TW201546582A - Process control method - Google Patents

Process control method Download PDF

Info

Publication number
TW201546582A
TW201546582A TW103119379A TW103119379A TW201546582A TW 201546582 A TW201546582 A TW 201546582A TW 103119379 A TW103119379 A TW 103119379A TW 103119379 A TW103119379 A TW 103119379A TW 201546582 A TW201546582 A TW 201546582A
Authority
TW
Taiwan
Prior art keywords
control method
pid
parameter
process control
reference mode
Prior art date
Application number
TW103119379A
Other languages
Chinese (zh)
Other versions
TWI546637B (en
Inventor
Jyh-Cheng Jeng
Ming-Wei Lee
Ting-Shuo Chen
Original Assignee
China Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Steel Corp filed Critical China Steel Corp
Priority to TW103119379A priority Critical patent/TWI546637B/en
Publication of TW201546582A publication Critical patent/TW201546582A/en
Application granted granted Critical
Publication of TWI546637B publication Critical patent/TWI546637B/en

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

A process control method is provided. In the process control method, at first, a plurality of process input data and a plurality of process output data of a processing machine are obtained. Thereafter, an operational reference mode of a Proportional Integral Derivative (PID) controller is selected from a plurality of reference modes. Then, a plurality of parameter calculating operations are performed to obtain a plurality of PID parameter sets and a plurality of error indicators corresponding to the PID parameter sets. Thereafter, a PID parameter set corresponding to a minimum error indicator of the error indicators is selected to control the PID controller for control the process of the processing machine. In the parameter calculating operation, at first, a time delay parameter is provided. Thereafter, the time delay parameter, the process input data, the process output data, and the corresponding error indicator are used to calculate the PID parameter set and a corresponding error indictor.

Description

製程控制方法 Process control method

本發明是有關於一種製程控制方法,特別是有關於一種運用比例-積分-微分(Proportional Integral Derivative;PID)控制器之製程控制方法。 The invention relates to a process control method, in particular to a process control method using a Proportional Integral Derivative (PID) controller.

PID控制器是一種閉迴路控制器,其具有結構簡單、可靠性佳、調整方便等優點。因此,在一般的工業製程中,經常使用PID控制器來控制製程,而PID控制器的設計方法對於工業製程相當重要。 The PID controller is a closed loop controller, which has the advantages of simple structure, good reliability and convenient adjustment. Therefore, in the general industrial process, the PID controller is often used to control the process, and the design method of the PID controller is very important for the industrial process.

在習知的PID控制器設計方法中,通常需要先建立模型才能獲得PID控制器的參數來控制製程。例如,先識別製程的低階經驗模型,然後再應用特定的調諧演算法來設計PID控制器。當低階模型足以合理地代表製程動態時,可以獲得良好的PID設計。然而,當應用於高階製程動態時,因為有不可避免的模型誤差,而使得PID控制器的效能降低。此外,雖然PID調諧演算法含有可調參數,此可調參數可以在控制性能與系統穩定韌性(為了應付模型誤差)之間進行適當的交易權衡,因此通常可以達到較佳的控制性能。然而,此可調參數之最佳值往往缺乏明確的設定準則,通常需要藉由額外的製程測試或在已知製程動態前提下之閉環路模擬以試誤法決定。 In the conventional PID controller design method, it is usually necessary to establish a model to obtain parameters of the PID controller to control the process. For example, first identify the low-order empirical model of the process, and then apply a specific tuning algorithm to design the PID controller. A good PID design can be obtained when the low-order model is sufficient to reasonably represent process dynamics. However, when applied to high-order process dynamics, the performance of the PID controller is degraded because of inevitable model errors. In addition, although the PID tuning algorithm contains tunable parameters, this tunable parameter can be traded appropriately between control performance and system stability resilience (to cope with model errors), so that better control performance is usually achieved. However, the optimum value of this tunable parameter often lacks a clear set of criteria and is usually determined by trial and error by additional process testing or closed loop simulation under known process dynamics.

對於一個運作中的控制系統而言,習知的PID控制器設計方法要利用閉環路測試來收集製程資料以進行模型識別通常較不可行。再者,就任何基於製程模型之PID設計方法而言,製程模型對於製程動態是否有足夠的代表性,實為影響控制器性能的關鍵因素。為了獲得更精準的製程模型,則必須利用較複雜的製程測試以及計算流程來進行模型識別,導致模型製程識別耗時費力,大幅了降低設計方法之實用性。 For an operational control system, it is generally not feasible for conventional PID controller design methods to utilize closed loop testing to collect process data for model identification. Furthermore, for any PID design method based on the process model, whether the process model is sufficiently representative of the process dynamics is a key factor affecting the performance of the controller. In order to obtain a more accurate process model, it is necessary to use more complicated process testing and calculation process to identify the model, which makes the process process identification time-consuming and laborious, and greatly reduces the practicability of the design method.

因此,需要一種新的製程控制方法來改善上述問題。 Therefore, a new process control method is needed to improve the above problems.

本發明之一方面是在提供一種製程控制方法,其係直接由製程操作資料(開環測試或閉環測試)來設計比例-積分-微分(Proportional Integral Derivative;PID)控制器,而不需要識別製程模式。 One aspect of the present invention is to provide a process control method for designing a Proportional Integral Derivative (PID) controller directly from a process operation data (open loop test or closed loop test) without requiring a process to be identified. mode.

根據本發明之一實施例,在此製程控制方法中,首先獲得製程設備之複數筆製程輸入資料和複數筆製程輸出資料。接著,從複數個參考模式中選擇出PID控制器之一運作參考模式。然後,進行複數個參數計算步驟,以獲得算PID控制器之複數個PID參數組以及這些PID參數組所對應之複數個誤差指標。在每一參數計算步驟中,首先提供一時延參數之值。然後,利用時延參數、製程輸入資料、製程輸出資料以及運作參考模式來計算PID控制器之PID參數組以及誤差指標。在參數計算步驟之後,接著選擇前 述誤差指標中之一誤差最小者所對應之PID參數組來控制PID控制器,以控制製程設備之製程。 According to an embodiment of the present invention, in the process control method, first, a plurality of process input data and a plurality of process output data of the process device are obtained. Then, one of the plurality of reference modes selects a reference mode of operation of the PID controller. Then, a plurality of parameter calculation steps are performed to obtain a plurality of PID parameter groups of the PID controller and a plurality of error indicators corresponding to the PID parameter groups. In each parameter calculation step, a value of a delay parameter is first provided. Then, the PID parameter group and the error indicator of the PID controller are calculated by using the delay parameter, the process input data, the process output data, and the operation reference mode. After the parameter calculation step, before selecting The PID parameter group corresponding to one of the error indicators is used to control the PID controller to control the process of the process equipment.

由上述說明可知,本發明實施例之製程控制方法不需要識別製程模式來設計PID控制器,免除了習知技術所需之識別製程步驟,大幅減少設計PID控制器所需的時間。 It can be seen from the above description that the process control method of the embodiment of the present invention does not need to identify the process mode to design the PID controller, and eliminates the identification process steps required by the prior art, and greatly reduces the time required to design the PID controller.

R(s)‧‧‧設定點資料 R(s)‧‧‧Setpoint data

GC(s)‧‧‧PID控制器 G C (s)‧‧‧PID controller

U(s)‧‧‧製程輸入資料 U(s)‧‧‧ Process input data

D(s)‧‧‧外在干擾 D(s)‧‧‧External interference

G(s)‧‧‧製程程序 G(s)‧‧‧Processing procedures

Y(s)‧‧‧製程輸出資料 Y(s)‧‧‧ process output data

T(s)‧‧‧運作參考模式 T(s)‧‧‧ operational reference mode

300‧‧‧製程控制方法 300‧‧‧Process Control Method

310~340‧‧‧步驟 310~340‧‧‧Steps

332、332a、332b‧‧‧步驟 332, 332a, 332b‧ ‧ steps

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,上文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下:第1圖係繪示根據本發明實施例之回饋控制系統的方塊圖。 The above and other objects, features, and advantages of the present invention will become more apparent and understood. A block diagram of a feedback control system in accordance with an embodiment of the present invention.

第2圖係繪示根據本發明實施例之簡化後的回饋控制系統的方塊圖。 2 is a block diagram showing a simplified feedback control system in accordance with an embodiment of the present invention.

第3圖係繪示根據本發明實施例之製程控制方法的流程示意圖。 3 is a flow chart showing a process control method according to an embodiment of the present invention.

第4圖係繪示根據本發明實施例之參數計算步驟的流程示意圖。 Figure 4 is a flow chart showing the steps of parameter calculation according to an embodiment of the present invention.

