TW201537718A - Chip structure with coaxial multi-core TSV amd method for manufacturing the same - Google Patents

Chip structure with coaxial multi-core TSV amd method for manufacturing the same Download PDF

Info

Publication number
TW201537718A
TW201537718A TW103110907A TW103110907A TW201537718A TW 201537718 A TW201537718 A TW 201537718A TW 103110907 A TW103110907 A TW 103110907A TW 103110907 A TW103110907 A TW 103110907A TW 201537718 A TW201537718 A TW 201537718A
Authority
TW
Taiwan
Prior art keywords
insulating layer
conductive layer
line pattern
hole
hollow tube
Prior art date
Application number
TW103110907A
Other languages
Chinese (zh)
Other versions
TWI555168B (en
Inventor
Chien-Wei Chou
ting-feng Su
Original Assignee
Powertech Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powertech Technology Inc filed Critical Powertech Technology Inc
Priority to TW103110907A priority Critical patent/TWI555168B/en
Publication of TW201537718A publication Critical patent/TW201537718A/en
Application granted granted Critical
Publication of TWI555168B publication Critical patent/TWI555168B/en

Links

Abstract

Disclosed is a chip structure with coaxial multi-core TSV. Disposed on an active surface of a semiconductor base are a plurality of surface conductor layers. And, disposed on an back surface of the semiconductor base are a plurality of backside conductor layers. An axial post and a coaxial hollow pipe are disposed in a through hole penetrating through the semiconductor base. Both are insulated by specific insulation layers and the coaxial hollow pipe is fully covered. Each of the two extruded ends of the axial post is respectively connected with a connecting pad. The length of the coaxial hollow pipe is smaller than the one of the axial post, so that the upper and lower connecting pads are insulated from the coaxial hollow pipe and its connected circuit patterns. Accordingly, multiple signals can be used through a same TSV without the issue of current leakage so as to reduce TSV disposition amount.

Description

同軸多芯矽穿孔晶片結構及其製造方法 Coaxial multi-core perforated wafer structure and manufacturing method thereof

本發明係有關於半導體晶片之縱向互連通道(vertical interconnect access,VIA),特別係有關於一種同軸多芯矽穿孔晶片結構及其製造方法。 The present invention relates to a vertical interconnect access (VIA) for a semiconductor wafer, and more particularly to a coaxial multi-core perforated wafer structure and method of fabricating the same.

矽穿孔(Through Silicon Via,TSV)係為貫穿晶圓或晶片之縱向互連通道。矽穿孔廣泛應用在立體(3D)晶片對晶片堆疊,相較於傳統打線連接之晶片堆疊與封裝立體堆疊(Package-On-Package,POP)可縮短訊號傳輸距離,以達到高速互連傳輸。然而,當晶片尺寸縮小或是傳輸腳位增加時,矽穿孔的數量亦需要增加,晶片碎裂(die crack)的問題便容易產生。 Through Silicon Via (TSV) is a vertical interconnect via through a wafer or wafer.矽Perforation is widely used in stereo (3D) wafer-to-wafer stacking. Compared to traditional wire-bonding, chip-on-package (Package-On-Package, POP) can shorten the signal transmission distance to achieve high-speed interconnect transmission. However, as the size of the wafer is reduced or the transfer pin is increased, the number of turns of the turn is also required to increase, and the problem of die cracking is likely to occur.

美國公開專利US 2011/0095435 A1號教示一種同軸型態之矽穿孔晶片結構。如第1及2圖所示,習知矽穿孔晶片結構200係包含一半導體基板210、一貫穿該半導體基板210之貫穿孔220。該半導體基板210之上下表面係各形成有一表面絕緣層231與一晶背絕緣層261,一介電襯裡232係形成於該表面絕緣層231上以及該貫穿孔220之內孔壁,該貫穿孔220之中心係為一半導體軸心柱221,藉以形成一環形孔洞,以利於該貫穿孔220內複數個同軸空心管241、242、243之電鍍形成,該些同軸空 心管241、242、243之間係介設有一孔絕緣層233。最後,在該半導體基板210之表面上形成BSG絕緣層與蝕刻該半導體基板210,以構成同軸型態之矽穿孔。然而,習知矽穿孔晶片結構200未具體揭示該些同軸空心管241、242、243之連接方式,該些同軸空心管241、242、243之間的間隙過小時,同平面的連接容易引起漏電流之問題,並且該半導體軸心柱221亦佔據了該貫穿孔220之有效電鍍空間。 U.S. Patent No. US 2011/0095435 A1 teaches a coaxial type of perforated wafer structure. As shown in FIGS. 1 and 2, the conventional perforated wafer structure 200 includes a semiconductor substrate 210 and a through hole 220 penetrating the semiconductor substrate 210. A surface insulating layer 231 and a back insulating layer 261 are formed on the upper surface of the semiconductor substrate 210. A dielectric liner 232 is formed on the surface insulating layer 231 and the inner hole wall of the through hole 220. The center of 220 is a semiconductor axial column 221, thereby forming an annular hole to facilitate the electroplating formation of a plurality of coaxial hollow tubes 241, 242, 243 in the through hole 220, the coaxial spaces A hole insulating layer 233 is interposed between the heart tubes 241, 242, and 243. Finally, a BSG insulating layer is formed on the surface of the semiconductor substrate 210 and the semiconductor substrate 210 is etched to form a coaxial via. However, the conventional perforated wafer structure 200 does not specifically disclose the connection manner of the coaxial hollow tubes 241, 242, and 243. The gap between the coaxial hollow tubes 241, 242, and 243 is too small, and the connection with the same plane is likely to cause leakage. The problem of current, and the semiconductor shaft 221 also occupies an effective plating space for the through hole 220.

為了解決上述之問題,本發明之主要目的係在於提供一種同軸多芯矽穿孔晶片結構及其製造方法,使得多訊號可共用同一矽穿孔且無漏電流(leakage)之風險,藉以減少矽穿孔的設置數量,進而降低因矽穿孔數量增加所造成之晶片碎裂(die crack)。 In order to solve the above problems, the main object of the present invention is to provide a coaxial multi-core perforated wafer structure and a manufacturing method thereof, so that multiple signals can share the same perforation and no risk of leakage, thereby reducing the perforation of the crucible. The number is set to reduce the die crack caused by the increased number of perforations.

