TW201537167A - An inspecting equipment and a biochip - Google Patents

An inspecting equipment and a biochip Download PDF

Info

Publication number
TW201537167A
TW201537167A TW103110503A TW103110503A TW201537167A TW 201537167 A TW201537167 A TW 201537167A TW 103110503 A TW103110503 A TW 103110503A TW 103110503 A TW103110503 A TW 103110503A TW 201537167 A TW201537167 A TW 201537167A
Authority
TW
Taiwan
Prior art keywords
signal
control
microelectrode
dielectric layer
control unit
Prior art date
Application number
TW103110503A
Other languages
Chinese (zh)
Other versions
TWI510780B (en
Inventor
Chen-Yi Lee
Yi-Tse Lai
Yu-Tao Yang
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW103110503A priority Critical patent/TWI510780B/en
Priority to CN201410244540.4A priority patent/CN104931550B/en
Priority to US14/341,466 priority patent/US9573129B2/en
Priority to JP2015010049A priority patent/JP6073938B2/en
Publication of TW201537167A publication Critical patent/TW201537167A/en
Application granted granted Critical
Publication of TWI510780B publication Critical patent/TWI510780B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting

Abstract

An inspecting equipment includes a biochip and a processing unit. The biochip includes a micro electrode dot array, a cover, a shielding layer, N control unit, and a bonding area. The micro electrode dot array includes N micro electrodes. N control unit are disposed under N micro electrodes respectively and connected as daisy-chain. The shielding layer is disposed between the micro electrode dot array and N control unit to isolate electrical interference from the cover. The processing unit makes the biochip to actuate and detect droplet(s) based on a data input signal, a data output signal, a clock signal, a first control signal, a second control signal, and a third control signal.

Description

生物檢測設備及生物晶片 Biodetection equipment and biochip

本發明是有關於一種生物檢測設備及生物晶片,特別是指一種具有微電極點陣列的生物檢測設備及生物晶片。 The present invention relates to a biodetection device and a biochip, and more particularly to a biodetection device and a biochip having an array of microelectrode dots.

隨著國人的平均壽命逐年增加,不論是對於疾病篩檢、醫療診斷或是老年照護,健康檢查的重要性也逐年攀升。傳統的分析方法是將檢體使用離心機分離,取出待檢測部分,再透過加入不同的試劑反應物,依照其顯現的顏色或生成物的濃度等,來判斷檢體的狀況。因此,所需要的人力多,分析時間長,導致費用較高。 As the average life expectancy of Chinese people increases year by year, the importance of health checks has increased year by year, whether for disease screening, medical diagnosis or aged care. The conventional analysis method is to separate the sample using a centrifuge, take out the portion to be detected, and then add a different reagent reactant, and judge the condition of the sample according to the color of the substance or the concentration of the product. Therefore, the manpower required is long and the analysis time is long, resulting in high costs.

相較之下,生物晶片的發展,不僅可以達到快速、有效的分析,更可以在居家使用,減少人力成本,而能廣泛普及。生物晶片中的實驗室晶片(Laboratory-on-a-chip,LOC),又稱為微型全分析系統(Micro total analytical system,μ TAS),是將原本在實驗室的操作過程微小化,整合至晶片。除了縮短整體的反應時間,提高效率外,實驗室晶片也大幅度縮小檢驗誤差。這種設計同時將醫學分析和電子系統整合,能節省時間、空間和人力資源,大幅度 地降低成本,絕對是未來備受矚目的技術與產品。 In contrast, the development of biochips can not only achieve rapid and effective analysis, but also can be used at home, reducing labor costs, and can be widely used. The laboratory-on-a-chip (LOC) in biochips, also known as the Micro Total Analytical System (μTAS), is a micro-integration process that is originally integrated into the laboratory. Wafer. In addition to shortening the overall reaction time and improving efficiency, laboratory wafers have also greatly reduced inspection errors. This design combines medical analysis and electronic systems to save time, space and human resources. The cost reduction is definitely a high-profile technology and product in the future.

傳統的實驗室晶片大多是以玻璃片當作基板,以微機電(Micro-electro-mechanical system,MEMS)技術為基礎,配合半導體製程,在晶片上規劃出一整套複雜的微流道及控制微流道的閥件,並配合外部的加壓裝置與檢驗裝置,即完成一個完整處理及分析檢體的平台。在此平台上,能夠提供檢體的分離與純化、檢體與試劑的混合、及結果的判斷。 Most of the traditional laboratory wafers use glass sheets as substrates. Based on Micro-electro-mechanical system (MEMS) technology, combined with semiconductor manufacturing process, a complex set of micro-channels and micro-controls are planned on the wafer. The valve member of the flow channel, together with the external pressurizing device and the inspection device, completes a platform for complete processing and analysis of the sample. On this platform, it is possible to provide separation and purification of the sample, mixing of the sample and the reagent, and determination of the result.

然而,對於使用微流道及閥件控制的實驗室晶片來說,系統層面遭遇到許多問題: However, for laboratory wafers using microchannels and valve controls, there are many problems at the system level:

1.由於異質整合的困難,使得實驗室晶片的控制元件與檢測元件必須外置。一般而言,外置的控制元件過多,會造成輸出入的電訊號線數過多,而限制實驗室晶片的使用面積。 1. Due to the difficulty of heterogeneous integration, the control and detection components of the laboratory wafer must be external. In general, if there are too many external control components, the number of input and output electrical signals will be too much, and the area of the laboratory wafer will be limited.

2.大多數微流道是以外置幫浦加壓的方式,使微流道中的液體從高壓處流向低壓處。但因為微流道為密閉空間,當幫浦產生氣壓時,會使液滴四處流竄,而無法有效地驅動液滴,造成檢體的浪費,並降低分析上的靈敏度。 2. Most microchannels are pressurized by an external pump, allowing the liquid in the microchannel to flow from a high pressure to a low pressure. However, because the microchannel is a confined space, when the pump generates air pressure, the droplets will flow around, and the droplets cannot be effectively driven, resulting in waste of the specimen and reduced sensitivity in analysis.

3.因為晶片上的微流道都已制式規劃完畢,所以針對不同實驗的分析,會需要不同微流道的實驗室晶片,因而導致人員需學習多種不同微流道之生物晶片的操作,使操作的複雜度提高,人員的訓練成本也增加,也造成產品開發成本增加。 3. Since the microchannels on the wafer have been systematically planned, the analysis of different experiments will require different microchannel lab wafers, thus causing personnel to learn the operation of biochips with different microchannels. The complexity of the operation is increased, the training cost of the personnel is also increased, and the product development cost is also increased.

4.用於控制微流道中的液體方式雖然有很多 種,如壓力、溫度等,但目前不論是採用哪種控制方式,都沒有回讀的機制,而造成實驗上的誤差。 4. There are many ways to control the liquid in the micro flow channel. Kinds, such as pressure, temperature, etc., but no matter which control method is adopted, there is no mechanism for reading back, which causes experimental errors.

因此,本發明之目的,即在提供一種輸出入信號數較少、有效驅動與感測檢體、並具有回讀機制的生物檢測設備及生物晶片。 Accordingly, it is an object of the present invention to provide a biodetection device and a biochip having a small number of input and output signals, an effective driving and sensing sample, and a readback mechanism.

於是,本發明生物檢測設備,包含一生物晶片及一處理單元。 Thus, the biodetection device of the present invention comprises a biochip and a processing unit.

該生物晶片包括一微電極點陣列、一蓋體、一屏蔽層、及N個菊鍊串接的控制單元。 The biochip includes a microelectrode dot array, a cover, a shielding layer, and N daisy chained control units.

該微電極點陣列包含N個微電極,N為整數且N>1,該N個微電極彼此間隔地排列。 The microelectrode dot array includes N microelectrodes, N is an integer and N>1, and the N microelectrodes are arranged at intervals.

該蓋體設置於該微電極點陣列的上方,並接收一偏壓信號,且包含一液滴空間,以容置液滴。 The cover is disposed above the array of microelectrode dots and receives a bias signal and includes a droplet space to accommodate the droplets.

該屏蔽層設置於該微電極點陣列的下方,用以隔絕來自該蓋體的電磁干擾傳遞到其下方。 The shielding layer is disposed under the array of microelectrode dots to isolate electromagnetic interference from the cover to be transmitted thereto.

該N個菊鍊串接的控制單元設置於該屏蔽層的下方,而不受到來自該蓋體的電磁干擾,每一控制單元位於所對應的微電極的下方,並各自電性連接所對應的該微電極以提供一微電極信號至所對應的該微電極,且每一控制單元接收一時鐘信號、一第一至第三控制信號,並根據該時鐘信號及該第一控制信號以選擇一輸入信號或一相關於該微電極信號的量測信號作為一輸出信號,其中,該N個控制單元中的第一個控制單元所接收的輸入信號為一用 於驅動該液滴的資料輸入信號,其餘N-1個控制單元中的每一所接收的輸入信號各自是來自其前一控制單元的輸出信號。 The N daisy chain connected control unit is disposed under the shielding layer without electromagnetic interference from the cover body, and each control unit is located below the corresponding microelectrode, and each of the electrical connections corresponds to The microelectrode is configured to provide a microelectrode signal to the corresponding microelectrode, and each control unit receives a clock signal, a first to third control signal, and selects one according to the clock signal and the first control signal. An input signal or a measurement signal related to the microelectrode signal as an output signal, wherein an input signal received by a first one of the N control units is used For driving the data input signal of the droplet, each of the remaining N-1 control units receives an output signal from its previous control unit.

