TW201615095A - Dig-303殺蟲cry毒素 - Google Patents

Dig-303殺蟲cry毒素 Download PDF

Info

Publication number
TW201615095A
TW201615095A TW104134696A TW104134696A TW201615095A TW 201615095 A TW201615095 A TW 201615095A TW 104134696 A TW104134696 A TW 104134696A TW 104134696 A TW104134696 A TW 104134696A TW 201615095 A TW201615095 A TW 201615095A
Authority
TW
Taiwan
Prior art keywords
sequence
toxin
dig
polypeptide
insecticidal
Prior art date
Application number
TW104134696A
Other languages
English (en)
Inventor
梅根L F 弗瑞
賈斯汀M 里拉
小平 徐
伊格那西歐M 拉林拿
肯尼士 納爾瓦
提摩西 黑
Original Assignee
陶氏農業科學公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陶氏農業科學公司 filed Critical 陶氏農業科學公司
Publication of TW201615095A publication Critical patent/TW201615095A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • C07K14/325Bacillus thuringiensis crystal protein (delta-endotoxin)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • A01N37/46N-acyl derivatives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Abstract

DIG-303殺蟲毒素、編碼此等毒素的聚核苷酸、此等毒素控制害蟲的使用,以及生產此等毒素的基因轉殖植物被揭示。

Description

DIG-303殺蟲CRY毒素
本發明係有關於DIG-303殺蟲CRY毒素。
發明背景
蘇力菌(Bacillus thuringiensis,B.t.)是一種產生被知曉為δ內毒素(delta endotoxins)或Cry蛋白質的殺蟲結晶蛋白質的土壤傳播性細菌。Cry蛋白質是藉由作用在易感昆蟲的中腸細胞運作的口服毒物。一些Cry毒素已顯示具有對抗線蟲的活性。δ內毒素的一廣泛列表被維持和定期更新在由Neil Crickmore所維護的蘇力菌毒素命名(Bacillus thuringiensis Toxin Nomenclature)網站。(參見Crickmore et al.1998,第808頁)。
鞘翅目(coleopterans)是一顯著族群的每年引起對作物廣泛傷害的農業害蟲。鞘翅目害蟲的實例包括科羅拉多馬鈴薯甲蟲(Colorado potato beetle,CPB)、玉米根蟲(corn rootworm)、苜蓿象鼻蟲(alfalfa weevil)、棉鈴象鼻蟲(boll weevil)以及日本甲蟲(Japanese beetle)。科羅拉多馬鈴薯甲蟲是一種以馬鈴薯、茄子、番茄、胡椒、煙草和在茄科(nightshade family)的其他植物的葉為食的經濟上重要的害蟲。科羅拉多馬鈴薯甲蟲是一種馬鈴薯的問題性食葉害 蟲,部分地,因為它已發展出對許多種類殺蟲劑的抗性。Cry毒素(包括Cry3、Cry7和Cry8家族的成員)具有對抗鞘翅目昆蟲的殺蟲活性。
雖然在基因轉殖植物中生產現今所部署的Cry蛋白質可提供強大的保護對抗上述的害蟲,藉此保護穀物產量,成年害蟲已出現在人為的侵擾試驗,指示少於完全的幼蟲昆蟲控制。此外,抗性昆蟲族群的發展威脅Cry蛋白質在昆蟲害蟲控制的長期耐久性。對Cry蛋白有抗性的鱗翅目昆蟲(Lepidopteran insects)已發展在小菜蛾(Plutella xylostella)(Tabashnik,1994)、粉紋夜蛾(Trichoplusia ni)(Janmaat and Myers,2003,2005)和谷實夜蛾(Helicoverpa zea)(Tabashnik et al.,2008)的領域。鞘翅目昆蟲同樣地已發展抗性在對Cry蛋白質的領域(Gassman et al.PLoS ONE July 2011 | Volume 6 | Issue 7 | e22629)。對B.t.Cry蛋白質有抗性的昆蟲可經由數種機制發展(Heckel et al.,2007;Pigott and Ellar,2007)。關於Cry蛋白的複數個受體蛋白質種類已在昆蟲內被鑑定,並且複數個實例存在於各個受體種類內。對一特定的Cry蛋白質的抗性可例如藉由一在一受體蛋白質的一鈣黏蛋白質領域(cadherin domain)的毒素-結合部分內的突變而被發展。抗性的一進一步的方法可經由原毒素-加工蛋白酶(protoxin-processing protease)而被調節。
在發展提供用於管理鞘翅目昆蟲害蟲的額外工具的新穎Cry蛋白質有興趣。在基因轉殖植物中所組合生產 的具有不同作用模式的Cry蛋白質將預防昆蟲抗性的發展並且保護用於昆蟲害蟲控制的B.t.技術的長期利用性。
發明概要
本發明是根據以在此被命名為DIG-303的Cry蛋白質毒素為基礎的殺蟲毒素的發現,包括DIG-303的變異體、編碼這些毒素的核酸、使用該等毒素控制害蟲的方法、在基因轉殖宿主細胞生產該等毒素的方法以及表現該等毒素的基因轉殖植物。在序列辨識編號:2的天然DIG-303毒素的胺基酸序列指示DIG-303最佳被分類至Cry32家族。
如在實施例1所描述的,一編碼該DIG-303蛋白質的核酸被發現並且被分離自一在此被命名為PS18A亦被知曉為DBt10340的B.t.菌株。關於全長編碼區域的核酸序列被測定,以及全長蛋白質序列從該核酸序列被推論。該編碼DIG-303毒素的核酸序列被提供在序列辨識編號:1。一使用殺蟲核心片段作為一詢問的BLAST搜尋發現:DIG-303毒素蛋白質與在搜尋的時間所知曉最接近的Cry毒素的核心片段(AAG36711)具有小於60%序列相同性(sequence identity)以及與最接近的公眾所揭示的序列(Axmi174 ATX25337)小於70%同源性(homology)。因此,DIG-303代表一在蛋白質的Cry32家族內的新亞型。
該等DIG-303毒素可被單獨使用或組合以其他Cry毒素[諸如Cry34Ab1/Cry35Ab1(品項DAS-59122-7)、Cry3Bb1(品項MON88017)、Cry3A(品項MIR604)、嵌合的 Cry3A/Cry1Ab(eCry3.1Ab、FR8A、品項5307,WO 2008/121633 A1)、CryET33和CryET34、Vip1A、Cry1Ia、CryET84、CryET80、CryET76、CryET71、CryET69、CryET75、CryET39、CryET79、TIC809、TIC810以及CryET74]以控制抗性鞘翅目昆蟲族群的發展。再者,DIG-303毒素可被單獨使用或組合以控制其他害蟲族群的其他Cry毒素(諸如,例如,Cry1F、Cry1Ab、Vip3A、Cry2A、Cry1Da、Cry1Ia和Cry1Ac)以控制鱗翅目抗性昆蟲族群的發展。
DIG-303殺蟲毒素亦可被使用組合以RNAi方法學用於控制其他昆蟲害蟲。例如,DIG-303殺蟲毒素可組合以一用於抑制一在CPB、玉米根蟲或一其他昆蟲害蟲的必需基因的dsRNA而被使用在基因轉殖植物。此等標靶基因包括,例如,在CPB的ATP酶編碼基因。其他此等標靶基因包括,例如,在玉米根蟲的液泡ATP酶、ARF-1、Act42A、CHD3、EF-1α、ROP、RNAPII和TFIIB。一適合的標靶基因的一實例是如在WO2007035650所揭示的液泡ATP酶。
在一具體例中,本發明提供一種經分離、處理或配方的DIG-303殺蟲毒素多肽,其包含有一選自於由下列所構成的群組的核心毒素節段:(a)自序列辨識編號:2的大概1至大概685的殘基的胺基酸序列;(b)一與自序列辨識編號:2的大概1至大概685的殘基的胺基酸序列具有至少70%序列相同性的胺基酸序列; (c)一與自序列辨識編號:2的大概1至大概685的殘基的胺基酸序列具有至少80%序列相同性的胺基酸序列;(d)一與自序列辨識編號:2的大概1至大概685的殘基的胺基酸序列具有至少90%序列相同性的胺基酸序列;(e)一與自序列辨識編號:2的大概1至大概685的殘基的胺基酸序列具有至少95%序列相同性的胺基酸序列;(f)一與自序列辨識編號:2的大概1至大概685的殘基的胺基酸序列具有至少99%序列相同性的胺基酸序列;以及(g)一具有沒有不利地影響序列辨識編號:2的毒素的表現或活性的上達20個胺基酸取代、刪除或修飾之自序列辨識編號:2的大概1至大概685的殘基的胺基酸序列;或者一具有(a)、(b)、(c)、(d)、(e)、(f)和(g)的任一者的殺蟲活性片段。
在進一步的具體例中,該等上面所描述的DIG-303殺蟲毒素多肽可被連接至一不同的cry毒素的一C-端原毒素節段,例如一不同的cry毒素的一C-端區域,其中該核心毒素節段已被移除。特別地,Cry1Ab或Cry1Ac/Cry1Ab嵌合毒素的C-端原毒素節段是本技藝所熟知以幫助嵌合的cry核心毒素的安定表現。
在另一個具體例中,本發明提供一種經分離、處 理或配方的具有要比天然毒素在它的自然狀態下所具者實質上不同性質的DIG-303殺蟲毒素,其包含有一選自於由下列所構成的群組的DIG-303核心毒素節段:一(a)包含有序列辨識編號:2的殘基1至1257的胺基酸序列的多肽;(b)包含有一與序列辨識編號:2的殘基1至1257的胺基酸序列具有至少90%序列相同性的胺基酸序列的多肽;以及(c)包含有序列辨識編號:2的殘基1至1257的一胺基酸序列的多肽;具有沒有不利地影響序列辨識編號:2的毒素的表現或活性的上達20個胺基酸取代、刪除或修飾;或者一具有(a)、(b)或(c)的任一者的殺蟲活性片段。
在另一個具體例中,本發明提供一種包含有一DIG-303殺蟲毒素的基因轉殖植物。
在另一個具體例中,本發明提供一種用於控制一害蟲族群的方法,其包含有以一殺蟲有效數量的一DIG-303殺蟲毒素接觸該族群的個體。
在另一個具體例中,本發明提供一種編碼一DIG-303殺蟲毒素的非-天然存在的核酸。
在另一個具體例中,本發明提供一種包含有一編碼一被可操作地連結至一異源性啟動子的DIG-303殺蟲毒素並且能夠在一植物中驅動表現的核苷酸序列之DNA建構物。本發明亦提供一種包含有該被安定地併入至它的基因組內的DNA建構物的基因轉殖植物,以及一種用於保護一植物免於一害蟲的方法,其包含有在該植物表現該建構物。
藉由“經分離的(isolated)”或“經純化的 (purified)”申請人意指該等核苷酸或多肽分子已從它們的天然環境被移除並且藉由人的手已被放置在一不同的環境。因此,經分離的核苷酸和多肽分子包括已被純化、濃縮或以其他方式呈現實質上沒有蘇力菌細胞材料的DNA或蛋白質分子。經分離的DIG-303殺蟲多肽或核苷酸分子的具體例可具有小於約30%、小於約20%、小於約10%、小於約9%、小於約8%、小於約7%、小於約6%、小於約5%、小於約4%、小於約3%或小於約2%、或者小於約1%(以乾重計)的不純蛋白質(例如,來自蘇力菌)。當該等經分離的DIG-303殺蟲多肽或核苷酸具體例被重組地生產時,那麼培養基材料、化學前驅物和/或非-DIG-303殺蟲多肽或核苷酸相當於小於約30%、小於約20%、小於約10%、小於約5%、小於約4%、小於約3%或小於約2%、或者小於約1%(以乾重計)的該經分離的DIG-303殺蟲多肽或核苷酸。
序列的簡要說明
序列辨識編號:1顯示具有10個可變核苷酸的編碼DIG-303毒素的DNA;3771 nt。
序列辨識編號:2顯示具有10個可變核苷酸殘基的DIG-303蛋白質序列;1257 aa。
序列辨識編號:3是一種編碼一DIG-303毒素的玉蜀黍-最佳化的DNA序列,其中36個5’核苷酸被刪除;3735 nt。
序列辨識編號:4是藉由序列辨識編號:3所編碼的DIG-303蛋白質序列,其中12個N-端胺基酸殘基被刪除。1245 aa
較佳實施例之詳細說明
DIG-303昆蟲毒素:除了序列辨識編號:2的全長DIG-303昆蟲毒素,本發明涵蓋它的殺蟲活性變異體。藉由術語“變異體”,申請人意欲包括片段、某些刪除和插入突變物,以及某些融合或嵌合蛋白質。DIG-303蛋白質包括一般而言與一Cry毒素有關的三-領域。作為一描述被包括在本發明的DIG-303毒素的變異體的序言,簡要地回顧一般的三-領域Cry毒素和特別地DIG-303蛋白質毒素的結構將是有用的。
大多數的蘇力菌δ-內毒素晶體蛋白質分子由兩個功能性節段所構成。蛋白酶-抗性核心毒素是第一節段並且對應於該蛋白質分子的大約前半段。全~130kDa原毒素分子藉由在昆蟲腸中的蛋白酶被快速地加工成抗性核心節段。該藉由這個酵素加工所刪除的C-端節段在此將被意指為“C-端原毒素節段”。該C-端原毒素節段被相信參與毒素晶體形成(Arvidson et al.,1989)。該C-端原毒素節段因此可藉由降低該毒素分子的蛋白酶加工(Haider et al.,1986)或藉由降低毒素溶解度(Aronson et al.,1991)限制該核心對該昆蟲的可及性(accessibility)而傳達一對該毒素的部分昆蟲專一性。B.t.毒素甚至在某一種類內在長度以及在自該核心 毒素節段至C-端原毒素節段的轉位的精確位置變化至一些程度。核心毒素節段至C-端原毒素節段的轉位將典型地發生在約50%至約60%的全長毒素之間。序列辨識編號:2揭示該部分的DIG-303多肽的1257個胺基酸序列,其中N-端685個胺基酸包含有一DIG-303核心毒素節段。
三維晶體結構已被測定用於Cry1Aa1、Cry2Aa1、Cry3Aa1、Cry3Bb1、Cry4Aa、Cry4Ba和Cry8Ea1。這些關於核心毒素的結構非常相似,並且由具有下面所描述的特徵的三個不同領域所構成(在de Maagd et al.,2003被回顧)。
領域I是一束的七個α螺旋,其中螺旋5被6個雙性螺旋所包圍。這個領域已涉及孔形成以及與其它孔形成蛋白質[包括溶血素(hemolysins)和大腸桿菌素(colicin)]分享同源性。該DIG-303蛋白質的領域I包含有列辨識編號:2的胺基酸殘基大概1-300。
領域II是藉由三個反-平行β褶板(anti-parallel beta sheets)被包裝在一起呈一β稜柱而被形成。這個領域的環(loop)在結合昆蟲中腸受體扮演重要角色。在Cry1A蛋白質中,在領域II β褶板的頂點的表面暴露的環涉及結合至鱗翅目鈣黏蛋白質受體。Cry3Aa領域II環以一相似方式結合科羅拉多金花蟲(Leptinotarsa decemlineata Say,CPB)的一膜-相關的金屬蛋白酶(Ochoa-Campuzano et al.,2007)。領域II與某些碳水化合物-結合蛋白質[包括卵黃(vitelline)和榴蓮凝素(iacaline)]分享同源性。該DIG-303蛋白質的領域II 包含有序列辨識編號:2的胺基酸殘基大概300-525。
領域III是一具有2個反-平行β褶板的β三明治。在結構上這個領域是與蛋白質[諸如聚葡萄糖酶(glucanases)、半乳糖氧化酶(galactose oxidase)、唾液酸酶(sialidase)和其他]的碳水化合物-結合領域有關。
保守的B.t.序列塊2和3圖譜分別接近領域2的N-端和C-端。因此,這些保守的序列塊2和3是在該等3個功能性領域之間的大概邊界區域。保守的DNA和蛋白質同源性的這些區域已被利用用於工程化重組B.t.毒素(美國專利第6090931號、WO1991001087、WO1995006730、美國專利第5736131號、美國專利第6204246號、美國專利第6780408號、WO1998022595、美國專利申請案第20090143298號,以及美國專利第7618942號)。該DIG-303蛋白質的領域III包含有序列辨識編號:2的胺基酸殘基大概526-685。
在鱗翅目昆蟲中,已被報導的是:Cry1A毒素結合某些種類的受體蛋白質(包括鈣黏蛋白、胺基肽酶和鹼性磷酸酶),其他仍然被鑑定(Honée et al.,1991;Pigott and Ellar,2007)。在鞘翅目昆蟲中,2個受體已被鑑定用於Cry3Aa;在科羅拉多馬鈴薯甲蟲一ADAM金屬蛋白酶(Ochoa-Campuzano et al.,2007)、在粉蟲屬(Tenebrio)一鈣黏蛋白已被鑑定(Fabrick et al.,2009)。考慮到蘇力菌毒素和害蟲的多樣性,被預期的是:額外的受體將被鑑定,那將包括額外種類的蛋白質和膜表面取代物。
已被報導的是:領域I的α-螺旋1在受體結合之後 被移除。Aronson等人(1999)證明:結合至刷狀緣膜囊(brush border membrane vesicles,BBMV)的Cry1Ac被保護免於正好在α-螺旋1後面的殘基59開始的蛋白酶K切割;相似的結果被引用於Cry1Ab。Gomez等人(2002)發現:在BBMV受體結合後所形成的Cry1Ab寡聚體缺乏領域I的α-螺旋1部分。又,Soberon等人(2007)已顯示在三維Cry結構上缺乏涵蓋α-螺旋1的大約60個胺基酸的Cry1Ab和Cry1Ac的N-端刪除突變體能夠在缺少鈣黏蛋白質結合下組合分子量約60kDa的單體成為前-孔(pre-pores)。這些N-端刪除突變體被報導在Cry-抗性昆蟲幼蟲上有活性。再者,Diaz-Mendoza等人(2007)描述在地中海玉米螟(Mediterranean corn borer)[西非蛀莖夜蛾(Sesamia nonagrioides)]上保留活性的43kDa和46kDa的Cry1Ab片段。這些片段被證明包括Cry1Ab的胺基酸殘基116至423;然而,精確的胺基酸序列沒有被闡明並且這些蛋白水解片段的活性的機制未被知曉。Gomez等人(2002)、Soberon等人(2007)以及Diaz-Mendoza等人(2007)的結果與Hofte等人(1986)的那些(報導自Cry1Ab的N-端刪除36個胺基酸導致喪失殺蟲活性)形成對比。
DIG-303的胺基端刪除變異體:在它的方面的一者,本發明提供DIG-303變異體,其中一或多個α-螺旋的所有或部分被刪除以改善殺蟲活性以及避免藉由昆蟲的抗性的發展。這些修飾被作出以提供具有經改善的特性(諸如經改善的標靶害蟲譜、效力和昆蟲抗性管理)的DIG-303變異體。在本發明的一些具體例中,該等標的修飾可影響全長 原毒素活化和孔形成的效率,導致昆蟲中毒。更特別地,為了提供具有經改善的特性的DIG-303變異體,逐步刪除被描述移除部分的編碼N-端的DNA序列。此等刪除移除在領域I的所有α-螺旋1和所有或部分的α-螺旋2,而維持α-螺旋3至7的結構完整性。本發明因此部分有關於藉由工程化領域I的α-螺旋組分用於更有效的孔形成所做出的對Cry蛋白效力的改善。更特別地,本發明提供被設計在與Cry1蛋白質的領域I的α-螺旋1和2具有推定的二級結構同源性的區域具有N-端刪除的經改善的DIG-303蛋白質。
在設計用於N-端刪除變異體的編碼序列,一編碼甲硫胺酸的ATG起始密碼子在該被設計表現刪除變異體的核苷酸序列的5'端被插入。關於被設計供使用在基因轉殖植物的序列,遵守Varshavsky(1997)的“N-端規則”可能是有益的。教示的是:一些胺基酸當被展現作為一蛋白質的N-端殘基時可有助於在真核細胞中蛋白質的不安定性和降解。例如,自在酵母菌和哺乳動物細胞的觀察所收集的數據指示N-端去安定胺基酸是F、L、W、Y、R、K、H、I、N、Q、D、E和可能地P。雖然蛋白質降解機制的細節在生物間可有些不同,上面所看到的N-端去安定胺基酸的相同性的守恆建議相似的機制可作用在植物細胞。例如,Worley等人(1998)發現在植物中該N-端規則包括鹼性和芳香族殘基。可能是藉由植物蛋白酶接近標的B.t.殺蟲蛋白質的α-螺旋3的起始的蛋白水解切割暴露一去安定的N-端胺基酸。此加工可標靶該等被切割的蛋白質用於快速衰變並且限制B.t.殺 蟲蛋白質的累積至不足用於有效的昆蟲控制的位準。因此,對於開始具有去安定胺基酸的一者的N-端刪除變異體的某些實例,一詳細指明一G(甘胺酸)胺基酸的密碼子可被添加在轉譯起始甲硫胺酸與去安定的胺基酸之間。
蛋白酶敏感性變異體昆蟲腸蛋白酶典型地作用在幫助昆蟲自飲食蛋白質獲得所需的胺基酸。最被瞭解的昆蟲消化蛋白酶是絲胺酸蛋白酶,其顯露最常見的類型(Englemann and Geraerts,1980),特別地在鱗翅目物種中。鞘翅目昆蟲具有要比鱗翅目腸更中性至酸性的腸。大多數鞘翅目幼蟲和成蟲(例如CPB)具有稍微酸性的中腸,並且半胱胺酸蛋白酶提供主要的蛋白水解活性(Wolfson and Murdock,1990)。更精確地,Thie和Houseman(1990)鑑定和特徵化在CPB中的半胱胺酸蛋白酶[組織蛋白酶B-樣(cathepsin B-like)和組織蛋白酶H-樣以及天冬胺酸蛋白酶D-樣]。Gillikin等人(1992)特徵化在西方玉米根蟲幼蟲的腸中的蛋白水解活性,並且發現主要地半胱胺酸蛋白酶。美國專利第7230167號揭示一蛋白酶活性有助於組織蛋白酶G存在於西方玉米根蟲。昆蟲腸蛋白酶的多樣性和不同的活性位準可影響一昆蟲對一特定B.t.毒素的敏感性。
在本發明的另一個具體例中,蛋白酶切割位址可被工程化在所欲的位置以影響在某些昆蟲害蟲的易感幼蟲的中腸內的蛋白質加工。這些蛋白酶切割位址可藉由諸如化學基因合成或剪切重疊PCR的方法而被導入(Horton et al.,1989)。例如,絲胺酸蛋白酶辨識序列可被選擇性地插 入在Cry蛋白質結構的特定位址以影響在易感幼蟲的中腸內的所欲刪除點的蛋白質加工。可以此方式被利用的絲胺酸蛋白酶包括鱗翅目中腸絲胺酸蛋白酶,諸如胰蛋白酶(trypsin)或胰蛋白酶-樣酵素(trypsin-like enzymes)、凝乳蛋白酶(chymotrypsin)、彈性蛋白酶(elastase)等等(Christeller等,1992)。再者,藉由定序以未分段的幼蟲中腸蛋白酶製備物所產生的Cry蛋白質消化產物或藉由結合至刷狀緣膜囊(brush border membrane vesicles)而被憑經驗鑑定的刪除位址可被工程化以造成蛋白質活化。藉由基因刪除或藉由導入蛋白酶切割位址所產生的經修飾的Cry蛋白質具有經改善的活性在鱗翅目害蟲[諸如歐洲玉米螟(Ostrinia nubilalis)、西南玉米桿草螟(Diatraea grandiosella)、谷實夜蛾(Helicoverpa zea)、小地老虎(Agrotis ipsilon)、草地貪夜蛾(Spodoptera frugiperda)、甜菜夜蛾(Spodoptera exigua)、小鹿蟲螟(Diatraea saccharalis)、豆白隆切根蟲(Loxagrotis albicosta)]以及鞘翅目害蟲{諸如西方玉米根蟲、南方玉米根蟲、北方玉米根蟲[亦即根螢葉甲屬物種(Diabrotica spp.)]}和其它標靶害蟲。
相同家族的絲胺酸蛋白酶[諸如胰蛋白酶、凝乳蛋白酶和組織蛋白酶G-樣蛋白酶]、鞘翅目絲胺酸蛋白酶[諸如組織蛋白酶(B-樣、L-樣、O-樣和K-樣蛋白酶](Koiwa et al.,2000;和Bown et al.,2004)、鞘翅目金屬蛋白酶(諸如ADAMlO)(Ochoa-Campuzano et al.,2007)和鞘翅目天冬胺酸蛋白酶(諸如組織蛋白酶D-樣和E-樣、胃蛋白酶、 plasmepsin和凝乳酶)可藉由工程化在所欲的加工位址的適當辨識序列而進一步被利用以影響在某些昆蟲害蟲的易感幼蟲的中腸內的Cry蛋白質加工。
一用於導入此等蛋白酶切割位址的較佳位置是在α-螺旋2B和α-螺旋3之間的“間隔(spacer)”區域內。一用於導入蛋白酶切割位址的第二個較佳位置是在α-螺旋3和α-螺旋4之間的間隔區域內。經修飾的DIG-303殺蟲毒素蛋白質藉由基因刪除或藉由導入蛋白酶切割位址而被產生以提供經改善的活性在昆蟲害蟲上,該昆蟲害蟲包括但不受限於科羅拉多馬鈴薯甲蟲(CPB)、玉米根蟲、苜蓿象鼻蟲、棉鈴象鼻蟲和日本甲蟲以及類似之物。
