TW201607040A - Semiconductor device and method for fabricating the same - Google Patents

Semiconductor device and method for fabricating the same Download PDF

Info

Publication number
TW201607040A
TW201607040A TW103126341A TW103126341A TW201607040A TW 201607040 A TW201607040 A TW 201607040A TW 103126341 A TW103126341 A TW 103126341A TW 103126341 A TW103126341 A TW 103126341A TW 201607040 A TW201607040 A TW 201607040A
Authority
TW
Taiwan
Prior art keywords
doped region
conductivity type
doped
region
semiconductor
Prior art date
Application number
TW103126341A
Other languages
Chinese (zh)
Other versions
TWI549302B (en
Inventor
馬洛宜 庫馬
洪培恒
皮約諾 蘇里彦托
李家豪
廖志成
杜尙暉
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW103126341A priority Critical patent/TWI549302B/en
Publication of TW201607040A publication Critical patent/TW201607040A/en
Application granted granted Critical
Publication of TWI549302B publication Critical patent/TWI549302B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A semiconductor device includes a semiconductor substrate and a semiconductor layer formed thereover. A gate structure is disposed over the semiconductor layer, and a first doped region is disposed in the semiconductor layer adjacent to a first side of the gate structure. A second doped region is disposed in the semiconductor layer adjacent to a second side of the gate structure opposite to the first side. A third doped region is disposed in the first doped region. A fourth doped region is disposed in the second region. A plurality of fifth doped regions is disposed in the second doped region. A sixth doped region is disposed in the semiconductor layer under the first doped region. A conductive contact is formed in the third doped region and the first doped region.

Description

半導體裝置及其製造方法 Semiconductor device and method of manufacturing same

本發明係關於積體電路裝置,且特別是關於一種半導體裝置及其製造方法。 The present invention relates to an integrated circuit device, and more particularly to a semiconductor device and a method of fabricating the same.

近年來,由於行動通訊裝置、個人通訊裝置等通訊裝置的快速發展,包括如手機、基地台等無線通訊產品已都呈現大幅度的成長。於無線通訊產品當中,常採用橫向雙擴散金氧半導體(LDMOS)裝置之高電壓元件以作為射頻(900MHz-2.4GHz)電路相關之元件。 In recent years, due to the rapid development of communication devices such as mobile communication devices and personal communication devices, wireless communication products such as mobile phones and base stations have shown significant growth. Among wireless communication products, high voltage components of a lateral double diffused metal oxide semiconductor (LDMOS) device are often used as components of a radio frequency (900 MHz-2.4 GHz) circuit.

橫向雙擴散金氧半導體裝置不僅具有高操作頻寬,同時由於可以承受較高崩潰電壓而具有高輸出功率,因而適用於作為無線通訊產品之功率放大器的使用。另外,由於橫向雙擴散金氧半導體(LDMOS)裝置可利用傳統互補型金氧半導體(CMOS)製程技術所形成,故其製作技術方面較為成熟且可採用成本較為便宜之矽基板所製成。 The lateral double-diffused MOS device not only has a high operating bandwidth, but also has high output power due to its ability to withstand higher breakdown voltages, and is therefore suitable for use as a power amplifier for wireless communication products. In addition, since the lateral double-diffused metal oxide semiconductor (LDMOS) device can be formed by using a conventional complementary metal oxide semiconductor (CMOS) process technology, the fabrication technology is relatively mature and can be made by using a cheaper tantalum substrate.

於射頻電路元件應用中之,橫向雙擴散金氧半導體裝置需要低的閘極-汲極電容值(gate to drain capacitance)以改善其最大操作頻率(maximum operating frequency)。此外,此橫向雙擴散金氧半導體裝置亦需要源極-汲極電阻值(即Ron)。然而,為了得到低的源極-汲極電阻值(Ron),便需增加 橫向雙擴散金氧半導體裝置的漂移區(drift region)與閘極介面(gate interface),如此將增大了閘極-汲極電容值。因此,便需要一種較佳橫向雙擴散金氧半導體裝置,其可兼具所期望之低的閘極-汲極電容值以及低的源極-汲極電阻值(Ron)。 For RF circuit component applications, lateral double-diffused MOS devices require low gate-to-drain capacitance to improve their maximum operating frequency. In addition, the lateral double-diffused MOS device also requires a source-drain resistance value (ie, Ron). However, in order to obtain a low source-drain resistance value (Ron), it is necessary to increase The drift region and the gate interface of the lateral double-diffused MOS device will increase the gate-drain capacitance value. Accordingly, there is a need for a preferred lateral double diffused MOS device that combines the desired low gate-drain capacitance value with a low source-drain resistance value (Ron).

依據一實施例,本發明提供了一種半導體裝置,包括:一半導體基板,具有一第一導電類型;一半導體層,形成於該半導體基板上,具有該第一導電類型;一閘極結構,設置於該半導體層之一部上;一第一摻雜區,設置於鄰近該閘極結構之一第一側之該半導體層內,具有該第一導電類型;一第二摻雜區,設置於鄰近該閘極結構之相對於該第一側之一第二側之該半導體層內,具有相反於該第一導電類型之一第二導電類型;一第三摻雜區,設置於該第一摻雜區之一部內,具有該第二導電類型;一第四摻雜區,設置於該第二摻雜區之一部內,具有該第二導電類型;數個第五摻雜區,分隔地設置於該第二摻雜區之數個部分內,具有該第一導電類型,其中該些第五摻雜區係位於該第四摻雜區與該閘極結構之間;一第六摻雜區,設置於位於該第一摻雜區之下之該半導體層之一部內,接觸該半導體基板;以及一導電接觸物,形成於該第三摻雜區與該第一摻雜區之一部內,接觸該第六摻雜區。 According to an embodiment, the present invention provides a semiconductor device comprising: a semiconductor substrate having a first conductivity type; a semiconductor layer formed on the semiconductor substrate having the first conductivity type; a gate structure; On a portion of the semiconductor layer; a first doped region disposed in the semiconductor layer adjacent to a first side of the gate structure, having the first conductivity type; and a second doped region disposed on Adjacent to the semiconductor layer of the gate structure opposite to the second side of the first side, having a second conductivity type opposite to the first conductivity type; a third doping region disposed at the first One of the doped regions has the second conductivity type; a fourth doped region is disposed in one of the second doped regions, having the second conductivity type; and the plurality of fifth doped regions are separated Provided in the plurality of portions of the second doped region, having the first conductivity type, wherein the fifth doped regions are located between the fourth doped region and the gate structure; a sixth doping a region disposed under the first doped region An inner semiconductor layer, the contact with the semiconductor substrate; and an electrical contact, the third doped region is formed in the inner one of the first doped region, the doped region in contact with the sixth.