每一控制單元更根據該第二、第三控制信號及該輸出信號來改變其所提供的微電極信號,利用不同控制單元間的微電極信號與該偏壓信號的壓差來驅動位於該蓋體之液滴空間的液滴。 Each control unit further changes the microelectrode signal provided by the second and third control signals and the output signal, and uses the differential pressure between the microelectrode signal and the bias signal between the different control units to drive the cover. Droplets in the droplet space of the body.

該處理單元電性連接該N個控制單元,並產生該資料輸入信號、時鐘信號、第一控制信號、第二控制信號、及第三控制信號,且接收一資料輸出信號,該資料信號為來自該N個控制單元中的第N個控制單元的輸出信號,並根據該時鐘信號、第一控制信號、第二控制信號、第三控制信號、及資料輸出信號,使該生物晶片操作於一感測模式,以感測該液滴的位置。 The processing unit is electrically connected to the N control units, and generates the data input signal, the clock signal, the first control signal, the second control signal, and the third control signal, and receives a data output signal, where the data signal is from An output signal of the Nth control unit of the N control units, and operating the biochip according to the clock signal, the first control signal, the second control signal, the third control signal, and the data output signal The mode is sensed to sense the position of the drop.

本發明之功效是將微電極點陣列的每一微電極下方的控制單元,以菊鍊(daisy chain)又稱掃描鍊(scan chain)的方式串接,以達到較少輸出入信號、有效驅動與感測檢體、並具有回讀機制的生物檢測設備及生物晶片。 The effect of the invention is that the control unit under each microelectrode of the microelectrode dot array is connected in series by a daisy chain, also called a scan chain, to achieve less input and output signals and effective driving. Biodetection devices and biochips that sense the sample and have a readback mechanism.

1‧‧‧生物晶片 1‧‧‧Biochip

11‧‧‧微電極點陣列 11‧‧‧Microelectrode dot array

12‧‧‧蓋體 12‧‧‧ Cover

121‧‧‧第一電介質層 121‧‧‧First dielectric layer

122‧‧‧第二電介質層 122‧‧‧Second dielectric layer

123‧‧‧第三電介質層 123‧‧‧ Third dielectric layer

124‧‧‧第一表面 124‧‧‧ first surface

125‧‧‧第二表面 125‧‧‧ second surface

126‧‧‧第三表面 126‧‧‧ third surface

127‧‧‧疏水層 127‧‧‧hydrophobic layer

128‧‧‧液滴空間 128‧‧‧ Droplet space

13‧‧‧屏蔽層 13‧‧‧Shield

14‧‧‧打線區 14‧‧‧Line area

141‧‧‧資料輸入墊 141‧‧‧data input pad

142‧‧‧資料輸出墊 142‧‧‧ data output pad

143‧‧‧時鐘墊 143‧‧‧clock pad

144‧‧‧第一控制墊 144‧‧‧First control pad

145‧‧‧第二控制墊 145‧‧‧Second control pad

146‧‧‧第三控制墊 146‧‧‧ third control pad

151‧‧‧第一多工器 151‧‧‧First multiplexer

152‧‧‧D型正反器 152‧‧‧D type flip-flop

153‧‧‧反或閘 153‧‧‧Anti-gate

154‧‧‧第二多工器 154‧‧‧Second multiplexer

155‧‧‧第三多工器 155‧‧‧ third multiplexer

156‧‧‧第一電晶體 156‧‧‧First transistor

157‧‧‧第二電晶體 157‧‧‧second transistor

158‧‧‧第三電晶體 158‧‧‧ Third transistor

159‧‧‧第一反向器閘 159‧‧‧First reverser gate

160‧‧‧第二反向器閘 160‧‧‧Second reverser gate

161‧‧‧反及閘 161‧‧‧Anti-gate

162‧‧‧開關元件 162‧‧‧Switching elements

2‧‧‧處理單元 2‧‧‧Processing unit

7‧‧‧液滴 7‧‧‧ droplets

E1~E900‧‧‧微電極 E1~E900‧‧‧Microelectrode

CU1~CU900‧‧‧控制單元 CU1~CU900‧‧‧Control unit

C1‧‧‧第一控制信號 C1‧‧‧ first control signal

C2‧‧‧第二控制信號 C2‧‧‧second control signal

C3‧‧‧第三控制信號 C3‧‧‧ third control signal

n1‧‧‧第一中間信號 N1‧‧‧ first intermediate signal

n2‧‧‧第二中間信號 N2‧‧‧ second intermediate signal

n3‧‧‧第三中間信號 N3‧‧‧ third intermediate signal

nd‧‧‧共同接點 Nd‧‧‧Common joint

CLK‧‧‧時鐘信號 CLK‧‧‧ clock signal

SI‧‧‧輸入信號 SI‧‧‧ input signal

SO‧‧‧輸出信號 SO‧‧‧ output signal

V1‧‧‧第一參考電壓 V1‧‧‧ first reference voltage

V2‧‧‧第二參考電壓 V2‧‧‧second reference voltage

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一俯視示意圖,說明本發明生物檢測設備之一較佳實施例;圖2是一剖面示意圖,輔助圖1說明該較佳實施例; 圖3是一電路圖,說明該較佳實施例之控制單元;圖4是一俯視示意圖,說明該較佳實施例中的液滴分布態樣;圖5是一時序圖,說明該較佳實施例在一感測模式的信號關係;及圖6是一時序圖,輔助圖5說明該較佳實施例。 Other features and effects of the present invention will be apparent from the following description of the drawings, wherein: FIG. 1 is a top view showing a preferred embodiment of the biological testing device of the present invention; FIG. 2 is a schematic cross-sectional view Figure 1 illustrates the preferred embodiment; 3 is a circuit diagram showing the control unit of the preferred embodiment; FIG. 4 is a top plan view showing the droplet distribution pattern in the preferred embodiment; FIG. 5 is a timing chart illustrating the preferred embodiment. The signal relationship in a sensing mode; and FIG. 6 is a timing diagram, and FIG. 5 illustrates the preferred embodiment.

參閱圖1與圖2,圖2是圖1中Ⅱ的剖視示意圖,本發明生物檢測設備之較佳實施例包含一生物晶片1及一處理單元2。該生物晶片1包括一微電極點陣列11、一蓋體12、一屏蔽層13、N個控制單元CU1~CU900、及一打線區(bonding area)14,N為整數且N>1。 1 and FIG. 2, FIG. 2 is a cross-sectional view of the II of FIG. 1. The preferred embodiment of the biodetection apparatus of the present invention comprises a biochip 1 and a processing unit 2. The biochip 1 includes a microelectrode dot array 11, a cover 12, a shielding layer 13, N control units CU1 CU900, and a bonding area 14, N being an integer and N>1.

該微電極點陣列11包含N個微電極E1~E900,該N個微電極E1~E900彼此間隔地排列。在本實施例中,N=900,每一微電極E1~E900呈正方形,該900個微電極E1~E900排列成30x30也概呈正方形的微電極點陣列11,在其他實施例中,N個微電極也可排列成其他任意形狀,且每一微電極也可為六角形、其它多邊形、圓形或不規則形狀。 The microelectrode dot array 11 includes N microelectrodes E1 to E900, and the N microelectrodes E1 to E900 are arranged at intervals. In this embodiment, N=900, each of the microelectrodes E1 to E900 is square, and the 900 microelectrodes E1 to E900 are arranged in a 30×30 square array of microelectrode dots 11 . In other embodiments, N The microelectrodes may also be arranged in any other shape, and each microelectrode may also be hexagonal, other polygonal, circular or irregular.

該蓋體12設置於該微電極點陣列11的上方,並包含一第一電介質層(dielectric layer)121、一間隔地設置於該第一電介質層121之上方的第二電介質層122、二疏水層(hydrophobic layer)127、一第三電介質層123、及一液滴空間128。該第一電介質層121具有一第一表面124,該第 二電介質層122具有位於相反兩側的一第二表面125及一第三表面126,該第一表面124及該第二表面125位於該第一電介質層21及該第二電介質層122之間。該二疏水層127分別形成於該第一電介質層121的第一表面124與該第二電介質層122的第二表面125,該二疏水層127之間為該液滴空間128,用以容置液滴(droplet)7,也就是檢體。 The cover 12 is disposed above the microelectrode dot array 11 and includes a first dielectric layer 121, a second dielectric layer 122 disposed above the first dielectric layer 121, and two hydrophobic layers. A hydrophobic layer 127, a third dielectric layer 123, and a droplet space 128. The first dielectric layer 121 has a first surface 124, the first The second dielectric layer 122 has a second surface 125 and a third surface 126 on opposite sides. The first surface 124 and the second surface 125 are located between the first dielectric layer 21 and the second dielectric layer 122. The two hydrophobic layers 127 are respectively formed on the first surface 124 of the first dielectric layer 121 and the second surface 125 of the second dielectric layer 122. The droplet space 128 is between the two hydrophobic layers 127 for receiving A droplet 7, which is a sample.

在本實施例中,該第一電介質層121用以保護該微電極點陣列11,以避免氧化,且避免該微電極點陣列11與該液滴7接觸。該第二電介質層122的材質為玻璃,該第三電介質層123的材質為氧化銦錫(ITO)。該二疏水層127的材質為鐵氟龍(Teflon),使該二疏水層127與位於該液滴空間128的液滴7之間的摩擦力較小,較易於驅動。 In the embodiment, the first dielectric layer 121 is used to protect the microelectrode dot array 11 to avoid oxidation, and the microelectrode dot array 11 is prevented from contacting the droplet 7. The material of the second dielectric layer 122 is glass, and the material of the third dielectric layer 123 is indium tin oxide (ITO). The material of the two hydrophobic layer 127 is Teflon, so that the friction between the two hydrophobic layers 127 and the droplets 7 located in the droplet space 128 is small and is relatively easy to drive.