第5a圖係繪示本發明實施例之粗氬塔壓控制系統之PID控制參數。 Figure 5a is a diagram showing the PID control parameters of the crude argon column pressure control system of the embodiment of the present invention.

第5b圖係繪示粗氬塔壓控制系統在PID參數修改前之操作資料。 Figure 5b shows the operation data of the crude argon column pressure control system before the PID parameters are modified.

第5c圖係繪示本發明實施例之粗氬塔壓控制系統在PID參數修改後之操作資料。 Figure 5c is a diagram showing the operation data of the crude argon column pressure control system of the embodiment of the present invention after the PID parameters are modified.

請參照第1圖,其係繪示根據本發明實施例之回饋控制系統的方塊圖,其中R(s)係代表設定點資料;GC(s)代表PID控制器:U(s)為製程輸入資料;D(s)代表外在干擾;G(s)代表製程程序;Y(s)為製程輸出資料。為了利用製程輸入資料與製程輸出資料來直接進行PID控制參數調諧,本發明實施例係藉由指定製程之運作參考模式T(s)的形式來描述所期望的回歸控制系統設定點應答,如第2圖所示。 Please refer to FIG. 1 , which is a block diagram of a feedback control system according to an embodiment of the present invention, wherein R(s) represents setpoint data; G C (s) represents a PID controller: U(s) is a process. Input data; D(s) stands for external interference; G(s) stands for process procedure; Y(s) is process output data. In order to directly perform PID control parameter tuning by using the process input data and the process output data, the embodiment of the present invention describes the desired regression control system set point response by specifying the process reference mode T(s) of the process, such as Figure 2 shows.

由第2圖所繪示之方塊圖可知,控制器參數調諧問題可轉換為將下式(1)計算之Û(s)與真實測量U(s)之間的誤差最小化問題: 其中,K C τ 1τ D 為PID參數。 As can be seen from the block diagram shown in Fig. 2, the controller parameter tuning problem can be converted into the problem of minimizing the error between the Û ( s ) calculated by the following equation (1) and the real measurement U ( s ): Where K C , τ 1 , τ D are PID parameters.

在本發明之實施例中,運作參考模式T(s)係描述PID控制器之設計者所期望的控制系統動態行為,即PID控制器的設計目標。本發明之實施例係依據三種不同的控制目標來對應提供三種不同的參考模式來供使用者選擇,此三種參考模式分對應至伺服控制(設定點追蹤)設計、調節控制(干擾排除)設計以及折衷控制(兼顧設定點追蹤與干擾排除)設計。 In an embodiment of the invention, the operational reference mode T(s) describes the dynamic behavior of the control system desired by the designer of the PID controller, ie, the design goals of the PID controller. Embodiments of the present invention provide three different reference modes for user selection according to three different control targets, which are corresponding to servo control (setpoint tracking) design, adjustment control (interference rejection) design, and Compliant control (consistent with setpoint tracking and interference rejection) design.

首先,討論伺服控制(設定點追蹤)設計。當使用者決定控制目標為設定點追蹤時,對應的參考模式T s (s)如下式(2): First, discuss the servo control (setpoint tracking) design. When the user decides that the control target is setpoint tracking, the corresponding reference mode T s ( s ) is as follows (2):

上式之θ s 為時延參數,其可視為製程之等效時延。 λ s 為一可調參數,其可允許使用者在控制性能與系統穩定韌性(M s 值)之間作一適當的取捨,只要使用者指定一個M s 值,就可決定出λ s 的值。λ s 可以下式(3)來表示: 其中,1.2 M s 2.0 The θ s of the above formula is a delay parameter, which can be regarded as the equivalent delay of the process. λ s is an adjustable parameter that allows the user to make an appropriate trade-off between control performance and system stability toughness ( M s value). As long as the user specifies a value of M s , the value of λ s can be determined. . λ s can be expressed by the following formula (3): Among them, 1.2 M s 2.0

接著,討論調節控制(干擾排除)設計。當使用者決定控制目標為干擾排除時,對應的參考模式T r (s)如下式(4): 其中。而製程參數τ可以由系統之階梯應答根據下式求得: 其中K為製程之穩態增益,為h製程輸入階梯變化之大小。 Next, discuss the adjustment control (interference rejection) design. When the user decides that the control target is interference rejection, the corresponding reference mode T r ( s ) is as follows (4): among them . The process parameter τ can be obtained from the ladder response of the system according to the following formula: Where K is the steady-state gain of the process and is the magnitude of the input step change for the h process.