依據另一實施例,本發明提供了一種半導體裝置之製造方法,包括:提供一半導體基板,具有一第一導電類型;形成一半導體層於該半導體基板上,具有該第一導電類型;形成一閘極結構於該半導體層之一部上;形成一第一摻雜區於鄰 近該閘極結構之一第一側之該半導體層內,具有該第一導電類型;形成一第二摻雜區於鄰近該閘極結構之相對於該第一側之一第二側之該半導體層內,具有相反於該第一導電類型之一第二導電類型;形成一第三摻雜區於該第一摻雜區之一部內,具有該第二導電類型;形成一第四摻雜區於該第二摻雜區之一部內,具有相反於該第一導電類型之該第二導電類型;形成複數個第五摻雜區於該第二摻雜區之數個部分內,具有該第一導電類型,其中該些第五摻雜區係形成於該第四摻雜區與該閘極結構之間;形成一絕緣層於該第二摻雜區、該閘極結構與該第三摻雜區之一部上;形成一溝槽於該第三摻雜區與該第一摻雜區之一部內,露出位於該第一摻雜區下方之該半導體層之一部;施行一離子佈植程序,以佈植該第一導電類型之數個摻質至為該半導體層所露出之該半導體層內,進而形成一第六摻雜區,其中該第六摻雜區實體接觸該半導體基板;以及形成一導電接觸物於該溝槽內,其中該導電接觸物實體接觸該第六摻雜區。 According to another embodiment, the present invention provides a method of fabricating a semiconductor device, comprising: providing a semiconductor substrate having a first conductivity type; forming a semiconductor layer on the semiconductor substrate having the first conductivity type; forming a a gate structure on one of the semiconductor layers; forming a first doped region adjacent to Having the first conductivity type in the semiconductor layer on a first side of the gate structure; forming a second doped region adjacent to the second side of the gate structure opposite to the first side a second conductivity type opposite to the first conductivity type; forming a third doped region in one of the first doped regions, having the second conductivity type; forming a fourth doping The region has a second conductivity type opposite to the first conductivity type in one of the second doping regions; forming a plurality of fifth doping regions in the plurality of portions of the second doping region, having the a first conductivity type, wherein the fifth doped regions are formed between the fourth doped region and the gate structure; forming an insulating layer in the second doped region, the gate structure and the third Forming a trench in one of the third doped region and the first doped region to expose a portion of the semiconductor layer under the first doped region; performing an ion a planting process for implanting a plurality of dopants of the first conductivity type to expose the semiconductor layer Forming a sixth doped region in the semiconductor layer, wherein the sixth doped region physically contacts the semiconductor substrate; and forming a conductive contact in the trench, wherein the conductive contact physically contacts the sixth doping Area.

為讓本發明之上述目的、特徵及優點能更明顯易懂,下文特舉一較佳實施例,並配合所附的圖式,作詳細說明如下。 The above described objects, features and advantages of the present invention will become more apparent and understood.

100‧‧‧半導體基板 100‧‧‧Semiconductor substrate

102‧‧‧半導體層 102‧‧‧Semiconductor layer

104‧‧‧閘介電層 104‧‧‧gate dielectric layer

106‧‧‧閘電極 106‧‧‧ gate electrode

108‧‧‧罩幕層 108‧‧‧ Cover layer

108a‧‧‧主體部 108a‧‧‧ Main body

108b‧‧‧凸出部 108b‧‧‧protrusion

110‧‧‧離子佈植製程 110‧‧‧Ion implantation process

112‧‧‧摻雜區 112‧‧‧Doped area

114‧‧‧罩幕層 114‧‧‧ Cover layer

116‧‧‧離子佈植製程 116‧‧‧Ion implantation process

118‧‧‧摻雜區 118‧‧‧Doped area

120‧‧‧罩幕層 120‧‧‧ Cover layer

122‧‧‧離子佈植製程 122‧‧‧Ion implantation process

124‧‧‧摻雜區 124‧‧‧Doped area

126‧‧‧摻雜區 126‧‧‧Doped area

128‧‧‧摻雜區 128‧‧‧Doped area

130‧‧‧絕緣層 130‧‧‧Insulation

132‧‧‧開口 132‧‧‧ openings

134‧‧‧溝槽 134‧‧‧ trench

136‧‧‧離子佈植製程 136‧‧‧Ion implantation process

138‧‧‧摻雜區 138‧‧‧Doped area

140‧‧‧導電層 140‧‧‧ Conductive layer

142‧‧‧導電層 142‧‧‧ Conductive layer

144‧‧‧層間介電層 144‧‧‧Interlayer dielectric layer

146‧‧‧溝槽 146‧‧‧ trench

148‧‧‧導電層 148‧‧‧ Conductive layer

300‧‧‧蝕刻製程 300‧‧‧ etching process

302‧‧‧溝槽 302‧‧‧ trench

304‧‧‧絕緣層 304‧‧‧Insulation

G‧‧‧閘極結構 G‧‧‧ gate structure

第1、3、6、9、12、15、18、21及24圖為一系列上視示意圖,顯示了依據本發明一實施例之一種半導體裝置之製造方法;第2圖為一剖面示意圖,顯示了沿第1圖內線段2-2之一剖 面情形;第4圖為一剖面示意圖,顯示了沿第3圖內線段4-4之一剖面情形;第5圖為一剖面示意圖,顯示了沿第3圖內線段5-5之一剖面情形;第7圖為一剖面示意圖,顯示了沿第6圖內線段7-7之一剖面情形;第8圖為一剖面示意圖,顯示了沿第6圖內線段8-8之一剖面情形;第10圖為一剖面示意圖,顯示了沿第8圖內線段10-10之一剖面情形;第11圖為一剖面示意圖,顯示了沿第8圖內線段11-11之一剖面情形;第13圖為一剖面示意圖,顯示了沿第12圖內線段13-13之一剖面情形;第14圖為一剖面示意圖,顯示了沿第12圖內線段14-14之一剖面情形;第16圖為一剖面示意圖,顯示了沿第15圖內線段16-16之一剖面情形;第17圖為一剖面示意圖,顯示了沿第15圖內線段17-17之一剖面情形;第19圖為一剖面示意圖,顯示了沿第18圖內線段19-19之一剖面情形;第20圖為一剖面示意圖,顯示了沿第18圖內線段20-20之 一剖面情形;第22圖為一剖面示意圖,顯示了沿第21圖內線段22-22之一剖面情形;第23圖為一剖面示意圖,顯示了沿第21圖內線段23-23之一剖面情形;第25圖為一剖面示意圖,顯示了沿第24圖內線段25-25之一剖面情形;第26圖為一剖面示意圖,顯示了沿第24圖內線段26-26之一剖面情形;第27、30及33圖為一系列上視示意圖,顯示了依據本發明另一實施例之一種半導體裝置之製造方法;第28圖為一剖面示意圖,顯示了沿第27圖內線段28-28之一剖面情形;第29圖為一剖面示意圖,顯示了沿第27圖內線段29-29之一剖面情形;第31圖為一剖面示意圖,顯示了沿第30圖內線段31-31之一剖面情形;第32圖為一剖面示意圖,顯示了沿第30圖內線段32-32之一剖面情形;第34圖為一剖面示意圖,顯示了沿第33圖內線段34-34之一剖面情形;以及第35圖為一剖面示意圖,顯示了沿第33圖內線段35-35之一剖面情形。 Figures 1, 3, 6, 9, 12, 15, 18, 21 and 24 are a series of top views showing a method of fabricating a semiconductor device in accordance with an embodiment of the present invention; and Figure 2 is a cross-sectional view, Shows a section along line 2-2 of Figure 1 Figure 4 is a schematic cross-sectional view showing a section along line 4-4 of Figure 3; Figure 5 is a schematic cross-sectional view showing a section along line 5-5 of Figure 3 Figure 7 is a schematic cross-sectional view showing a section along the line 7-7 of Figure 6; Figure 8 is a schematic cross-sectional view showing a section along the line 8-8 of Figure 6; Figure 10 is a schematic cross-sectional view showing a section along the line 10-10 of Figure 8; Figure 11 is a schematic cross-sectional view showing a section along the line 11-11 of Figure 8; Figure 13 A cross-sectional view showing a section along a line 13-13 in Fig. 12; Fig. 14 is a cross-sectional view showing a section along a line 14-14 of Fig. 12; Fig. 16 is a The cross-sectional view shows a section along the line 16-16 in Figure 15; Figure 17 is a cross-sectional view showing a section along the line 17-17 in Figure 15; Figure 19 is a section , showing a section along the line 19-19 of Figure 18; Figure 20 is a section diagram showing the 18th Figure line 20-20 Figure 2 is a cross-sectional view showing a section along line 22-22 of Figure 21; and Figure 23 is a section showing a section along line 23-23 of Figure 21 Figure 25 is a schematic cross-sectional view showing a section along line 25-25 of Figure 24; and Figure 26 is a schematic cross-sectional view showing a section along line 26-26 of Figure 24; Figures 27, 30 and 33 are a series of top views showing a method of fabricating a semiconductor device in accordance with another embodiment of the present invention; and Figure 28 is a cross-sectional view showing the line 28-28 along line 27 Figure 1 is a cross-sectional view showing a section along the line 29-29 in Figure 27; and Figure 31 is a schematic cross-sectional view showing one of the line segments 31-31 along the 30th figure. Fig. 32 is a cross-sectional view showing a section along the line 32-32 in Fig. 30; Fig. 34 is a schematic cross-sectional view showing a section along the line 34-34 in Fig. 33. And Figure 35 is a schematic cross-sectional view showing the line segment 35- along line 33 35 one profile situation.

請參照第1-26圖之一系列示意圖,以顯示了依據本發明之一實施例之半導體裝置之製造方法,其中第1、3、6、9、12、15、18、21及24圖為一系列上視示意圖,而第2、4-5、7-8、10-11、13-14、16-17、19-20、22-23及25-26等圖則分別顯示了沿第1、3、6、9、12、15、18、21及24圖內2-2、4-4、5-5、7-7、8-8、10-10、11-11、13-13、14-14、16-16、17-17、19-19、20-20、22-22、23-23及25-25、26-26線段之一剖面示意圖,並藉此分別顯示於半導體裝置之製造方法之一中間階段的製作情形。藉由如第1-26圖之示範方法所形成之一半導體裝置可作為適用於射頻電路(RF)元件之一種橫向雙擴散金氧半導體(LDMOS)裝置之用。 Please refer to a series of schematic diagrams of FIGS. 1-26 to illustrate a method of fabricating a semiconductor device according to an embodiment of the present invention, wherein the first, third, sixth, ninth, twelve, fifteenth, eighteenth, twenty-first and twenty-fourth diagrams are A series of top view diagrams, while the 2nd, 4-5, 7-8, 10-11, 13-14, 16-17, 19-20, 22-23, and 25-26 plans show the first along the first , 3, 6, 9, 12, 15, 18, 21 and 24 in the picture 2, 2, 4-4, 5-5, 7-7, 8-8, 10-10, 11-11, 13-13, A schematic cross-sectional view of one of the 14-14, 16-16, 17-17, 19-19, 20-20, 22-22, 23-23, and 25-25, 26-26 segments, and respectively shown in the semiconductor device The production situation of one of the intermediate stages of the manufacturing method. A semiconductor device formed by the exemplary method of Figures 1-26 can be used as a lateral double diffused metal oxide semiconductor (LDMOS) device suitable for radio frequency circuit (RF) components.

請參照第1-2圖,首先提供如矽基板之一半導體基板100。於一實施例中,半導體基板100具有如P型(p-type)之第一導電類型以及介於1E-3歐姆-公分(Ω-cm)至10E-3歐姆-公分(Ω-cm)之電阻率(resistivity)。接著於半導體基板100上藉由如磊晶成長之一方法形成如矽層(silicon layer)之一半導體層102。此半導體層102可臨場地摻雜有如P型之第一導電類型的摻質,且具有約為0.2歐姆-公分(Ω-cm)至0.9歐姆-公分(Ω-cm)之電阻率(resistivity)。於一實施例中,半導體層102之電阻率係大於半導體基板100之電阻率。 Referring to Figures 1-2, first, a semiconductor substrate 100 such as a germanium substrate is provided. In one embodiment, the semiconductor substrate 100 has a first conductivity type such as a P-type and a range of 1E-3 ohm-cm (Ω-cm) to 10E-3 ohm-cm (Ω-cm). Resistivity. Next, a semiconductor layer 102 such as a silicon layer is formed on the semiconductor substrate 100 by one of methods such as epitaxial growth. The semiconductor layer 102 may be doped with a dopant of a first conductivity type such as a P-type, and has a resistivity of about 0.2 ohm-cm (Ω-cm) to 0.9 ohm-cm (Ω-cm). . In one embodiment, the resistivity of the semiconductor layer 102 is greater than the resistivity of the semiconductor substrate 100.

接著,沿著如第1圖內Y方向之一方向形成圖案化之一閘極結構G於半導體層102之一部上。此閘極結構G主要包括了依序形成於半導體層102之一部上之一閘介電層(gate dielectric layer)104與一閘電極(gate electrode)106。閘極 結構G之閘介電層104與閘電極106可採用傳統閘極製程所形成,而基於簡化目的不在此詳細描述其製作。於一實施例中,閘介電層104可包括如氧化矽之介電材料,而閘電極106可包括如多晶矽或多晶矽與如金屬或矽化物之其他材料之組合等導電材料。 Next, one of the gate structure G is patterned on one of the semiconductor layers 102 along one direction of the Y direction in FIG. The gate structure G mainly includes a gate dielectric layer 104 and a gate electrode 106 sequentially formed on one portion of the semiconductor layer 102. Gate The gate dielectric layer 104 and the gate electrode 106 of the structure G may be formed using a conventional gate process, and the fabrication thereof will not be described in detail herein for the sake of simplicity. In one embodiment, the gate dielectric layer 104 may comprise a dielectric material such as hafnium oxide, and the gate electrode 106 may comprise a conductive material such as polycrystalline germanium or a combination of polycrystalline germanium and other materials such as metal or germanide.

請參照第3-5圖,形成圖案化之一罩幕層108於半導體層102上,以及接著施行一離子佈植製程110以形成一摻雜區112於閘極結構G之一側(例如為左側)之半導體層102之一部內。 Referring to FIGS. 3-5, a patterned mask layer 108 is formed on the semiconductor layer 102, and then an ion implantation process 110 is performed to form a doped region 112 on one side of the gate structure G (eg, In the left side of the semiconductor layer 102.

如第3-5圖所示,此圖案化之罩幕層108包括一主體部(bulk portion)108a以及與之相連之數個凸出部(protrusion portions)108b。此圖案化之罩幕層108之主體部108a覆蓋了閘極結構G以及位於閘極結構G右側之半導體層102之部分。從上視觀之,連結於主體部108a之此些突出部108b係形成有一條狀(strip-like)圖案,且分隔地形成於鄰近閘極結構G左側之半導體層之數個部分上。此些突出部108b係沿著如第3圖內之X方向之一方向而延伸,且此方向係為垂直於閘極結構G之一方向。於一實施例中,此圖案化之罩幕層108可包括如阻劑之罩幕材料,故圖案化之罩幕層108可藉由如微影與蝕刻等製程(皆未顯示)而形成。 As shown in Figures 3-5, the patterned mask layer 108 includes a bulk portion 108a and a plurality of protrusion portions 108b associated therewith. The body portion 108a of the patterned mask layer 108 covers the gate structure G and portions of the semiconductor layer 102 on the right side of the gate structure G. Viewed from above, the projections 108b joined to the main body portion 108a are formed in a strip-like pattern and are formed separately on portions of the semiconductor layer adjacent to the left side of the gate structure G. The protrusions 108b extend along one of the X directions as in FIG. 3, and the direction is perpendicular to one of the gate structures G. In one embodiment, the patterned mask layer 108 can include a masking material such as a resist, such that the patterned mask layer 108 can be formed by processes such as lithography and etching (all not shown).

此外,於離子佈植製程110中係佈植相反於第一導電類型之第二導電類型(例如N型)之摻質進入為圖案化之罩幕層108所露出之半導體層102之數個部分之內,進而於半導體層102內形成了具有第二導電類型之一摻雜區112。於一實 施例中,摻雜區112具有約5E11原子/平方公分至9E13原子/平方公分之一摻質濃度。 In addition, the dopants of the second conductivity type (eg, N-type) opposite to the first conductivity type are implanted in the ion implantation process 110 into portions of the semiconductor layer 102 exposed by the patterned mask layer 108. Within the semiconductor layer 102, a doped region 112 having a second conductivity type is formed. Yu Yishi In the embodiment, the doping region 112 has a dopant concentration of about 5E11 atoms/cm 2 to 9E13 atoms/cm 2 .

請參照第6-8圖,於移除如第3-5圖內所示之圖案化罩幕層108後,形成圖案化之一罩幕層114於半導體層102上及接著施行一離子佈植製程116,以形成一摻雜區118於閘極結構G之另一側(例如為右側)之半導體層102之一部內。 Referring to FIGS. 6-8, after removing the patterned mask layer 108 as shown in FIGS. 3-5, a patterned mask layer 114 is formed on the semiconductor layer 102 and then an ion implantation is performed. The process 116 is formed to form a doped region 118 in one of the semiconductor layers 102 on the other side (eg, the right side) of the gate structure G.

如第6-8圖所示,圖案化之罩幕層114係覆蓋了閘極結構G以及位於閘極結構G左側之半導體層102之部分。於一實施例中,圖案化之罩幕層114可包括如阻劑之罩幕材料,故圖案化之罩幕層114可藉由如微影與蝕刻等製程(皆未顯示)而形成。 As shown in FIGS. 6-8, the patterned mask layer 114 covers portions of the gate structure G and the semiconductor layer 102 on the left side of the gate structure G. In one embodiment, the patterned mask layer 114 can include a masking material such as a resist, such that the patterned mask layer 114 can be formed by processes such as lithography and etching (all not shown).

此外,於離子佈植製程116中係佈植第一導電類型(例如P型)之摻質進入為圖案化罩幕層114所露出之半導體層102之部分內,進而於半導體層102內之此部分內形成了具有第二導電類型之摻雜區118。於一實施例中,摻雜區118具有約1E12原子/平方公分至5E14原子/平方公分之一摻質濃度。 In addition, the dopant of the first conductivity type (eg, P-type) is implanted into the portion of the semiconductor layer 102 exposed by the patterned mask layer 114 in the ion implantation process 116, and further in the semiconductor layer 102. A doped region 118 having a second conductivity type is formed in the portion. In one embodiment, the doped region 118 has a dopant concentration of about 1E12 atoms/cm<2> to 5E14 atoms/cm<2>.

請參照第9-11圖,於移除第6-8圖內所示之圖案化之罩幕層114後,形成圖案化之一罩幕層120於半導體層102上及接著施行一離子佈植製程122,以形成一摻雜區124於閘極結構G之左側之半導體層102之數個部分之內。 Referring to FIGS. 9-11, after removing the patterned mask layer 114 shown in FIGS. 6-8, a patterned mask layer 120 is formed on the semiconductor layer 102 and then an ion implantation is performed. The process 122 is formed to form a doped region 124 within a plurality of portions of the semiconductor layer 102 on the left side of the gate structure G.

如第9-11圖所示,圖案化之罩幕層120係覆蓋了閘極結構G、摻雜區112與摻雜區118,並露出了形成於閘極結構G與摻雜區112之間之半導體層102之數個部分,使得數 個摻雜區124可交錯地形成於鄰近閘極結構G左側之半導體層102內之數個部分且從上視觀之具有一長方型輪廓。於離子佈植製程中,係佈植如P型之第一導電類型摻質進入為圖案化之罩幕層120所露出之半導體層102之數個部分內,進而形成具有第一導電類型之數個摻雜區124於閘極結構G左側之半導體層102之數個部分內。於一實施例中,摻雜區124具有約5E11-9E13原子/平方公分之一摻質濃度。 As shown in FIGS. 9-11, the patterned mask layer 120 covers the gate structure G, the doped region 112 and the doped region 118, and is exposed between the gate structure G and the doped region 112. a plurality of portions of the semiconductor layer 102 The doped regions 124 may be alternately formed in portions of the semiconductor layer 102 adjacent to the left side of the gate structure G and have a rectangular profile from above. In the ion implantation process, a first conductivity type dopant such as a P-type is implanted into a plurality of portions of the semiconductor layer 102 exposed by the patterned mask layer 120, thereby forming a number having the first conductivity type. The doped regions 124 are within a plurality of portions of the semiconductor layer 102 on the left side of the gate structure G. In one embodiment, the doped region 124 has a dopant concentration of about 5E11-9E13 atoms/cm 2 .

請參照第12-14圖,於移除如第9-11圖所示之圖案化之罩幕層120之後,形成一圖案化之罩幕層(未顯示)於半導體基板102上並接著施行一離子佈植製程(未顯示),以分別於閘極結構G之相對側之摻雜區112與118之內形成一摻雜區126與一摻雜區128。於一實施例中,摻雜區128形成於摻雜區118之一部內,而摻雜區126係形成於摻雜區116之一部內,且分別具有如N型之第二摻雜類型及約1E14原子/平方公分至8E15原子/平方公分之一摻質濃度,而用於形成摻雜區126與128之離子佈植製程可為離子佈植垂直於半導體層102之一表面。於一實施例中,摻雜區112可作為一漂移區(drift region),而摻雜區128與126可分別作為源極區與汲極區之用。 Referring to FIGS. 12-14, after removing the patterned mask layer 120 as shown in FIGS. 9-11, a patterned mask layer (not shown) is formed on the semiconductor substrate 102 and then performed. An ion implantation process (not shown) forms a doped region 126 and a doped region 128 within the doped regions 112 and 118 on opposite sides of the gate structure G, respectively. In one embodiment, the doped region 128 is formed in one of the doped regions 118, and the doped region 126 is formed in one of the doped regions 116 and has a second doping type such as an N-type and The ion implantation concentration of 1E14 atoms/cm 2 to 8E15 atoms/cm 2 , and the ion implantation process for forming the doping regions 126 and 128 may be ion implantation perpendicular to one surface of the semiconductor layer 102 . In one embodiment, the doped region 112 can serve as a drift region, and the doped regions 128 and 126 can serve as a source region and a drain region, respectively.

再者,如第12-14圖所示結構可包括由沿著Y方向之半導體層102上交錯地設置之數個摻雜區112與數個摻雜區124所形成之一超接面結構(super-junction structure)。於沿著Y方向上之超接面結構內之摻雜區112之寬度與摻雜區124之寬度可為相同或不相同。同樣地,沿著Y方向上之超接面結構之此些摻雜區112間之一間距以及此些摻雜區124間之一間 距可為相同或不相同。 Furthermore, the structure as shown in FIGS. 12-14 may include a super junction structure formed by a plurality of doping regions 112 and a plurality of doping regions 124 staggeredly disposed on the semiconductor layer 102 along the Y direction ( Super-junction structure). The width of the doped region 112 in the super junction structure along the Y direction may be the same or different from the width of the doped region 124. Similarly, a spacing between the doped regions 112 of the super junction structure along the Y direction and between the doped regions 124 The distance can be the same or different.

請參照第15-17圖,接著形成一絕緣層130於半導體層102上,以順應地覆蓋半導體層102之頂面以及閘極結構G之數個側壁與頂面。接著,施行一圖案化製程(未顯示)以形成一開口132於絕緣層130之一部內。如第15-17圖所示,此開口132露出了摻雜區128之一部,使得半導體層102之其他部分及閘極結構G之頂面仍為絕緣層130所覆蓋。於一實施例中,絕緣層130可包括如氧化矽及氮化矽之絕緣材料,且其可藉由如化學氣相沉積之方法所形成。接著施行一蝕刻製程(未顯示),採用具有開口132之圖案化絕緣層130作為蝕刻罩幕,進而形成一溝槽134於為開口132所露出之半導體層102之內。如第16-17圖所示,溝槽134係形成有可大體穿透摻雜區128與118之一深度。 Referring to FIGS. 15-17, an insulating layer 130 is then formed on the semiconductor layer 102 to conformably cover the top surface of the semiconductor layer 102 and the sidewalls and top surfaces of the gate structure G. Next, a patterning process (not shown) is performed to form an opening 132 in one of the insulating layers 130. As shown in FIGS. 15-17, the opening 132 exposes a portion of the doped region 128 such that the other portions of the semiconductor layer 102 and the top surface of the gate structure G are still covered by the insulating layer 130. In one embodiment, the insulating layer 130 may include an insulating material such as hafnium oxide and tantalum nitride, and it may be formed by a method such as chemical vapor deposition. An etch process (not shown) is then performed, using the patterned insulating layer 130 having openings 132 as an etch mask to form a trench 134 within the semiconductor layer 102 exposed for the opening 132. As shown in FIGS. 16-17, trench 134 is formed to have a depth that substantially penetrates one of doped regions 128 and 118.

請參照第18-20圖,接著採用絕緣層130作為佈植罩幕以施行一離子佈植製程136,以佈植如P型之第一導電類型摻質至為溝槽134所露出之半導體層102之一部內,進而於摻雜區118與半導體基板100之間之半導體層102之一部內形成一摻雜區138。於一實施例中,摻雜區138具有如P型之第一導電類型,以及具有約7E13-9E15原子/平方公分之摻質濃度。於一實施例中,摻雜區138內之摻質濃度可大於半導體層102內之摻質濃度。 Referring to FIGS. 18-20, the insulating layer 130 is used as an implantation mask to perform an ion implantation process 136 for implanting a first conductivity type dopant such as a P-type to a semiconductor layer exposed by the trench 134. A doped region 138 is formed in one of the portions of the semiconductor layer 102 between the doped region 118 and the semiconductor substrate 100. In one embodiment, doped region 138 has a first conductivity type, such as a P-type, and a dopant concentration of about 7E13-9E15 atoms/cm 2 . In one embodiment, the dopant concentration in the doped region 138 can be greater than the dopant concentration in the semiconductor layer 102.

請參照第21-23圖,接著沉積數層導電材料於如第18-20圖所示結構之上,且接著圖案化之以形成一導電層140與一導電層142。如第21-23圖所示,導電層140係順應地形 成於絕緣層130之數個部分的表面上以及為溝槽134所露出之半導體層102之底面與數個側壁上。導電層142則形成於導電層140之表面上並填滿了溝槽134。如第22-23圖所示,圖案化之導電層140與142係形成於鄰近於溝槽134之絕緣層130上,且延伸於溝槽134之底面與數個側壁上,進而覆蓋了半導體層102及為溝槽134所露出之摻雜區128與118之表面,而導電層140與142亦覆蓋了閘極結構G以及鄰近閘極結構G之摻雜區112之一部。然而,導電層140與142並不會覆蓋摻雜區126。形成於溝槽134內之導電層140與142之部分可作為導電接觸物(conductive contact)之用。此時,摻雜區138係實體地接觸了形成於溝槽134內之導電層140之底面。於一實施例中,導電層140可包括如鈦-氮化鈦合金(Ti-TiN)之導電材料,而導電層142則包括如鎢之導電材料。 Referring to Figures 21-23, a plurality of layers of conductive material are then deposited over the structure as shown in Figures 18-20, and then patterned to form a conductive layer 140 and a conductive layer 142. As shown in Figures 21-23, the conductive layer 140 conforms to the terrain. The surface of the insulating layer 130 is formed on the surface and the bottom surface of the semiconductor layer 102 exposed by the trench 134 and a plurality of sidewalls. Conductive layer 142 is formed on the surface of conductive layer 140 and fills trenches 134. As shown in FIGS. 22-23, the patterned conductive layers 140 and 142 are formed on the insulating layer 130 adjacent to the trench 134, and extend over the bottom surface of the trench 134 and a plurality of sidewalls to cover the semiconductor layer. 102 and the surface of the doped regions 128 and 118 exposed by the trench 134, and the conductive layers 140 and 142 also cover the gate structure G and a portion of the doped region 112 adjacent to the gate structure G. However, conductive layers 140 and 142 do not cover doped region 126. Portions of conductive layers 140 and 142 formed in trenches 134 can be used as conductive contacts. At this time, the doping region 138 physically contacts the bottom surface of the conductive layer 140 formed in the trench 134. In one embodiment, the conductive layer 140 may include a conductive material such as titanium-titanium nitride alloy (Ti-TiN), and the conductive layer 142 includes a conductive material such as tungsten.

請參照第24-26圖,接著沉積如二氧化矽、旋塗玻璃(SOG)之介電材料於導電層142與半導體層102之上,進而使得此介電材料覆蓋了導電層142、絕緣層130及閘極結構G,進而形成了具有大體平坦頂面之一層間介電層144。接著藉由包括微影與蝕刻製程之一圖案化製程(未顯示)的實施,於摻雜區126之一部之上的層間介電層144與絕緣層130之一部內形成一溝槽146,且溝槽146露出了摻雜區146之一部。接著,沉積一導電層148於層間介電層144上並填滿了溝槽146,進而接觸了摻雜區126。形成於溝槽146內之導電層148可作為一導電接觸物之用。於一實施例中,導電層146可包括如鈦-氮化鈦合金或鎢之導電材料。如此,如第24-26圖所示,依據 本發明一實施例之適用於射頻(RF)電路元件之橫向雙擴散金氧半導體(LDMOS)裝置便大體完成。 Referring to Figures 24-26, a dielectric material such as cerium oxide or spin on glass (SOG) is deposited over the conductive layer 142 and the semiconductor layer 102, such that the dielectric material covers the conductive layer 142 and the insulating layer. 130 and gate structure G, thereby forming an interlayer dielectric layer 144 having a generally flat top surface. A trench 146 is then formed in one of the interlayer dielectric layer 144 and the insulating layer 130 over one of the doped regions 126 by an implementation of a patterning process (not shown) including a lithography and etching process. And trench 146 exposes one of doped regions 146. Next, a conductive layer 148 is deposited on the interlayer dielectric layer 144 and filled with trenches 146 to contact the doped regions 126. Conductive layer 148 formed in trench 146 can serve as a conductive contact. In an embodiment, the conductive layer 146 may comprise a conductive material such as titanium-titanium nitride alloy or tungsten. Thus, as shown in Figures 24-26, A lateral double diffused metal oxide semiconductor (LDMOS) device suitable for use in radio frequency (RF) circuit components in accordance with an embodiment of the present invention is generally completed.

於一實施例中,如第25-26圖所示之半導體裝置之閘極結構G與摻雜區126與128可適當地電性相連結(未顯示),而具有第一導電類型之區域為P型區域,以及第二導電類型之區域為N型區域,使得所形成之半導體裝置為N型橫向雙擴散金氧半導體(n type LDMOS)裝置。此時,摻雜區128可作為一源極區,而摻雜區126可作為一汲極區。 In one embodiment, the gate structure G and the doped regions 126 and 128 of the semiconductor device as shown in FIGS. 25-26 may be electrically connected (not shown), and the region having the first conductivity type is The P-type region, and the region of the second conductivity type are N-type regions, such that the formed semiconductor device is an N-type lateral double-diffused metal oxide semiconductor (n-type LDMOS) device. At this time, the doping region 128 can serve as a source region, and the doping region 126 can serve as a drain region.

於一實施例中,於如第24-26圖所示之半導體裝置的操作時,可使得一電流(未顯示)自其汲極端(如摻雜區126)橫向地流經位於閘極結構G之下方通道(未顯示)並朝向源極端(如摻雜區128)流動之後,接著為摻雜區118、導電層140與142以及摻雜區138的導引而抵達半導體基板100處,因此便不需要一源極銲線(source wire bond)且半導體裝置可具有降低之的熱阻值(thermal resistance)。 In an embodiment, during operation of the semiconductor device as shown in FIGS. 24-26, a current (not shown) may be caused to flow laterally through the gate structure G from its drain terminal (eg, doped region 126). After the lower channel (not shown) flows toward the source terminal (eg, doped region 128), then the doped region 118, the conductive layers 140 and 142, and the doped region 138 are guided to reach the semiconductor substrate 100, thus A source wire bond is not required and the semiconductor device can have a reduced thermal resistance.

此外,於如第24-26圖所示之半導體裝置中,摻雜區112與118係於閘極結構G與包括了交錯設置之p-n摻雜區(請參照第12-14圖)之超接面結構形成之後才形成。因此,半導體裝置便可具有低的閘極-汲極電容值、低的源極-汲極電阻值以及高崩潰電壓等電性特性。 In addition, in the semiconductor device shown in FIGS. 24-26, the doping regions 112 and 118 are connected to the gate structure G and the pn doped region including the staggered arrangement (refer to FIG. 12-14). The surface structure is formed after it is formed. Therefore, the semiconductor device can have low gate-dipper capacitance values, low source-drain resistance values, and high breakdown voltage electrical characteristics.

請參照第27-35圖之一系列示意圖,以顯示了依據本發明之另一實施例之半導體裝置之製造方法,其中第27、30及35圖為一上視示意圖,而第28-29、31-32及34-35等圖則分別顯示了沿第27、30、及33圖內28-28、29-29、31-31、32-32、 34-34及35-35線段之一剖面示意圖,藉以分別顯示於半導體裝置之製造方法之一中間階段的製作情形。藉由如第27-35圖之示範方法所形成之半導體裝置可作為適用於射頻電路(RF)元件之一種橫向雙擴散金氧半導體(LDMOS)裝置。 Please refer to a series of schematic diagrams of FIGS. 27-35 for illustrating a method of fabricating a semiconductor device according to another embodiment of the present invention, wherein FIGS. 27, 30 and 35 are schematic views of a top view, and FIGS. 28-29, Plans such as 31-32 and 34-35 show 28-28, 29-29, 31-31, 32-32 along the 27th, 30th, and 33th, respectively. A schematic cross-sectional view of one of the 34-34 and 35-35 line segments, respectively, for display in the intermediate stage of one of the manufacturing methods of the semiconductor device. A semiconductor device formed by the exemplary method of Figures 27-35 can be used as a lateral double diffused metal oxide semiconductor (LDMOS) device suitable for radio frequency circuit (RF) components.

請參照第27-29圖,首先提供第6-8圖所示結構且施行其相關製程。接著,於移除如第6-8圖所示之圖案化之罩幕層114後,形成相同於如第9-11圖所示之一圖案化之罩幕層120於半導體基板102與閘極結構G上,並露出交錯地形成於閘極結構G與摻雜區112之間之半導體層102之數個部分。接著,施行一蝕刻製程300,以移除為圖案化之罩幕層120所露出之半導體層102之數個部分,進而形成位於摻雜區112內之數個溝槽302。從上視觀之,此些溝槽302具有條狀(strip-like)圖案,且分別露出了半導體層102之一部。 Please refer to Figures 27-29 for the structure shown in Figures 6-8 and the relevant process. Next, after removing the patterned mask layer 114 as shown in FIGS. 6-8, a mask layer 120 patterned in the same manner as shown in FIGS. 9-11 is formed on the semiconductor substrate 102 and the gate. On the structure G, a plurality of portions of the semiconductor layer 102 which are alternately formed between the gate structure G and the doping region 112 are exposed. Next, an etching process 300 is performed to remove portions of the semiconductor layer 102 exposed by the patterned mask layer 120 to form a plurality of trenches 302 in the doped region 112. Viewed from above, the trenches 302 have a strip-like pattern and expose one portion of the semiconductor layer 102, respectively.

請參照第30-32圖,施行一離子佈植製程(未顯示),採用第27-29圖內所示之圖案化之罩幕層作為佈植罩幕,以佈植如P型之第一導電類型之摻質至為此些溝槽302所露出之半導體層102之數個部分的側壁上,進而形成一摻雜區302。接著,於移除圖案化罩幕層120後,於此些溝槽302內填入如氧化矽之絕緣材料,進而形成一絕緣層304於此些溝槽302之內。絕緣層304之頂面與半導體層102及形成於其內之摻雜區112共平面。如第30圖所示,此離子佈植製程可為一斜角度佈植(tilt implantation)製程,因此從上視觀之,摻雜區302可形成有一中空長方形(hollow rectangular)輪廓。 Please refer to Figure 30-32 for an ion implantation process (not shown), using the patterned mask layer shown in Figure 27-29 as the implant mask to implant the first P-like pattern. A dopant of a conductivity type is formed on sidewalls of portions of the semiconductor layer 102 exposed for such trenches 302, thereby forming a doped region 302. Then, after the patterned mask layer 120 is removed, the trenches 302 are filled with an insulating material such as yttria, thereby forming an insulating layer 304 within the trenches 302. The top surface of the insulating layer 304 is coplanar with the semiconductor layer 102 and the doped regions 112 formed therein. As shown in Fig. 30, the ion implantation process can be a tilt implantation process, so that the doped region 302 can be formed with a hollow rectangular profile from above.

請參照第33-35圖,接著針對如第30-33圖所示結 構施行如第12-26圖所示之相關製程,進而形成如第33-35圖所示之半導體裝置。 Please refer to Figures 33-35 and then for the knot as shown in Figures 30-33. The related processes as shown in Figures 12-26 are constructed to form a semiconductor device as shown in Figures 33-35.

於一實施例中,如第33-35圖所示之半導體裝置之閘極結構G與摻雜區126與128可適當地電性相連結(未顯示),而具有第一導電類型之區域為P型區域,以及第二導電類型之區域為N型區域,使得所形成之半導體裝置為N型橫向雙擴散金氧半導體(n type LDMOS)裝置。此時,摻雜區128可作為一源極區,而摻雜區126可作為一汲極區。 In one embodiment, the gate structure G and the doped regions 126 and 128 of the semiconductor device as shown in FIGS. 33-35 may be electrically coupled (not shown), and the region having the first conductivity type is The P-type region, and the region of the second conductivity type are N-type regions, such that the formed semiconductor device is an N-type lateral double-diffused metal oxide semiconductor (n-type LDMOS) device. At this time, the doping region 128 can serve as a source region, and the doping region 126 can serve as a drain region.

於一實施例中,於如第33-35圖所示之半導體裝置的操作時,可使得一電流(未顯示)自其汲極端(如摻雜區126)橫向地流經位於閘極結構G之下方通道(未顯示)並朝向源極端(如摻雜區128)流動之後,接著為摻雜區118、導電層140與142以及摻雜區138的導引而抵達半導體基板100處,因此便不需要一源極銲線(source wire bond),且半導體裝置可具有一較低的熱阻值(thermal resistance)。 In one embodiment, during operation of the semiconductor device as shown in FIGS. 33-35, a current (not shown) may be caused to flow laterally from its drain terminal (eg, doped region 126) through the gate structure G. After the lower channel (not shown) flows toward the source terminal (eg, doped region 128), then the doped region 118, the conductive layers 140 and 142, and the doped region 138 are guided to reach the semiconductor substrate 100, thus A source wire bond is not required, and the semiconductor device can have a lower thermal resistance.

此外,於如第33-35圖所示之半導體裝置中,摻雜區112與118係於閘極結構G與包括了交錯設置之p-n摻雜區(請參照第12-14圖)之超接面結構形成後才形成。因此,半導體裝置便可具有低的閘極-汲極電容值、低的源極-汲極電阻值以及高崩潰電壓等電性特性。 In addition, in the semiconductor device as shown in FIGS. 33-35, the doping regions 112 and 118 are connected to the gate structure G and the pn doped region including the staggered arrangement (refer to FIG. 12-14). The surface structure is formed after it is formed. Therefore, the semiconductor device can have low gate-dipper capacitance values, low source-drain resistance values, and high breakdown voltage electrical characteristics.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可作更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the invention may be modified and retouched without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application attached.

100‧‧‧半導體基板 100‧‧‧Semiconductor substrate

102‧‧‧半導體層 102‧‧‧Semiconductor layer

104‧‧‧閘介電層 104‧‧‧gate dielectric layer

106‧‧‧閘電極 106‧‧‧ gate electrode

112‧‧‧摻雜區 112‧‧‧Doped area

118‧‧‧摻雜區 118‧‧‧Doped area

124‧‧‧摻雜區 124‧‧‧Doped area

126‧‧‧摻雜區 126‧‧‧Doped area

128‧‧‧摻雜區 128‧‧‧Doped area

130‧‧‧絕緣層 130‧‧‧Insulation

134‧‧‧溝槽 134‧‧‧ trench

138‧‧‧摻雜區 138‧‧‧Doped area

140‧‧‧導電層 140‧‧‧ Conductive layer

142‧‧‧導電層 142‧‧‧ Conductive layer

144‧‧‧層間介電層 144‧‧‧Interlayer dielectric layer

146‧‧‧溝槽 146‧‧‧ trench

148‧‧‧導電層 148‧‧‧ Conductive layer

G‧‧‧閘極結構 G‧‧‧ gate structure

Claims (16)

一種半導體裝置,包括:一半導體基板,具有一第一導電類型;一半導體層,形成於該半導體基板上,具有該第一導電類型;一閘極結構,設置於該半導體層之一部上;一第一摻雜區,設置於鄰近該閘極結構之一第一側之該半導體層內,具有該第一導電類型;一第二摻雜區,設置於鄰近該閘極結構之相對於該第一側之一第二側之該半導體層內,具有相反於該第一導電類型之一第二導電類型;一第三摻雜區,設置於該第一摻雜區之一部內,具有該第二導電類型;一第四摻雜區,設置於該第二摻雜區之一部內,具有該第二導電類型;數個第五摻雜區,分隔地設置於該第二摻雜區之數個部分內,具有該第一導電類型,其中該些第五摻雜區係位於該第四摻雜區與該閘極結構之間;一第六摻雜區,設置於位於該第一摻雜區之下之該半導體層之一部內,接觸該半導體基板;以及一導電接觸物,形成於該第三摻雜區與該第一摻雜區之一部內,接觸該第六摻雜區。 A semiconductor device comprising: a semiconductor substrate having a first conductivity type; a semiconductor layer formed on the semiconductor substrate having the first conductivity type; and a gate structure disposed on a portion of the semiconductor layer; a first doped region disposed in the semiconductor layer adjacent to a first side of the gate structure, having the first conductivity type; a second doped region disposed adjacent to the gate structure relative to the a second conductivity type opposite to the first conductivity type in the semiconductor layer on the second side of the first side; a third doped region disposed in one of the first doped regions, having the a second conductivity type; a fourth doped region disposed in one of the second doped regions, having the second conductivity type; and a plurality of fifth doped regions disposed separately from the second doped region a plurality of portions having the first conductivity type, wherein the fifth doped regions are located between the fourth doped region and the gate structure; and a sixth doped region disposed at the first doping region Within one of the semiconductor layers under the interfering region, contacting the Conductor substrate; and an electrical contact, the third doped region is formed in the inner one of the first doped region, the doped region in contact with the sixth. 如申請專利範圍第1項所述之半導體裝置,其中該第一導電類型為P型,而該第二導電類型為N型。 The semiconductor device of claim 1, wherein the first conductivity type is a P type and the second conductivity type is an N type. 如申請專利範圍第1項所述之半導體裝置,其中該第三摻雜區為一源極區,而該第四摻雜區為一汲極區。 The semiconductor device of claim 1, wherein the third doped region is a source region and the fourth doped region is a drain region. 如申請專利範圍第1項所述之半導體裝置,其中該些第五摻雜區及其鄰近之該第二摻雜區形成了一超接面結構。 The semiconductor device of claim 1, wherein the fifth doped regions and the second doped regions adjacent thereto form a super junction structure. 如申請專利範圍第1項所述之半導體裝置,其中從上視觀之,該些第五摻雜區具有長方形輪廓。 The semiconductor device of claim 1, wherein the fifth doped regions have a rectangular outline as viewed from above. 如申請專利範圍第1項所述之半導體裝置,其中從上視觀之,該些第五摻雜區具有中空長方形輪廓。 The semiconductor device of claim 1, wherein the fifth doped regions have a hollow rectangular outline as viewed from above. 如申請專利範圍第6項所述之半導體裝置,更包括一絕緣層,形成於該半導體層之數個部分內,其中該絕緣層係分別為該些第五摻雜區之一所環繞。 The semiconductor device of claim 6, further comprising an insulating layer formed in the plurality of portions of the semiconductor layer, wherein the insulating layer is surrounded by one of the fifth doped regions. 如申請專利範圍第1項所述之半導體裝置,其中該導電接觸物包括一第一導電層以及為該第一導電層所環繞之一第二導電層。 The semiconductor device of claim 1, wherein the conductive contact comprises a first conductive layer and a second conductive layer surrounded by the first conductive layer. 一種半導體裝置之製造方法,包括:提供一半導體基板,具有一第一導電類型;形成一半導體層於該半導體基板上,具有該第一導電類型;形成一閘極結構於該半導體層之一部上;形成一第一摻雜區於鄰近該閘極結構之一第一側之該半導體層內,具有該第一導電類型;形成一第二摻雜區於鄰近該閘極結構之相對於該第一側之一第二側之該半導體層內,具有相反於該第一導電類型之一第二導電類型; 形成一第三摻雜區於該第一摻雜區之一部內,具有該第二導電類型;形成一第四摻雜區於該第二摻雜區之一部內,具有相反於該第一導電類型之該第二導電類型;形成複數個第五摻雜區於該第二摻雜區之數個部分內,具有該第一導電類型,其中該些第五摻雜區係形成於該第四摻雜區與該閘極結構之間;形成一絕緣層於該第二摻雜區、該閘極結構與該第三摻雜區之一部上;形成一溝槽於該第三摻雜區與該第一摻雜區之一部內,露出位於該第一摻雜區下方之該半導體層之一部;施行一離子佈植程序,以佈植該第一導電類型之數個摻質至為該半導體層所露出之該半導體層內,進而形成一第六摻雜區,其中該第六摻雜區實體接觸該半導體基板;以及形成一導電接觸物於該溝槽內,其中該導電接觸物實體接觸該第六摻雜區。 A method of fabricating a semiconductor device, comprising: providing a semiconductor substrate having a first conductivity type; forming a semiconductor layer on the semiconductor substrate having the first conductivity type; forming a gate structure on a portion of the semiconductor layer Forming a first doped region in the semiconductor layer adjacent to a first side of the gate structure, having the first conductivity type; forming a second doped region adjacent to the gate structure relative to the a second conductivity type of the semiconductor layer opposite to the first conductivity type in the semiconductor layer on the second side of the first side; Forming a third doped region in one of the first doped regions, having the second conductivity type; forming a fourth doped region in one of the second doped regions, having opposite to the first conductive region a second conductivity type of the type; forming a plurality of fifth doped regions in the plurality of portions of the second doped region, having the first conductivity type, wherein the fifth doped regions are formed in the fourth Between the doped region and the gate structure; forming an insulating layer on the second doped region, the gate structure and one of the third doped regions; forming a trench in the third doped region And exposing a portion of the semiconductor layer under the first doped region to a portion of the first doped region; performing an ion implantation process to implant a plurality of dopants of the first conductivity type Forming a sixth doped region in the semiconductor layer exposed by the semiconductor layer, wherein the sixth doped region physically contacts the semiconductor substrate; and forming a conductive contact in the trench, wherein the conductive contact The entity contacts the sixth doped region. 如申請專利範圍第9項所述之半導體裝置之製造方法,其中該第一導電類型為P型,而該第二導電類型為N型。 The method of fabricating a semiconductor device according to claim 9, wherein the first conductivity type is a P type and the second conductivity type is an N type. 如申請專利範圍第9項所述之半導體裝置之製造方法,其中該第三摻雜區為一源極區,而該第四摻雜區為一汲極區。 The method of fabricating a semiconductor device according to claim 9, wherein the third doped region is a source region and the fourth doped region is a drain region. 如申請專利範圍第9項所述之半導體裝置之製造方法,其中該些第五摻雜區及其鄰近之該第二摻雜區形成了一超接面結構。 The method of fabricating a semiconductor device according to claim 9, wherein the fifth doped regions and the second doped regions adjacent thereto form a super junction structure. 如申請專利範圍第9項所述之半導體裝置之製造方法,其中從上視觀之,該些第五摻雜區具有長方形輪廓。 The method of fabricating a semiconductor device according to claim 9, wherein the fifth doped regions have a rectangular outline as viewed from above. 如申請專利範圍第9項所述之半導體裝置之製造方法,其中從上視觀之,該些第五摻雜區具有中空長方形輪廓。 The method of fabricating a semiconductor device according to claim 9, wherein the fifth doped regions have a hollow rectangular outline as viewed from above. 如申請專利範圍第9項所述之半導體裝置之製造方法,更包括形成一絕緣層於該半導體層之數個部分內,其中該絕緣層係分別為該些第五摻雜區之一所環繞。 The method for fabricating a semiconductor device according to claim 9, further comprising forming an insulating layer in the plurality of portions of the semiconductor layer, wherein the insulating layer is surrounded by one of the fifth doped regions . 如申請專利範圍第9項所述之半導體裝置之製造方法,其中該導電接觸物包括一第一導電層以及為該第一導電層所環繞之一第二導電層。 The method of fabricating a semiconductor device according to claim 9, wherein the conductive contact comprises a first conductive layer and a second conductive layer surrounded by the first conductive layer.
TW103126341A 2014-08-01 2014-08-01 Semiconductor device and method for fabricating the same TWI549302B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103126341A TWI549302B (en) 2014-08-01 2014-08-01 Semiconductor device and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103126341A TWI549302B (en) 2014-08-01 2014-08-01 Semiconductor device and method for fabricating the same

Publications (2)

Publication Number Publication Date
TW201607040A true TW201607040A (en) 2016-02-16
TWI549302B TWI549302B (en) 2016-09-11

Family

ID=55810154

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103126341A TWI549302B (en) 2014-08-01 2014-08-01 Semiconductor device and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI549302B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI618128B (en) * 2017-03-24 2018-03-11 世界先進積體電路股份有限公司 Semiconductor devices and methods for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869875A (en) * 1997-06-10 1999-02-09 Spectrian Lateral diffused MOS transistor with trench source contact
US6768180B2 (en) * 2002-04-04 2004-07-27 C. Andre T. Salama Superjunction LDMOST using an insulator substrate for power integrated circuits
TWI478336B (en) * 2011-05-06 2015-03-21 Episil Technologies Inc Resurf structure and ldmos device
TWI419333B (en) * 2011-05-19 2013-12-11 Macronix Int Co Ltd Semiconductor structure and method for operating the same
CN102315273A (en) * 2011-09-30 2012-01-11 上海宏力半导体制造有限公司 Hyperconjugation LDMOS (Laterally-Diffused Metal-Oxide Semiconductor) and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI618128B (en) * 2017-03-24 2018-03-11 世界先進積體電路股份有限公司 Semiconductor devices and methods for manufacturing the same

Also Published As

Publication number Publication date
TWI549302B (en) 2016-09-11

Similar Documents

Publication Publication Date Title
US9245963B2 (en) Insulated gate semiconductor device structure
TWI728476B (en) Ldmos devices, integrated circuits including ldmos devices, and methods for fabricating the same
CN210296383U (en) MOSFET device and silicon carbide MOSFET device
US8803236B1 (en) Lateral double diffused metal-oxide-semiconductor device and method for fabricating the same
JP2019521529A (en) POWER DEVICE AND METHOD FOR MANUFACTURING THE SAME
CN113053738A (en) Split gate type groove MOS device and preparation method thereof
US20170148889A1 (en) Metal oxide semiconductor field effect transistor power device with multi gates connection
US20150162431A1 (en) Planar vertical dmos transistor with reduced gate charge
US8987820B1 (en) Lateral double diffused metal-oxide-semiconductor device and method for fabricating the same
CN107452789B (en) Improved layout for device fabrication
KR101912030B1 (en) Combined gate and source trench formation and related structure
CN106935645B (en) MOSFET power device with bottom gate
CN104409500B (en) Radio frequency LDMOS and preparation method thereof
US9318601B2 (en) Semiconductor device and method for fabricating the same
TWI549302B (en) Semiconductor device and method for fabricating the same
CN109585558B (en) LDMOS FINFET structure with multiple gate structures
JP2014022487A (en) Semiconductor device
US10008593B2 (en) Radio frequency semiconductor device
TWI511284B (en) Lateral double diffused metal-oxide-semiconductor device and method for forming the same
CN103633139A (en) High-voltage metal oxide semiconductor transistor element
TWI512982B (en) High voltage metal oxide semiconductor device with low on-state resistance
US9178057B2 (en) Lateral double diffused metal-oxide-semiconductor device and method for fabricating the same
EP4369382A1 (en) Dmos device having junction field plate and manufacturing method therefor
TWI511296B (en) Lateral double diffused metal-oxide-semiconductor device and method for forming the same
CN104576729B (en) Lateral double diffusion metal oxide semiconductor device and its manufacturing method