該屏蔽層13設置於該微電極點陣列11的下方,用以隔絕來自該蓋體12的電磁干擾傳遞到該屏蔽層13的下方。該屏蔽層13可接收一固定電壓,使其電壓準位保持於一固定電位,也可保持浮接(floating)狀態。 The shielding layer 13 is disposed under the microelectrode dot array 11 for insulating electromagnetic interference from the cover 12 to be transmitted below the shielding layer 13. The shielding layer 13 can receive a fixed voltage, maintain its voltage level at a fixed potential, and maintain a floating state.

該900個控制單元CU1~CU900分別設置於該900個微電極E1~E900的下方,且位於該屏蔽層13的下方,藉由該屏蔽層13以隔絕來自該蓋體12的電磁干擾。該900個控制單元CU1~CU900分別電性連接該900個微電極E1~E900,且該等控制單元CU2~CU900分別電性連結其前一個控制單元CU1~CU899。每一控制單元CU1~CU900接收一輸入信號SI、一時鐘信號CLK、一第一控制信號C1、一第二控制信號C2、及一第三控制信號C3,並輸出一輸出信 號SO,且將一微電極信號輸出至對應的微電極E1~E900。該控制單元CU1所接收的輸入信號SI為一資料輸入信號,該等控制單元CU2~CU900的輸入信號SI分別是來自其前一個控制單元CU1~CU899的輸出信號SO,使該等控制單元CU1~CU900形成一菊鍊或稱一掃描鍊的方式串接。 The 900 control units CU1 CU 900 are respectively disposed under the 900 microelectrodes E1 EE900 and below the shielding layer 13 , and the shielding layer 13 is used to isolate electromagnetic interference from the cover 12 . The 900 control units CU1 to CU900 are electrically connected to the 900 microelectrodes E1 to E900, respectively, and the control units CU2 to CU900 are electrically connected to the previous control units CU1 to CU899, respectively. Each control unit CU1~CU900 receives an input signal SI, a clock signal CLK, a first control signal C1, a second control signal C2, and a third control signal C3, and outputs an output signal. No. SO, and a microelectrode signal is output to the corresponding microelectrodes E1 to E900. The input signal SI received by the control unit CU1 is a data input signal, and the input signals SI of the control units CU2 CU900 are the output signals SO from the previous control units CU1 CU CU 899 respectively, so that the control units CU1 〜 The CU 900 forms a daisy chain or a scan chain in series.

參閱圖3,圖3是每一控制單元CU1~CU900的電路圖,每一控制單元CU1~CU900包含一第一多工器151、一D型正反器152、一反或閘153、一第二多工器154、一第三多工器155、一第一電晶體156、一第二電晶體157、一第三電晶體158、一第一反向器閘159、一第二反向器閘160、一反及閘161、及一開關元件162。 Referring to FIG. 3, FIG. 3 is a circuit diagram of each control unit CU1~CU900. Each control unit CU1~CU900 includes a first multiplexer 151, a D-type flip-flop 152, an inverse gate 153, and a second. A multiplexer 154, a third multiplexer 155, a first transistor 156, a second transistor 157, a third transistor 158, a first inverter gate 159, and a second inverter gate. 160, a reverse gate 161, and a switching element 162.

該第一多工器151具有一第一輸入端、一第二輸入端,一選擇端、及一輸出端。每一第一多工器151接收來自對應的控制單元CU1~CU900的輸入信號SI、該第一控制信號C1,及一量測信號,並根據該第一控制信號C1,在該第一控制信號C1的邏輯值為1時,將該量測信號輸出於該輸出端,在該第一控制信號C1的邏輯值為0時,將該輸入信號SI輸出於該輸出端。 The first multiplexer 151 has a first input end, a second input end, a selection end, and an output end. Each first multiplexer 151 receives an input signal SI from the corresponding control unit CU1 CU900, the first control signal C1, and a measurement signal, and according to the first control signal C1, the first control signal When the logic value of C1 is 1, the measurement signal is output to the output terminal, and when the logic value of the first control signal C1 is 0, the input signal SI is output to the output terminal.

該D型正反器152具有一電性連接該第一多工器151之輸出端的資料端、一時鐘端、及一輸出端。該D型正反器152接收來自該第一多工器151之輸出端的信號及該時鐘信號CLK,並根據該時鐘信號CLK,在受到該時鐘信號CLK的正緣觸發時,將該第一多工器151之輸出端的信號的邏輯值儲存於該D型正反器152,並輸出為該輸出 信號SO於該輸出端。 The D-type flip-flop 152 has a data end electrically connected to the output end of the first multiplexer 151, a clock end, and an output end. The D-type flip-flop 152 receives the signal from the output end of the first multiplexer 151 and the clock signal CLK, and according to the clock signal CLK, when triggered by the positive edge of the clock signal CLK, the first The logic value of the signal at the output of the tool 151 is stored in the D-type flip-flop 152 and output as the output. The signal SO is at the output.

該反或閘153具有一第一輸入端、一第二輸入端、及一輸出端。該反或閘153分別接收該第二控制信號C2與該第三控制信號C3,並作NOR邏輯運算後,輸出於該輸出端。 The anti-gate 153 has a first input end, a second input end, and an output end. The inverse gate 153 receives the second control signal C2 and the third control signal C3, respectively, and performs a NOR logic operation, and outputs the result to the output terminal.

該第二多工器154具有一電性連接該D型正反器152之輸出端的第一輸入端、一電性連接該反或閘153之輸出端的第二輸入端、一選擇端、及一產生一第一中間信號n1的輸出端。該第二多工器154接收來自該D型正反器152的輸出信號SO、該第二控制信號C2、及來自該反或閘153之輸出端的信號,並根據該第二控制信號C2,在該第二控制信號C2的邏輯值為1時,將該輸出信號SO輸出為該第一中間信號n1,在該第二控制信號C2的邏輯值為0時,將該反或閘153之輸出端的信號輸出為該第一中間信號n1。 The second multiplexer 154 has a first input end electrically connected to the output end of the D-type flip-flop 152, a second input end electrically connected to the output end of the inverse-gate 153, a selection end, and a An output of a first intermediate signal n1 is generated. The second multiplexer 154 receives the output signal SO from the D-type flip-flop 152, the second control signal C2, and a signal from the output of the inverse gate 153, and according to the second control signal C2, When the logic value of the second control signal C2 is 1, the output signal SO is output as the first intermediate signal n1, and when the logic value of the second control signal C2 is 0, the output of the inverse gate 153 is The signal output is the first intermediate signal n1.

該第三多工器155具有一接收一第一參考電壓V1的第一輸入端、一電性連接該第二多工器154之輸出端的第二輸入端、一選擇端、及一產生一第二中間信號n2的輸出端。該第三多工器155接收該第一參考電壓V1、來自該第二多工器154的第一中間信號n1、及該第二控制信號C2,並根據該第二控制信號C2,在該第二控制信號C2的邏輯值為1時,將該第一參考電壓V1所代表的邏輯值1輸出為該第二中間信號n2,在該第二控制信號C2的邏輯值為0時,將該第一中間信號n1輸出為該第二中間信號n2。 The third multiplexer 155 has a first input end receiving a first reference voltage V1, a second input end electrically connected to the output end of the second multiplexer 154, a selection end, and a generation The output of the second intermediate signal n2. The third multiplexer 155 receives the first reference voltage V1, the first intermediate signal n1 from the second multiplexer 154, and the second control signal C2, and according to the second control signal C2, When the logic value of the second control signal C2 is 1, the logic value 1 represented by the first reference voltage V1 is output as the second intermediate signal n2, and when the logic value of the second control signal C2 is 0, the first An intermediate signal n1 is output as the second intermediate signal n2.

該第一電晶體156、該第二電晶體157、及該第三電晶體158依序串聯於該第一參考電壓V1與一第二參考電壓V2之間,並分別回應於來自該第三多工器155的第二中間信號n2、該第二控制信號C2、及來自該第二多工器154的第一中間信號n1,而分別導通或不導通。在本實施例中,該第一電晶體156及該第二電晶體157都為一P型金屬氧化物半導體(PMOS),該第三電晶體158為一N型金屬氧化物半導體(NMOS),該第一參考電壓V1為VDD,該第二參考電壓V2為接地點(Ground),且該第一參考電壓V1大於該第二參考電壓V2。 The first transistor 156, the second transistor 157, and the third transistor 158 are sequentially connected in series between the first reference voltage V1 and a second reference voltage V2, and respectively respond to the third The second intermediate signal n2 of the workpiece 155, the second control signal C2, and the first intermediate signal n1 from the second multiplexer 154 are respectively turned on or off. In this embodiment, the first transistor 156 and the second transistor 157 are both a P-type metal oxide semiconductor (PMOS), and the third transistor 158 is an N-type metal oxide semiconductor (NMOS). The first reference voltage V1 is VDD, the second reference voltage V2 is a ground point (Ground), and the first reference voltage V1 is greater than the second reference voltage V2.

該第一反向器閘159具有一電性連接該第二多工器154之輸出端的輸入端,及一輸出端。該第一反向器閘159接收來自該第二多工器154的第一中間信號n1,並將該第一中間信號n1的邏輯值反向後,輸出於該輸出端。 The first inverter gate 159 has an input terminal electrically connected to the output end of the second multiplexer 154, and an output end. The first inverter gate 159 receives the first intermediate signal n1 from the second multiplexer 154, and reverses the logic value of the first intermediate signal n1, and outputs the output signal to the output terminal.

