TW201602349A - 抗hiv幹細胞及其用途 - Google Patents

抗hiv幹細胞及其用途 Download PDF

Info

Publication number
TW201602349A
TW201602349A TW104110002A TW104110002A TW201602349A TW 201602349 A TW201602349 A TW 201602349A TW 104110002 A TW104110002 A TW 104110002A TW 104110002 A TW104110002 A TW 104110002A TW 201602349 A TW201602349 A TW 201602349A
Authority
TW
Taiwan
Prior art keywords
cells
hiv
ccr5
cell
cord blood
Prior art date
Application number
TW104110002A
Other languages
English (en)
Inventor
衛斯 楊
Original Assignee
史坦賽特股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 史坦賽特股份有限公司 filed Critical 史坦賽特股份有限公司
Publication of TW201602349A publication Critical patent/TW201602349A/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/44Vessels; Vascular smooth muscle cells; Endothelial cells; Endothelial progenitor cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/51Umbilical cord; Umbilical cord blood; Umbilical stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/124Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • Vascular Medicine (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Reproductive Health (AREA)
  • Hematology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • AIDS & HIV (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

對HIV感染有抗性之重組幹細胞係被揭露。該等重組幹細胞在治療AIDS上之用途亦被揭露。

Description

抗HIV幹細胞及其用途 相關申請案
本申請案係請求於2009年4月9號提申之美國暫時申請案第61/167967號之優先權,該美國暫時申請案之內容係於此處藉由參考被整體併入。
發明領域
本發明是關於使用對HIV感染具有抗性之幹細胞來治療AIDS。
發明背景
人類免疫缺乏症病毒(HIV-1)於成人及孩童上造成後天性免疫缺乏症候群。僅在2007年內,估計有約370,000孩童被HIV感染。在2007年由於AIDS而死亡的約二百萬人中,有七分之一為孩童。的確,母親對孩童之HIV傳染對大多數經感染有HIV的孩童負有責任。儘管此傳染係可經由母親之抗病毒療法與在分娩中小心限制暴露在母親體液下而被避免,但許多幼兒仍因為許多原因而持續被感染。首先,經HIV感染幼兒之現有治療方法係受限且相對不有效的。其次,AIDS傾向在幼兒內快速地進展。第三,特 殊的診斷技術係被需要用於偵測小於18個月大的幼兒,且在小於18個月大時,幼兒可能尚未發產出對HIV的抗體或幼兒可能具有衍生自母親的抗體。最後,儘管抗逆反轉錄病毒(anti-retroviral)療法可被使用於治療幼兒,該等療法無法修復對孩童倖存於一般孩童時期疾症是必須的免疫功能,該等一般孩童時期疾症係諸如水痘與腮腺炎。因此,有需要一用於治療在嬰兒內AIDS的方法。
發明概要
本發明是基於,至少部分地,不可預期的發現到諸如在嬰兒出生時收集之臍帶血細胞的幹細胞係可被感染以使該等幹細胞對於HIV-1感染具有抵抗性,且傳輸該經感染之細胞回至該嬰兒或至另一人類個體,且產生抗HIV血液與免疫細胞。因此,經感染之細胞係可被使用於治療AIDS而不導致骨髓摧毀(myeloablation)。
因此,本發明一態樣之特徵在於一用於治療人類個體的方法,該人類個體具有,或有危險具有HIV感染。此方法包括獲得含有第一RNAi試劑與第二RNAi試劑之人類幹細胞,該第一RNAi試劑抑制CCR5的表現,該第二RNAi試劑CXCR4的表現,以及將一有效量之幹細胞投藥至需要其的人類個體。CCR5與CSCR4係趨化激素受器,且其等對於HIV感染淋巴球與巨噬細胞是必須的。經改良的幹細胞對於HIV感染具有抵抗性且可在體外及體內形成族群形成單位(CFU)且在免疫缺乏人類個體(例如,幼兒)內移植及修復 免疫功能。在一範例中,幹細胞係在人體臍帶血細胞內所發現的幹細胞。
上述方法可被使用於治療一由具有HIV感染之母親所產出的幼兒。較佳地,幹細胞(例如,臍帶血細胞)係個體所自體衍生的。臍帶血細胞係可藉由下列方法所獲得,該方法包括將(1)第一RNAi試劑或一編碼該第一RNAi試劑之第一核酸以及(2)第二RNAi試劑或一編碼該第二RNAi試劑之第二核酸瞬間轉送至細胞。該製備方法可進一步包括將一編碼可選擇性標記蛋白質之重組核酸輸入至該細胞,且強化該等細胞在該可選擇性標記蛋白質上之表現。上述該等細胞可進一步含有第三RNAi試劑,且該第三RNAi試劑抑制對於HIV複製或感染是必須之另一基因的表現。基因的範例包括編碼CD4、HIV-1 gag、HIV-1 vive、HIV-1 tat及HIV-1 rev之基因。在一實施例中,一非病毒之方法係被使用於以短抑制RNAs(siRNA)來感染臍帶血細胞(初生兒血液),且該等RNA阻斷趨化激素受器(諸如CCR5與CXCR4)之合成。
本發明另一態樣的特徵在於一經分離之人類幹細胞(例如,臍帶血細胞)或含有此等細胞之組成物。該等細胞含有上述之第一RNAi試劑與一第二RNAi試劑。
一欲被治療的個體係可藉由供HIV感染用之標準診斷技術而被鑑別。“治療”意指將組成物(例如,細胞組成物)投藥至個體,該個體係患有或有危險地形成有疾症,該個體具有治癒、減輕、緩解、補救、延遲開始、或改善 疾症、疾症症狀、次於疾症之疾病狀態、或損傷/疾症之素因。“有效量”意指一能夠在治療各體內產生醫學上所欲求結果之組成物量。治療方法可被單獨被施行或與其他藥物或療法結合施行。個體意指人類或非人類動物。非人類動物之範例包括所有脊椎動物,例如,哺乳動物,諸如非人類之靈長類動物(特定為較高等之靈長類動物)。在一較佳實施例中,個體為人類。在另一實施例中,個體為實驗動物或適合作為疾症模式之動物。
本發明之一或更多實施例的細節係於如下說明中所列示。本發明之其他特徵、目標及優點係明顯見於說明、圖式及申請專利範圍中。此處所有援引之參考文件係欲協助了解本發明,且該等參考文件之整體係被併入以用於所有目的而不受限制。
第1圖為一顯示趨化激素共受器之圖式。HIV-1結合至存在於經活化之T細胞上的CD4與CCR5共受器。CCR5之自然配位基(natural ligand)包括RANTES、MIP-1a、以及MIP-1b,其預防HIV-1結合至CCR5。HIV-1亦結合至CXCR4。SDF-1係用於CXCR4之自然配位基且迫使受器內在化且迫使該受器在作為用於HIV結合之共受器上具有較小的可用性。儘管CCR5與CD4為用於HIV-1結合之共受器,CXCR4、CCR3與CCR2b可不需要CD4而結合至HIV-1。HIV-1係甚少結合至CCR1,但可與其他共受器來結合至CCR1。受器係經G-蛋白質所耦合,且CCR5受器之活化係 促進病毒複製。G-蛋白質之阻斷傾向於減少病毒複製。
第2圖為一顯示降低HIV-1感染之非遺傳性方法的圖式。將作為部分IgG融合蛋白之RANTES予以投藥係顯著地降低結合至CCR5之HIV-1以及細胞後續產生的感染。干擾素-β降低CD4與CCR5的表現且同時增加RANTES的產生,預防降低在巨噬細胞及其他免疫細胞上CXCR4的表現。
第3圖為顯示趨化激素受器抑制方法。數種研究法係被設計來壓抑CXCR4與CCR-5共受器在細胞表面上的表現。最有效且最流行的方法為RNA干擾(RNAi)方法,該方法為抑制受器蛋白質的轉錄。另一研究法為使用核糖酶,該核糖酶會破壞特定RNA。RANTES Kdel方法將內質網序列接附至RANTES。該方法將RANTES固定在內質網,且在該處RANTES可捕抓CCR5蛋白質。
第4圖為顯示AIDS之組合療法之圖式。數種療法係在綠色盒子中指出。例如,TAR誘餌法是在核仁內設置誘餌來吸引tat RNA,tat RNA為HIV-1包膜蛋白中之關鍵組分。抗tat si-RNA破壞tat RNA。抗rev si-RNA破壞rev RNA,rev RNA為另一重要的包膜蛋白。抗CCR5 siRNA或核糖酶是用於促進破壞CCR5 RNA與從而破壞CCR5 RNA表現的方法。阻斷融合包膜醣蛋白之蛋白質gp41與gp120亦預防感染,藉由諸如T20(恩夫韋地(enfurvirtide))與C34之藥物。抗CD4之抗體(抗CD mab)、馬拉維諾(maraviroc)及其他藥物亦可阻斷受器。
第5圖為顯示一經提議之臍帶血細胞治療的圖式。在滲透猝以移除紅血球與血小板之後,在DNAase存在下,帶血單核細胞(cord blood mononuclear cell)係以Ficoll梯度(Ficoll gradient)分離。四種基因係藉由電穿孔法(electroporation)被轉換至細胞內:CCR5△32、新黴素抗性基因、綠色螢光蛋白質(GFP)、以及CXCR4 siRNA。CCR5△32是CCR5之突變形式,CCR5△32結合至CCR5且預防CCR5到達表面。CXCR4 siRNA是短的抑制RNA且其預防CXCR4之轉錄。綠色螢光允許經成功轉染的細胞被觀察到。新黴素抗性基因允許細胞對新黴素毒性具有抗性,簡化經轉染細胞之純化。
較佳實施例之詳細說明
本發明是關於使用對HIV感染具有抗性之幹細胞來治療AIDS。
幹細胞
不同的幹細胞可被使用在本發明中。幹細胞的範例包括臍帶血細胞、造血幹細胞、胚胎幹細胞及其他幹細胞,該等幹細胞係可分化為功能性免疫細胞,諸如輔助型T細胞(T-helper cells)。
術語“幹細胞”意指一能夠分化為多種最終、經分化之細胞類別的細胞。幹細胞係可分化全能或分化多能的。分化全能幹細胞典型地具有可發展成為任何細胞類別的能力。分化全能幹細胞在最初時係可為胚胎或非胚胎 的。分化多能幹細胞係為典型地具有可發展成為數種不同、最終經分化之細胞類別之能力的細胞。單勢細胞係僅可製造一細胞類別,但具有自我更新之特性,該自我更新之特性將單勢細胞與其他幹細胞區別開。幹細胞可源自不同的組織或器官系統,包括,但不限制於,血液、神經、肌肉、皮膚、腸、骨頭、腎臟、肝臟、胰臟、胸腺與其類似者。根據本發明,幹細胞可衍生自成人或初生兒組織或器官。
於本發明中所述之細胞係基本上純淨的。術語“基本上純淨的”,當對應於幹細胞或衍生自幹細胞(經分化的細胞)時,該術語意指特定的細胞在製備中構成細胞的基本部分或細胞的大部分(亦即,多於20%、30%、40%、50%、60%、70%、80%、90%、或95%)。一般而言,在製備中基本上經純化之細胞總數構成製備中細胞的至少約70%,製備中細胞的通常約80%(例如,95%、97%、99%、或100%)。
在較佳實施例中,臍帶血細胞係被使用。該等幹細胞係藉由此項技藝中已知的方法被增殖,且接著藉由已知技術被測試。為了確認細胞之分化潛能,該等細胞係可藉由此項技藝中已知的方法被誘導形成,例如,不同的族群形成單位。
因此經確認之細胞係可進一步在非分化培養基中增殖以供多於10、20、50或100族群倍增,而沒有自發性分化、老化、型態變異、增加生長速率或改變在分化至神 經元之能力的跡象。該等細胞在使用前可藉由標準方法被儲存。
術語“增殖”及“擴大”於此處關於細胞上係可被互換使用,意指相同類型的細胞數量藉由分裂而增加。術語“分化”意指一發展過程,藉由此發展過程細胞變成為專一於特定功能,例如,其中細胞具有一或多個形態特徵及/或功能且該等形態特徵及/或功能係不同於初始細胞之形態特徵及/或功能。術語“分化”包括譜系提交(lineage commitment)與最後分化方法。分化係可被評估,例如,藉由監測譜系標記(lineage marker)的存在或不存在,使用免疫組織化學或其他為熟悉此項技藝者所知的步驟。衍生自原始細胞之經分化子代細胞係可,但不必需,與如同幹細胞之原組織的相同胚層或組織相關聯。例如,神經原始細胞與肌肉原始細胞可分化為造血細胞譜系。術語“譜系提交”及“特殊化(specification)”於此處可被互換使用,意指幹細胞進行的過程,其中幹細胞引發一指定用於形成特定限制範圍之經分化細胞類型的原始細胞。經指定使用之原始細胞係通常能夠自我更新或細胞分裂。術語“最後分化”意指細胞最後分化為一成熟、完全分化的細胞。例如,神經原始細胞及肌肉細胞原始細胞可分化為造血細胞譜系,該等原始細胞之最後分化導致特定細胞類型之成熟血球。通常地,最後分化與自細胞周期退出及增殖中止相關。術語“原始細胞”,如此處所使用,意指一指定用於特定譜系提交之細胞,且該原始細胞藉由一連串的 細胞分裂來引發此譜系的細胞。原始細胞之範例係為肌胚細胞,該肌胚細胞係能夠分化為僅一種類型的細胞,但該肌胚細胞本身係沒有完全成熟或完全分化。
RNAi/核酸/載體
上述幹細胞係可被轉染以表現一或多個RNAi試劑(例如,抗CCR5或CXCR4之RNAi試劑),該等試劑使得細胞具有對抗HIV之抗性。
術語“RNAi”或“RNA干擾”意指一特定序列或選擇性方法,藉由該選擇性方法來調降目標分子(例如,目標基因、蛋白質或RNA)。使用特徵在於降解RNA分子(例如,在細胞內)之RNAi係落在本發明範圍內。降解係藉由酵素性、由RNA誘導之沉默複合體(RNA-induced silencing complex)(RISC)而被催化。RNAi在細胞內自然地發生以移除外來RNAs(例如,病毒RNAs)。天然RNAi係藉由自由雙股RNA所分裂之片段而進行,該天然RNAi導引降解機制。選擇性地,RNAi可藉由人手而被起始,例如,壓制目標基因的表現。
術語“RNAi試劑”意指一RNA(或其類似物),對一目標RNA(亦即,被降解之RNA)具有充分序列互補性以導引RNAi。具有“對目標RNA序列充分互補以導引RNAi之序列”的RNA試劑意指RNA試劑具有一藉由RNAi機制(例如,RISC複合體)或方法足以引發破壞目標RNA之序列。具有“對目標RNA序列充分互補以導引RNAi之序列”的RNA試劑亦意指RNA試劑具有一藉由RNAi機制或方法 足以引起目標RNA之轉譯抑制的序列。RNA試劑亦可具有一與由目標DNA序列所編碼之目標RNA充分互補的序列,以使得該目標DNA序列係染色質靜默的(chromatically silenced)。換句話說,RNA試劑具有一足以誘導轉錄基因沉默的序列,例如,位於或鄰近目標DNA序列上以降調節基因表現,例如,藉由誘導染色質結構在目標DNA序列上或鄰近目標DNA序列上改變。術語“RNA”或“RNA分子”或“核醣核酸分子”意指核醣核苷酸之聚合物。術語“DNA”或“DNA分子”或“去氧核醣核酸分子”意指去氧核醣核苷酸之聚合物。DNA及RNA係可自然地被合成(例如,分別藉由DNA複製或DNA轉錄)。RNA可被後轉錄地修飾。DNA及RNA亦可被化學合成。DNA及RNA可單股(亦即,分別為ssRNA與ssDNA)或多股(例如,雙股,亦即,分別為dsRNA與dsDNA)。
小、干擾RNA(siRNA)分子係典型地為雙股RNA分子(RNA係通常為單股),且該等雙股RNA分子抑制其目標mRNA的表現。如此處所使用,術語siRNA可包括有時被稱為如短髮夾型RNA(hairpin RNA)(shRNA)分子之事物。典型地,shRNA分子係以藉由小迴圈序列分開之短互補序列所構成,其中該等序列中之一者係與基因目標互補。shRNA分子係在細胞內典型地藉由核酸內切酶被處理為siRNA。
藉由本發明之RNAi表現套組(RNAi expression cassette)所編碼之RNAi序列造成小干擾RNAs的表現,該等小干擾RNAs為短、雙股之RNAs且在正常哺乳動物細胞內 是沒有毒性的。在此類DNA衍生RNAi(ddRNAi)試劑之長度並沒有特別的限制,只要該等試劑不顯現出細胞毒性。RNAis可為,例如,15至49bp之長度,較佳為15至35bp之長度,且更較佳為19至29bp之長度。RNAis之雙股RNA部分係可全部為同源的,或可含有非配對部分,該非配對部份係由序列錯配(sequence mismatch)(對應之各股核苷酸係不互補)、凸出(在一股上缺乏相對應之互補核苷酸),及類似者所造成。此類非配對部分可被容許至該等非配對部分不顯著干擾RNAi雙股形成(duplex formation)或效能的程度。
在ddRNAi試劑有效地使目標基因靜默的時候,如本發明之ddRNAi試劑之末端子係可為平鈍的(blunt)或黏性的(突出的)。在產生之ddRNAi試劑係能夠誘導RNAi效果的時候,該黏性的(突出的)末端結構並沒有限制僅在3’突出,亦可包括5’突出結構。除此之外,突出核苷酸之數目係可為任何數字,只要產生的ddRNAi試劑係能夠誘導RNAi效果。例如,若存在,突出可由1至8個核苷酸所構成:較佳為突出由2至4個核苷酸所構成。
在本發明中所使用之ddRNAi試劑可具有一莖環(stem-loop)結構之前趨物(shRNA),其中雙股RNA之末端係藉由單股連接,該單股為聯接子RNA(linker RNA)。該shRNA之環部分的長度可為5至20bp長,且較佳為5至9bp長。
核酸序列係為用於本發明之RNAi表現套組的標地,且該核酸序列包括涉及HIV複製或感染之基因。用於 RNAi試劑或試劑的序列係依據選自標地基因序列之基因序列;以及較佳係基於標地基因序列之區域且該等區域為保守的。供比較用之序列比對方法與RNAi序列選擇法係此項技藝中為人所熟知的。測定二或多個序列之間之百分比一致性(identity)係可使用數學演算法而完成。此類數學演算法之較佳、無限制的範例係Myers與Millers(1988)之演算法;Pearson與Lipman(1988)之尋找相似性方法(search-for-similarity-method);以及Karlin與Altschul(1993)之演算法。此類數學演算法之較佳、電腦設備係被利用。此類設備包括,但不限制於:PC/基因程式內之CLUSTAL(可自Intelligenetics,Mountain View,Calif.獲得);ALIGN程式(2.0版本)、GAP、BESTFIT、BLAST、FASTA、Megalign(使用Jotun Hein、Martinez、Needleman-Wunsch演算法)、DNAStar Lasergene(參閱www.dnastar.com)以及威士康新基因軟體程式包(Wisconsin Genetics Software Package)內之TFASTA、第8版本(可自Genetics Computer Group(GCG)、575 Science Drive、Madison、Wis.、USA獲得)。使用此等程式之對準(alignment)係可使用系統內定參數或由操作者選用的參數而被操作。CLUSTAL程式係由Higgins所詳盡的描述。ALIGN程式係基於Myers與Miller之演算法;以及BLAST程式係基於Karlin與Altschul之演算法。用於操作BLAST分析之程式係可經由生物科技資訊國家中心(National Center for Biotechnology Information)(http://www.ncbi.nlm.nih.gov/)所公開獲得。
典型地,藉由RNAi來抑制標地序列需要在標地序列與RNAi分子之義股(sense strand)之間之高程度的序列同源性。在一些實施例中,此同源性係高於約70%,且可高於約75%。較佳地,同源性係高於約80%,且係高於85%或甚至90%。更較佳地,標地序列與RNAi之義股之間之序列同源性係高於約90%、91%、92%、93%、94%、95%、96%、97%、98%、或99%。
除了基於標地基因之保守區域來挑選RNAi序列之外,RNAi序列之挑選係可基於其他因素。該等因素之範例包括GC含量之百分比、轉譯起始密碼子之位置、或序列相似性,該序列相似性係基於一用於搜尋經建議之RNAi同源性的經由電腦模擬之序列資料庫、熱力學配對準則。擇一地,個別特定候選RNAi聚核苷酸序列係典型地可被生成且被測試以測定所欲求之標地表現的干擾是否可被誘導出。
當使用ddRNAi試劑,RNAi表現套組係被接合至一輸送載體。此構成物係可衍生自病毒且適合病毒輸送,且RNAi表現套組係被插入至該構成物且被使用於在不同細胞種類中ddRNAi試劑之高效能傳導與表現;擇一地,非病毒輸送方法可被使用。此構成物的產生係可使用此項技藝中習知之任何適合的基因改造技術而被完成,包括PCR之標準技術、寡核苷酸合成、限制核酸內切酶分解、接合、轉形、質體純化、以及DNA定序。若此構成物示病毒性構成物,則此構成物係較佳地包含,例如,必須用於將RNAi 表現構成物包封至病毒顆粒的序列及/或允許RNAi表現構成物結合至標地細胞基因體之序列。病毒構成物亦可含有允許病毒複製且增值的基因,儘管在其他實施例中此類基因係在過程中(in trans)被提供。額外地,病毒構成物可含有來自任何已知有機體之基因體的基因或基因序列,且該有機體之基因體係以原型或經改善者而被併入。例如,較佳的病毒構成物可包含有益於細菌內構成物複製的序列。
該構成物亦可含有額外之遺傳因子(genetic element)。因子類型係可被包括在構成物內但不限制於任何形式,且其可藉由此項技藝中之熟悉此技藝者所選擇。例如,額外遺傳因子可包括一受器基因,諸如一或多個用於諸如GFP或REP之螢光標記蛋白質的基因;一簡易分析酶,諸如β-半乳糖苷酶、螢光素酶、β-醛糖酸化合物酶、氯黴素乙醯轉移酶或經分泌之胚胎鹼性磷酸酶;或諸如荷爾蒙或細胞介素之蛋白質,且其等免疫分析法亦可易於獲得。其他遺傳因子可發現使用於本發明實施例中,且包括編碼為具有一在細胞上有選擇性生長優勢之蛋白質的遺傳因子,該等蛋白質係諸如腺苷去胺酶、胺甘醇磷酸轉移酶(aminoglycodic phosphotransferase)、二氫葉酸還原酶、潮黴素-B-磷酸轉移酶、抗藥劑、或編碼為蛋白質之基因且該等蛋白質提供一自自營生物中所缺乏之生物合成能力。若報告基因係與RNAi表現套組一起被包括,則內部核糖體插入位點(IRES)序列係可被包括。較佳地,額外之遺傳因子係可操作地與一獨立啟動子/增強子連接或被該獨立啟動 子/增強子所控制。除此之外,用於在細菌內增殖構成物之適合的複製原點係可被使用。複製原點之序列係通常係與ddRNAi序列及其他欲在細胞內被表現之基因序列分隔開。此類複製原點係為此項技藝中所習知且包括pUC、ColE1、2-micro或SV40複製原點。
用於表現siRNA分子之載體較佳使用一強大的啟動子,該啟動子可為固有的或被經調控的。此等啟動子係於此項技藝中所習知且包括,但不限制於,RNA聚合酶II啟動子、T7聚合酶啟動子、及RNA聚合酶III啟動子U6與H1(參閱,例如,Myslinski et al.(2001)Nucl.Acids Res.,29:2502-09)。較佳地,RNA聚合酶III啟動子係被使用。用於表現本發明之siRNA分子的較佳表現載體為質體與病毒載體(參閱,例如,Sui et al.(2002)PNAS 99:5515-5520;Xia et al.(2002)Nature Biotech.20:006-1010;Barton與Medzhitov(2002)PNAS 99:14943-14945;Brummelkamp et al.(2002)Science 296:50-553;Devroe與Silver(2002)BMC Biotechnol.,2(1):15;Tiscornia et al.(2003)PNAS,100:1844-1848)。
傳輸系統
本發明之RNAi表現構成物與RNAi試劑係可在活體外或生物體之外被引用至標地細胞,且接著後續地被置放入病人內以影響療法,或藉由活體投藥來直接投藥至病人。標地細胞可自下列所獲得:臍帶血、骨髓、末梢血液或任何其他此項技藝中習知之用於獲得幹細胞的方法。
病毒為主之系統
基於任何適合病毒之病毒傳輸系統係可被使用於傳輸本發明之RNAi表現構成物。除此之外,雜交病毒系統係可被使用。病毒傳輸系統之選擇係依據不同的參數,諸如傳輸至細胞內之效率、系統之傳導效率、致病力、免疫與毒性關係及其類似者。當挑選一用於使用於苯發明之病毒傳輸系統時,選擇一系統是重要的,其中含有病毒顆粒之RNAi表現構成物係較佳為:1)複製且穩定增殖;2)能夠被純化至高效價(titer);且3)能夠媒介標地傳輸(將多啟動子RNAi表現構成物傳輸至所需細胞且不廣泛散佈)。一般而言,使用於基因療法中之五種最常被使用的病毒系統種類係可被分類為二個群組,且其等係依據其等基因體是否融合入宿主細胞染色質(致癌反轉錄病毒(oncoretroviruses)及慢病毒(lentiviruses))或顯著地存在於細胞核中作為染色體外之離合染色小體(腺相關病毒、腺病毒與皰疹病毒)而被分類。
例如,在本發明之實施例中,來自小DNA病毒科(Parvoviridae family)之病毒係被使用。小DNA病毒係一小單股、具有約5000核苷酸長之基因體之非外套膜DNA病毒的科。被包括在該科的成員有腺相關病毒(AAV)、一獨立小病毒且根據定義該獨立小病毒為需要與另一病毒(典型地為一腺病毒或皰疹病毒)共感染以起始且維持一生產感染循環。在缺乏此類輔助病毒的情況下,AAV係仍然能夠藉由經受器媒介之結合與內在化、穿透在未分裂細胞及分 裂細胞中之細胞核來感染或傳感一標地細胞。不同於反轉錄病毒、腺病毒與單純性皰疹病毒,AAV顯現出缺乏人類致病力與毒性(Kay,et al.,Nature.424:251(2003)與Thomas,et al.,Nature Reviews,Genetics 4:346-58(2003))。
另一因本發明之RNAi表現構成物而有用之病毒傳輸系統係一基於來自反轉錄病毒科之病毒的系統。反轉錄病毒包含單股RNA動物病毒,且該病毒之特徵在於二個獨特特性。第一,反轉錄病毒之基因體為二倍體,且由RNA之二拷貝所構成。第二,RNA係藉由與病毒體相關之酶反轉錄酶而被轉錄為雙股DNA。此雙股DNA或原病毒可接著融合至宿主染色體中且作為宿主染色體之穩定融合成分而自母細胞被傳遞至子代細胞。
慢病毒亦可被使用於本發明中。慢病毒載體係經常以水泡性口炎病毒-醣蛋白(VSV-G)而為假型(pseudotyped),且係已衍生自人類免疫缺乏症病毒(HIV),人類後天性免疫缺乏症候群(AIDS)之病原學上試劑;visan-maedi,其造成綿羊之腦炎(visna)或肺炎;馬傳染性貧血症病毒(EIAV),其造成馬之自體免疫性溶血性貧血及腦病變;貓免疫缺乏症病毒(FIV),其造成貓之免疫缺乏症;牛免疫缺乏症病毒(BIV),其造成牛之淋巴結腫大與淋巴球增多症;以及猴免疫缺乏症病毒(SIV),其造成非人類靈長目之免疫缺乏症及腦病變。載體係基於之HIV,且該載體一般係維持<5%親代基因體,且<25%之基因體係被併入至包封構成物內,該基因體減小恢復可複製HIV世代之可能 性。生物安全已進一步藉由自我失去活性載體之發展而增加,該載體含有在下游長端重複序列中刪除調控因子,減少自經融合之原病毒的轉錄。
其他在此項技藝中為熟悉此技藝者已知的病毒系統可被使用來傳輸本發明之RNAi表現套組至細胞。
該等範例包括經刪除基因之腺病毒-轉位子載體,該載體經由融合入宿主細胞內維持活體內經病毒編碼之基因轉殖(參閱Yang,et al.,Nature Biotech.20:999-1004(2002));衍生自新德比斯病毒(Sindbis virus)或聖利基森林病毒(Semliki forest virus)之系統(參閱Perri,et al.,J.Virol.74(20):9802-07(2002));衍生自新城病病毒(Newcastle disease virus)或仙台病毒(Sendai Virus)之系統。
非病毒系統
擇一地,RNAi表現套組或相關載體可藉由非病毒方法傳輸至細胞。範例包括磷酸鈣共沉澱、經DEAE-類糊精媒介之轉染、脂質體轉染(lipofection)、電穿孔法、或顯微注射法。又,沒有影響細胞多能性之方法係較佳的。此類技術之敘述係可自下列被發現,例如,美國專利案第7,422,736號及第5,592,625號及美國專利申請案第20020127715號。進一步之範例包括細菌載體或微環(mini-circles)(參閱Chen,et al.,Molecular Therapy.8(3):495-500(2003)及美國專利公開案第2004/0214329號)。微環係非病毒DNA載體且其提供用於持續高度表現之核酸轉錄。微環載體之特徵在於缺乏表現靜默化 (expression-silencing)之細菌DNA序列,且可包括非直接之特定位置重組產物序列,除了ddRNAi表現套組之外。
上述核酸或載體亦可藉由使用此項技藝中已知的聚合性、生物降解微粒或微膠囊傳輸元件而被傳輸。另一達致吸收核酸之方式為使用微脂粒,其係藉由標準方法所製備。聚核苷酸可被單獨併入至傳輸媒劑或與特定組織之抗體共被併入。擇一地,人可製備由質體或其他載體所構成之分子共軛體(molecular conjugate),該質體或載體藉由靜電或共價力接附至聚-L-離胺酸。聚-L-離胺酸結合至配位基,該配位基可結合至標地細胞上之受器(Cristiano,et al.,1995,J.Mol.Med.73:479)。擇一地,組織特異性標地可藉由使用此項技藝中已知之組織特異性轉錄調控因子而被達成。“裸露DNA”(亦即,不需傳輸媒劑)之傳輸至肌內、皮內、或皮下位置係另一達到活體內表現的手段。
常見之轉染試劑係帶電親脂化合物,該化合物可穿越過細胞膜。當該等化合物與RNAi試劑錯合時,該等化合物可作用於攜帶RNAi試劑橫越過細胞膜。大量此類化合物係可商業上獲得。聚伸乙亞胺(PEI)係一轉染試劑種類,與親脂化合物化學上不相同且以與親脂化合物之相似方式作用,但聚伸乙亞胺具有亦可穿越過核膜之優點。此類試劑之範例為ExGen 500(Fermentas)。如本發明之構成物可被包封如一線性片段在合成微脂體或微胞中以用於傳輸至標地細胞。
另一有效用於本發明之傳輸方法包含使用 CyclosertTM技術,該技術係如在美國專利案號第6,509,323號中所述。此技術平台係基於葡萄糖之杯狀環型重複分子,亦被知悉為環糊精。環糊精分子之“杯”可與其他分子形成“包容錯合物(inclusion complex)”,使該分子可以其他部分接合CYCLOSERT聚合物來增強穩定性或添加標地配位基。除此之外,環糊精在人類中係已被發現為安全的(各環糊精在經FDA認證之口服及IV藥物中一般地增強穩定性)且可以藥物等級大規模低花費下被購買。此等聚合物在治療劑量下係非常水可溶性、非毒性且非產生免疫性的,甚至當重複投藥時。該等聚合物可被輕易適用來在藥物裝載量下攜帶廣泛範圍之小分子治療劑,該範圍之小分子治療劑係可顯著高於微脂體。
經化學改良之siRNA分子可被使用於本發明中。此化學改良之範例包括,而非限制,硫代磷酸酯核苷酸間鍵合、2’-O-甲基核糖核苷酸、2’-去氧-2’-氟-核糖核苷酸、2’-去氧核糖核苷酸、“一般鹼基”核苷酸、5-C-甲基核苷酸、及經轉化去氧脫鹼殘基併入。較佳地,化學改良保存在細胞內未經改良之siRNA分子的抑制活性,儘管,在同時,增加化合物之血清穩定性或siRNA分子之其他有利特性。美國專利申請公開案第20050032733號,此處藉由參考而併入,提供諸多siRNA分子之合適改良。
使用及應用
本發明中所述之幹細胞係可被使用於多種方式。人可使用該等細胞用於治療人類個體中之AIDS。特定 地,該等細胞可被用於治療自具有HIV母親所出生之幼兒。
例如,人亦可自此一新生兒中分離出臍帶血細胞。之後,人可將一表現核酸載體引用入至該等細胞中,該載體係以上述方式編碼上述之RNAi試劑。在傳輸載體至該等細胞後,人可使用此項技藝中已知方法將該等細胞移殖回新生兒。當該等細胞自相同人被製造出時,治療沒有造成免疫排斥。
擇一地,人可使一般捐贈細胞自幹細胞(例如,臍帶血細胞)被製造出,且該等幹細胞係自健康個體被製備。用於製造一般捐贈細胞之方法係為此項技藝中所已知的,且用於供治療AIDS用之一般捐贈細胞的製備方法將於下列述明。
在適合的條件下,經移植的細胞可發展成為功能性血球及免疫細胞。為促進該等細胞之發展,可以誘導該等細胞發展之因子投藥於病人。此類因子可為小分子化合物、胜肽、及核酸。範例包括促使免疫細胞分化之細胞介素。
上述細胞與方法可被使用於此項技藝中已知之不同基因療法。基因療法包括活體外或活體內之技術。特定地,上述幹細胞係可以寡核苷酸調節子或編碼調節子之核酸分子被活體外進行基因改造,且經改造過之細胞係可接著被提供給欲被治療的病人。細胞培養可被配置供投藥於病人用,例如,藉由分離細胞(例如,藉由機械式分離)且以藥學上可接受載劑(例如,經磷酸緩衝之生理食鹽水) 仔細摻合細胞。擇一地,細胞可被培養在適合之生物相容撐體上,且被移植至病人中。經改造之細胞係典型為自體的,以使得防止異種或異型排斥。此類活體外方法係此項技藝中已知的。
上述幹細胞可被基因改造為產生組織相容捐贈細胞或組織以用於移植至其他病人。移植與細胞療法之目的為以功能捐贈組織或器官來成功取代衰退的組織或器官。然而,為了成功移植,二個重要阻礙必須被克服:合適的捐贈組織或器官的可獲得性與免疫排斥。衰退組織或器官之取代以及排斥之治療係受限於可接受之捐贈者的數量與毒性抑制免疫藥物之共投藥及長期抑制免疫規程結合的需要。現今且實驗性移植規程主要仰賴兄弟姐妹之捐贈者、其他一小群同種性捐贈者、及異種捐贈者。上述經基因改造之幹細胞可被使用於克服此等限制。
更特定地,此處所述之該等幹細胞係可被基因改造以不表現在其等表面第II類MHC分子上。更較佳地,該等細胞係被改造以實質上不表現所有細胞表面第I類及第II類MHC分子。如此處所使用,術語“不表現”意指不足量被表現在細胞表面以引起反應,或意指被表現之蛋白質不足且因此無法引起反應。
MHC分子意指HLA分子,特定為HLA A、B,及C類,以及第II類HLA DP、DQ、及DR,以及其等之子類。術語係通常被解釋如特定用於人類MHC,但此處傾向包括來自其他捐贈細胞種類之相同MHC基因,例如,若細胞係 為豬來源,則術語HLA將意指為相同之豬MHC分子,不論是MHC I或是II。當第II類MHC分子被移除時,CD4+ T細胞無法辨認經基因改造之內皮細胞;當第I類與第II類MHC分子被移除時,CD4+或CD8+皆無法辨認經改良之細胞。
較佳在幹細胞上操作之基因改造包括1)分裂內生性不變鏈基因,該基因作用於組合與輸送第II類MHC分子至細胞表面且負載抗原性胜肽,以及2)分裂內生性β2-微球蛋白基因(β2M基因),該基因編碼有全部第I類MHC分子之細胞表面表現所需的蛋白質。擇一地,僅不變鏈基因被分裂。不變鏈被相信是將抗原性胜肽片段插入至MHC第II類分子所必需要者。同時,抗原性胜肽與MHC係被T細胞所辨認。在缺乏抗原性胜肽下,T細胞辨認係無法被正常獲得,且MHC第II類分子亦無法合適地摺疊。因此,在細胞缺乏不變鏈下,胜肽之顯現將被消除,且甚至在微量的細胞表面MHC被獲得下,細胞可缺乏胜肽且因此為無產生免疫性的。
分裂基因可經由同源重組基因標地技術之手段而被完成。該等技術係此項技藝中所已知的。參閱美國專利案號第6916654與6986887,Zijlstra et al.,1989,Nature 342:435438;及Koller et al.,1990 Science 248:1227-1230。
組成物
本發明提供含有上述細胞及選擇性其他活性抗-HIV試劑/化合物(例如,用於治療AIDS之藥物)之藥學組成物。抗-HIV試劑之範例包括HIV疫苗、蛋白酶抑制劑(例如, INDINAVIR、RITONAVIR、SAQINAVIR、NELFINAVIR、及AMPRENAVIR)、核苷反轉錄酶抑制劑(例如,ZIDOVUDINE(AZT)、DIDANOSINE、ZALCITABINE、LAMIVUDINE、STAVUDINE及ABACAVIR)、非核苷反轉錄酶抑制劑(例如,NEVIRAPINE、DELAVIRDINE、及EFAVIRENZ)、整合酶抑制劑、及融合抑制劑。
藥學組成物可藉由混合治療有效量之細胞及,選擇性其他活性試劑/化合物,與藥學上可接受載劑而被製備。載劑考具有不同形式,依據投藥的路徑。
如上所述之藥學組成物可藉由傳統藥學賦形劑與製備方法所製備。所有賦形劑可與破碎試劑、溶劑、粒化試劑、保濕劑、及結合劑混合。如此處所使用,術語“有效量”或“治療有效量”意指一造成至少一症狀或特定異常參數之可測量改善的量。上述細胞之治療有效量可藉由此項技藝中已知的方法而測定。治療一異常之有效量可輕易藉由此項技藝中為通常知識者所熟知之以經驗為依據的方法來被測定。欲被投藥給病人之確切量將會依據異常之狀態與嚴重性以及病人之身體情況而變動。任何症狀或參數之可測量改善係可藉由此項技藝中熟悉此技藝者或藉由病人對醫生之報告所測定。將可被了解到,任何症狀或上述異常參數之任何臨床或統計上顯著減少或改善係在本發明之範圍內。臨床上顯著減少或改善代表病人及/或醫生係可察覺到的。
慣用語“藥學上可接受”意指分子實體及此類 組成物之其他成分,且當被投藥至人類時,該等分子實體及此類組成物之其他成分係生理上可忍受且典型地不產生不需要的反應。較佳地,術語“藥學上可接受”意指經由聯邦或州政府之管理機構或列示在美國藥典或其他一般認可之使用於哺乳動物,且更特定於人類之藥典所認可。藥學上可接受鹽類、有關其等鹽類之酯類、醯胺類、及前趨藥(例如,羧酸鹽、胺基酸添加鹽類)、酯類、醯胺類、及前趨藥,其等係在合理醫療判斷之範圍內,適合使用於與病人組織接觸而不需過度毒性、刺激、過敏反應、或類似者,與合理之效益/風險比率相對應,且對其等意欲達到的用途係有效的。
施用於上述藥學組成物之載劑指的是稀釋劑、賦形劑、或是媒劑,其等與化合物係被投藥。此類藥學載劑可為無菌液體、諸如水及油。水或水溶液、食鹽水溶液、及水葡萄糖及甘油溶液係較佳被使用如載劑,特定用於可注射溶液。合適的藥學載劑係如E.W.Martin之“Remington’s Pharmaceutical Sciences”第18版。
上述細胞或活化試劑可經由浸漬或注射(例如,靜脈內、鞘內、肌內、腔內、氣管內、腹膜內、或皮下)、口服、經皮膚吸收或其他此項技藝中已知的方法被投藥至個體。可每二周投藥一次、一周一次、或更常,但在疾症或異常之維持期期間之頻率可被降低。
異源與自體衍生細胞係皆可被使用。在前者中,HLA配對相合係可被進行以避免或減少宿主反應。在後者 中,自體衍生細胞係自個體中被增豐且被純化,且被儲存以供後續使用。該等細胞可在活體外宿主或移植T細胞的存在下被培養且被再輸入至該宿主。此可具有宿主辨識該等細胞如自身者且較宜於提供降低T細胞活性的優點。
劑量或投藥頻率將依據臨床標記,其確認緩解期之維持,以減少或缺乏至少一或多個,較佳為多於一個之急性期的臨床標記,該臨床標記係為此項技藝中熟悉此技藝者已知。更通常地,劑量或投藥頻率將部分依據病理標記與疾症情況或異常之臨床和無症狀性症狀的退減,該疾症情況或異常係被預期以上述組成物治療。劑量及投藥療程可依據年齡、性別、被投藥之身體情況、及需要被治療之病人或哺乳類內的副作用與共軛利益、以及醫生判斷而被調節。在所有上述方法中,被投藥至個體之細胞為1x104至1x1010/時間。
CKR5△32突變
HIV-1結合至CD4+單核球,但需要共受器以感染細胞。趨化激素受器5(CKR5或CCR5)作為一供約半數之HIV-1菌株用的第二受器。CCR5之特定突變給予了對抗藉由HIV-1暴露之感染的強力保護。位於人類染色體3p21上之CCR5基因失去一稱為(CKR5△32)之32鹼基對對偶基因。存在於約10%於歐洲及美國的高加索人中,突變給予對抗AIDS的保護。注意到的是鼠類CCR5,即使該鼠類CCR5係對於人類CCR5具有82%之一致性,該鼠類CCR5不支持HIV-1結合(Atchison,et al.,1996,Science.274:1924-6),闡 明了老鼠淋巴球對HIV-1之抗性。病人對於CKR5△32係為同型合子且保持HIV-1抗體陰性,儘管持續暴露在HIV-1下。Dean,et al.(Dean et al.,1996,Science,Science.273:1856-62)檢驗1955位病人,該等病人係為充分表現特性之AIDS世代研究之一部分。在612位病人中有17位病人為CKR5△32同型合子,且該等612位病人為暴露在HIV-1下但為HIV-1抗體陰性。在1343位經HIV-1感染之個體當中,沒有個體對於CKR5△32為同型合子。CKR5△325之頻率在倖免於HIV-1感染多於10年之個體中亦顯著增加。同樣地,Huang,et al.(Huang et al.,1996,Nat Med.2:1240-3)在1252位被HIV感染之個體中沒有發現到CKR5△325同型合子,但3.6%經HIV曝露而未被感染之參與者係CKR5△32同型合子。CKR5△32突變可已進化為保護對抗鼠疫及天花(Galvani et al.,2003,Proc Natl Acad Sci USA.100:15276-9;Hendrick et al.,2006,Trends Genet.22:293-6;Sabeti et al.,2005,PLoS Biol.3:e378;及Stumpf et al.,2004,Trends Ecol Evol.19:166-8),鼠疫及天花在500-600年前在歐洲為全國流行的。在11-14世紀被發現之突變係仍在波蘭且具有約5%之流行程度(Zawicki et al.,2008,Infect Genet Evol.8:146-51)。些許近期之研究暗示到CKR5△32突變最早存在於銅器時代,將突變時代推回至至少3000且可能5000年前。淋巴腺鼠疫係不為一可能選擇因素,因為缺乏CCR5而增加鼠疫桿菌之可感染性(Styer et al.,2007,Microbes Infect.9:1135-8)。疫苗病毒,給予對天花之抗性,偏好於感染CD8+t 細胞,且該細胞表現CCR5(Vanpouille et al.,2007.J.Virol.81;12458-64)。CKR5△32基因在歐洲或許經演化。CKR5△32突變以在高加索俄羅斯人中自0.13至以在韃靼人、烏茲別克人、哈薩克人、阿塞拜疆人、回紇人(Uigurts)、圖瓦人、及喬治亞人。具有防衛性CKR-5同型合子對偶基因之個體在細胞表面上不表現可偵測之CCR5,且可倖免於多重曝露在HIV-1感染下(Liu et al.,1996,Cell.86:367-77)。CKR5同型合子發生10-20%在歐洲高加索人中,且緩慢疾正發展(Huang et al.,1996,Nat Med.2:1240-3與Rowe PM(1996)。CKR-5 deletion heterozygous progress slower to AIDS。Lancet.348:947)。CKR5△32不給予絕對保護(Balotta et al.,1997,Aids.11:F67-71)。巨噬細胞表現CCR5。末梢巨噬細胞表現CCR5且結核病增強CCR5表現與在巨噬細胞內HIV-1之複製。嗜M淋巴细胞病毒但沒有嗜T淋巴细胞病毒係被防止進入於缺乏功能性CCR5受器之個體的樹突細胞(Granelli-Piperno et al.,1996,J Exp Med.184:2433-8)。類似地,缺血與內毒素係藉由鼠類大腦小神經膠質來上調控CCR5受器表現(Spleiss et al.,1998,J Neurosci Res.53:16-28),暗示到CCR5僅在大腦巨噬細胞對HIV-1感染之可感染性上扮演重要角色。
CXCR4與其他亦影響HIV可感染性之受器
趨化激素受器CXCR4、CCR3及CCR2b亦可作為HIV-1之共受器(Alkhatib et al.,1997,J Biol Chem.272:20420-6)。Ayehunie,et al.(Ayehunie et al.,1997,Blood, 90:1379-86)顯示了HIV-1經由不同CC與CXC趨化激素共受器進入樹突細胞。Bjorndal,et al.(Bjorndal et al.,1997,J Virol.71:7478-87)使用表現CCR1、CCR2b、CCR3、CXCR4、與CCR5之神經膠瘤細胞系以研究HIV-1分離者。藉由緩慢/低分離者之感染係受限於表現CCR5之細胞,同時快速/高分離者使用多重趨化激素受器,該等受器包括CCR5、CXCR4、CCR3、與CCR2b。Xu,et al.(XU et al.,2008,J Infect Dis.197:309-18)發現到血單核球包藏有多樣化的HIV-1表型且該等表型結合至多重趨化激素受器。所有血單核球使用CCR5,一些使用CXCR4,一些使用CCR3,且一些使用多重共受器(CCR1、CCR3、GPR15、CCR5、CXCR4)。CXCR4亦稱做融合素(fusin)或融合素(Lestr)(Simmons et al.,1996,J Virol.70:8355-60)。SDF-1係供CXCR用之生理配位基。SDF-1造成CXCR4之快速內在化且極度抑制HIV進入CD4+淋巴球。在HIV感染早期,病毒分離者結合CCR5,同時自HIV感染後期之分離者傾向結合CXCR4(Bleul et al.,1997,Proc Natl Acad Sci USA.94:1925-1930)。MT-2(巨噬細胞營養型2)(Macrophage Trophic 2)陽性HIV-1菌株經由CXCR4進入巨噬細胞(Bratt et al.,1997,Acids.11:1415-9)。一些巨噬細胞菌株可與CXCR4相互作用,而不需依靠CD4(Hesselgesser et al.,1997,Curr Biol.7:112-21)。HIV-2菌株利用CXCR4且,較小程度之CCR3,以供細胞融合用(Bron et al.,1997,J Virol.71:8405-15)。CXCR4阻斷劑亦預防HIV-1感染。例如,抗CXCR4因子係經巨噬細胞衍生之趨 化激素配位基22(CCL22)。HIV-1可結合且藉由結合CCR3而進入T細胞(AaSA-Chapman et al.,2006,J Virol.80:10884-9)。一些HIV-1菌株可在巨噬細胞上使用CCR3。Th 1及Th2細胞係藉由其等細胞介素之特徵與CCR5及CCR3之表現而被定義。Alkhatib,et al.(Alkhatib et al.,1997,J Biol Chem.272:20420-6)顯示CCR3與使用CC5之嗜M巨噬細胞型HIV-1菌株相互作用、使用CXCR4嗜T之T細胞系HIV-1菌株、及雙向菌株(dual tropic strain)。CCR1對於CCR3有最接近之同源性(53%胺基酸一致)但CCR1係非HIV-1共受器。類似CXCR4,CCR3可作為供HIV-1感染大腦細胞用之CD4獨立受器(Martin-Garcia et al.,2006,Virology.346:169-79)。初始證據暗示到CCR2可為供HIV-1感染之共受器。在1998年,Ksotrikis,et al.(Kostrikis et al.,1998,Nat Med.4:350-3)報告了在CCR2之編碼區域之保守取代係與較慢疾症發展相關但不與HIV-1傳遞相關。因為CCR2係稀少經由HIV-1而使用如一共受器與在穿膜區域之突變,作者提意且發現到CCR2-V641對偶基因係與在CCR5調控區域之點突變相關。Hendel,et al.(Hendel et al.,1998,J Acquir Immune Defic Syndr Hum Retrovirol.19:381-6)發現到病人內CCR5突變對偶基因(p<0.04),但沒有CCR2(p-0.09)或SDF1(p-0.12)與長期緩慢AIDS發展的顯著關聯。Magierowska,et al.(Magierowska et al.,1999,Blood.93:936-41)使用CCR5、CCR2、SDF1、及HLA基因之經結合表型以預測經HIV-1感染個體之長期未發展狀態。
簡言之,當大部分HIV-1分離者使用CCR5作為共受器以進入T細胞,HIV-1可進入使用其他共受器之巨噬細胞、樹突細胞、與大腦細胞。CXCR4與CCR3可作為供HIV-1用之共受器,但CCR2並未顯示為供HIV-1用之共受器。對抗CD40之抗體壓抑HIV-1,且該HIV-1未使用CCR5/CXCR4。
趨化激素受器阻斷預防HIV感染
HIV-1藉由結合CD4及CCR5或CXCR4來結合CD4。CCR5與CXCR4係趨化激素受器(De Clercq et al.,2001,Antivir Chem Chemother.12 Suppl 1:19-31)。病毒進入可藉由天然配位基而被抑制,該等天然配位基係用於CXCR4、CXC趨化激素SDF-1、趨化激素RANTES、MIP-1 α、及MIP-1 β。數種胜肽亦已被確認為CXCR4拮抗劑且顯示出抗HIV活性,包括二環拉胺(bicyclam)衍生物。AMD3100係一特定CXCR4拮抗劑。TAK-779係一抗HIV之四級銨衍生物且與CCR5交互作用。CD4+T細胞分泌數種天然HIV壓抑因子。抗CCR5因子包括巨噬細胞發炎蛋白質-1 α(MIP-1 α或CCL3,巨噬細胞發炎蛋白質-1 β(MIP-1 β或CCL4),及RANTES(調控正常表現或分泌之T細胞的活化或CCL5)。趨化激素不僅藉由主要、非合體細胞誘導(NSI)HIV-1菌株來抑制CD4+T細胞感染,亦阻斷經env媒介細胞對細胞膜融合。刺激CCR5係有助於病毒複製(Rahbar et al.,2006,J Virol.80:7245-59)且阻斷CCR5係降低HIV複製(Arenzana-Seidedos et al.,1996,Nature.383:400)。
HIV進入抑制藥物對於發展有HIV-1感染之病人係特別重要的,該等HIV-1感染對於重組抗病毒療法係變成為有抗性的(2006,GMHC Treat Issues.20:4-7)。儘管關於CCR5/CXCR4拮抗劑係免疫抑制劑之安全性(2006,Treatment Update.18:5-6;2006,Proj Inf Perspect.7-12;2006,AIDS Alert.21:11-2;2006,AIDS Patient Care STDS.20:380;以及2006,AIDS Read.16;448)以及HIV-1可適用於逃避阻斷CCR5之ECL2區域的治療試劑的證據(Aarons at al.,Virology.287:382-90),人類基因科學開始了以抗CCR5單株抗體之人類臨床試驗(2004,IAVI Rep.9:15)。其他CCR5抑制劑(2004,AIDS Alert.19:121,123-4)顯示有希望且係可被採用至鄰床試驗(2005 AIDS Patient Care STDS.19:59及Jones et al.,2007,Eur J Med Res.12:391-6)。HIV-1共受器係一特定吸引藥物標地,因為該等共受器具有多重穿膜區域及G蛋白質區域且在小藥物可作用該等區域上(Leonard et al.,2006 Curr Med Chem.13:911-34)。除此之外,小分子拮抗劑係可被設計為結合CCR5與CXCR4,該二個受器係被知悉為供HIV-1進入至淋巴球中用的共受器(Ji et al.,2006,J Biomol Screen.11:65-74;Liu et al.,2007,Curr Pharm Des.13:143-62;Perez-Nueno et al.,2008,J Chem Info Model.48:509-33;Rusconi et al.,2007,Curr Top Med Chem.7:1273-89;以及Wang et al.,2008,J Mol Graph Model.26;1287-95)。其他藥物瞄準在病毒或細胞表面蛋白質二硫化物異構酶上gp120-結合位置(Ryser et al.,2005, 10:1085-94)。CCR5亦已為疫苗之廣泛標地,甚至CCR5之免疫攻擊可造成免疫下降。在2007,FDA核准馬拉維諾,其為阻斷CCR5之咪唑吡啶配位基,以及第一受器拮抗劑療法以用於多重藥物抗反轉錄病毒療法已失敗之病人。包括1076位經HIV菌株所感染之病人的二個雙盲安慰劑對照試驗,該等試驗使用CCR5共受器以用於進入CD4+淋巴球。在8個星期之後,經Maraviroc治療之病人具有較少的病毒負擔,亦即,不可偵測45.5%比16.7%之安慰劑對照組,且有多於2倍之CD4+細胞。馬拉維諾與其他新病毒藥物具有不良之皮膚反應(Borras-Blasco et al.,2008,J Antimicrob Chemother.62:879-88)。其他相似藥物係在第3期試驗(Emmelkamp et al.,2007,Eur J Med Res.12:409-17)。簡言之,CCR5之阻斷劑不僅預防HIV-1進入,亦壓抑病毒複製。此等包括CCR5之天然配位基,包括MIP-1 β、MIP-1 α、及RANTES。對抗CCR5之抗體亦壓抑HIV-1感染。數種藥物結合CCR5與CXCR4,以及其他HIV-1之結合位置。
用於AIDS之臍帶血(UCB)療法
AIDS係與淋巴球減少症、特定為CD4+淋巴球,以及初始型CD8+T細胞與非淋巴單核球之短缺。UCB療法係可因數個理由而有利於AIDS。第一,UCB應直接補充t細胞群體且增強免疫功能。第二,UCB可灌輸且添加至幹細胞群體。第三,UCB血球傾向對於HIV感染具有更高抵抗力相較於周邊血球。UCB淋巴球表現CCR7與CXCR4,同時成熟淋巴球表現較多之CCR5(Loria et al.,2005,Cell Immunol.236:105-9)。胎兒或新生兒淋巴球係因此較少受到HIV-1感染(Vicenzi et al.,2002,J Leukoc Biol.72:913-20)。趨化激素吸引UCB淋巴球至受傷處,亦即,MCP-1與MIP-1 α,下調控其等CCR5表現。(Jiang et al.,2008,Curr Neurovasx Res.5:118-24)。最後,在血球中由單核球衍生之樹突細胞(Folcik et al.,2001,J Hematother Stem Cell Res.10:609:20)對於HIV感染具有受限的易感染性,係由於較低的CD4與CCR5表現,與較低之MIP-1 α與MIP-1 β程度相關(Wang et al.,1999,J Acquir Immune Defic Syndr.21:179-88)。USB CD34+細胞表現CCR1且幾乎沒有CCR5受器(de Wynter et al.,1998,Stem Cells.16:349-56)。因為HIV-1不結合CCR1,臍帶血CD34+細胞對HIV-1具有抗性(Majka et al.,2000,Exp Hematol.28:1334-42),但當其等分化且表現CCR5時(Hariharan et al.,1999,AIDS Res Hum Retroviruses.15:1545-52),其等子代可成為對HIV具有易感染性(Zhao et al.,1998,J Infect Dis.178:1623-34)。HIV-1感染CD34細胞及其等子代係取決於CD4受器之膜表現,與一些趨化激素共受器。UCB CD4+T細胞相較於其等之成熟對應者具有較不成熟的(Delespesse et al.,1998,Vaccine.16:1415-9)。其等活化係取決於經CD28所媒介之共訊號,該等共訊號支配細胞界速特性且對IL-2反應。UCB細胞之CD28活化導致了具有增加IL 1、IFN-γ、I與TNA-β表現之Th1表型。在缺乏CD28之刺激下,細胞藉由產生IL-4及IFN-γ來對IL-12反應。CD8+細胞係絕對需要外生IL-4以發 展為IL4/5生產者。UCB細胞之亞群,然而,係易受HIV-1感染。例如,HIV-1感染臍帶血內肥大細胞且該等細胞可作為持續HIV儲藏處(Bannert et al.,2001,J Virol.75:10808-14)。偶然未受拘束之造血細胞可表現CCR5(Rosu-Myles et al.,2000,Stem Cell.18:374-81)且特定為CXCR4(Loria et al.,2005,Cell Immuno.236:105-9)。CD8+T細胞可活體外係藉由傾向感染巨噬細胞(macrophage tropic)(嗜M型)HIV-1分離者而被有效地感染,但對傾向感染T細胞(嗜T型)HIV菌株具有抗性(Yang et al.,1998,J Exp Med.187:1139-44)。經活化UCB CD8細胞表現高程度之CD4、CCR5、及CXCR4且係為易受HIV-1感染所感染的。臍帶血內CD16+細胞表現高程度之CCR5,且易受HIV-1感染的(Jaworowski et al.,2007,J Infect Dis.196:38-42)。最後,新生兒內自胸腺釋放之T細胞具有經提升之CXCR4程度(Berkowitz et al.,1998,J Immunol.161:3702-10),解釋了為什麼感染新生兒之HIV-1發展病毒血症程度且AIDS進展迅速(Sundaravaradan et al.,2006,Proc Natl Acad Sci USA.103:11701-6)。
簡言之,儘管大部分之UCB細胞單核球,包括CD34+細胞與CD8+細胞,其傾向對HIV感染具有抗性。HIV-1可感染UCB細胞亞群,包括肥大細胞。不成熟CD8+淋巴球對HIV-1具有抗性,但當細胞變成為已活化時,細胞表現CD4、CXCR4、及CCR5。因此,儘管UCB輸液可藉由補充人們t細胞、灌輸,且產生免疫細胞而有益於該具有 AIDS之人們,但該等細胞係作為供HIV-1感染之標地。
非遺傳性預防UCB細胞之HIV-1感染
數種療法可給予UCB細胞暫時地對HIV-1之抗性。例如,結合CCR5之趨化激素可預防臍帶血細胞之HIV-1感染。在1998年,Chalita-Eid,et al.(Chalita-Eid et al.,1998,AIDS Res Hum Retroviruses.14:1617-24)顯示RANTES-IgG3融合蛋白質係一新生兒血球之HIV-1感染的潛在抑制劑。干擾素-β(IFN-β)增加自臍帶血CD34+細胞所衍生之巨噬細胞的HIV-1抗性(Cremer et al.,2000,J Immunol.164:1582-7),與RANTES之上調控及經降低之CCR5表現有相互關係。干擾素-γ(IFN-γ)上調控在臍帶血吞噬細胞內CCR5表現(Hariharan et al.,1999,Blood.93:1137-44),該干擾素-γ在臍帶血單核球內降低CD4表現且抑制HIV複製(Creery et al.,2004,Clin Exp Immunol.137:156-65),藉由提升SDF-1與RANTES之表現。β趨化激素阻斷HIV-1複製(Ketas et al.,2003,AIDS Res Hum Retroviruses,19:177-86)。對CCR5之自體免疫可保護UCB細胞來對抗HIV-1感染。在2008年,Lobo,et al.(Lobo et al.,2008,J Immunol.180:1780-91)報告了IgM抗淋巴球自身抗體自然地結合CD3、CD4、CCR5、及CXCR4,抑制T細胞活化與趨化作用,且保護細胞對抗HIV-1感染(Lobo et al.,2008,J Immunol.180:1780-91)。Ditzel,et al.(Ditzel et al.,1998,Proc Natl Acad Sci USA.95:5241-5)發現到在CKR5△32同型合子個體內CCR5受器作用如一同種異體抗原,且來 自此類個體之血清的自身抗體競爭結合至CCR5受器的放射性標記RANTES。
自身抗體對於挑選CCR5+UBC細胞係可為有用的。誘導自身上體對抗CCR5之疫苗亦可降低恆河猴(macque monkeys)感染HIV-1感染率。一些研究者已改造RANTES以加強分子之抗病毒活動,同時減低或除止發炎特性(Vangelista et al.,2008,Vaccine.26:3008-15)。例如,Sun,et al.(Sun et al.,2008,J Birol Methods)使用與內質網(endocytoplasmic reticulum)序列(RANTES-KDEL)結合之CCR5配位基RANTES,且該CCR5配位基RANTES在保留一分子在內質網(endocytoplasmic reticulum)上以抓住CCR5受器蛋白質且降低受器之表面表現。相似方法據推測可被使用以相同配位基用於其他共受器。在2002年,發現RNA干擾係暗示了阻斷CCR5表現以給予對AIDS之抵抗力的可能性。An,et al.(An et al.,2007 Proc Natl Acad Sci USA.104:1311-5)闡明siRNA之穩定表現,且該穩定表現藉由CD34+造血幹/先趨細胞移植來抑制CCR5表現。Anderson,et al.(Anderson et al.,2007,Mol Ther.15:1182-8)研製出含有三個抗HIV基因之慢病毒載體(CCR5核糖酶、tat-rev siRNA及TAR誘餌)在SCID-hu由老鼠衍生之T細胞內。經轉染的細胞被注射入SCID老鼠內,該等經轉染細胞製造T細胞且該等T細胞係相對地對HIV-1感染具有抗性。白血病抑制因子(LIF)經由限制stat 3活化來抑制HIV-1複製。Tjernlund,et al.顯示LIF於活體外及於人類器官外植內顯著 地抑制HIV-1複製。LIF活化Jak/Stat訊號路徑。以重組人類LIF預治療細胞係顯著地減少HIV-1病毒顆粒知吸收。類似地,HIV-1複製可被TRIM5 α siRNA限制(Pineda et al.,2007,Virology.363:310-8)。
預防UCB細胞之HIV-1感染的遺傳方法
源自高加索歐洲人之臍帶血的CCR5△32對偶基因之流行程度可高達10%。此流行程度呈現出上升的,因為CCR5△32對偶基因的研究暗示到CCR5△32對偶基因係僅存在於來中世紀波蘭之5%DNA樣品中,然而現今估計有10.26%(Zawicki et al.,2008,Infect Genet Evol.8:146-51)。推測上地,基因的流行程度係已升高,因為選擇優勢給予個體之基因載劑,且該等個體不具有該基因。一方法係為收集臍帶血單元,該等單元擁有CCR5△32對偶基因且增加該等單元以使得其等可被使用於治療更多人。CKR5△32突變不是唯一對HIV感染之基因抗性來源。非洲幼兒表現CCL3(MIP1-α)之多重基因拷貝且對HIV感染具有較小的易感染性(Kuhn et al.,2007,Aids.21:1753-61)。CCL3L1之拷貝數目係與對HIV-1之減少的易感染性相關(Bugeja et al.,2004,Aids.18:1069-71及Gonzales et al.,2005,Science.307:1434-40)。來自由經HIV-1感染母親所生下之未受感染幼兒的周邊血白血球的分析指出,未經感染嬰兒具有高比例之CXCR4表現細胞且幾乎沒有CCR5表現細胞(Shalekoff et al.,2004,Clin Diagn Lab Immunol.11:229-34)。編碼CCLL1-CCR5基因型之基因的不同係與經細胞媒介改變的 對HIV-AIDS免疫力相關(Dolan et al.,2007,Nat Immunol.8:1324-36)。其他影響HIV易感染性基因(Arenzana-Seisdedos et al.,2006,Semin Immunol.18:387-403)包括CCR2、CX3CR1、MIP-1 α、MIP-1 β/CCL4、RANTES/CCL5及SDF-1/CXCL12基因。Yoshina,et al.(Yoshida et al.,2008,Traffic.9:540-58)顯示到CD63之N端刪除(亦即,CD63 δ N)藉由壓抑CXCR4表面表現來阻斷HIV-1進入。CCR5基因之擊毀或刪除可具有不欲求之副作用。CCR5趨化激素受器調控白血球之趨化作用且在免疫方法(Tian et al.,2008,Cell Signal.20:1179-89),以及血管生成(Wu et al.,2008.J Immunol.181:638-93)中佔有重要的角色。CCR5之刪除或突變可影響臍帶血細胞之施行免疫功能之能力。例如,CCL2L1-CCR5基因型影響在經HIV-1感染個體之抗反轉錄病毒療法的期間免疫回復之續久性。CCR5之改變亦可增加自體免疫疾症之風險。例如,CCR5之多型性係與自體免疫疾症相關,該等疾症係諸如全身性紅斑狼瘡(Mamtani et al.,2008,Ann Rheum Dis.67:1067-83)。最後,些許HIV-1病毒不使用CCR5以進入細胞且阻斷CCR5表現並無法提供完整的保護。基因型演算法係可獲得以確定HIV-1向性以預測共受器拮抗作用之成功性(Soulie et al.,2008,HIV Med.9:1-5)。CKR5△32或CCR5△32突變係可只不過為顯性抑制的(dominant negative)。在表面表現之前CCR5受器蛋白質必須藉由內質網被處理且被磷酸化且多聚化之一事係被發現(Benkirane et al.,1997,J Biol Chem. 272:30603-6)。突變株CCR5△32可與CCR5形成錯合物但不可被磷酸化。在沒有磷酸化下,雜錯合物不可被表現在細胞表面上,因此減少比預期自非工作受器蛋白質之簡單異質結合表現還多之CCR5表現。然而,更多有效或有用之壓抑CCR5表現之方法係已為可獲得的且將於下敘述。
基因抑制方法
許多方法係可獲得以壓抑CCR5表現。在2000年,Cagnon與Rossi(Cagnon et al.,2000,Antisense Nucleic Acid Drug Dev.10:251-61)發展出一鎚頭型核醣酶且該鎚頭型核醣酶在細胞內瞄準CCR5 mRNA與下調控CCR5表現,使用腺病毒聚合酶以表現細胞內之轉錄與顯示出70%之經下調控之CCR5表現。在2000年,Bai,et a;.(Bai et al.,2000,Mol Ther.1:244-54)使用反轉錄病毒以轉染抗CCR5核醣酶(R5Rbz)至CD34+細胞且顯示出自該等經轉染細胞所分化之巨噬細胞抵抗HIV-1感染。Bai,et al.(Bai et al.,2001,AIDS Res Hum Retroviruses.17:385-99)接續地建構抗CCR5核醣酶異二聚體,該抗CCR5核醣酶異二聚體瞄準CCR5 mRNA內之三個裂解處,顯示出經抑制之CCR5表面表現與70%減少的HIV-1感染。然而,許多方法係被RNA干擾所取代。HIV-1特異性RNAi療法,亦即,短抑制RNA(siRNA)與短髮夾型RNA(shRNA)係減少CCR5(Boden et al.,2004,Curr Opin Mol Ther.6:373-80)與CXCR4(Zhou et al.,2004,Gene Ther.11:1703-12)表現之非常有效的方法。在2002年,Martinez,et al.(Martinez et al.,2002,Aids,16:2385-90)顯示 了siRNA瞄準了選擇性停止共受器之細胞表面表現而沒有影響彼此或CD4表現的CXCR4與CCR5。Novina,et al.(Novina et al.,2002,Nat Med.8:681-6)報告成功地壓抑CD4表現、病毒結構Gag蛋白質或Nef調控蛋白質。Anderson與Akkina(Anderson et al.,2007,Mol Ther.15:1182-8)顯示了經慢病毒載體表現之siRNA擊毀CCR5且保護基因轉殖巨噬細胞抵抗HIV-1感染。Anderson,et al.(Anderson et al.,2003,Oligonucleotides.13:303-12)使用雙特異性siRNA瞄準CD4、CXCR、及CCR5。Tamhana與Akkina(Tamhana et al.,2008,AIDS Res Ther.5:16)使用睡美人(Sleeping Beauty)轉位子系統以傳送CCR5與CXCR4 siRNA、紅色螢光蛋白質(RFP)報告子,以及可選擇藥物抗新黴素基因,使用過活性轉位酶(HSB5)以傳送質體至細胞內表現CD4、CXCR、及CCR5。此關閉細胞內CCR5與CXCR4表面表現。Kumar,et al.(Kumar et al.,2008,Cell.134:577-86)使用T細胞特異性siRNA對抗CCR5,顯示了抗CCR5與抗病毒siRNAs與和寡-9-精胺酸胜肽(scfvCD7-9R)共軛之T細胞CD7特異性單鏈抗體錯合且可對T細胞有特異性,控制病毒複製、且預防與疾症相關之CD4 T細胞損失。Bhattacharyya,et al.(Bhattacharyya et al.,2008,Scand J Immunol.67:345-53)發現到CCR5特異性siRNA減少70%之海生巨噬細胞中的利什曼病的寄生負擔。Poluri與Sutton(Poluri et al.,2008,Mol Ther.16:378-86)顯示了編碼有對抗CCR5之短髮夾RNA(shRNA)的基因轉移載體減少了>30倍之細胞內病毒 效價。RNA干擾可被針對除了CCR5或CXCR4之外的基因。Lim,et al.(Lim et al.,2008,Mol Ther.16:565-70)使用siRNA對抗HIV-1之5’-長端重複(5’LTR)啟動子且壓抑二個表現CD4、CXCR、及CCR5之不同細胞系的大量感染。Harmon與Ratner(Harmon et al.,2008,J Virol與Harmon et al.,2008,J Virol.82:9191-205)顯示了誘發Galpha(q)訊號級聯對於病毒進入與Galpha抑制劑是必須的,若否,則siRNA將阻斷病毒進入。Chen,et al.(Chen et al.,2008,Virology/379:191-6)顯示了CD63在HIV複製與巨噬細胞及細胞系感染上佔有重要的角色且siRNA對抗CD63將預防上述兩者。最後,Tian,et al.(Tian et al,2008,Cell Signal.20:1179-89)瞄準了對抗造血特異性G(16)及G(14)之siRNA,G(16)及G(14)連接經G(i)耦合受器CCR1、CCR2a、CCR2b、CCR3、CCR5、及CCR7。此可減少多重受器之表現。最後,siRNA可被針對來對抗CCR4啟動子(Giri et al.,2005,Am J Physiol Cell Physiol.289:C264-76)。
重組抗病毒基因療法
重組基因療法瞄準HIV-1進入與複製的多重機制。在2003年,Akkina,et al(Akkina et al.,2003,Anticancer Res.23:1997-2005)提出了同時使用siRNA對抗病毒包封蛋白質tat與rev、抗CCR5核醣體、及RNA(TAR)誘餌。針對病毒包封RNA,諸如rev與tat之RNAi,壓抑病毒複製(Akkina et al.,2003,Anticancer Res.23:1997-2005)。TAR誘餌適體係核仁定位誘餌,該誘餌結合且隔絕HIV Tat蛋白質但不以正常 胸腺細胞生成過程(thymopoiesis)(Banerjea et al.,2004,AIDS Res Ther.1:2)。使用表現經PolIII促進之抗HIV RNA與抗CCR5核醣體之慢病毒載體,Li,et al.(Li et al.,2003,Mol Ther,8:196-206)顯示了此組合物有效地保護對抗HIV-1感染。
在2004年,Banerjea,et al.(Banerjea et al.,2004,AIDS Res Ther.1:2)使用TAR誘餌與CCR5核醣體之慢病毒轉島入CD34+原始細胞以生成HIV-1抗性T細胞與巨噬細胞(acrophage)。在2006年,Li,et al.(Li et al.,2006,Ann N Y Acad Sci.1082:172-9)使用多重RNAi與CCR5核醣體及TAR誘餌結合以治療造血細胞之HIV感染。在2007年,Anderson,et al.(Anderson et al.,2007,Mol Ther.15:1182-8)使用含有三個抗HIV基因或三元-R(抗CCR5核醣體、rar-rev siRNA及TAR誘餌)之慢病毒載體以製造表型正常T細胞,且該等T細胞有效地對抗HIV-1感染。Morris,et al.(Morris et al.,2005,RNA Biol.2:17-20)測試了瞄準HIV-1 gag、vif、tat、rev及主CD4與CCR5之多重siRNA,發現到HIV-1之序列差異嚴重地限制抗病毒siRNA之使用。慢病毒載體係普遍用於轉導基因至細胞,因為該慢病毒載體以高效率感染未分裂細胞且傳遞多重基因(Banerjea et al.,2004,AIDS Res Ther.1:2)。Qin,et al.(Qin et al.,2003,Proc Natl Acad Sci USA.100:183-8)顯示了慢病毒可以CCR5 siRNA例行地轉染超過40%之周邊T淋巴球,且慢病毒降低超過10倍之CCR5表現且降低3-7倍之經感染細胞數目。Song,et al.(Song et al., 2003,J virol.77:7174-81)顯示了來自siRNA之基因靜默係在未分裂細胞內,諸如巨噬細胞,持續超過15天。
藥物組合物之發展瞄準HIV反轉錄酶及蛋白酶酵素且該發展革命化HIV/AIDS之治療,但以試劑,諸如病毒逃脫突變劑(Ray et al.,2007,J Virol.81:3240-50及Shafer et al.,2008,AIDS Rev.10:67-84)、反覆出現之病毒儲藏處、順從複雜藥物療法、及毒性副作用之問題係限制此等藥物對於病人之有用性。除了CD4、CCR5與CXCR4受器阻斷,一種藥抗HIV治療之類別阻斷基因融合包膜醣蛋白gp120之作用(Liu et al.,2008,J Mol Model.14:857-70;Platt et al.,2007,J Mol Biol.374:64-79;與Shafer et al.,2008,AIDS Rev.10:67-84)與gp41(Jacobs et al.,2008,Vaccine.26:3026-35;Sougrat et al.,2007,PLoS Pathog.3:e63;與Zahn et al.,2008,Gene Ther.15:1210-22),包括融合抑制子T20(恩夫韋地(enfurvirtide)),其係有用於預防巨噬細胞之HIV-1感染(Yi et al.,2008,J Acquir Immune Defic Syndr.47:285-92)與阻斷HIV感染蘭格罕細胞(langerhans cells)與T細胞之C34。如第4圖所示,多重藥物可被使用於干擾細胞內病毒感染與複製。多重藥物包括阻斷受器(CD4、CXCR4與CCR5)之藥物、基因融合醣蛋白(gp41、gp120)、病毒包膜蛋白質(tat、rev)、與核醣酶以及阻斷細胞膜上CCR5與CXCR4受器複製之siRNA。在該等藥物中,預防病毒進入者係可能為最佳的。一旦該等細胞進入細胞,預防病毒複製可減緩感染散佈,但無法預防該等細胞成為病毒儲藏 處。然而,在植入之前以結合抗病毒治療病人係可為重要的。
下列欲被解釋之特定範例係僅為闡明,且無論以任何方式係不受限於內容之其餘者。
不進一步詳盡闡述,相信此項技藝之熟悉此技藝者,基於此處描述,將本發明應用至其極致。
材料與方法
我方建議下列製備HIV-1抗性臍帶血細胞之方法,驗證該等細胞植入免疫缺乏老鼠之能力,且接著進入具有AIDS之孩童與成人的臨床試驗。
轉染. 此方法應用Amaxa(http://www.amaxa.com)核靶電穿孔法,以超感染(superfect)與脂感染胺(lipofectamine)陽離子脂質質體(http://www.invitrogen.com)來插入下列基因至臍帶血單核細胞內;對抗CCR5與CXCR5之siRNAs、GFP(綠色螢光蛋白質)、及PGK(磷酸甘油酸激酶)新黴素抗性基因。GFP作為誠供基因轉移之標劑,同時新黴素在锂存在下允許我方挑選經轉染之細胞,锂促使臍帶血單核細胞(CBMC)之增殖。
驗證. 在轉染細胞之後,驗證數代之經轉染的CBMC細胞植入且沒有表現CCR5與CXCR5共受器。該等細胞係接著被轉植入免疫缺乏老鼠內以說明經轉染細胞植入至骨隨內且生成血球,包括嗜中性球與淋巴球。之後,該等細胞係被測試其等在活體外對HIV-1感染之抗性。一旦確 認後,下列臨床試驗係接著被處理。
自體衍生之臍帶血輸液之臨床試驗.臍帶血樣本係自孩童收集且該等孩童係自經HIV-1感染之母親所生出。若該等孩童顯示有感染HIV之證據,則單核細胞係亦自臍帶血分離出,且以上述方式轉染該等細胞,且接著將經改良細胞輸液至孩童中。在移植後數次中,血液樣本係被收集以確定是否植入已發生(亦即,血球之存在表現出綠色螢光蛋白質)。病毒載量係接著被確定,特別是在經移植之GFP表現細胞。第一終點為植入,製備HIV-1抗性免疫細胞,以及免疫功能之回復。第二終點為個體內AID之時間過程。
異種臍帶血輸液之臨床試驗. 在不具有臍帶血被收集之嬰兒中,我方轉染HLA配對相合之臍帶血單元與對抗CCR5及CXCR4之siRNA,且移植此等細胞入具有HIV-1感染之嬰兒內。再此地,此試驗之第一終點為是否經轉染之細胞已植入,且產生HIV-1抗性細胞而沒有移植物對抗宿主疾病。第一終點為為個體內AIDS之時間過程。被預期AIDS之症狀將隨著更多且更多藉由移植造血細胞之細胞產生而被減緩。將有AIDS之復發是有可能的,如細胞之連續子代產生較少對抗CCR5與CXCR4之siRNA。上述各者將於下有更詳盡的討論。
範例1. 轉染
非病毒方法戲被使用於轉染且在人類臍帶血單核細胞內過度表現四個基因:用於CCR5與CXCR4之 siRNA、GFP、及新黴素抗性基因。在轉染細胞之後,轉染率係藉由表現GFP之細胞百分率與使用新黴素抗性基因以挑選經轉染細胞所驗證。產生之細胞應全部表現GFP但在其等表面部沒有表現CCR5與CXCR4(藉由免疫組織化學)。
原理的闡述. CCR5係主要供HIV-1進入淋巴球用之受器,同時CXCR4 siRNA應降低或預防CXCR4在單核球或巨噬細胞上表現。GFP基因表現GFP蛋白質且允許細胞被偵測。新黴素抗性基因允許我方使用新黴素來挑選且純化經感染之細胞。使用轉染細胞之非病毒電穿孔方法減小提供細胞安全性之負擔。在我方經驗中,AMAXA店穿孔方法係已非常有效的,允許轉染超過80%之具有GFP基因的細胞。使用非病毒方法以轉染細胞應增加安全性與表明細胞安全性之負擔。因為電穿孔法部對基因體產生永久改變,所以腫瘤或其他問題的可能性係低的。類似地,因為細胞僅停止數代表現CCR5與CXCR4,所以應無法妥協使細胞免疫與幹細胞長期作用但夠長以允許保護對抗HIV-1。
預期結果. 我方可應輸入其他基因以完全壓抑CCR5與CXCR4表面表現且用於長時間期間。為了實行後者,我方可應採用反轉錄病毒或慢病毒方法來插入基因至基因體內。被預期到的是細胞被轉染且表現GFP。
範例2. 驗證
在範例中,分析方法係被進行以驗證經轉染細胞植入在免疫缺乏動物內且持續數代幾乎沒有或不具有CCR5與CXCR4表現。分析方法亦係被進行以將人類CBMC 植入至免疫缺乏老鼠(NOD/SCID/IL2R γ缺陷型老鼠)內且以輻射線照射以傷害該等老鼠之骨髓。實驗目的為顯是細胞植入與產生HIV抗性細胞。
原理的闡述. 實驗目的係為顯示經轉染細胞係仍可做用如一造血細胞,產生免疫細胞。預期到的是源自CFUs(群落形成單位)之轉染細胞。為了如此,我方移植人類細胞至免疫缺乏老鼠內。該等老鼠正常地接受人類臍帶血單核細胞移植而沒有骨髓肅清(myeloablation)(Watanabe et al.,2007,Blood.109:212-8)。
注意到猴子實驗在此處可沒有助益。例如,為了取得人類細胞以殖入猴子內,我方將必須使用免疫壓抑,諸如環孢黴素或FK506,其等將干擾細胞植入與藉由植入細胞所產生之細胞的免疫功能(Gardner et al.,1998,Exo Hematol.26:991-9)。
預期結果. 被預期到的是,經轉染細胞係被植入於免疫壓抑之動物內。
範例3. 自體衍生之臍帶血移植的臨床試驗
第一群組被測試之病患係自經HIV感染之母親所生出的孩童,特別是具有高病毒載量者。臍帶血係在出生時間所被收集。若孩童發展出HIV感染之證據,則臍帶血細胞之單元係以具有對抗CCR5與CXCR4之siRNA、GFP及新黴素抗性基因所轉染。
原理的闡述. 儘管HIV沒有經常穿過胎盤屏障(Roger et al.,1986,Obstet Gynecol.68:2S-6S)且僅有2.7-4% 之來自經HIV感染之母親的臍帶血係血清反應陽性的(Lester et al.,1992,West J Med.156:371-5;Nicolas et al.,1994,Arch Pediatr Adolesc Med.148:813-9與Sperling et al.,1989,Obstet Gynecol.73:179-81)且剩餘者係血清反應陰性的。經HIV感染之母親的孩童具有高風險會成為被感染者(Pedersen et al.,2007,PLoS ONE.2:e838),特別係當母親具有高病毒載量時。臍帶血淋巴球對HIV-1係沒有特別敏感(Krogstad et al.,1994,AIDS Res Hum Retroviruses.10:143-7)且以抗病毒治療母親可避免將此疾症傳遞給其等嬰兒(Ripamonti et al.,2007,Aids.21:2409-15)。再者,該等孩童之臍帶血應可有用於治療在出生後被感染者。因為臍帶血是自體衍生的,該等臍帶血係應配對相合。我方將以CCR5與CXCR4 siRNA、GFP與新黴素抗性基因轉染細胞,且接著將血液輸液回孩童,追蹤孩童以觀察是否細胞植入且輸液具有者於該等細胞之免疫功能上造成何種影響以及AIDS過程。試驗將告訴我方是否經移植細胞植入且是否對HIV免疫。
預期結果. 我方預期取得臍帶血以植入且產生數代之HIV免疫細胞。經與抗病毒療法結合,將導致些許孩童之治癒。我方亦預期發現暫時改善與病毒復發於些許孩童中。風險是低的且效益係潛在重大的。
範例4. 在異種HLA配對相合之臍帶血移植中的臨床試驗
我方接著確定是否HLA配對相合之臍帶血的CRR5與CXCR4 siRNA轉染單元可被移植至經HIV感染孩 童以及是否該等單元是有效益的。此試驗集中於具有HIV感染之孩童且該等孩童變成為折射媒介以結合抗病毒藥物且呈現免疫妥協之證據。
原理的闡述. 若CCR5與CXCR4 siRNA轉染異質HLA配對詳合臍帶血單元係對HIV-1具有抗性且改良經HIV-1感染之孩童的免疫狀態,此將擴張對孩童之治療方法且該等孩童未在出生時收集臍帶血。大多數該等孩童係被推測為年紀較大的孩童且係其等抗病毒療法失敗邊緣。此等病人幾乎沒有其他藥物可採用。該等病人之免疫系統係應衰退且HLA配對相合臍帶血應改良其等免疫功能。第一結果衡量係植入細胞之後代出現。若有任何的HLA錯配,則此錯配可被使用於鑑定來自宿主之植入細胞。
預期結果. 以HIV-1抗性臍帶血治療,特別在可為CNS症狀之病人中,係不可能消除自所有潛在儲藏處之病毒。就另一方面而言,治療應恢復免疫系統至某種程度且因此對病人產生效益。治療在個體中係可更有效的,該個體在HIV感染後仍係相較早期且必須沒有在許多其他處具有HIV感染。在1995年,Ho,et al.(Ho et al.,1995,Stem Cells.13 Suppl 3:100-5)解釋了自胎盤之CD34+細胞之高效轉導與藉由含有核醣酶基因之反轉錄病毒的臍帶血,其等使單核球對HIV-1感染具有抗性。核醣酶係非如siRNA或CCR5基因般有效。Battacharya,et al.(Battacharya et al.,2006,Clin Exp Obstet Gynecol.33:117-21)係以新鮮臍帶血治療123個HIV陽型病人,該等病人具有貧血與消瘦,發現 輸液顯著地減少疲倦與改良病人之精力程度,以及如安寧感與增重。因為沒有配對相合,此等有效益的影響係推測為臍帶血細胞之直接影響。
討論
我方建議以三階段進行下列研究。在第一階段,我方集中在插入CCR5與CXCR4 siRNA、GFP與NRG至新生老鼠與血單核細胞內。我方目標係製備HIV抗性細胞且該等細胞係植入且製造群落形成造血細胞。
第二階段,我方研究在免疫缺乏鼠類與老鼠內之細胞影響,以觀察是否基因改造細胞植入且在動物內產生免疫細胞且恢復免疫功能。
第三階段,我方實行二個臨床試驗。一試驗集中在於出生時收集的自體衍生臍帶血單元,處理為抗HIV,且將該等單元輸液回經HIV感染母親的嬰兒。另一為評估異質臍帶血單元係基因改造以抵抗HIV感染。臍帶血係已成功地治療具有廣泛不同造血異常、包括白血病、貧血、自體免疫及免疫缺乏症候群之人類。藉由恢復免疫功能,臍帶血細胞應對具有AIDS之病人有益。然而,HIV-1將感染移植細胞,除非完成某事以使該等細胞具有免疫力對抗HIV。在過去十年裡,CCR5與CXCR4受器係顯示為對大多數HIV-1病毒所需以進入細胞的共受器。許多研究者已展示出藉由不同方法來阻斷該等共受器,包括預防共受器之表面表現,可使細胞對HIV-1感染具有抗性。
我方使用下列方法以增加臍帶血細胞對HIV-1感 染脂抗性。我方自臍帶血單元分離單核細胞,使用以DNAase之Ficoll梯度,且接著使用電穿孔法(Amaxa)以在單核細胞內輸入siRNA來阻斷CCR5與CXCR4基因。除此之外,我方包括綠色螢光TV以及新黴素抗性基因(NRG)以鑑定且純化細胞,該等細胞係已被成功轉染。在驗證經轉染細胞為抗HIV-1且生產群落形成造血單元之後,我方確定細胞是否植入且在免疫缺乏動物內是否恢復免疫功能,且接著在由具有HIV感染之母親所生出的嬰兒之臨床試驗裡該等抗HIV-1細胞係被測試。
臨床測試集中在植入GFP表現免疫細胞之造血的第一終點與減少AIDS症狀且減少在HIV-1感染嬰兒內病毒負擔的第二終點。若細胞植入且生產細胞且該等細胞對HIV-1感染具有抗性,則此應改正免疫缺乏且減少感染細胞之群體。在嬰兒中,我方測試初始同體衍生臍帶血且接著異種HLA-配對相合血液。結果係被預期為展現出同體衍生與異種HLA-配對相合細胞皆植入,產生造血細胞、且沒有造成嚴重移植物對抗宿主疾病。最後,試驗將建立方法之可實行性且決定植入同體衍生與異種HLA-配對相合臍帶血細胞以治療具有AIDS之嬰兒與成人的功效。
選擇性基因壓抑方法
電穿孔法以輸入CCR5與CXCR4 siRNA基因係可不產生足夠之siRNA表現以根絕HIV-1感染,因為該等基因可無法施行許多世代。就另一方面言之,暫時性壓抑細胞內CCR5與CXCR4表現之非病毒方法可有效於減少HIV-1感 染且改良病人之免疫功能。永久壓抑此等二種重要趨化激素受器係亦可具有細胞免疫功能之有害影響。
Tamhane,et al.(Tamhane et al.,2008,AIDS Res Ther.5:16)之近期研究報告了非病毒睡美人轉為子系統之成功使用,係用於輸入CCR5與CXCR4 siRNA。儘管慢病毒載體係已被成功使用於轉為CCR5與CXCR4 siRNA基因,SBT系統產生CCR5與CXCR4 siRNA之穩定基因轉移,造成顯著地MAGI-CCR5與MAGI-CXCR4細胞系之病毒抗性。此方法係有吸引力的因為其不使用病毒插入至基因。若上述沒有成功,則反轉錄病毒或慢病毒可被使用於相同目的。許多研究者已使用該等病毒於基因改造與輸入siRNA至細胞內。
臨床試驗考量
細胞植入與令人滿意的造血係自血液內GFP表現細胞之存在與在免疫缺乏老鼠內且接著在人類內之免疫功能恢復來進行評估。注意到此概念之檢驗係可以數個個體所達成。安全性的闡明,然而,將需要更多個體。我方因此計畫在異種移植試驗裡測試約10位病人。若臍帶血植入且病人恢復免疫系統以及病毒存再減少或消失,此將意指治療是成功的。我方預期植入發生而沒有骨髓摧毀。
以自體衍生移植之移植物對抗宿主疾病(GVHD)的可能性係低的。然而,以異種移植可發生GVHD。若GVHD發生,我方將理所當然治療病人,如同我方會以醣類皮質激素與抗發炎藥物一般地治療病人。然而,注意到GVHD 之存在會暗示到植入細胞係可免疫反應。我方亦會能夠追蹤由植入細胞所產生之細胞數目,若有任何的HLA錯配。細胞之第一少數世代應為GFP陽性。建議之療法對幼兒幾乎沒有引起或沒有引起風險,且該幼兒係經HIV感染,若沒有骨髓摧毀化學療法係被使用,則臍帶血係被簡單輸液,且個體血液測試品係自中央靜脈管被獲得且該等測試品係被適用於細胞融合以及治療前與治療後之血液樣品。因為式彥集中在年輕嬰兒與孩童,其代血液單元內細胞劑量係足以產生令人滿意的細胞植入。自體衍生血液輸液,特定地,應對病人幾乎沒有引起或沒有引起危險。預先警告將被進行在試驗中處理或分析來自AIDS病人之血液樣本。為了測試基因改變細胞之HIV-1可感染性,我方將細胞寄送至裝備處理HIV感染之實驗室。
類似地,所有來自具有AIDS病人之樣本係在設備中分析,該等設備係合適地配備以處理經HIV-1感染之樣本。除了血液測試外,與感染性材料接觸將被嚴格限制。例如,自經HIV感染母親所生出之嬰兒的臍帶血的過程將必須在特殊配備用於HIV-1研究之設備下被完成。
其他實施例
於本說明書內揭露之所有特徵可與任何組合結合。於本說明書內揭露之各特徵可藉由選擇性特徵所替代,該選擇性特徵係用作為相同、相等或相似的目的。因此,除非另外指明,揭露之各特徵係僅為相等或相似特徵之總稱系列的範例。自上述說明,一熟悉此技藝者可輕易 確認本發明之基本特徵且不背離其精神與範圍,可完成本發明之不同變化與改造以使本發明適用於不同用法及情況。因此,其他實施例亦係在下列申請專利範圍之範圍內。

Claims (7)

  1. 一種用於治療一具有或有風險具有HIV感染之人類個體的方法,該方法包含:獲得含有一抑制CCR5表現之第一RNAi試劑與一抑制CXCR4表現之第二RNAi試劑的人類臍帶血細胞;將一有效量之臍帶血細胞投藥於需要其之人類個體。
  2. 如請求項1之方法,其中該個體為一由具有HIV感染之母親所生出的嬰兒。
  3. 如請求項1之方法,其中該臍帶血細胞對於該個體係自體衍生的。
  4. 如請求項1之方法,其中該臍帶血細胞係藉由一過程所獲得,該過程包含將(1)該第一RNAi試劑或一編碼該第一RNAi試劑之第一核酸以及(2)該第二RNAi試劑或一編碼該第二RNAi試劑之第二核酸短暫轉移至細胞。
  5. 如請求項4之方法,其中該過程進一步包含將一重組核酸引入至該等細胞,該重組核酸編碼一可選擇性標記蛋白質,且增加表現該可選擇性標記蛋白質之細胞。
  6. 如請求項1之方法,其中臍帶血細胞進一步含有一第三RNAi試劑,且該第三RNAi試劑抑制選自於由下列所構成的群組之基因的表現:CD4、HIV-1 gag、HIV-1 vif、HIV-1 tat及HIV-1 rev。
  7. 一種經分離之人類臍帶血細胞,其含有一抑制CCR5表現之第一RNAi試劑以及一抑制CXCR4表現之第二RNAi試劑。
TW104110002A 2009-04-09 2010-04-08 抗hiv幹細胞及其用途 TW201602349A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16796709P 2009-04-09 2009-04-09

Publications (1)

Publication Number Publication Date
TW201602349A true TW201602349A (zh) 2016-01-16

Family

ID=42936839

Family Applications (2)

Application Number Title Priority Date Filing Date
TW099110874A TW201100546A (en) 2009-04-09 2010-04-08 HIV-resistant stem cells and uses thereof
TW104110002A TW201602349A (zh) 2009-04-09 2010-04-08 抗hiv幹細胞及其用途

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW099110874A TW201100546A (en) 2009-04-09 2010-04-08 HIV-resistant stem cells and uses thereof

Country Status (4)

Country Link
US (2) US20120034197A1 (zh)
CN (1) CN102438631A (zh)
TW (2) TW201100546A (zh)
WO (1) WO2010117974A2 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010045659A1 (en) 2008-10-17 2010-04-22 American Gene Technologies International Inc. Safe lentiviral vectors for targeted delivery of multiple therapeutic molecules
AU2012275526A1 (en) * 2011-06-29 2014-01-16 Ronilu Development Corporation Prevention and treatment of HIV infection
WO2017007994A1 (en) 2015-07-08 2017-01-12 American Gene Technologies International Inc. Hiv pre-immunization and immunotherapy
IL310925A (en) 2016-01-15 2024-04-01 American Gene Tech Int Inc Methods and preparations for activating GAMMA-DELTA T cells
US10137144B2 (en) 2016-01-15 2018-11-27 American Gene Technologies International Inc. Methods and compositions for the activation of gamma-delta T-cells
US10888613B2 (en) 2016-02-08 2021-01-12 American Gene Technologies International Inc. Method of producing cells resistant to HIV infection
EP4036231A1 (en) 2016-03-09 2022-08-03 American Gene Technologies International Inc. Combination vectors and methods for treating cancer
EP3468617A4 (en) 2016-06-08 2020-01-22 American Gene Technologies International Inc. INTEGRATED VIRAL ADMINISTRATION SYSTEM AND RELATED METHODS
EP3481418A4 (en) 2016-07-08 2020-03-11 American Gene Technologies International Inc. HIV PRE-IMMUNIZATION AND IMMUNOTHERAPY
US11583562B2 (en) 2016-07-21 2023-02-21 American Gene Technologies International Inc. Viral vectors for treating Parkinson's disease
US20190358268A1 (en) * 2017-02-10 2019-11-28 Abraham J And Phyllis Katz Cord Blood Foundation Methods of Treating HIV Infection with Allogeneic CCR5 Null Umbilical Cord Blood Cells
US11820999B2 (en) 2017-04-03 2023-11-21 American Gene Technologies International Inc. Compositions and methods for treating phenylketonuria
US11352646B2 (en) 2018-11-05 2022-06-07 American Gene Technologies International Inc. Vector system for expressing regulatory RNA

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60238486D1 (de) * 2001-07-10 2011-01-13 Johnson & Johnson Res Pty Ltd Verfahren zur genetischen modifikation hämatopoetischer vorläuferzellen und verwendungen der modifizierten zellen
US20050019927A1 (en) * 2003-07-13 2005-01-27 Markus Hildinger DECREASING GENE EXPRESSION IN A MAMMALIAN SUBJECT IN VIVO VIA AAV-MEDIATED RNAi EXPRESSION CASSETTE TRANSFER
WO2006023491A2 (en) * 2004-08-16 2006-03-02 The Cbr Institute For Biomedical Research, Inc. Method of delivering rna interference and uses thereof

Also Published As

Publication number Publication date
WO2010117974A2 (en) 2010-10-14
US20140227236A1 (en) 2014-08-14
WO2010117974A3 (en) 2011-03-31
CN102438631A (zh) 2012-05-02
US20120034197A1 (en) 2012-02-09
TW201100546A (en) 2011-01-01

Similar Documents

Publication Publication Date Title
TW201602349A (zh) 抗hiv幹細胞及其用途
JP6840189B2 (ja) ヒト免疫不全ウイルス阻害のための二重ベクター
JP6516740B2 (ja) 幹細胞及びキメラ抗原受容体を介した抗腫瘍性t細胞免疫の改変
Rossi et al. Genetic therapies against HIV
Kumar et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice
CN107405357B (zh) 多重shRNAs及其应用
Kitchen et al. Stem cell-based anti-HIV gene therapy
Trobridge et al. Protection of stem cell-derived lymphocytes in a primate AIDS gene therapy model after in vivo selection
US20240141374A1 (en) On demand expression of exogenous factors in lymphocytes
Carbonaro-Sarracino et al. Dosing and re-administration of lentiviral vector for in vivo gene therapy in rhesus monkeys and ADA-deficient mice
Garg et al. Recent developments in CCR5 regulation for HIV cure
AU2015213417B2 (en) Dual vector for inhibition of human immunodeficiency virus
Focosi et al. Cell therapies for treatment of human immunodeficiency virus infection
JP2024519524A (ja) 疾患の処置のために有用なレンチウイルスベクター
MEHROTRA et al. USE OF GENE THERAPY TO CURE AIDS
Trobridge et al. Protection of Stem Cell-Derived Lymphocytes in a Primate AIDS Gene Therapy Model