of the second motor are limited by the first motor.

圖2E是另一比較實施例之傳動模組的概要示意圖,請參考圖2E。在本實施例中傳動模組240a類似於圖2C之實施例之傳動模組240。傳動模組240a的構件與功能可參考傳動模組240的相關敘述,在此便不再贅述。傳動模組240a與傳動模組240的差異在於,傳動模組240a的第一馬達(未繪示)與第二馬達(未繪示)具有相同的精度。也就是說,傳動模組240a的第一馬達與第二馬達具有共同一解析度單元RU3。因此第一馬達與第二馬達二者的其中之一者的精度(例如是絕對精度與重複精度)不會被另一者的精度所侷限。此外,在本實施例中,解析度單元RU3和解析度單元RU2相同,而傳動模組240a的第一馬達與第二馬達例如是共同地採用壓電馬達、音圈馬達或是其他類型的馬達。 2E is a schematic diagram of a drive module of another comparative embodiment, please refer to FIG. 2E. In the present embodiment, the transmission module 240a is similar to the transmission module 240 of the embodiment of FIG. 2C. The components and functions of the transmission module 240a can be referred to the relevant description of the transmission module 240, and will not be described herein. The difference between the transmission module 240a and the transmission module 240 is that the first motor (not shown) of the transmission module 240a has the same precision as the second motor (not shown). That is to say, the first motor and the second motor of the transmission module 240a have a common resolution unit RU3. Therefore, the accuracy of one of the first motor and the second motor (for example, absolute accuracy and repeatability) is not limited by the accuracy of the other. In addition, in the present embodiment, the resolution unit RU3 and the resolution unit RU2 are the same, and the first motor and the second motor of the transmission module 240a use a piezoelectric motor, a voice coil motor or other types of motors, for example. .

於一實施方式中,傳動模組240a的第一馬達與第二馬達具有共同解析度單元RU3,而解析度單元RU3小於圖2C實施例傳動模組240的第一馬達的解析度單元RU1。也就是說,傳動模組240a的第一馬達與第二馬達的精度皆大於傳動模組240的第一馬達的精度。因此,傳動模組240a的第一馬達與第二馬達採用較高精度的馬達,而使得傳動模組240a的成本較高。 In one embodiment, the first motor and the second motor of the transmission module 240a have a common resolution unit RU3, and the resolution unit RU3 is smaller than the resolution unit RU1 of the first motor of the transmission module 240 of the embodiment of FIG. 2C. That is to say, the accuracy of the first motor and the second motor of the transmission module 240a is greater than the accuracy of the first motor of the transmission module 240. Therefore, the first motor and the second motor of the transmission module 240a adopt a higher precision motor, so that the cost of the transmission module 240a is higher.

圖3A是圖1實施例之檢測儀器於第一光學觀測模式的示意圖,請參考圖3A並且繼續參考圖1。在本實施例中,傳動模組140的定位方式類似於圖2C傳動模組240的定位方式。傳動模組140透過閉迴路控制架構可持續修正誤差,並輸出例如是對應於誤差而調整的輸出訊號至其堆疊式架構,來操作傳動模組140的第一馬達或第二馬達進行定位。另外,傳動模組140的第一馬達與第二馬達分別類似於圖2C傳動模組240的第一馬達與第二馬達。也就是說,傳動模組140的第一馬達採用一般精度的馬達,例如是伺服馬達,而第二馬達採用較高精度的馬達,例如是壓電馬達或是音圈馬達。在其他實施例中,第一馬達與第二馬達亦可以採用其他類型的馬達,本發明並不設限於此。 FIG. 3A is a schematic diagram of the detecting instrument of the embodiment of FIG. 1 in a first optical observation mode, please refer to FIG. 3A and continue to refer to FIG. 1. In this embodiment, the positioning mode of the transmission module 140 is similar to the positioning mode of the transmission module 240 of FIG. 2C. The transmission module 140 can continuously correct the error through the closed loop control architecture, and output an output signal adjusted, for example, corresponding to the error, to its stacked architecture to operate the first motor or the second motor of the transmission module 140 for positioning. In addition, the first motor and the second motor of the transmission module 140 are similar to the first motor and the second motor of the transmission module 240 of FIG. 2C, respectively. That is to say, the first motor of the transmission module 140 uses a motor of a general precision, such as a servo motor, and the second motor uses a motor of higher precision, such as a piezoelectric motor or a voice coil motor. In other embodiments, other types of motors may be used for the first motor and the second motor, and the invention is not limited thereto.

在本實施例中,光學顯微鏡模組130更包括一管鏡135、一聚焦透鏡136、一分光鏡137以及一感光元件138。於一實施方式中,檢測儀器100具有一第一光學觀測模式與一電子觀測模式。於第一光學觀測模式時,傳動模組140藉由第一馬達的驅動而傳送樣本S,使樣本S位於光學顯微鏡模組130的第一物鏡132的光軸A1上的位置。另外,傳動模組140亦可同時藉由第一馬達以及第二馬達的驅動而傳送樣本S。於一實施方式中,當樣本S位於光軸A1的位置時,樣本S上的一個定位點AP亦位於光軸A1上的位置。接著,一入射光IL射入光學顯微鏡模組130並由聚焦透鏡136所聚焦。之後,入射光IL由分光鏡137分光而進入第一物鏡132,並與光軸A1重合。再來,樣本S接收到通過自第一物 鏡132的入射光IL,且樣本S根據入射光IL產生一樣本激發光EL。樣本激發光EL沿著和入射光IL相反的方向由第一物鏡132射出,並且樣本激發光EL從第一物鏡132射出的光路徑與光軸A1重合。接著,樣本激發光EL通過管鏡135而進入感光元件138。光學顯微鏡模組130的感光元件138根據接收樣本激發光EL而檢測樣本S。值得注意的是,在圖3A中為了清楚繪示入射光IL與樣本激發光EL的光路徑,而將經分光鏡137分光後的入射光IL、樣本激發光EL以及光軸A1繪示成分離。然而,實質而言,經分光鏡137分光後的入射光IL、樣本激發光EL以及光軸A1是重合的。 In this embodiment, the optical microscope module 130 further includes a tube mirror 135, a focusing lens 136, a beam splitter 137, and a photosensitive element 138. In one embodiment, the detection instrument 100 has a first optical observation mode and an electronic observation mode. In the first optical observation mode, the transmission module 140 transmits the sample S by the driving of the first motor, so that the sample S is located at the position on the optical axis A1 of the first objective lens 132 of the optical microscope module 130. In addition, the transmission module 140 can also transmit the sample S by the driving of the first motor and the second motor at the same time. In one embodiment, when the sample S is at the position of the optical axis A1, one of the positioning points AP on the sample S is also located on the optical axis A1. Next, an incident light IL is incident on the optical microscope module 130 and is focused by the focus lens 136. Thereafter, the incident light IL is split by the beam splitter 137 to enter the first objective lens 132, and coincides with the optical axis A1. Again, the sample S receives the first object The incident light IL of the mirror 132, and the sample S generates the same present excitation light EL according to the incident light IL. The sample excitation light EL is emitted from the first objective lens 132 in a direction opposite to the incident light IL, and the light path of the sample excitation light EL emitted from the first objective lens 132 coincides with the optical axis A1. Next, the sample excitation light EL enters the photosensitive element 138 through the tube mirror 135. The photosensitive element 138 of the optical microscope module 130 detects the sample S based on the received sample excitation light EL. It is to be noted that in FIG. 3A, in order to clearly illustrate the light path of the incident light IL and the sample excitation light EL, the incident light IL, the sample excitation light EL, and the optical axis A1 split by the beam splitter 137 are depicted as being separated. . However, in essence, the incident light IL, the sample excitation light EL, and the optical axis A1 which are split by the beam splitter 137 are coincident.

於一實施方式中,光學顯微鏡模組130具有低倍預覽(pre-view)的功能。當樣本S上的定位點AP位於光軸A1上的位置時,使用者可以透過光學顯微鏡模組130的一觀察窗口(未繪示)觀察定位點AP的特徵或是定位點AP附近區域的特徵。當樣本S精準地定位在光軸A1上的位置時,使用者可以透過觀察窗口觀察定位點AP實質上落在畫面的正中央。然而在一些實施例中,光學顯微鏡模組130亦可以依照不同的設定,而設定當樣本S精準地定位在光軸A1上的位置時,定位點AP應落於畫面上的位置,本發明並不以此設限。另外,在本實施例中,光學顯微鏡模組130的感光元件138例如是電荷耦合元件(Charge-coupled Device)或互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor,CMOS)感光元件。然而在其他一些 實施例中,感光元件138亦可以是其他類型的感光元件,本發明並不以此設限。 In one embodiment, the optical microscope module 130 has a low-preview function. When the positioning point AP on the sample S is located on the optical axis A1, the user can observe the feature of the positioning point AP or the feature of the vicinity of the positioning point AP through a viewing window (not shown) of the optical microscope module 130. . When the sample S is accurately positioned at the position on the optical axis A1, the user can observe that the positioning point AP substantially falls in the center of the screen through the observation window. In some embodiments, the optical microscope module 130 can also set the position of the positioning point AP on the screen when the sample S is accurately positioned on the optical axis A1 according to different settings. Do not set limits. In addition, in this embodiment, the photosensitive element 138 of the optical microscope module 130 is, for example, a charge-coupled device or a complementary metal-oxide-semiconductor (CMOS) photosensitive element. However in some other In the embodiment, the photosensitive element 138 may also be other types of photosensitive elements, and the invention is not limited thereto.