各種不同的技術存在以能夠測定包含有多肽的N-端或C-端殘基的胺基酸的序列。例如,自動化的Edman降解方法可以連續方式被使用以測定具有每個殘基98%準確度的上達30個胺基酸殘基的N-端胺基酸序列。再者,測定該包含多肽的羧基端的胺基酸的序列亦是可能的(Bailey et al.,1992;美國專利第6046053號)。因此,在一些具體例中,已藉由蛋白水解加工(例如藉由自一昆蟲的腸所製備的蛋白酶)而被活化的B.t.Cry蛋白質可被特徵化,並且活化的毒素片段的N-端或-C端胺基酸被鑑定。藉由在編碼序列中的適當位置導入或消除蛋白酶加工位址以容許或消除藉由昆蟲、植物或微生物蛋白酶的一較大變異體蛋白質的蛋白水解切割所產生的DIG-303變異體是在本發明的範疇內。此操作的最終結果被瞭解是產生具有如完整(全長)毒素蛋白 質相同或更好活性的毒素片段分子。
該DIG-303毒素的領域:該DIG-303毒素的個別領域(以及90%、91%、92%、93、94%、95%、96%、97%、98%或99%相同於此等領域的變異體)被預期是有用的在形成與自其他Cry毒素的領域的組合以提供具有增加幅度的害蟲毒性、經改善的效力或增加的蛋白質安定性的新毒素。該DIG-303蛋白質的領域I包含有序列辨識編號:2的大概胺基酸殘基1至300。該DIG-303蛋白質的領域II包含有序列辨識編號:2的大概胺基酸殘基301至525。該DIG-303蛋白質的領域III包含有序列辨識編號:2的大概胺基酸殘基526至685。領域交換或洗牌是另一種用於產生經改變的δ-內毒素蛋白質的其他機制。領域II和III可在δ內毒素蛋白質之間被交換,導致具有經改善的殺蟲活性或標靶譜的雜交或嵌合毒素。領域II涉及受體結合,以及領域III結合某些種類的受體蛋白質,並且可能參與一寡聚毒素前-孔的插入。在其他毒素的一些領域III取代已被顯示產生對抗甜菜葉蛾(Spodoptera exigua)的優越毒性(de Maagd et al.,1996)以及存在Cry毒素領域交換的設計上的指導(Knight et al.,2004)。
用於產生重組蛋白質和試驗它們關於殺蟲活性的方法是本技藝所熟知(參見,例如,Naimov et al.,2001;de Maagd et al.,1996;Ge et al.,1991;Schnepf et al.,1990;Rang et al.,1999)。來自Cry1A和Cry3A蛋白質的領域I已被研究在膜中插入和形成孔的能力。領域I的α-螺旋4和5在膜 插入和孔形成扮演關鍵角色(Walters et al.,1993;Gazit et al.,1998;Nunez-Valdez et al.,2001),加上其它螺旋被提出接觸膜表面像一傘骨(Bravo et al.,2007;Gazit et al.,1998)。
藉由做出一限制數量的胺基酸刪除、取代和添加所產生的DIG-303變異體:胺基酸刪除、取代和添加至序列辨識編號:2的胺基酸序列可容易地以一連續方式而被做出並且此等變異體在殺蟲活性上的效用可藉由生物分析而被試驗。提供改變的數目在數目上被限制,此試驗不涉及不合理的實驗。本發明包括核心毒素(序列辨識編號:2的大概胺基酸1至685)的殺蟲活性變異體,其中上達10、上達15或上達20個胺基酸添加、刪除或取代已被做出。
本發明包括具有一為90%、91%、92%、93、94%、95%、96%、97%、98%或99%相同於序列辨識編號:2的胺基酸1至685的核心毒素節段的DIG-303殺蟲毒素變異體。變異體可藉由製造隨機突變而被做出或者該等變異體可被設計。在被設計的突變體的例子中,當胺基酸相同性被維持在說明生物活性的毒素的關鍵區域或者涉及最終負責生物活性的三維構形的決定時,有一產生具有與天然毒素相似活性的變異體的高可能性。若取代是保守的,一維持活性的最大可能性亦發生。胺基酸可被放置在下面的種類:非-極性,不帶電的極性、鹼性和酸性。保守取代藉此一種類的一胺基酸被替換以相同類型的另一個胺基酸是最不可能實質上改變變異體的生物活性。表1提供屬於各個種類的胺基酸的實例的一列表。
在一些例子中,非-保守性取代亦可被做出。關鍵因素是這些取代必須不顯著地降低該毒素的生物活性。變異體包括起因於突變誘發的在胺基酸序列不同的多肽。由本發明所涵蓋的變異體蛋白質是生物活性的,那是它們繼續擁有天然蛋白質的所欲生物活性,那是,維持殺蟲活性。
變異體蛋白質亦可被設計在序列位準不同但是保留相同或相似的總體必需的三維結構、表面電荷分佈以及類似之物。參見,例如,美國專利第7058515號;Larson等人(2002);Stemmer(1994a,1994b,1995)以及Crameri等人(1996a,1996b,1997)。美國專利第8,513,492 B2號。
核酸:編碼DIG-303殺蟲毒素的經分離的核酸是本發明的一方面。這個包括編碼序列辨識編號:2的核酸和它的互補物,以及編碼序列辨識編號:2的殺蟲變異體的其 它核酸。術語“經分離的”在此上面被定義。因為遺傳密碼的簡併性,各種不同的DNA序列可編碼在此所揭示的胺基酸序列。創造這些編碼相同或實質上相同毒素的另擇的DNA序列是在一本技藝所訓練的技藝者的技術內。
基因合成:編碼該等在此所描述的DIG-303殺蟲毒素的基因可藉由各種不同的本技藝已知的方法而被做出。例如,合成的基因節段和合成的基因可藉由亞磷酸三-酯和亞磷醯胺化學而被做出(Caruthers et al,1987),並且商業銷售商是可獲用的以執行要求的基因合成。全-長基因可以各種不同的方式(包括,例如,藉由限制片段的連接或重疊寡核苷酸的聚合酶連鎖反應組合)而被組合(Stewart and Burgin,2005)。再者,末端基因刪除可藉由使用位址-專一性末端寡核苷酸的PCR擴增被做出。
編碼DIG-303殺蟲毒素的核酸可例如藉由由數個商業供應商的任一者目前所實施的方法的合成建構物而被做出。(例如美國專利第7482119號)。這些基因或它們的部分或變異體亦可被合成地建構,例如,藉由使用一基因合成儀以及例如美國專利第5380831號的設計方法。另擇地,合成或天然存在基因的變異體可使用用於製造點突變的標準分子生物學技術而被容易地建構。這些基因的片段亦可使用商業上可獲得的外核酸酶或內核酸酶根據標準操作程序而被製造。例如,酵素(諸如Bal31)或定點突變可被使用以系統地切斷來自這些基因的末端的核苷酸。又,編碼活性毒素片段的基因片段可使用各種不同的限制酶而被獲 得。
考量到關於一DIG-303殺蟲毒素的胺基酸序列,一編碼序列可藉由使用由所欲的宿主所喜歡的同義密碼子反向轉譯編碼序列而被設計,並且接著使用另擇的同義密碼子精製該序列以移除可在轉錄、轉譯或mRNA安定性引起問題的序列。再者,同義密碼子可被採用以在非-DIG-303讀框(non-DIG-303 reading frames)(亦即讀框2、3、4、5和6)導入停止密碼子以消除假的長開讀框(open reading frames)。
定量多肽或核酸序列相同性:2個胺基酸序列或2個核酸序列的百分比相同性是藉由為了最佳比較的目的首先比對該等序列而被測定。在該等2個序列之間的百分比相同性是由該等序列所共享的相同位置的數目的一函數[亦即,百分比相同性=相同位置的數目/位置的總數目(例如重疊位置)x100]。在一具體例中,該等2個序列是相同長度。在2個序列之間的百分比相同性可使用與下面所描述的那些(有或沒有容許缺口)相似的技術而被測定。在計算百分比相同性,典型地精確相配被計數。
在2個序列之間的百分比相同性的測定可使用一數學演算法而被完成。此一演算法的一非限制性實例是Altschul等人(1990)以及Karlin和Altschul(1990)所具者、如在Karlin和Altschul(1993)所修飾的,並且被併入至BLASTN和BLASTX程式內。BLAST搜尋可被方便地使用以鑑定與一在核酸或蛋白質數據庫中的檢索序列同源(相似) 的序列。BLASTN搜尋可被執行(得分=100,字長=12)以鑑定與本發明所請求的核酸分子具有同源性的核苷酸序列。BLASTX搜尋可被執行(得分=50,字長=3)以鑑定與本發明所請求的殺蟲蛋白質分子具有同源性的胺基酸序列。
缺口BLAST(Altschul et al.,1997)可被利用以獲得缺口比對用於比較的目的。另擇地,PSI-Blast可被使用以執行一偵測在分子之間的遠親關係的重複搜尋(Altschul et al.,1997)。當利用BLAST、缺口BLAST以及PS1-Blast程式時,個別程式的系統內定參數可被使用。參見www.ncbi.nlm.nih.gov。
一被利用於比較序列的數學演算法的一非限制性實例是ClustalW演算法(Thompson et al.,1994)。ClustalW比較序列並且比對整個胺基酸或DNA序列,並且因此可提供關於整個胺基酸序列或核苷酸序列的序列保守性的數據。ClustalW演算法被使用在數種商業上可獲得的DNA/胺基酸分析軟體套件,諸如Vector NTI Program Suite(Invitrogen,Inc.,Carlsbad,CA)的ALIGNX模組。當以ALIGNX比對胺基酸序列時,吾人可方便地使用內定值[具有一為10的缺口開放罰分(Gap open penalty)、一為0.1的缺口延伸罰分(Gap extend penalty)]和blosum63mt2比較矩陣以評估在該等2個序列之間的百分比胺基酸相似性(一致性)或相同性。當以ALIGNX比對DNA序列時,吾人可方便地使用內定值(具有一為15的缺口開放罰分、一為6.6的缺口延伸罰分)和swgapdnamt比較矩陣以評估在該等2個序列之間 的百分比相同性。
一被利用於比較序列的數學演算法的另一個非限制性實例是Myers和Miller(1988)所具者。此一演算法被併入至wSTRETCHER程式,它是wEMBOSS序列比對軟體套件(可獲得的在http://emboss.sourceforge.net/)的部分。wEMBOSS使用利用線性空間的古典動力學程式設計演算法的一修改來計算2個序列的一最佳總體比對。被使用以計算該比對的取代矩陣、缺口插入罰分和缺口延伸罰分可被規定。當利用該Wstretcher程式用於比較核苷酸序列時,一為16缺口開放罰分和一為4的缺口延伸罰分可與評分矩陣檔案EDNAFULL被使用。當被使用於比較胺基酸序列時,一為12的缺口開放罰分和一為2的缺口延伸罰分可與EBLOSUM62評分矩陣檔案被使用。
一被利用於比較序列的數學演算法的一進一步非-限制性實例是Needleman和Wunsch(1970)所具者,其被併入在序列比對軟體套件GAP Version 10和wNEEDLE(http://emboss.sourceforge.net/)。GAP Version 10可使用下列參數而被使用以測定序列相同性或相似性:對於一核苷酸序列,%相同性和%相似性使用50的GAP權重和3的長度權重以及nwsgapdna.cmp評分矩陣而被發現。對於胺基酸序列比較,%相同性或%相似性使用8的GAP權重和2的長度權重以及BLOSUM62評分程式而被測定。
wNEEDLE閱讀2個輸入序列,發現最佳比對沿著它們的整個長度(包括缺口),並且寫入它們的最佳總體序列 比對至檔案。該演算法使用一含有對於每個可能的殘基或核苷酸配對的數值的評分矩陣探索所有可能的比對並且選擇最佳者。wNEEDLE發現具有最大可能得分的比對,其中一比對的得分是相等於取自評分矩陣的配對的總和減去自在所比對的序列的開放和延伸缺口引起的罰分。取代矩陣和缺口開放和延伸罰分由使用者規定。當胺基酸序列被比較時,一為10的預設缺口開放罰分、一為0.5的缺口延伸罰分和EBLOSUM62比較矩陣被使用。當DNA序列使用wNEEDLE被比較時,一為10的缺口開放罰分、一為0.5的缺口延伸罰分和EDNAFULL比較矩陣被使用。
相等的程式亦可被使用。關於“相等的程式”被意欲當與由ALIGNX、wNEEDLE或wSTRETCHER所產生的對應比對相比較時,對於討論中的任何2個序列產生一具有相同的核苷酸或胺基酸殘基配對和一相同的百分比序列相同性的比對之任何序列比較程式。%相同性是在被報導的比對區域(包括在長度上的任何缺口)的2個序列之間相同配對的百分比,以及%相似性是在被報導的比對區域(包括在長度上的任何缺口)的2個序列之間配對的百分比。比對亦可藉由檢查而被手動地執行。
重組宿主:本發明的毒素-編碼基因可被導入至一廣泛不同的微生物或植物宿主內。該毒素基因的表現直接地或間接地導致殺蟲蛋白質的細胞內生產和維持。憑藉適合的微生物宿主[例如假單胞菌屬(Pseudomonas)],該等微生物可被施用至它們將增殖和被攝取的害蟲的環境。結 果是害蟲的一控制。另擇地,裝載該毒素基因的微生物可在延長毒素活性和安定重組宿主細胞的狀況下被處理。該包含有一維持殺蟲活性的本發明的經處理的毒素多肽之經處理的細胞可被施用至標靶害蟲的環境以控制害蟲。
當該B.t.毒素基因經由一適合的DNA建構物(例如,一載體)被導入至一微生物宿主內,以及該宿主呈一活的狀態被施用至環境時,必須的是某些宿主微生物被使用。微生物宿主被選擇,其被知曉佔據一或多種感興趣的作物的“植物圈(phytosphere)”[葉面(phylloplane)、葉圈(phyllosphere)、根圈(rhizosphere)和/或根面(rhizoplane)]。這些微生物被選擇藉此能夠在特定環境(作物和其它昆蟲棲息地)中成功地與野生型本土微生物競爭,提供表現多肽殺蟲劑的基因的安定維持和表現,以及所欲地,提供用於經改善的保護殺蟲劑免於環境降解和不活化。
許多微生物被知曉棲息於廣泛不同的重要作物的葉面(植物葉的表面)和/或根圈(土壤周圍植物根系)。這些微生物包括細菌、藻類和真菌。特別感興趣的是微生物,諸如細菌[例如假單胞菌屬(Pseudomonas)、歐文氏菌屬(Erwinia)、沙雷氏菌屬(Serratia)、克雷伯氏菌屬(Klebsiella)、黃單胞菌屬(Xanthomonas)、鏈黴菌屬(Streptomyces)、根瘤菌屬(Rhizobium)、中華根瘤菌(Sinorhizobium)、紅假單胞菌屬(Rhodopseudomonas)、嗜甲基菌屬(Methylophilius)、土壤桿菌屬(Agrobacterium)、醋桿菌屬(Acetobacter)、乳桿菌屬(Lactobacillus)、節桿菌屬 (Arthrobacter)、固氮菌屬(Azotobacter)、明串珠菌屬(Leuconostoc)和產鹼菌屬(Alcaligenes)]。特別感興趣的是此等植物圈細菌物種,如丁香假單胞菌(Pseudomonas syringae)、螢光假單胞菌(Pseudomonas fluorescens)、黏質沙雷氏菌(Serratia marcescens)、木醋桿菌(Acetobacter xylinum)、根癌土壤桿菌(Agrobacterium tumefaciens)、放射形土壤桿菌(Agrobacterium radiobacter)、類球紅假單胞菌(Rhodopseudomonas spheroides)、野油菜黃單胞菌(Xanthomonas campestris)、苜猜中華根瘤菌(Sinorhizobium meliloti)[從前的苜猜根瘤菌(Rhizobium meliloti)]、真養產鹼桿菌(Alcaligenes eutrophus)以及維捏蘭德固氮菌(Azotobacter vinelandii)。進一步感興趣的是真菌,特別地酵母菌[例如糖酵母屬(Saccharomyces)、隱球酵母屬(Cryptococcus)、克魯維氏酵母屬(Kluyveromyces)、擲抱酵母屬(Sporobolomyces)、紅酵母屬(Rhodotorula)和短柄黴屬(Aureobasidium)],以及特別感興趣的是植物圈酵母菌物種[諸如深紅酵母菌(Rhodoto rularubra)、膠粘紅酵母菌(R.glutinis)、海濱紅酵母菌(R.marina)、橙黃紅酵母菌(R.aurantiaca)、淺白色隱球酵母菌(Cryptococcus albidus)、流散隱球酵母菌(C.diffluens)、羅崙氏隱球酵母菌(C.laurentii)、羅菌糖酵母菌(Saccharomyces rosei)、善地糖酵母菌(S.pretoriensis)、釀酒酵母菌(S.cerevisiae)、紅色擲抱酵母(Sporobolomyces roseus)、香氣擲孢酵母菌(S.odorus)、佛地克魯維氏酵母菌(Kluyveromyces veronae)和出芽短柄 黴菌(Aureobasidium pollulans)]。特別感興趣的是有色微生物(pigmented microorganisms)。一高度地較佳的宿主是螢光假單胞菌。
本發明的經分離的毒素多肽和組成物:本發明的DIG-303殺蟲毒素多肽可被處理或製備,例如,製造一經配方的殺蟲劑組成物。經配方的殺蟲劑組成物的實例包括蛋白質組成物、可噴灑的蛋白質組成物、一餌料基質(bait matrix)或呈其他遞送系統。在一實例中,表現本發明的一DIG-303殺蟲毒素的B.t.細胞或重組宿主細胞可使用標準技藝培養基和發酵技術而被培養。在發酵週期完成後,來自發酵液的B.t.孢子或其他重組宿主細胞和/或毒素晶體可藉由本技藝已知的方法而被分離。B.t.孢子或重組宿主細胞亦可在被施用之前被處理或被配方供施用至植物。例如,經分離的B.t.抱子和/或毒素晶體可被化學地處理以延長殺蟲活性,以及因此包括本發明的一經處理的多肽。B.t.毒素多肽在重組宿主生長以及接著處理該B.t.以延長殺蟲活性的方法被知曉並且已被公開。參見,例如,美國專利第4,695,462號和第4,695,455號。
本發明的經分離或處理的DIG-303殺蟲毒素可被配方成細碎的微粒固體顆粒、丸劑(pellets)、可濕性粉末、粉劑(dusts)、水性懸浮液(aqueous suspensions)或分散液(dispersions)、乳劑(emulsions)、噴霧劑(spray)、液體濃縮物的組成物或其他殺蟲劑配方。這些殺蟲劑配方藉由組合一在此的DIG-303殺蟲劑多肽與佐劑、稀釋劑、表面活性 劑、分散劑、惰性載體和其他組分而被製造以方便操作和施用俾以控制一或更多的標靶害蟲。此等配方成分是本技藝所知曉,如同施用的方法和測定提供所欲的殺蟲活性的B.t.孢子和/或經分離的DIG-303多肽結晶的位準方法。
用於控制昆蟲害蟲的方法:當一昆蟲開始與一有效數量的在此所揭示的DIG-303毒素{其經由一殺蟲劑組成物[例如,一經配方的蛋白質組合物(們)、可噴灑的蛋白質組成物(們)、一誘餌基質、基因轉殖植物表現或另一種遞送系統]而被遞送}接觸時,結果典型地是昆蟲的死亡,或者在使該等毒素對昆蟲是可獲得的來源之後不攝食。
標的蛋白質毒素可以各種不同的方式被“施用”或提供以接觸標靶昆蟲。例如,本發明的DIG-303殺蟲毒素可在與佐劑、稀釋劑、載體等等被配方之後而被施用以提供呈細碎的微粒固體、顆粒、丸劑、可濕性粉末、粉劑、水性懸浮液或分散液和乳劑的形式的組成物。另擇地,該DIG-303殺蟲多肽可藉由可在本技藝被使用或熟知的基因轉殖植物(其中該蛋白質在該植物被生產或存在)而被遞送。該等毒素基因的表現亦可在植物的特定組織(諸如根、葉等等)中選擇性地被達到。這個,可經由例如組織-專一性啟動子的使用而被實現。噴灑施用是另一個實例並且亦在本技藝被知曉。標的蛋白質可被適當地配方用於所欲的終端使用,並且接著被噴灑(或以其它方式施用)在植物上和/或在植物周圍/要被保護的植物的附近-在一侵染被發現之前、在標的昆蟲被發現之後、在之前和之後這兩者以及類 似者。餌料顆粒,例如,亦可被使用並且在本技藝被知曉。
基因轉殖植物。在此所揭示的DIG-303殺蟲毒素可被使用以實際上保護任何類型的植物免於一昆蟲害蟲的損傷。此等植物的實例包括馬鈴薯、茄子、番茄、胡椒、煙草和其他在茄科的植物。此等植物的其他實例包括玉蜀黍、向日葵、大豆、棉、蕓苔(canola)、稻、高粱、小麥、大麥、蔬菜、觀賞植物、胡椒(包括辣椒)、甜菜、水果和草皮,僅以這些為例。用於轉形植物的方法是本技藝所熟知,而且例示性轉形方法在實施例被描述。
本發明的一較佳具體例是具有編碼該DIG-303殺蟲毒素、殺蟲蛋白質或它的變異體的基因的植物的轉形。該等轉形植物藉由控制數量的標的殺蟲蛋白質或它的變異體存在於該轉形植物的細胞而對於由一昆蟲標靶害蟲的攻擊有抗性。藉由併入編碼B.t.殺蟲毒素的殺蟲特性的遺傳材料至由一特定昆蟲害蟲所吃的植物的基因組內,成蟲或幼蟲會在消耗食物植物之後死亡。單子葉植物和雙子葉植物分類的許多成員已被轉形。基因轉植農藝作物以及水果和蔬菜是商業上感興趣的。此等作物包括但不限於玉蜀黍、稻、大豆、蕓苔、向日葵、苜蓿、高粱、小麥、棉、花生、番茄、馬鈴薯以及類似之物。數種技術存在用於導入外來遺傳材料至植物細胞內,並且用於獲得安定地維持和表現該被導入的基因的植物。此等技術包括加速塗布在微粒上的遺傳材料直接地至細胞內(美國專利第4945050號和美國專利第5141131號)。植物可使用農桿菌屬(Agrobacterium) 技術而被轉形,參見美國專利第5177010號、歐洲專利第EP131624B1號、歐洲專利第EP159418B1號、歐洲專利第EP176112B1號、美國專利第5149645號、EP120516B1號、美國專利第5464763號、美國專利第4693976號、歐洲專利第EP116718B1號、歐洲專利第EP290799B1號、歐洲專利第EP320500B1號、歐洲專利第EP604662B1號、美國專利第7060876號、美國專利第6037526號、美國專利第6376234號、歐洲專利第EP292435B1號、美國專利第5231019號、美國專利第5463174號、美國專利第4762785號、美國專利第5608142號以及美國專利第5159135號。其他轉形技術包括WHISKERSTM技術,參見美國專利第5302523號和美國專利第5464765號。電穿孔技術亦已被使用以轉形植物,參見WO1987006614、美國專利第5472869號、美國專利第5384253號、WO199209696、美國專利第6074877號、WO1993021335和美國專利第5679558號。除了數種用於轉形植物的技術以外,與外來基因接觸的組織的類型亦可變化。此組織將包括但不限於胚胎發生組織(embryogenic tissue)、癒傷組織第I型和第II型(callus tissue type I and type II)、下胚軸(hypocotyls)、分生組織(meristem)以及類似之物。幾乎所有植物組織可在去分化的期間使用在一技藝者的技藝內的適當技術而被轉形。
編碼DIG-303昆蟲毒素的基因可使用如上面所揭示的本技藝所熟知的各種不同的技術而被插入至植物細胞內。例如,許多包含有一容許選擇該等經轉形的微生物細 胞的標記和一在大腸桿菌作用的複製系統的克隆載體是可獲得的用於製備和修飾用於插入至高等植物內的外來基因。此等操作可包括,例如,插入如所欲用於意欲用途的突變、截斷、添加或取代。該等載體包含有,例如,PBR322、pUC系列、M13mp系列、pACYC184等等。因此,該編碼該Cry蛋白質或變異體的序列可在一適合的限制位址被插入至該載體內。所形成的質體被使用於轉形大腸桿菌,它的細胞在一適合的營養培養基中被培養,接著被收穫和溶解,藉此可用數量的該質體被回收。序列分析、限制片段分析、電穿孔和其它生物化學-分子生物學方法一般而言被進行作為分析的方法。在各個操作之後,該被使用的DNA序列可被切割並且連結至下一個DNA序列。各個被操作的DNA序列可在相同或其它質體中被克隆。
含有T-DNA的載體用於轉形植物細胞的使用已被深入地研究和充分地描述在歐洲專利第120516B1號;Lee和Gelvin(2008)、Fraley等人(1986)以及An等人(1985),並且被完善建立在本領域。
一旦該被插入的DNA已被整合入植物基因組內,它是相對穩定的貫穿後續世代。該被使用以轉形該植物細胞的載體通常含有一編碼一賦予該經轉形的植物細胞對一除草劑或一抗生素[諸如諸如草丁膦(phosphinothricin)畢拉草(Bialaphos)、康黴素(Kanamycin)、新黴素(Neomycin)、G418、博來黴素(Bleomycin)、潮黴素(Hygromycin)]抗性的選擇性標記基因或一編碼對草甘膦 (glyphosate)、甲胺蝶呤(methotrexate)、咪唑啉酮(imidazolinones)、磺醯基脲(sulfonylureas)和三唑并嘧啶(triazolopyrimidine)除草劑[諸如氯磺(chlorosulfuron)、溴苯腈(bromoxynil)、得拉本(dalapon)和類似之物]有抗性或耐受性的基因。進一步感興趣的是賦予對除草劑[諸如吡氟氯禾靈(haloxyfop)、快伏草(quizalofop)、禾草靈(diclofop)和類似之物]耐受性的基因,如由AAD基因(美國專利申請案第20090093366號)所例示的。該被個別地採用的選擇性標記基因應該因此允許轉形細胞的選擇,而不含有該被插入的DNA的細胞的生長藉由選擇性化合物而被抑制。