上式之θ r 為時延參數,其可視為製程之等效時延。λ r 為一可調參數,其可允許使用者在控制性能與系統穩定韌性(M s 值)之間作一適當的取捨,只要使用者指定一個M s 值,就可決定出λ r 的值。λ r 可以下式(5)來表示: 其中, 其中,1.2 M s 2.0,0.05(θ r /τ)1。 The θ r of the above formula is a delay parameter, which can be regarded as the equivalent delay of the process. λ r is an adjustable parameter that allows the user to make an appropriate trade-off between control performance and system stability toughness ( M s value). As long as the user specifies a value of M s , the value of λ r can be determined. . λ r can be expressed by the following formula (5): among them, Among them, 1.2 M s 2.0, 0.05 ( θ r / τ ) 1.

接著,討論折衷控制(兼顧設定點追蹤與干擾排除)設計。當使用者決定控制目標為兼顧設定點追蹤與干擾排除時,對應的參考模式T i (s)如下式(6): 其中α i =(1-w)α s + r ;0<w<1;α s =λ s Next, discuss the design of the compromise control (both set point tracking and interference elimination). When the user decides that the control target is to balance setpoint tracking and interference elimination, the corresponding reference mode T i ( s ) is as follows (6): Where α i = (1- w ) α s + r ; 0 < w <1; α s = λ s .

上式之w為權重因子,使用者可依照伺服控制與調節控制之重要性來指定。W值越大代表調節控制越重要。θi i 為時延參數,其可視為製程之等效時延。λ i 為一可調參數,其可允許使用者在控制性能與系統穩定韌性(M s 值)之間作一適當的取捨,只要使用者指定一個M s 值,就可決定出λ i 的值。λ i 可以下式(7)來表示: 其中,1.2 M s 2.0 The above formula w is a weighting factor, and the user can specify according to the importance of servo control and adjustment control. The larger the W value, the more important the adjustment control is. Θi i is a delay parameter, which can be regarded as the equivalent delay of the process. λ i is an adjustable parameter that allows the user to make an appropriate trade-off between control performance and system stability toughness ( M s value). As long as the user specifies a value of M s , the value of λ i can be determined. . λ i can be expressed by the following formula (7): Among them, 1.2 M s 2.0

請參照第3圖其係繪示根據本發明實施例之製程控制方法300的流程示意圖,其中製程控制方法300係應 用上述之參考模式來針對一製程之製程設備進行PID控制。在製程控制方法300中,首先進行步驟310,以獲得製程設備之複數筆製程輸入資料U(t)和複數筆製程輸出資料Y(t)。這些製程輸入資料U(t)和製程輸出資料Y(t)經S域轉換後即為前述之製程輸入資料U(s)和製程輸出資料Y(s)。 接著,進行步驟320,以根據使用者之設計目標來從上述三個參考模式T s (s)、T r (s)以及T i (s)中選取一者作為製程之運作參考模式T(s)。然後,進行步驟330,以利用上式(1)來計算出PID控制器之複數個PID參數組(每個參數組包含K C τ 1τ D )以及這些PID參數組所對應之複數個誤差指標J(θ)。在本發明之實施例中,步驟330係進行疊代運算,以透過多次的參數計算步驟來獲得上述之PID參數組以及誤差指標J(θ),而每次所進行之參數計算步驟皆套用不同的時延參數值,直至收斂為止(即找到最小的J(θ))。 Please refer to FIG. 3 , which is a schematic flowchart diagram of a process control method 300 according to an embodiment of the present invention. The process control method 300 applies the above reference mode to perform PID control on a process device of a process. In the process control method 300, step 310 is first performed to obtain a plurality of process input data U(t) and a plurality of process output data Y(t) of the process device. The process input data U(t) and the process output data Y(t) are converted into the aforementioned process input data U(s) and the process output data Y(s) after being converted by the S domain. Next, step 320, to be T from the three reference patterns according to the user's design goals s (s), the T r (s) and T i (s) are selected as a process operation of the reference pattern T (S ). Then, step 330 is performed to calculate a plurality of PID parameter groups of the PID controller (each parameter group includes K C , τ 1 , τ D ) and a plurality of corresponding PID parameter groups by using the above formula (1). Error indicator J (θ). In an embodiment of the present invention, step 330 performs an iterative operation to obtain the PID parameter set and the error index J(θ) through a plurality of parameter calculation steps, and each of the parameter calculation steps performed is applied. Different delay parameter values until convergence (ie find the smallest J(θ)).

請參照第4圖,其係繪示根據本發明實施例之參數計算步驟332的流程示意圖。在參數計算步驟332中,首先進行步驟332a,以給定時延參數之值。接著,進行步驟332b,以利用此時延參數、前述之製程輸入資料、前述之製程輸出資料以及步驟320所選擇之運作參考模式套入上式(1)來計算PID控制器之PID參數組以及相應之誤差指標J(θ)。例如,將時延參數、製程輸入資料、製程輸出資料以及步驟320所選擇之運作參考模式套入上式(1)後,可得到多條方程式,而誤差指標J(θ)則代表這些方程式之間的誤差關係。其中,誤差指標J(θ)係利用下式(8)來表示: 其中 而頻率ω M 為控制系統之靈敏度函數(sensitivity function)產生最大值之頻率,亦即 Please refer to FIG. 4, which is a schematic flowchart diagram of a parameter calculation step 332 according to an embodiment of the present invention. In parameter calculation step 332, step 332a is first performed to give the value of the time delay parameter. Next, step 332b is performed to calculate the PID parameter group of the PID controller by using the time delay parameter, the foregoing process input data, the foregoing process output data, and the operation reference mode selected in step 320 by inserting the above formula (1). Corresponding error indicator J(θ). For example, after the delay parameter, the process input data, the process output data, and the operational reference mode selected in step 320 are put into the above formula (1), multiple equations can be obtained, and the error index J(θ) represents these equations. The error relationship between the two. Among them, the error index J(θ) is expressed by the following formula (8): among them And the frequency ω M is the frequency at which the sensitivity function of the control system generates a maximum value, that is,

在步驟330後,接著進行步驟340,以選擇誤差指標J(θ)中之一誤差最小者所對應之PID參數組來控制PID控制器,以相應地控制製程設備之製程。例如,步驟330係進行疊代運算來將不同的時延參數值代入上式(1),以重複進行參數計算步驟332直至J(θ)收斂,其中最小誤差指標J(θ)所對應的PID參數組被選擇來作為制PID控制器之PID參數,以控制製程設備之製程。 After step 330, step 340 is followed to select a PID parameter set corresponding to one of the error indicators J(θ) to control the PID controller to control the process of the process device accordingly. For example, step 330 performs an iterative operation to substitute different delay parameter values into the above equation (1) to repeat the parameter calculation step 332 until J(θ) converges, wherein the PID corresponding to the minimum error index J(θ) The parameter group is selected as the PID parameter of the PID controller to control the process of the process equipment.

請同時參照第5a-5c圖,第5a圖係繪示本發明實施例之粗氬塔壓控制系統之PID控制參數,第5b圖係繪示此粗氬塔壓控制系統在PID參數修改前之操作資料,第5c圖係繪示此粗氬塔壓控制系統在PID參數修改後之操作資料。由第5b-5c圖可知,當粗氬塔壓控制系統應用本發明實施例之製程控制方法300來修改PID參數後,控制誤差ERR值(設定值與輸出值之比值)有明顯改善,而其平均ISE(Integral Squared Error)值有50%的改善,平均IAE(Integral absolute Error)值有30%的改善。本發明實施例之 製程控制方法300不但可提供較佳的PID控制參數,且不需要進行模型識別,本發明實施例之製程控制方法300所需之時間成本可大為縮減。 Please refer to FIG. 5a-5c at the same time, FIG. 5a is a diagram showing PID control parameters of a crude argon column pressure control system according to an embodiment of the present invention, and FIG. 5b is a diagram showing the crude argon column pressure control system before modification of a PID parameter. Operation data, Figure 5c shows the operation data of this crude argon column pressure control system after the PID parameters are modified. It can be seen from the figure 5b-5c that when the crude argon column pressure control system applies the process control method 300 of the embodiment of the present invention to modify the PID parameter, the control error ERR value (the ratio of the set value to the output value) is significantly improved, and The average ISE (Integral Squared Error) value is improved by 50%, and the average IAE (Integral absolute Error) value is improved by 30%. Embodiment of the present invention The process control method 300 can not only provide better PID control parameters, but also does not require model identification. The time cost required for the process control method 300 of the embodiment of the present invention can be greatly reduced.

雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in terms of several embodiments, it is not intended to limit the scope of the invention, and the invention may be practiced in various embodiments without departing from the spirit and scope of the invention. The scope of protection of the present invention is defined by the scope of the appended claims.

300‧‧‧製程控制方法 300‧‧‧Process Control Method

310~340‧‧‧步驟 310~340‧‧‧Steps

Claims (10)

一種製程控制方法,用以利用一比例-積分-微分(Proportional-Integral-Derivative;PID)控制器來控制一製程設備,其中該製程控制方法包含:獲得該製程設備之複數筆製程輸入資料和複數筆製程輸出資料;從複數個參考模式中選擇出該比例-積分-微分控制器之一運作參考模式;進行複數個參數計算步驟,以獲得算該比例-積分-微分控制器之複數個PID參數組以及該些PID參數組所對應之複數個誤差指標,其中每一該些參數計算步驟包含:提供一時延參數之值;以及利用該時延參數、該些製程輸入資料、該些製程輸出資料以及該運作參考模式來計算該比例-積分-微分控制器之該些PID參數組之一者以及該些誤差指標之一者;以及選擇該些誤差指標中之一誤差最小者所對應之PID參數組來控制該比例-積分-微分控制器,以控制該製程設備之製程。 A process control method for controlling a process device by using a Proportional-Integral-Derivative (PID) controller, wherein the process control method comprises: obtaining a plurality of process input data and a plurality of the process device Pen process output data; selecting one of the proportional-integral-derivative controllers from a plurality of reference modes to operate the reference mode; performing a plurality of parameter calculation steps to obtain a plurality of PID parameters of the proportional-integral-derivative controller And a plurality of error indicators corresponding to the group of PID parameters, wherein each of the parameter calculation steps includes: providing a value of a delay parameter; and using the delay parameter, the process input data, and the process output data And the operation reference mode to calculate one of the PID parameter groups of the proportional-integral-derivative controller and one of the error indicators; and selecting a PID parameter corresponding to one of the error indicators The group controls the proportional-integral-derivative controller to control the process of the process equipment. 如請求項第1項所述之製程控制方法,其中該些參考模式包含一第一參考模式,該第一參考模式T s (s)係以下列方程式表示: 其中,θ s 為該時延參數之值; The process control method of claim 1, wherein the reference modes comprise a first reference mode, the first reference mode T s ( s ) being represented by the following equation: Where θ s is the value of the delay parameter; 如請求項第2項所述之製程控制方法,其中該些參考模式包含一第二參考模式,該第二參考模式T r (s)係以下列方程式表示: 其中,θ r 為該時延參數之值; 其中K為製程之穩態增益,h為製程輸入階梯變化之大小; p 3=1.203(θ r /τ)3-1.463(θ r /τ)2+0.789(θ r /τ)+0.01257其中,1.2 M s 2.0,0.05(θ r /τ)1。 The process control method of claim 2, wherein the reference modes comprise a second reference mode, the second reference mode T r ( s ) is represented by the following equation: Where θ r is the value of the delay parameter; Where K is the steady-state gain of the process, and h is the size of the process input step change; p 3 = 1.203 ( θ r / τ ) 3 - 1.463 ( θ r / τ ) 2 + 0.789 ( θ r / τ ) + 0.01257 where 1.2 M s 2.0, 0.05 ( θ r / τ ) 1. 如請求項第3項所述之製程控制方法,其中該些參考模式包含一第三參考模式,該第三參考模式T i (s)係以下列方程式表示: 其中,θ i 為該時延參數之值; α i =(1-w)α s + r ;0<w<1;α s =λ s The process control method of claim 3, wherein the reference modes comprise a third reference mode, the third reference mode T i ( s ) being represented by the following equation: Where θ i is the value of the delay parameter; α i = (1 - w ) α s + r ; 0 < w <1; α s = λ s . 如請求項第4項所述之製程控制方法,其中該三參考模式係用以進行折衷控制。 The process control method of claim 4, wherein the three reference modes are used for tradeoff control. 如請求項第3項所述之製程控制方法,其中該二參考模式係用以進行調節控制。 The process control method of claim 3, wherein the two reference modes are used for adjustment control. 如請求項第2項所述之製程控制方法,其中該一參考模式係用以進行伺服控制。 The process control method of claim 2, wherein the reference mode is used for servo control. 如請求項第1項所述之製程控制方法,其中該時延參數為一階時延參數。 The process control method of claim 1, wherein the delay parameter is a first-order delay parameter. 如請求項第1項所述之製程控制方法,其中每一該些比例-積分-微分計算步驟所運用之該時延參數之值皆不相同。 The process control method of claim 1, wherein the value of the delay parameter used in each of the proportional-integral-differential calculation steps is different. 如請求項第1項所述之製程控制方法,其中計算該比例-積分-微分控制器之該些PID參數組之該者之步驟係利用下列方程式來計算: 其中,Û(s)為該些製程輸入資料之一者;T(s)為該運作參考模式;Y(s)為對應至該些製程輸入資料之該者之製程輸出資料。 The process control method of claim 1, wherein the step of calculating the one of the PID parameter sets of the proportional-integral-derivative controller is calculated by the following equation: Where Û ( s ) is one of the input data of the processes; T ( s ) is the operational reference mode; Y ( s ) is the process output data of the one corresponding to the input data of the processes.
TW103119379A 2014-06-04 2014-06-04 Process control method TWI546637B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103119379A TWI546637B (en) 2014-06-04 2014-06-04 Process control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103119379A TWI546637B (en) 2014-06-04 2014-06-04 Process control method