該反及閘161具有一電性連接該第一反向器閘159之輸出端的第一輸入端、一第二輸入端、及一產生一第三中間信號n3的輸出端。該反及閘161接收來自該第一反向器閘159之輸出端的信號,及該第二控制信號C2,並作NAND邏輯運算後,輸出為該第三中間信號n3。 The anti-gate 161 has a first input end electrically connected to the output end of the first inverter gate 159, a second input end, and an output end generating a third intermediate signal n3. The NAND gate 161 receives the signal from the output end of the first inverter gate 159, and the second control signal C2, and performs NAND logic operation, and outputs the third intermediate signal n3.

該開關元件162具有一電性連接該第二電晶體157與第三電晶體158之共同接點nd的第一端、一第二端、及一電性連接該反及閘161之輸出端的控制端。每一開關元件162的第二端電性連接對應的微電極E1~E900,該開關元件162根據來自該反及閘161的第三中間信號n3,以控 制該開關元件162導通或不導通,以產生該微電極信號並使該微電極信號與該共同接點nd的電壓準位相等。在本實施例中,該開關元件162為一N型金屬氧化物半導體(NMOS)。 The switching element 162 has a first end electrically connected to the common junction nd of the second transistor 157 and the third transistor 158, a second end, and a control for electrically connecting the output end of the anti-gate 161 end. The second end of each switching element 162 is electrically connected to the corresponding micro-electrode E1 E E900, and the switching element 162 is controlled according to the third intermediate signal n3 from the anti-gate 161. The switching element 162 is turned on or off to generate the microelectrode signal and the microelectrode signal is equal to the voltage level of the common junction nd. In this embodiment, the switching element 162 is an N-type metal oxide semiconductor (NMOS).

該第二反向器閘160具有一電性連接該第一多工器151之第一輸入端的輸出端、及一電性連接該第二電晶體157、第三電晶體158、與開關元件162的共同接點nd的輸入端。該第二反向器閘160將該共同接點nd的邏輯值反向後,產生該量測信號於該輸出端。 The second inverter gate 160 has an output terminal electrically connected to the first input end of the first multiplexer 151, and is electrically connected to the second transistor 157, the third transistor 158, and the switching element 162. The common junction nd input. The second inverter gate 160 reverses the logic value of the common contact nd to generate the measurement signal at the output.

參閱圖1,該打線區14包含一電性連接該控制單元CU1的資料輸入墊(PAD)141、一電性連接該控制單元CU900的資料輸出墊142、電性連接每一控制單元CU1~CU900的一時鐘墊143、一第一控制墊144、一第二控制墊145及一第三控制墊146。本發明利用菊鍊(又稱掃描鍊)的方式,將該等控制單元CU1~CU899的輸出信號SO分別與其相鄰的控制單元CU2~CU900的輸入信號SI相串接,使得該生物晶片1的輸出入腳位(pin)數量能夠大幅地減少。此外,由於輸出入腳位數量的減少,能使該生物晶片1的打線區14集中於該生物晶片1的一側,進而使該蓋體12的第二電介質層122,即玻璃,在生物晶片1的製程中,有效地降低第二電介質層122定位的複雜度,以避免該第二電介質層122在製程中壓壞該打線區14上的連接線(bonding wire)(圖未示)。 Referring to FIG. 1, the wiring area 14 includes a data input pad (PAD) 141 electrically connected to the control unit CU1, a data output pad 142 electrically connected to the control unit CU900, and each control unit CU1~CU900 electrically connected. A clock pad 143, a first control pad 144, a second control pad 145 and a third control pad 146. The present invention utilizes a daisy chain (also referred to as a scan chain) to serially connect the output signals SO of the control units CU1 CU CU899 to the input signals SI of the adjacent control units CU2 CU 9000 , so that the biochip 1 The number of output pins can be greatly reduced. In addition, due to the reduction in the number of output pins, the wire bonding region 14 of the biochip 1 can be concentrated on one side of the biochip 1, and thus the second dielectric layer 122 of the cover 12, that is, glass, is on the biochip. In the process of 1, the complexity of positioning of the second dielectric layer 122 is effectively reduced to prevent the second dielectric layer 122 from crushing the bonding wires (not shown) on the bonding region 14 during the process.

該處理單元2電性連接該打線區14的資料輸入 墊141、資料輸出墊142、時鐘墊143、第一控制墊144、第二控制墊145、及第三控制墊146,並將該時鐘信號CLK、第一控制信號C1、第二控制信號C2、及第三控制信號C3分別經由該時鐘墊143、第一控制墊144、第二控制墊145、及第三控制墊146,輸出至該等控制單元CU1~CU900,且將該資料輸入信號經由該資料輸入墊141,輸出至該控制單元CU1,並接收來自該控制單元CU900,經由該資料輸出墊142的資料輸出信號。 The processing unit 2 is electrically connected to the data input of the wire bonding area 14 Pad 141, data output pad 142, clock pad 143, first control pad 144, second control pad 145, and third control pad 146, and the clock signal CLK, first control signal C1, second control signal C2 And the third control signal C3 is output to the control units CU1 CU CU 900 via the clock pad 143 , the first control pad 144 , the second control pad 145 , and the third control pad 146 , and the data input signal is The data input pad 141 is output to the control unit CU1, and receives a data output signal from the control unit CU900 via the data output pad 142.

特別值得一提的是:在本實施例中,該處理單元2是設置於該生物晶片1之外,在其他實施例中,該處理單元2也可整合於該生物晶片1之內。 It is particularly worth mentioning that in the embodiment, the processing unit 2 is disposed outside the bio-wafer 1, and in other embodiments, the processing unit 2 can also be integrated into the bio-wafer 1.

參閱圖4,該生物晶片1根據該資料輸入信號、資料輸出信號、時鐘信號CLK、第一控制信號C1、第二控制信號C2、及第三控制信號C3,在一驅動模式及一感測模式操作。以下為方便說明起見,以一液滴7位於該液滴空間128且在該等微電極E50~E51、E69~71、E110~E111的上方為例,說明該驅動模式。 Referring to FIG. 4, the biochip 1 is based on the data input signal, the data output signal, the clock signal CLK, the first control signal C1, the second control signal C2, and the third control signal C3, in a driving mode and a sensing mode. operating. Hereinafter, for convenience of explanation, the driving mode will be described by taking a droplet 7 in the droplet space 128 and above the microelectrodes E50 to E51, E69 to 71, and E110 to E111 as an example.

參閱圖3與圖4,在該驅動模式時,以驅動該液滴7往該等微電極E129~E131的方向移動為例,來自該處理單元2的第一控制信號C1的邏輯值為0,該控制單元CU1的D型正反器152,根據來自該處理單元2的時鐘信號CLK及資料輸入信號,將資料輸入信號的邏輯值依序儲存於該等控制單元CU900~CU1的D型正反器152,且該等控制單元CU129~CU131的D型正反器152所儲存的邏輯值都為1, 其他控制單元CU1~CU128、CU132~CU900的D型正反器152所儲存的邏輯值都為0。 Referring to FIG. 3 and FIG. 4, in the driving mode, the logic value of the first control signal C1 from the processing unit 2 is 0 by driving the droplet 7 to move in the direction of the microelectrodes E129 to E131. The D-type flip-flop 152 of the control unit CU1 sequentially stores the logical values of the data input signals in the D-type positive and negative of the control units CU900~CU1 according to the clock signal CLK and the data input signal from the processing unit 2. The logic value stored in the D-type flip-flop 152 of the control units CU129~CU131 is 1, The logic values stored in the D-type flip-flops 152 of the other control units CU1 CU CU 128 and CU 132 CU CU 900 are all zero.

來自該處理單元2的第二控制信號C2的邏輯值再變為1,進而使得每一控制單元CU1~CU900的第一電晶體156及第二電晶體157都不導通。因為控制單元CU129~CU131之第一中間信號n1的邏輯值都為1,進而使得對應的第三電晶體158與開關元件162都為導通,導致對應的第三電晶體158分別將該等微電極E129~E131的電壓準位放電至該第二參考電壓V2,即0伏特。在其他控制單元CU1~CU128、CU132~CU900之第一中間信號n1的邏輯值都為0,進而使得對應的第三電晶體158與開關元件162都為不導通,導致對應的共同接點nd的電壓準位的邏輯值都保持為1,且對應的微電極E1~E128、E132~E900都保持在浮接(floating)的狀態。 The logic value of the second control signal C2 from the processing unit 2 is further changed to 1, so that the first transistor 156 and the second transistor 157 of each of the control units CU1 to CU900 are not turned on. Because the logic value of the first intermediate signal n1 of the control units CU129~CU131 is 1, the corresponding third transistor 158 and the switching element 162 are both turned on, resulting in the corresponding third transistor 158 respectively. The voltage level of E129~E131 is discharged to the second reference voltage V2, that is, 0 volt. The logic values of the first intermediate signal n1 of the other control units CU1~CU128, CU132~CU900 are all 0, so that the corresponding third transistor 158 and the switching element 162 are both non-conducting, resulting in the corresponding common contact nd. The logic value of the voltage level is kept at 1, and the corresponding microelectrodes E1~E128 and E132~E900 are kept in a floating state.