本發明的目的及解決其技術問題是採用以下技術方案來實現的。本發明揭示一種同軸多芯矽穿孔晶片結構,其係包含一半導體基板、一貫穿該半導體基板之貫穿孔、一第一表面絕緣層、一第一表面導電層、一第二表面絕緣層、一第二表面導電層、一第一晶背絕緣層、一第一晶背導電層、一第二晶背絕緣層、以及一第二晶背導電層。該半導體基板係具有一主動面與一背面。該第一表面絕緣層係形成於該半導體基板之主動面上以及該貫穿孔內。該第一表面導電層係形成於該主動面上以及該貫穿孔內,並且該第一表面導電層係包含一在該貫穿孔內之同軸空心管,在該主動面上之該第一表面導電層係圖案化為一連接該同軸空心管之第一線路圖案。該第二表面絕緣層係形成於該第一表面絕緣層上以及該貫穿孔內,該第二表面絕緣層係覆蓋該第一線路圖案,該貫穿孔內係具有一不被 該第二表面絕緣層填滿之軸心孔。該第二表面導電層係形成於該第二表面絕緣層上以及該貫穿孔之該軸心孔內,以使該第二表面導電層包含一在該軸心孔內並且與該同軸空心管為電性絕緣之軸心柱,在該第二表面絕緣層上之該第二表面導電層係圖案化為一對準連接在該軸心柱上之上接墊以及一連接該上接墊之第二線路圖案。該第一晶背絕緣層係形成於該背面上,該同軸空心管之端面與該軸心柱之端面係顯露在該背面。該第一晶背導電層係形成於該第一晶背絕緣層上,並且該第一晶背導電層係包含一第三線路圖案,其係連接該同軸空心管之端面。該第二晶背絕緣層係形成於該第一晶背絕緣層上,該第二晶背絕緣層係覆蓋該第三線路圖案,而不覆蓋該軸心柱之端面。該第二晶背導電層係形成於該第二晶背絕緣層上,該第二晶背導電層係圖案化為一對準連接在該軸心柱下之下接墊,其中該同軸空心管係完全被該第二表面絕緣層與該第二晶背絕緣層包覆,並且該同軸空心管之長度係小於該軸心柱之長度,以使該上接墊與該下接墊為電性絕緣於該同軸空心管及其連接之該第一線路圖案與該第三線路圖案。本發明另揭示上述晶片結構之製造方法。 The object of the present invention and solving the technical problems thereof are achieved by the following technical solutions. The invention discloses a coaxial multi-core perforated wafer structure, which comprises a semiconductor substrate, a through hole penetrating the semiconductor substrate, a first surface insulating layer, a first surface conductive layer, a second surface insulating layer, and a a second surface conductive layer, a first crystalline back insulating layer, a first crystalline back conductive layer, a second crystalline back insulating layer, and a second crystalline back conductive layer. The semiconductor substrate has an active surface and a back surface. The first surface insulating layer is formed on the active surface of the semiconductor substrate and in the through hole. The first surface conductive layer is formed on the active surface and the through hole, and the first surface conductive layer comprises a coaxial hollow tube in the through hole, and the first surface is electrically conductive on the active surface The layer is patterned into a first line pattern connecting the coaxial hollow tubes. The second surface insulating layer is formed on the first surface insulating layer and in the through hole, and the second surface insulating layer covers the first line pattern, and the through hole has a The second surface insulating layer fills the axial hole. The second surface conductive layer is formed on the second surface insulating layer and in the axial hole of the through hole, such that the second surface conductive layer comprises a hole in the axial hole and is coaxial with the coaxial hollow tube The electrically insulating shaft column, the second surface conductive layer on the second surface insulating layer is patterned into an upper pad connected to the shaft post and a connection to the upper pad Two line patterns. The first back insulating layer is formed on the back surface, and an end surface of the coaxial hollow tube and an end surface of the shaft post are exposed on the back surface. The first back conductive layer is formed on the first back insulating layer, and the first back conductive layer comprises a third line pattern connecting the end faces of the coaxial hollow tube. The second back insulating layer is formed on the first back insulating layer, and the second back insulating layer covers the third line pattern without covering the end surface of the shaft post. The second back conductive layer is formed on the second back insulating layer, and the second back conductive layer is patterned into an underlying pad under the axial column, wherein the coaxial hollow tube The second surface insulating layer is completely covered by the second surface insulating layer, and the length of the coaxial hollow tube is less than the length of the shaft column, so that the upper pad and the lower pad are electrically Insulating the coaxial hollow tube and the first line pattern and the third line pattern connected thereto. The present invention further discloses a method of fabricating the above wafer structure.

本發明的目的及解決其技術問題還可採用以下技術措施進一步實現。 The object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.

在前述之晶片結構之一較佳實施例中,該第一表面導電層係可更包含一在該主動面上之獨立線路圖案,該獨立線路圖案係電性絕緣於該第一線路圖案與該同軸空心管,該第二線路圖案係電性導接至該獨立線路圖案,故該第二線路圖案係可電絕緣地越過該第一線路圖案,以電性連接至該半導體基板。 In a preferred embodiment of the foregoing wafer structure, the first surface conductive layer further includes a separate line pattern on the active surface, the independent line pattern electrically insulating the first line pattern and the The coaxial hollow tube is electrically connected to the independent circuit pattern, so that the second circuit pattern is electrically insulated from the first circuit pattern to be electrically connected to the semiconductor substrate.

在前述之晶片結構之一較佳實施例中,可另包 含至少一第一外接端子與至少一第二外接端子,該第一外接端子係接合於該下接墊,該第二晶背導電層係另包含一接合至該第三線路圖案之重配置墊,該第二外接端子係接合於該重配置墊,藉以使通過同一矽穿孔之兩訊號由不同的外接端子作個別的縱向導通。 In a preferred embodiment of the foregoing wafer structure, it may be packaged separately And comprising at least one first external terminal and at least one second external terminal, wherein the first external terminal is bonded to the lower pad, and the second back conductive layer further comprises a reconfigurable pad bonded to the third line pattern The second external terminal is coupled to the re-arrangement pad, so that the two signals passing through the same crucible are individually longitudinally turned by different external terminals.

在前述之晶片結構之一較佳實施例中,該下接墊與該重配置墊係可為凸塊化,該第一外接端子與該第二外接端子係為銲料。 In a preferred embodiment of the foregoing wafer structure, the lower pad and the re-stack pad may be bumped, and the first external terminal and the second external terminal are solder.

在前述之晶片結構之一較佳實施例中,該第一晶背導電層係可更包含一增長塊,其係接合至該軸心柱之端面,用以增加該軸心柱之長度。 In a preferred embodiment of the foregoing wafer structure, the first crystalline back conductive layer may further comprise a growth block bonded to an end surface of the axial column for increasing the length of the axial column.

在前述之晶片結構之一較佳實施例中,該上接墊係可為複數個配置,且具有不同之形狀,以作為辨識用接合墊。 In a preferred embodiment of the foregoing wafer structure, the upper pads can be in a plurality of configurations and have different shapes for use as identification bonding pads.

100‧‧‧同軸多芯矽穿孔晶片結構 100‧‧‧ coaxial multi-core perforated wafer structure

110‧‧‧半導體基板 110‧‧‧Semiconductor substrate

111‧‧‧主動面 111‧‧‧Active surface

112‧‧‧背面 112‧‧‧Back

112A‧‧‧未薄化前背面 112A‧‧‧The front side is not thinned

113‧‧‧第一銲墊 113‧‧‧First pad

114‧‧‧第二銲墊 114‧‧‧Second pad

120‧‧‧貫穿孔 120‧‧‧through holes

120A‧‧‧孔穴 120A‧‧ hole

121‧‧‧軸心孔 121‧‧‧Axis hole

131‧‧‧第一表面絕緣層 131‧‧‧First surface insulation

132‧‧‧第二表面絕緣層 132‧‧‧Second surface insulation

140‧‧‧第一表面導電層 140‧‧‧First surface conductive layer

141‧‧‧同軸空心管 141‧‧‧Coaxial hollow tube

142‧‧‧第一線路圖案 142‧‧‧First line pattern

143‧‧‧獨立線路圖案 143‧‧‧Independent line pattern

150‧‧‧第二表面導電層 150‧‧‧Second surface conductive layer

151‧‧‧軸心柱 151‧‧‧ Axis column

152‧‧‧第二線路圖案 152‧‧‧second line pattern

153‧‧‧上接墊 153‧‧‧Upper pad

161‧‧‧第一晶背絕緣層 161‧‧‧First Crystal Back Insulation

162‧‧‧第二晶背絕緣層 162‧‧‧Second crystal back insulation

170‧‧‧第一晶背導電層 170‧‧‧First crystalline back conductive layer

171‧‧‧第三線路圖案 171‧‧‧ Third line pattern

172‧‧‧增長塊 172‧‧‧ growth block

180‧‧‧第二晶背導電層 180‧‧‧Second crystal back conductive layer

181‧‧‧下接墊 181‧‧‧下 pads

182‧‧‧重配置墊 182‧‧‧Relocation mat

191‧‧‧第一外接端子 191‧‧‧First external terminal

192‧‧‧第二外接端子 192‧‧‧Second external terminal

200‧‧‧矽穿孔晶片結構 200‧‧‧矽punched wafer structure

210‧‧‧半導體基板 210‧‧‧Semiconductor substrate

220‧‧‧貫穿孔 220‧‧‧through holes

221‧‧‧半導體軸心柱 221‧‧‧Semiconductor shaft column

231‧‧‧表面絕緣層 231‧‧‧Surface insulation

232‧‧‧介電襯裡 232‧‧‧ dielectric lining

233‧‧‧孔絕緣層 233‧‧‧ hole insulation

241‧‧‧同軸空心管 241‧‧‧Coaxial hollow tube

242‧‧‧同軸空心管 242‧‧‧Coaxial hollow tube

243‧‧‧同軸空心管 243‧‧‧Coaxial hollow tube

261‧‧‧晶背絕緣層 261‧‧‧ Crystal back insulation

第1圖:習知矽穿孔晶片結構之局部截面示意圖。 Figure 1: Schematic cross-sectional view of a conventional 矽 perforated wafer structure.

第2A與2B圖:習知矽穿孔晶片結構之局部上視示意圖。 2A and 2B are schematic partial top views of a conventional perforated wafer structure.

第3圖:依據本發明之一具體實施例,一種同軸多芯矽穿孔晶片結構之局部截面示意圖。 Figure 3 is a partial cross-sectional view showing the structure of a coaxial multi-core perforated wafer in accordance with an embodiment of the present invention.

第4圖:依據本發明之一具體實施例,繪示該矽穿孔結構之局部上視示意圖。 Fig. 4 is a partial top plan view showing the structure of the crucible perforation according to an embodiment of the invention.

第5A至5Q圖:依據本發明之一具體實施例,繪示該矽穿孔結構在製造過程中之局部截面示意圖。 5A to 5Q: According to an embodiment of the present invention, a partial cross-sectional view of the crucible structure in the manufacturing process is illustrated.

以下將配合所附圖示詳細說明本發明之實施例,然應注意的是,該些圖示均為簡化之示意圖,僅以示意方法來說明本發明之基本架構或實施方法,故僅顯示與 本案有關之元件與組合關係,圖中所顯示之元件並非以實際實施之數目、形狀、尺寸做等比例繪製,某些尺寸比例與其他相關尺寸比例或已誇張或是簡化處理,以提供更清楚的描述。實際實施之數目、形狀及尺寸比例為一種選置性之設計,詳細之元件佈局可能更為複雜。 The embodiments of the present invention will be described in detail below with reference to the accompanying drawings in which FIG. The components and combinations related to this case, the components shown in the figure are not drawn in proportion to the actual number, shape and size of the actual implementation. Some size ratios are proportional to other related sizes or have been exaggerated or simplified to provide clearer description of. The actual number, shape and size ratio of the implementation is an optional design, and the detailed component layout may be more complicated.

依據本發明之一具體實施例,一種同軸多芯矽穿孔晶片結構舉例說明於第3圖之局部截面示意圖、第4圖之局部上視示意圖以及第5A至5Q圖繪示其在製程各步驟中之主要元件局部截面示意圖。該同軸多芯矽穿孔晶片結構100係包含一半導體基板110、一貫穿孔120、一第一表面絕緣層131、一第一表面導電層140、一第二表面絕緣層132、一第二表面導電層150、一第一晶背絕緣層161、一第一晶背導電層170、一第二晶背絕緣層162、以及一第二晶背導電層180。 According to an embodiment of the present invention, a coaxial multi-core perforated wafer structure is illustrated in a partial cross-sectional view of FIG. 3, a partial top view of FIG. 4, and 5A to 5Q are illustrated in various steps of the process. A partial cross-sectional view of the main components. The coaxial multi-core perforated wafer structure 100 includes a semiconductor substrate 110, a uniform via 120, a first surface insulating layer 131, a first surface conductive layer 140, a second surface insulating layer 132, and a second surface conductive layer. 150. A first back insulating layer 161, a first back conductive layer 170, a second back insulating layer 162, and a second back conductive layer 180.

該半導體基板110係具有一主動面111與一背面112。該半導體基板110之基材係為半導體材質,例如矽(Si),該主動面111設置有積體電路元件以及適當的互連導線(conducting interconnect),並且一第一銲墊113與一第二銲墊114係可設置於該主動面111,以供積體電路之訊號傳輸。該貫穿孔120係貫穿該半導體基板110。該貫穿孔120之數量並非限制於一個,其總數應依據晶片之腳位除以某一倍數(2或更大)得到的除值,再作適當的數量增減。該貫穿孔120係應不對準於該第一銲墊113與該第二銲墊114。 The semiconductor substrate 110 has an active surface 111 and a back surface 112. The substrate of the semiconductor substrate 110 is made of a semiconductor material such as germanium (Si). The active surface 111 is provided with integrated circuit components and a suitable conducting interconnect, and a first pad 113 and a second A solder pad 114 can be disposed on the active surface 111 for signal transmission of the integrated circuit. The through hole 120 penetrates through the semiconductor substrate 110. The number of the through holes 120 is not limited to one, and the total number thereof should be divided by a certain multiple (2 or more) of the pad of the wafer, and then the appropriate amount is increased or decreased. The through hole 120 should not be aligned with the first pad 113 and the second pad 114.

該第一表面絕緣層131係形成於該半導體基板110之主動面111上以及該貫穿孔120內,用以隔離該第一表面導電層140與該半導體基板110。該第一表面導電層140係形成於該主動面111上以及該貫穿孔120內,並且該 第一表面導電層140係包含一在該貫穿孔120內之同軸空心管141,在該主動面111上之該第一表面導電層140係圖案化為一連接該同軸空心管141之第一線路圖案142,其係可電性連接至該半導體基板110之該第一銲墊113。較佳地,該第一表面導電層140係可更包含一在該主動面111上之獨立線路圖案143,該獨立線路圖案143係電性絕緣於該第一線路圖案142與該同軸空心管141。 The first surface insulating layer 131 is formed on the active surface 111 of the semiconductor substrate 110 and in the through hole 120 for isolating the first surface conductive layer 140 from the semiconductor substrate 110. The first surface conductive layer 140 is formed on the active surface 111 and in the through hole 120, and the The first surface conductive layer 140 includes a coaxial hollow tube 141 in the through hole 120. The first surface conductive layer 140 on the active surface 111 is patterned into a first line connecting the coaxial hollow tube 141. The pattern 142 is electrically connected to the first pad 113 of the semiconductor substrate 110. Preferably, the first surface conductive layer 140 further includes a separate line pattern 143 on the active surface 111. The independent line pattern 143 is electrically insulated from the first line pattern 142 and the coaxial hollow tube 141. .