Publications (2)

Publication Number Publication Date
TW201546582A true TW201546582A (en) 2015-12-16
TWI546637B TWI546637B (en) 2016-08-21

Family

ID=55407492

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103119379A TWI546637B (en) 2014-06-04 2014-06-04 Process control method

Country Status (1)

Country Link
TW (1) TWI546637B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845491A (en) * 2018-07-02 2018-11-20 曾喆昭 The wisdom PI composite control method of Correction for Large Dead Time System
CN113035757A (en) * 2021-03-25 2021-06-25 江苏中科新源半导体科技有限公司 Control method of liquid pressurization system for semiconductor etching

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845491A (en) * 2018-07-02 2018-11-20 曾喆昭 The wisdom PI composite control method of Correction for Large Dead Time System
CN108845491B (en) * 2018-07-02 2021-01-26 曾喆昭 Intelligent PI composite control method of large time lag system
CN113035757A (en) * 2021-03-25 2021-06-25 江苏中科新源半导体科技有限公司 Control method of liquid pressurization system for semiconductor etching

Also Published As

Publication number Publication date
TWI546637B (en) 2016-08-21

Similar Documents

Publication Publication Date Title
JP6111913B2 (en) Control parameter adjustment system
JP4327880B2 (en) Servo motor controller with automatic gain adjustment function
JP2015507300A5 (en)
JP2015128129A5 (en)
EP2998803A1 (en) Simulation method, recording medium wherein simulation program is stored, simulation device, and system
JP2015507300A (en) Apparatus and method for performing incoherent closed-loop step tests using adjustable trade-off factors
JP2015076024A (en) Plant-control-device control gain optimization system
US20100312416A1 (en) Method for controlling the temperature of a glow plug
JP4908433B2 (en) Control parameter adjustment method and control parameter adjustment program
TWI546637B (en) Process control method
US20130150984A1 (en) Test system with configurable closed loop
JP5561519B2 (en) Plant simulator
JP5717950B2 (en) Model function processing apparatus and method
JP2020099982A (en) Machine tool thermal displacement correction method, thermal displacement correction program, thermal displacement correction device
JP4524683B2 (en) Parameter adjustment device for plant model
CN116050607A (en) Parameter optimization method and device for production process
Won et al. Identification of a multivariable delta-operator stochastic state-space model with distributed time delays: Application to a rapid thermal processor
Gamboa et al. Multi-objective optimization based tuning tool for industrial 2doF PID controllers
EP2753991A1 (en) Arrangement and method for system identification of an industrial plant or process
TWI533097B (en) Parameter tuning method and computer program product
JP2017182179A (en) Control system
JP5846303B2 (en) Learning apparatus and learning method for setting calculation system
JP7107496B2 (en) Control system design method and test system control parameter determination method
WO2018045653A1 (en) Quasi-inverse system control method for nonlinear system
JP6767356B2 (en) Model building system and model building method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees