TW201546747A - System for diagnosing wastewater, apparatus for diagnosing wastewater and method for processing wastewater data - Google Patents
System for diagnosing wastewater, apparatus for diagnosing wastewater and method for processing wastewater data Download PDFInfo
- Publication number
- TW201546747A TW201546747A TW103119671A TW103119671A TW201546747A TW 201546747 A TW201546747 A TW 201546747A TW 103119671 A TW103119671 A TW 103119671A TW 103119671 A TW103119671 A TW 103119671A TW 201546747 A TW201546747 A TW 201546747A
- Authority
- TW
- Taiwan
- Prior art keywords
- wastewater
- information
- data processing
- data
- phase
- Prior art date
Links
Landscapes
- Activated Sludge Processes (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
本發明有關於一種廢水診斷系統、廢水診斷裝置與廢水資料處理方法,且特別是有關於一種使用雲端的顯微影像分析能力來判斷微生物相的廢水診斷系統、裝置與廢水資料處理方法。The invention relates to a wastewater diagnosis system, a wastewater diagnosis device and a wastewater data processing method, and particularly relates to a wastewater diagnosis system, a device and a wastewater data processing method for determining a microbial phase using a microscopic image analysis capability of a cloud.
廢水生物處理系統基本上可分成厭氧處理與好氧處理兩種,其中厭氧處理常被用在高濃度廢水,而好氧處理常見於業界所使用。另外,生物好氧處理方面係分成多種處理程序,例如,活性污泥法、接觸氧化法、氧化深渠法、人工溼地、生態工法等,而其選用可以根據各程序之個別特性,按照所要適用之例如河川、湖泊、水庫、廢水處理場、排水處理設施等之環境條件來考量及決定。The wastewater biological treatment system can be basically divided into two types: anaerobic treatment and aerobic treatment, wherein anaerobic treatment is often used in high-concentration wastewater, and aerobic treatment is commonly used in the industry. In addition, biological aerobic treatment is divided into various treatment procedures, such as activated sludge method, contact oxidation method, oxidized deep channel method, constructed wetland, ecological method, etc., and its selection can be based on the individual characteristics of each program. Environmental conditions such as rivers, lakes, reservoirs, wastewater treatment plants, and drainage facilities are considered and determined.
又,水質問題的產生大部分是因微生物相之改變所引起。一般的廢水改善系統通常採用生物處理方法作為改善廢水的手段,而生物處理方法主要是促進廢水中的微生物代謝功能,使得廢水中的微生物相可以恢復到正常水質的狀態。如此,藉由微生物相的觀察係可以綜合性地得知水質問題的本質與相對應的改善條件。Moreover, most of the water quality problems are caused by changes in the microbial phase. The general wastewater improvement system usually adopts a biological treatment method as a means for improving the wastewater, and the biological treatment method mainly promotes the microbial metabolism function in the wastewater, so that the microbial phase in the wastewater can be restored to a normal water quality state. Thus, the nature of the water quality problem and the corresponding improvement conditions can be comprehensively understood by the observation system of the microorganism phase.
現今業界通常使用顯微鏡來觀察廢水中的微生物相,再判斷廢水中微生物相的種類、數量、型態…等,最後參考這些數據,以對廢水進行相對應的生物處理操作,進而達到水質改善並恢復之目的。Nowadays, the microscope is usually used in the industry to observe the microbial phase in the wastewater, and then to judge the type, quantity, type, etc. of the microbial phase in the wastewater. Finally, with reference to these data, the corresponding biological treatment operation is carried out on the wastewater, thereby achieving water quality improvement. The purpose of recovery.
然而,廢水中的微生物相種類繁多,觀察工作者通常需要先對待測水樣進行顯微拍攝,再以人工方式比對查找微生物相對照表,進而判斷所拍攝到的顯微影像照片中優勢微生物相的種類、型態及數量。最後,再以人工方式比對查找微生物相與生物處理法之間的關係表,進而判斷出相對應的生物處理方法。However, there are many kinds of microbial phases in wastewater. Observers usually need to take microscopic photographs of water samples first, and then manually compare the microbial comparison tables to determine the dominant microorganisms in the micrographs. The type, type and quantity of phases. Finally, the relationship between the microbial phase and the biological treatment method is manually searched to determine the corresponding biological treatment method.
此種繁雜的廢水處理方式,將導致廢水處理系統發生異常時,業者無法針對異常的情況即時對應改善,並即時恢復廢水處理系統正常的運作。When such a complicated waste water treatment method will cause an abnormality in the wastewater treatment system, the operator cannot immediately respond to the abnormal situation and immediately restore the normal operation of the wastewater treatment system.
有鑑於此,本發明提供一種廢水診斷系統,該系統係利用雲端運算技術以將終端所擷取到的微生物相之顯微影像傳送到雲端資料處理中心。藉由雲端運算處理,終端係即時呈現出雲端運算的結果,包括微生物相的種類、型態、數量以及對應的生物處理信息。In view of this, the present invention provides a wastewater diagnostic system that utilizes cloud computing technology to transmit a microscopic image of a microbial phase captured by a terminal to a cloud data processing center. Through cloud computing, the terminal instantly presents the results of cloud computing, including the type, type, quantity, and corresponding biological processing information of the microbial phase.
依據一實施例,本發明之廢水診斷系統包括了終端裝置與雲端資料處理中心。終端裝置用來擷取一待測水樣中的微生物相之顯微影像資料,並將顯微影像資料轉成發送信息發送到雲端資料處理中心。雲端資料處理中心對發送信息進行微生物相的分析與比對運算,並依據分析與比對的結果回覆對應的生物處理信息給終端裝置。According to an embodiment, the wastewater diagnostic system of the present invention includes a terminal device and a cloud data processing center. The terminal device is configured to capture microscopic image data of a microbial phase in a water sample to be tested, and convert the microscopic image data into a transmission information and send it to a cloud data processing center. The cloud data processing center performs microbial phase analysis and comparison calculation on the transmitted information, and replies the corresponding biological processing information to the terminal device according to the analysis and the comparison result.