在本實施例中,傳動模組140的第一馬達以及第二馬達的精度皆大於光學顯微鏡模組130的檢測解析度。也就是說,第一馬達以及第二馬達的定位控制系統的解析度單元小於光學顯微鏡模組130的解析度單元。第一馬達以及第二馬達的定位控制系統,在其一個解析度單元的範圍內來回不斷修正而形成的伺服顫振落在光學顯微鏡模組130的一個解析度單元的範圍內。因此,光學顯微鏡模組130不會因為上述的伺服顫振或其他細微的移動因素而影響其成像品質。 In this embodiment, the accuracy of the first motor and the second motor of the transmission module 140 are greater than the detection resolution of the optical microscope module 130. That is, the resolution unit of the positioning control system of the first motor and the second motor is smaller than the resolution unit of the optical microscope module 130. The servo control of the first motor and the second motor positioning control system, which is continuously corrected in the range of one of the resolution units, falls within the range of one resolution unit of the optical microscope module 130. Therefore, the optical microscope module 130 does not affect its imaging quality due to the aforementioned servo chatter or other slight moving factors.

圖3B是圖1實施例之檢測儀器於電子觀測模式的示意圖,請參考圖3B。在本實施例中,電子掃描模組120更包括一電磁透鏡組122、一電子顯微鏡模組124、接收器126以及一抽氣幫浦128。至少於電子觀測模式的過程中,可持續啟動抽氣幫浦128,將電子顯微鏡模組124內部空間以及真空腔體110的容置空間AS的空氣抽除,以保持電子顯微鏡模組124內部空間以及真空腔體110的容置空間AS真空或接近於真空。於電子觀測模式的過程時,傳動模組140傳送樣本S,使樣本S位於電子掃描軸ESA上的位置,並藉由一承靠力F使樣本S位置固定。於一實施方式中,傳動模組140是藉由第一馬達驅動承載部142傳送樣本S,使樣本S位於電子掃描軸ESA上的位置。當樣本S位於電子掃描軸ESA上的位置時,第一馬達可輸出承靠力F使承載部142抵靠擋塊 146,使樣本S位置固定,譬如持續、陸續或斷續輸出承靠力F。另外,在一些實施例中,傳動模組140亦可同時藉由第一馬達以及第二馬達的驅動而傳送樣本S,本發明並不以此設限。 FIG. 3B is a schematic diagram of the detecting instrument of the embodiment of FIG. 1 in an electronic observation mode, please refer to FIG. 3B. In this embodiment, the electronic scanning module 120 further includes an electromagnetic lens group 122, an electron microscope module 124, a receiver 126, and an air pump 128. At least in the process of the electronic observation mode, the pumping pump 128 can be continuously activated, and the air in the internal space of the electron microscope module 124 and the accommodating space AS of the vacuum chamber 110 can be removed to maintain the internal space of the electron microscope module 124. And the accommodating space AS of the vacuum chamber 110 is vacuum or close to vacuum. During the process of the electronic observation mode, the transmission module 140 transmits the sample S such that the sample S is located at the position on the electronic scanning axis ESA, and the position of the sample S is fixed by a bearing force F. In one embodiment, the transmission module 140 is configured to drive the sample S by the first motor drive carrier 142 to position the sample S on the electronic scanning axis ESA. When the sample S is located at the position on the electronic scanning axis ESA, the first motor can output the bearing force F to cause the bearing portion 142 to abut against the stopper 146, the sample S position is fixed, such as continuous, successive or intermittent output bearing force F. In addition, in some embodiments, the transmission module 140 can also transmit the sample S by the driving of the first motor and the second motor, and the invention is not limited thereto.

在本實施例中,當傳動模組140的第一馬達輸出承靠力F使承載部142抵靠擋塊146,使樣本S位置固定時,傳動模組140的第二馬達以一第二定位模式驅動載台148根據一校正值移動,使樣本S定位於電子掃描軸ESA上的位置。於一實施方式中,當樣本S位於電子掃描軸ESA的位置時,樣本S上的定位點AP亦位於電子掃描軸ESA上的位置。接著,來自電子顯微鏡模組124的至少一聚焦電子束FEB經過電磁透鏡組122的引導而在電子掃描軸ESA上聚焦於樣本S表面。樣本S接收到聚焦電子束FEB而產生一掃描訊號SS。掃描訊號SS由樣本S表面向外發散,而至少部分的掃描訊號SS由接收器126所接收。電子掃描模組120根據接收器126接收掃描訊號SS而檢測樣本S。 In this embodiment, when the first motor output bearing force F of the transmission module 140 causes the bearing portion 142 to abut against the stopper 146 to fix the position of the sample S, the second motor of the transmission module 140 is positioned by a second position. The mode drive stage 148 is moved in accordance with a correction value to position the sample S at a position on the electronic scanning axis ESA. In one embodiment, when the sample S is located at the position of the electronic scanning axis ESA, the positioning point AP on the sample S is also located at the position on the electronic scanning axis ESA. Next, at least one focused electron beam FEB from the electron microscope module 124 is guided by the electromagnetic lens group 122 to focus on the surface of the sample S on the electronic scanning axis ESA. The sample S receives the focused electron beam FEB to generate a scan signal SS. The scan signal SS is diverged outward from the surface of the sample S, and at least a portion of the scan signal SS is received by the receiver 126. The electronic scanning module 120 detects the sample S according to the receiver 126 receiving the scanning signal SS.

於一實施方式中,電子掃描模組120具有以高倍率觀察樣本S物理表面資訊的功能。當樣本S上的定位點AP位於電子掃描軸ESA上的位置時,使用者可以透過電子掃描模組120的一顯示器(未繪示)所顯示的畫面,觀察定位點AP的特徵或是定位點AP附近區域的特徵。當樣本S精準地定位在電子掃描軸ESA上的位置時,使用者可以透過電子掃描模組120的上述顯示器觀察定位點AP實質上落在畫面的正中央。然而,在一些實施例中,電子掃描模組120亦可以依照不同的設定,而設定當樣本S精準地 定位在電子掃描軸ESA上的位置時,定位點AP應落於畫面上的位置,本發明並不以此設限。 In one embodiment, the electronic scanning module 120 has a function of observing the physical surface information of the sample S at a high magnification. When the positioning point AP on the sample S is located on the electronic scanning axis ESA, the user can observe the feature or the positioning point of the positioning point AP through the screen displayed by a display (not shown) of the electronic scanning module 120. Characteristics of the area near the AP. When the sample S is accurately positioned on the electronic scanning axis ESA, the user can observe that the positioning point AP substantially falls in the center of the screen through the above display of the electronic scanning module 120. However, in some embodiments, the electronic scanning module 120 can also set the sample S accurately according to different settings. When the position on the electronic scanning axis ESA is located, the positioning point AP should fall on the position on the screen, and the present invention is not limited thereto.

在本實施例中,傳動模組140第一馬達以第一定位模式驅動以傳送樣本S,使樣本S位於電子掃描軸ESA上的位置具有一第一定位精準度。另外,根據傳動模組140的第二馬達以第二定位模式驅動以使樣本S根據校正值定位於電子掃描軸ESA上的位置具有一第二定位精準度。第一定位精準度即上述第一馬達的精度,而第二定位精準度即上述第二馬達的精度。於一實施方式中,傳動模組140的第二馬達精度大於傳動模組140的第一馬達精度,且電子掃描模組120的檢測解析度落在傳動模組140的第一馬達精度以及第二馬達精度之間。也就是說,電子掃描模組120的解析度單元落在上述第一馬達以及上述第二馬達二者的定位控制系統的解析度單元之間。在本實施例中,上述第二馬達定位控制系統,在其一個解析度單元的範圍內來回不斷修正而形成的伺服顫振落在電子掃描模組120的一個解析度單元的範圍內。然而,上述第一馬達定位控制系統,在其一個解析度單元的範圍內來回不斷修正而形成的伺服顫振超出電子掃描模組120的一個解析度單元的範圍。 In this embodiment, the first motor of the transmission module 140 is driven in the first positioning mode to transmit the sample S, so that the position of the sample S on the electronic scanning axis ESA has a first positioning accuracy. In addition, the second positioning motor is driven in the second positioning mode according to the second motor of the transmission module 140 to have a second positioning accuracy at a position where the sample S is positioned on the electronic scanning axis ESA according to the correction value. The first positioning accuracy is the accuracy of the first motor, and the second positioning accuracy is the accuracy of the second motor. In one embodiment, the second motor accuracy of the transmission module 140 is greater than the first motor accuracy of the transmission module 140, and the detection resolution of the electronic scanning module 120 falls on the first motor accuracy of the transmission module 140 and the second Between motor precision. That is, the resolution unit of the electronic scanning module 120 falls between the resolution units of the positioning control systems of the first motor and the second motor. In the embodiment, the second motor positioning control system is configured to be continuously corrected within a range of one of the resolution units to form a servo chatter that falls within a range of a resolution unit of the electronic scanning module 120. However, the first motor positioning control system described above is continuously corrected within the range of one of the resolution units to form a servo chatter that exceeds the range of one resolution unit of the electronic scanning module 120.

請同時參考圖2C、2D以及圖3B。本實施例之傳動模組140例如是採用類似於傳動模組240的堆疊式架構,來操作傳動模組140的第一馬達或傳動模組140的第二馬達進行定位。關於堆疊式架構的相關敘述可以參考圖2D的相關敘述。在本實施例中, 當樣本S位於電子掃描軸ESA上的位置時,第一馬達可輸出承靠力F使承載部142抵靠擋塊146,使樣本S位置固定,譬如持續、陸續或斷續輸出承靠力F。於一實施方式中,傳動模組140的第一馬達藉由輸出承靠力F而直接接收對應於承靠力F的扭力指令Torque_c。由於傳動模組140的第一馬達輸出承靠力F,藉由承靠力F與擋塊146對應於承靠力F的反作用力,樣本S的位置得以更加固定。也就是說,在本實施例中,樣本S的位置不會因為傳動模組140的第一馬達其自身存在的非線性因素,或是因其操作環境的干擾,而發生變動。在一些實施例中,上述樣本S的位置變動範圍小於電子掃描模組120的一個解析度單元的範圍。在本實施例中,由於第二馬達定位控制系統,在其一個解析度單元的範圍內來回不斷修正而形成的伺服顫振也落在電子掃描模組120的一個解析度單元的範圍內,因此電子掃描模組120不會因為上述的伺服顫振或其他細微的移動因素而影響其成像品質。 Please refer to FIG. 2C, 2D and FIG. 3B at the same time. The transmission module 140 of the present embodiment uses a stacked structure similar to the transmission module 240 to operate the first motor of the transmission module 140 or the second motor of the transmission module 140 for positioning. For a related description of the stacked architecture, reference may be made to the related description of FIG. 2D. In this embodiment, When the sample S is located at the position on the electronic scanning axis ESA, the first motor can output the bearing force F so that the bearing portion 142 abuts against the stopper 146, so that the sample S is fixed in position, for example, continuous, intermittent or intermittent output bearing force F . In one embodiment, the first motor of the transmission module 140 directly receives the torque command Torque_c corresponding to the bearing force F by the output bearing force F. Since the first motor of the transmission module 140 outputs the bearing force F, the position of the sample S is more fixed by the bearing force F and the reaction force of the stopper 146 corresponding to the bearing force F. That is to say, in the present embodiment, the position of the sample S does not change due to the nonlinear factor of the first motor of the transmission module 140 itself or due to the interference of the operating environment. In some embodiments, the range of position variation of the sample S is smaller than the range of one resolution unit of the electronic scanning module 120. In the present embodiment, due to the second motor positioning control system, the servo flutter formed by continuously correcting the range of one of the resolution units falls within the range of one resolution unit of the electronic scanning module 120. The electronic scanning module 120 does not affect its imaging quality due to the aforementioned servo chatter or other slight moving factors.

圖3C至圖3E是圖1實施例之檢測儀器計算校正值的示意圖。圖3C對應於圖3A中檢測儀器的第一光學觀測模式,而圖3D以及3E對應於圖3B中檢測儀器的電子觀測模式。請參考圖3A、3B以及3C至3E。在本實施例中,樣本S表面上包括一對準標記AM,用以校正檢測儀器100,而定位點AP位於對準標記AM的中心。於第一光學觀測模式時,傳動模組140藉由第一馬達的驅動而傳送樣本S至第一物鏡132光軸A1上的位置。使用者可以透過光學顯微鏡模組130的觀察窗口觀察到對準標記AM。於一實 施方式中,在觀察窗口的畫面中,對準標記AM落在由一X軸X與一Y軸Y所建構的平面上。X軸X與Y軸Y相互垂直,且二者的交會點中心點O即觀察窗口的畫面的正中央。在一些實施例中,中心點O亦可以依光學顯微鏡模組130的不同檢測設定而設定於觀察窗口的畫面的其他位置,本發明並不以此設限。在本實施例中,定位點AP(對準標記AM的中心)與和中心點O重合。在一些實施例中,當定位點AP和中心點O之間存在一距離時,調整載台148沿著X軸X與Y軸Y方向移動,使載台148所承載的樣本S的定位點AP和中心點O重合,如圖3C所示。 3C to 3E are schematic diagrams showing the correction values calculated by the detecting instrument of the embodiment of Fig. 1. 3C corresponds to the first optical observation mode of the detection instrument of FIG. 3A, and FIGS. 3D and 3E correspond to the electronic observation mode of the detection instrument of FIG. 3B. Please refer to FIGS. 3A, 3B and 3C to 3E. In the present embodiment, the sample S includes an alignment mark AM on its surface for correcting the detecting instrument 100, and the positioning point AP is located at the center of the alignment mark AM. In the first optical observation mode, the transmission module 140 transmits the sample S to the position on the optical axis A1 of the first objective lens 132 by the driving of the first motor. The alignment mark AM can be observed by the user through the observation window of the optical microscope module 130. Yu Yishi In the embodiment, in the screen of the observation window, the alignment mark AM falls on a plane constructed by an X-axis X and a Y-axis Y. The X-axis X and the Y-axis Y are perpendicular to each other, and the intersection point center point O of the two is the center of the screen of the observation window. In some embodiments, the center point O can also be set to other positions of the screen of the observation window according to different detection settings of the optical microscope module 130, and the present invention is not limited thereto. In the present embodiment, the anchor point AP (the center of the alignment mark AM) coincides with the center point O. In some embodiments, when there is a distance between the positioning point AP and the center point O, the adjustment stage 148 moves along the X-axis X and the Y-axis Y direction, so that the positioning point AP of the sample S carried by the stage 148 is AP. It coincides with the center point O as shown in Fig. 3C.

接著,於電子觀測模式時,傳動模組140傳送樣本S,使樣本S位於電子掃描軸ESA上的位置,並藉由承靠力F使樣本S位置固定。並且,調整電子掃描模組120的倍率至與光學顯微鏡模組130相同。在本實施例中,使用者可以透過電子掃描模組120的顯示器(未繪示)所顯示的畫面,觀察到定位點AP(對準標記AM的中心)與和中心點O之間存在一小距離,如圖3D所示。於一實施方式中,定位點AP和中心點O之間於X軸X方向上具有一X軸偏移量△X1,而定位點AP和中心點O之間於Y軸Y方向上具有一Y軸偏移量△Y1。接著,根據上述的X軸偏移量△X1以及Y軸偏移量△Y1調整載台148,使載台148所承載的樣本S的定位點AP和中心點O重合。 Next, in the electronic observation mode, the transmission module 140 transmits the sample S such that the sample S is located at the position on the electronic scanning axis ESA, and the position of the sample S is fixed by the bearing force F. Moreover, the magnification of the electronic scanning module 120 is adjusted to be the same as that of the optical microscope module 130. In this embodiment, the user can observe that there is a small difference between the positioning point AP (the center of the alignment mark AM) and the center point O through the screen displayed by the display (not shown) of the electronic scanning module 120. The distance is shown in Figure 3D. In an embodiment, the positioning point AP and the center point O have an X-axis offset ΔX1 in the X-axis X direction, and the positioning point AP and the center point O have a Y in the Y-axis Y direction. Axis offset ΔY1. Next, the stage 148 is adjusted based on the above-described X-axis shift amount ΔX1 and the Y-axis shift amount ΔY1 so that the positioning point AP of the sample S carried by the stage 148 coincides with the center point O.

接著請參考圖3E。當經調整的載台148,其樣本S的定位點AP和中心點O重合之後,調高電子掃描模組120的倍率。 在本實施例中,使用者可以透過電子掃描模組120的顯示器觀察到定位點AP與和中心點O之間實質上還是存在一微小距離,如圖3E所示。於一實施方式中,上述微小距離無法藉由和光學顯微鏡模組130倍率相當的電子掃描模組120的顯示器觀察而來。上述微小距離必須經由已調高倍率的電子掃描模組120的顯示器觀察而來。於一實施方式中,在圖3E中的定位點AP和中心點O之間於X軸X方向上具有一X軸偏移量△X2,而定位點AP和中心點O之間於Y軸Y方向上具有一Y軸偏移量△Y2。接著,根據上述的X軸偏移量△X2以及Y軸偏移量△Y2調整載台148,使載台148所承載的樣本S的定位點AP和中心點O重合。 Then please refer to Figure 3E. When the adjusted stage 148, the positioning point AP of the sample S and the center point O coincide, the magnification of the electronic scanning module 120 is increased. In this embodiment, the user can observe through the display of the electronic scanning module 120 that there is substantially a slight distance between the positioning point AP and the center point O, as shown in FIG. 3E. In one embodiment, the small distance cannot be observed by the display of the electronic scanning module 120 corresponding to the magnification of the optical microscope module 130. The above-mentioned minute distance must be observed through the display of the electronic scanning module 120 whose magnification has been increased. In an embodiment, between the positioning point AP and the center point O in FIG. 3E, there is an X-axis offset ΔX2 in the X-axis X direction, and the positioning point AP and the center point O are in the Y-axis Y. There is a Y-axis offset ΔY2 in the direction. Next, the stage 148 is adjusted based on the X-axis shift amount ΔX2 and the Y-axis shift amount ΔY2 described above, so that the positioning point AP of the sample S carried by the stage 148 and the center point O are overlapped.

在本實施例中,由於載台148所承載的樣本S經由載台148於X軸X方向以及Y軸Y方向的調整,而使定位點AP和中心點O重合。於一實施方式中,在上述檢測儀器100的校正過程中,於X軸X方向上的校正值是根據X軸偏移量△X1以及X軸偏移量△X2計算而來,而Y軸Y方向上的校正值是根據Y軸偏移量△Y1以及Y軸偏移量△Y2計算而來。在本實施例中,檢測儀器100經上述校正過程之後對樣本S進行檢測。當檢測儀器100從第一光學觀測模式轉換成電子觀測模式時,傳動模組140的第一馬達輸出承靠力F使承載部142抵靠擋塊146,使樣本S位置固定。接著,傳動模組140的第二馬達以第二定位模式驅動載台148根據上述於X軸X方向上的校正值以及於Y軸Y方向上的校正值移動,使樣本S定位於電子掃描軸ESA上的位置。於一實施 方式中,由於載台148根據上述校正值移動,因此經由已調高倍率的電子掃描模組120的顯示器觀察,載台148所承載的樣本S的定位點AP和中心點O重合。在一些實施例中,可以依照檢測儀器100的設計以及使用需求,於每一次檢測樣本之前進行一次校正,或者於一次校正之後多次檢測樣本,本發明並不以此設限。 In the present embodiment, since the sample S carried by the stage 148 is adjusted in the X-axis X direction and the Y-axis Y direction via the stage 148, the positioning point AP and the center point O are overlapped. In an embodiment, in the calibration process of the detecting instrument 100, the correction value in the X-axis X direction is calculated according to the X-axis offset amount ΔX1 and the X-axis offset amount ΔX2, and the Y-axis Y The correction value in the direction is calculated based on the Y-axis offset amount ΔY1 and the Y-axis offset amount ΔY2. In the present embodiment, the detecting instrument 100 detects the sample S after the above-described correction process. When the detecting instrument 100 is switched from the first optical observation mode to the electronic observation mode, the first motor output bearing force F of the transmission module 140 causes the bearing portion 142 to abut against the stopper 146 to fix the position of the sample S. Next, the second motor of the transmission module 140 drives the stage 148 in the second positioning mode to move the sample S to the electronic scanning axis according to the above-mentioned correction value in the X-axis X direction and the correction value in the Y-axis Y direction. The location on the ESA. In one implementation In the mode, since the stage 148 is moved according to the above-described correction value, the positioning point AP of the sample S carried by the stage 148 and the center point O are superimposed on the display of the electronic scanning module 120 having the high magnification. In some embodiments, the calibration may be performed once before each sample is detected, or may be detected multiple times after one calibration, according to the design and use requirements of the testing instrument 100, and the present invention is not limited thereto.

在本實施例中,樣本S的定位點AP在檢測儀器100於第一光學觀測模式時和中心點O重合,也就是樣本S的中心點位在光學顯微鏡模組130的觀察窗口的畫面的正中央。因此,樣本S適於透過光學顯微鏡模組130檢測。另外,當檢測儀器100於電子觀測模式時,樣本S的定位點AP亦與中心點O重合,也就是樣本S的中心點位在已調高倍率的電子掃描模組120的顯示器畫面的正中央。因此,樣本S適於透過電子掃描模組120檢測。於一實施方式中,光學顯微鏡模組130可以例如是對樣本S進行低倍率預覽,而電子掃描模組120可以例如是對樣本S進行高倍率解析的檢測。如此一來,檢測儀器100在同一平台上具有低倍率預覽以及高倍率解析的功能,而具有良好的量測效能。 In the present embodiment, the positioning point AP of the sample S coincides with the center point O when the detecting instrument 100 is in the first optical observation mode, that is, the center point of the sample S is positive in the screen of the observation window of the optical microscope module 130. central. Therefore, the sample S is adapted to be detected by the optical microscope module 130. In addition, when the detecting device 100 is in the electronic observation mode, the positioning point AP of the sample S also coincides with the center point O, that is, the center point of the sample S is in the center of the display screen of the electronic scanning module 120 of the adjusted high magnification. . Therefore, the sample S is adapted to be detected by the electronic scanning module 120. In one embodiment, the optical microscope module 130 can, for example, perform a low magnification preview on the sample S, and the electronic scanning module 120 can be, for example, a high magnification analysis of the sample S. In this way, the detecting instrument 100 has the functions of low magnification preview and high magnification resolution on the same platform, and has good measurement performance.

圖4A是本發明另一實施例之檢測儀器於第一光學觀測模式的示意圖,請參考圖4A。在本實施例中,檢測儀器400類似於圖1實施例的檢測儀器100,其相關構件與功能可參考檢測儀器100的相關敘述,在此便不再贅述。檢測儀器400與檢測儀器100的差異在於,檢測儀器400的光學顯微鏡模組430更包括一第二物鏡434。於一實施方式中,第二物鏡434的倍率大於第一物鏡 432的倍率。而對應於第二物鏡434,檢測儀器400更具有一第二光學觀測模式。於第二光學觀測模式時,傳動模組440傳送樣本S,使樣本S位於第二物鏡434的光軸A2上的位置。 4A is a schematic diagram of a detecting instrument in a first optical observation mode according to another embodiment of the present invention. Please refer to FIG. 4A. In the present embodiment, the detecting device 400 is similar to the detecting device 100 of the embodiment of FIG. 1. The related components and functions may be referred to the related description of the detecting device 100, and will not be described herein. The difference between the detecting instrument 400 and the detecting instrument 100 is that the optical microscope module 430 of the detecting instrument 400 further includes a second objective lens 434. In an embodiment, the second objective lens 434 has a magnification greater than the first objective lens. Magnification of 432. Corresponding to the second objective lens 434, the detecting instrument 400 further has a second optical observation mode. In the second optical viewing mode, the transmission module 440 transmits the sample S such that the sample S is located on the optical axis A2 of the second objective lens 434.

在一些實施例中,第二物鏡434的倍率亦可以等於第一物鏡432的倍率。檢測儀器400可以依據儀器的相關設計以及使用者的檢測需求,而設置適合倍率的第一物鏡432與第二物鏡434。另外,在一些實施例中,光學顯微鏡模組更包括至少一物鏡,而檢測儀器更具有至少一光學觀測模式,且各光學觀測模式對應於一物鏡。於一實施方式中,於各光學觀測模式時,傳動模組傳送樣本,使樣本位於上述物鏡的光軸上的位置。也就是說,本發明並不對物鏡的數量以及其對應的光學觀測模式加以設限,檢測儀器400可以依據儀器的相關設計以及使用者的檢測需求,而設置適合的物鏡數量。 In some embodiments, the magnification of the second objective lens 434 may also be equal to the magnification of the first objective lens 432. The detecting instrument 400 can set the first objective lens 432 and the second objective lens 434 suitable for the magnification according to the relevant design of the instrument and the detection requirements of the user. In addition, in some embodiments, the optical microscope module further includes at least one objective lens, and the detecting instrument further has at least one optical observation mode, and each optical observation mode corresponds to an objective lens. In one embodiment, in each optical viewing mode, the drive module transmits the sample such that the sample is positioned on the optical axis of the objective lens. That is to say, the present invention does not limit the number of objective lenses and their corresponding optical observation modes, and the detecting instrument 400 can set the appropriate number of objective lenses according to the relevant design of the instrument and the detection requirements of the user.

除此之外,在本實施例中,光學顯微鏡模組430更包括一濾光模組439。於一實施方式中,濾光模組439可以設置在第一物鏡432、第二物鏡434或其他設置之物鏡所對應的檢測的光線路徑上。濾光模組439包括二濾光片439_1以及一分光鏡439_2。二濾光片439_1分別用以濾除入射光IL的波段的一部分以及樣本激發光EL的波段的一部分。在一些實施例中,濾光片439_1的數量亦可以是單一個或是三個以上,而分光鏡439_2的數量亦可以是多個。或者,濾光模組439亦可以不包括分光鏡439_2。濾光片439_1以及分光鏡439_2的數量可以依濾光需求以及導引光線的 需求,而有對應的調整,本發明並不以此設限。 In addition, in the embodiment, the optical microscope module 430 further includes a filter module 439. In an embodiment, the filter module 439 can be disposed on the detected light path corresponding to the first objective lens 432, the second objective lens 434, or other disposed objective lens. The filter module 439 includes two filters 439_1 and a beam splitter 439_2. The two filters 439_1 are respectively used to filter a part of the wavelength band of the incident light IL and a part of the wavelength band of the sample excitation light EL. In some embodiments, the number of the filters 439_1 may be one or more than one, and the number of the beamsplitters 439_2 may be plural. Alternatively, the filter module 439 may not include the beam splitter 439_2. The number of filters 439_1 and the beam splitter 439_2 can be dependent on the filtering requirements and the guiding light. The requirements, and corresponding adjustments, are not limited by the invention.

請繼續參考圖4A。在本實施例中,於第一光學觀測模式時,傳動模組440藉由類似於傳動模組140的驅動方式,而傳送樣本S,使樣本S位於光學顯微鏡模組430的第一物鏡432的光軸A1上的位置。於一實施方式中,傳動模組440的光學顯微鏡模組430的檢測方式類似於傳動模組140的光學顯微鏡模組130的檢測方式。上述二者檢測方式差別在於,光學顯微鏡模組430透過不同數量的分光鏡437導引樣本激發光EL。經由分光鏡437的導引,樣本激發光EL通過管鏡435而進入感光元件438。光學顯微鏡模組430的感光元件438根據接收樣本激發光EL而檢測樣本S。 Please continue to refer to Figure 4A. In the present embodiment, in the first optical observation mode, the transmission module 440 transmits the sample S by a driving method similar to that of the transmission module 140, so that the sample S is located at the first objective lens 432 of the optical microscope module 430. The position on the optical axis A1. In one embodiment, the optical microscope module 430 of the transmission module 440 is detected in a manner similar to that of the optical microscope module 130 of the transmission module 140. The difference between the above two detection methods is that the optical microscope module 430 guides the sample excitation light EL through a different number of beamsplitters 437. The sample excitation light EL enters the photosensitive element 438 through the tube mirror 435 via the guidance of the beam splitter 437. The photosensitive element 438 of the optical microscope module 430 detects the sample S based on the received sample excitation light EL.

圖4B是圖4A實施例之檢測儀器於第二光學觀測模式的示意圖,請參考圖4B。在本實施例中,於第二光學觀測模式時,傳動模組440傳送樣本S,使樣本S位於光學顯微鏡模組430的第二物鏡434的光軸A2上的位置。於一實施方式中,入射光IL射入光學顯微鏡模組430並由聚焦透鏡436所聚焦。聚焦的入射光IL接著通過濾光片439_1,而濾光片439_1濾除入射光IL的波段的一部分,而使具有剩下部分波段的入射光IL’通過。接著,入射光IL’由分光鏡439_2分光而進入第二物鏡434,並與光軸A2重合。再來,樣本S接收到通過自第二物鏡434的入射光IL’,且樣本S根據入射光IL’產生一樣本激發光EL’。樣本激發光EL’以和入射光IL’相反的方向由第二物鏡134射出,並與光軸 A2重合。樣本激發光EL’接著通過濾光片439_1,而濾光片439_1濾除樣本激發光EL’的波段的一部分,而使具有剩下部分波段的樣本激發光EL’’通過。接著,樣本激發光EL’’通過管鏡435而進入感光元件438。光學顯微鏡模組430的感光元件438根據接收樣本激發光EL’’而檢測樣本S。 4B is a schematic diagram of the detecting instrument of the embodiment of FIG. 4A in a second optical observation mode, please refer to FIG. 4B. In the present embodiment, in the second optical observation mode, the transmission module 440 transmits the sample S such that the sample S is located on the optical axis A2 of the second objective lens 434 of the optical microscope module 430. In one embodiment, incident light IL is incident on optical microscope module 430 and is focused by focusing lens 436. The focused incident light IL then passes through the filter 439_1, and the filter 439_1 filters out a portion of the wavelength band of the incident light IL to pass the incident light IL' having the remaining partial wavelength band. Next, the incident light IL' is split by the beam splitter 439_2 to enter the second objective lens 434, and coincides with the optical axis A2. Further, the sample S receives the incident light IL' passing through the second objective lens 434, and the sample S generates the same present excitation light EL' according to the incident light IL'. The sample excitation light EL' is emitted from the second objective lens 134 in the opposite direction to the incident light IL', and is coupled to the optical axis A2 coincides. The sample excitation light EL' is then passed through the filter 439_1, and the filter 439_1 filters out a part of the wavelength band of the sample excitation light EL', and passes the sample excitation light EL'' having the remaining partial wavelength band. Next, the sample excitation light EL'' enters the photosensitive element 438 through the tube mirror 435. The photosensitive element 438 of the optical microscope module 430 detects the sample S based on the received sample excitation light EL''.

於一實施方式中,由於光學顯微鏡模組430具有濾光模組439,光學顯微鏡模組430可以藉由濾除入射光的波段的一部分或樣本激發光的波段的一部分,而使標定的樣本的部分化性特徵更加明顯。因此,光學顯微鏡模組430可以對樣本S的化性功能,例如是螢光反應(Fluorescence),進行檢測。 In one embodiment, since the optical microscope module 430 has a filter module 439, the optical microscope module 430 can make the calibration sample by filtering a part of the wavelength band of the incident light or a part of the wavelength band of the sample excitation light. Partialized features are more obvious. Therefore, the optical microscope module 430 can detect the chemical function of the sample S, for example, a fluorescence reaction.

圖4C是圖4A實施例之檢測儀器於電子觀測模式的示意圖,請參考圖4C。在本實施例中,於電子觀測模式的過程時,傳動模組440藉由類似於傳動模組140的驅動方式,而傳送樣本S,使樣本S位於電子掃描軸ESA上的位置,並藉由一承靠力F使樣本S位置固定。關於傳動模組440的第一馬達以及第二馬達的驅動方式可參考傳動模組140的相關敘述,在此便不再贅述。另外,於一實施方式中,傳動模組440的電子掃描模組420的檢測方式類似於傳動模組140的電子掃描模組130的檢測方式。電子掃描模組420的檢測方式可參考電子掃描模組130的檢測方式,在此不再贅述。除此之外,在本實施例中,檢測儀器400亦適用於圖3C至3E所述的校正方法,而使檢測儀器400分別於第一光學觀測模式、第二光學觀測模式以及電子觀測模式時,樣本S的定位 點AP和中心點O重合。 4C is a schematic diagram of the detecting instrument of the embodiment of FIG. 4A in an electronic observation mode, please refer to FIG. 4C. In the embodiment, during the process of the electronic observation mode, the transmission module 440 transmits the sample S by a driving method similar to that of the transmission module 140, so that the sample S is located on the electronic scanning axis ESA, and A bearing force F fixes the position of the sample S. For the driving manners of the first motor and the second motor of the transmission module 440, reference may be made to the related description of the transmission module 140, and details are not described herein again. In addition, in an embodiment, the detection mode of the electronic scanning module 420 of the transmission module 440 is similar to the detection mode of the electronic scanning module 130 of the transmission module 140. The detection mode of the electronic scanning module 420 can refer to the detection mode of the electronic scanning module 130, and details are not described herein again. In addition, in the present embodiment, the detecting instrument 400 is also applicable to the correcting method described in FIGS. 3C to 3E, and the detecting instrument 400 is in the first optical observation mode, the second optical observation mode, and the electronic observation mode, respectively. , the positioning of the sample S The point AP coincides with the center point O.

在本實施例中,檢測儀器400於第一光學觀測模式時,傳動模組440傳送樣本S,使樣本S位於第一物鏡432的光軸A1上的位置。檢測儀器400於第二光學觀測模式時,傳動模組440傳送樣本S,使樣本S位於第二物鏡434的光軸A2上的位置。而檢測儀器400於電子觀測模式時,傳動模組440傳送樣本S,使樣本S位於電子掃描軸ESA上的位置,並藉由承靠力F使樣本S位置固定。因此,檢測儀器100在同一平台上具有低倍率預覽、化性功能檢測以及高倍率解析的功能,具有良好的量測效能。於一實施方式中,檢測儀器100可以在同一平台上達到微米(micrometer,μm)解析度至奈米(nanometer,nm)解析度的量測。 In the present embodiment, when the detecting instrument 400 is in the first optical observation mode, the transmission module 440 transmits the sample S such that the sample S is located at the position on the optical axis A1 of the first objective lens 432. When the instrument 400 is in the second optical viewing mode, the transmission module 440 transmits the sample S such that the sample S is located on the optical axis A2 of the second objective lens 434. When the detecting instrument 400 is in the electronic observation mode, the transmission module 440 transmits the sample S such that the sample S is located at the position on the electronic scanning axis ESA, and the position of the sample S is fixed by the bearing force F. Therefore, the detecting instrument 100 has the functions of low magnification preview, chemical function detection and high magnification analysis on the same platform, and has good measurement performance. In one embodiment, the inspection instrument 100 can achieve micrometer (μm) resolution to nanometer (nm) resolution measurements on the same platform.

圖5繪示本發明一實施例之檢測方法的步驟流程圖,請參考圖5。所述檢測方法至少例如是應用在圖1、圖3A以及圖3B的檢測儀器100以及圖4A、4B以及4C的檢測儀器400。所述檢測方法如下步驟。在步驟S500中,將樣本配置於真空腔體的容置空間中。接著,在步驟S510中,將電子掃描模組以及光學顯微鏡模組配置於真空腔體上相對於樣本的同一側。之後,在步驟S520中,以第一定位模式驅動承載部沿著傳送軌傳送樣本。 FIG. 5 is a flow chart showing the steps of the detecting method according to an embodiment of the present invention. Please refer to FIG. 5. The detection method is at least, for example, the detection instrument 100 applied to FIGS. 1, 3A, and 3B and the detection instrument 400 of FIGS. 4A, 4B, and 4C. The detection method is as follows. In step S500, the sample is placed in the accommodating space of the vacuum chamber. Next, in step S510, the electronic scanning module and the optical microscope module are disposed on the same side of the vacuum chamber with respect to the sample. Thereafter, in step S520, the carrier is driven in the first positioning mode to transport the sample along the transport track.

在步驟S530中,於第一光學觀測模式時,傳送樣本,使樣本位於光學顯微鏡模組的第一物鏡的光軸上的位置。在步驟S540中,於電子觀測模式時,驅動承載部傳送樣本,使樣本位於電子掃描模組的電子掃描軸上的位置。接著,在步驟S542中,當 樣本位於電子掃描軸上的位置時,輸出承靠力使承載部抵靠至少一擋塊,以使樣本位置固定。之後,在步驟S544中,根據校正值,以第二定位模式驅動載台移動,使樣本定位於電子掃描軸上的位置。 In step S530, in the first optical observation mode, the sample is transferred such that the sample is positioned on the optical axis of the first objective lens of the optical microscope module. In step S540, in the electronic observation mode, the drive carrier transmits the sample so that the sample is located on the electronic scanning axis of the electronic scanning module. Next, in step S542, when When the sample is in the position on the electronic scanning axis, the output bearing force causes the bearing portion to abut against at least one of the stops to fix the sample position. Thereafter, in step S544, the stage movement is driven in the second positioning mode in accordance with the correction value to position the sample on the electronic scanning axis.

在步驟S550中,於第二光學觀測模式時,傳動模組傳送樣本,使樣本位於光學顯微鏡模組的第二物鏡的光軸上的位置。在步驟S560中,於各光學觀測模式時,傳動模組傳送樣本,使樣本位於光學顯微鏡模組的物鏡的光軸上的位置。在步驟S570中,使樣本根據入射光產生樣本激發光,根據接收樣本激發光檢測樣本。接著,在步驟S572中,透過濾光模組濾除入射光的波段的一部分或樣本激發光的波段的一部分。 In step S550, in the second optical observation mode, the transmission module transmits the sample such that the sample is located on the optical axis of the second objective lens of the optical microscope module. In step S560, in each optical observation mode, the transmission module transmits the sample so that the sample is located on the optical axis of the objective lens of the optical microscope module. In step S570, the sample is caused to generate sample excitation light according to the incident light, and the sample is detected based on the received sample excitation light. Next, in step S572, the filter module filters out a portion of the wavelength band of the incident light or a portion of the wavelength band of the sample excitation light.

另外,本發明之實施例的檢測方法可以由圖1至圖4C實施例之敘述中獲致足夠的教示、建議與實施說明,因此不再贅述。 In addition, the detection method of the embodiment of the present invention can obtain sufficient teaching, suggestion and implementation description from the description of the embodiment of FIG. 1 to FIG. 4C, and therefore will not be described again.

綜上所述,本發明的實施例中,檢測儀器於第一光學觀測模式時,傳動模組傳送樣本,使樣本位於第一物鏡的光軸上的位置。於電子觀測模式時,傳動模組傳送樣本,使樣本位於電子掃描軸上的位置,並藉由承靠力使樣本位置固定。因此檢測儀器在同一平台上具有低倍率預覽以及高倍率解析的功能,具有良好的量測效能。另外,本發明實施例的檢測方法包括於第一光學觀測模式時,傳送樣本,使樣本位於光學顯微鏡模組的第一物鏡的光軸上的位置。於電子觀測模式時,傳送樣本,使樣本位於電子掃描模組的一電子掃描軸上的位置,並藉由一承靠力使樣本位置 固定。因此檢測方法可以在同一平台上實現低倍率預覽以及高倍率解析,提升量測效能。 In summary, in the embodiment of the present invention, when the detecting instrument is in the first optical observation mode, the transmission module transmits the sample so that the sample is located on the optical axis of the first objective lens. In the electronic observation mode, the transmission module transmits the sample so that the sample is located on the electronic scanning axis, and the sample position is fixed by the bearing force. Therefore, the detection instrument has a low magnification preview and a high magnification analysis function on the same platform, and has good measurement performance. In addition, the detecting method of the embodiment of the invention includes, when in the first optical observation mode, transmitting the sample such that the sample is located on the optical axis of the first objective lens of the optical microscope module. In the electronic observation mode, the sample is transferred so that the sample is located on an electronic scanning axis of the electronic scanning module, and the sample position is made by a bearing force. fixed. Therefore, the detection method can realize low-magnification preview and high-rate analysis on the same platform, and improve measurement performance.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧檢測儀器 100‧‧‧Testing instruments

110‧‧‧真空腔體 110‧‧‧vacuum chamber

120‧‧‧電子掃描模組 120‧‧‧Electronic scanning module

122‧‧‧電磁透鏡組 122‧‧‧Electromagnetic lens group

124‧‧‧電子顯微鏡模組 124‧‧‧Electronic microscope module

126‧‧‧接收器 126‧‧‧ Receiver

128‧‧‧抽氣幫浦 128‧‧‧Exhaust pump

130‧‧‧光學顯微鏡模組 130‧‧‧Optical microscope module

132‧‧‧第一物鏡 132‧‧‧First objective

135‧‧‧管鏡 135‧‧‧tube mirror

136‧‧‧聚焦透鏡 136‧‧‧focus lens

137‧‧‧分光鏡 137‧‧‧beam splitter

138‧‧‧感光元件 138‧‧‧Photosensitive elements

140‧‧‧傳動模組 140‧‧‧Drive Module

142‧‧‧承載部 142‧‧‧Loading Department

144‧‧‧傳送軌 144‧‧‧Transport

145‧‧‧傳送軸 145‧‧‧Transport axis

146‧‧‧擋塊 146‧‧ ‧block

148‧‧‧載台 148‧‧‧ stage

A1‧‧‧光軸 A1‧‧‧ optical axis

AS‧‧‧容置空間 AS‧‧‧ accommodating space

AP‧‧‧定位點 AP‧‧‧Location Point

ESA‧‧‧電子掃描軸 ESA‧‧‧Electronic scanning axis

F‧‧‧承靠力 F‧‧‧Responsibility

FEB‧‧‧聚焦電子束 FEB‧‧‧ Focused electron beam

S‧‧‧樣本 S‧‧‧ sample

SS‧‧‧掃描訊號 SS‧‧‧ scan signal

Claims (28)

一種檢測儀器,適於檢測一樣本,該檢測儀器包括:一真空腔體,具有一容置空間,該樣本配置於該容置空間中;一電子掃描模組,具有一電子掃描軸;一光學顯微鏡模組,包括一第一物鏡,其中該電子掃描模組與該光學顯微鏡模組配置於該真空腔體上相對於該樣本的同一側;以及一傳動模組,配置於該容置空間中,用以傳送該樣本,該檢測儀器具有一第一光學觀測模式與一電子觀測模式,其中於該第一光學觀測模式時,該傳動模組傳送該樣本,使該樣本位於該第一物鏡的光軸上的位置,於該電子觀測模式時,該傳動模組傳送該樣本,使該樣本位於該電子掃描軸上的位置,並藉由一承靠力使該樣本位置固定。 The invention is characterized in that: the detection device comprises: a vacuum chamber having an accommodating space, the sample being disposed in the accommodating space; an electronic scanning module having an electronic scanning axis; an optical The microscope module includes a first objective lens, wherein the electronic scanning module and the optical microscope module are disposed on the same side of the vacuum cavity with respect to the sample; and a transmission module is disposed in the accommodating space For transmitting the sample, the detecting instrument has a first optical observation mode and an electronic observation mode, wherein in the first optical observation mode, the transmission module transmits the sample such that the sample is located at the first objective lens The position on the optical axis, in the electronic observation mode, the transmission module transmits the sample so that the sample is located on the electronic scanning axis, and the sample position is fixed by a bearing force. 如申請專利範圍第1項所述的檢測儀器,其中傳動模組包括一第一馬達、一承載部以及一傳送軌,該承載部用以承載該樣本,該傳送軌具有至少一傳送軸以及至少一擋塊,各擋塊配置於一該傳送軸對應於該電子掃描軸的位置上,其中該第一馬達以一第一定位模式驅動該承載部沿著該傳送軌傳送該樣本,當該檢測儀器於該電子觀測模式時,該第一馬達驅動該承載部傳送該樣本,使該樣本位於該電子掃描軸上的位置,當該樣本位於該電子掃描軸上的位置時,該第一馬達輸出該承靠力使該承載部抵靠該至少一擋塊,使該樣本位置固定。 The detecting instrument of claim 1, wherein the transmission module comprises a first motor, a carrying portion and a conveying rail, the carrying portion is configured to carry the sample, the conveying rail has at least one conveying shaft and at least a stop, each of the stops being disposed at a position corresponding to the electronic scan axis of the transfer shaft, wherein the first motor drives the load bearing portion to transport the sample along the transfer track in a first positioning mode, when the detecting When the instrument is in the electronic observation mode, the first motor drives the carrier to transmit the sample to position the sample on the electronic scanning axis, and the first motor outputs when the sample is located on the electronic scanning axis The bearing force causes the bearing portion to abut against the at least one stop to fix the sample position. 如申請專利範圍第2項所述的檢測儀器,其中該傳動模組更包括一載台以及一第二馬達,該載台用以承載該樣本,而該承載部承載該載台,其中當該第一馬達輸出該承靠力使該承載部抵靠該至少一擋塊,使該樣本位置固定時,該第二馬達以一第二定位模式驅動該載台根據一校正值移動,使該樣本定位於該電子掃描軸上的位置。 The detecting instrument of claim 2, wherein the transmission module further comprises a carrier and a second motor, the carrier is configured to carry the sample, and the carrier carries the carrier, wherein The first motor outputs the bearing force to abut the at least one stop, and when the sample position is fixed, the second motor drives the stage in a second positioning mode to move according to a correction value to make the sample Positioned on the electronic scan axis. 如申請專利範圍第3項所述的檢測儀器,其中該第一馬達以該第一定位模式驅動以傳送該樣本,使該樣本位於該電子掃描軸上的位置具有一第一定位精準度,根據該第二馬達以該第二定位模式驅動以使該樣本根據該校正值定位於該電子掃描軸上的位置具有一第二定位精準度,其中該第二定位精準度大於該第一定位精準度。 The detecting instrument of claim 3, wherein the first motor is driven in the first positioning mode to transmit the sample, so that the position of the sample on the electronic scanning axis has a first positioning accuracy, according to The second motor is driven in the second positioning mode to have a second positioning accuracy at a position where the sample is positioned on the electronic scanning axis according to the correction value, wherein the second positioning accuracy is greater than the first positioning accuracy . 如申請專利範圍第3項所述的檢測儀器,其中該第二馬達為壓電(Piezoelectric,PZT)馬達或是音圈馬達(Voice Coil Motor,VCM)。 The detecting instrument of claim 3, wherein the second motor is a piezoelectric (PZT) motor or a voice coil motor (VCM). 如申請專利範圍第2項所述的檢測儀器,其中該第一馬達為伺服馬達(Servomotor)。 The detecting instrument of claim 2, wherein the first motor is a servo motor (Servomotor). 如申請專利範圍第2項所述的檢測儀器,其中該至少一傳送軸為多個傳送軸,該至少一擋塊為多個擋塊。 The detecting instrument of claim 2, wherein the at least one transmission shaft is a plurality of transmission shafts, and the at least one stopper is a plurality of stoppers. 如申請專利範圍第1項所述的檢測儀器,其中該光學顯微鏡模組更包括一第二物鏡,該檢測儀器更具有一第二光學觀測 模式,其中於該第二光學觀測模式時,該傳動模組傳送該樣本,使該樣本位於該第二物鏡的光軸上的位置。 The detecting instrument of claim 1, wherein the optical microscope module further comprises a second objective lens, and the detecting instrument further has a second optical observation a mode, wherein in the second optical observation mode, the transmission module transmits the sample such that the sample is located on an optical axis of the second objective lens. 如申請專利範圍第8項所述的檢測儀器,其中該第二物鏡的倍率大於或等於該第一物鏡的倍率。 The detecting instrument of claim 8, wherein the second objective lens has a magnification greater than or equal to a magnification of the first objective lens. 如申請專利範圍第8項所述的檢測儀器,其中該光學顯微鏡模組更包括至少一物鏡,該檢測儀器更具有至少一光學觀測模式,各該光學觀測模式對應於一該物鏡,其中於各該光學觀測模式時,該傳動模組傳送該樣本,使該樣本位於該物鏡的光軸上的位置。 The detection instrument of claim 8, wherein the optical microscope module further comprises at least one objective lens, the detection instrument further has at least one optical observation mode, and each of the optical observation modes corresponds to an objective lens, wherein each In the optical viewing mode, the drive module transmits the sample such that the sample is located on the optical axis of the objective lens. 如申請專利範圍第1項所述的檢測儀器,其中該樣本根據一入射光產生一樣本激發光,該光學顯微鏡模組根據接收該樣本激發光檢測該樣本。 The detecting instrument of claim 1, wherein the sample generates the same excitation light according to an incident light, and the optical microscope module detects the sample according to the received excitation light of the sample. 如申請專利範圍第11項所述的檢測儀器,其中該光學顯微鏡模組更包括一濾光模組,用以濾除該入射光的波段的一部分或該樣本激發光的波段的一部分。 The detection instrument of claim 11, wherein the optical microscope module further comprises a filter module for filtering a portion of the wavelength band of the incident light or a portion of the wavelength band of the sample excitation light. 如申請專利範圍第1項所述的檢測儀器,其中該光學顯微鏡模組更包括電荷耦合元件(Charge-coupled Device)或互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor,CMOS)感光元件。 The detecting instrument of claim 1, wherein the optical microscope module further comprises a charge-coupled device or a complementary metal-oxide-semiconductor (CMOS) photosensitive element. 如申請專利範圍第1項所述的檢測儀器,其中該電子掃描模組為一掃描式電子顯微鏡(Scanning electron microscope,SEM)。 The detecting instrument according to claim 1, wherein the electronic scanning module is a scanning electron microscope (SEM). 一種檢測方法,適於檢測一樣本,該檢測方法包括:將該樣本配置於一真空腔體的一容置空間中;將一電子掃描模組以及一光學顯微鏡模組配置於該真空腔體上相對於該樣本的同一側;於一第一光學觀測模式時,傳送該樣本,使該樣本位於該光學顯微鏡模組的一第一物鏡的光軸上的位置;以及於一電子觀測模式時,傳送該樣本,使該樣本位於該電子掃描模組的一電子掃描軸上的位置,並藉由一承靠力使該樣本位置固定。 A detection method is suitable for detecting the same. The detecting method comprises: arranging the sample in an accommodating space of a vacuum chamber; and arranging an electronic scanning module and an optical microscope module on the vacuum chamber Relative to the same side of the sample; in a first optical observation mode, the sample is transferred such that the sample is located on the optical axis of a first objective lens of the optical microscope module; and in an electronic observation mode, The sample is transferred such that the sample is located on an electronic scanning axis of the electronic scanning module, and the sample position is fixed by a bearing force. 如申請專利範圍第15項所述的檢測方法,其中一傳動模組配置於該容置空間中,該傳動模組用以傳送該樣本,其中該傳動模組的一承載部用以承載該樣本,並傳送該樣本,該檢測方法更包括:以一第一定位模式驅動該承載部沿著一傳送軌傳送該樣本,其中該傳送軌具有至少一傳送軸以及至少一擋塊,各擋塊配置於一該傳送軸對應於該電子掃描軸的位置上;於該電子觀測模式時,驅動該承載部傳送該樣本,使該樣本位於該電子掃描軸上的位置;以及當該樣本位於該電子掃描軸上的位置時,輸出該承靠力使該承載部抵靠該至少一擋塊,以使該樣本位置固定。 The detection method of claim 15, wherein a transmission module is disposed in the accommodating space, and the transmission module is configured to transmit the sample, wherein a bearing portion of the transmission module is configured to carry the sample And transmitting the sample, the detecting method further comprising: driving the carrying portion to transport the sample along a transport rail in a first positioning mode, wherein the transport rail has at least one transfer shaft and at least one stop, each of the stop configurations And the position of the transmission axis corresponding to the electronic scanning axis; in the electronic observation mode, driving the carrier to transmit the sample to position the sample on the electronic scanning axis; and when the sample is located in the electronic scanning When the position is on the shaft, the bearing force is output such that the bearing portion abuts against the at least one stopper to fix the sample position. 如申請專利範圍第16項所述的檢測方法,其中該傳動模組的一第一馬達以該第一定位模式驅動該承載部沿著該傳送軌傳送該樣本,其中該第一馬達為伺服馬達(Servomotor)。 The detecting method of claim 16, wherein a first motor of the transmission module drives the carrying portion to transport the sample along the conveying rail in the first positioning mode, wherein the first motor is a servo motor (Servomotor). 如申請專利範圍第16項所述的檢測方法,其中輸出該承靠力使該承載部抵靠該至少一擋塊,使該樣本位置固定的步驟中,更包括根據一校正值,以一第二定位模式驅動一載台移動,使該樣本定位於該電子掃描軸上的位置,其中該載台承載該樣本,而該承載部承載該載台。 The detecting method of claim 16, wherein the step of outputting the bearing force to the bearing portion against the at least one stopper to fix the sample position further comprises: according to a correction value, The second positioning mode drives a stage movement to position the sample on the electronic scanning axis, wherein the stage carries the sample and the carrier carries the stage. 如申請專利範圍第18項所述的檢測方法,其中以該第一定位模式驅動以傳送該樣本,使該樣本位於該電子掃描軸上的位置具有一第一定位精準度,根據該第二定位模式驅動以使該樣本根據該校正值定位於該電子掃描軸上的位置具有一第二定位精準度,其中該第二定位精準度大於該第一定位精準度。 The detection method of claim 18, wherein the first positioning mode is driven to transmit the sample such that the position of the sample on the electronic scanning axis has a first positioning accuracy, according to the second positioning The mode is driven to have a second positioning accuracy at a position where the sample is positioned on the electronic scanning axis according to the correction value, wherein the second positioning accuracy is greater than the first positioning accuracy. 如申請專利範圍第18項所述的檢測方法,其中該傳動模組的一第二馬達根據該校正值,以該第二定位模式驅動該載台移動,使該樣本定位於該電子掃描軸上的位置,其中該第二馬達為壓電(Piezoelectric,PZT)馬達或是音圈馬達(Voice Coil Motor,VCM)。 The detecting method of claim 18, wherein a second motor of the transmission module drives the stage to move in the second positioning mode according to the correction value, so that the sample is positioned on the electronic scanning axis. The position of the second motor is a piezoelectric (Piezoelectric, PZT) motor or a voice coil motor (VCM). 如申請專利範圍第16項所述的檢測方法,其中該至少一傳送軸為多個傳送軸,該至少一擋塊為多個擋塊。 The detecting method of claim 16, wherein the at least one transmission shaft is a plurality of transmission shafts, and the at least one stopper is a plurality of stoppers. 如申請專利範圍第15項所述的檢測方法,更包括: 於一第二光學觀測模式時,該傳動模組傳送該樣本,使該樣本位於該光學顯微鏡模組的一第二物鏡的光軸上的位置。 The detection method described in claim 15 of the patent scope further includes: In a second optical observation mode, the transmission module transmits the sample such that the sample is located on the optical axis of a second objective lens of the optical microscope module. 如申請專利範圍第22項所述的檢測方法,其中該第二物鏡的倍率大於或等於該第一物鏡的倍率。 The detection method of claim 22, wherein the magnification of the second objective lens is greater than or equal to the magnification of the first objective lens. 如申請專利範圍第22項所述的檢測方法,其中於至少一光學觀測模式中,各該光學觀測模式對應於該光學顯微鏡模組的至少一物鏡之中的一該物鏡,該檢測方法更包括:於各該光學觀測模式時,該傳動模組傳送該樣本,使該樣本位於該光學顯微鏡模組的該物鏡的光軸上的位置。 The detection method of claim 22, wherein in the at least one optical observation mode, each of the optical observation modes corresponds to one of the at least one objective lens of the optical microscope module, and the detection method further comprises And in each of the optical observation modes, the transmission module transmits the sample such that the sample is located on an optical axis of the objective lens of the optical microscope module. 如申請專利範圍第15項所述的檢測方法,更包括:使該樣本根據一入射光產生一樣本激發光;以及根據接收該樣本激發光檢測該樣本。 The detecting method of claim 15, further comprising: causing the sample to generate the same excitation light according to an incident light; and detecting the sample according to receiving the sample excitation light. 如申請專利範圍第25項所述的檢測方法,其中使該樣本根據一入射光產生一樣本激發光的步驟中,更包括透過一濾光模組濾除該入射光的波段的一部分或該樣本激發光的波段的一部分。 The detecting method according to claim 25, wherein the step of causing the sample to generate the same excitation light according to an incident light further comprises filtering a part of the wavelength band of the incident light or the sample through a filter module. A part of the band that excites light. 如申請專利範圍第15項所述的檢測方法,其中該光學顯微鏡模組更包括電荷耦合元件(Charge-coupled Device)或互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor,CMOS)感光元件。 The detection method of claim 15, wherein the optical microscope module further comprises a charge-coupled device or a complementary metal-oxide-semiconductor (CMOS) photosensitive element. 如申請專利範圍第15項所述的檢測方法,其中該電子掃描模組為一掃描式電子顯微鏡(Scanning electron microscope,SEM)。 The detection method of claim 15, wherein the electronic scanning module is a scanning electron microscope (SEM).
TW104120758A 2014-11-28 2015-06-26 Detecting instrument and detecting method thereof TWI576888B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510503799.0A CN105651696B (en) 2014-11-28 2015-08-17 detection instrument and detection method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201462085343P 2014-11-28 2014-11-28