許多技術可用於插入DNA至一宿主植物細胞內。那些技術包括以藉由農桿菌(Agrobacterium tumefaciens)或農桿根群菌(Agrobacterium rhizogenes)作為轉形劑所遞送的T-DNA的轉形。此外,融合植物原生質體與含有要被遞送的DNA的脂質體、直接注射DNA、基因槍轉形(biolistics transformation)(微粒轟炸)或電穿孔以及其他可能的方法可被採用。
在本發明的一較佳具體例中,植物將被轉形以其中蛋白質編碼區的密碼子使用已被最佳化用於植物的基因。參見,例如,美國專利第5380831號。例如,本發明的DIG-303殺蟲毒素可被最佳化用於在一雙子葉植物(諸如馬鈴薯、茄子、番茄、胡椒、煙草和其他在茄科的植物)表現。本發明的DIG-303殺蟲毒素亦可被最佳化用於在其他雙子葉植物或在單子葉植物[諸如玉蜀黍(玉米)]表現。又,有利 地,編碼一截斷毒素的植物將被使用。該截斷毒素典型地將編碼約55%至約80%的全長毒素。用於產生合成的B.t.基因供使用在植物的方法在本技藝被知曉(Stewart 2007)。
不管轉形技術,該基因較佳地被併入至一適合於藉由包括一植物啟動子在該載體而在該植物細胞中表現B.t.殺蟲毒素基因和變異體的基因轉移載體內。除了植物啟動子,來自各種不同來源的啟動子可被有效地使用在植物細胞以表現外來基因。例如,細菌來源的啟動子[諸如章魚鹼合成酶啟動子(octopine synthase promoter)、胭脂鹼合成酶啟動子(nopaline synthase promoter)、甘露鹼合成酶啟動子(mannopine synthase promoter)];病毒起源的啟動子[諸如花椰菜嵌紋病毒(cauliflower mosaic virus,CaMV)的35S和19S啟動子]以及類似之物可被使用。植物-衍生的啟動子包括但不限於核酮糖-1,6-二磷酸(RUBP)羧酶小次單元(ssu)[ribulose-1,6-bisphosphate(RUBP)carboxylase small subunit(ssu)]、β-伴球蛋白啟動子(beta-conglycinin promoter)、菜豆蛋白啟動子(phaseolin promoter)、ADH[醇去氫酶(alcohol dehydrogenase)]、熱休克啟動子(heat-shock promoter)、ADF[肌動蛋白解聚合因子(actin depolymerization factor)]啟動子以及組織專一性啟動子(tissue specific promoter)。啟動子亦可含有某些可改善轉錄效率的增強子序列元件。典型的增強子包括但不限於ADH1-內含子1(ADH1-intron 1)和ADH1-內含子6。組成啟動子(constitutive promoter)可被使用。組成啟動子指導連續基因 表現在幾乎所有細胞類型和幾乎所有時間[例如肌動蛋白、泛素(ubiquitin)、CaMV35S]。組織專一性啟動子負責基因表現在特定細胞或組織類型(諸如葉或種子)[例如玉米蛋白(zein)、油質蛋白(oleosin)、油菜籽蛋白(napin)、ACP[醯基載體蛋白質(acyl carrier protein)],並且這些啟動子亦可被使用。啟動子亦可被使用在植物發育的一某個階段的期間是活性的以及在特定的植物組織和器官中有活性的。此等啟動子的實例包括但不限於根專一性的、花粉專一性的、胚專一性的、玉米穗黃專一性的(corn silk specific)、棉纖維專一性的、種子胚乳專一性的、韌皮部專一性的以及類似的啟動子。
在某些情況下,所欲的是使用一可誘導的啟動子。一可誘導的啟動子負責基因的表現反應一特定信號{諸如:物理刺激(例如熱休克基因);光(例如RUBP羧酶);激素[例如糖皮質激素(glucocorticoid)];抗生素[例如四環素(tetracycline)];代謝產物;以及壓力(例如乾旱)}。其它作用在植物的所欲轉錄和轉譯元件可被使用,諸如5'非轉譯前導序列(5' untranslated leader sequences)、RNA轉錄終止序列RNA transcription termination sequences)和聚-腺苷酸添加信號序列(poly-adenylate addition signal sequences)。許多植物-專一性基因轉移載體是本技藝所知曉。
本發明包括不是全能的(非-全能性)植物細胞、不是繁殖材料(例如,葉細胞在一些具體例中;種子細胞被排除自一些具體例中)並且不能分化成整個植物的植物細 胞。本發明包括具有使用不是用於再生成一整個植物的植物細胞。例如,該植物細胞可被使用以產生一蛋白質(諸如本發明的一DIG-303蛋白質)。因此,本發明的植物細胞包括具有使用不是全能性(那是,本發明的一些細胞不是可再生成一整個植物)的那些。然而,一些具體例不包括種子細胞和可再生成一整個植物的植物細胞。
含有昆蟲抗性(IR)性狀的基因轉殖作物在玉米和棉植物流行遍及北美,並且這些性狀的使用是全球地擴大。組合IR和除草劑耐受性(HT)性狀的商業基因轉殖作物已由多家種子公司所開發。這些包括由B.t.殺蟲蛋白質所賦予的IR性狀和HT性狀{諸如對乙醯乳酸合成酶(Acetolactate Synthase,ALS)抑制劑[諸如磺脲(sulfonylureas)、咪唑啉酮(imidazolinones)、三唑并嘧啶(triazolopyrimidine)、磺磺苯胺類(sulfonanilides)和類似之物]、麩醯胺合成酶(Glutamine Synthetase,GS)抑制劑[諸如畢拉草、固殺草(glufosinate)和類似之物]、4-羥基苯基丙酮酸酯二氧酶(4-HydroxyPhenylPyruvate Dioxygenase,HPPD)抑制劑[諸如甲基磺草酮(mesotrione)、異唑草酮(isoxaflutole)和類似之物]、5-烯醇丙酮莽草酸-3-磷酸合成酶(5-EnolPyruvylShikimate-3-Phosphate Synthase,EPSPS)抑制劑[諸如草甘磷(glyphosate)和類似之物]以及乙醯-輔酶A羧酶(Acetyl-Coenzyme A Carboxylase,ACCase)抑制劑[諸如吡氟氯禾靈、快伏草、禾草靈和類似之物]的耐受性}的組合。其他實例被知曉,其中基因轉殖地提供的蛋白質提 供植物對除草劑化學種類[諸如苯氧酸除草劑(phenoxy acids herbicides)和吡啶基氧乙酸酯生長素除草劑(pyridyloxyacetates auxin herbicides)(參見WO2007053482),或者苯氧酸除草劑和芳基氧基苯氧基丙酸酯除草劑(aryloxyphenoxypropionates herbicides)(參見美國專利申請案第20090093366號)]的耐受性。經由IR性狀控制複數種害蟲問題的能力是一有價值的商業產品概念,並且若昆蟲控制性狀和雜草控制性狀被組合在相同植物,這個產品概念的便利被增強。再者,經改善的價值可經由藉由一B.t.殺蟲蛋白質(諸如本發明所具者)賦予的IR性狀與一或多個其它HT性狀(諸如上面所提到的那些),加上一或多個額外的輸入性狀[例如由B.t.-衍生的或其它的殺蟲蛋白質所賦予的其它昆蟲抗性、由諸如RNAi和類似之物的機制所賦予的昆蟲抗性、線蟲抗性(nematode resistance)、疾病抗性、壓力耐受性、經改善的氮利用和類似之物]或輸出性狀(例如,高油含量、健康油組成、營養改善和類似之物)的單一植物組合而被獲得。此等組合可經由慣常育種(育種堆疊)或共同作為一涉及同時導入複數個基因(分子堆疊或共轉形)的新穎轉形品項而被獲得。益處包括在一提供次級益處給生產者和/或消費者的作物植物中管理昆蟲害蟲的能力以及經改善的雜草控制。因此,本發明可被使用組合以其它性狀以提供一具有靈活地和有效地成本控制任何數目的農藝問題的能力的經改善的作物品質的完整農藝包裝。
標靶害蟲。本發明的DIG-303昆蟲毒素特別適合 用於控制昆蟲害蟲。鞘翅目是每年引起非常大數量損害的農業、園藝和家庭害蟲的一重要族群。這個大的昆蟲目涵蓋葉-和根-進食的幼蟲和成蟲,包括,例如,金花蟲科(Chrysomelidae)、瓢蟲科(Coccinellidae)、象鼻蟲科(Curculionidae)、鰹節蟲科(Dermestidae)、叩甲科(Elateridae)、金龜子科(Scarabaeidae)、木蠹蟲科(Scolytidae)和擬步甲科(Tenebrionida)的昆蟲科的成員。在這些科內被包括的是在金花蟲科的葉甲(leaf beetles)和潛葉蟲(leaf miners)、馬鈴薯甲蟲(potato beetles){例如,科羅拉多馬鈴薯甲蟲[科羅拉多金花蟲(Leptinotarsa decemlineata Say)]、葡萄肖金花蟲(grape colaspis)[葡萄肖金花蟲(Colaspis brunnea Fabricius)]、黑角負泥蟲(cereal leaf beetle)[黑角負泥蟲(Oulema melanopus Linnaeus)]、向日葵金花蟲(sunflower beetle)[向日葵金花蟲(Zygogramma exclamationis Fabricius)]}以及在瓢蟲科的甲蟲{例如,墨西哥豆瓢蟲(Mexican bean beetle)[墨西哥豆瓢蟲(Epilachna varivestis Mulsant)]}。進一步的實例是在金龜子科的金龜子和其他甲蟲{例如,日本甲蟲(Japanese beetle)[日本金龜子((Popillia japonica Newman)]、北方圓頭犀金龜(northern masked chafer)[白色蠐螬(white grub),圓頭犀金龜(Cyclocephala borealis Arrow)]、南方圓頭犀金龜(southern masked chafer)(southern maskedchafer)[白色蠐螬,圓頭無斑犀金龜(Cyclocephala immaculata Olivier)]、歐洲金龜子(European chafer)[歐洲金龜子(Rhizotrogus majalis Razoumowsky)]、白色蠐螬(Phyllophaga crinita Burmeister)、胡蘿蔔甲蟲(carrot beetle)[胡蘿蔔甲蟲(Ligyrus gibbosus De Geer)]以及黑金龜(Holotrichia spp)和鳃金龜屬(Melolontha spp.)的甲蟲}。鞘翅目昆蟲的進一步實例是象鼻蟲(weevils){例如,棉鈴象鼻蟲(boll weevil)[墨西哥棉鈴象(Anthonomus grandis Boheman)]、水稻象鼻蟲(rice water weevil)[水稻水象鼻蟲(Lissorhoptrus oryzophilus Kuschel)]、糧象鼻蟲(granary weevil)(Sitophilus grananus Linnaeus),米象鼻蟲(rice weevil)[米象鼻蟲(Sitophilus oryzae Linnaeus)]以及車軸草葉象鼻蟲(clover leaf weevil)[車軸草葉象甲(Hypera punctata Fabricius)]}。亦被包括的是玉蜀黍象鼻蟲(maize billbug)[玉米象蟲(Sphenophorus maidis Chittenden)]、跳蚤甲蟲(flea beetles){例如,玉米跳蚤甲蟲(corn flea beetle)[玉米跳甲(Chaetocnema pulicara Melsheimer)]以及十字花科跳蚤甲蟲(crucifer flea beetle)[黃曲條跳甲(Phyllotreta cruciferae Goeze)]}、十一星瓜葉甲(spotted cucumber beetle)[十一星黃瓜甲蟲(Diabrotica undecimpunctata)]以及根蟲(rootworms){例如,西方玉米根蟲(western corn rootworm)[玉米根螢葉甲(Diabrotica virgifera virgifera LeConte)]、北方玉米根蟲(northern corn rootworm)[巴氏根葉甲(Diabrotica barben Smith & Lawrence)]以及南方玉米根蟲[黃瓜十一星葉甲(Diabrotica undecimpunctata howardi Barber)]}。鞘翅目害蟲的進一步實例是條金龜亞科 (Rutelinae)[麗金龜(shining leaf chafers)]的甲蟲,諸如銅金龜屬(Anomala)[包括A.marginataA.lucicolaA.oblivia和東方麗金龜(A.orientalis)]。額外的鞘翅目昆蟲是來自鰹節蟲科(Dermestidae)的小鰹節蟲(carpet beetles)、來自叩甲科(Elateridae)[例如,梳瓜叩甲屬(Melanotus spp.)、寬胸叩頭蟲屬(Conoderus spp.)、金針蟲屬(Limonius spp.)、扣甲屬(Agriotes spp.)、線蟲屬(Ctenicera spp.)、Aeolus spp.]的扭轉線蟲(wireworms)、來自木蠹蟲科(Scolytidae)的小蠹蟲(bark beetles)以及來自偽步行蟲科(Tenebrionidae)[例如偽金針蟲屬(Eleodes spp)]的甲蟲。上面所列出的任何屬(以及其他),一般而言,亦可藉由包括DIG-303殺蟲多肽單獨或組合以一其他殺蟲劑的殺蟲組成物而被標靶作為本發明的一部分。在任何這些屬的任何額外的昆蟲(作為標靶)亦被包括在這個發明的範疇內。
使用DIG-303昆蟲毒素以控製作物植物的鞘翅目害蟲被預期。在一些具體例中,Cry蛋白質可被經濟地採用以控制昆蟲害蟲,包括但不限於,例如,根蟲[諸如西方玉米根蟲(玉米根螢葉甲)、北方玉米根蟲(巴氏根葉甲)和南方玉米根蟲(黃瓜十一星葉甲)]以及蠐螬{諸如北方圓頭犀金龜(Cyclocephala borealis)[北方圓頭犀金龜(northern masked chafer)]、南方圓頭犀金龜(Cyclocephala immaculate)[南方圓頭犀金龜(southern masked chafer)]和麗金龜(Popillia japonica)[日本甲蟲(Japanese beetle)]的幼蟲}。
鱗翅目是每年引起很一非常大數量損傷的農 業、園藝、和家庭害蟲的另一個重要族群。本發明提供DIG-303毒素組合以其他殺蟲劑的使用以控制在這個目內的昆蟲害蟲是在這個發明的範疇內。這個昆蟲目涵蓋葉-和根-為食的幼蟲和成蟲,包括例如昆蟲科燈蛾科(Arctiidae)、旋蛾科(Gelechiidae)、尺蠼蛾科(Geometridae)、枯葉蛾科(Lasiocampidae)、毒蛾科(Lymantriidae)、夜蛾科(Noctuidae)、螟蛾科(Pyralidae)、透翅蛾科(Sesiidae)、天蛾科(Sphingidae)、大蛾科(Tineidae)和捲葉蛾科(Tortricidae)的成員。鱗翅目昆蟲害蟲包括,但不限於:小蠟螟(Achoroi agrisella)、西部黑頭長翅卷蛾(Acleris gloverana)、黑頭長翅卷蛾(Acleris variana)、棉褐帶捲蛾(Adoxophyes orana)、小地老虎(Agrotis ipsilon)[球菜夜蛾(black cutworm)]、棉葉波紋夜蛾(Alabama argillacea)、秋尺蠖(Alsophila pometaria)、臍橙螟(Amyelois transitella)、地中海粉斑螟(Anagasta kuehniella)、桃條麥蛾(Anarsia lineatella)、粉紅條犀額蛾(Anisota senatoria)、姬透目天蠶蛾(Antheraea pernyi)、大豆夜蛾(Anticarsia gemmatalis)、黃卷蛾屬(Archips sp.)、帶捲蛾屬(Argyrotaenia sp.)、粗皮夜蛾(Athetis mindara)、家蠶(Bombyx mori)、棉潛蛾(Bucculatrix thurberiella)、乾果斑螟(Cadra cautella)、色卷蛾屬(Choristoneura sp.)、向日葵细卷蛾(Cochylls hospes)、苜猜黃蝶(Colias eurytheme)、外米綴蛾(Corcyra cephalonica)、Cydia latiferreanus、蘋果小卷蛾(Cydia pomonella)、核桃配片舟蛾(Datana integerrima)、西伯利亞松毛蟲(Dendrolimus sibericus)、葡萄小捲葉野螟(Desmia feneralis)、甜瓜絹野螟(Diaphania hyalinata)、黃瓜絹野螟(Diaphania nitidalis)、西南玉米桿草螟(Diatraea granaiosella)[西南玉米螟(southwesterncorn borer)]、小鹿蟲螟(Diatraea saccharalis)[甘蔗螟(sugarcane borer)]、偷林黃尺蠖(Ennomos subsignaria)、蛀莖螟蛾(Eoreuma loftini)、煙草粉螟(Esphestia elutella)、菩提松尺蠖(Erannis tilaria)、鹽澤燈蛾(Estigmene acrea)、Eulia salubricolaEupocoellia ambiguella、女貞細卷蛾(Eupoecilia ambiguella)、黃毒蛾(Euproctis chrysorrhoea)、暗緣地老虎(Euxoa messoria)、蠟螟(Galleria mellonella)、梨小食心蟲(Grapholita molesta)、葡萄葉煙翅斑蛾(Harrisina americana)、亞曲夜蛾(Helicoverpa subflexa)、谷實夜蛾(Helicoverpa zea)[玉米穗蟲(corn earworm)]、煙芽夜蛾(Heliothis virescens)[菸夜蛾(tobacco budworm)]、行列半白大香蛾(Hemileuca oliviae)、向日葵酮斑螟(Homoeosoma electellum)、美國白蛾(Hyphantia cunea)、番煎蟲蛾(Keiferia lycopersicella)、鐵杉尺蠖(Lambdina fiscellaria fiscellaria)、西方鐵杉尺蠖(Lambdina fiscellaria lugubrosa)、雪毒蛾(Leucoma salicis)、葡萄花翅小卷蛾(Lobesia botrana)、豆白隆切根蟲(Loxagrotis albicosta)[豆白緣切根蟲(western bean cutworm)]、網維客頁野螟(Loxostege sticticalis)、舞毒蛾(Lymantria dispar)、Macalla thyrisalis、松毛蟲屬(Malacosoma sp.)、甘藍夜蛾(Mamestra brassicae)、蓓帶夜 蛾(Mamestra conf igurata)、番茄天蛾(Manduca quinquemaculata)、煙草天蛾(Manduca sexta)、豆莢螟(Maruca testulalis)、斑馬紋夜蛾(Melanchra picta)、冬尺蠖蛾(Operophtera brumata)、古毒蛾屬(Orgyia sp.)、歐洲玉米螟(Ostrinia nubilalis)[歐洲玉米螟(European corn borer)]、春尺蠖(Paleacrita vernata)、蛀莖夜蛾(Papiapema nebris)(常見的莖螟)、巨燕尾蝶(Papilio cresphontes)、棉紅鈴蟲(Pectinophora gossypiella)、加州櫟石蛾(Phryganidia californica)、斑幕潛葉蛾(Phyllonorycter blancardella)、暗脈菜粉蝶(Pieris napi)、菜粉蝶(Pieris rapae)、苜猜綠夜蛾(Plathypena scabra)、Platynota flouendana、荷蘭石竹小卷蛾(Platynota stultana)、洋蓟羽蛾(Platyptilia carduidactyla)、印度谷斑螟(Plodia interpunctella)、小菜蛾(Plutella xylostella)[菱紋背蛾(diamondback moth)]、美國紋白蝶(Pontia protodice)、白點黏蟲(Pseudaletia unipuncta)[行軍蟲(armyworm)]、大豆尺夜蛾(Pseudoplasia includens)、雜食尺蠖(Sabulodes aegrotata)、紅山背舟蛾(Schizura concinna)、麥蛾(Sitotroga cerealella)、蘋白小卷蛾(Spilonta ocellana)、草地貪夜蛾(Spodoptera frugiperda)[秋行軍蟲(fall armyworm)]、甜菜葉蛾(Spodoptera exigua)[甜菜葉蛾(beet armyworm)]、Thaurnstopoea pityocampaEnsola bisselliella、粉紋夜蛾(Trichoplusia ni)[擬尺蠖(cabbage looper)]、溫室螟蛾(Udea rubigalis)、Xylomyges curiails以及蘋果巢蛾(Yponomeuta padella)。
使用該等DIG-303殺蟲毒素以控制寄生性線蟲(parasitic nematodes){包括,但不限於,根結線蟲(root knot nematode)[南方根結線蟲(Meloidogyne incognita)]以及大豆胞囊線蟲(soybean cyst nematode)[胞囊線蟲(Heterodera glycines)]}亦被考慮。
抗-毒素抗體:針對在此所揭示的毒素或針對相等毒素或這些毒素的片段的抗體可容易地使用這個技藝的標準操作程序而被製備。此等抗體可用於偵測該等DIG-303毒素的存在。
一旦該B.t.殺蟲毒素已被分離,對該毒素專一性的抗體可藉由在本技藝所熟知的慣常方法而被提高。在數週或數月的一期間重複注射至一選定的宿主內將引發免疫反應並導致顯著的抗-B.t.毒素血清力價。較佳的宿主是哺乳動物物種,以及更佳的物種是兔子、山羊、綿羊和小鼠。自此等被免疫的動物所抽取的血液可藉由已建立的方法被加工以獲得與該B.t.殺蟲毒素反應的抗血清(多克隆抗體)。該抗血清可接著根據本技藝已知的技術藉由吸附至該毒素而被親和純化。經親和純化的抗血清可藉由使用本技藝已知的操作程序分離在該抗血清中的免疫球蛋白分離部分而被進一步純化。所形成的材料將是一與該B.t.殺蟲毒素反應的免疫球蛋白的異質族群。
抗-B.t.毒素抗體亦可藉由製備一種由該B.t.殺蟲毒素的一合成胜肽片段被綴合至一免疫原性載體(immunogenic carrier)所構成的半-合成免疫原而被產生。可 用於製造胜肽片段的眾多方案和儀器是本技藝所熟知。許多適合的免疫原性載體[諸如牛血清白蛋白(bovine serum albumin)或鎖孔帽貝血藍蛋白(keyhole limpet hemocyanin)]亦是本技藝所熟知,如同用於偶合免疫原和載體蛋白質的技術。一旦該半-合成的免疫原已被構建,用於製造對該B.t.殺蟲毒素片段專一性的抗體的操作程序是相同於被使用於製造與天然的B.t.毒素反應的抗體的那些。
抗-B.t.毒素單克隆抗體(monoclonal antibodies,MAbs)容易地使用經純化的B.t.殺蟲毒素而被製備。用於生產MAb的方法已被實施超過20年,並且是那些熟習此技藝者所熟知。重複的腹膜內或皮下注射配於佐劑的經純化的B.t.殺蟲毒素將在大多數動物引發一免疫反應。超免疫的B-淋巴球(hyperimmunized B-lymphocytes)自該動物被移除,並且與一能夠被無限地培養的適合的融合夥伴細胞株(fusion partner cell line)融合。B-淋巴球可被超免疫並且被使用在生產MAb的較佳動物是哺乳動物。更佳的動物是大鼠和小鼠,以及最佳的是BALB/c小鼠品系。
許多哺乳動物細胞株是用於生產融合瘤(hybridomas)的適合的融合夥伴。許多此等株可獲得自美國典型培養物保藏中心(American Type Culture Collection,ATCC,Manassas,VA)和商業供應商。較佳的融合夥伴細胞株衍生自小鼠骨髓瘤(mouse myelomas),並且HL-1® Friendly myeloma-653細胞株(Ventrex,Portland,ME)是最佳的。一旦被融合,所形成的融合瘤被培養在一選擇性生長 培養基歷時1至2週。2個被熟知的選擇系統是可獲得的用於自該被混合的融合瘤培養物消除未被融合的骨髓瘤細胞或在骨髓瘤細胞之間的融合。選擇系統的選擇視被免疫的小鼠的品系和被使用的骨髓瘤融合夥伴而定。由Taggart和Samloff(1983)所描述的AAT選擇系統可被使用;然而,由Littlefield(1964)所描述的HAT[次黃嘌呤(hypoxanthine)、胺基蝶呤(aminopterin)、胸腺嘧啶核苷(thymidine)]選擇系統是較佳的,因為它與上面所提到的較佳小鼠品系和融合夥伴的相容性。用過的生長培養基接著被篩選免疫專一性MAb分泌。酵素結合免疫吸附分析法(Enzyme linked immunosorbent assay,ELISA)操作程序最適合用於這個目的;雖然,適合於大體積篩選的放射免疫分析法亦是可接受的。複數種被設計以連續地削減相當大數量的不相關或更少所欲培養物的篩選可被執行。分泌與該B.t.殺蟲毒素反應的MAb的培養物可被篩選用於與已知B.t.殺蟲毒素的交叉反應性。較佳地結合至該較佳的B.t.殺蟲毒素的MAb可使用商業上可獲得的分析而被同型化。較佳的MAb是IgG種類所具者,並且更佳的MAb是IgG1和IgG2a亞同型(subisotypes)。
分泌該等較佳的MAb的融合瘤培養物可被亞-克隆數次以建立單克隆性和安定性。用於亞-克隆真核、非-黏附細胞培養物的熟知方法包括有限稀釋、軟瓊脂糖和螢光活化的細胞分選技術。在各個亞克隆之後,所形成的培養物較佳地被再-分析抗體分泌和同型以確保一安定較佳 的MAb-分泌培養物已被建立。
該等抗-B.t.毒素抗體在偵測本發明所請求的B.t.殺蟲毒素和它的變異體或片段的各種不同的方法中是有用的。被熟知的是:被標定以一報導基團的抗體可被使用以鑑定抗原在各種不同的環境中的存在。被標定以放射性同位素的抗體在放射免疫分析法中已被使用數十年以(具有大的精確度和敏感性)鑑定抗原在各種不同的生物流體中的存在。最近,經酵素標定的抗體已被使用作為一用於放射性標定的抗體的替代物在ELISA分析法。再者,對本發明的B.t.殺蟲毒素免疫反應的抗體可被結合至一固定化物質[諸如一聚苯乙烯井(polystyrene wel)或顆粒]並且被使用在免疫分析法以測定該B.t.毒素是否存在於一試驗樣品中。
使用探針的偵測:一用於鑑定本發明的毒素和基因的進一步方法是經由寡核苷酸探針的使用。這些探針是可偵測的核苷酸序列。這些序列可藉由一適當的放射性標記而成為可偵測的,或者可如在美國專利第6268132號所描述的被內在地製造螢光。如同在本技藝所熟知的,若該探針分子和核酸樣品藉由在該等2個分子之間形成強的鹼基-配對鍵而雜交,可合理地假設該探針和樣品具有實質的序列同源性。較佳地,雜交在嚴格條件下藉由本技藝所熟知的技術[如被描述,例如,在Keller和Manak(1993)中]而被進行。該探針的偵測提供一種用於以一已知方式測定雜交是否已發生的手段。此一探針分析提供一用於鑑定本發明的毒素-編碼基因的快速方法。依據本發明被使用作為探針 的核苷酸節段可使用一DNA合成儀和標準操作程序而被合成。這些核苷酸序列亦可被使用作為PCR引子以擴增本發明的基因。
雜交:如那些熟習分子生物學者所熟知的,2個核酸的相似性可藉由它們雜交的傾向而被特徵化。如在此所使用的,術語“嚴格條件”或“嚴格雜交條件”被意欲意指在一探針將雜交至(黏合)至它的標靶序列至一要比其他序列可偵測地更大程度(例如,超過背景至少2倍)的條件。嚴格條件是序列-依賴性的,而且在不同情況中將會不同。藉由控制雜交和/或清洗條件的嚴格性,100%互補於該探針的標靶序列可被鑑定(同源性探查)。另擇地,嚴格條件可被調節以容許在序列中的一些錯配,藉此較低程度的相似性被偵測(異源性探查)。一般而言,一探針在長度上小於約1000個核苷酸,較佳地在長度上小於500個核苷酸。
典型地,嚴格條件將是鹽濃度小於約1.5M Na離子的那些,典型地約0.01至1.0M Na離子濃度(或其它鹽類)在pH 7.0至pH 8.3以及溫度是至少約30℃用於短探針(例如10至50個核苷酸)和至少約60℃用於長探針(例如大於50個核苷酸)。嚴格條件亦可以添加去安定劑(諸如甲醯胺)而被達到。例示性低嚴格條件包括在37℃下與一具有30%至35%甲醯胺、1M NaCl、1% SDS(十二烷基硫酸鈉)的緩衝溶液雜交,以及在50℃至55℃下一在1X至2X SSC(20X SSC=3.0M NaCl/0.3M檸檬酸三鈉)的清洗。例示性中等嚴格條件包括在37℃下在40%至45%甲醯胺、1.0M NaCl、1% SDS 中雜交,以及在55℃至60℃下一在0.5X至1X SSC的清洗。例示性高嚴格條件包括在37℃下在50%甲醯胺、1M NaCl、1% SDS中雜交,以及在60℃至65℃下一在0.1 X SSC的清洗。選擇性地,清洗緩衝液可包含有約0.1%至約1% SDS。雜交的持續時間一般而言小於約24小時,通常約4至約12小時。
專一性典型地是雜交後清洗的函數,關鍵因素是最終清洗溶液的離子強度和溫度。對於DNA/DNA雜合物,熱熔點(Tm)是在50%的一互補的標靶序列雜交至一完全地相配的探針的溫度(在所定義的離子強度和pH)。Tm降低達約1℃對於各個1%的錯配;因此,Tm、雜交條件和/或清洗條件可被調整以促進所欲相同性的序列的黏合。例如,若具有相同性>90%的序列被尋找,該Tm可被降低10℃。一般而言,嚴格條件被選擇要比用於特定序列和它的互補物在一被定義的離子強度和pH下的Tm低約5℃。然而,高嚴格條件可利用一在要比該Tm低1℃、2℃、3℃或4℃的雜交和/或清洗;中等嚴格條件可利用一在要比該Tm低6℃、7℃、8℃、9℃或10℃的雜交和/或清洗;以及低嚴格條件可利用一在要比該Tm低11℃、12℃、13℃、14℃、15℃或20℃的雜交和/或清洗。
Tm(呈℃)可被實驗地測定,或者可藉由計算而被估算。對於DNA-DNA雜合物,Tm可自Meinkoth和Wahl(1984)的方程式而被估算:Tm(℃)=81.5℃+16.6(log M)+0.41(%GC)-0.61(%甲醯胺)- 500/L;其中[M]是單價陽離子的莫耳濃度,%GC是鳥苷(guanosine)和胞嘧啶(cytosine)核苷酸在DNA中的百分比,%甲醯胺是甲醯胺在雜交溶液(w/v)中的百分比,以及L是雜合物的長度(呈鹼基對)。
另擇地,Tm藉由下面方程式(Beltz et al.,1983)而被描述。Tm(℃)=81.5℃+16.6(log[Na+])+0.41(%GC)-0.61(%甲醯胺)-600/L其中[Na+]是鈉離子的莫耳濃度,%GC是鳥苷和胞嘧啶核苷酸在DNA中的百分比,%甲醯胺是甲醯胺在雜交溶液(w:v)中的百分比,以及L是雜合物的長度(呈鹼基對)。
使用該等方程式、雜交和清洗組成物以及所欲的Tm,那些熟習此技藝者將瞭解:在雜交和/或清洗溶液的嚴格性的變化被固有地描述。若所欲程度的錯配導致一小於45℃(水性溶液)或32℃的Tm(甲醯胺溶液)的Tm,較佳的是增加SSC濃度,藉此一較高的溫度可被使用。一針對核酸的雜交的廣泛指導在Tijssen(1993)和Ausubel等人(1995)中被發現。亦參見Sambrook等人(1989)。
在南方墨漬(Southern blots)上經固定化的DNA與放射性標定的基因專一性探針的雜交可藉由標準方法(Sambrook et al.,如上述)而被執行。被使用於標定聚核苷酸探針的放射性同位素可包括32P、33P、14C或3H。併入放射性同位素至聚核苷酸探針分子內可藉由那些熟習分子生物學領域者所熟知的數種方法的任一者而被做出(參 見,例如Samtoook等人,如上述)。一般而言,雜交和後續清洗可在容許偵測與所請求的毒素編碼基因具有同源性的標靶序列的嚴格條件下被進行。對於雙股DNA基因探針,雜交可在低於DNA雜交物的Tm 20℃至25℃下在6X SSPE、5X鄧哈特溶液(Denhardt's Solution)、0.1% SDS、0.1mg/mL變性DNA{20X SSPE是3M NaCl、0.2M NaHPO4和0.02M EDTA[乙二胺四醋酸鈉鹽(ethylenediamine tetra-acetic acid sodium salt)];100X鄧哈特溶液是20gm/L聚乙烯吡咯烷酮(Polyvinylpyrollidone)、20gm/L Ficoll type 400和20gm/L牛血清白蛋白[分離部分V(fraction V)]}下被進行過夜。
清洗可典型地被進行如下:
在室溫在1X SSPE、0.1% SDS中歷時15分鐘2次(低嚴格清洗)。
在Tm-20℃下在0.2X SSPE、0.1% SDS中歷時15分鐘1次(中等嚴格清洗)。
對於寡核苷酸探針,雜交可在低於雜交物的Tm 10℃至20℃下在6X SSPE、5X鄧哈特溶液、0.1% SDS、0.1mg/mL變性DNA中被進行過夜。關於寡核苷酸探針的Tm可藉由下列方程式(Suggs et al.,1981)被測定。
Tm(℃)=2(T/A鹼基對的數目)+4(G/C鹼基對的數目)
清洗可典型地被進行如下:
在室溫在1X SSPE、0.1% SDS中歷時15分鐘2次(低嚴格清洗)。
在雜交溫度在1X SSPE、0.1% SDS中歷時15分鐘1次(中 等嚴格清洗)。
用於雜交的探針分子以及在探針和標靶分子之間所形成的雜合物分子可藉由不是放射性標定的方式而成為可偵測的。此等另擇的方法被意欲在本發明的範疇內。
在此所提到或引用的所有專利、專利申請案、臨時申請案和刊物以它們的整體被併入本案以作為參考資料至它們與這個說明書的清楚教示沒有不一致的程度。
藉由在此術語“遺傳材料”的使用,它意指包括所有基因、核酸、DNA和RNA。術語“dsRNA”意指雙股RNA。關於聚核苷酸、DNA、RNA、寡核苷酸和引子的核苷酸殘基的命名,以及關於蛋白質的胺基酸殘基的命名,標準的IUPAC縮寫被採用遍及這個文件。核酸序列以標準的5'至3'方向被呈現,以及蛋白質序列以標準的胺基(N)端至羧基(C)端方向被呈現。
應該被瞭解的是:在此所描述的實施例和具體例僅用於例示說明的目的,以及根據它們的各種不同的修飾或變化將是熟習此技藝者會想到的並且被包括在這個申請案的精神和範圍以及隨文檢附的申請專利範圍的範疇內。這些實施例不應被解釋為限制。
除非被明確地指示或暗示,術語“一(a)”、“一(an)”和“該”表示如在此所使用的“至少一個”。
除非另外註明,所有百分比以重量計,以及所有溶劑混合比例以體積計。所有溫度是呈攝氏度。
實施例1
一編碼DIG-303毒素的基因的分離
除非另有指示,在這個和後續實施例所描述的分子生物學和生物化學操作藉由在例如Ausubel等人(1995)和Sambrook等人(1989)以及它們的更新中所描述的標準方法而被執行。一編碼在此被命名為DIG-303的殺蟲Cry蛋白質的核酸被分離自亦被知曉為DBt10340的B.t.菌株PS18A。用於聚合酶鏈反應(PCR)的退化性正向和反向引子被設計和使用以擴增一與來自一基因組DNA庫的Cry32同源性的DNA片段。該被擴增的片段的測定序列被使用於額外的基因組移動以獲得DIG-303的完整開讀框。序列辨識編號:1是編碼該全長DIG-303蛋白質的3771bp核苷酸序列。序列辨識編號:2是自序列辨識編號:1所推論的全長DIG-303蛋白質的1257個胺基酸序列。
實施例2
在細菌宿主的DIG-303嵌合毒素
標準的克隆方法被使用在建構被工程化以生產由如上面所描述的DIG-303核心毒素編碼序列(編碼胺基酸1-685)和Cry1Ab C-端原毒素編碼節段(各個由玉蜀黍-最佳化的編碼序列所編碼)所構成的DIG-303嵌合體毒素的螢光假單胞菌(Pseudomonas fluorescens,Pf)表現質體。限制性內切酶被獲得自New England BioLabs(NEB;Ipswich,MA)以及T4 DNA連接酶(Invitrogen)被使用於DNA連接。質體製備使用NucleoSpin®質體套組(Macherey-Nagel Inc,Bethlehem,PA)按照供應商的指示而被執行。DNA片段使用QIAquick 凝膠萃取套組(Qiagen)在瓊脂糖Tris-乙酸凝膠電泳之後被純化。該被線性化的載體以NEB南極磷酸酶(NEB Antarctic Phosphatase)而被磷酸化俾以增強重組分子的形成。
基本克隆策略需要亞克隆一具有該DIG-303 Cry1Ab嵌合體編碼序列(CDS)的DNA片段至pD0W1169內在例如SpeISalI限制位址,藉此該DIG-303嵌合體CDS在來自質體pKK223-3(PL Pharmacia,Milwaukee,WI)的Ptac啟動子和rrnBT1T2終止子的表現控制下被放置。pDOW1169是一中等複製質體(medium copy plasmid),具有RSF1010複製起點、一pyrF基因和一核醣體結合位址在含有蛋白編碼區域的DNA片段被導入的限制酶辨識位址之前(美國專利第7618799號)。該等表現質體藉由電穿孔被轉形至DC454(一接近野生型的具有突變△pyrFlsc::lacIQI的螢光假單胞菌菌株)或它的衍生物,在SOC-大豆水解產物培養基中被回收,並且被塗佈在選擇性培養基(缺少尿嘧啶的M9葡萄糖瓊脂,Sambrook等人,如上述)。轉形和選擇方法的細節一般而言被描述可獲得的在Squires等人(2004)、美國專利申請案第20060008877號、美國專利第7681799號和美國專利申請案第20080058262號,在此被併入本案以做為參考資料。重組克隆藉由限制消化小量製備的質體DNA而被鑑定。適合用於螢光假單胞菌的生長的各種不同的培養基被利用(例如,如在Huang等人2007和美國專利申請案第20060008877號所描述的)在來自生產不溶的B.t.殺蟲蛋白質包涵體的螢光假單胞菌發酵的細胞中。
用於特徵化和昆蟲生物分析的DIG-303嵌合體的生產藉由搖瓶生長的懷有表現建構物的螢光假單胞菌菌株而被完成。生長在補充以葡萄糖和微量元素的M9培養基中的種子培養物被使用以接種所定義的基本培養基。DIG-303嵌合體編碼序列的表現在一於30℃以搖動的24小時的初始培育之後藉由添加異丙基-β-D-1-硫代吡喃半乳糖苷(isopropyl-β-D-1-thiogalactopyranoside,IPTG)而被誘導。培養物在誘導的時間以及在誘導後的各種不同的時間被取樣。細胞密度藉由在600nm(OD600)的光密度而被測量。其他適合於螢光假單胞菌的生長的培養基亦可被利用(例如,如在Huang等人2007和美國專利申請案第20060008877案所描述的)在來自生產不溶的B.t.殺蟲蛋白質包涵體(IB)的螢光假單胞菌發酵的細胞中。簡言之,細胞被分解,丸粒(pellet)和上清液分離部分藉由離心而被製備,該丸粒被再懸浮並且藉由再懸浮在溶解緩衝液被重複地清洗直到上清液變成無色以及IB丸粒變得堅實和在顏色上呈灰白色。最終的丸粒被清洗,被再懸浮在含有2mM EDTA的無菌-過濾的蒸餾水中,並且被儲存在-80℃。上清液分離部分藉由管柱層析法被富含用於該重組蛋白質。
製備物藉由SDS_PAGE而被分析。標靶條帶的定量藉由比較關於對牛血清白蛋白(BSA)樣品在相同凝膠上運行的條帶的密度值而被做出以產生一標準曲線。該樣品緩衝液接著被改變至10mM CAPS[3-(環己胺基)1-丙磺酸(3-(cyclohexamino)1-propanesulfonic acid)]pH10,使用拋棄 式PD-10管柱(GE Healthcare,Piscataway,NJ)。
該濃縮的萃取物藉由SDS_PAGE相對於扣除背景的BSA標準品而被分析和定量以產生一標準曲線以計算DIG-303嵌合體的濃度。
實施例3
設計一玉蜀黍密碼子-最佳化的序列序列辨識編號:3
一熟習植物分子生物學的技藝者將瞭解:複數個DNA序列可被設計以編碼一單一胺基酸序列。一種增加一用於一感興趣的蛋白質的編碼區域的表現的常見方法是以它的密碼子組成物類似宿主的總密碼子組成物(其中該基因被指定要被表現)的此一方式修改編碼區域。關於合成基因的設計和生產的指導可被發現在,例如,WO1997013402、美國專利第6,166,302號和美國專利第5,380,831號。
一具有一玉蜀黍密碼子傾向的DNA序列被設計和合成以在基因轉殖單子葉植物產生一DIG-303殺蟲蛋白質。一用於玉蜀黍(maize)[玉蜀黍(Zea mays L.)]的密碼子使用表自數千種被放置在GenBank(www.ncbi.nlm.nih.gov)的序列所獲得蛋白質編碼序列而被計算。一重標的玉蜀黍密碼子集在省略任何被使用小於約10%的用於那個胺基酸的總密碼子使用的同義密碼子之後被計算。
為了得到編碼序列辨識編號:3的DIG-303蛋白質或它的殺蟲片段的玉蜀黍-密碼子-最佳化的DNA序列,針對天然的DIG-303DNA序列(序列辨識編號:1)的取代被作 出,藉此所形成的DNA序列具有玉蜀黍-最佳化的密碼子傾向表的總密碼子組成物。該等序列的進一步精煉被做出以消除非所欲的限制酶辨識位址、可能的植物內含子剪接位址、長運行的A/T或C/G殘基以及可與mRNA安定性、轉錄或轉譯在植物細胞中的編碼區域干擾的其他模體(motif)。其它改變係導入所欲的限制酶辨識位址以及消除長內部開讀框(除了+1的框)。這些改變全部被作出在保留玉蜀黍-傾向的重標密碼子組成物的限制的範圍內。
實施例4
在細菌宿主建構一編碼該DIG-303毒素的表現質體
標準的克隆方法被使用在被工程化以生產由玉蜀黍-最佳化的編碼序列所編碼的DIG-303的螢光假單胞菌(Pf)表現質體的建構。限制內切酶被獲得自New England BioLabs(NEB;Ipswich,MA)以及T4 DNA連接酶(Invitrogen)被使用於DNA連接。質體製備使用NucleoSpin®質體套組(Macherey-Nagel Inc,Bethlehem,PA)按照供應商的指示而被執行。DNA片段使用QIAquick凝膠萃取套組(Qiagen)在瓊脂糖Tris-乙酸凝膠電泳之後被純化。該被線性化的載體以NEB南極磷酸酶而被磷酸化以增強重組分子的形成。
一具有該如由序列辨識編號:3所提供的DIG-303編碼序列(CDS)的DNA片段被亞克隆至pDOW1169內在例如SpeISalI限制位址,藉此該DIG-303 CDS在來自質體pKK223-3(PL Pharmacia,Milwaukee,WI)的Ptac啟動子和rrnBT1T2終止子的表現控制之下被放置。pDOW1169是一 中等複製質體,具有RSF1010複製起點、一pyrF基因和一核醣體結合位址在含有蛋白質編碼區域的DNA片段可被導入的限制酶辨識位址之前(美國專利第7618799號)。該表現質體(pDAB107162,含有該DIG-303編碼序列)藉由電穿孔被轉形至DC454(一接近野生型的具有突變的△pyrFlsc::lacIQI螢光假單胞菌菌株)或它的衍生物,在SOC-大豆水解產物培養基中被回收,並且被塗佈在選擇性培養基(缺少尿嘧啶的M9葡萄糖瓊脂,Sambrook等人,如上述)。轉形和選擇方法一般而言被描述可獲得的在Squires等人(2004)、美國專利申請案第20060008877號、美國專利第7681799號和美國專利申請案第20080058262號,在此被併入本案以做為參考資料。重組克隆藉由限制消化小量製備的質體DNA而被鑑定。所形成的表現菌株被知曉為DPf21990在Dow AgroSciences Recombinant Culture Collection。
實施例5
製備DIG-303蛋白質樣品
用於特徵化和昆蟲生物分析的DIG-303的生產藉由在搖瓶生長的懷有表現質體pDAB107162的螢光假單胞菌菌株DPf21990的DIG-303的表現而被完成。生長在補充以葡萄糖和微量元素的M9培養基中的種子培養物被使用以接種所定義的基本培養基。DIG-303編碼序列的表現在一於30℃以搖動的24小時的初始培育之後藉由添加異丙基-β-D-1-硫代吡喃半乳糖苷(IPTG)而被誘導。培養物在誘導 的時間以及在誘導後的各種不同的時間被取樣。細胞密度藉由在600nm(OD600)的光密度而被測量。最終的丸粒被清洗,被再懸浮在含有2mM EDTA的無菌-過濾的蒸餾水中,並且被儲存在-80℃。該包涵體(IB)丸粒藉由離心被收集、再懸浮以及藉由再懸浮在溶解緩衝液被重複地清洗直到上清液變成無色以及該IB丸粒變得堅實和在顏色上呈灰白色。
IB製備物藉由SDS_PAGE被分析。標靶條帶的定量藉由比較關於對牛血清白蛋白(BSA)樣品在相同凝膠上運行的條帶的密度值而被做出以產生一標準曲線。標靶蛋白質接著是藉由使用pH10的10mM CAPS[3-(環己胺基)1-丙磺酸]緩衝液並且在4℃在一平台上輕輕搖晃一整夜而自該包涵體被萃取出。經溶解的DIG-303被離心以及所形成的上清液被濃縮。該被濃縮的萃取物藉由SDS_PAGE相對於扣除背景的BSA標準品而被分析和定量以產生一標準曲線以計算DIG-303的濃度。
實施例6
DIG-303殺蟲毒素的昆蟲活性
DIG-303被試驗並且發現具有殺蟲活性在鞘翅目昆蟲[科羅拉多馬鈴薯甲蟲(科羅拉多金花蟲)]的幼蟲上。
一含有全細胞(表2)或經純化的蛋白質(溶解的或有如包涵體;表4)的溶液在以二齡科羅拉多馬鈴薯甲蟲(CPB,科羅拉多金花蟲)幼蟲所進行的生物分析中被試驗殺蟲活性。昆蟲蛋自Bayer Corp(Pittsburg,PA)被收到。
生物分析在128-井塑膠盤被進行。各個井含有0.5mL的水瓊脂和一以一打孔器(cork borer)所切出的1.5cm直徑的茄子(Eggplant)[茄子(Solanum melongena)]“黑美人”葉盤。試驗葉盤被處理以40μl的三倍稀釋的DIG-303全細胞。被使用作為正對照用於殺蟲劑活性的葉盤被處理以1μg/mL的Cry3Aa全長原毒素。負對照葉盤被處理以緩衝液或不被葉處理。
被處理的葉盤被保持在一通風櫥直到在表面上的液體已蒸發或被吸收至飼料內。在羽化後大概2天,個別幼蟲以一被弄濕的駝毛刷子而被挑選並且被放置在一經處理的葉盤上,每井1隻幼蟲。被侵擾的井接著被密封以被開孔以容許氣體交換的透明塑膠的黏著片(C-D International,Pitman,NJ)。11至16個重複被完成用於上面所列出的各個處理。在2天培育之後,葉盤損傷的估計百分比、死昆蟲的數目和存活昆蟲的重量被記錄。生物分析盤在控制的環境條件[28℃,~40%相對濕度,16:8(光:暗)]下被保持。百分比死亡率和百分比生長抑制被計算用於各個處理。生長抑制(GI)被計算如下:GI=[1-(TWIT/TNIT)/(TWIBC/TNIBC)] 其中TWIT是在該處理中昆蟲的總重量,TNIT是在該處理中昆蟲的總數目,TWIBC是在背景調查(緩衝液對照)中昆蟲的總重量,以及TNIBC是在背景調查(緩衝液對照)中昆蟲的總數目。生物分析結果被總結在下面的表2和表4。生物分析結果顯示有較少的葉損傷和增加的生長抑制對於全細胞 DIG-303 1:10稀釋處理(表2)。重複的生物分析證明DIG-303製備物的攝入引起科羅拉多馬鈴薯甲蟲的死亡率和生長抑制(表4)。
DIG-303被試驗並且發現具有殺蟲活性在鱗翅目昆蟲菱紋背蛾(小菜蛾)的幼蟲(表3)。菱紋背蛾(DBM)生物分析在96-井生物分析盤(C-D International,Pitman,NJ)被進行。一為20μl整分部分的三重稀釋的全細胞懸浮體被遞送在各個井的多物種鱗翅目昆蟲飼料(Southland Products, Lake Village,AR)的表面上。該等經處理的盤被風乾,並且一個別的幼蟲(在羽化之後24至48小時)被放置在該被處理的飼料表面。該等被侵擾的井接著被密封以被開孔以容許氣體交換的透明塑膠的黏著片(C-D International,Pitman,NJ)。生物分析盤在被控制的環境條件(28℃,40%相對濕度,16:8h光:暗週期)下被保持歷時5天。重複的生物分析證明:DIG-303製備物的攝入引起菱紋背蛾的死亡率(表3)。
DIG-303被試驗並且發現具有殺蟲活性在鞘翅目昆蟲玉米根蟲[西方玉米根蟲(Diabrotica vigifera vigifera)的幼蟲](表5)。關於西方玉米根蟲,相似於DBM昆蟲生物分析的方法被跟隨,除了生物分析在128-井生物分析盤被進行和一Dow AgroSciences LLC專賣的根蟲飼料被使用以及80至100μl的整分部分溶液被使用以處理該飼料表面。被暴露至各個蛋白質樣品的昆蟲的總數目、死昆蟲的數目和存活昆蟲的重量被記錄在所有的昆蟲生物分析。關於西部玉米根蟲分析胰蛋白酶活化的Cry3Aa和Cry34+Cry35被使用作為正對照。負對照包括水;未被處理的水;Cry1F;20mM檸檬酸鈉,pH 3.5;以及10mM CAPS,pH 10。
來自包涵體的富含的DIG-303被試驗在鱗翅目昆蟲,相似於DBM昆蟲生物分析的方法被跟隨用於玉米穗蟲(corn earworm,CEW)、歐洲玉米螟(European corn borer,ECB),以及秋行軍蟲(fall armyworm,FAW)使用相似於在菱紋背蛾上所做出的試驗的方法。沒有活性被觀察到對抗CEW、ECB和FAW(數據未被顯示)。
實施例7
農桿菌轉形(Agrobacterium transformation)
標準克隆方法被使用在構建二元植物轉形和表現質體。限制性內切酶和T4 DNA連接酶被獲得自NEB。質體製備使用NucleoSpin®質體製備套組或NucleoBond® AX Xtra Midi套組(均來自Macherey-Nagel)按照製造商的指示 而被執行。DNA片段使用QIAquick PCR純化套組或QIAEX II凝膠萃取套組(這兩者來自Qiagen)在凝膠分離之後被純化。
包含有一編碼一DIG-303殺蟲毒素的核苷酸序列的DNA片段藉由一商業供應商(例如DNA2.0,Menlo Park,CA)而被合成並且被供應作為克隆片段在一質體載體中。編碼其他DIG-303毒素的其他DNA序列藉由含有適當核苷酸序列的建構物的標準分子生物學操作而被獲得。該編碼該經修飾的DIG-303片段的DNA片段被結合至其他DIG-303殺蟲毒素編碼區域片段或其他B.t.(Cry)編碼區域片段在適當的限制位址以獲得一編碼所欲的全長DIG-303毒素蛋白質的編碼區域。
關於DIG-303殺蟲毒素的全長或經修飾的編碼序列(CDS)在NcoISacI限制位址被亞克隆至一植物表現質體內。含有適當Cry編碼區域的所形成的植物表現盒在植物表現元件(例如,植物可表現的啟動子、3'末端轉錄終止和聚腺苷酸添加決定位以及類似之物)的控制之下利用,例如,Gateway®技術或標準的限制酶片段克隆操作程序而被亞克隆至一個二元載體質體內。若Gateway®技術被利用,例如ClonaseTM(Invitrogen)可被使用以重組該等全長和經修飾的基因植物表現盒至一個二元植物轉形質體內。該二元植物轉形載體包括一當該質體存在於大腸桿菌和農桿菌細胞時賦予對抗生素觀黴素(spectinomycin)抗性的細菌選擇性標記基因。該二元載體質體亦包括一在所欲的宿主植 物中作用的植物可表現的選擇性標記基因,即,編碼對抗生素康黴素、新黴素和G418抗性的轉位子(transposon)Tn5的胺基糖苷磷酸轉移酶基因(aminoglycoside phosphotransferase gene,aphII)。
農桿菌(Agrobacterium tumefaciens)菌株Z707S(一種Z707的鏈黴素-抗性衍生物;Hepburn等人,1985)的電-勝任細胞(Electro-competent cells)被製備並且使用電穿孔而被轉形(Weigel and Glazebrook,2002)。在電穿孔之後,1mL的YEP培養液[gm/L:酵母菌萃取物,10;蛋白腖(peptone),10;NaCl,5]被添加至光析管,並且該細胞-YEP懸浮液被轉移至一為15mL培養管用於在28℃下在一具有固定攪拌的水浴中培育歷時4小時。該等細胞被塗佈在具有觀黴素(200μg/mL)和鏈黴素(250μg/mL)的YEP+瓊脂(25gm/L)上,並且盤子在28℃被培育歷時2-4天。完全分開的單一菌落被選擇並且被劃線在具有觀黴素和鏈黴素的新鮮YEP+瓊脂盤上,以及在28℃培育歷時1-3天。
確認該DIG-303殺蟲毒素基因在該二元植物轉形載體的存在是藉由PCR分析使用載體-專一性引子與從被選擇的農桿菌菌落所製備的模板質體DNA而被執行。細胞丸粒自一為4mL整分部分的一為15mL生長在如先前具有觀黴素和鏈黴素的YEP的過夜培養基使用Qiagen Spin Mini Preps執行製造商的指示而被萃取。來自該被使用在農桿菌電穿孔轉形的二元載體的空質體DNA被包括作為一對照。PCR反應使用來自Invitrogen的Taq DNA聚合酶按照製造商 的指示在0.5X濃度而被完成。PCR反應在一以下列條件所安排的MJ Research Peltier Thermal Cycler中被進行:步驟1)94℃歷時3分鐘;步驟2)94℃歷時45秒;步驟3)55℃歷時30秒;步驟4)72℃歷時1分鐘每kb的預期產物長度;步驟5)29次至步驟2;步驟6)72℃歷時10分鐘。在循環之後該反應被維持在4℃。該等擴增產物藉由瓊脂糖凝膠電泳(例如0.7%至1%瓊脂糖,w/v)被分析,並且藉由溴化乙啶染色而被看見。PCR產物是相同於質體對照的一菌落被選擇。
含有該DIG-303殺蟲毒素基因插入的另一個二元植物轉形載體藉由由那些熟習農桿菌操作的技藝者所熟知的標準分子生物學方法而自候選農桿菌分離株所製備的質體DNA的限制消化指紋圖譜而被執行。
實施例8
在雙子葉植物生產DIG-303殺蟲毒素
阿拉伯芥(Arabidopsis)轉形 阿拉伯芥(Arabidopsis thaliana)Col-01使用花浸法(floral dip method)(Weigel and Glazebrook,2002)而被轉形。選定的農桿菌菌落被使用以接種1mL至15mL含有用於選擇的適當抗生素的YEP培養液的培養物。該培養物在28℃以在220rpm的固定攪拌被培育過夜。各個培養物被使用以接種2個500mL含有用於選擇的適當抗生素的YEP培養液的培養物,並且新培養物在28℃以固定攪拌被培育過夜。該等細胞在室溫在大概8700 x g被丸粒化歷時10分鐘,並且所形成上清液被丟棄。細胞丸粒被溫和地再懸浮於500mL的滲透培養基[含 有:1/2x Murashige和Skoog鹽(Sigma-Aldrich)/Gamborg的B5維生素(Gold BioTechnology,St.Louis,MO)、10%(w/v)蔗糖、0.044μM苯甲基胺基嘌呤(10μL/公升的1mg/mL儲液配於DMSO)和300μL/公升Silwet L-77]。大概1個月齡的植物被浸泡至培養基內歷時15秒,小心確保浸沒最新的花序。該等植物接著被側放並且被覆蓋(透明的或不透明的)歷時24小時,以水清洗,並且被筆直地放置。該等植物被生長在22℃,以一為16-小時光/8-小時暗的光週期。在浸泡後大概4週,種子被收穫。
阿拉伯芥生長和選擇 新鮮收穫的T1種子被容許在室溫在乾燥劑存在下乾燥至少7天。種子被懸浮在一為0.1%瓊脂/水(Sigma-Aldrich)溶液,並且接著在4℃成層歷時2天。為了製備用於種植,在10.5英寸x 21英寸發芽盤(T.O.Plastics Inc.,Clearwater,MN)中的Sunshine Mix LP5(Sun Gro Horticulture Inc.,Bellevue,WA)被覆蓋以細蛭石,以荷阿格蘭培養液(Hoagland's solution)(Hoagland and Arnon,1950)地下灌溉直到弄濕,接著容許排水24小時。成層種子(stratified seed)被播種在蛭石上,並用以保濕罩(KORD Products,Bramalea,Ontario,Canada)覆蓋歷時7天。種子發芽並且植物在一ConvironTM生長箱室(Models CMP4030或CMP3244;Controlled Environments Limited,Winnipeg,Manitoba,Canada)在長日照條件(16小時光/8小時暗)下在一為120-150μmol/m2秒的光強度於恆定溫度(22℃)和濕度(40-50%)下生長。植物最初被澆水以荷阿格蘭培養液並且 隨後以去離子水以保持土壤濕潤但不潮濕。
在播種後5-6天移除罩,並且植物被噴灑以一化學選擇劑以殺死自非轉形種子所發芽的植物。例如,若由該二元植物轉形載體所提供的植物可表現的選擇性標記基因是一patbar基因(Wehrmann et al.,1996),轉形植物可藉由噴灑以一Finale的1000X溶液[5.78%草銨膦(glufosinate ammonium),Farnam Companies Inc.,Phoenix,AZ.]而被選擇。2個後續噴灑在5-7天間隔被實施。存活者(積極地生長的植物)在最後噴灑之後7-10天被鑑定並且被移植至以Sunshine Mix LP5所製備的盆。被移植的植物以一濕罩覆蓋歷時3-4天,並且被放置在一於上面所提到的生長條件下的ConvironTM生長箱室。
那些熟習雙子葉植物轉形的技藝者將瞭解:當其它植物可表現的選擇性標記基因(例如除草劑耐受基因)被使用時,選擇轉形植物的其它方法是可獲得的。
基因轉殖阿拉伯芥的昆蟲生物分析 表現DIG-303殺蟲毒素蛋白質的基因轉殖阿拉伯芥品系被證明在人工飼料重疊分析中對抗敏感性昆蟲物種有活性。萃取自基因轉殖和非-基因轉殖阿拉伯芥品系的蛋白質藉由適當方法被定量,並且樣品體積被調節以標準化蛋白質濃度。生物分析在如上面所描述的人工飼料中被進行。非-基因轉殖阿拉伯芥和/或緩衝液和水被包括在分析中作為背景檢驗處理。
實施例9
農桿菌轉形用於產生超二元載體
農桿菌超二元系統慣常地被使用於轉形單子葉植物宿主。用於構建和驗證超二元載體的方法被完善建立。參見,例如,歐洲專利第EP604662B1號和美國專利第7060876號。標準分子生物學和微生物學方法被使用以產生超二元質體。超二元質體的結構的確認/驗證使用如上面所描述用於二元載體的方法論而被做出。
實施例10
在單子葉植物生產DIG-303昆蟲毒素
玉蜀黍的農桿菌調節的轉形 來自一High II F1雜交的種子(Armstrong et al.,1991)的種子被種植至含有95% Metro-Mix 360無土生長介質(Sun Gro Horticulture,Bellevue,WA)和5%黏土/壤土的一混合物的5-加侖-盆中。該等植物在一溫室中使用高壓鈉和金屬鹵化物燈的一組合以一為16:8小時光:暗光週期而被生長。為了獲得未成熟的F2胚用於轉形,經控制的近緣授粉(sib-pollinations)被執行。當胚在尺寸上是大概1.0至2.0mm時,未成熟的胚在授粉後8-10天被分離。
感染和共培養 玉蜀黍穗藉由以液體皂擦洗而被表面滅菌,浸泡在70%乙醇歷時2分鐘,以及接著在以無菌水沖洗之前浸泡在20%商品化漂白劑(0.1%次氣酸納)歷時30分鐘。一含有一超二元載體的懸浮農桿菌細胞被製備藉由轉移1-2環的在28℃在含有100mg/L觀黴素、10mg/L 四環素和250mg/L鏈黴素的YEP固體培養基上生長歷時2-3天的細菌至5mL的含有100μM乙醯丁香酮(acetosyringone)的液體感染培養基[LS為基礎的培養基(Linsmaier and Skoog,1965)、N6維生素(Chu et al.,1975)、1.5mg/L 2,4-二氯苯氧乙酸(2,4-D)、68.5gm/L蔗糖、36.0gm/L葡萄糖、6mM L-脯胺酸,pH 5.2)內。該溶液被渦漩震動直到一均勻的懸浮液被達到,並且濃度使用一Klett-Summerson比色計與一紫色濾器而被調整至一為200 Klett單位的最終濃度或一在600nm(OD600)所測量的相等的光密度。未成熟胚被直接地分離至一含有2mL的感染培養基的微量離心管中。該培養基被移除並且替換以1mL的具有一為200 Klett單位的密度或相等的OD600的農桿菌溶液,並且該農桿菌和胚溶液在室溫被培育歷時5分鐘,以及接著被轉移至共-培養培養基[LS為基礎的培養基、N6維生素、1.5mg/L 2,4-D、30.0gm/L蔗糖、6mM L-脯胺酸、0.85mg/L AgNO3,、100μM乙醯丁香酮、3.0gm/L結蘭膠(Gellan gum)(PhytoTechnology Laboratories.,Lenexa,KS),pH 5.8]在25℃在暗條件下歷時5天。
在共-培養之後,胚被轉移至選擇性培養基,之後被轉形的分離株在大概8週的過程被獲得。為了選擇被轉形以含有一植物可表現的patbar選擇性標記基因的超二元質體的玉蜀黍組織,一LS為基礎的培養基{LS基礎培養基、N6維生素、1.5mg/L 2,4-D、0.5gm/L MES[(2-(N-嗎啉基)乙磺酸一水合物(2-(N-morpholino)ethanesulfonic acid monohydrate);PhytoTechnologies Labr.]、30.0gm/L蔗糖、6mM L-脯胺酸、1.0mg/L AgNO3、250mg/頭孢噻肟(cefotaxime)、2.5gm/L結蘭膠,pH 5.7}與畢拉草(Gold BioTechnology)被使用。該等胚被轉移至含有3mg/L畢拉草的選擇培養基直到胚發生分離株被獲得。經回收的分離株藉由在2-週間隔轉移至新鮮的選擇培養基而被擴大用於再生和進一步分析。
那些熟習玉蜀黍轉形的技藝者將瞭解:當其它植物可表現選擇性標記基因(例如,除草劑耐受基因)被使用時,選擇經轉形的植物的其它方法是可獲得的。
再生和種子生產 關於再生,培養物被轉移至“28”誘導培養基(MS鹽和維生素、30gm/L蔗糖、5mg/L苯甲基胺基嘌呤、0.25mg/L 2,4-D、3mg/L畢拉草、250mg/L頭孢噻肟、2.5gm/L結蘭膠,pH 5.7)在低-光照條件(14μEm-2s-1)下歷時1週,接著在高-光照條件(大概89μEm-2s-1)歷時1週。組織隨後被轉移至“36”再生培養基(與誘導培養基相同,除了缺少植物生長調節劑)。當小植株生長至在長度上3-5cm時,它們被轉移至含有SHGA培養基[Schenk和Hildebrandt(1972)鹽和維生素);PhytoTechnologies Labr.)、1.0gm/L肌-肌醇(myo-inositol)、10gm/L蔗糖和2.0gm/L結蘭膠,pH 5.8]的玻璃培養管以容許芽和根的進一步生長和發育。植物被移植至如在此稍早所描述的相同的土壤混合物,並且在溫室中生長至開花。用於種子生產的經控制的授粉被實施。
實施例11
基因轉殖玉蜀黍的生物測定
該等在植物細胞被生產的DIG-303殺蟲毒素的生物活性藉由慣常的生物分析方法(參見,例如Huang等人,2006)而被測定。吾人能夠例如藉由在一經控制的餵食環境中餵食各種不同的衍生自一生產一DIG-303殺蟲毒素的植物的植物組織或組織碎片給標靶昆蟲而證明效力。另擇地,蛋白質萃取物可從各種不同的衍生自一生產該DIG-303殺蟲毒素的植物的植物組織而被製備,並且該等被萃取的蛋白質併入至在此先前所描述的人工飼料生物分析內。被瞭解的是:此等餵食分析的結果要與採用來自不產生一DIG-303昆蟲毒素的宿主植物的適當對照組織或其它對照樣品的所相似地進行的生物分析而被比較。
參考文獻
An, G., Watson, B. D., Stachel, S., Gordon, M. P., Nester, E. W. (1985) New cloning vehicles for transformation of higher plants. EMBO J. 4:277-284.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215:403-410.
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25:3389-3402.
Armstrong, C. L., Green, C. E., Phillips, R. L. (1991) Development and availability of germplasm with high TypeII culture formation response. Maize Genet. Coop. Newslett. 65:92-93.
Aronson, A.I., Han, E.-S., McGaughey, W., Johnson, D. (1991) The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects. Appl. Environ. Microbiol. 57:981-986.
Aronson, A. I., Geng, C., Wu. L. (1999) Aggregation of Bacillus thuringiensis Cry1A toxins upon binding to target insect larval midgut vesicles. Appl. Environ. Microbiol. 65:2503-2507.
Arvidson, H., Dunn, P. E., Strand, S., Aronson, A. I. (1989) Specificity of Bacillus thuringiensis for lepidopteran larvae: factors involved in vivo and in the structure of a purified toxin. Molec. Microbiol. 3:1533-1543.
Ausubel et al., eds. (1995) Current Protocols in Molecular Biology, Chapter 2 (Greene Publishing and Wiley-Interscience, New York).
Bailey, J. M., Shenov, N. R., Ronk, M., and Shively, J. E., (1992) Automated carboxy-terminal sequence analysis of peptides. Protein Sci. 1:68-80.
Beltz, G.A., Jacobs, K. A., Eickbush, T. H., Cherbas, P. T., Kafatos, F. C. (1983) Isolation of multigene families and determination of homologies by filter hybridization methods. In Wu, R., Grossman, L., Moldave, K. (eds.) Methods of Enzymology, Vol. 100 Academic Press, New York pp.266-285.
Bown, D. P., Wilkinson, H. S., Jongsma, M. A., Gatehouse, J. A. (2004) Characterization of cysteine proteinases responsible for digestive proteolysis in guts of larval western corn rootworm (Diabrotica virgifera) by expression in the yeast Pichia pastoris. Insect Biochem. Molec. Biol. 34,:305-320.
Bravo, A., Gill, S. S., Soberon, M. (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423-435.
Caruthers, M. H., Kierzek, R., Tang, J. Y. (1987) Synthesis of oligonucleotides using the phosphoramidite method. Bioactive Molecules (Biophosphates Their Analogues) 3:3-21.
Christeller, J. T., Laing, W. A., Markwick, N. P., Burgess, E. P. J. (1992) Midgut protease activities in 12 phytophagous lepidopteran larvae: dietary and protease inhibitor interactions. Insect Biochem. Molec. Biol. 22:735-746.
Chu, C. C., Wand, C. C., Sun, C. S., Hsu, C., Yin, K. C., Chu, C. Y., Bi, F. Y. (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Scientia Sinica 18:659-668.
Crameri, A., Cwirla, S., Stemmer, W. P. C. (1996a) Construction and evolution of antibody-phage libraries by DNA shuffling. Nat. Med. 2:100-103.
Crameri, A., Whitehom, E.A., Tate, E., Stemmer, W. P. C. (1996b) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotech. 14:315-319.
Crameri, A., Dawes, G., Rodriguez, E., Silver, S., Stemmer, W.P.C. (1997) Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat. Biotech. 15:436-438.
Crickmore N., Zeigler, D.R., Feitelson J., Schnepf, E., Van Rie J., Lereclus D., Baum J., and Dean D.H. (1998) Revision of the Nomenclature for the Bacillus thuringiensis Pesticidal Crystal Proteins Microbiol. Mol. Biol. Reviews 62:807-813.
de Maagd, R. A., Kwa, M. S., van der Klei, H., Yamamoto, T., Schipper, B., Vlak, J. M., Stiekema, W. J., Bosch, D. (1996) Domain III substitution in Bacillus thuringiensis delta-endotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl. Environ. Microbiol. 62:1537-1543.
de Maagd, R. A., Bravo, A., Berry, C., Crickmore, N., Schnepf, E. (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu. Rev. Genet. 37:409-433.
Diaz-Mendoza, M., Farinos, G. P., Castanera, P., Hernandez-Crespo, P., Ortego, F. (2007) Proteolytic processing of native Cry1Ab toxin by midgut extracts and purified trypsins from the Mediterranean corn borer Sesamia nonagrioide. J. Insect Physiol. 53:428-435.
Englemann, F., Geraerts, W. P. M., (1980) The proteases and the protease inhibitor in the midgut of Leucophaea maderae. J. Insect Physiol. 261:703-710.
Fabrick, J., Oppert, C., Lorenzen, M. D., Morris, K., Oppert, B., Jurat-Fuentes, J. L. (2009) A novel Tenebrio molitor cadherin is a functional receptor for Bacillus thuringiensis Cry3Aa toxin. J. of Biological Chem. 284(27):18401-18410.
Fraley, R. T., Rogers, S. G., Horsch, R. B. (1986) Genetic transformation in higher plants. Crit. Rev. Plant Sci. 4:1-46.
Gazit, E., La Rocca, P., Sansom, M. S. P., Shai, Y. (1998) The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis delta-endotoxin are consistent with an "umbrella-like" structure of the pore. Proc. Nat. Acad. Sci. USA 95:12289-12294.
Ge, A., Rivers, D., Milne, R., Dean, D. H. (1991) Functional domains of Bacillus thuringiensis insecticidal crystal proteins. Refinement of Heliothis virescens and Trichoplusia ni specificity domains on CryIA(c). J. Biol. Chem. 266:17954-17958.
Gillikin, J. W., Bevilacqua, S., Graham, J. S. (1992) Partial characterization of digestive tract proteinases from western corn rootworm larvae, Diabrotica virgifera. Arch. Insect Biochem. Physiol. 19:285-298.
Gomez, I., Sanchez, J., Miranda, R., Bravo, A., Soberon, M. (2002) Cadherin-like receptor binding facilitates proteolytic cleavage of helix alpha-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lett. 513:242-246.
Haider, M. Z., Knowles, B. H., Ellar, D. J. (1986) Specificity of Bacillus thuringiensis var. colmeri insecticidal δ-endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases. Eur. J. Biochem. 156:531-540.
Heckel, D. G., Gahan, L. J., Baxter, S. W., Zhao, J-Z., Shelton, A. M., Gould, F., Tabashnik, B. E. (2007) The diversity of Bt resistance genes in species of Lepidoptera. J. Invert. Pathol. 95:192-197.
Hepburn, A. G., White, J., Pearson, L., Maunders, M. J., Clarke, L. E., Prescott, A. G. Blundy, K. S. (1985) The use of pNJ5000 as an intermediate vector for the genetic manipulation of Agrobacterium Ti-plasmids. J. Gen. Microbiol. 131:2961-2969.
Hoagland, D. R., Arnon, D. I. (1950) The water-culture method of growing plants without soil. Calif. Agr. Expt. Sta. Circ. 347.
Hofte, H., de Greve, H., Seurinck, J., Jansens, S., Mahillon, J., Ampe, C., Vandekerckhove, J., Vanderbruggen, H., van Montagu, M., Zabeau, M., Vaeck, M. (1986) Structural and functional analysis of a cloned delta endotoxin of Bacillus thuringiensis berliner 1715. Eur. J. Biochem. 161:273-280.
Honée, G., Convents, D., Van Rie, J., Jansens, S., Peferoen, M., Visser, B. (1991) The C-terminal domain of the toxic fragment of a Bacillus thuringiensis crystal protein determines receptor binding. Mol. Microbiol. 5:2799-2806
Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K., Pease, L.R. (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61-68.
Huang, F., Rogers, L. B., Rhett, G. H. (2006) Comparative susceptibility of European corn borer, southwestern corn borer, and sugarcane borer (Lepidoptera: Crambidae) to Cry1Ab protein in a commercial Bacillus thuringiensis corn hybrid. J. Econ. Entomol. 99:194-202.
Huang, K-X., Badger, M., Haney, K., Evans, S. L. (2007) Large scale production of Bacillus thuringiensis PS149B1 insecticidal proteins Cry34Ab1 and Cry35Ab1 from Pseudomonas fluorescens. Prot. Express. Purific. 53:325-330.
Janmaat, A. F., Myers, A. H. (2003) Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proc. Royal Soc. London. Ser. B, Biolog. Sci. 270:2263-2270.
Janmaat, A. F., Myers, A. H. (2005) The cost of resistance to Bacillus thuringiensis varies with the host plant of Trichoplusia ni. Proc. Royal Soc. London. Ser. B, Biolog. Sci. 272:1031-1038.
Karlin, S., Altschul, S. F. (1990) Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 87:2264-2268.
Karlin, S., Altschul, S. F. (1993) Applications and statistics for multiple high-scoring segments in molecular sequences. Proc. Natl. Acad. Sci. USA 90:5873-5877.
Keller, G.H., Manak, M. M. (1993) DNA Probes, Background, Applications, Procedures. Stockton Press, New York, NY.
Knight, J. S., Broadwell, A. H., Grant, W. N., Shoemaker, C. B. (2004) A Strategy for Shuffling Numerous Bacillus thuringiensis Crystal Protein Domains. J. Econ. Entomol. 97:1805-1813.
Koiwa, H., Shade, R. E., Zhu-Salzman, K., D'Urzo, M. P., Murdock, L. L., Bressan, R. A., Hasegawa, P. M. (2000) A plant defensive cystatin (soyacystatin) targets cathepsin L-like digestive cysteine proteinases (DvCALs) in the larval midgut of western corn rootworm Diabrotica virgifera virgifera. FEBS Letters 471:67-70.
Larson, S. M., England, J. L., Desjarlais, J. R., Pande, V. S. (2002) Thoroughly sampling sequence space: Large-scale protein design of structural ensembles. Protein Sci. 11:2804-2813.
Lee, L.-Y., Gelvin, S. B. (2008) T-DNA binary vectors and systems. Plant Physiol. 146: 325-332.
Linsmaier, E.M., Skoog, F. (1965) Organic growth factor requirements of tobacco tissue. Physiologia Plantarum 18:100-127.
Littlefield, J. W. (1964) Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants. Science 145:709-710.
Meinkoth, J., Wahl, G. (1984) Hybridization of nucleic acids immobilized on solid supports. Anal. Biochem. 138:267-284.
Myers, E., Miller, W. (1988) Optimal alignments in linear space. CABIOS 4:11-17.
Naimov, S., Weemen-Hendriks, M., Dukiandjiev, S., de Maagd, R.A. (2001) Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle. Appl. Environ. Microbiol. 11:5328-5330.
Needleman, S. B., Wunsch, C. D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48:443-453.
Nunez-Valdez, M.-E., Sanchez, J., Lina, L., Guereca, L., Bravo, A. (2001) Structural and functional studies of alpha-helix 5 region from Bacillus thuringiensis Cry1Ab delta-endotoxin. Biochim. Biophys. Acta, Prot. Struc. Molec. Enzymol. 1546:122-131.
Ochoa-Campuzano, C., Real, M. D., Martinez-Ramirez, A. C., Bravo, A., Rausell, C. (2007) An ADAM metalloprotease is a Cry3Aa Bacillus thuringiensis toxin receptor. Biochem. Biophys. Res. Commun. 362:437-442.
Pigott, C. R., Ellar, D. J. (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Molec. Biol. Rev. 71:255-281.
Rang, C., Vachon, V., de Maagd, R. A., Villalon, M., Schwartz, J.-L., Bosch, D., Frutos, R., Laprade R. (1999) Interaction between functional domains of Bacillus thuringiensis insecticidal crystal proteins. Appl. Environ. Microbiol. 65:2918-2925.
Sambrook, J., Fritsch, E. F., Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.)
Schenk, R. U., Hildebrandt, A. C. (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50:199-204
Schnepf, H. E., Tomczak, K., Ortega, J. P., Whiteley, H. R. (1990) Specificity-determining regions of a Lepidopteran-specific insecticidal protein produced by Bacillus thuringiensis. J. Biol. Chem. 265:20923-20930.
Soberon, M., Pardo-Lopez, L., Lopez, I., Gomez, I., Tabashnik, B. E., Bravo, A. (2007) Engineering modified Bt toxins to counter insect resistance. Science 318:1640-1642.
Squires, C. H., Retallack, D. M., Chew, L. C., Ramseier, T. M., Schneider, J. C., Talbot, H. W. (2004) Heterologous protein production in P. fluorescens. Bioprocess Intern. 2:54-59.
Stemmer, W. P .C. (1994a) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91:10747-10751
Stemmer, W. P .C. (1994b) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389-391.
Stemmer, W. P. C. (1995) Searching sequence space. Bio/Technology 13:549-553.
Stewart, L. (2007) Gene synthesis for protein production. Encylopedia of Life Sciences. John Wiley and Sons, Ltd.
Stewart, L., Burgin, A. B., (2005) Whole gene synthesis: a gene-o-matic future. Frontiers in Drug Design and Discovery 1:297-341.
Suggs, S.V., Miyake, T., Kawashime, E. H., Johnson, M. J., Itakura, K., R.B. Wallace, R. B. (1981) ICN-UCLA Symposium. Dev. Biol. Using Purified Genes, D. D. Brown (ed.), Academic Press, New York, 23:683-69
Tabashnik, B. E., Finson, N., Groeters, F. R., Moar, W. J., Johnson, M. W., Luo, K., Adang, M. J. (1994) Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc. Nat. Acad. Sci. USA 91:4120-4124.
Tabashnik, B. E., Gassmann, A. J., Crowder, D. W., Carriere, T. (2008) Insect resistance to Bt crops: evidence versus theory. Nat. Biotech. 26:199-202.
Taggart, R. T., Samloff, I. M. (1983) Stable antibody-producing murine hybridomas. Science 219:1228-1230.
Thie, N. M. R., Houseman J. G. (1990) Identification of cathepsin B, D and H in the larval midgut of Colorado potato beetle, Leptinotarsa decemlineata say (Coleoptera: Chrysomelidae) Insect Biochem. 20:313-318.
Thompson, J. D., Higgins, D. G., Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22:4673-4680.
Tijssen, P. (1993) Laboratory Techniques in Biochemistry and Molecular Biology Hybridization with Nucleic Acid Probes, Part I, Chapter 2. P. C. van der Vliet (ed.), (Elsevier, N.Y.)
Varshavsky, A. (1997) The N-end rule pathway of protein degradation. Genes to Cells 2:13-28.
Walters, F. S., Slatin, S. L., Kulesza, C. A., English, L. H. (1993) Ion channel activity of N-terminal fragments from CryIA(c) delta-endotoxin. Biochem. Biophys. Res. Commun. 196:921-926.
Wehrmann, A., Van Vliet, A., Opsomer, C., Botterman, J., Schulz, A. (1996) The similarities of bar and pat gene products make them equally applicable for plant engineers. Nat. Biotechnol. 14:1274-1278.
Weigel, D., Glazebrook, J. (eds.) (2002) Arabidopsis: A Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor, NY, 354 pages.
Wolfson, J. L., Murdock, L. L. (1990) Diversity in digestive proteinase activity among insects. J. Chem. Ecol. 16:1089-1102.
Worley, C. K., Ling, R., Callis, J. (1998) Engineering in vivo instability of firefly luciferase and Escherichia coli β-glucuronidase in higher plants using recognition elements from the ubiquitin pathway. Plant Molec. Biol. 37:337-347.
<110> 陶氏農業科學公司
<120> DIG-303殺蟲CRY毒素
<130> 68465
<160> 4
<170> PatentIn version 3.5
<210> 1
<211> 3771
<212> DNA
<213> 蘇力菌
<400> 1
<210> 2
<211> 1257
<212> PRT
<213> 蘇力菌
<220>
<221> misc_feature
<222> (826)..(826)
<223> Xaa可以是Cys或Arg,較佳的Arg
<220>
<221> misc_feature
<222> (1039)..(1039)
<223> Xaa可以是Thr或Ala,較佳的Ala
<220>
<221> misc_feature
<222> (1047)..(1047)
<223> Xaa可以是Gly或Ala,較佳的Ala
<220>
<221> misc_feature
<222> (1053)..(1053)
<223> Xaa可以是Lys或Gln,較佳的Gln
<220>
<221> misc_feature
<222> (1059)..(1059)
<223> Xaa可以是Pro或Ser,較佳的Pro
<220>
<221> misc_feature
<222> (1066)..(1066)
<223> Xaa可以是Lys、Arg或Trp,較佳的Lys
<220>
<221> misc_feature
<222> (1075)..(1075)
<223> Xaa可以是His或Tyr,較佳的Tyr
<220>
<221> misc_feature
<222> (1202)..(1202)
<223> Xaa可以是Ile或Val,較佳的Val
<220>
<221> misc_feature
<222> (1204)..(1204)
<223> Xaa可以是Thr或Ser,較佳的Ser
<220>
<221> misc_feature
<222> (1206)..(1206)
<223> Xaa可以是Thr或Ala,較佳的Ala
<400> 2
<210> 3
<211> 3735
<212> DNA
<213> 人工序列
<220>
<223> 玉蜀黍最佳化的
<400> 3
<210> 4
<211> 1245
<212> PRT
<213> 人工序列
<220>
<223> 玉蜀黍最佳化的
<400> 4

Claims (20)

  1. 一種經分離、處理或配方的DIG-303殺蟲毒素多肽,其包含有一包括一選自於由下列所構成的群組的胺基酸序列的核心毒素節段:(a)序列辨識編號:2的殘基11至685;(b)一具有與序列辨識編號:2的殘基11至685的胺基酸序列至少90%序列相同性的序列;以及(c)具有不會不利地影響由序列辨識編號:2所編碼的毒素的表現或活性的上達20個胺基酸取代、刪除或修飾的序列辨識編號:2的殘基11至685;或者其一殺蟲活性片段。
  2. 如請求項1的經分離、處理或配方的多肽,其包含有一具有序列辨識編號:2或序列辨識編號:4的胺基酸序列。
  3. 如請求項1的經分離、處理或配方的多肽,其中該核心毒素節段被連結至一不是DIG-303的一Cry毒素的C-端原毒素部分。
  4. 如請求項2的經分離、處理或配方的多肽,其中該多肽是一嵌合蛋白質以及該C-端原毒素部分包含有Cry1Ab或一Cry1Ac/Cry1Ab嵌合毒素的C-端原毒素部分。
  5. 如請求項4的經分離、處理或配方的多肽,其中該C-端原毒素部分包含有Cry1Ab的C-端原毒素部分。
  6. 如請求項4的經分離、處理或配方的多肽,其中該C-端原毒素部分包含有Cry1Ac/Cry1Ab嵌合毒素的C-端原毒 素部分。
  7. 一種用於控制一害蟲族群的方法,其包含有以一殺蟲有效數量的如請求項1至6中任一項的多肽接觸該族群。
  8. 如請求項1至6中任一項的多肽,其具有對抗一鞘翅目害蟲或和菱紋背蛾的活性。
  9. 如請求項1至6中任一項的多肽,其具有對抗科羅拉多馬鈴薯甲蟲或菱紋背蛾的活性。
  10. 一種組成物,其包含有如請求項1至6中任一項的多肽。
  11. 如請求項10的組成物,其中該組成物是一包含有一經配方的DIG-303殺蟲毒素的可噴灑的蛋白質組成物、經囊封的蛋白質組成物或餌料基質。
  12. 一種核酸建構物,其中該建構物包含有一被重組地連結至一編碼一DIG-303殺蟲毒素的序列的異源核酸序列,該DIG-303殺蟲毒素包含有一包括一選自於由下列所構成的群組的胺基酸序列的核心毒素節段:(a)序列辨識編號:2的殘基11至685;(b)一具有與序列辨識編號:2的殘基11至685的胺基酸序列至少90%序列相同性的序列;以及(c)具有不會不利地影響由序列辨識編號:2所編碼的毒素的表現或活性的上達20個胺基酸取代、刪除或修飾的序列辨識編號:2的殘基11至685;或者其一殺蟲活性片段。
  13. 如請求項12的核酸建構物,其中該異源核酸序列是一能夠在一植物中驅動表現的啟動子序列。
  14. 如請求項12的核酸建構物,其中該編碼該多肽的序列被被密碼子最佳化用於在一植物中表現。
  15. 如請求項13的核酸建構物,其中該啟動子能夠在玉米中驅動表現以及該編碼該多肽的序列被密碼子最佳化用於在玉米表現。
  16. 如請求項12至15中任一項的核酸建構物,其中該編碼該多肽的序列包含有序列辨識編號:1或序列辨識編號:3。
  17. 如請求項15的核酸建構物,其中該建構物是一載體且該載體包含有序列辨識編號:3。
  18. 如請求項13的核酸建構物,其中該啟動子能夠在馬鈴薯中驅動表現以及該編碼該多肽的序列被密碼子最佳化用於在馬鈴薯表現。
  19. 一種基因轉殖植物,其包含有被安定地併入至其基因組內的如請求項12至18中任一項的核酸建構物。
  20. 一種保護一植物免於一害蟲的方法,其包含有導入如請求項12至18中任一項的建構物至該植物內。
TW104134696A 2014-10-31 2015-10-22 Dig-303殺蟲cry毒素 TW201615095A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201462073649P 2014-10-31 2014-10-31

Publications (1)

Publication Number Publication Date
TW201615095A true TW201615095A (zh) 2016-05-01

Family

ID=55851916

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104134696A TW201615095A (zh) 2014-10-31 2015-10-22 Dig-303殺蟲cry毒素

Country Status (7)

Country Link
US (1) US10876131B2 (zh)
EP (1) EP3212004A4 (zh)
CN (1) CN106793786A (zh)
BR (1) BR112017007192A2 (zh)
IL (1) IL251668A0 (zh)
TW (1) TW201615095A (zh)
WO (1) WO2016070079A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762785A (en) 1982-08-12 1988-08-09 Calgene, Inc. Novel method and compositions for introducting alien DNA in vivo
NL8300699A (nl) 1983-02-24 1984-09-17 Univ Leiden Werkwijze voor het inbouwen van vreemd dna in het genoom van tweezaadlobbige planten; werkwijze voor het produceren van agrobacterium tumefaciens bacterien; stabiele cointegraat plasmiden; planten en plantecellen met gewijzigde genetische eigenschappen; werkwijze voor het bereiden van chemische en/of farmaceutische produkten.
NL8300698A (nl) 1983-02-24 1984-09-17 Univ Leiden Werkwijze voor het inbouwen van vreemd dna in het genoom van tweezaadlobbige planten; agrobacterium tumefaciens bacterien en werkwijze voor het produceren daarvan; planten en plantecellen met gewijzigde genetische eigenschappen; werkwijze voor het bereiden van chemische en/of farmaceutische produkten.
US5380831A (en) 1986-04-04 1995-01-10 Mycogen Plant Science, Inc. Synthetic insecticidal crystal protein gene
US5231019A (en) 1984-05-11 1993-07-27 Ciba-Geigy Corporation Transformation of hereditary material of plants
US5149645A (en) 1984-06-04 1992-09-22 Rijksuniversiteit Leiden Process for introducing foreign DNA into the genome of plants
CA1341092C (en) 1985-12-12 2000-09-05 David L. Edwards Process for altering the host range of bacillus thuringiensis toxins, and novel toxins produced thereby
US6376234B1 (en) 1986-05-05 2002-04-23 Ciba-Geigy Method of inserting viral DNA into plant material
US5188958A (en) 1986-05-29 1993-02-23 Calgene, Inc. Transformation and foreign gene expression in brassica species
US5177010A (en) 1986-06-30 1993-01-05 University Of Toledo Process for transforming corn and the products thereof
US5004863B2 (en) 1986-12-03 2000-10-17 Agracetus Genetic engineering of cotton plants and lines
US5608142A (en) 1986-12-03 1997-03-04 Agracetus, Inc. Insecticidal cotton plants
US5141131A (en) 1989-06-30 1992-08-25 Dowelanco Method and apparatus for the acceleration of a propellable matter
DE69132124T2 (de) 1990-11-23 2000-11-23 Aventis Cropscience Nv Verfahren zur transformation monokotyler pflanzen
JPH07505531A (ja) 1992-04-15 1995-06-22 プラント・ジェネティック・システムズ・エヌ・ブイ 単子葉植物細胞の形質転換法
US7060876B2 (en) 1992-07-07 2006-06-13 Japan Tobacco Inc. Method for transforming monocotyledons
US6780408B1 (en) 1993-09-02 2004-08-24 Syngenta Participations Ag Genes encoding hybrid bacillus thuringiensis toxins
GB9318207D0 (en) 1993-09-02 1993-10-20 Sandoz Ltd Improvements in or relating to organic compounds
US6017534A (en) 1996-11-20 2000-01-25 Ecogen, Inc. Hybrid Bacillus thuringiensis δ-endotoxins with novel broad-spectrum insecticidal activity
US7230167B2 (en) 2001-08-31 2007-06-12 Syngenta Participations Ag Modified Cry3A toxins and nucleic acid sequences coding therefor
CN101679491B (zh) * 2007-03-28 2013-11-06 先正达参股股份有限公司 杀虫的蛋白质
BRPI1008740A8 (pt) * 2009-02-27 2022-07-05 Athenix Corp Proteínas pesticidas e métodos para seu uso.
BRPI1015333A2 (pt) * 2009-04-17 2016-05-24 Dow Agrosciences Llc "toxinas cry inseticidas dig-3"
CN103002744A (zh) * 2009-06-16 2013-03-27 陶氏益农公司 Dig-11杀虫cry毒素
WO2011084631A1 (en) * 2009-12-16 2011-07-14 Dow Agrosciences Llc Use of cry1ab in combination with cry1be for management of resistant insects
CA2790023A1 (en) * 2010-02-18 2011-08-25 Athenix Corp. Axmi218, axmi219, axmi220, axmi226, axmi227, axmi228, axmi229, axmi230, and axmi231 delta-endotoxin genes and methods for their use
WO2013022743A1 (en) * 2011-08-05 2013-02-14 Dow Agrosciences Llc Use of dig3 insecticidal crystal protein in combination with cry1ab

Also Published As

Publication number Publication date
BR112017007192A2 (pt) 2017-12-19
IL251668A0 (en) 2017-06-29
EP3212004A1 (en) 2017-09-06
WO2016070079A1 (en) 2016-05-06
US10876131B2 (en) 2020-12-29
CN106793786A (zh) 2017-05-31
EP3212004A4 (en) 2018-04-04
US20160122399A1 (en) 2016-05-05

Similar Documents

Publication Publication Date Title
EP2419441B1 (en) Dig-3 insecticidal cry toxins
US8304605B2 (en) DIG-11 insecticidal cry toxins
US9487798B2 (en) DIG-10 insecticidal cry toxins
US8461422B2 (en) DIG-5 insecticidal Cry toxins
US10028510B2 (en) DIG-17 insecticidal cry toxins
US10731176B2 (en) DIG-305 insecticidal Cry toxins
US10876131B2 (en) Dig-303 insecticidal Cry toxins
US9234208B1 (en) DIG-13 insecticidal cry toxins
WO2016032836A1 (en) Dig-14 insecticidal cry toxins