依據一實施例,本發明之廢水診斷裝置,包括:一影像擷取單元、一記憶模組、一處理模組及一顯示模組。影像擷取單元擷取一待測水樣中的微生物相之顯微影像資料。記憶模組用以儲存有微生物相資料與生物處理信息。處理模組連接於影像擷取單元與記憶模組,並用以將顯微影像資料壓縮成一發送信息,並依據發送信息比對搜尋記憶模組中的微生物相資料,以及依據比對搜尋的結果從記憶模組中找出與發送信息相對應的生物處理信息。顯示模組連接於處理模組,並用以提供顯微影像及/或生物處理信息的顯示。According to an embodiment, the wastewater diagnostic apparatus of the present invention comprises: an image capturing unit, a memory module, a processing module and a display module. The image capturing unit captures microscopic image data of the microorganism phase in the water sample to be tested. The memory module is used to store microbial phase data and biological processing information. The processing module is connected to the image capturing unit and the memory module, and is used for compressing the microscopic image data into a sending information, and comparing the microbial phase data in the memory module according to the transmitted information, and the result of the comparison search. The biological processing information corresponding to the transmitted information is found in the memory module. The display module is coupled to the processing module and is configured to provide display of microscopic images and/or biological processing information.
依據另一實施例,本發明之廢水診斷的終端資料處理方法被一終端裝置所執行,其步驟包括有:終端裝置擷取待測水樣中的微生物相之顯微影像資料;隨後,終端裝置轉換顯微影像資料成發送信息;再來,終端裝置傳送發送信息至雲端資料處理中心;然後,終端裝置從雲端資料處理中心接收對應的生物處理信息。According to another embodiment, the terminal data processing method for wastewater diagnosis according to the present invention is executed by a terminal device, and the steps include: the terminal device extracts microscopic image data of the microorganism phase in the water sample to be tested; and then, the terminal device The microscopic image data is converted into a transmission information; then, the terminal device transmits the transmission information to the cloud data processing center; and then, the terminal device receives the corresponding biological processing information from the cloud data processing center.
依據再一實施例,本發明之廢水診斷的遠端資料處理方法被一雲端資料處理中心所執行,其步驟包括有:雲端資料處理中心從終端裝置接收發送信息;然後,雲端資料處理中心對發送信息進行微生物相的分析與比對運算;再來,雲端資料處理中心依據分析與比對的結果,傳送對應的生物處理信息給終端裝置。According to still another embodiment, the remote data processing method for wastewater diagnosis of the present invention is executed by a cloud data processing center, and the steps include: the cloud data processing center receives the sending information from the terminal device; and then, the cloud data processing center sends the data. The information is analyzed and compared by the microbial phase; in addition, the cloud data processing center transmits the corresponding biological processing information to the terminal device according to the analysis and the comparison result.
綜上所述,本發明實施例所記載關於廢水診斷系統,係透過雲端運算技術對微生物相進行影像比對運算,以找出優勢微生物相。再根據優勢微生物相搜尋出對應的生物處理策略,並將包括微生物相的種類、型態、數量以及對應的生物處理信息送至終端呈現。In summary, the wastewater diagnosis system described in the embodiment of the present invention performs image comparison operation on the microbial phase through cloud computing technology to find the dominant microbial phase. Then, the corresponding biological treatment strategy is searched according to the dominant microbial phase, and the type, type, quantity and corresponding biological treatment information including the microbial phase are sent to the terminal for presentation.
如此,當廢水處理系統發生異常而導致廢水產生時,本發明記載的廢水診斷系統係可以快速的提供業者相關異常的原因與相對應的改善方式,讓業者可以即時恢復廢水處理系統正常的運作。Thus, when the wastewater treatment system is abnormal and the wastewater is generated, the wastewater diagnosis system described in the present invention can quickly provide the cause of the operator-related anomaly and the corresponding improvement method, so that the operator can immediately resume the normal operation of the wastewater treatment system.
為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅係用來說明本發明,而非對本發明的權利範圍作任何的限制。The detailed description of the present invention and the accompanying drawings are to be understood by the claims The scope is subject to any restrictions.
請參考第1圖。第1圖為本發明一實施例之廢水診斷系統架構示意圖。廢水診斷系統1係涉及一種雲端運算處理技術,進一步來說,廢水診斷系統1使用雲端的分析、比對運算能力以及雲端的資料管理能力,以讓業者在廢水處理系統發生異常時快速的取得異常原因與對應的廢水處理策略,以解決傳統業者需要藉由人工方式比對查找異常的原因及對應的處理策略所耗費的人力及時間。Please refer to Figure 1. FIG. 1 is a schematic structural view of a wastewater diagnostic system according to an embodiment of the present invention. The wastewater diagnostic system 1 relates to a cloud computing processing technology. Further, the wastewater diagnostic system 1 uses the cloud analysis, the comparison computing capability, and the cloud data management capability to allow the operator to quickly obtain an abnormality in the event of an abnormality in the wastewater treatment system. The reason and the corresponding wastewater treatment strategy are to solve the manpower and time that the traditional industry needs to manually find the cause of the abnormality and the corresponding processing strategy.
廢水診斷系統1包括一終端裝置10與一雲端資料處理中心14,其中終端裝置10與雲端資料處理中心14可以透過網際網路(Internet)12相互連接,並藉由網際網路12彼此進行資料的通訊,前述網際網路12係使用TCP/IP 通訊協定。然,網際網路(Internet)12並不為本發明唯一限制,凡是能夠作為終端裝置10與雲端資料處理中心14之間以無線或有線方式彼此進行資料通訊的網路皆為本發明的範圍。例如,區域網路(Local Area Network;LAN)、無線區域網路(Wireless LAN;WLAN)、公眾交換電話網路(Public Switching Telephone Network;PSTN)、無線網路(Wireless Network)等等。The wastewater diagnostic system 1 includes a terminal device 10 and a cloud data processing center 14, wherein the terminal device 10 and the cloud data processing center 14 can be connected to each other through an Internet 12 and communicate with each other via the Internet 12. Communication, the aforementioned Internet 12 system uses the TCP/IP protocol. However, the Internet 12 is not the only limitation of the present invention, and any network capable of communicating data between the terminal device 10 and the cloud data processing center 14 in a wireless or wired manner is within the scope of the present invention. For example, a local area network (LAN), a wireless local area network (WLAN), a public switched telephone network (PSTN), a wireless network (Wireless Network), and the like.