該第二表面絕緣層132係形成於該第一表面絕緣層131上以及該貫穿孔120內,該第二表面絕緣層132係覆蓋該第一線路圖案142,用以隔離該第一表面導電層140與該第二表面導電層150。該貫穿孔120內係具有一不被該第二表面絕緣層132填滿之軸心孔121。該第二表面導電層150係形成於該第二表面絕緣層132上以及該貫穿孔120之該軸心孔121內,以使該第二表面導電層150包含一在該軸心孔121內並且與該同軸空心管141為電性絕緣之軸心柱151。在該第二表面絕緣層132上之該第二表面導電層150係圖案化為一對準連接在該軸心柱151上之上接墊153以及一連接該上接墊153之第二線路圖案152。通常該上接墊153係可為複數個配置,且具有不同之形狀,例如圓形墊與方形墊之組合(如第4圖所示),以作為辨識用接合墊。較佳地,該第二線路圖案152係可電性導接至該獨立線路圖案143,故該第二線路圖案152係可電絕緣地越過該第一線路圖案142,以電性連接至該半導體基板110之該第二銲墊114。 The second surface insulating layer 132 is formed on the first surface insulating layer 131 and the through hole 120. The second surface insulating layer 132 covers the first line pattern 142 for isolating the first surface conductive layer. 140 and the second surface conductive layer 150. The through hole 120 has a shaft hole 121 not filled by the second surface insulating layer 132. The second surface conductive layer 150 is formed on the second surface insulating layer 132 and the axial hole 121 of the through hole 120 such that the second surface conductive layer 150 includes a hole in the axial hole 121 and The shaft column 151 is electrically insulated from the coaxial hollow tube 141. The second surface conductive layer 150 on the second surface insulating layer 132 is patterned into an upper pad 153 aligned on the axis column 151 and a second line pattern connecting the upper pads 153. 152. Typically, the upper pads 153 can be in a plurality of configurations and have different shapes, such as a combination of a circular pad and a square pad (as shown in FIG. 4) as a bonding pad for identification. Preferably, the second line pattern 152 is electrically connected to the independent line pattern 143, so the second line pattern 152 is electrically insulated from the first line pattern 142 to be electrically connected to the semiconductor. The second pad 114 of the substrate 110.

該第一晶背絕緣層161係形成於該背面112上,用以隔離該第一晶背導電層170與該半導體基板110。該同軸空心管141之端面與該軸心柱151之端面係顯露在該背面112。該第一晶背導電層170係形成於該第一晶背 絕緣層161上,並且該第一晶背導電層170係包含一第三線路圖案171,其係連接該同軸空心管141之端面。 The first back insulating layer 161 is formed on the back surface 112 to isolate the first back conductive layer 170 from the semiconductor substrate 110. An end surface of the coaxial hollow tube 141 and an end surface of the shaft post 151 are exposed on the back surface 112. The first crystalline back conductive layer 170 is formed on the first crystal back The insulating layer 161, and the first back conductive layer 170 includes a third line pattern 171 which is connected to the end surface of the coaxial hollow tube 141.

該第二晶背絕緣層162係形成於該第一晶背絕緣層161上,用以隔離該第二晶背導電層180與該第一晶背導電層170。該第二晶背絕緣層162係覆蓋該第三線路圖案171,而不覆蓋該軸心柱151之端面。該第二晶背導電層180係形成於該第二晶背絕緣層162上,該第二晶背導電層180係圖案化為一對準連接在該軸心柱151下之下接墊181。 The second back insulating layer 162 is formed on the first back insulating layer 161 for isolating the second back conductive layer 180 from the first back conductive layer 170. The second back insulating layer 162 covers the third line pattern 171 without covering the end surface of the shaft pillar 151. The second back conductive layer 180 is formed on the second back insulating layer 162. The second back conductive layer 180 is patterned into a pad 181 which is aligned under the axis 151.

其中該同軸空心管141係完全被該第二表面絕緣層132與該第二晶背絕緣層162包覆,並且該同軸空心管141之長度係小於該軸心柱151之長度,以使該上接墊153與該下接墊181為電性絕緣於該同軸空心管141及其連接之該第一線路圖案142與該第三線路圖案171。此外,該第一晶背導電層170係可更包含一增長塊172,其係接合至該軸心柱151之端面,用以增加該軸心柱151之長度。 The coaxial hollow tube 141 is completely covered by the second surface insulating layer 132 and the second crystalline back insulating layer 162, and the length of the coaxial hollow tube 141 is smaller than the length of the shaft post 151, so that the upper portion The pad 153 and the lower pad 181 are electrically insulated from the coaxial hollow tube 141 and the first line pattern 142 and the third line pattern 171 connected thereto. In addition, the first back conductive layer 170 may further include a growth block 172 bonded to an end surface of the shaft pillar 151 for increasing the length of the shaft pillar 151.

更具體地,該同軸多芯矽穿孔晶片結構100係可另包含至少一第一外接端子191與至少一第二外接端子192,該第一外接端子191係接合於該下接墊181,而該第二晶背導電層180係另包含一接合至該第三線路圖案171之重配置墊182,該第二外接端子192係接合於該重配置墊182,藉以使通過同一矽穿孔之兩訊號由不同的外接端子作個別的縱向導通。較佳地,該下接墊181與該重配置墊182係可為凸塊化,例如銅柱凸塊,該第一外接端子191與該第二外接端子192係為銲料,例如無鉛銲料,用以接合至鄰近晶片結構之上接墊153。 More specifically, the coaxial multi-core perforated wafer structure 100 can further include at least one first external terminal 191 and at least one second external terminal 192, and the first external terminal 191 is coupled to the lower pad 181, and the The second back conductive layer 180 further includes a re-arrangement pad 182 bonded to the third line pattern 171. The second external terminal 192 is bonded to the re-arrangement pad 182, so that the two signals passing through the same crucible are Different external terminals are used for individual longitudinal conduction. Preferably, the lower pad 181 and the re-arrangement pad 182 can be bumped, for example, a copper stud bump. The first external terminal 191 and the second external terminal 192 are soldered, for example, lead-free solder. To bond to pads 153 on adjacent wafer structures.

在該同軸多芯矽穿孔晶片結構100之製程中之各步驟係可參閱第5A至5Q圖。首先,如第5A圖所示, 提供一在晶圓型態之半導體基板110,係具有一主動面111與一背面,其係為第5A圖中之未薄化前背面112A。該主動面111係為積體電路之形成表面並可設置有至少一第一銲墊113。之後,如第5B圖所示,由該主動面111形成一孔穴120A,該孔穴120A之深度係小於該半導體基板110之未薄化厚度以及大於該半導體基板110之薄化後厚度。該孔穴120A之形成方法係可為微影成像與蝕刻方法,特別是反應性離子蝕刻(RIE)。該孔穴120A之形狀係可為圓形、矩形或三角形。之後,如第5C圖所示,形成一第一表面絕緣層131於該主動面111上以及該孔穴120A內。該第一表面絕緣層131係可為四乙氧基矽烷(TEOS)或HARP絕緣層,可利用次大氣壓化學氣相沉積(Sub-Atmospheric CVD,SACVD)製程低溫形成或者是熱氧化(thermal oxidation)製程高溫形成。 The steps in the fabrication of the coaxial multi-core perforated wafer structure 100 can be seen in Figures 5A through 5Q. First, as shown in Figure 5A, A wafer type semiconductor substrate 110 is provided having an active surface 111 and a back surface, which is the unthinned front surface 112A in FIG. 5A. The active surface 111 is a forming surface of the integrated circuit and may be provided with at least one first pad 113. Thereafter, as shown in FIG. 5B, a cavity 120A is formed by the active surface 111. The depth of the hole 120A is smaller than the unthickened thickness of the semiconductor substrate 110 and larger than the thinned thickness of the semiconductor substrate 110. The method of forming the holes 120A may be a lithography imaging and etching method, particularly reactive ion etching (RIE). The shape of the aperture 120A can be circular, rectangular or triangular. Thereafter, as shown in FIG. 5C, a first surface insulating layer 131 is formed on the active surface 111 and in the cavity 120A. The first surface insulating layer 131 may be a tetraethoxy decane (TEOS) or a HARP insulating layer, which may be formed by a sub-atmospheric CVD (SACVD) process at a low temperature or a thermal oxidation. The process is formed at a high temperature.

之後,如第5D圖所示,形成一第一表面導電層140於該主動面111上以及該孔穴120A內,並且該第一表面導電層140係包含一在該孔穴120A內之同軸空心管141。該第一表面導電層140係可為濺鍍形成之鈦(Ti)、電鍍形成之銅(Cu)、或是低壓化學氣相沉積(Low-pressure CVD,LPCVD)製程形成之多晶矽(poly-Si)。接著,如第5E圖所示,以微影成像與圖案化蝕刻技術,使在該主動面111上之該第一表面導電層140係圖案化為一連接該同軸空心管141之第一線路圖案142。此外,該第一表面導電層140係更包含一在該主動面111上之獨立線路圖案143,該獨立線路圖案143係電性絕緣於該第一線路圖案142與該同軸空心管141。 Thereafter, as shown in FIG. 5D, a first surface conductive layer 140 is formed on the active surface 111 and in the cavity 120A, and the first surface conductive layer 140 includes a coaxial hollow tube 141 in the cavity 120A. . The first surface conductive layer 140 can be formed by sputtering titanium (Ti), electroplated copper (Cu), or low pressure chemical vapor deposition (LPCVD) process of polycrystalline silicon (poly-Si). ). Next, as shown in FIG. 5E, the first surface conductive layer 140 on the active surface 111 is patterned into a first line pattern connecting the coaxial hollow tubes 141 by lithography and pattern etching. 142. In addition, the first surface conductive layer 140 further includes a separate line pattern 143 on the active surface 111. The independent line pattern 143 is electrically insulated from the first line pattern 142 and the coaxial hollow tube 141.

之後,如第5F圖所示,形成一第二表面絕緣層132於該第一表面絕緣層131上以及該孔穴120A內,該 第二表面絕緣層132係覆蓋該第一線路圖案142,該孔穴120A內係具有一不被該第二表面絕緣層132填滿之軸心孔121。該第二表面絕緣層132係可為化學氣相沉積(CVD)製程形成之二氧化矽(SiO2)、或者是次大氣壓化學氣相沉積(Sub-Atmospheric CVD,SACVD)製程形成之四乙氧基矽烷(TEOS)或HARP絕緣層。之後,如第5G圖所示,形成該第二表面絕緣層132之開孔,例如雷射切割或是圖案化乾蝕刻,以顯露該獨立線路圖案143之接點。 Then, as shown in FIG. 5F, a second surface insulating layer 132 is formed on the first surface insulating layer 131 and in the hole 120A. The second surface insulating layer 132 covers the first line pattern 142. The 120A has a shaft hole 121 not filled by the second surface insulating layer 132. Tetraethoxysilane forming surface of the second insulating layer 132 may be by a chemical vapor deposition (CVD) process to form the silicon dioxide (SiO 2), or a sub-atmospheric chemical vapor deposition (Sub-Atmospheric CVD, SACVD) process A terpene (TEOS) or HARP insulating layer. Thereafter, as shown in FIG. 5G, openings of the second surface insulating layer 132 are formed, such as laser cutting or patterned dry etching, to expose the contacts of the independent line patterns 143.

之後,如第5H圖所示,形成一第二表面導電層150於該第二表面絕緣層132上以及該孔穴120A之該軸心孔121內,以使該第二表面導電層150包含一在該軸心孔121內並且與該同軸空心管141為電性絕緣之軸心柱151。該第二表面導電層150之形成方法係可與上述該第一表面導電層140之形成方法為相同。之後,如第5I圖所示,以微影成像與圖案化蝕刻技術,使在該第二表面絕緣層132上之該第二表面導電層150係圖案化為一對準連接在該軸心柱151上之上接墊153以及一連接該上接墊153之第二線路圖案152。較佳地,該第二線路圖案152係透過該第二表面絕緣層132之開孔而電性導接至該獨立線路圖案143。 Then, as shown in FIG. 5H, a second surface conductive layer 150 is formed on the second surface insulating layer 132 and the axial hole 121 of the hole 120A, so that the second surface conductive layer 150 includes The shaft post 151 is electrically insulated from the coaxial hollow tube 141 in the shaft hole 121. The method of forming the second surface conductive layer 150 can be the same as the method of forming the first surface conductive layer 140 described above. Then, as shown in FIG. 5I, the second surface conductive layer 150 on the second surface insulating layer 132 is patterned into an alignment connection on the axis column by lithography imaging and pattern etching. The upper pad 153 and the second line pattern 152 connecting the upper pad 153. Preferably, the second line pattern 152 is electrically connected to the independent line pattern 143 through the opening of the second surface insulating layer 132.

之後,如第5J圖所示,由該背面112薄化該半導體基板110,以致使該孔穴120A形成為一貫穿該半導體基板110之貫穿孔120。上述由該背面112薄化該半導體基板110之步驟除了晶背研磨之外係可更包含化學蝕刻,而使該軸心柱151與該同軸空心管141突出於該薄化背面112。之後,如第5K圖所示,形成一第一晶背絕緣層161於該薄化背面112上。 Thereafter, as shown in FIG. 5J, the semiconductor substrate 110 is thinned by the back surface 112 such that the hole 120A is formed as a through hole 120 penetrating the semiconductor substrate 110. The step of thinning the semiconductor substrate 110 from the back surface 112 may further include chemical etching in addition to the crystal back polishing, and the axis pillar 151 and the coaxial hollow tube 141 protrude from the thinned back surface 112. Thereafter, as shown in FIG. 5K, a first crystalline back insulating layer 161 is formed on the thinned back surface 112.

之後,如第5L圖所示,顯露該同軸空心管141 之端面與該軸心柱151之端面在該薄化背面112。而上述顯露該同軸空心管141之端面與該軸心柱151之端面在該薄化背面112之步驟係包含晶圓背面之化學機械拋光。之後,如第5M圖所示,形成一第一晶背導電層170於該第一晶背絕緣層161上。並且,如第5N圖所示,可利用微影成像與圖案化蝕刻之技術,使得該第一晶背導電層170係包含一第三線路圖案171,其係連接該同軸空心管141之端面。該第一晶背導電層170係可另包含一增長塊172,其係接合至該軸心柱151之端面,用以增加該軸心柱151之長度。該增長塊172係不連接至該第三線路圖案171。 Thereafter, as shown in FIG. 5L, the coaxial hollow tube 141 is exposed. The end surface and the end surface of the shaft post 151 are on the thinned back surface 112. The step of exposing the end surface of the coaxial hollow tube 141 and the end surface of the shaft post 151 on the thinned back surface 112 includes chemical mechanical polishing of the wafer back surface. Thereafter, as shown in FIG. 5M, a first back surface conductive layer 170 is formed on the first crystal back insulating layer 161. Moreover, as shown in FIG. 5N, the lithography and pattern etching techniques can be utilized to make the first back surface conductive layer 170 include a third line pattern 171 that is connected to the end surface of the coaxial hollow tube 141. The first rear back conductive layer 170 can further include a growth block 172 bonded to an end surface of the shaft post 151 for increasing the length of the shaft post 151. The growth block 172 is not connected to the third line pattern 171.

之後,如第5O圖所示,形成一第二晶背絕緣層162於該第一晶背絕緣層161上,該第二晶背絕緣層162係覆蓋該第三線路圖案171。之後,如第5P圖所示,圖案化蝕刻該第二晶背絕緣層162,以顯露該第三線路圖案171之接墊以及該軸心柱151下方之直接或間接端面,以使該第二晶背絕緣層162不覆蓋該軸心柱151之端面。 Thereafter, as shown in FIG. 5O, a second back insulating layer 162 is formed on the first back insulating layer 161, and the second back insulating layer 162 covers the third line pattern 171. Then, as shown in FIG. 5P, the second back insulating layer 162 is patterned and etched to expose the pads of the third line pattern 171 and the direct or indirect end faces of the shaft pillars 151 to make the second The crystal back insulating layer 162 does not cover the end surface of the shaft post 151.

之後,如第5Q圖所示,形成一第二晶背導電層180於該第二晶背絕緣層162上,該第二晶背導電層180係圖案化為一對準連接在該軸心柱151下之下接墊181,其中該同軸空心管141係完全被該第二表面絕緣層132與該第二晶背絕緣層162包覆,並且該同軸空心管141之長度係小於該軸心柱151之長度,以使該上接墊153與該下接墊181為電性絕緣於該同軸空心管141及其連接之該第一線路圖案142與該第三線路圖案171。此外,可設置至少一第一外接端子191與至少一第二外接端子192,該第一外接端子191係接合於該下接墊181,該第二晶背導電層180係另包含一接合至該第三線路圖案171之重配置墊182,該第二外接端子192係接合於該重配置墊182。 Thereafter, as shown in FIG. 5Q, a second back conductive layer 180 is formed on the second back insulating layer 162, and the second back conductive layer 180 is patterned to be aligned on the axis. a lower 151 under the 151, wherein the coaxial hollow tube 141 is completely covered by the second surface insulating layer 132 and the second crystalline back insulating layer 162, and the length of the coaxial hollow tube 141 is smaller than the axial column The length of the 151 is such that the upper pad 153 and the lower pad 181 are electrically insulated from the coaxial hollow tube 141 and the first line pattern 142 and the third line pattern 171 connected thereto. In addition, at least one first external terminal 191 and at least one second external terminal 192 may be disposed. The first external terminal 191 is coupled to the lower pad 181, and the second back conductive layer 180 further includes a bonding The re-arrangement pad 182 of the third line pattern 171 is bonded to the re-arrangement pad 182.

因此,利用本發明提供之一種同軸多芯矽穿孔晶片結構及其製造方法,多訊號可共用同一矽穿孔且無漏電流(leakage)之風險,藉以減少矽穿孔的設置數量,進而降低因過多矽穿孔造成之晶片碎裂(die crack)。 Therefore, with the coaxial multi-core perforated wafer structure and the manufacturing method thereof provided by the present invention, the multi-signal can share the same perforation and no risk of leakage, thereby reducing the number of perforated perforations and reducing the number of defects. A die crack caused by the perforation.

以上所述,僅是本發明的較佳實施例而已,並非對本發明作任何形式上的限制,雖然本發明已以較佳實施例揭露如上,然而並非用以限定本發明,任何熟悉本項技術者,在不脫離本發明之技術範圍內,所作的任何簡單修改、等效性變化與修飾,均仍屬於本發明的技術範圍內。 The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention. Any simple modifications, equivalent changes and modifications made without departing from the technical scope of the present invention are still within the technical scope of the present invention.

100‧‧‧同軸多芯矽穿孔晶片結構 100‧‧‧ coaxial multi-core perforated wafer structure

110‧‧‧半導體基板 110‧‧‧Semiconductor substrate

111‧‧‧主動面 111‧‧‧Active surface

112‧‧‧背面 112‧‧‧Back

113‧‧‧第一銲墊 113‧‧‧First pad

114‧‧‧第二銲墊 114‧‧‧Second pad

120‧‧‧貫穿孔 120‧‧‧through holes

121‧‧‧軸心孔 121‧‧‧Axis hole

131‧‧‧第一表面絕緣層 131‧‧‧First surface insulation

132‧‧‧第二表面絕緣層 132‧‧‧Second surface insulation

140‧‧‧第一表面導電層 140‧‧‧First surface conductive layer

141‧‧‧同軸空心管 141‧‧‧Coaxial hollow tube

142‧‧‧第一線路圖案 142‧‧‧First line pattern

143‧‧‧獨立線路圖案 143‧‧‧Independent line pattern

150‧‧‧第二表面導電層 150‧‧‧Second surface conductive layer

151‧‧‧軸心柱 151‧‧‧ Axis column

152‧‧‧第二線路圖案 152‧‧‧second line pattern

153‧‧‧上接墊 153‧‧‧Upper pad

161‧‧‧第一晶背絕緣層 161‧‧‧First Crystal Back Insulation

162‧‧‧第二晶背絕緣層 162‧‧‧Second crystal back insulation

170‧‧‧第一晶背導電層 170‧‧‧First crystalline back conductive layer

171‧‧‧第三線路圖案 171‧‧‧ Third line pattern

172‧‧‧增長塊 172‧‧‧ growth block

180‧‧‧第二晶背導電層 180‧‧‧Second crystal back conductive layer

181‧‧‧下接墊 181‧‧‧下 pads

182‧‧‧重配置墊 182‧‧‧Relocation mat

191‧‧‧第一外接端子 191‧‧‧First external terminal

192‧‧‧第二外接端子 192‧‧‧Second external terminal

Claims (10)

一種同軸多芯矽穿孔晶片結構,包含:一半導體基板,係具有一主動面與一背面;一貫穿孔,係貫穿該半導體基板;一第一表面絕緣層,係形成於該主動面上以及該貫穿孔內;一第一表面導電層,係形成於該主動面上以及該貫穿孔內,並且該第一表面導電層係包含一在該貫穿孔內之同軸空心管,在該主動面上之該第一表面導電層係圖案化為一連接該同軸空心管之第一線路圖案;一第二表面絕緣層,係形成於該第一表面絕緣層上以及該貫穿孔內,該第二表面絕緣層係覆蓋該第一線路圖案,該貫穿孔內係具有一不被該第二表面絕緣層填滿之軸心孔;一第二表面導電層,係形成於該第二表面絕緣層上以及該貫穿孔之該軸心孔內,以使該第二表面導電層包含一在該軸心孔內並且與該同軸空心管為電性絕緣之軸心柱,在該第二表面絕緣層上之該第二表面導電層係圖案化為一對準連接在該軸心柱上之上接墊以及一連接該上接墊之第二線路圖案;一第一晶背絕緣層,係形成於該背面上,該同軸空心管之端面與該軸心柱之端面係顯露在該背面;一第一晶背導電層,係形成於該第一晶背絕緣層上,並且該第一晶背導電層係包含一第三線路圖案,其係連接該同軸空心管之端面;一第二晶背絕緣層,係形成於該第一晶背絕緣層上,該第二晶背絕緣層係覆蓋該第三線路圖案,而不覆 蓋該軸心柱之端面;以及一第二晶背導電層,係形成於該第二晶背絕緣層上,該第二晶背導電層係圖案化為一對準連接在該軸心柱下之下接墊,其中該同軸空心管係完全被該第二表面絕緣層與該第二晶背絕緣層包覆,並且該同軸空心管之長度係小於該軸心柱之長度,以使該上接墊與該下接墊為電性絕緣於該同軸空心管及其連接之該第一線路圖案與該第三線路圖案。 A coaxial multi-core perforated wafer structure comprising: a semiconductor substrate having an active surface and a back surface; a through hole extending through the semiconductor substrate; a first surface insulating layer formed on the active surface and the through surface a first surface conductive layer formed on the active surface and the through hole, and the first surface conductive layer includes a coaxial hollow tube in the through hole, where the active surface The first surface conductive layer is patterned into a first line pattern connecting the coaxial hollow tubes; a second surface insulating layer is formed on the first surface insulating layer and in the through hole, the second surface insulating layer Covering the first circuit pattern, the through hole has a shaft hole not filled by the second surface insulating layer; a second surface conductive layer is formed on the second surface insulating layer and the through hole The axis of the hole is such that the second surface conductive layer includes a shaft post in the shaft hole and electrically insulated from the coaxial hollow tube, and the second surface insulating layer Two surface conduction The pattern is formed by an upper pad connected on the axis column and a second line pattern connecting the upper pads; a first back insulating layer is formed on the back surface, the coaxial hollow tube The end surface of the shaft and the end of the shaft are exposed on the back surface; a first back conductive layer is formed on the first back insulating layer, and the first back conductive layer comprises a third line pattern Connected to the end surface of the coaxial hollow tube; a second crystalline back insulating layer is formed on the first crystalline back insulating layer, and the second crystalline back insulating layer covers the third line pattern without overlying Covering an end face of the shaft post; and a second back conductive layer formed on the second back insulating layer, the second back conductive layer being patterned to be aligned under the axis a lower pad, wherein the coaxial hollow tube is completely covered by the second surface insulating layer and the second back insulating layer, and the length of the coaxial hollow tube is smaller than a length of the shaft column to make the upper The pad and the lower pad are electrically insulated from the coaxial hollow tube and the first line pattern and the third line pattern connected thereto. 依據申請專利範圍第1項所述之同軸多芯矽穿孔晶片結構,其中該第一表面導電層係更包含一在該主動面上之獨立線路圖案,該獨立線路圖案係電性絕緣於該第一線路圖案與該同軸空心管,該第二線路圖案係電性導接至該獨立線路圖案。 The coaxial multi-core perforated wafer structure according to claim 1, wherein the first surface conductive layer further comprises an independent circuit pattern on the active surface, the independent circuit pattern being electrically insulated from the first a line pattern and the coaxial hollow tube, the second line pattern is electrically connected to the independent line pattern. 依據申請專利範圍第1項所述之同軸多芯矽穿孔晶片結構,另包含至少一第一外接端子與至少一第二外接端子,該第一外接端子係接合於該下接墊,該第二晶背導電層係另包含一接合至該第三線路圖案之重配置墊,該第二外接端子係接合於該重配置墊。 The coaxial multi-core perforated wafer structure according to claim 1, further comprising at least one first external terminal and at least one second external terminal, wherein the first external terminal is coupled to the lower pad, the second The crystalline back conductive layer further includes a relocation pad bonded to the third line pattern, the second external terminal being bonded to the relocation pad. 依據申請專利範圍第3項所述之同軸多芯矽穿孔晶片結構,其中該下接墊與該重配置墊係為凸塊化,該第一外接端子與該第二外接端子係為銲料。 The coaxial multi-core perforated wafer structure according to claim 3, wherein the lower pad and the re-arrangement pad are bumped, and the first external terminal and the second external terminal are solder. 依據申請專利範圍第1項所述之同軸多芯矽穿孔晶片結構,其中該第一晶背導電層係另包含一增長塊,其係接合至該軸心柱之端面,用以增加該軸心柱之長度。 The coaxial multi-core perforated wafer structure according to claim 1, wherein the first back-conducting layer further comprises a growth block bonded to an end surface of the shaft post for increasing the axis The length of the column. 依據申請專利範圍第1項所述之同軸多芯矽穿孔晶片結構,其中該上接墊係為複數個配置,且具有不同之形狀,以作為辨識用接合墊。 The coaxial multi-core perforated wafer structure according to claim 1, wherein the upper pads are in a plurality of configurations and have different shapes for use as identification bonding pads. 一種同軸多芯矽穿孔晶片結構之製造方法,包含步驟 為:提供一半導體基板,係具有一主動面與一背面;由該主動面形成一孔穴;形成一第一表面絕緣層於該主動面上以及該孔穴內;形成一第一表面導電層於該主動面上以及該孔穴內,並且該第一表面導電層係包含一在該孔穴內之同軸空心管,在該主動面上之該第一表面導電層係圖案化為一連接該同軸空心管之第一線路圖案;形成一第二表面絕緣層於該第一表面絕緣層上以及該孔穴內,該第二表面絕緣層係覆蓋該第一線路圖案,該孔穴內係具有一不被該第二表面絕緣層填滿之軸心孔;形成一第二表面導電層於該第二表面絕緣層上以及該孔穴之該軸心孔內,以使該第二表面導電層包含一在該軸心孔內並且與該同軸空心管為電性絕緣之軸心柱,在該第二表面絕緣層上之該第二表面導電層係圖案化為一對準連接在該軸心柱上之上接墊以及一連接該上接墊之第二線路圖案;由該背面薄化該半導體基板,以致使該孔穴形成為一貫穿該半導體基板之貫穿孔;形成一第一晶背絕緣層於該薄化背面上;顯露該同軸空心管之端面與該軸心柱之端面在該薄化背面;形成一第一晶背導電層於該第一晶背絕緣層上,並且該第一晶背導電層係包含一第三線路圖案,其係連接該同軸空心管之端面;形成一第二晶背絕緣層於該第一晶背絕緣層上,該第二晶背絕緣層係覆蓋該第三線路圖案,而不覆蓋該 軸心柱之端面;以及形成一第二晶背導電層於該第二晶背絕緣層上,該第二晶背導電層係圖案化為一對準連接在該軸心柱下之下接墊,其中該同軸空心管係完全被該第二表面絕緣層與該第二晶背絕緣層包覆,並且該同軸空心管之長度係小於該軸心柱之長度,以使該上接墊與該下接墊為電性絕緣於該同軸空心管及其連接之該第一線路圖案與該第三線路圖案。 Method for manufacturing coaxial multi-core perforated wafer structure, including steps Providing a semiconductor substrate having an active surface and a back surface; forming a hole from the active surface; forming a first surface insulating layer on the active surface and the hole; forming a first surface conductive layer thereon An active surface and the cavity, and the first surface conductive layer includes a coaxial hollow tube in the hole, and the first surface conductive layer on the active surface is patterned to connect the coaxial hollow tube a first line pattern; forming a second surface insulating layer on the first surface insulating layer and the hole, the second surface insulating layer covering the first line pattern, the hole having a second portion a surface insulating layer filled with the axial hole; forming a second surface conductive layer on the second surface insulating layer and the axial hole of the hole, so that the second surface conductive layer comprises a hole in the axial hole a shaft post electrically insulated from the coaxial hollow tube, the second surface conductive layer on the second surface insulating layer being patterned as an aligning pad on the shaft post and Connected to the upper pad a second line pattern; the semiconductor substrate is thinned by the back surface such that the hole is formed as a through hole penetrating the semiconductor substrate; a first back insulating layer is formed on the thinned back surface; and an end surface of the coaxial hollow tube is exposed An end surface of the shaft pillar is on the thinned back surface; a first back surface conductive layer is formed on the first crystal back insulating layer, and the first crystal back conductive layer comprises a third line pattern, which is connected An end surface of the coaxial hollow tube; forming a second back insulating layer on the first back insulating layer, the second back insulating layer covering the third line pattern without covering the An end surface of the axial column; and a second crystalline back conductive layer formed on the second crystalline back insulating layer, the second crystalline back conductive layer is patterned into an alignment pad under the axial column The coaxial hollow tube is completely covered by the second surface insulating layer and the second crystal back insulating layer, and the length of the coaxial hollow tube is smaller than the length of the shaft column, so that the upper pad and the upper pad The lower pad is electrically insulated from the coaxial hollow tube and the first line pattern and the third line pattern connected thereto. 依據申請專利範圍第7項所述之同軸多芯矽穿孔晶片結構之製造方法,其中該第一表面導電層係更包含一在該主動面上之獨立線路圖案,該獨立線路圖案係電性絕緣於該第一線路圖案與該同軸空心管,該第二線路圖案係電性導接至該獨立線路圖案。 The method for manufacturing a coaxial multi-core perforated wafer structure according to claim 7, wherein the first surface conductive layer further comprises an independent circuit pattern on the active surface, the independent circuit pattern being electrically insulated. The second line pattern is electrically connected to the independent line pattern in the first line pattern and the coaxial hollow tube. 依據申請專利範圍第7項所述之同軸多芯矽穿孔晶片結構之製造方法,另包含:設置至少一第一外接端子與至少一第二外接端子,該第一外接端子係接合於該下接墊,該第二晶背導電層係另包含一接合至該第三線路圖案之重配置墊,該第二外接端子係接合於該重配置墊。 The method for manufacturing a coaxial multi-core perforated wafer structure according to claim 7 , further comprising: providing at least one first external terminal and at least one second external terminal, wherein the first external terminal is coupled to the lower connection The pad, the second back conductive layer further includes a relocation pad bonded to the third line pattern, and the second external terminal is bonded to the relocation pad. 依據申請專利範圍第7項所述之同軸多芯矽穿孔晶片結構之製造方法,其中上述由該背面薄化該半導體基板之步驟係包含化學蝕刻,而使該軸心柱與該同軸空心管突出於該薄化背面;而上述顯露該同軸空心管之端面與該軸心柱之端面在該薄化背面之步驟係包含化學機械拋光。 The method for manufacturing a coaxial multi-core perforated wafer structure according to claim 7, wherein the step of thinning the semiconductor substrate from the back surface comprises chemical etching, and the axis column and the coaxial hollow tube are protruded The step of thinning the back surface; and the step of exposing the end surface of the coaxial hollow tube and the end surface of the shaft post on the thinned back surface comprises chemical mechanical polishing.
TW103110907A 2014-03-24 2014-03-24 Chip structure with coaxial multi-core tsv amd method for manufacturing the same TWI555168B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103110907A TWI555168B (en) 2014-03-24 2014-03-24 Chip structure with coaxial multi-core tsv amd method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103110907A TWI555168B (en) 2014-03-24 2014-03-24 Chip structure with coaxial multi-core tsv amd method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201537718A true TW201537718A (en) 2015-10-01
TWI555168B TWI555168B (en) 2016-10-21

Family

ID=54850982

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103110907A TWI555168B (en) 2014-03-24 2014-03-24 Chip structure with coaxial multi-core tsv amd method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI555168B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI631634B (en) * 2016-02-04 2018-08-01 台灣積體電路製造股份有限公司 Interconnect structure and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI518861B (en) * 2011-04-13 2016-01-21 聯華電子股份有限公司 Tsv structure and method for forming the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI631634B (en) * 2016-02-04 2018-08-01 台灣積體電路製造股份有限公司 Interconnect structure and method of manufacturing the same
US10785865B2 (en) 2016-02-04 2020-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. Interconnect structure and method of manufacturing the same
US11457525B2 (en) 2016-02-04 2022-09-27 Taiwan Semiconductor Manufacturing Co., Ltd. Interconnect structure having conductor extending along dielectric block
US11737205B2 (en) 2016-02-04 2023-08-22 Taiwan Semiconductor Manufacturing Co., Ltd. Interconnect structure having conductor extending along dielectric block

Also Published As

Publication number Publication date
TWI555168B (en) 2016-10-21

Similar Documents

Publication Publication Date Title
US9054081B2 (en) Semiconductor device having through-substrate via with insulating portion
US8742535B2 (en) Integration of shallow trench isolation and through-substrate vias into integrated circuit designs
JP4922193B2 (en) Self-aligned wafer or chip structure, self-aligned stacked structure, and method of manufacturing the same
JP4415984B2 (en) Manufacturing method of semiconductor device
US8987137B2 (en) Method of fabrication of through-substrate vias
US9691840B2 (en) Cylindrical embedded capacitors
US9515024B2 (en) Structures with through vias passing through a substrate comprising a planar insulating layer between semiconductor
US20110133339A1 (en) Semiconductor Structure and Method for Making the Same
KR20140029178A (en) Semiconductor device and method of manufacturing the same
TWI595612B (en) Wafer level chip scale package having continuous tsv configuration and its fabrication method
TW201301459A (en) Semiconductor constructions having through-substrate interconnects, and methods of forming through-substrate interconnects
US8791578B2 (en) Through-silicon via structure with patterned surface, patterned sidewall and local isolation
JP2013247139A (en) Semiconductor device and method of manufacturing the same
TWI555168B (en) Chip structure with coaxial multi-core tsv amd method for manufacturing the same
JP2019047043A (en) Stacked semiconductor device, semiconductor device substrate, and manufacturing method thereof
JP2014022637A (en) Semiconductor device and manufacturing method of the same
TWI512923B (en) Interposer and method of manufacture
JP2005311117A (en) Semiconductor device and its manufacturing method
JP2015153930A (en) Semiconductor device and manufacturing method of the same
US9478464B2 (en) Method for manufacturing through-hole silicon via
TWI509761B (en) Silicon based substrate and manufacturing method thereof
JP2016048743A (en) Semiconductor device and manufacturing method of the same
WO2020108603A1 (en) Method for fabricating semiconductor interconnect structure and semiconductor structure thereof
TWI518859B (en) Chip structure having pillar bump embedded in tsv
TW202032717A (en) Semiconductor device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees