TW201606733A - Gate driving method of a display and driving module - Google Patents

Gate driving method of a display and driving module Download PDF

Info

Publication number
TW201606733A
TW201606733A TW103128150A TW103128150A TW201606733A TW 201606733 A TW201606733 A TW 201606733A TW 103128150 A TW103128150 A TW 103128150A TW 103128150 A TW103128150 A TW 103128150A TW 201606733 A TW201606733 A TW 201606733A
Authority
TW
Taiwan
Prior art keywords
scan
gate
signal
signals
different
Prior art date
Application number
TW103128150A
Other languages
Chinese (zh)
Other versions
TWI539420B (en
Inventor
黃漢汶
Original Assignee
奇景光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇景光電股份有限公司 filed Critical 奇景光電股份有限公司
Priority to TW103128150A priority Critical patent/TWI539420B/en
Publication of TW201606733A publication Critical patent/TW201606733A/en
Application granted granted Critical
Publication of TWI539420B publication Critical patent/TWI539420B/en

Links

Abstract

A gate driving method of a display includes: respectively providing a plurality of scan signal sets to a plurality of scan line sets in sequence, wherein each of the scan signal sets includes a plurality of scan signals respectively transmitted to a plurality of scan lines of a corresponding scan line set; and respectively performing a plurality of trimming operations for the scan signals to reduce the high voltage levels of the scan signals. A plurality of first time intervals between the time points of the rising edges of the scan signals and the starting time points of the corresponding trimming operations or a plurality of second time intervals between the time points of the rising edges of the scan signals and the ending time points of the corresponding trimming operations are gradually increased or decreased for the different scan signal sets. A driving module is also provided.

Description

顯示器的閘極驅動方法及驅動模組 Gate driving method and driving module of display

本發明是有關於一種驅動方法與驅動模組,且特別是有關於一種顯示器的閘極驅動方法與用以驅動顯示器的驅動模組。 The invention relates to a driving method and a driving module, and in particular to a gate driving method of a display and a driving module for driving the display.

顯示技術在近年來不斷地進步,除了能夠提供使用者良好的畫面品質之外,又能夠往節省空間及低耗電量的方向邁進。舉例而言,液晶顯示器由於能夠產生高畫質,且同時能夠達到薄化及省電的需求,因此已大幅取代傳統陰極射線管(cathode ray tube,CRT)而成為市場的主流。 Display technology has been continuously improved in recent years. In addition to providing users with good picture quality, it is also able to move towards space saving and low power consumption. For example, liquid crystal displays have become a mainstream in the market because they can produce high image quality and at the same time achieve thinning and power saving requirements, and have largely replaced traditional cathode ray tubes (CRTs).

此外,現今的顯示器一般多為平面顯示器,因此當畫面尺寸增加時,顯示器的厚度的增加並不多。如此一來,平面顯示器的這個特點便適於發展出大畫面的顯示器,以提供使用者更高的視覺享受,但卻不會過於佔用市內的空間。 In addition, today's displays are generally mostly flat-panel displays, so when the screen size increases, the thickness of the display does not increase much. In this way, this feature of the flat panel display is suitable for the development of a large-screen display to provide users with higher visual enjoyment, but does not occupy too much space in the city.

然而,當顯示器往大畫面發展時,由於顯示面板上的導電走線拉長,使得陣列繞線(wire on array,WOA)的阻抗增加,且薄膜電晶體的漏電流亦增加。如此一來,將容易導致顯示畫面 上出現不同亮度的水平帶狀區,也就是會使畫面不均勻。 However, as the display progresses toward a large screen, the impedance of the wire on array (WOA) increases due to the elongated conductive traces on the display panel, and the leakage current of the thin film transistor also increases. As a result, it will easily lead to display Horizontal strips of different brightness appear on the screen, which makes the picture uneven.

為了解決上述問題,可採用顯示面板製程的微調或重新設計顯示面板來達成,然而這樣的解決方法將耗費大量的時間,且會大幅增加製作成本。 In order to solve the above problem, it can be achieved by fine-tuning or redesigning the display panel of the display panel process, but such a solution will take a lot of time and greatly increase the production cost.

本發明提供一種顯示器的閘極驅動方法,其可以簡易、低成本的方式來解決顯示畫面之不同亮度的水平帶狀區的問題。 The present invention provides a gate driving method for a display, which can solve the problem of horizontal strip regions of different brightness of a display screen in a simple and low-cost manner.

本發明提供一種驅動模組,其可提供一種以簡易、低成本的方式來解決顯示畫面之不同亮度的水平帶狀區的問題之方案。 The present invention provides a drive module that provides a solution to the problem of horizontal strip zones of different brightness of display screens in a simple, low-cost manner.

本發明的一實施例提出一種顯示器的閘極驅動方法,顯示器包括多個掃描線,且這些掃描線依序分為多個掃描線組。此顯示器的閘極驅動方法包括:依序分別提供多個掃描訊號組至這些掃描線組,其中每一掃描訊號組包括分別傳遞至一對應的掃描線組的多個掃描線的多個掃描訊號;以及分別對這些掃描訊號進行多個削角操作,以降低這些掃描訊號的高電壓準位。這些掃描訊號的上升緣的時間與分別對應的這些削角操作的啟始時間之間的多個第一時間間隔或與分別對應的這些削角操作的終止時間之間的多個第二時間間隔對於不同的這些掃描訊號組而言為依序遞增或遞減。 An embodiment of the invention provides a gate driving method for a display. The display includes a plurality of scan lines, and the scan lines are sequentially divided into a plurality of scan line groups. The gate driving method of the display includes: sequentially providing a plurality of scan signal groups to the scan line groups, wherein each scan signal group includes a plurality of scan signals respectively transmitted to a plurality of scan lines of a corresponding scan line group And performing multiple chamfering operations on the scan signals to reduce the high voltage level of the scan signals. a plurality of second time intervals between a plurality of first time intervals between the rising edges of the scan signals and the start times of the respective chamfering operations, respectively, or the respective end times of the chamfering operations For different scan signal groups, it is sequentially incremented or decremented.

本發明的一實施例提出一種驅動模組,用以驅動一顯示 器。顯示器包括多個掃描線,這些掃描線依序分為多個掃描線組。此驅動模組包括多個閘極驅動器、一電源供應器及一控制單元。這些閘極驅動器依序分別提供多個掃描訊號組至這些掃描線組,且每一掃描訊號組包括分別傳遞至一對應的掃描線組的多個掃描線的多個掃描訊號。電源供應器用以提供一高準位訊號與一低準位訊號至這些閘極驅動器,且這些閘極驅動器藉由切換高準位訊號與低準位訊號而形成這些掃描訊號。控制單元傳送一削角控制訊號至這些閘極驅動器或電源供應器,以分別對這些掃描訊號進行多個削角操作,進而降低這些掃描訊號的高電壓準位。這些掃描訊號的上升緣的時間與分別對應的這些削角操作的啟始時間之間的多個第一時間間隔或與分別對應的這些削角操作的終止時間之間的多個第二時間間隔對於不同的這些掃描訊號組而言為依序遞增或遞減。 An embodiment of the invention provides a driving module for driving a display Device. The display includes a plurality of scan lines, which are sequentially divided into a plurality of scan line groups. The driving module comprises a plurality of gate drivers, a power supply and a control unit. The gate drivers sequentially provide a plurality of scan signal groups to the scan line groups, and each of the scan signal groups includes a plurality of scan signals respectively transmitted to the plurality of scan lines of a corresponding scan line group. The power supply is configured to provide a high level signal and a low level signal to the gate drivers, and the gate drivers form the scan signals by switching the high level signal and the low level signal. The control unit transmits a chamfer control signal to the gate drivers or power supplies to perform a plurality of chamfering operations on the scan signals, thereby reducing the high voltage level of the scan signals. a plurality of second time intervals between a plurality of first time intervals between the rising edges of the scan signals and the start times of the respective chamfering operations, respectively, or the respective end times of the chamfering operations For different scan signal groups, it is sequentially incremented or decremented.

在本發明的一實施例中,削角控制訊號為傳送至這些閘極驅動器的一輸出致能訊號,且這些第二時間間隔對於不同的這些掃描訊號組而言的依序遞增或遞減是藉由在不同的多個時段中分別傳遞具有不同脈寬的輸出致能訊號至這些閘極驅動器而達成。 In an embodiment of the invention, the chamfer control signal is an output enable signal transmitted to the gate drivers, and the second time interval is sequentially incremented or decremented for different scan signal groups. This is achieved by delivering output enable signals having different pulse widths to the gate drivers in different time periods.

在本發明的一實施例中,分別對這些掃描訊號進行的這些削角操作是藉由對應的這些閘極驅動器對高準位訊號進行削角操作所達成,且這些第二時間間隔的大小隨著其所分別對應的這些閘極驅動器至電源供應器的導電線路的距離之由遠至近的順序 而遞減。 In an embodiment of the invention, the chamfering operations performed on the scan signals are respectively performed by the corresponding chasing drivers for chamfering the high-level signals, and the magnitudes of the second time intervals are The distance from the gate drivers of the corresponding gate drivers to the power supply lines of the power supply is as far as possible. And decrement.

在本發明的一實施例中,分別對這些掃描訊號進行的這 些削角操作是藉由電源供應器對高準位訊號進行削角操作所達成,且這些第二時間間隔的大小隨著其所分別對應的這些閘極驅動器至電源供應器的導電線路的距離之由遠至近的順序而遞增。 In an embodiment of the invention, the scanning signals are separately performed The chamfering operation is achieved by the power supply chamfering operation of the high-level signal, and the magnitude of the second time interval is corresponding to the distance of the gate driver to the conductive line of the power supply corresponding to the power supply. It is incremented from the farthest order.

在本發明的一實施例中,削角控制訊號為傳送至這些閘極驅動器的一閘極驅動器時鐘訊號,這些第一時間間隔對於不同的這些掃描訊號組而言的依序遞增或遞減是藉由在不同的多個時段中分別傳遞具有不同脈寬的閘極驅動器時鐘訊號至這些閘極驅動器而達成。 In an embodiment of the invention, the chamfer control signal is a gate driver clock signal transmitted to the gate drivers, and the first time interval is sequentially incremented or decremented for different scan signal groups. This is achieved by transferring gate driver clock signals having different pulse widths to the gate drivers in different time periods.

在本發明的一實施例中,這些第一時間間隔的大小隨著其所分別對應的這些閘極驅動器至電源供應器的導電線路的距離之由遠至近的順序而遞增。 In an embodiment of the invention, the magnitude of the first time intervals is increased in order of the distance from the respective gate drivers to the conductive lines of the power supply, respectively.

在本發明的一實施例中,削角控制訊號為傳送至電源供應器的一閘極脈衝調制訊號,且分別對這些掃描訊號進行的這些削角操作是藉由對應閘極脈衝調制訊號的時序而對高準位訊號進行削角操作所達成。 In an embodiment of the invention, the chamfering control signal is a gate pulse modulation signal transmitted to the power supply, and the chamfering operations performed on the scanning signals respectively are timings of the signals modulated by the corresponding gate pulses. The chamfering operation of the high-level signal is achieved.

在本發明的一實施例中,這些第一時間間隔對於不同的這些掃描訊號組而言的依序遞增或遞減是藉由在不同的多個時段中分別傳遞具有不同脈寬的閘極脈衝調制訊號至電源供應器以對高準位進行削角動所所達成。 In an embodiment of the invention, the sequential increment or decrement of the first time intervals for different scan signal groups is performed by separately transmitting gate pulse modulations having different pulse widths in different time periods. The signal to the power supply is achieved by chamfering the high level.

在本發明的一實施例中,這些第一時間間隔的大小隨著 其所分別對應的這些閘極驅動器至電源供應器的導電線路的距離之由遠至近的順序而遞減。 In an embodiment of the invention, the size of the first time intervals The distances of the corresponding gate drivers to the conductive lines of the power supply are reduced from the farthest order.

在本發明的一實施例中,顯示器為液晶顯示器。 In an embodiment of the invention, the display is a liquid crystal display.

在本發明的實施例的顯示器的閘極驅動方法與驅動模組 中,由於這些掃描訊號的上升緣的時間與分別對應的這些削角操作的啟始時間之間的多個第一時間間隔或與分別對應的這些削角操作的終止時間之間的多個第二時間間隔對於不同的這些掃描訊號組而言為依序遞增或遞減,因此可在顯示器的不同的水平帶狀區域中產生較為一致的饋通電壓,進而使顯示畫面較為均勻。如此一來,便可在驅動端有效解決顯示畫面上出現不同亮度的水平帶狀區的問題,也就是可用較為簡易、省時且節省成本的方式來解決此問題。 Gate driving method and driving module of display of embodiment of the present invention a plurality of first intervals between a plurality of first time intervals between the rising edges of the scanning signals and the starting times of the chamfering operations respectively corresponding to the respective cutting operations The two time intervals are sequentially incremented or decremented for different scan signal groups, so that a relatively uniform feedthrough voltage can be generated in different horizontal strip regions of the display, thereby making the display screen more uniform. In this way, the problem of horizontal strips with different brightness on the display screen can be effectively solved on the driving end, that is, the problem can be solved in a relatively simple, time-saving and cost-saving manner.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100、100d‧‧‧顯示器 100, 100d‧‧‧ display

200、200d‧‧‧驅動模組 200, 200d‧‧‧ drive module

210、210a、210b、210c、210d、210da、210db、210dc‧‧‧閘極驅動器 210, 210a, 210b, 210c, 210d, 210da, 210db, 210dc‧‧‧ gate drivers

220、220d‧‧‧電源供應器 220, 220d‧‧‧ power supply

230‧‧‧控制單元 230‧‧‧Control unit

240‧‧‧源極驅動器 240‧‧‧Source Driver

300‧‧‧液晶顯示面板 300‧‧‧LCD panel

310‧‧‧掃描線 310‧‧‧ scan line

320‧‧‧訊號線 320‧‧‧Signal line

330‧‧‧電晶體 330‧‧‧Optoelectronics

332‧‧‧閘極 332‧‧‧ gate

334‧‧‧源極 334‧‧‧ source

336‧‧‧汲極 336‧‧‧汲polar

340‧‧‧共用電極 340‧‧‧Common electrode

B‧‧‧點 B‧‧‧ points

Cgd‧‧‧寄生電容 Cgd‧‧‧ parasitic capacitance

Clc‧‧‧液晶電容 Clc‧‧ liquid crystal capacitor

CPV‧‧‧閘極驅動器時鐘訊號 CPV‧‧‧ gate driver clock signal

Cst‧‧‧儲存電容 Cst‧‧‧ storage capacitor

D、D’‧‧‧資料訊號 D, D’‧‧‧Information Signal

G、G1、G2、G3‧‧‧掃描線組 G, G1, G2, G3‧‧‧ scan line group

ID‧‧‧汲極放電電流 I D ‧‧‧汲polar discharge current

OE‧‧‧輸出致能訊號 OE‧‧‧ output enable signal

OE2‧‧‧閘極脈衝調制訊號 OE2‧‧ ‧ gate pulse modulation signal

P、P1、P2、P3‧‧‧時段 P, P1, P2, P3‧‧‧

S、S1、S2、S3‧‧‧掃描訊號組 S, S1, S2, S3‧‧‧ scan signal group

SC、SC’、SC1’、SC1”、SC2’、SC2”、SC3’、SC3”‧‧‧掃描訊號 SC, SC', SC1', SC1", SC2', SC2", SC3', SC3" ‧ ‧ scan signals

STV‧‧‧閘極驅動器起始脈衝 STV‧‧‧ gate driver start pulse

T1、T1a、T1b、T1c、T1d、T1da、T1db、T1dc‧‧‧第一時間間隔 T1, T1a, T1b, T1c, T1d, T1da, T1db, T1dc‧‧‧ first time interval

T2、T2a、T2b、T2c、T2d、T2da、T2db、T2dc‧‧‧第二時間間隔 T2, T2a, T2b, T2c, T2d, T2da, T2db, T2dc‧‧‧ second time interval

Vcom、Vcom’‧‧‧共用電壓 Vcom, Vcom’‧‧‧ shared voltage

VD‧‧‧汲極電壓訊號 VD‧‧‧ bungee voltage signal

VGH‧‧‧高準位訊號 VGH‧‧‧ high level signal

VGL‧‧‧低準位訊號 VGL‧‧‧ low level signal

VH、VSH‧‧‧高電壓準位 VH, VSH‧‧‧ high voltage level

VL、VL1、VL2、VL3、VSL‧‧‧低電壓準位 VL, VL1, VL2, VL3, VSL‧‧‧ low voltage level

W1、W11、W12、W13、W2、W21、W22、W23、W3、W31、W32、W33‧‧‧脈寬 W1, W11, W12, W13, W2, W21, W22, W23, W3, W31, W32, W33‧‧‧ pulse width

ΔV1、ΔV1’、ΔV2、ΔV2’、ΔV3、ΔV3’‧‧‧差值 ΔV1, ΔV1', ΔV2, ΔV2', ΔV3, ΔV3'‧‧‧ difference

ΔVFT‧‧‧饋通電壓 ΔV FT ‧‧‧feedthrough voltage

圖1A為本發明之一實施例之顯示器的方塊圖。 1A is a block diagram of a display in accordance with an embodiment of the present invention.

圖1B繪示圖1A的顯示器中掃描線與閘極驅動器的關係及資料線與源極驅動器的關係。 FIG. 1B illustrates the relationship between the scan line and the gate driver and the relationship between the data line and the source driver in the display of FIG. 1A.

圖2為用以驅動圖1A之顯示器的訊號波形圖。 2 is a signal waveform diagram for driving the display of FIG. 1A.

圖3A為圖1A的顯示器中的閘極驅動器起始脈衝訊號與傳送 至閘極驅動器的輸出致能訊號在對應至圖1A中不同的閘極驅動器的時段的波形圖。 3A is a start pulse signal and transmission of a gate driver in the display of FIG. 1A The waveform of the output enable signal to the gate driver is corresponding to the time period of the different gate drivers in FIG. 1A.

圖3B為圖1A的顯示器中不同的掃描訊號組的掃描訊號以其各自的正脈衝的上升緣為起點疊合後的波形示意圖。 FIG. 3B is a schematic diagram showing waveforms of scanning signals of different scanning signal groups in the display of FIG. 1A with their rising edges of positive pulses as a starting point. FIG.

圖4A為圖1A的顯示器中的一個畫素的電路圖。 4A is a circuit diagram of one pixel in the display of FIG. 1A.

圖4B為用以驅動圖1A的液晶顯示面板的另一對照實施例的訊號波形圖。 4B is a signal waveform diagram of another comparative embodiment for driving the liquid crystal display panel of FIG. 1A.

圖4C為圖2中的一個經過削角的掃描訊號的放大圖。 4C is an enlarged view of a chamfered scan signal of FIG. 2.

圖4D為用以驅動圖1A的液晶顯示面板的又一對照實施例中於不同時段的掃描訊號的波形圖。 4D is a waveform diagram of scan signals at different time periods in a further comparative embodiment of the liquid crystal display panel of FIG. 1A.

圖4E為圖4D的掃描訊號所產生的顯示畫面的示意圖。 4E is a schematic diagram of a display screen generated by the scan signal of FIG. 4D.

圖5A為本發明的另一實施例的顯示器中的閘極驅動器起始脈衝訊號與傳送至閘極驅動器的閘極驅動器時鐘訊號在對應至圖1A中不同的閘極驅動器的時段的波形圖。 5A is a waveform diagram of a gate driver start pulse signal and a gate driver clock signal transmitted to a gate driver in a display corresponding to a different gate driver in FIG. 1A in another embodiment of the present invention.

圖5B為圖1A的顯示器中不同的掃描訊號組的掃描訊號以其各自的正脈衝的上升緣為起點疊合後的波形示意圖。 FIG. 5B is a schematic diagram showing waveforms of scanning signals of different scanning signal groups in the display of FIG. 1A with their rising edges of positive pulses as a starting point. FIG.

圖6A為本發明之另一實施例之顯示器的方塊圖。 6A is a block diagram of a display in accordance with another embodiment of the present invention.

圖6B為用以驅動圖6A之顯示器的訊號波形圖。 Figure 6B is a signal waveform diagram for driving the display of Figure 6A.

圖7為用以驅動圖6A的液晶顯示面板的另一對照實施例中於不同時段的掃描訊號的波形圖。 FIG. 7 is a waveform diagram of scan signals for different periods of time in another comparative embodiment of the liquid crystal display panel of FIG. 6A.

圖8A為圖6A的顯示器中的閘極驅動器起始脈衝訊號與傳送至閘極驅動器的輸出致能訊號在對應至圖6A中不同的閘極驅動 器的時段的波形圖。 8A is a diagram showing the gate driver start pulse signal in the display of FIG. 6A and the output enable signal transmitted to the gate driver in a gate drive different from that in FIG. 6A. Waveform of the time period of the device.

圖8B為圖6A的顯示器中不同的掃描訊號組的掃描訊號以其各自的正脈衝的上升緣為起點疊合後的波形示意圖。 FIG. 8B is a waveform diagram of the scanning signals of different scanning signal groups in the display of FIG. 6A superimposed with the rising edges of their respective positive pulses as a starting point. FIG.

圖9A為本發明的再一實施例的顯示器中的閘極驅動器起始脈衝訊號、閘極脈衝調制訊號及高準位訊號在對應至圖6A中不同的閘極驅動器210d的時段的波形圖。 FIG. 9A is a waveform diagram of a gate driver start pulse signal, a gate pulse modulation signal, and a high level signal in a display corresponding to different gate drivers 210d of FIG. 6A in a display according to still another embodiment of the present invention.

圖9B為圖6A的顯示器中不同的掃描訊號組的掃描訊號以其各自的正脈衝的上升緣為起點疊合後的波形示意圖。 FIG. 9B is a waveform diagram of the scanning signals of different scanning signal groups in the display of FIG. 6A superimposed with the rising edges of their respective positive pulses as a starting point. FIG.

圖1A為本發明之一實施例之顯示器的方塊圖,圖1B繪示圖1A的顯示器中掃描線與閘極驅動器的關係及資料線與源極驅動器的關係,圖2為用以驅動圖1A之顯示器的訊號波形圖,圖3A為圖1A的顯示器中的閘極驅動器起始脈衝(gate driver start pulse)訊號與傳送至閘極驅動器的輸出致能訊號(output enable signal to gate drivers)在對應至圖1A中不同的閘極驅動器的時段的波形圖,而圖3B為圖1A的顯示器中不同的掃描訊號組的掃描訊號以其各自的正脈衝的上升緣為起點疊合後的波形示意圖。 1A is a block diagram of a display according to an embodiment of the present invention, and FIG. 1B is a diagram showing relationship between a scan line and a gate driver and a relationship between a data line and a source driver in the display of FIG. 1A, and FIG. 2 is used to drive FIG. 1A. The signal waveform diagram of the display, FIG. 3A corresponds to the gate driver start pulse signal in the display of FIG. 1A corresponding to the output enable signal to gate drivers transmitted to the gate driver. FIG. 3B is a waveform diagram of a period of different gate drivers in FIG. 1A, and FIG. 3B is a waveform diagram in which the scan signals of different scan signal groups in the display of FIG. 1A are superimposed with the rising edges of their respective positive pulses.

請先參照圖1A至圖1B、圖2及圖3A至圖3B,本實施例的驅動模組200用以驅動一顯示器100。在本實施例中,顯示器例如為一液晶顯示器,而驅動模組200用以驅動液晶顯示面板300進行顯示。顯示器100包括多個掃描線310,這些掃描線310依序 分為多個掃描線組G,例如掃描線組G3、G2及G1。驅動模組200包括多個閘極驅動器210(例如閘極驅動器210c、210b及210a)、一電源供應器220及一控制單元230。這些閘極驅動器210依序分別提供多個掃描訊號組S至這些掃描線組G,且每一掃描訊號組S包括分別傳遞至一對應的掃描線組G的多個掃描線310的多個掃描訊號SC。 Referring to FIG. 1A to FIG. 1B, FIG. 2 and FIG. 3A to FIG. 3B, the driving module 200 of the embodiment is used to drive a display 100. In this embodiment, the display is, for example, a liquid crystal display, and the driving module 200 is used to drive the liquid crystal display panel 300 for display. The display 100 includes a plurality of scan lines 310, which are sequentially ordered It is divided into a plurality of scanning line groups G, such as scanning line groups G3, G2, and G1. The driving module 200 includes a plurality of gate drivers 210 (eg, gate drivers 210c, 210b, and 210a), a power supply 220, and a control unit 230. The gate drivers 210 sequentially provide a plurality of scan signal groups S to the scan line groups G, and each scan signal group S includes a plurality of scans respectively transmitted to the plurality of scan lines 310 of a corresponding scan line group G. Signal SC.

電源供應器220用以提供一高準位訊號VGH與一低準位訊號VGL至這些閘極驅動器210,且這些閘極驅動器210藉由切換高準位訊號VGH與低準位訊號VGL而形成這些掃描訊號SC。控制單元230傳送一削角控制訊號至這些閘極驅動器210或電源供應器220,以分別對這些掃描訊號SC進行多個削角操作,進而降低這些掃描訊號SC的高電壓準位VH。其中,這些掃描訊號SC的高電壓準位VH是由高準位訊號VGH所提供,且這些掃描訊號SC的低電壓準位VL是由低準位訊號VGL所提供。在本實施例中,控制單元230為一時序控制器(timing controller),而削角控制訊號為傳送至閘極驅動器210的輸出致能訊號(output enable signal)OE。 The power supply 220 is configured to provide a high level signal VGH and a low level signal VGL to the gate drivers 210, and the gate drivers 210 form the high level signal VGH and the low level signal VGL. Scan signal SC. The control unit 230 transmits a chamfer control signal to the gate driver 210 or the power supply 220 to perform a plurality of chamfering operations on the scan signals SC, thereby reducing the high voltage level VH of the scan signals SC. The high voltage level VH of the scan signals SC is provided by the high level signal VGH, and the low voltage level VL of the scan signals SC is provided by the low level signal VGL. In this embodiment, the control unit 230 is a timing controller, and the chamfer control signal is an output enable signal OE that is transmitted to the gate driver 210.

這些掃描訊號SC的上升緣的時間與分別對應的這些削角操作的啟始時間之間的多個第一時間間隔T1或與分別對應的這些削角操作的終止時間之間的多個第二時間間隔T2對於不同的這些掃描訊號組S而言為依序遞增或遞減。在本實施例中,這些第二時間間隔T2對於不同的這些掃描訊號組S而言為依序遞 減。在本實施例中,於掃描線組G3中傳輸的掃描訊號組S的掃描訊號SC的第二時間間隔T2c大於於掃描線組G2中傳輸的掃描訊號組S的掃描訊號SC的第二時間間隔T2b,且於掃描線組G2中傳輸的掃描訊號組S的掃描訊號SC的第二時間間隔T2b大於於掃描線組G1中傳輸的掃描訊號組S的掃描訊號SC的第二時間間隔T2a,如圖3B所繪示。 a plurality of second intervals between a plurality of first time intervals T1 between the rising edges of the scan signals SC and the start times of the chamfering operations respectively corresponding to the respective end times of the chamfering operations The time interval T2 is sequentially incremented or decremented for different scan signal groups S. In this embodiment, these second time intervals T2 are sequentially delivered for different scan signal groups S. Less. In this embodiment, the second time interval T2c of the scan signal SC of the scan signal group S transmitted in the scan line group G3 is greater than the second time interval of the scan signal SC of the scan signal group S transmitted in the scan line group G2. T2b, and the second time interval T2b of the scan signal SC of the scan signal group S transmitted in the scan line group G2 is greater than the second time interval T2a of the scan signal SC of the scan signal group S transmitted in the scan line group G1, such as Figure 3B is depicted.

圖4A為圖1A的顯示器中的一個畫素的電路圖,圖4B 為用以驅動圖1A的液晶顯示面板的另一對照實施例的訊號波形圖,圖4C為圖2中的一個經過削角的掃描訊號的放大圖,圖4D為用以驅動圖1A的液晶顯示面板的又一對照實施例中於不同時段的掃描訊號的波形圖,而圖4E為圖4D的掃描訊號所產生的顯示畫面的示意圖。請先參照圖1A與圖4A,液晶顯示面板300除了具有多個掃描線310之外,尚具有多個訊號線320、多個電晶體330及一共用電極340。每一電晶體330的閘極332偶接至一掃描線310,每一電晶體330的源極334偶接至一訊號線320,每一電晶體330的汲極336(及連接至汲極336的畫素電極)與共用電極340(例如是位於對向基板之共用電極層)之間透過一液晶層形成一液晶電容Clc,而每一電晶體330的汲極336(及連接至汲極336的畫素電極)與共用電極340(例如是位於薄膜電晶體陣列基板之共用線,其與對向基板之共用電極層電性連接)之間形成一儲存電容Cst。此外,掃描線310與與其相接的電晶體330的汲極之間自然存在著寄生電容Cgd。 4A is a circuit diagram of a pixel in the display of FIG. 1A, FIG. 4B FIG. 4C is an enlarged view of a chamfered scan signal of FIG. 2, and FIG. 4D is a liquid crystal display for driving the FIG. 1A. FIG. In another comparative embodiment of the panel, the waveform of the scanning signal at different time periods is shown, and FIG. 4E is a schematic diagram of the display screen generated by the scanning signal of FIG. 4D. Referring to FIG. 1A and FIG. 4A , the liquid crystal display panel 300 has a plurality of signal lines 320 , a plurality of transistors 330 , and a common electrode 340 in addition to the plurality of scan lines 310 . The gate 332 of each transistor 330 is coupled to a scan line 310. The source 334 of each transistor 330 is coupled to a signal line 320, the drain 336 of each transistor 330 (and to the drain 336). a pixel capacitor Clc is formed between the pixel electrode and the common electrode 340 (for example, a common electrode layer located on the opposite substrate) through a liquid crystal layer, and the drain 336 of each transistor 330 (and connected to the drain 336) A storage capacitor Cst is formed between the pixel electrode and the common electrode 340 (for example, a common line on the thin film transistor array substrate, which is electrically connected to the common electrode layer of the opposite substrate). Further, a parasitic capacitance Cgd naturally exists between the scan line 310 and the drain of the transistor 330 that is in contact therewith.

另一方面,驅動模組200更包括至少一源極驅動器240(在圖1A與圖1B中是以多個源極驅動器240為例),源極驅動器240分別提供多個資料訊號D至這些掃描線310。在本實施例中,掃描線310依序分成多組,而這些源極驅動器240分別耦接至不同組的掃描線310。如圖4B所繪示,當任一掃描線310傳送如圖4B的方波掃描訊號SC’至對應的一電晶體330的閘極332時,對應的一資料線320傳送如圖4B的方波資料訊號D’至電晶體330的源極334。當閘極332的電壓準位處於高電壓準位VH時,電晶體330導通,而來自源極的資料訊號D’對儲存電容Cst與液晶電容Clc充電,使得汲極336的電壓上升至資料訊號D’的高電壓準位VSH。其中,汲極336處的電壓訊號為汲極電壓訊號VD。然而,當掃描訊號SC’從高電壓準位VH轉變為低電壓準位VL時,由於寄生電容Cgd的電容耦合作用,使得汲極336的實際電壓在此時下降一電壓,此一電壓即為饋通電壓ΔVFTOn the other hand, the driving module 200 further includes at least one source driver 240 (exemplified by a plurality of source drivers 240 in FIGS. 1A and 1B ), and the source driver 240 respectively provides a plurality of data signals D to the scans. Line 310. In this embodiment, the scan lines 310 are sequentially divided into groups, and the source drivers 240 are respectively coupled to different sets of scan lines 310. As shown in FIG. 4B, when any scan line 310 transmits the square wave scan signal SC' of FIG. 4B to the gate 332 of a corresponding transistor 330, a corresponding data line 320 transmits the square wave as shown in FIG. 4B. The data signal D' is to the source 334 of the transistor 330. When the voltage level of the gate 332 is at the high voltage level VH, the transistor 330 is turned on, and the data signal D' from the source charges the storage capacitor Cst and the liquid crystal capacitor Clc, so that the voltage of the drain 336 rises to the data signal. D' high voltage level VSH. The voltage signal at the drain 336 is the drain voltage signal VD. However, when the scan signal SC' changes from the high voltage level VH to the low voltage level VL, due to the capacitive coupling of the parasitic capacitance Cgd, the actual voltage of the drain 336 drops by a voltage at this time, and this voltage is Feedthrough voltage ΔV FT .

饋通電壓ΔVFT的大小可由以下(1)式計算而得: The magnitude of the feedthrough voltage ΔV FT can be calculated by the following formula (1):

然而,由於掃描線310的阻抗,使得呈方波的掃描訊號SC’在掃描線310傳遞的過程中逐漸產生變形。因此,本實施例之掃描訊號SC是採用經削角的方波訊號,而削角後的波形的B點主要決定了饋通電壓ΔVFT的大小。由於B點的電壓與低電壓準位VL的差值小於高電壓準位VH與低電壓準位VL的差值,且經削角的方波訊號在掃描線310傳遞的過程中產生變形時,主要能 夠決定饋通電壓ΔVFT的大小的點與低電壓準位VL的差值會接近於B點的電壓與低電壓準位VL的差值。如此一來,便能夠藉由將原本位於資料訊號D’的正負週期的振幅的中心的共用電極340的共用電壓Vcom’往下調整ΔVFT至Vcom,而使此共用電壓Vcom的值為資料訊號的正週期的高電壓準位VSH減掉饋通電壓ΔVFT後所得到的電壓與負週期的低電壓準位VSL減掉饋通電壓ΔVFT後所得到的電壓的中間值,而使得正負週期的電壓差值的振幅相同而不會造成螢幕的閃爍。 However, due to the impedance of the scan line 310, the square wave scanning signal SC' is gradually deformed during the transfer of the scan line 310. Therefore, the scanning signal SC of the embodiment adopts a square wave signal with a chamfered angle, and the point B of the waveform after the chamfering mainly determines the magnitude of the feedthrough voltage ΔV FT . Since the difference between the voltage at point B and the low voltage level VL is smaller than the difference between the high voltage level VH and the low voltage level VL, and the chamfered square wave signal is deformed during the transmission of the scan line 310, The difference between the point at which the magnitude of the feedthrough voltage ΔV FT is mainly determined and the low voltage level VL is close to the difference between the voltage at point B and the low voltage level VL. In this way, the common voltage Vcom' of the common electrode 340 at the center of the amplitude of the positive and negative periods of the data signal D' can be adjusted downward by ΔV FT to Vcom, so that the value of the common voltage Vcom is the data signal. The high voltage level of the positive cycle VSH minus the feedthrough voltage ΔV FT and the low voltage level VSL of the negative cycle minus the intermediate value of the voltage obtained after the feedthrough voltage ΔV FT , so that the positive and negative cycle The amplitude of the voltage difference is the same without causing flicker on the screen.

然而,低準位訊號VGL從電源供應器220傳遞至不同的 閘極驅動器210所行經的導電線路的距離不同,而會造成不同程度的阻抗。在圖1A中,電源供應器220至閘極驅動器210c的導電線路的長度大於電源供應器220至閘極驅動器210b的電電線路的長度,且電源供應器220至閘極驅動器210b的導電線路的長度大於電源供應器220至閘極驅動器210a的導電線路的長度。因為越長的導電線路會產生越大的阻抗,因此,如圖4D所繪示,對應於掃描訊號組G3的掃描訊號SC3’的低電壓準位VL3會比對應於掃描訊號組G2的掃描訊號SC2’的低電壓準位VL2更靠近零準位(即接地準位),且低電壓準位VL2會比對應於掃描訊號組G1的掃描訊號SC1’的低電壓準位VL1更靠近零準位。由於低電壓準位VL1、VL2及VL3均低於零準位,因此VL3>VL2>VL1。 此外,液晶顯示面板300中的電晶體330若有漏電的情形,亦容易造成此種結果。 However, the low level signal VGL is transferred from the power supply 220 to a different one. The distance of the conductive lines through which the gate driver 210 travels is different, resulting in varying degrees of impedance. In FIG. 1A, the length of the conductive line from the power supply 220 to the gate driver 210c is greater than the length of the electric line from the power supply 220 to the gate driver 210b, and the length of the conductive line from the power supply 220 to the gate driver 210b. The length of the conductive line is greater than the power supply 220 to the gate driver 210a. Because the longer the conductive line generates a larger impedance, the low voltage level VL3 corresponding to the scanning signal SC3' of the scanning signal group G3 is higher than the scanning signal corresponding to the scanning signal group G2, as shown in FIG. 4D. The low voltage level VL2 of SC2' is closer to the zero level (ie, the ground level), and the low voltage level VL2 is closer to the zero level than the low voltage level VL1 of the scan signal SC1' corresponding to the scan signal group G1. . Since the low voltage levels VL1, VL2 and VL3 are both below the zero level, VL3>VL2>VL1. Further, if the transistor 330 in the liquid crystal display panel 300 has a leakage current, it is likely to cause such a result.

另一方面,在本實施例中,分別對這些掃描訊號SC進行的這些削角操作是藉由對應的這些閘極驅動器210對高準位訊號VGH進行削角操作所達成,例如是藉由所屬領域中具有通常知識者所熟知的閘極驅動器210中的削角電路來達成。舉例而言,可藉由電晶體(例如金氧半導體場效電晶體)操作在飽和區時的放電特性來達到使高電壓準位VH下降的削角效果。此放電特性所產生的汲極放電電流ID符合以下(2)式:I D =K×(VGN-VL)2 (2)式 On the other hand, in the embodiment, the chamfering operations performed on the scanning signals SC are performed by the corresponding chasing drivers 210 to perform the chamfering operation on the high-level signal VGH, for example, by A chamfering circuit in the gate driver 210, which is well known to those skilled in the art, is achieved in the art. For example, the chamfering effect of lowering the high voltage level VH can be achieved by operating the discharge characteristics in the saturation region by a transistor (for example, a MOS field effect transistor). The drain discharge current I D generated by this discharge characteristic satisfies the following formula (2): I D = K × ( VGN - VL ) 2 (2)

其中,VGN為施加於此金氧半導體場效電晶體的閘極的控制電壓,VL為低準位訊號VGL在傳遞至包含此金氧半導體場效電晶體的閘極驅動器210時的低電壓準位VL,而K為比例常數。 Wherein, VGN is a control voltage applied to a gate of the MOS field effect transistor, and VL is a low voltage level when the low level signal VGL is transmitted to the gate driver 210 including the MOS field effect transistor. Bit VL, and K is a proportional constant.

由以上(2)式可知,由於越遠離電源供應器220的閘極驅動器210所接收到的低電壓準位VL越大,因此其放電電流ID越小,即放電速率越慢,也就是削角的斜率的絕對值越小。在本實施例中,掃描訊號SC3’的削角斜率的絕對值小於掃描訊號SC2’的削角斜率的絕對值,且掃描訊號SC2’的削角斜率的絕對值小於掃描訊號SC1’的削角斜率絕對值。 As can be seen from the above formula (2), since the lower the voltage level VL received by the gate driver 210 farther from the power supply 220 is, the smaller the discharge current I D is , that is, the slower the discharge rate is, that is, the shaving The absolute value of the slope of the angle is smaller. In this embodiment, the absolute value of the chamfer slope of the scan signal SC3' is smaller than the absolute value of the chamfer slope of the scan signal SC2', and the absolute value of the chamfer slope of the scan signal SC2' is smaller than the chamfer of the scan signal SC1'. The absolute value of the slope.

綜合以上兩種作用,亦即低電壓準位VL會隨著導電路徑長度與電晶體漏電流的情形而在不同的閘極驅動器210處產生不同的值,以及由於低電壓準位VL的不同而導致放電速率的不同,進而使得掃描訊號SC3’、SC2’及SC1’的B點的電壓不同,如此會使得掃描訊號SC3’、SC2’及SC1’的B點電壓與低電壓準 位VL3、VL2及VL1的差值ΔV3’、ΔV2’及ΔV1’不同。 Combining the above two effects, that is, the low voltage level VL will produce different values at different gate drivers 210 depending on the length of the conductive path and the transistor leakage current, and due to the difference in the low voltage level VL. The difference in the discharge rate causes the voltages at the B point of the scanning signals SC3', SC2', and SC1' to be different, which causes the voltages B and V1 of the scanning signals SC3', SC2', and SC1' to be low. The differences ΔV3', ΔV2', and ΔV1' of the bits VL3, VL2, and VL1 are different.

在本實施例中,低電壓準位VL的下降程度比因低電壓準位的下降所導致的高電壓準位VH的削角而下降的程度小,因此在本實施例中,ΔV3’>ΔV2’>ΔV1’。如此一來,當以ΔV3’、ΔV2’及ΔV1’分別取代(1)式中的(VH-VL)後可得到分別對應於掃描線組G3、G2及G1的不同的饋通電壓ΔVFT3、ΔVFT2及ΔVFT1不相同的結果,在本實施例中,ΔVFT3>ΔVFT2>ΔVFT1,如此將使顯示器100的顯示區AA中分別對應於不同的掃描線組G3、G2及G1的不同的水平帶狀區域A3、A2及A1的亮度不一致,且易導致畫面的閃爍。 In the present embodiment, the degree of decrease in the low voltage level VL is smaller than the degree of decrease in the chamfer of the high voltage level VH due to the drop in the low voltage level, so in the present embodiment, ΔV3'> ΔV2 '>ΔV1'. In this way, when (VH-VL) in the equation (1) is replaced by ΔV3', ΔV2', and ΔV1', respectively, different feedthrough voltages ΔV FT3 corresponding to the scan line groups G3, G2, and G1 are obtained, ΔV FT2 and ΔV FT1 are different results. In the present embodiment, ΔV FT3 > ΔV FT2 > ΔV FT1 , such that the display area AA of the display 100 corresponds to different scan line groups G3, G2, and G1, respectively. The horizontal strip regions A3, A2, and A1 have inconsistent brightness and are liable to cause flickering of the screen.

為了解決此問題,請再參照圖3A與圖3B,在本實施例中,由於於掃描線組G3中傳輸的掃描訊號組S的掃描訊號SC的第二時間間隔T2c大於於掃描線組G2中傳輸的掃描訊號組S的掃描訊號SC的第二時間間隔T2b,且於掃描線組G2中傳輸的掃描訊號組S的掃描訊號SC的第二時間間隔T2b大於於掃描線組G1中傳輸的掃描訊號組S的掃描訊號SC的第二時間間隔T2a,因此對應於不同的掃描線組G3、G2及G1的掃描訊號組S3、S2及S1的B點電壓與其對應的低電壓準位VL3、VL2及VL1的差值會較為接近或實質上相等,亦即讓削角斜率的絕對值越大的掃描訊號SC的第二時間間隔T2越短。如此一來,便可使對應於不同的掃描線組G3、G2及G1的饋通電壓ΔVFT較為一致,進而使亮度不同的水平帶狀區域消失或無法讓人眼所察覺。此外,由於整個液 晶顯示面板300的饋通電壓ΔVFT較為一致,因此可藉由將共用電壓Vcom調整至汲極336所接收到的電壓訊號的正負週期的中心值,便可以有效抑制或消除畫面的閃爍。 In order to solve this problem, please refer to FIG. 3A and FIG. 3B again. In this embodiment, the second time interval T2c of the scan signal SC of the scan signal group S transmitted in the scan line group G3 is larger than that in the scan line group G2. The second time interval T2b of the scan signal SC of the transmitted scan signal group S, and the second time interval T2b of the scan signal SC of the scan signal group S transmitted in the scan line group G2 is greater than the scan transmitted in the scan line group G1 The second time interval T2a of the scan signal SC of the signal group S, corresponding to the voltages of the B points of the scan signal groups S3, S2 and S1 of the different scan line groups G3, G2 and G1 and their corresponding low voltage levels VL3, VL2 The difference between VL1 and VL1 is relatively close or substantially equal, that is, the second time interval T2 of the scanning signal SC having the larger absolute value of the chamfer slope is shorter. In this way, the feedthrough voltages ΔV FT corresponding to the different scanning line groups G3, G2, and G1 can be made uniform, and the horizontal band regions having different brightnesses can be eliminated or can not be perceived by the eyes. In addition, since the feedthrough voltage ΔV FT of the entire liquid crystal display panel 300 is relatively uniform, the common voltage Vcom can be adjusted to the center value of the positive and negative periods of the voltage signal received by the drain 336, thereby effectively suppressing or eliminating the picture. Flashing.

換言之,在本實施例中,這些第二時間間隔T2的大小隨著其所分別對應的這些閘極驅動器210至電源供應器220的導電線路的距離之由遠至近的順序而遞減(即T2c>T2b>T2a)。 In other words, in the present embodiment, the magnitudes of the second time intervals T2 are decreased in descending order of the distances of the gate drivers 210 to the conductive lines of the power supply 220 corresponding thereto (ie, T2c>). T2b>T2a).

在本實施例中,這些第二時間間隔T2對於不同的這些掃描訊號組S而言的依序遞增或遞減是藉由在不同的多個時段P(在本實施例中例如是時段P1、P2及P3)中分別傳遞具有不同脈寬W3、W2及W1的輸出致能訊號OE至這些閘極驅動器210而達成。輸出致能訊號OE的這些不同脈寬W3、W2及W1可藉由適合的脈寬調變機制來實現。 In this embodiment, the sequential increment or decrement of these second time intervals T2 for different scan signal groups S is by different time periods P (in the present embodiment, for example, periods P1, P2). And P3) is achieved by transmitting output enable signals OE having different pulse widths W3, W2, and W1 to the gate drivers 210, respectively. These different pulse widths W3, W2 and W1 of the output enable signal OE can be achieved by a suitable pulse width modulation mechanism.

請參照圖1A、圖2及圖3A,控制單元230傳遞閘極驅動器起始脈衝(gate driver start pulse,STV)STV至第一個閘極驅動器210c而定義了一個圖框時間(frame time)的開始,且從此時間開始,閘極驅動器210c、210b及210a分別依序傳送掃描訊號組S3、S2及S1至掃描線組G3、G2及G1,且每一個掃描訊號組S中的掃描訊號SC亦是分別依序傳送至對應的掃描線組G的掃描線310。此外,控制單元230傳遞閘極驅動器時鐘訊號(gate driver clock signal,CPV)CPV至閘極驅動器210,而閘極驅動器210根據閘極驅動器時鐘訊號CPV的每個脈衝來決定輸出至掃描線310的掃描訊號SC的脈衝時間,也就是將掃描訊號SC切換至 高電壓準位VH的時間。圖2中第4~8個波形依序為相鄰的前5條掃描線310上的掃描訊號SC。 Referring to FIG. 1A, FIG. 2 and FIG. 3A, the control unit 230 transmits a gate driver start pulse (STV) STV to the first gate driver 210c to define a frame time. Starting, and from this time, the gate drivers 210c, 210b, and 210a sequentially transmit the scan signal groups S3, S2, and S1 to the scan line groups G3, G2, and G1, respectively, and the scan signals SC in each of the scan signal groups S are also The scan lines 310 are sequentially transferred to the corresponding scan line groups G, respectively. In addition, the control unit 230 transmits a gate driver clock signal (CPV) CPV to the gate driver 210, and the gate driver 210 determines the output to the scan line 310 according to each pulse of the gate driver clock signal CPV. Scanning the pulse time of the signal SC, that is, switching the scan signal SC to The time of the high voltage level VH. The 4th to 8th waveforms in FIG. 2 are sequentially the scanning signals SC on the adjacent first 5 scanning lines 310.

另外,為了避免相鄰兩掃描線310所接收到的掃描訊號 SC的正脈衝過於接近而產生兩掃描線310間的串擾(crosstalk)現象,控制單元230傳送輸出致能訊號OE至閘極驅動器310,其中當處於輸出致能訊號OE的正脈衝時間(即輸出致能訊號OE處於高準位的時間)時,閘極驅動器210將高於低電壓準位VL的電壓準位切換回低電壓準位VL,此一切換動作可利用所屬領域中具有通常知識者所熟知的切換電路來達成,在此不贅述。如此一來,藉由輸出致能訊號OE的正脈衝時間的適當脈寬便能將相鄰兩掃描線310的兩掃描訊號SC的正脈衝以一適當的時間間隔隔開,以避免或抑制相鄰兩掃描線310間的串擾。 In addition, in order to avoid the scanning signals received by the adjacent two scan lines 310 The positive pulse of the SC is too close to cause a crosstalk phenomenon between the two scan lines 310, and the control unit 230 transmits the output enable signal OE to the gate driver 310, wherein the positive pulse time (ie, the output) is at the output enable signal OE. When the enable signal OE is at a high level, the gate driver 210 switches the voltage level higher than the low voltage level VL back to the low voltage level VL, and the switching operation can be utilized by those having ordinary knowledge in the field. The well-known switching circuit is achieved, and will not be described here. In this way, by outputting the appropriate pulse width of the positive pulse time of the enable signal OE, the positive pulses of the two scan signals SC of the adjacent two scan lines 310 can be separated at an appropriate time interval to avoid or suppress the phase. Crosstalk between adjacent scan lines 310.

此外,在本實施例中,削角操作的起始時間是對應到閘 極驅動器時鐘訊號CPV的正脈衝的下降緣的時間,而輸出致能訊號OE的正脈衝的上升緣時間是對應到掃描訊號SC的正脈衝的終止時間,也就是對應到削角操作的終止時間,亦是對應到掃描訊號的B點時間。 In addition, in the embodiment, the start time of the chamfering operation is corresponding to the gate The rising edge of the positive pulse of the polar drive clock signal CPV, and the rising edge time of the positive pulse of the output enable signal OE is the end time of the positive pulse corresponding to the scan signal SC, that is, the end time corresponding to the chamfering operation It is also the time B corresponding to the scan signal.

如此一來,藉由在不同的時段P3、P2、P1將輸出致能訊 號OE的正脈衝的上升緣往正時間方向或負時間方向調整,便能夠改變削角操作所經歷的時間,且能夠改變第二時間T2的長短。在本實施例中,脈寬W3<W2<W1,所以可使得T2c>T2b>T2a。 In this way, the output is enabled by the P3, P2, and P1 at different times. The rising edge of the positive pulse of the number OE is adjusted in the positive time direction or the negative time direction, so that the time elapsed by the chamfering operation can be changed, and the length of the second time T2 can be changed. In the present embodiment, the pulse width W3 < W2 < W1, so that T2c > T2b > T2a can be made.

圖5A為本發明的另一實施例的顯示器中的閘極驅動器 起始脈衝(gate driver start pulse)訊號與傳送至閘極驅動器的閘極驅動器時鐘訊號在對應至圖1A中不同的閘極驅動器的時段的波形圖,而圖5B為圖1A的顯示器中不同的掃描訊號組的掃描訊號以其各自的正脈衝的上升緣為起點疊合後的波形示意圖。請參照圖1A、圖5A及圖5B,在本實施例中,削角控制訊號為傳送至這些閘極驅動器210的閘極驅動器時鐘訊號CPV,這些第一時間間隔T1對於不同的這些掃描訊號組S而言的依序遞增或遞減是藉由在不同的多個時段P中分別傳遞具有不同脈寬W31、W21及W11的閘極驅動器時鐘訊號CPV至這些閘極驅動器210而達成。閘極驅動器時鐘訊號CPV的這些不同脈寬W31、W21及W11可藉由適合的脈寬調變機制來實現。 FIG. 5A is a gate driver in a display according to another embodiment of the present invention; The waveform of the gate driver start pulse signal and the gate driver clock signal transmitted to the gate driver in the period corresponding to the different gate driver in FIG. 1A, and FIG. 5B is different in the display of FIG. 1A. The waveform diagram of the scan signal group of the scan signal group is superimposed with the rising edge of each positive pulse as a starting point. Referring to FIG. 1A, FIG. 5A and FIG. 5B, in the embodiment, the chamfering control signals are the gate driver clock signals CPV transmitted to the gate drivers 210, and the first time intervals T1 are different for the scanning signal groups. The sequential increment or decrement in the case of S is achieved by transmitting gate driver clock signals CPV having different pulse widths W31, W21 and W11 to the gate drivers 210 in different time periods P, respectively. These different pulse widths W31, W21 and W11 of the gate driver clock signal CPV can be achieved by a suitable pulse width modulation mechanism.

此外,在本實施例中,對應於掃描訊號組S3的第一時間間隔T1c小於對應於掃描訊號組S2的第一時間間隔T1b,且對應於掃描訊號組S2的第一時間間隔T1b小於對應於掃描訊號組S1的第一時間間隔T1a。換言之,這些第一時間間隔T1的大小隨著其所分別對應的這些閘極驅動器210至電源供應器220的導電線路的距離之由遠至近的順序而遞增。也就是說,閘極驅動器時鐘訊號CPV的正脈衝的下降緣從時段P3至時段P1依序往正時間方向調整,如此便可依序逐漸延長第一時間T1。 In addition, in this embodiment, the first time interval T1c corresponding to the scan signal group S3 is smaller than the first time interval T1b corresponding to the scan signal group S2, and the first time interval T1b corresponding to the scan signal group S2 is smaller than corresponding to The first time interval T1a of the signal group S1 is scanned. In other words, the magnitude of these first time intervals T1 is increased in the order of the distance from the gate drivers 210 to the conductive lines of the power supply 220, respectively, which are respectively corresponding to each other. That is to say, the falling edge of the positive pulse of the gate driver clock signal CPV is sequentially adjusted from the period P3 to the period P1 to the positive time direction, so that the first time T1 can be gradually extended in sequence.

如此一來,掃描訊號組S3、S2及S1的B點與其所對應的低電壓準位VL3、VL2及VL1的差值便可以較為一致,進而有效消除或抑制顯示畫面的不同亮度的水平帶狀區。 In this way, the difference between the point B of the scanning signal groups S3, S2 and S1 and the corresponding low voltage levels VL3, VL2 and VL1 can be relatively consistent, thereby effectively eliminating or suppressing the horizontal band of different brightness of the display picture. Area.

在上述實施例的顯示器100的驅動模組200中,由於這些掃描訊號SC的上升緣的時間與分別對應的這些削角操作的啟始時間之間的多個第一時間間隔T1或與分別對應的這些削角操作的終止時間之間的多個第二時間間隔T2對於不同的這些掃描訊號組而言為依序遞增或遞減,因此可在顯示器100的不同的水平帶狀區域中產生較為一致的饋通電壓,進而使顯示畫面較為均勻。如此一來,便可在驅動端有效解決顯示畫面上出現不同亮度的水平帶狀區的問題,也就是可用較為簡易、省時且節省成本的方式來解決此問題。 In the driving module 200 of the display 100 of the above embodiment, a plurality of first time intervals T1 or corresponding to each of the rising edges of the scanning signals SC and the start times of the corresponding chamfering operations respectively correspond to The plurality of second time intervals T2 between the end times of the chamfering operations are sequentially incremented or decremented for different sets of scan signals, and thus may be more consistent in different horizontal strip regions of the display 100. The feedthrough voltage, in turn, makes the display more uniform. In this way, the problem of horizontal strips with different brightness on the display screen can be effectively solved on the driving end, that is, the problem can be solved in a relatively simple, time-saving and cost-saving manner.

圖6A為本發明之另一實施例之顯示器的方塊圖,圖6B 為用以驅動圖6A之顯示器的訊號波形圖,圖7為用以驅動圖6A的液晶顯示面板的另一對照實施例中於不同時段的掃描訊號的波形圖,圖8A為圖6A的顯示器中的閘極驅動器起始脈衝訊號與傳送至閘極驅動器的輸出致能訊號在對應至圖6A中不同的閘極驅動器的時段的波形圖,而圖8B為圖6A的顯示器中不同的掃描訊號組的掃描訊號以其各自的正脈衝的上升緣為起點疊合後的波形示意圖。 6A is a block diagram of a display according to another embodiment of the present invention, and FIG. 6B FIG. 7 is a waveform diagram of a scanning signal used to drive the display of FIG. 6A in another comparative embodiment, and FIG. 8A is a display of FIG. 6A. The gate driver start pulse signal and the output enable signal transmitted to the gate driver are in a waveform corresponding to the different gate drivers in FIG. 6A, and FIG. 8B is a different scan signal group in the display of FIG. 6A. The waveform of the scan signal is superimposed with the rising edge of its respective positive pulse as a starting point.

請先參照圖6A與圖6B,本實施例的顯示器100d及其驅 動模組200d與圖1A的顯示器100及其驅動模組200類似,而兩者的差異如下所述。在本實施例中顯示器100d中,削角電路是位於電源供應器220d(即外部削角),其不同於圖1A的顯示器100的削角電路是位於各閘極驅動器210中(即內部削角)。位於電源 供應器220d中的削角電路可用所屬領域中具有通常知識者所熟知的削角電路來實現。在本實施例中,分別對這些掃描訊號SC進行的這些削角操作是藉由電源供應器220d對高準位訊號VGH進行削角操作所達成。於電源供應器220d中的削角電路的操作原理可以與於圖1A的閘極驅動器210中的削角電路的操作原理相同,亦即藉由電晶體操作於飽和區的放電特性來產生汲極放電電流ID。 此時,由於施加至此電晶體的閘極的控制電壓VGN所參考的電壓(例如低電壓準位VL)只有一個,因此其所產生的高準位訊號VGH的削角斜率的絕對值在一個圖框時間的各時段中是相同的,所以傳遞至不同的閘極驅動器210d(例如閘極驅動器210dc、210db及210da)的高準位訊號VGH的削角斜率的絕對值也大致相同。 Referring to FIG. 6A and FIG. 6B, the display 100d and its driving module 200d of the present embodiment are similar to the display 100 of FIG. 1A and its driving module 200, and the differences between the two are as follows. In the display 100d of the present embodiment, the chamfering circuit is located at the power supply 220d (ie, external chamfer), which is different from the chamfering circuit of the display 100 of FIG. 1A in each of the gate drivers 210 (ie, internal chamfering) ). The chamfering circuit located in the power supply 220d can be implemented by a chamfering circuit known to those skilled in the art. In the embodiment, the chamfering operations performed on the scanning signals SC are performed by the power supply 220d to perform the chamfering operation on the high-level signal VGH. The operation principle of the chamfering circuit in the power supply 220d can be the same as that of the chamfering circuit in the gate driver 210 of FIG. 1A, that is, the discharge characteristic is generated by the transistor operating in the saturation region to generate the drain Discharge current I D . At this time, since the voltage (for example, the low voltage level VL) referenced by the control voltage VGN applied to the gate of the transistor is only one, the absolute value of the chamfer slope of the high-level signal VGH generated is in a graph. The period of each of the frame times is the same, so the absolute value of the chamfer slope of the high level signal VGH transmitted to the different gate drivers 210d (eg, the gate drivers 210dc, 210db, and 210da) is also substantially the same.

此外,在本實施例中,削角控制訊號為傳送至電源供應器220d的閘極脈衝調制訊號(gate pulse modulation signal)OE2,且分別對這些掃描訊號SC進行的這些削角操作是藉由對應閘極脈衝調制訊號OE2的時序而對高準位訊號VGH進行削角操作所達成。在本實施例中,如圖6B所繪示,閘極脈衝調制訊號OE2的正脈衝的上升緣的時間是對應到削角操作的起始時間。由此時間開始,高準位訊號VGH的準位從高電壓準位VH逐漸下降,而一直到閘極脈衝調制訊號OE2的正脈衝的下降緣的時間時,高準位訊號VGH的準位才又切回高電壓準位VH。如此一來,閘極驅動器210d根據閘極驅動器時鐘訊號CPV來將掃描訊號SC切換至高準位訊號VGH與低準位訊號VGL時,便能夠產生經削角的掃 描訊號SC。 In addition, in the embodiment, the chamfering control signal is a gate pulse modulation signal OE2 transmitted to the power supply 220d, and the chamfering operations performed on the scanning signals SC respectively are performed by corresponding The timing of the gate pulse modulation signal OE2 is achieved by chamfering the high level signal VGH. In this embodiment, as shown in FIG. 6B, the time of the rising edge of the positive pulse of the gate pulse modulation signal OE2 is the start time corresponding to the chamfering operation. At this time, the level of the high level signal VGH gradually decreases from the high voltage level VH, and until the falling edge of the positive pulse of the gate pulse modulation signal OE2, the level of the high level signal VGH is Also cut back to the high voltage level VH. In this way, when the gate driver 210d switches the scan signal SC to the high level signal VGH and the low level signal VGL according to the gate driver clock signal CPV, the chamfered sweep can be generated. Trace number SC.

另一方面,控制單元230亦傳遞輸出致能訊號OE至閘極驅動器210d,因此如同圖2的實施例,輸出致能訊號OE的正脈衝的上升緣的時間亦對應至掃描訊號SC的削角終止時間。此外,圖6B中第6~9個波形依序為相鄰的前4條掃描線310上的掃描訊號SC。 On the other hand, the control unit 230 also transmits the output enable signal OE to the gate driver 210d. Therefore, as in the embodiment of FIG. 2, the time of the rising edge of the positive pulse of the output enable signal OE also corresponds to the chamfer of the scan signal SC. stop the time. In addition, the sixth to ninth waveforms in FIG. 6B are sequentially the scanning signals SC on the adjacent first four scanning lines 310.

請參照圖7,由於電源供應器220d至各閘極驅動器210d的導電線路的長度不相同,因此會導致閘極驅動器210dc(其最遠離電源供應器220d)所輸出的掃描訊號SC3”的低電壓準位VL3比閘極驅動器210db(其為次遠離電源供應器220d)所輸出的掃描訊號SC2”的低電壓準位VL2更靠近零準位,且閘極驅動器210db(其為次遠離電源供應器220d)所輸出的掃描訊號SC2”的低電壓準位VL2比閘極驅動器210da(其最靠近電源供應器220d)所輸出的掃描訊號SC1”的低電壓準位VL1更靠近零準位。由於電壓準位VL3、VL2及VL1皆為負準位,因此VL3>VL2>VL1。此外,如上所述,由於在外部削角的情況下,削角斜率的絕對值是固定的,因此,在一對照實施例中,若在不同的時段P中輸出致能訊號OE與閘極脈衝調制訊號OE2的脈寬都相同時,會使得各掃描訊號SC3”、SC2”及SC1”的B點與其所對應的低電壓準位VL3、VL2及VL1的差值ΔV3、ΔV2及ΔV1不相等,例如是ΔV3>ΔV2>ΔV1。差值ΔV3、ΔV2及ΔV1的不相等會導致饋通電壓的不相同,進而產生不同亮度的水平帶狀區域。 Referring to FIG. 7, since the lengths of the conductive lines of the power supply 220d to the gate drivers 210d are different, the low voltage of the scan signal SC3" output by the gate driver 210dc (which is farthest from the power supply 220d) is caused. The level VL3 is closer to the zero level than the low voltage level VL2 of the scan signal SC2" output by the gate driver 210db (which is second away from the power supply 220d), and the gate driver 210db (which is next to the power supply) 220d) The low voltage level VL2 of the output scan signal SC2" is closer to the zero level than the low voltage level VL1 of the scan signal SC1" output by the gate driver 210da (which is closest to the power supply 220d). Since the voltage levels VL3, VL2 and VL1 are all negative, VL3>VL2>VL1. Further, as described above, since the absolute value of the chamfer slope is fixed in the case of external chamfering, in a comparative embodiment, if the enable signal OE and the gate pulse are output in different periods P When the pulse widths of the modulation signals OE2 are the same, the difference ΔV3, ΔV2, and ΔV1 between the point B of each of the scanning signals SC3", SC2", and SC1" and the corresponding low voltage levels VL3, VL2, and VL1 are not equal. For example, ΔV3 > ΔV2 > ΔV1. The unequalities of the differences ΔV3, ΔV2, and ΔV1 result in different feedthrough voltages, which in turn produce horizontal band regions of different brightness.

因此,在本實施例中,這些第二時間間隔T2d的大小隨 著其所分別對應的這些閘極驅動器210d至電源供應器220d的導電線路的距離之由遠至近的順序而遞增。舉例而言,如圖8B所繪示,對應至閘極驅動器210dc的掃描訊號組S3的第二時間T2dc小於對應至閘極驅動器210db的掃描訊號組S2的第二時間T2db,且對應至閘極驅動器210db的掃描訊號組S2的第二時間T2db小於對應至閘極驅動器210da的掃描訊號組S1的第二時間T2da。 Therefore, in the present embodiment, the size of these second time intervals T2d follows The distances of the respective gate drivers 210d to the power supply lines of the power supply 220d, which are respectively corresponding, are increased from the farthest order. For example, as shown in FIG. 8B, the second time T2dc corresponding to the scan signal group S3 of the gate driver 210dc is smaller than the second time T2db corresponding to the scan signal group S2 of the gate driver 210db, and corresponds to the gate. The second time T2db of the scan signal group S2 of the driver 210db is smaller than the second time T2da corresponding to the scan signal group S1 of the gate driver 210da.

在本實施例中,可藉由調整在不同時段P3、P2及P1中 的輸出致能訊號OE的脈寬W32、W22及W12的大小(例如是調整其正脈衝的上升緣的時間)便能夠改變在不同時段P3、P2及P1中第二時間T2d的大小。在本實施例中,W32>W22>W12。如此一來,可使各掃描訊號組S3、S2及S1的B點電壓準位與其所對應的低電壓準位VL3、VL2及VL1的差值較為一致,進而有效抑制或消除畫面中不同亮度的水平帶狀區域的問題。 In this embodiment, it can be adjusted in different periods P3, P2, and P1. The magnitude of the pulse widths W32, W22, and W12 of the output enable signal OE (for example, the time at which the rising edge of the positive pulse is adjusted) can change the magnitude of the second time T2d in the different periods P3, P2, and P1. In the present embodiment, W32>W22>W12. In this way, the difference between the voltage level of the B point of each of the scanning signal groups S3, S2, and S1 and the corresponding low voltage levels VL3, VL2, and VL1 can be consistent, thereby effectively suppressing or eliminating different brightness in the picture. The problem of horizontal strips.

圖9A為本發明的再一實施例的顯示器中的閘極驅動器 起始脈衝訊號、閘極脈衝調制訊號及高準位訊號在對應至圖6A中不同的閘極驅動器210d的時段的波形圖,而圖9B為圖6A的顯示器中不同的掃描訊號組的掃描訊號以其各自的正脈衝的上升緣為起點疊合後的波形示意圖。請參照圖6A、圖9A及圖9B,本實施例亦是採用如圖6A之顯示器100d的架構,而與圖8A及圖8B的實施例的不同處如下所述。在本實施例中,這些第一時間間隔T1d對於不同的這些掃描訊號組S3、S2、S1而言的依序遞增或遞減是 藉由在不同的多個時段P3、P2、P1中分別傳遞具有不同脈寬W33、W23、W13的閘極脈衝調制訊號OE2至電源供應器220d以對高準位進行削角動所所達成。閘極脈衝調制訊號OE2的不同脈寬可藉由適當的脈寬調變機制來實現。 9A is a gate driver in a display according to still another embodiment of the present invention. The waveforms of the start pulse signal, the gate pulse modulation signal and the high level signal in the period corresponding to the different gate drivers 210d in FIG. 6A, and FIG. 9B is the scanning signals of different scanning signal groups in the display of FIG. 6A. A schematic diagram of waveforms superimposed with the rising edges of their respective positive pulses as a starting point. Referring to FIG. 6A, FIG. 9A and FIG. 9B, this embodiment also adopts the architecture of the display 100d of FIG. 6A, and the difference from the embodiment of FIGS. 8A and 8B is as follows. In this embodiment, the sequential increment or decrement of these first time intervals T1d for different scan signal groups S3, S2, S1 is The gate pulse modulation signal OE2 having different pulse widths W33, W23, W13 is respectively transferred to the power supply 220d in different time periods P3, P2, P1 to achieve chamfering of the high level. The different pulse widths of the gate pulse modulation signal OE2 can be realized by an appropriate pulse width modulation mechanism.

在本實施例中,這些第一時間間隔T1d的大小隨著其所分別對應的這些閘極驅動器210d至電源供應器220d的導電線路的距離之由遠至近的順序而遞減。舉例而言,對應至閘極驅動器210dc的掃描訊號組S3的第一時間T1dc大於對應至閘極驅動器210db的掃描訊號組S2的第一時間T1db,且對應至閘極驅動器210db的掃描訊號組S2的第一時間T1db大於對應至閘極驅動器210da的掃描訊號組S1的第一時間T1da。 In the present embodiment, the magnitudes of these first time intervals T1d are decremented in order of their distance from the gate drivers 210d to the conductive lines of the power supply 220d, respectively. For example, the first time T1dc corresponding to the scan signal group S3 of the gate driver 210dc is greater than the first time T1db corresponding to the scan signal group S2 of the gate driver 210db, and corresponds to the scan signal group S2 of the gate driver 210db. The first time T1db is greater than the first time T1da corresponding to the scan signal group S1 of the gate driver 210da.

在本實施例中,可藉由調整在不同時段P3、P2及P1中的閘極脈寬調制訊號OE2的脈寬W33、W23及W13的大小(例如是調整其正脈衝的上升緣的時間)便能夠改變在不同時段P3、P2及P1中第一時間T1d的大小。在本實施例中,W33<W23<W13。如此一來,可使各掃描訊號組S3、S2及S1的B點電壓準位與其所對應的低電壓準位VL3、VL2及VL1的差值較為一致,進而有效抑制或消除畫面中不同亮度的水平帶狀區域的問題。 In this embodiment, the pulse widths W33, W23, and W13 of the gate pulse width modulation signal OE2 in the different periods P3, P2, and P1 can be adjusted (for example, the time for adjusting the rising edge of the positive pulse). It is possible to change the size of the first time T1d in the different periods P3, P2 and P1. In the present embodiment, W33 < W23 < W13. In this way, the difference between the voltage level of the B point of each of the scanning signal groups S3, S2, and S1 and the corresponding low voltage levels VL3, VL2, and VL1 can be consistent, thereby effectively suppressing or eliminating different brightness in the picture. The problem of horizontal strips.

在一些實施例中,亦提出顯示器的閘極驅動方法,其可藉由上述各實施例中的驅動模組200、200d來實現。此顯示器的閘極驅動方法包括:依序分別提供多個掃描訊號組S至這些掃描線組G(如圖1A與圖1B所繪示),且每一掃描訊號組S包括分別 傳遞至一對應的掃描線組G的多個掃描線310的多個掃描訊號SC;以及分別對這些掃描訊號SC進行多個削角操作,以降低這些掃描訊號的高電壓準位VH。這些掃描訊號SC的上升緣的時間與分別對應的這些削角操作的啟始時間之間的多個第一時間間隔T1或與分別對應的這些削角操作的終止時間之間的多個第二時間間隔T2對於不同的這些掃描訊號組S而言為依序遞增或遞減。這些實施例的顯示器的閘極驅動方法已在上述各實施例中詳細描述,其詳細的內容請參照上述實施例,在此不再重述。 In some embodiments, a gate driving method of the display is also proposed, which can be implemented by the driving modules 200, 200d in the above embodiments. The gate driving method of the display includes: sequentially providing a plurality of scanning signal groups S to the scanning line groups G (as shown in FIG. 1A and FIG. 1B ), and each scanning signal group S includes respectively And transmitting a plurality of scan signals SC of the plurality of scan lines 310 of the corresponding scan line group G; and performing a plurality of chamfering operations on the scan signals SC to reduce the high voltage level VH of the scan signals. a plurality of second intervals between a plurality of first time intervals T1 between the rising edges of the scan signals SC and the start times of the chamfering operations respectively corresponding to the respective end times of the chamfering operations The time interval T2 is sequentially incremented or decremented for different scan signal groups S. The gate driving method of the display of these embodiments has been described in detail in the above embodiments. For details, refer to the above embodiments, and the description thereof will not be repeated.

綜上所述,在本發明的實施例的顯示器的閘極驅動方法 與驅動模組中,由於這些掃描訊號的上升緣的時間與分別對應的這些削角操作的啟始時間之間的多個第一時間間隔或與分別對應的這些削角操作的終止時間之間的多個第二時間間隔對於不同的這些掃描訊號組而言為依序遞增或遞減,因此可在顯示器的不同的水平帶狀區域中產生較為一致的饋通電壓,進而使顯示畫面較為均勻。如此一來,便可在驅動端有效解決顯示畫面上出現不同亮度的水平帶狀區的問題,也就是可用較為簡易、省時且節省成本的方式來解決此問題。 In summary, the gate driving method of the display of the embodiment of the present invention And the driving module, between the plurality of first time intervals between the rising edge of the scanning signals and the starting times of the corresponding chamfering operations respectively or the ending times of the corresponding chamfering operations respectively The plurality of second time intervals are sequentially incremented or decremented for different scan signal groups, so that a relatively uniform feedthrough voltage can be generated in different horizontal strip regions of the display, thereby making the display screen more uniform. In this way, the problem of horizontal strips with different brightness on the display screen can be effectively solved on the driving end, that is, the problem can be solved in a relatively simple, time-saving and cost-saving manner.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

B‧‧‧點 B‧‧‧ points

S1、S2、S3‧‧‧掃描訊號組 S1, S2, S3‧‧‧ scan signal group

T2、T2a、T2b、T2c‧‧‧第二時間間隔 T2, T2a, T2b, T2c‧‧‧ second time interval

VL1、VL2、VL3‧‧‧低電壓準位 VL1, VL2, VL3‧‧‧ low voltage level

Claims (20)

一種顯示器的閘極驅動方法,該顯示器包括多個掃描線,該些掃描線依序分為多個掃描線組,該顯示器的閘極驅動方法包括:依序分別提供多個掃描訊號組至該些掃描線組,其中每一該掃描訊號組包括分別傳遞至一對應的該掃描線組的多個掃描線的多個掃描訊號;以及分別對該些掃描訊號進行多個削角操作,以降低該些掃描訊號的高電壓準位,其中該些掃描訊號的上升緣的時間與分別對應的該些削角操作的啟始時間之間的多個第一時間間隔或與分別對應的該些削角操作的終止時間之間的多個第二時間間隔對於不同的該些掃描訊號組而言為依序遞增或遞減。 A gate driving method for a display, the display includes a plurality of scan lines, the scan lines are sequentially divided into a plurality of scan line groups, and the gate driving method of the display comprises: sequentially providing a plurality of scan signal groups to the Each of the scan signal groups includes a plurality of scan signals respectively transmitted to a plurality of scan lines of the corresponding scan line group; and respectively performing a plurality of chamfer operations on the scan signals to reduce a high voltage level of the scan signals, wherein a plurality of first time intervals between the rising edges of the scan signals and the start times of the chamfering operations respectively corresponding to the respective cuts The plurality of second time intervals between the end times of the angular operations are sequentially incremented or decremented for different sets of scan signals. 如申請專利範圍第1項所述的顯示器的閘極驅動方法,其中該些掃描訊號組分別從多個閘極驅動器所輸出,且該些第二時間間隔對於不同的該些掃描訊號組而言的依序遞增或遞減是藉由在不同的多個時段中分別傳遞具有不同脈寬的輸出致能訊號至該些閘極驅動器而達成。 The gate driving method of the display of claim 1, wherein the scan signal groups are respectively output from a plurality of gate drivers, and the second time intervals are different for the plurality of scan signal groups. The sequential increment or decrement is achieved by respectively transmitting output enable signals having different pulse widths to the gate drivers in different time periods. 如申請專利範圍第2項所述的顯示器的閘極驅動方法,其中該些掃描訊號組分別從多個閘極驅動器所輸出,每一該驅動訊號是由一該閘極驅動器切換來自一電源供應器的一高準位訊號與一低準位訊號所形成,分別對該些掃描訊號進行的該些削角操作是藉由對應的該些閘極驅動器對該高準位訊號進行削角操作所 達成,且該些第二時間間隔的大小隨著其所分別對應的該些閘極驅動器至該電源供應器的導電線路的距離之由遠至近的順序而遞減。 The gate driving method of the display of claim 2, wherein the scan signal groups are respectively output from a plurality of gate drivers, and each of the driving signals is switched by a gate driver from a power supply. The high-level signal of the device is formed by a low-level signal, and the chamfering operations performed on the scanning signals are performed by the corresponding gate drivers for chamfering the high-level signal. The size of the second time intervals is reduced in descending order of the distances of the gate drivers to the conductive lines of the power supply respectively. 如申請專利範圍第2項所述的顯示器的閘極驅動方法,其中該些掃描訊號組分別從多個閘極驅動器所輸出,每一該驅動訊號是由一該閘極驅動器切換來自一電源供應器的一高準位訊號與一低準位訊號所形成,分別對該些掃描訊號進行的該些削角操作是藉由該電源供應器對該高準位訊號進行削角操作所達成,且該些第二時間間隔的大小隨著其所分別對應的該些閘極驅動器至該電源供應器的導電線路的距離之由遠至近的順序而遞增。 The gate driving method of the display of claim 2, wherein the scan signal groups are respectively output from a plurality of gate drivers, and each of the driving signals is switched by a gate driver from a power supply. The high-level signal of the device is formed by a low-level signal, and the chamfering operations performed on the scanning signals by the power supply are performed by chamfering the high-level signal, and The magnitudes of the second time intervals are increased in order of the distance from the gate drivers to the conductive lines of the power supply, respectively. 如申請專利範圍第1項所述的顯示器的閘極驅動方法,其中該些掃描訊號組分別從多個閘極驅動器所輸出,且該些第一時間間隔對於不同的該些掃描訊號組而言的依序遞增或遞減是藉由在不同的多個時段中分別傳遞具有不同脈寬的閘極驅動器時鐘訊號至該些閘極驅動器而達成。 The gate driving method of the display of claim 1, wherein the scanning signal groups are respectively output from a plurality of gate drivers, and the first time intervals are different for the plurality of scanning signal groups. The sequential increment or decrement is achieved by respectively transmitting gate driver clock signals having different pulse widths to the gate drivers in different time periods. 如申請專利範圍第5項所述的顯示器的閘極驅動方法,其中該些掃描訊號組分別從多個閘極驅動器所輸出,每一該驅動訊號是由一該閘極驅動器切換來自一電源供應器的一高準位訊號與一低準位訊號所形成,且該些第一時間間隔的大小隨著其所分別對應的該些閘極驅動器至該電源供應器的導電線路的距離之由遠至近的順序而遞增。 The method for driving a gate of a display according to claim 5, wherein the scan signal groups are respectively output from a plurality of gate drivers, and each of the drive signals is switched by a gate driver from a power supply. a high-level signal and a low-level signal are formed, and the first time intervals are different in distance from the corresponding gate drivers to the conductive lines of the power supply Incremented in the nearest order. 如申請專利範圍第1項所述的顯示器的閘極驅動方法, 其中該些掃描訊號組分別從多個閘極驅動器所輸出,每一該驅動訊號是由一該閘極驅動器切換來自一電源供應器的一高準位訊號與一低準位訊號所形成,且分別對該些掃描訊號進行的該些削角操作是藉由該電源供應器對該高準位訊號進行削角操作所達成。 The gate driving method of the display according to claim 1, The scan signal groups are respectively outputted from a plurality of gate drivers, and each of the driving signals is formed by a gate driver switching a high level signal and a low level signal from a power supply, and The chamfering operations performed on the scan signals by the power supply are performed by chamfering the high-level signal. 如申請專利範圍第7項所述的顯示器的閘極驅動方法,其中該些第一時間間隔對於不同的該些掃描訊號組而言的依序遞增或遞減是藉由在不同的多個時段中分別傳遞具有不同脈寬的閘極脈衝調制訊號至該電源供應器以對該高準位進行削角動所所達成。 The gate driving method of the display of claim 7, wherein the first time interval is sequentially incremented or decremented for different scan signal groups by different time periods. The gate pulse modulation signals having different pulse widths are respectively transmitted to the power supply to achieve the chamfering of the high level. 如申請專利範圍第8項所述的顯示器的閘極驅動方法,其中該些第一時間間隔的大小隨著其所分別對應的該些閘極驅動器至該電源供應器的導電線路的距離之由遠至近的順序而遞減。 The gate driving method of the display of claim 8, wherein the first time interval is different in size from the distance between the gate drivers and the conductive lines of the power supply Decrease in ascending order. 如申請專利範圍第1項所述的顯示器的閘極驅動方法,其中該顯示器為液晶顯示器。 The gate driving method of the display of claim 1, wherein the display is a liquid crystal display. 一種驅動模組,用以驅動一顯示器,該顯示器包括多個掃描線,該些掃描線依序分為多個掃描線組,該驅動模組包括:多個閘極驅動器,依序分別提供多個掃描訊號組至該些掃描線組,且每一該掃描訊號組包括分別傳遞至一對應的該掃描線組的多個掃描線的多個掃描訊號;一電源供應器,用以提供一高準位訊號與一低準位訊號至該些閘極驅動器,且該些閘極驅動器藉由切換該高準位訊號與該低準位訊號而形成該些掃描訊號;以及 一控制單元,傳送一削角控制訊號至該些閘極驅動器或該電源供應器,以分別對該些掃描訊號進行多個削角操作,進而降低該些掃描訊號的高電壓準位,其中該些掃描訊號的上升緣的時間與分別對應的該些削角操作的啟始時間之間的多個第一時間間隔或與分別對應的該些削角操作的終止時間之間的多個第二時間間隔對於不同的該些掃描訊號組而言為依序遞增或遞減。 A driving module is configured to drive a display, the display includes a plurality of scanning lines, and the scanning lines are sequentially divided into a plurality of scanning line groups, and the driving module comprises: a plurality of gate drivers, which are respectively provided in sequence Scanning signal groups to the scan line groups, and each of the scan signal groups includes a plurality of scan signals respectively transmitted to a plurality of scan lines of the corresponding scan line group; a power supply for providing a high a level signal and a low level signal to the gate drivers, and the gate drivers form the scan signals by switching the high level signal and the low level signal; a control unit that transmits a chamfer control signal to the gate drivers or the power supply to perform a plurality of chamfering operations on the scan signals, thereby reducing a high voltage level of the scan signals, wherein the control unit a plurality of second intervals between a plurality of first time intervals between the rising edges of the scan signals and the start times of the chamfering operations respectively corresponding to the start times of the chamfering operations respectively The time interval is sequentially incremented or decremented for different scan signal groups. 如申請專利範圍第11項所述的驅動模組,其中該削角控制訊號為傳送至該些閘極驅動器的一輸出致能訊號,且該些第二時間間隔對於不同的該些掃描訊號組而言的依序遞增或遞減是藉由在不同的多個時段中分別傳遞具有不同脈寬的該輸出致能訊號至該些閘極驅動器而達成。 The driving module of claim 11, wherein the chamfering control signal is an output enable signal transmitted to the gate drivers, and the second time intervals are different for the plurality of scanning signal groups. In this case, the sequential increment or decrement is achieved by respectively transmitting the output enable signals having different pulse widths to the gate drivers in different time periods. 如申請專利範圍第12項所述的驅動模組,其中分別對該些掃描訊號進行的該些削角操作是藉由對應的該些閘極驅動器對該高準位訊號進行削角操作所達成,且該些第二時間間隔的大小隨著其所分別對應的該些閘極驅動器至該電源供應器的導電線路的距離之由遠至近的順序而遞減。 The driving module of claim 12, wherein the chamfering operations performed on the scanning signals by the corresponding gate drivers are performed by chamfering the high-level signals. And the size of the second time intervals decreases in the order of the distance from the gate drivers to the conductive lines of the power supply, respectively. 如申請專利範圍第12項所述的驅動模組,其中分別對該些掃描訊號進行的該些削角操作是藉由該電源供應器對該高準位訊號進行削角操作所達成,且該些第二時間間隔的大小隨著其所分別對應的該些閘極驅動器至該電源供應器的導電線路的距離之由遠至近的順序而遞增。 The driving module of claim 12, wherein the chamfering operations performed on the scanning signals are performed by the power supply device to perform a chamfering operation on the high-level signal, and the The magnitudes of the second time intervals are increased in order of the distance from the respective gate drivers to the conductive lines of the power supply. 如申請專利範圍第11項所述的驅動模組,其中該削角 控制訊號為傳送至該些閘極驅動器的一閘極驅動器時鐘訊號,該些第一時間間隔對於不同的該些掃描訊號組而言的依序遞增或遞減是藉由在不同的多個時段中分別傳遞具有不同脈寬的該閘極驅動器時鐘訊號至該些閘極驅動器而達成。 The driving module of claim 11, wherein the chamfering The control signal is a gate driver clock signal transmitted to the gate drivers, and the first time interval is sequentially incremented or decremented for different scan signal groups by different time periods. This is achieved by respectively transmitting the gate driver clock signals having different pulse widths to the gate drivers. 如申請專利範圍第15項所述的驅動模組,其中該些第一時間間隔的大小隨著其所分別對應的該些閘極驅動器至該電源供應器的導電線路的距離之由遠至近的順序而遞增。 The driving module of claim 15, wherein the first time intervals are as close as possible to the distances of the gate drivers to the conductive lines of the power supply respectively. Increase in order. 如申請專利範圍第11項所述的驅動模組,其中該削角控制訊號為傳送至該電源供應器的一閘極脈衝調制訊號,且分別對該些掃描訊號進行的該些削角操作是藉由對應該閘極脈衝調制訊號的時序而對該高準位訊號進行削角操作所達成。 The driving module of claim 11, wherein the chamfering control signal is a gate pulse modulation signal transmitted to the power supply, and the chamfering operations performed on the scanning signals respectively are The high-level signal is chamfered by the timing of the gate pulse modulation signal. 如申請專利範圍第17項所述的驅動模組,其中該些第一時間間隔對於不同的該些掃描訊號組而言的依序遞增或遞減是藉由在不同的多個時段中分別傳遞具有不同脈寬的該閘極脈衝調制訊號至該電源供應器以對該高準位進行削角動所所達成。 The driving module of claim 17, wherein the first time interval is sequentially incremented or decremented for different scan signal groups by being respectively transmitted in different multiple time periods. The gate pulse modulation signals of different pulse widths are achieved by the power supply to the chamfering of the high level. 如申請專利範圍第18項所述的驅動模組,其中該些第一時間間隔的大小隨著其所分別對應的該些閘極驅動器至該電源供應器的導電線路的距離之由遠至近的順序而遞減。 The driving module of claim 18, wherein the first time intervals are different in size from the distances of the gate drivers to the conductive lines of the power supply respectively. Decrease in order. 如申請專利範圍第11項所述的驅動模組,其中該顯示器為液晶顯示器。 The driving module of claim 11, wherein the display is a liquid crystal display.
TW103128150A 2014-08-15 2014-08-15 Gate driving method of a display and driving module TWI539420B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103128150A TWI539420B (en) 2014-08-15 2014-08-15 Gate driving method of a display and driving module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103128150A TWI539420B (en) 2014-08-15 2014-08-15 Gate driving method of a display and driving module

Publications (2)

Publication Number Publication Date
TW201606733A true TW201606733A (en) 2016-02-16
TWI539420B TWI539420B (en) 2016-06-21

Family

ID=55810115

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103128150A TWI539420B (en) 2014-08-15 2014-08-15 Gate driving method of a display and driving module

Country Status (1)

Country Link
TW (1) TWI539420B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9659539B2 (en) 2015-04-16 2017-05-23 Novatek Microelectronics Corp. Gate driver circuit, display apparatus having the same, and gate driving method
CN111261092A (en) * 2020-03-24 2020-06-09 深圳市华星光电半导体显示技术有限公司 Display panel and driving method thereof
US11151944B2 (en) 2019-02-27 2021-10-19 Novatek Microelectronics Corp. Driving circuit, display apparatus and driving method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9659539B2 (en) 2015-04-16 2017-05-23 Novatek Microelectronics Corp. Gate driver circuit, display apparatus having the same, and gate driving method
US11151944B2 (en) 2019-02-27 2021-10-19 Novatek Microelectronics Corp. Driving circuit, display apparatus and driving method thereof
TWI754235B (en) * 2019-02-27 2022-02-01 聯詠科技股份有限公司 Driving circuit, display apparatus and driving method thereof
CN111261092A (en) * 2020-03-24 2020-06-09 深圳市华星光电半导体显示技术有限公司 Display panel and driving method thereof
CN111261092B (en) * 2020-03-24 2021-07-06 深圳市华星光电半导体显示技术有限公司 Display panel and driving method thereof

Also Published As

Publication number Publication date
TWI539420B (en) 2016-06-21

Similar Documents

Publication Publication Date Title
US7924255B2 (en) Gate driving method and circuit for liquid crystal display
US9311875B2 (en) Display device
CN105448250B (en) The grid drive method and drive module of display
US11322111B2 (en) Driving method of display device and display device
US9865217B2 (en) Method of driving display panel and display apparatus
US9703160B2 (en) Liquid crystal display panel with hot pixel being repaired and method for repairing hot pixel
US8711132B2 (en) Display panel and gate driving circuit and driving method for gate driving circuit
TW200837695A (en) Liquid crystal display and pulse adjustment circuit thereof
US9916804B2 (en) Display apparatus and method of driving the display apparatus
KR20150060360A (en) Display device
KR101265333B1 (en) LCD and drive method thereof
US20150015564A1 (en) Display device
US9824663B2 (en) Waveform-shaping circuit for trimming rising edge of scanning signal, liquid crystal display device having the same, and driving method for the same
WO2020168600A1 (en) Liquid crystal display improving light and dark bands caused by change in backlighting frequency
KR20150057851A (en) Liquid crystal display device, appatus and method for driving the same
CN104464680A (en) Array substrate and display device
TWI539420B (en) Gate driving method of a display and driving module
CN107909978B (en) Display panel driving circuit and display panel
JP2014032282A (en) Display device and television receiver including the same
CN111816110B (en) Driving method of display panel
CN109523965A (en) Driving circuit, the driving circuit of display panel and display device
WO2024011807A1 (en) Data driving circuit, display module, and method for outputting driving signal
US8754883B2 (en) Control method of output signal from timing controller in flat panel display device
US9159289B2 (en) Liquid crystal display and the driving method thereof
US20160365060A1 (en) Display device and production method thereof