終端裝置10用來擷取一待測水樣13中微生物相M1之顯微影像資料D1,並將顯微影像資料D1轉成一發送信息D2。待測水樣13可以從各種廢水處理系統中取得。例如,在活性污泥法的廢水處理系統中,觀察員可以使用柄杓或採水器在曝氣槽靠近出流口處取得待測水樣13。The terminal device 10 is configured to capture the microscopic image data D1 of the microbial phase M1 in the water sample 13 to be tested, and convert the microscopic image data D1 into a transmission information D2. The water sample 13 to be tested can be obtained from various wastewater treatment systems. For example, in the wastewater treatment system of the activated sludge process, the observer can obtain the water sample 13 to be tested at the aeration tank near the outlet using a handle or a water collector.
終端裝置10包括一影像擷取單元102與一終端運算單元104。影像擷取單元102與終端運算單元104連接一起,影像擷取單元102可以傳輸顯微影像資料D1給終端運算單元104,而終端運算單元104可對影像擷取單元102進行功能性的控制,例如放大倍率、拍攝距離、拍攝角度等功能性調整控制。前述影像擷取單元102的功能性調整也可以透過自身的調整元件完成,例如旋轉鈕。The terminal device 10 includes an image capturing unit 102 and a terminal computing unit 104. The image capturing unit 102 is connected to the terminal computing unit 104. The image capturing unit 102 can transmit the microscopic image data D1 to the terminal computing unit 104, and the terminal computing unit 104 can perform functional control on the image capturing unit 102, for example, Functional adjustment control such as magnification, shooting distance, and shooting angle. The functional adjustment of the image capturing unit 102 can also be accomplished by its own adjustment component, such as a rotary button.
終端裝置10可以是一種個體的手持式整合裝置,例如一種可攜式廢水診斷裝置,或由兩個以上的個體裝置所連結組成,例如,攝像顯微鏡與筆記型電腦所組成。因此,凡是具有顯微影像擷取能力、運算能力及通訊能力的個體裝置或組合裝置皆為本發明的範圍。The terminal device 10 may be an individual hand-held integrated device, such as a portable waste water diagnostic device, or composed of two or more individual devices, for example, a camera microscope and a notebook computer. Therefore, any individual device or combination device having microscopic image capturing capability, computing power and communication capability is within the scope of the invention.
如第1圖所示,影像擷取單元102對一玻片15上的待測水樣13進行顯微影像拍攝,影像擷取單元102透過適當的功能調整後,係可顯微觀看到待測水樣13中的微生物相M1,藉由拍攝功能的執行,影像擷取單元102係可以將微生物相M1拍製成照片,並製作成對應的顯微影像資料D1。影像擷取單元102可將顯微影像資料D1傳送到終端運算單元104並在終端運算單元104上呈現出微生物相M1的影像照片。其中,終端運算單元104對顯微影像資料D1進行壓縮運算,使其成為發送信息D2。As shown in FIG. 1 , the image capturing unit 102 performs microscopic image capturing on the water sample 13 to be tested on a slide 15 , and the image capturing unit 102 can be microscopically observed to be tested after being adjusted by appropriate functions. The microbial phase M1 in the water sample 13 can be photographed by the image capturing unit 102 by the execution of the photographing function, and the corresponding microscopic image data D1 can be produced. The image capturing unit 102 can transmit the microscopic image data D1 to the terminal computing unit 104 and present a video image of the microbial phase M1 on the terminal computing unit 104. The terminal computing unit 104 performs a compression operation on the microscopic image data D1 to become the transmission information D2.
終端運算單元104透過網際網路12將發送信息D2送交給遠端的雲端資料處理中心14。雲端資料處理中心14對發送信息D2進行分析運算,進而判斷出待測水樣13中各種微生物相M1的型態與數量。雲端資料處理中心14再根據判斷出的各種微生物相M1型態進行比對運算,其係與資料庫中所預存的微生物相進行比對,進而判斷出待測水樣13中各種微生物相M1的種類。例如,毛鞭蟲、鐘形蟲。雲端資料處理中心14再根據該些微生物相M1種類、數量判斷出待測水樣13中的優勢微生物相,並根據優勢微生物相進行搜尋運算,以找出對應的生物處理信息D3,其中生物處理信息D3為處理廢水問題的相關生物處理策略。The terminal computing unit 104 sends the transmission information D2 to the remote cloud data processing center 14 via the Internet 12. The cloud data processing center 14 performs an analysis operation on the transmission information D2, and further determines the type and number of various microbial phases M1 in the water sample 13 to be tested. The cloud data processing center 14 performs a comparison operation according to the determined M1 type of various microbial phases, which is compared with the pre-existing microbial phase in the database, thereby determining the various microbial phases M1 in the water sample 13 to be tested. kind. For example, hair whipworms, bell-shaped worms. The cloud data processing center 14 further determines the dominant microbial phase in the water sample 13 to be tested according to the type and quantity of the microbial phase M1, and performs a search operation according to the dominant microbial phase to find the corresponding biological treatment information D3, wherein the biological treatment Information D3 is a related biological treatment strategy for treating wastewater problems.
雲端資料處理中心14經由網際網路12將對應的生物處理信息D3傳送給終端裝置10。如此,終端裝置10即可以呈現出待測水樣13中各種微生物相M1的種類、型態及數量等相關資料,以及處理廢水問題的相關生物處理策略。The cloud data processing center 14 transmits the corresponding biological processing information D3 to the terminal device 10 via the Internet 12. In this way, the terminal device 10 can present related data such as the type, type and quantity of various microbial phases M1 in the water sample 13 to be tested, and related biological treatment strategies for treating wastewater problems.
參照表一。表一為生物膜法處理之微生物相與處理對策關聯表。如表一所示,當運算判斷出待測水樣13中的優勢微生物是:1.草履蟲2.豆形蟲3.腎形蟲4.動物性鞭毛蟲5.波豆蟲6.氣球屋滴蟲時,則相對應的生物處理策略是:1.增加前處理效率,以減低負荷2.進行反沖洗動作3.若為接觸曝氣槽,則增加曝氣量。
請參考第2圖。第2圖為本發明一實施例之廢水診斷系統功能方塊示意圖。本實施例使用的終端裝置10其中的影像擷取單元102包括有一顯微鏡1020、一攝像器1022及一類比數位轉換器1024。顯微鏡1020係提供一觀察倍率來對一待測物進行顯微放大的功能,以提供一觀察者觀測該待測物的微觀狀態。本實施例中,主要是以待測水樣中的微生物相作為待測物。故,所有能夠作為微生物相顯微觀測之用途的裝置,皆屬於本發明之範圍。Please refer to Figure 2. 2 is a functional block diagram of a wastewater diagnostic system according to an embodiment of the present invention. The image capturing unit 102 of the terminal device 10 used in this embodiment includes a microscope 1020, a camera 1022 and an analog-to-digital converter 1024. The microscope 1020 provides an observation magnification to perform microscopic magnification of an object to be measured to provide an observer to observe the microscopic state of the object to be tested. In this embodiment, the microorganism phase in the water sample to be tested is mainly used as the analyte. Therefore, all devices capable of being used as microscopic observations of microorganisms are within the scope of the present invention.