Publications (2)

Publication Number Publication Date
TW201620001A true TW201620001A (en) 2016-06-01
TWI576888B TWI576888B (en) 2017-04-01

Family

ID=56755053

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104120758A TWI576888B (en) 2014-11-28 2015-06-26 Detecting instrument and detecting method thereof

Country Status (1)

Country Link
TW (1) TWI576888B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI680406B (en) * 2018-11-14 2019-12-21 由田新技股份有限公司 Suspended double-sided optical inspection apparatus
TWI768443B (en) * 2019-09-09 2022-06-21 德商卡爾蔡司Smt有限公司 Method and system of wafer alignment using multi-scanning electron microscopy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI647482B (en) * 2017-04-14 2019-01-11 河洛半導體股份有限公司 Positioning method of optical system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1296351A4 (en) * 2000-06-27 2009-09-23 Ebara Corp Charged particle beam inspection apparatus and method for fabricating device using that inspection apparatus
TWI288424B (en) * 2000-06-27 2007-10-11 Ebara Corp Inspection apparatus and inspection method
KR100813210B1 (en) * 2002-03-21 2008-03-13 헤르메스-마이크로비전 인코포레이티드 Swinging objective retarding immersion lens electron optics focusing, deflection and signal collection system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI680406B (en) * 2018-11-14 2019-12-21 由田新技股份有限公司 Suspended double-sided optical inspection apparatus
TWI768443B (en) * 2019-09-09 2022-06-21 德商卡爾蔡司Smt有限公司 Method and system of wafer alignment using multi-scanning electron microscopy

Also Published As

Publication number Publication date
TWI576888B (en) 2017-04-01

Similar Documents

Publication Publication Date Title
JP5463004B2 (en) High speed lithographic apparatus and method
JP4919307B1 (en) Substrate inspection apparatus and mask inspection apparatus
KR102597427B1 (en) Systems and methods for focusing charged particle beams
CN105651696B (en) detection instrument and detection method thereof
US9177759B2 (en) Processing apparatus and method using a scanning electron microscope
TWI576888B (en) Detecting instrument and detecting method thereof
US9875879B2 (en) Charged particle microscope with vibration detection / correction
US20130155415A1 (en) Height-measuring method and height-measuring device
WO2019229871A1 (en) Wafer inspection device and wafer inspection method
JP5452405B2 (en) Stage equipment
JP2010123354A (en) Charged particle beam device
JP2006118867A (en) Scanning probe microscope and measuring method using it
KR20170032602A (en) Defect imaging apparatus for imaging defects, Defect inspection system having the same and method of inspecting defects using the same inspection system
KR102492492B1 (en) Charged particle beam apparatus and sample alignment method of charged particle beam apparatus
CN111149186B (en) Optical system with compensation lens
US9256061B2 (en) Focus control apparatus and method
TW202405584A (en) Extra tall target metrology
JP5057200B2 (en) Inspection device
JP2008218259A (en) Inspection method and inspection device
JP5033365B2 (en) Inspection device
JP7428578B2 (en) Multi-beam image generation device and multi-beam image generation method
JP7477364B2 (en) Multi-beam image generating device and multi-beam image generating method
WO2023243063A1 (en) Transmission charged particle beam device and ronchigram imaging method
CN106653538A (en) Scanning charged particle microscope system and vibration compensation method
WO2018046272A1 (en) Method of determining a property of a structure, inspection apparatus and device manufacturing method