請參考第3圖。第3圖為本發明一實施例之顯微鏡下的微生物相照片示意圖。第3圖揭示了在顯微鏡1020下觀察到的草履蟲A與鐘形蟲B等微生物相M1型態。Please refer to Figure 3. Fig. 3 is a schematic view showing the photo of the microorganism phase under the microscope according to an embodiment of the present invention. Fig. 3 discloses the M1 type of microbial phase such as Paramecium A and Bell-shaped B observed under the microscope 1020.
攝像器1022連接於顯微鏡1020,係用以拍攝經顯微鏡1020放大後的微生物相之影像。本實施例中,攝像器1022為一種使用感光耦合元件(Charge-coupled Device;CCD)攝像技術的CCD攝像器或是一種使用互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor;CMOS) 攝像技術的CMOS攝像器。然,前述兩種攝像技術並不為本發明唯一限制,凡是能夠作為拍攝經顯微鏡1020放大後的微生物相之攝像器1022皆為本發明的範圍。The camera 1022 is coupled to the microscope 1020 for capturing an image of the microbial phase amplified by the microscope 1020. In this embodiment, the camera 1022 is a CCD camera using a photosensitive-coupled device (CCD) imaging technology or a complementary metal-oxide-semiconductor (CMOS) imaging technology. CMOS camera. However, the above two imaging techniques are not the only limitation of the present invention, and any camera 1022 capable of capturing a microbial phase amplified by the microscope 1020 is within the scope of the present invention.
類比數位轉換器1024主要係將攝像器1022所拍攝微生物相之類比影像轉成數位影像。另外,類比數位轉換器1024也可以被整合在攝像器1022中,以讓攝像器1022直接產生數位影像,而此種攝像器1022為一種數位型攝像器。故,類比數位轉換器1024可以任意的結構性地與攝像器1022整合或分開。The analog digital converter 1024 mainly converts the analog image of the microbe phase captured by the camera 1022 into a digital image. In addition, the analog digital converter 1024 can also be integrated in the camera 1022 to allow the camera 1022 to directly generate digital images, and the camera 1022 is a digital camera. Therefore, the analog digital converter 1024 can be arbitrarily structurally integrated or separated from the camera 1022.
據此,影像擷取單元102中的顯微鏡1020被適當調整後,係可顯微放大待測水樣13中的微生物相M1。攝像器1022係可對放大後的微生物相M1進行拍攝,並製作成對應的數位化顯微影像資料D1。Accordingly, after the microscope 1020 in the image capturing unit 102 is appropriately adjusted, the microbial phase M1 in the water sample 13 to be tested can be microscopically amplified. The camera 1022 can take an image of the enlarged microbial phase M1 and prepare a corresponding digital microscopic image data D1.
復參考第2圖。本實施例使用的終端裝置10其中的終端運算單元104包括有一處理模組1042與一通訊模組1046,其中處理模組1042連接於影像擷取單元102與通訊模組1046之間。處理模組1042係從影像擷取單元102取得數位化顯微影像資料D1,並將其壓縮成發送信息D2,再傳送到通訊模組1046。通訊模組1046係透過網際網路12將發送信息D2傳送到雲端資料處理中心14,並且透過網際網路12接收從雲端資料處理中心14送出的生物處理信息D3。Refer to Figure 2 again. The terminal unit 10 used in this embodiment includes a processing module 1042 and a communication module 1046. The processing module 1042 is connected between the image capturing unit 102 and the communication module 1046. The processing module 1042 obtains the digital microscope image data D1 from the image capturing unit 102, compresses it into the transmission information D2, and transmits it to the communication module 1046. The communication module 1046 transmits the transmission information D2 to the cloud data processing center 14 via the Internet 12, and receives the biological processing information D3 sent from the cloud data processing center 14 via the Internet 12.
通訊模組1046可以選用例如全球行動通訊系統 (Global System for Mobile Communications;GSM)、第三代行動通訊(3rd-Generation;3G)、高速封包轉送 (High Speed Packet data Access;HSPA)、長期演進技術 (Long Term Evolution;LTE)全球互通微波存取 (Worldwide Interoperability for Microwave Access;WiMax)等不同數據通訊傳輸技術。然,前述通訊傳輸技術並不為本發明唯一限制,凡是能夠經由網際網路12與雲端資料處理中心14進行資料傳輸通訊的通訊模組皆為本發明的範圍。The communication module 1046 can select, for example, Global System for Mobile Communications (GSM), 3rd Generation (3G), High Speed Packet Data Access (HSPA), Long Term Evolution (LTE) technology. (Long Term Evolution; LTE) Different data communication transmission technologies such as Worldwide Interoperability for Microwave Access (WiMax). However, the foregoing communication transmission technology is not the only limitation of the present invention, and any communication module capable of data transmission communication with the cloud data processing center 14 via the Internet 12 is within the scope of the present invention.
復參考第2圖。終端運算單元104之處理模組1042更連接一記憶模組1044、一顯示模組1040及一輸入模組1048。其中記憶模組1044用以提供資料儲存之用途。顯示模組1040可以用來呈現微生物相M1顯微影像,也可以用來呈現從雲端資料處理中心14送過來的生物處理信息D3。輸入模組1048用以傳送控制指令S1給處理模組1042,處理模組1042根據控制指令S1係可以驅動影像擷取單元102進行放大倍率、拍攝距離、拍攝角度等功能性調整的操作。Refer to Figure 2 again. The processing module 1042 of the terminal computing unit 104 is further connected to a memory module 1044, a display module 1040 and an input module 1048. The memory module 1044 is used for providing data storage. The display module 1040 can be used to present a microscopic image of the microbial phase M1, and can also be used to present the biological processing information D3 sent from the cloud data processing center 14. The input module 1048 is configured to transmit the control command S1 to the processing module 1042. The processing module 1042 can drive the image capturing unit 102 to perform functional adjustment operations such as magnification, shooting distance, and shooting angle according to the control command S1.
另外,輸入模組1048更可以傳送一條件設定值S2至處理模組1042,條件設定值S2包括有:污泥之30分鐘沉降指數(SV30)、溶氧指數(DO)、酸鹼指數(PH)、電導度(EC)、總溶解性固體物(TDS)、鹽度(Salt)、氧化還原店為(ORP)、水體色度、酸度、鹼度、硬度、濁度、金屬離子濃度、磷含量、氮含量、硫含量、氯含量、污泥顏色、污泥迴流比(污泥量/廢水量)、化學需氧量(Chemical Oxygen Demand;COD)、生化學需氧量(Biochemical Oxygen Demand;BOD)、懸浮固體物含量(SS)等數據及其組合所構成之群組中所選出之至少一種,該些數據係可藉由相關的現場檢測手段取得,為一般廢水處理常採用的習知技術,在此不再贅述。In addition, the input module 1048 can further transmit a condition setting value S2 to the processing module 1042. The condition setting value S2 includes: a 30 minute sedimentation index (SV30), a dissolved oxygen index (DO), and a pH index (PH) of the sludge. ), electrical conductivity (EC), total dissolved solids (TDS), salinity (Salt), redox store (ORP), water color, acidity, alkalinity, hardness, turbidity, metal ion concentration, phosphorus Content, nitrogen content, sulfur content, chlorine content, sludge color, sludge reflux ratio (sludge amount/wastewater amount), chemical oxygen demand (COD), biochemical oxygen demand (Biochemical Oxygen Demand; At least one selected from the group consisting of BOD), suspended solids content (SS), and the like, and the data can be obtained by related on-site detection means, which is commonly used in general wastewater treatment. Technology will not be described here.
處理模組1042之另一實施例更可以用來整合運算前述的條件設定值S2與從影像擷取單元102取得的數位化顯微影像資料D1,並將其整合壓縮成發送信息D2’再傳送到通訊模組1046。通訊模組1046係透過網際網路12將發送信息D2’傳送到雲端資料處理中心14,並且透過網際網路12接收從雲端資料處理中心14送出的生物處理信息D3’。The other embodiment of the processing module 1042 can be used to integrate and calculate the foregoing condition setting value S2 and the digitalized microscopic image data D1 obtained from the image capturing unit 102, and integrate and compress the information into the transmitting information D2'. Go to the communication module 1046. The communication module 1046 transmits the transmission information D2' to the cloud data processing center 14 via the Internet 12, and receives the biological processing information D3' sent from the cloud data processing center 14 via the Internet 12.
復參考第2圖。雲端資料處理中心14包括有一伺服主機140與一資料庫142,其中伺服主機140與資料庫142相互連結,且資料庫142包括一微生物相資料表1420與一生物處理信息表1422。Refer to Figure 2 again. The cloud data processing center 14 includes a server host 140 and a database 142. The server 140 and the database 142 are connected to each other, and the database 142 includes a microbial phase data table 1420 and a biological processing information table 1422.
伺服主機140經由網際網路12接收從終端裝置10發送過來的發送信息D2、D2’,並依據發送信息D2、D2’比對搜尋資料庫142中所預存的微生物相資料表1420,並依據比對搜尋的結果從資料庫142中的生物處理信息表1422取得對應的生物處理信息D3、D3’。前述中,微生物相資料表1420係預先儲存各種微生物相資料,例如,微生物相的輪廓特徵。生物處理信息表1422則預先儲存各種優勢微生物相對應的生物處理對策資料,參考前述表一。The server 140 receives the transmission information D2 and D2' transmitted from the terminal device 10 via the Internet 12, and compares the microbial phase data table 1420 pre-stored in the search database 142 according to the transmission information D2, D2', and according to the ratio. The result of the search is obtained from the biological treatment information table 1422 in the database 142 to obtain the corresponding biological treatment information D3, D3'. In the foregoing, the microbial phase data table 1420 pre-stores various microbial phase data, for example, contour features of the microbial phase. The biological treatment information table 1422 stores in advance biological treatment countermeasure data corresponding to various dominant microorganisms, and refers to Table 1 above.
進一步來說,伺服主機140執行一內部作業系統,並對發送信息D2、D2’與存放在資料庫142中的微生物相資料表1420進行分析運算,其係針對微生物相的型態與數量進行分析,以判斷出發送信息D2、D2’所代表的優勢微生物相的型態。接著,伺服主機140對優勢微生物相的型態與微生物相資料表1420中所預存的微生物相資料進行比對搜尋,以判斷出優勢微生物相代表的生物種類。然後,伺服主機140再依據優勢微生物相的生物種類查找運算生物處理信息表1422,進而找出對應的生物處理信息D3、D3’。最後,伺服主機140透過網際網路12將生物處理信息D3、D3’送到終端裝置10,並於終端裝置10呈現生物處理信息D3、D3’的內容。Further, the servo host 140 executes an internal operating system and analyzes the transmitted information D2, D2' and the microbial phase data table 1420 stored in the database 142, which analyzes the type and quantity of the microbial phase. To determine the type of dominant microbial phase represented by the transmitted information D2, D2'. Next, the servo host 140 compares the type of the dominant microbial phase with the microbial phase data pre-stored in the microbial phase data table 1420 to determine the biological species represented by the dominant microbial phase. Then, the servo host 140 searches the operational biological treatment information table 1422 based on the biological species of the dominant microbial phase to find the corresponding biological treatment information D3, D3'. Finally, the server 140 sends the bioprocessing information D3, D3' to the terminal device 10 via the Internet 12, and presents the contents of the bioprocessing information D3, D3' to the terminal device 10.
另外,終端裝置10也可以是一種可攜式廢水診斷裝置,例如,手機、平板、筆記電腦等,用以提供觀察員能夠在廢水現場即時地藉由可攜式廢水診斷裝置的分析、比對運算能力,讓業者在廢水處理系統發生異常時得以快速的取得異常原因與對應的廢水處理策略,以即時恢復廢水處理系統正常的運作,進而有效改善了傳統以人工方式比對所帶來人力與時間耗費的缺點。In addition, the terminal device 10 can also be a portable wastewater diagnostic device, such as a mobile phone, a tablet, a notebook computer, etc., to provide an observer with the ability to analyze and compare the portable wastewater diagnostic device in the wastewater field. The ability to enable the operator to quickly obtain the cause of the abnormality and the corresponding wastewater treatment strategy in the event of an abnormality in the wastewater treatment system, in order to instantly restore the normal operation of the wastewater treatment system, thereby effectively improving the manpower and time brought by the traditional manual comparison. The shortcomings of cost.
復參考第2圖。當終端裝置10組成一種廢水診斷裝置時,其係包括了一影像擷取單元102、一記憶模組1044、一處理模組1042及一顯示模組1040。影像擷取單元102包括一顯微鏡1020、一攝像器1022及類比數位轉換器1024,主要用作擷取一待測水樣13中的微生物相M1之顯微影像資料D1,其相關說明如前述,在此不再贅述。記憶模組1044係儲存有微生物相資料與生物處理信息,進一步來說,記憶模組1044預存有各種微生物相資料的微生物相資料表與各種優勢微生物相對應的生物處理對策資料的生物處理信息表。Refer to Figure 2 again. When the terminal device 10 constitutes a wastewater diagnostic device, it includes an image capturing unit 102, a memory module 1044, a processing module 1042, and a display module 1040. The image capturing unit 102 includes a microscope 1020, a camera 1022, and an analog-to-digital converter 1024. The image capturing unit 102 is mainly used to capture the microscopic image data D1 of the microorganism phase M1 in the water sample 13 to be tested. I will not repeat them here. The memory module 1044 stores the microbial phase data and the biological processing information. Further, the memory module 1044 prestores the microbial phase data table of various microbial phase data and the biological processing information table of the biological treatment countermeasure data corresponding to various dominant microorganisms. .
處理模組1042連接於影像擷取單元102與記憶模組1044,並用以將顯微影像資料D1壓縮成發送信息D2,並依據發送信息D2比對搜尋記憶模組1044中的微生物相資料,以及依據比對搜尋的結果從記憶模組1044中找出與發送信息D2相對應的生物處理信息,其相關說明如前述,在此不再贅述。另外,顯示模組1040連接於處理模組1042,並用以提供顯微影像及/或生物處理信息的顯示,其相關說明如前述,在此不再贅述。The processing module 1042 is connected to the image capturing unit 102 and the memory module 1044, and is configured to compress the microscopic image data D1 into the transmission information D2, and compare the microbial phase data in the memory module 1044 according to the transmission information D2, and The biological processing information corresponding to the transmission information D2 is found from the memory module 1044 according to the result of the comparison search, and the related description is as described above, and details are not described herein again. In addition, the display module 1040 is connected to the processing module 1042 and is used to provide a display of microscopic images and/or biological processing information. The related description is as described above, and details are not described herein again.
復參考第2圖。當終端裝置10組成一種廢水診斷裝置時,其更包括一輸入模組1048。輸入模組1048連接於處理模組1042,並用以提供一條件設定值至處理模組1042。處理模組1042整合條件設定值與顯微影像資料D1並壓縮成發送信息D2,其相關說明如前述,在此不再贅述。Refer to Figure 2 again. When the terminal device 10 constitutes a wastewater diagnostic device, it further includes an input module 1048. The input module 1048 is coupled to the processing module 1042 and configured to provide a condition setting value to the processing module 1042. The processing module 1042 integrates the condition setting value and the microscopic image data D1 and compresses it into the transmission information D2. The related description is as described above, and details are not described herein again.
配合第1圖與第2圖,參考第4圖。第4圖為本發明一實施例之廢水診斷的終端資料處理方法流程圖。本發明的終端資料處理方法係被終端裝置10所執行,方法說明如下。With reference to Fig. 1 and Fig. 2, refer to Fig. 4. 4 is a flow chart of a method for processing terminal data for wastewater diagnosis according to an embodiment of the present invention. The terminal data processing method of the present invention is executed by the terminal device 10, and the method will be described below.
首先,終端裝置10擷取待測水樣13中微生物相M1之顯微影像資料D1(S100)。然後,終端裝置10對顯微影像資料D1執行資料轉換,係將微生物相M1之類比影像轉成數位影像(S102)。接著,終端裝置10執行一影像壓縮程序,用以將顯微影像資料D1壓縮成發送信息D2(S104)。另外,終端裝置10也可以將條件設定值S2與顯微影像資料D1加以整合運算,並壓縮成發送信息D2’(S105)。接下來,終端裝置10再將發送信息D2、D2’傳送到雲端資料處理中心14(S106)。隨後,終端裝置10即可以從雲端資料處理中心14接收對應的生物處理信息D3(S108),再加以呈現或顯示該生物處理信息D3的內容(S110)。First, the terminal device 10 extracts the microscopic image data D1 of the microbial phase M1 in the water sample 13 to be tested (S100). Then, the terminal device 10 performs data conversion on the microscopic image data D1, and converts the analog image of the microbial phase M1 into a digital image (S102). Next, the terminal device 10 executes an image compression program for compressing the microscopic image data D1 into the transmission information D2 (S104). Further, the terminal device 10 may integrate the condition setting value S2 and the microscopic image data D1 and compress it into the transmission information D2' (S105). Next, the terminal device 10 transmits the transmission information D2, D2' to the cloud data processing center 14 (S106). Subsequently, the terminal device 10 can receive the corresponding biological processing information D3 from the cloud data processing center 14 (S108), and then present or display the content of the biological processing information D3 (S110).
配合第1圖與第2圖,參考第5圖。第5圖為本發明一實施例之廢水診斷的遠端資料處理方法流程圖。本發明的遠端資料處理係被雲端資料處理中心14所執行,方法說明如下。With reference to Fig. 1 and Fig. 2, refer to Fig. 5. FIG. 5 is a flow chart of a remote data processing method for wastewater diagnosis according to an embodiment of the present invention. The remote data processing of the present invention is performed by the cloud data processing center 14, and the method is explained as follows.
首先,雲端資料處理中心14從終端裝置10接收發送信息D2(S200),然後,對發送信息D2進行微生物相的分析與比對運算,其中雲端資料處理中心14係執行影像分析運算,以判斷出發送信息D2所代表微生物相M1之型態與數量(S202)。接著,雲端資料處理中心14係執行比對運算,係將發送信息D2所代表微生物相之型態與預存的微生物相資料進行比對(S204)。然後,雲端資料處理中心14依據比對步驟(S204)的結果,搜尋找出對應的生物處理信息D3(S206),在將生物處理信息D3傳送給終端裝置10(S208)。First, the cloud data processing center 14 receives the transmission information D2 from the terminal device 10 (S200), and then performs microbial phase analysis and comparison operation on the transmission information D2, wherein the cloud data processing center 14 performs image analysis operations to determine The type and number of the microorganism phase M1 represented by the transmission information D2 are transmitted (S202). Next, the cloud data processing center 14 performs a comparison operation by comparing the type of the microorganism phase represented by the transmission information D2 with the pre-stored microbial phase data (S204). Then, the cloud data processing center 14 searches for the corresponding biological processing information D3 based on the result of the comparison step (S204) (S206), and transmits the biological processing information D3 to the terminal device 10 (S208).
綜上所述,本發明實施例中所記載的廢水診斷系統1其係使用雲端運算技術以對異常廢水樣品進行分析與比對運算,進而找出異常廢水樣品中的優勢微生物相的整類,再藉由雲端搜尋運算技術,以找出對應的廢水生物處理策略。In summary, the wastewater diagnostic system 1 described in the embodiments of the present invention uses cloud computing technology to analyze and compare abnormal wastewater samples, thereby finding an entire class of dominant microbial phases in abnormal wastewater samples. Then through the cloud search computing technology to find the corresponding wastewater biological treatment strategy.
如此,本發明實施例中所記載的廢水診斷系統1係藉由雲端的分析、比對運算能力以及雲端的資料管理能力,讓業者在廢水處理系統發生異常時得以快速的取得異常原因與對應的廢水處理策略,以即時恢復廢水處理系統正常的運作,進而有效改善了傳統以人工方式比對所帶來人力與時間耗費的缺點。In this way, the wastewater diagnosis system 1 described in the embodiment of the present invention enables the operator to quickly obtain the abnormal cause and corresponding situation when the wastewater treatment system is abnormal due to the analysis of the cloud, the comparison computing capability, and the data management capability of the cloud. The wastewater treatment strategy is to restore the normal operation of the wastewater treatment system in an instant, thereby effectively improving the shortcomings of the traditional manpower and time consumption caused by manual comparison.
以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。The above description is only an embodiment of the present invention, and is not intended to limit the scope of the invention.
1‧‧‧廢水診斷系統
10‧‧‧終端裝置
102‧‧‧影像擷取單元
1020‧‧‧顯微鏡
1022‧‧‧攝像器
1024‧‧‧類比數位轉換器
104‧‧‧終端運算單元
1040‧‧‧顯示模組
1042‧‧‧處理模組
1044‧‧‧記憶模組
1046‧‧‧通訊模組
1048‧‧‧輸入模組
12‧‧‧網際網路(Internet)
13‧‧‧待測水樣
M1‧‧‧微生物相
14‧‧‧雲端資料處理中心
140‧‧‧伺服主機
142‧‧‧資料庫
1420‧‧‧微生物相資料表
1422‧‧‧生物處理信息表
15‧‧‧玻片
D1‧‧‧顯微影像資料
D2、D2’‧‧‧發送信息
D3、D3’‧‧‧生物處理信息
S1‧‧‧控制指令
S2‧‧‧條件設定值
S100~S108‧‧‧步驟
S200~S208‧‧‧步驟1‧‧‧Wastewater diagnostic system
10‧‧‧ Terminal devices
102‧‧‧Image capture unit
1020‧‧•Microscope
1022‧‧‧ camera
1024‧‧‧ analog digital converter
104‧‧‧terminal arithmetic unit
1040‧‧‧ display module
1042‧‧‧Processing module
1044‧‧‧Memory Module
1046‧‧‧Communication module
1048‧‧‧Input module
12‧‧‧Internet (Internet)
13‧‧‧ water sample to be tested
M1‧‧‧Microbial phase
14‧‧‧Cloud Data Processing Center
140‧‧‧Servo host
142‧‧‧Database
1420‧‧‧Microbiological phase data sheet
1422‧‧‧ Biological Treatment Information Sheet
15‧‧‧ slides
D1‧‧‧microscopic image data
D2, D2'‧‧‧ Sending information
D3, D3'‧‧‧ Biological treatment information
S1‧‧‧ control instructions
S2‧‧‧ condition setting
S100~S108‧‧‧Steps
S200~S208‧‧‧Steps
[第1圖]為本發明一實施例之廢水診斷系統架構示意圖; [第2圖]為本發明一實施例之廢水診斷系統功能方塊示意圖; [第3圖]為本發明一實施例之顯微鏡下的微生物相照片示意圖。 [第4圖]為本發明一實施例之廢水診斷的終端資料處理方法流程圖;及 [第5圖]為本發明一實施例之廢水診斷的遠端資料處理方法流程圖。1 is a schematic structural view of a wastewater diagnostic system according to an embodiment of the present invention; [FIG. 2] is a functional block diagram of a wastewater diagnostic system according to an embodiment of the present invention; [FIG. 3] A microscope according to an embodiment of the present invention A photograph of the microbial phase underneath. [Fig. 4] A flow chart of a method for processing a terminal data for wastewater diagnosis according to an embodiment of the present invention; and [Fig. 5] a flow chart of a method for processing a remote data of wastewater diagnosis according to an embodiment of the present invention.
10‧‧‧終端裝置 10‧‧‧ Terminal devices
102‧‧‧影像擷取單元 102‧‧‧Image capture unit
104‧‧‧終端運算單元 104‧‧‧terminal arithmetic unit
12‧‧‧網際網路 12‧‧‧Internet
13‧‧‧待測水樣 13‧‧‧ water sample to be tested
M1‧‧‧微生物相 M1‧‧‧Microbial phase
14‧‧‧雲端資料處理中心 14‧‧‧Cloud Data Processing Center
15‧‧‧玻片 15‧‧‧ slides
D1‧‧‧顯微影像資料 D1‧‧‧microscopic image data
D2‧‧‧發送信息 D2‧‧‧ Sending information
D3‧‧‧生物處理信息 D3‧‧‧ Biological treatment information
Claims (28)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103119671A TWI512661B (en) | 2014-06-06 | 2014-06-06 | System for diagnosing wastewater, apparatus for diagnosing wastewater and method for processing wastewater data |
JP2014182481A JP2015230303A (en) | 2014-06-06 | 2014-09-08 | Waste water diagnosis system, waste water diagnosis device, and waste water diagnosis data processing method |
US14/535,035 US20150356723A1 (en) | 2014-06-06 | 2014-11-06 | System for diagnosing wastewater, apparatus for diagnosing wastewater and method for processing wastewater data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103119671A TWI512661B (en) | 2014-06-06 | 2014-06-06 | System for diagnosing wastewater, apparatus for diagnosing wastewater and method for processing wastewater data |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI512661B TWI512661B (en) | 2015-12-11 |
TW201546747A true TW201546747A (en) | 2015-12-16 |
Family
ID=54887127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103119671A TWI512661B (en) | 2014-06-06 | 2014-06-06 | System for diagnosing wastewater, apparatus for diagnosing wastewater and method for processing wastewater data |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015230303A (en) |
TW (1) | TWI512661B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110702458A (en) * | 2019-10-31 | 2020-01-17 | 黑龙江大学 | Online continuous sampling system of activated sludge |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7172302B2 (en) * | 2018-08-31 | 2022-11-16 | 株式会社明電舎 | Sewage treatment operation status evaluation device and sewage treatment operation status evaluation method |
CN111385598A (en) * | 2018-12-29 | 2020-07-07 | 富泰华工业(深圳)有限公司 | Cloud device, terminal device and image classification method |
CN111290311A (en) * | 2020-02-14 | 2020-06-16 | 华南农业大学 | System and method for monitoring effluent data after wastewater treatment |
CN113622145B (en) * | 2020-05-07 | 2023-11-07 | 云米互联科技(广东)有限公司 | Laundry control method, laundry control system, washing machine and computer readable storage medium |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05332915A (en) * | 1992-05-29 | 1993-12-17 | Hitachi Ltd | Hydrosphere monitoring apparatus and purifying apparatus |
JPH0688373A (en) * | 1992-09-09 | 1994-03-29 | Hitachi Ltd | Sewage disposing facility group managing system |
JPH08197084A (en) * | 1995-01-26 | 1996-08-06 | Meidensha Corp | Biological phase diagnosis support system |
JPH115086A (en) * | 1997-06-17 | 1999-01-12 | Toto Ltd | Circulation purifying system for bathtub water |
JP2000176460A (en) * | 1998-12-21 | 2000-06-27 | Aquas Corp | Method, for sterilizing legionella generation and method for its growth, and sterilizing member |
JP2003024929A (en) * | 2001-07-18 | 2003-01-28 | Mitsubishi Electric Corp | Oil contamination monitoring control system |
US8019633B2 (en) * | 2002-02-07 | 2011-09-13 | Micro Beef Technologies, Ltd. | Livestock management systems and methods |
JPWO2004060817A1 (en) * | 2002-12-27 | 2006-06-22 | 有限会社山田エビデンスリサーチ | Pasteurization method |
US7275645B2 (en) * | 2003-09-19 | 2007-10-02 | Vesta Medical, Llc | Handheld medical waste sorting device |
US7920983B1 (en) * | 2010-03-04 | 2011-04-05 | TaKaDu Ltd. | System and method for monitoring resources in a water utility network |
US20120150754A1 (en) * | 2010-12-14 | 2012-06-14 | Searete Llc | Lifecycle impact indicators |
-
2014
- 2014-06-06 TW TW103119671A patent/TWI512661B/en active
- 2014-09-08 JP JP2014182481A patent/JP2015230303A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110702458A (en) * | 2019-10-31 | 2020-01-17 | 黑龙江大学 | Online continuous sampling system of activated sludge |
CN110702458B (en) * | 2019-10-31 | 2022-02-01 | 黑龙江大学 | Online continuous sampling system of activated sludge |
Also Published As
Publication number | Publication date |
---|---|
JP2015230303A (en) | 2015-12-21 |
TWI512661B (en) | 2015-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI512661B (en) | System for diagnosing wastewater, apparatus for diagnosing wastewater and method for processing wastewater data | |
US20150356723A1 (en) | System for diagnosing wastewater, apparatus for diagnosing wastewater and method for processing wastewater data | |
EP1725010A3 (en) | Imaging system and system control method | |
TW201118633A (en) | System for diagnosis of plant anomalies | |
CN104251860A (en) | Food safety testing analyzer based on intelligent terminal and testing method | |
CN103678637A (en) | Method and device for acquiring test question information | |
CN106970576B (en) | Intellectualized sewage water based on picture analyzing handles monitoring method | |
CN104407115A (en) | Method and system for detecting water quality by utilizing intelligent mobile terminal | |
CN202305417U (en) | Gray-level-identification-based water quality detecting device | |
RU2015156487A (en) | IMAGE CAPTURE SYSTEM, IMAGE CAPTURE DEVICE AND CONTROL METHOD FOR THE ABOVE LISTED | |
CN104020106B (en) | Waste-water diagnosis system, waste-water diagnosis device and waste-water data processing methods | |
CN105629451A (en) | High resolution portable microscope system and measurement method | |
EP2270715A3 (en) | Method and system for collecting voice and image data on a remote device and converting the combined data | |
CN103926204A (en) | Method for fast detecting soil pH value based on multispectral image features | |
CN115684039B (en) | Water quality monitoring system and method based on error control | |
Briggs | Solid-state nanopores: fabrication, application, and analysis | |
KR20130086690A (en) | System for performing colorimetric analysis when running in a portable device and method of colorimetric analysis using the same | |
CN108234592A (en) | A kind of cloud platform monitoring system of bench for chemistry experiment | |
KR20090097102A (en) | Optical microbe sensor and method for detecting microbe using the same | |
CN207380516U (en) | A kind of sewage disposal remote centralized monitoring system | |
Rinaldi et al. | Exploring the interface between diagnostics and maps of neglected parasitic diseases | |
TW202226057A (en) | Water pollution level automatic identification model establishment system and water pollution level identification system and method wherein the establishment system includes a sample input end and an identification processing end | |
EP2106129A3 (en) | Compound eye photographing apparatus, control method therefor, and program | |
CN110397578B (en) | Intelligent action execution device | |
Xu et al. | Floc formation, size distribution, and its transformation detected by online laser particle counter |