該第三電介質層123接收一偏壓信號,該偏壓信號的電壓準位介於一預設電壓與該第二參考電壓V2之間,在本實施例中,該預設電壓為60伏特。因為該等微電極E1~E128、E132~E900為浮接的狀態,使得該等微電極E1~E128、E132~E900的電壓準位都受到該偏壓信號耦合,而分別為一相關於該偏壓信號的浮接電壓,然而,該等微電極E129~E131的電壓準位卻能保持在該第二參考電壓V2,即0伏特,導致位於微電極E1~E128、E132~E900上方的第一電介質層121與第二電介質層122中間的電場強度與位於微電極E129~E131上方的第一電介質層121與第二 電介質層122中間的電場強度不同,進而使得位於該液滴空間128的液滴7,在電濕潤現象的影響下,往該等微電極E129~E131的方向移動,而達到驅動檢體的目的。 The third dielectric layer 123 receives a bias voltage, and the voltage level of the bias signal is between a predetermined voltage and the second reference voltage V2. In this embodiment, the preset voltage is 60 volts. Because the microelectrodes E1~E128 and E132~E900 are in a floating state, the voltage levels of the microelectrodes E1~E128 and E132~E900 are coupled by the bias signal, and are respectively related to the bias. The floating voltage of the voltage signal, however, the voltage levels of the microelectrodes E129~E131 can be maintained at the second reference voltage V2, that is, 0 volts, resulting in the first of the microelectrodes E1~E128, E132~E900. The electric field strength between the dielectric layer 121 and the second dielectric layer 122 and the first dielectric layer 121 and the second above the microelectrodes E129 to E131 The electric field strength in the middle of the dielectric layer 122 is different, and the droplets 7 located in the droplet space 128 are moved in the direction of the microelectrodes E129 to E131 under the influence of the electrowetting phenomenon to achieve the purpose of driving the sample.

以下為方便說明起見,以N=3,且一液滴7位於該液滴空間128並在該微電極E2的上方為例,說明該感測模式。 Hereinafter, for convenience of explanation, the sensing mode will be described by taking N=3 and a droplet 7 is located in the droplet space 128 and above the microelectrode E2 as an example.

參閱圖3與圖5,圖5是在該感測模式時,該第一控制信號C1、第二控制信號C2、第三控制信號C3、及第一中間信號n1對時間的時序圖,及一示意的微電極的電壓準位對時間的時序圖。 Referring to FIG. 3 and FIG. 5, FIG. 5 is a timing diagram of the first control signal C1, the second control signal C2, the third control signal C3, and the first intermediate signal n1 versus time in the sensing mode, and A timing diagram of the voltage level of the microelectrode versus time.

在該感測模式時,該偏壓信號的電壓準位為該第二參考電壓V2,即0伏特。於t1時刻之前,每一控制單元CU1~CU3的D型正反器152所儲存的邏輯值已重設為0。 In the sensing mode, the voltage level of the bias signal is the second reference voltage V2, that is, 0 volts. Prior to time t1, the logic value stored by the D-type flip-flop 152 of each control unit CU1~CU3 has been reset to zero.

於t1與t2時刻之間,來自該處理單元2的第一控制信號C1的邏輯值為1,使每一控制單元CU1~CU3的第一多工器151將其接收的量測信號輸出於該第一多工器151的輸出端。 Between the times t1 and t2, the logic value of the first control signal C1 from the processing unit 2 is 1, so that the first multiplexer 151 of each control unit CU1~CU3 outputs the measurement signal received by the control unit 151 The output of the first multiplexer 151.

於t2與t3時刻之間,來自該處理單元2的第二控制信號C2的邏輯值為1,使每一控制單元CU1~CU3的第一中間信號n1、第二中間信號n2及第三中間信號n3的邏輯值分別為0、1及0,進而使每一控制單元CU1~CU3的第一電晶體156、第二電晶體157、第三電晶體158、及開關元件162都為不導通,也使得該每一共同接點nd及微電極E1~E3的電壓準位都保持在該第一參考電壓V1。 Between the times t2 and t3, the logic value of the second control signal C2 from the processing unit 2 is 1, so that the first intermediate signal n1, the second intermediate signal n2 and the third intermediate signal of each control unit CU1~CU3 The logic values of n3 are 0, 1, and 0, respectively, so that the first transistor 156, the second transistor 157, the third transistor 158, and the switching element 162 of each of the control units CU1 to CU3 are non-conducting. The voltage levels of each of the common contacts nd and the microelectrodes E1 to E3 are maintained at the first reference voltage V1.

於t3與t4時刻之間,來自該處理單元2的第三控制信號C3的邏輯值為0。 The logic value of the third control signal C3 from the processing unit 2 is zero between times t3 and t4.

於t4與t5時刻之間,該第二控制信號C2的邏輯值為0,使每一控制單元CU1~CU3的第一中間信號n1、第二中間信號n2、及第三中間信號n3的邏輯值都為1,進而使得每一控制單元CU1~CU3的第一電晶體156、第二電晶體157、第三電晶體158、及開關元件162分別為不導通、導通、導通及導通,且每一控制單元CU1~CU3的第三電晶體158對其對應的微電極E1~E3放電,導致對應的共同接點nd及微電極E1~E3的電壓準位漸漸地降低。同時,因為每一控制單元CU1~CU3的開關元件162都導通,使得其量測信號表示對應的微電極E1~E3的電壓準位的邏輯值的反向。 Between the times t4 and t5, the logic value of the second control signal C2 is 0, so that the logic values of the first intermediate signal n1, the second intermediate signal n2, and the third intermediate signal n3 of each control unit CU1~CU3 The first transistor 156, the second transistor 157, the third transistor 158, and the switching element 162 of each of the control units CU1 CU CU3 are respectively non-conducting, conducting, conducting, and conducting, and each The third transistor 158 of the control units CU1 CU CU3 discharges the corresponding microelectrodes E1 EE3 , which cause the voltage levels of the corresponding common contacts nd and the micro electrodes E1 EE3 to gradually decrease. At the same time, since the switching elements 162 of each of the control units CU1 to CU3 are turned on, the measurement signals thereof indicate the inverse of the logic values of the voltage levels of the corresponding microelectrodes E1 to E3.

參閱圖3、圖5與圖6,圖6是圖5於t4~t6時刻之間的放大圖,且是該時鐘信號CLK、第一控制信號C1、及量測信號對時間的時序圖,及該示意的微電極的電壓準位對時間的時序圖。 Referring to FIG. 3, FIG. 5 and FIG. 6, FIG. 6 is an enlarged view of FIG. 5 between time t4 and time t6, and is a timing chart of the clock signal CLK, the first control signal C1, and the measurement signal versus time, and A timing diagram of the voltage level of the illustrated microelectrode versus time.

於t4與t41時刻之間,在該第一控制信號C1的邏輯值為1時,該處理單元2輸出一時鐘脈衝於該時鐘信號CLK,使每一控制單元CU1~CU3的量測信號於t4時刻的邏輯值儲存於每一控制單元CU1~CU3的D型正反器152。 Between the times t4 and t41, when the logic value of the first control signal C1 is 1, the processing unit 2 outputs a clock pulse to the clock signal CLK, so that the measurement signals of each control unit CU1~CU3 are at t4. The logic value of the time is stored in the D-type flip-flop 152 of each of the control units CU1 to CU3.

於t41與t42時刻之間,在該第一控制信號C1的邏輯值為0時,該處理單元2輸出2個時鐘脈衝於該時鐘信號CLK,使該處理單元2接收該資料輸出信號,而依 序獲得該等控制單元CU3~CU1的D型正反器152所儲存的邏輯值。 Between the times t41 and t42, when the logic value of the first control signal C1 is 0, the processing unit 2 outputs two clock pulses to the clock signal CLK, so that the processing unit 2 receives the data output signal, and The logic values stored by the D-type flip-flops 152 of the control units CU3 CU1 are obtained.

該處理單元2重覆輸出t4至t42之間的時鐘信號CLK及第一控制信號C1,而依序獲得於t42、t44…時刻的該等控制單元CU3~CU1的D型正反器152所儲存的邏輯值,且一直到每一控制單元CU1~CU3所儲存的邏輯值都為1為止。 The processing unit 2 repeatedly outputs the clock signal CLK and the first control signal C1 between t4 and t42, and sequentially stores the D-type flip-flops 152 of the control units CU3~CU1 at times t42, t44... Logic value, and until the logic value stored in each control unit CU1~CU3 is 1.

在本實施例中,t4與t42、t42與t44…的時間間隔都為1奈秒。該微電極E2的等效電容值約為21飛法拉(fF),該等微電極E1、E3的等效電容值約為13fF。該處理單元2獲得每一控制單元CU1~CU3於t4、t42、及t44時刻所儲存的邏輯值分別為(0,0,0)、(1,0,1)、及(1,1,1),並經過運算,得知該等微電極E1~E3的放電時間分別為1奈秒、2奈秒、及1奈秒。 In the present embodiment, the time interval between t4 and t42, t42 and t44... is 1 nanosecond. The equivalent capacitance of the microelectrode E2 is about 21 femtofarads (fF), and the equivalent capacitance values of the microelectrodes E1 and E3 are about 13 fF. The processing unit 2 obtains that the logical values stored in each of the control units CU1 CU3 at times t4, t42, and t44 are (0, 0, 0), (1, 0, 1), and (1, 1, 1 respectively). After the calculation, it is found that the discharge times of the microelectrodes E1 to E3 are 1 nanosecond, 2 nanoseconds, and 1 nanosecond.

特別值得一提的是:於每一微電極E1~E3的放電過程中,也就是由該第一參考電壓V1漸漸下降至該第二參考電壓V2之間,在一般情況下,該處理單元於該時鐘信號CLK產生的時鐘脈衝,都具有固定的脈衝寬度,且相鄰的時鐘脈衝也具有固定的時間間隔,因此,該處理單元也可以根據該資料輸出信號依序讀出的時刻,來計算該等微電極E1~E3的放電時間,如下段所述。 It is particularly worth mentioning that during the discharge process of each of the microelectrodes E1 to E3, that is, the first reference voltage V1 gradually falls between the second reference voltage V2, in general, the processing unit is The clock pulse generated by the clock signal CLK has a fixed pulse width, and the adjacent clock pulse also has a fixed time interval. Therefore, the processing unit can also calculate according to the time when the data output signal is sequentially read out. The discharge time of the microelectrodes E1 to E3 is as follows.

該處理單元2於每次切換該第一控制信號C1的準位期間,利用該時鐘信號CLK從該第3個控制單元進行讀取,以得到一具有3個輸出信號的串列資料,且以第一 次切換第一控制信號C1時,每一輸出信號的讀取時間點各自作為所對應微電極E1~E3的初始放電時間。該處理單元2還以該串列資料中的每一輸出信號的邏輯值變化,作為其所對應微電極E1~E3的結束放電時間。該處理單元2根據該每一微電極E1~E3所對應的初始放電時間及結束放電時間來得到每一微電極E1~E3所對應該放電時間。 The processing unit 2 reads from the third control unit by using the clock signal CLK every time the level of the first control signal C1 is switched, to obtain a serial data having three output signals, and the first When the first control signal C1 is switched, the reading time points of each output signal are each taken as the initial discharge time of the corresponding microelectrodes E1 to E3. The processing unit 2 also changes the logical value of each output signal in the serial data as the end discharge time of the corresponding microelectrodes E1 to E3. The processing unit 2 obtains the discharge time corresponding to each of the microelectrodes E1 to E3 according to the initial discharge time and the end discharge time corresponding to each of the microelectrodes E1 to E3.

於t49與t5時刻之間,每一控制單元CU1~CU3的第三電晶體158已將對應的微電極E1~E3放電至該第二參考電壓V2,即0伏特。 Between time t49 and time t5, the third transistor 158 of each control unit CU1~CU3 has discharged the corresponding microelectrode E1~E3 to the second reference voltage V2, that is, 0 volt.

於t5與t6時刻之間,該第二控制信號C2及第三控制信號C3的邏輯值分別為0及1,使每一控制單元CU1~CU3的第一中間信號n1、第二中間信號n2、及第三中間信號n3的邏輯值分別為0、0及1,進而使得每一控制單元CU1~CU3的第一電晶體156、第二電晶體157、第三電晶體158、及開關元件162分別為導通、導通、不導通及導通,且每一控制單元CU1~CU3的第一電晶體156與第二電晶體157對其對應的微電極E1~E3充電,導致對應的共同接點nd及微電極E1~E3的電壓準位漸漸地升高。同時,因為每一控制單元CU1~CU3的開關元件162都導通,使得其量測信號表示對應的微電極E1~E3的電壓準位的邏輯值的反向。 Between the times t5 and t6, the logic values of the second control signal C2 and the third control signal C3 are 0 and 1, respectively, so that the first intermediate signal n1 and the second intermediate signal n2 of each control unit CU1 CU3 are And the logic values of the third intermediate signal n3 are 0, 0, and 1, respectively, so that the first transistor 156, the second transistor 157, the third transistor 158, and the switching element 162 of each of the control units CU1 CU3 respectively The first transistor 156 and the second transistor 157 of each of the control units CU1 CU CU charge the corresponding micro electrodes E1 EE3, resulting in corresponding common contacts nd and micro The voltage levels of the electrodes E1 to E3 gradually increase. At the same time, since the switching elements 162 of each of the control units CU1 to CU3 are turned on, the measurement signals thereof indicate the inverse of the logic values of the voltage levels of the corresponding microelectrodes E1 to E3.

於t5與t51時刻之間,類似於t4與t41時刻之間,在該第一控制信號C1的邏輯值為1時,該處理單元2輸出一時鐘脈衝於該時鐘信號CLK,使每一控制單元CU1~CU3的量測信號於t5時刻的邏輯值儲存於每一控制單 元CU1~CU3的D型正反器152。 Between the times t5 and t51, similar to the time between t4 and t41, when the logic value of the first control signal C1 is 1, the processing unit 2 outputs a clock pulse to the clock signal CLK, so that each control unit The logic value of the measurement signals of CU1~CU3 at time t5 is stored in each control list. The D-type flip-flop 152 of the CU1~CU3.

於t51與t52時刻之間,類似於t41與t42時刻之間,在該第一控制信號C1的邏輯值為0時,該處理單元2輸出2個時鐘脈衝於該時鐘信號CLK,使該處理單元2接收該資料輸出信號,而依序獲得該等控制單元CU3~CU1的D型正反器152所儲存的邏輯值。 Between the times t51 and t52, similar to the time between t41 and t42, when the logic value of the first control signal C1 is 0, the processing unit 2 outputs two clock pulses to the clock signal CLK, so that the processing unit 2 receiving the data output signal, and sequentially obtaining the logic values stored by the D-type flip-flops 152 of the control units CU3 CU1.

該處理單元2重覆輸出t5至t52之間的時鐘信號CLK及第一控制信號C1,而依序獲得於t52、t54…時刻的該等控制單元CU3~CU1的D型正反器152所儲存的邏輯值,且一直到每一控制單元CU1~CU3所儲存的邏輯值都為0為止。 The processing unit 2 repeatedly outputs the clock signal CLK and the first control signal C1 between t5 and t52, and sequentially stores the D-type flip-flops 152 of the control units CU3~CU1 at times t52, t54... Logic value, and until the logic value stored in each control unit CU1~CU3 is 0.

在本實施例中,t5與t52、t52與t54…的時間間隔都為1奈秒。該處理單元2獲得每一控制單元CU1~CU3於t5、t52、及t54時刻所儲存的邏輯值分別為(1,1,1)、(0,1,0)、及(0,0,0),並經過運算,得知該等微電極E1~E3的充電時間分別為1奈秒、2奈秒、及1奈秒。 In the present embodiment, the time interval between t5 and t52, t52 and t54... is 1 nanosecond. The processing unit 2 obtains that the logical values stored in each of the control units CU1 CU3 at times t5, t52, and t54 are (1, 1, 1), (0, 1, 0), and (0, 0, 0, respectively). After calculation, it is known that the charging times of the microelectrodes E1 to E3 are 1 nanosecond, 2 nanoseconds, and 1 nanosecond.

特別值得一提的是:於每一微電極E1~E3的充電過程中,也就是由該第二參考電壓V2漸漸上升至該第一參考電壓V1之間,在一般情況下,該處理單元於該時鐘信號CLK產生的時鐘脈衝,都具有固定的脈衝寬度,且相鄰的時鐘脈衝也具有固定的時間間隔,因此,該處理單元也可以根據該資料輸出信號依序讀出的時刻,來計算該等微電極E1~E3的充電時間,如下段所述。 It is particularly worth mentioning that during the charging process of each of the microelectrodes E1 to E3, that is, the second reference voltage V2 gradually rises to between the first reference voltage V1, in general, the processing unit is The clock pulse generated by the clock signal CLK has a fixed pulse width, and the adjacent clock pulse also has a fixed time interval. Therefore, the processing unit can also calculate according to the time when the data output signal is sequentially read out. The charging time of the microelectrodes E1 to E3 is as follows.

該處理單元2於每次切換該第一控制信號C1的 準位期間,利用該時鐘信號CLK從該第3個控制單元進行讀取,以得到一具有3個輸出信號的串列資料,且以第一次切換第一控制信號C1時,每一輸出信號的讀取時間點各自作為所對應微電極E1~E3的初始充電時間。該處理單元2更以該串列資料中的每一輸出信號的邏輯值變化,作為所對應微電極E1~E3的結束充電時間。該處理單元2根據該每一微電極E1~E3所對應的初始充電時間及結束充電時間來得到每一微電極E1~E3所對應該充電時間。 The processing unit 2 switches the first control signal C1 every time. During the calibration period, the clock signal CLK is used to read from the third control unit to obtain a serial data having three output signals, and each output signal is switched when the first control signal C1 is switched for the first time. The reading time points are each taken as the initial charging time of the corresponding microelectrodes E1 to E3. The processing unit 2 further changes the logic value of each output signal in the serial data as the end charging time of the corresponding microelectrodes E1 to E3. The processing unit 2 obtains the charging time corresponding to each of the microelectrodes E1 to E3 according to the initial charging time and the ending charging time corresponding to each of the microelectrodes E1 to E3.

該處理單元2根據來自該控制單元CU3的資料輸出信號,獲得每一微電極E1~E3的電壓準位變化,進而計算得到每一微電極E1~E3的充電時間及放電時間,再根據該每一微電極E1~E3的放電時間、充電時間、或放電與充電時間的差異,獲知每一微電極E1~E3的上方是否有液滴7的存在,以達到感測檢體位置的目的。以圖4的液滴7為例,該等微電極E50~E51、E69~E71、E110~E111的等效電容約為21飛法拉,其他微電極E1~E49、E52~E68、E72~E109、E112~E900的等效電容約為13fF,該等微電極E50~E51、E69~E71、E110~E111的充電時間及放電時間都會大於其他微電極E1~E49、E52~E68、E72~E109、E112~E900。 The processing unit 2 obtains a voltage level change of each of the microelectrodes E1 to E3 according to the data output signal from the control unit CU3, and further calculates a charging time and a discharging time of each of the microelectrodes E1 to E3, and then according to the The difference between the discharge time, the charging time, and the discharge and charging time of the microelectrodes E1 to E3 is whether or not there is a droplet 7 above each of the microelectrodes E1 to E3 to achieve the purpose of sensing the position of the sample. Taking the droplet 7 of FIG. 4 as an example, the equivalent capacitance of the microelectrodes E50~E51, E69~E71, E110~E111 is about 21 flyFara, other microelectrodes E1~E49, E52~E68, E72~E109, The equivalent capacitance of E112~E900 is about 13fF. The charging time and discharge time of these microelectrodes E50~E51, E69~E71, E110~E111 will be greater than other microelectrodes E1~E49, E52~E68, E72~E109, E112. ~E900.

此外,該處理單元2具有一查找表(lookup table),該查找表的內容相關於複數不同種類的檢體對應每一微電極E1~E900之充電時間及放電時間的關係。該處理單元2還根據該資料輸出信號所獲得的每一微電極E1~E900的放電時間、充電時間、或放電與充電時間,與該 查找表的內容相比較,可獲知該每一微電極E1~E900上方之檢體的種類,以達成回讀檢體種類的機制。 In addition, the processing unit 2 has a lookup table whose content is related to the relationship between the charging time and the discharging time of each of the plurality of types of samples corresponding to each of the microelectrodes E1 to E900. The processing unit 2 further outputs a discharge time, a charging time, or a discharge and a charging time of each of the microelectrodes E1 to E900 obtained according to the data output signal, and Comparing the contents of the lookup table, the type of the sample above each of the microelectrodes E1 to E900 can be known to achieve a mechanism for reading back the type of the sample.

由本較佳實施例可知: It is known from the preferred embodiment that:

1.由於利用菊鍊的方式將900個控制單元CU1~CU900串接,只需提供二輸出入腳位分別給該控制單元CU1及控制單元CU900,其餘控制單元CU2~CU899無需再提供輸出入腳位,能大幅地減少輸出入腳位數,使生物晶片1的面積不會受限於輸出入腳位數,而能有效利用。 1. Since 900 control units CU1~CU900 are connected in series by means of daisy chain, only two input and output pins are provided to the control unit CU1 and the control unit CU900, and the remaining control units CU2~CU899 need not provide input and output. The bit can greatly reduce the number of input pins, so that the area of the biochip 1 is not limited by the number of input pins, and can be effectively utilized.

2.利用N個控制單元控制N個微電極,使位於該液滴空間128的液滴7能以每個微電極之面積大小的單位來精準地控制,不但有效利用檢體而提供分析上的靈敏度,更能視需求而規劃液滴7的驅動路徑。 2. Using N control units to control the N microelectrodes, so that the droplets 7 located in the droplet space 128 can be accurately controlled in units of the area size of each microelectrode, not only effectively utilizing the sample but also providing analysis. Sensitivity, the driving path of the droplet 7 can be planned more according to the demand.

3.利用處理單元2能簡單且快速地判斷液滴7的位置,且再利用查找表,即能判斷液滴7的種類,而實現回讀的機制。 3. Using the processing unit 2, the position of the liquid droplet 7 can be judged simply and quickly, and the lookup table can be used again, that is, the type of the liquid droplet 7 can be judged, and the mechanism of readback can be realized.

4.利用該屏蔽層13有效隔離電磁干擾,使N個控制單元能分別設置於N個微電極的下方,而避免設置於上方的蓋體12的偏壓信號對N個控制單元干擾。 4. The shielding layer 13 is used to effectively isolate the electromagnetic interference, so that the N control units can be respectively disposed under the N microelectrodes, and the bias signals of the cover 12 disposed above are prevented from interfering with the N control units.

綜上所述,藉由N個控制單元以菊鍊的方式串接,以大幅地減少輸出入信號,並利用驅動模式及感測模式以有效驅動與感測檢體,且具有回讀檢體種類的機制,故確實能達成本發明之目的。 In summary, the N control units are daisy-chained in series to greatly reduce the input and output signals, and the driving mode and the sensing mode are used to effectively drive and sense the sample, and the read-back sample is provided. The mechanism of the kind can indeed achieve the object of the present invention.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明 申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 However, the above is only the preferred embodiment of the present invention, and the scope of the present invention cannot be limited thereto, that is, according to the present invention. The simple equivalent changes and modifications made by the scope of the patent application and the contents of the patent specification are still within the scope of the invention.

1‧‧‧生物晶片 1‧‧‧Biochip

11‧‧‧微電極點陣列 11‧‧‧Microelectrode dot array

12‧‧‧蓋體 12‧‧‧ Cover

14‧‧‧打線區 14‧‧‧Line area

141‧‧‧資料輸入墊 141‧‧‧data input pad

142‧‧‧資料輸出墊 142‧‧‧ data output pad

143‧‧‧時鐘墊 143‧‧‧clock pad

144‧‧‧第一控制墊 144‧‧‧First control pad

145‧‧‧第二控制墊 145‧‧‧Second control pad

146‧‧‧第三控制墊 146‧‧‧ third control pad

2‧‧‧處理單元 2‧‧‧Processing unit

CLK‧‧‧時鐘信號 CLK‧‧‧ clock signal

C1‧‧‧第一控制信號 C1‧‧‧ first control signal

C2‧‧‧第二控制信號 C2‧‧‧second control signal

C3‧‧‧第三控制信號 C3‧‧‧ third control signal

E1~E900‧‧‧微電極 E1~E900‧‧‧Microelectrode

Claims (10)

一種生物晶片,包含:一微電極點陣列,包括N個微電極,N為整數且N>1,該N個微電極彼此間隔地排列;一蓋體,設置於該微電極點陣列的上方,並接收一偏壓信號,且包括一液滴空間,以容置液滴;一屏蔽層,設置於該微電極點陣列的下方,用以隔絕來自該蓋體的電磁干擾傳遞到其下方;及N個菊鍊串接的控制單元,設置於該屏蔽層的下方,而不受到來自該蓋體的電磁干擾,每一控制單元位於所對應的微電極的下方,並各自電性連接所對應的該微電極以提供一微電極信號至所對應的該微電極,且每一控制單元接收一時鐘信號、一第一至第三控制信號,並根據該時鐘信號及該第一控制信號以選擇一輸入信號或一相關於該微電極信號的量測信號作為一輸出信號,其中,該N個控制單元中的第一個控制單元所接收的輸入信號為一用於驅動該液滴的資料輸入信號,其餘N-1個控制單元中的每一所接收的輸入信號各自是來自其前一控制單元的輸出信號,每一控制單元還根據該第二、第三控制信號及該輸出信號來改變其所提供的微電極信號,利用不同控制單元間的微電極信號與該偏壓信號的壓差來驅動位於該蓋體之液滴空間的液滴。 A biochip comprising: an array of microelectrode dots, comprising N microelectrodes, N being an integer and N>1, the N microelectrodes being spaced apart from each other; a cover disposed above the array of microelectrode dots, Receiving a bias signal and including a droplet space for accommodating the droplet; a shielding layer disposed under the array of microelectrode dots for isolating electromagnetic interference from the cover to be transmitted thereto; and A control unit connected in series with N daisy chains is disposed under the shielding layer without electromagnetic interference from the cover body, and each control unit is located below the corresponding microelectrode, and each of the electrical connections corresponds to The microelectrode is configured to provide a microelectrode signal to the corresponding microelectrode, and each control unit receives a clock signal, a first to third control signal, and selects one according to the clock signal and the first control signal. An input signal or a measurement signal related to the microelectrode signal as an output signal, wherein an input signal received by a first one of the N control units is a data input for driving the droplet No. The input signals received by each of the remaining N-1 control units are each an output signal from a previous control unit, and each control unit also changes according to the second and third control signals and the output signal. The microelectrode signal is provided by using a differential pressure between the microelectrode signal and the bias signal between the different control units to drive droplets located in the droplet space of the cover. 如請求項1所述的生物晶片,根據該資料輸入信號、該 時鐘信號、該第一控制信號、該第二控制信號、該第三控制信號、及該偏壓信號,在一驅動模式操作,在該驅動模式時,若該液滴在第k1控制單元的上方,要驅動該液滴往相鄰的第k2控制單元的上方移動時,1≦k1≦N,1≦k2≦N,使第k2控制單元的微電極的電壓準位為一第二參考電壓,且其餘微電極的電壓準位為一浮接電壓。 The biochip according to claim 1, according to the data input signal, the The clock signal, the first control signal, the second control signal, the third control signal, and the bias signal are operated in a driving mode, in the driving mode, if the droplet is above the k1 control unit When the droplet is driven to move over the adjacent k2 control unit, 1≦k1≦N,1≦k2≦N, so that the voltage level of the microelectrode of the k2 control unit is a second reference voltage. And the voltage level of the remaining microelectrodes is a floating voltage. 如請求項1所述的生物晶片,其中,該蓋體還包括:一第一電介質層,設置於該微電極點陣列的上方,且具有一第一表面;一第二電介質層,間隔地設置於該第一電介質層的上方,且具有位於相反兩側的一第二表面及一第三表面,該第一表面及該第二表面位於該第一電介質層及該第二電介質層之間;二疏水層,分別形成於該第一電介質層的第一表面與該第二電介質層的第二表面,該二疏水層之間為該液滴空間;及一第三電介質層,形成於該第二電介質層的第三表面,並接收該偏壓信號。 The biochip of claim 1, wherein the cover further comprises: a first dielectric layer disposed above the array of microelectrode dots and having a first surface; and a second dielectric layer disposed at intervals Above the first dielectric layer, and having a second surface and a third surface on opposite sides, the first surface and the second surface being located between the first dielectric layer and the second dielectric layer; a second hydrophobic layer formed on the first surface of the first dielectric layer and the second surface of the second dielectric layer, wherein the two hydrophobic layers are between the droplet spaces; and a third dielectric layer is formed on the first surface a third surface of the dielectric layer and receiving the bias signal. 如請求項1所述的生物晶片還包含:一打線區,包括一電性連接該N個控制單元中的第一個控制單元的資料輸入墊、一電性連接該N個控制單元中的第N個控制單元的資料輸出墊、電性連接N個控制單元的一時鐘墊、一第一控制墊、一第二控制墊、及 一第三控制墊,該打線區設置於該微電極點陣列之一側,且不位於該蓋體的下方,用以供該生物晶片打線封裝使用。 The biochip of claim 1 further comprising: a hitting area comprising a data input pad electrically connected to the first one of the N control units, and an electrical connection of the N of the N control units a data output pad of the N control units, a clock pad electrically connected to the N control units, a first control pad, a second control pad, and A third control pad is disposed on one side of the array of microelectrode dots and is not located below the cover for use in the biochip wire package. 一種生物檢測設備,包含:一生物晶片,包括:一微電極點陣列,包括N個微電極,N為整數且N>1,該N個微電極彼此間隔地排列;一蓋體,設置於該微電極點陣列的上方,並接收一偏壓信號,且包括一液滴空間,以容置液滴;一屏蔽層,設置於該微電極點陣列的下方,用以隔絕來自該蓋體的電磁干擾傳遞到其下方;及N個菊鍊串接的控制單元,設置於該屏蔽層的下方,每一控制單元位於所對應的微電極的下方,並各自電性連接所對應的該微電極以提供一微電極信號至所對應的該微電極,且每一控制單元接收一時鐘信號、一第一至第三控制信號,並根據該時鐘信號及該第一控制信號以選擇一輸入信號或一相關於該微電極信號的量測信號作為一輸出信號,其中,該N個控制單元中的第一個控制單元所接收的輸入信號為一用於驅動該液滴的資料輸入信號,其餘N-1個控制單元中的每一所接收的輸入信號各自是來自其前一控制單元的輸出信號,每一控制單元還根據該第二、第三控制信號及該輸出信號來改變其所提供的微電極信號,利用不 同控制單元間的微電極信號與該偏壓信號的壓差來驅動位於該蓋體之液滴空間的液滴;及一處理單元,電性連接該N個控制單元,並產生該資料輸入信號、時鐘信號、第一控制信號、第二控制信號、及第三控制信號,且接收一資料輸出信號,該資料輸出信號為來自該N個控制單元中的第N個控制單元的輸出信號,並根據該時鐘信號、第一控制信號、第二控制信號、第三控制信號、及資料輸出信號,使該生物晶片操作於一感測模式,以感測該液滴的位置。 A biodetection device comprising: a biochip comprising: a microelectrode dot array comprising N microelectrodes, N being an integer and N>1, the N microelectrodes being spaced apart from each other; a cover disposed at the a microelectrode dot array above and receiving a bias signal, and including a droplet space for accommodating the droplet; a shielding layer disposed under the microelectrode dot array for isolating the electromagnetic from the cover The interference is transmitted to the lower side; and the N daisy chain connection control unit is disposed under the shielding layer, each control unit is located below the corresponding microelectrode, and each of the corresponding microelectrodes is electrically connected Providing a microelectrode signal to the corresponding microelectrode, and each control unit receives a clock signal, a first to third control signal, and selects an input signal or a according to the clock signal and the first control signal a measurement signal related to the microelectrode signal as an output signal, wherein an input signal received by a first one of the N control units is a data input signal for driving the liquid droplet, Each of the input signals received by each of the N-1 control units is an output signal from its previous control unit, and each control unit also changes its provided according to the second and third control signals and the output signal. Microelectrode signal, use not a differential pressure between the microelectrode signal and the bias signal between the control unit to drive droplets located in the droplet space of the cover; and a processing unit electrically connected to the N control units and generating the data input signal a clock signal, a first control signal, a second control signal, and a third control signal, and receiving a data output signal, the data output signal being an output signal from an Nth control unit of the N control units, and The biochip is operated in a sensing mode to sense the position of the droplet based on the clock signal, the first control signal, the second control signal, the third control signal, and the data output signal. 如請求項5所述的生物檢測設備,其中,在該感測模式時,該處理單元設定該第二及第三控制信號來控制每一微電極由該第一參考電位放電至該第二參考電位,該處理單元於每次切換該第一控制信號的準位期間,利用該時鐘信號從該第N個控制單元進行讀取,以得到一具有N個輸出信號的串列資料,且以第一次切換第一控制信號時每一輸出信號的讀取時間點各自作為所對應微電極的初始放電時間,該處理單元還以該串列資料中的每一輸出信號的邏輯值變化,作為其所對應微電極的結束放電時間,該處理單元根據該每一微電極所對應的初始放電時間及結束放電時間來得到每一微電極所對應一放電時間,該處理單元再設定該第二及第三控制信號來控制每 一微電極由該第二參考電位充電至該第一參考電位,該處理單元於每次切換該第一控制信號的準位期間,利用該時鐘信號從該第N個控制單元進行讀取,以得到一具有N個輸出信號的串列資料,且以第一次切換第一控制信號時每一輸出信號的讀取時間點各自作為所對應微電極的初始充電時間,該處理單元更以該串列資料中的每一輸出信號的邏輯值變化,作為所對應微電極的結束充電時間,該處理單元根據該每一微電極所對應的初始充電時間及結束充電時間來得到每一微電極所對應一充電時間,該處理單元根據N個微電極的充電時間、放電時間、或充電與放電時間,決定N個微電極的上方是否有液滴。 The biodetection device of claim 5, wherein, in the sensing mode, the processing unit sets the second and third control signals to control each microelectrode to be discharged from the first reference potential to the second reference a potential, the processing unit reads from the Nth control unit by using the clock signal during each switching of the level of the first control signal to obtain a serial data having N output signals, and The reading time points of each output signal when switching the first control signal are respectively used as the initial discharging time of the corresponding microelectrode, and the processing unit also changes the logical value of each output signal in the serial data as its The processing unit obtains a discharge time corresponding to each microelectrode according to an initial discharge time and an end discharge time corresponding to each microelectrode, and the processing unit sets the second and the second Three control signals to control each a microelectrode is charged to the first reference potential by the second reference potential, and the processing unit reads from the Nth control unit by using the clock signal during each switching of the level of the first control signal to Obtaining a serial data having N output signals, and each of the reading time points of each output signal is used as the initial charging time of the corresponding microelectrode when the first control signal is switched for the first time, and the processing unit further uses the string The logic value of each output signal in the column data changes, as the end charging time of the corresponding microelectrode, the processing unit obtains the corresponding microelectrode according to the initial charging time and the end charging time corresponding to each microelectrode. At a charging time, the processing unit determines whether there are droplets above the N microelectrodes based on the charging time, the discharging time, or the charging and discharging time of the N microelectrodes. 如請求項6所述的生物檢測設備,其中,該處理單元具有一查找表,該查找表的內容相關於複數不同種類的液滴對應N個微電極之充電時間及放電時間的關係,該處理單元還根據N個微電極的放電時間、充電時間、或放電與充電時間,與該查找表的內容相比較,以獲知N個微電極上方之液滴的種類。 The biometric detection device according to claim 6, wherein the processing unit has a lookup table, and the content of the lookup table is related to a relationship between charging time and discharge time of the plurality of different types of droplets corresponding to the N microelectrodes, the processing The unit also compares the discharge time, the charging time, or the discharge and charging time of the N microelectrodes with the contents of the lookup table to know the type of droplets above the N microelectrodes. 如請求項5所述的生物檢測設備,其中,該生物晶片根據該資料輸入信號、該時鐘信號、該第一控制信號、該第二控制信號、該第三控制信號、及該偏壓信號,還操作於一驅動模式, 在該驅動模式時,若該液滴在第k1控制單元的上方,要驅動該液滴往相鄰的第k2控制單元的上方移動時,1≦k1≦N,1≦k2≦N,使第k2控制單元的微電極的電壓準位為一第二參考電壓,且其餘微電極的電壓準位為一浮接電壓。 The biodetection device of claim 5, wherein the biochip according to the data input signal, the clock signal, the first control signal, the second control signal, the third control signal, and the bias signal, Also operating in a drive mode, In the driving mode, if the droplet is above the k1 control unit, when the droplet is to be moved to move over the adjacent k2 control unit, 1≦k1≦N,1≦k2≦N, so that The voltage level of the microelectrode of the k2 control unit is a second reference voltage, and the voltage level of the remaining microelectrodes is a floating voltage. 如請求項5所述的生物檢測設備,其中,該蓋體還包括:一第一電介質層,設置於該微電極點陣列的上方,且具有一第一表面;一第二電介質層,間隔地設置於該第一電介質層的上方,且具有位於相反兩側的一第二表面及一第三表面,該第一表面及該第二表面位於該第一電介質層及該第二電介質層之間;二疏水層,分別形成於該第一電介質層的第一表面與該第二電介質層的第二表面,該二疏水層之間為該液滴空間;及一第三電介質層,形成於該第二電介質層的第三表面,並接收該偏壓信號。 The biodetection device of claim 5, wherein the cover further comprises: a first dielectric layer disposed above the array of microelectrode dots and having a first surface; a second dielectric layer spaced apart The first dielectric layer and the second surface are disposed between the first dielectric layer and the second dielectric layer. And a second hydrophobic layer formed on the first surface of the first dielectric layer and the second surface of the second dielectric layer, the droplet space is between the two hydrophobic layers; and a third dielectric layer is formed on the second surface a third surface of the second dielectric layer and receiving the bias signal. 如請求項5所述的生物檢測設備,其中,該生物晶片還包括一打線區,該打線區包含一電性連接該處理單元與該N個控制單元中的第一個控制單元的資料輸入墊、一電性連接該處理單元與該N個控制單元中的第N個控制單元的資料輸出墊、電性連接該處理單元與該N個控制單元的一時鐘墊、一第一控制墊、一第二控制墊、及一第三控制墊,該打線區設置於該微電極點陣列之一側, 且不位於該蓋體的下方,用以供該生物晶片打線封裝使用。 The biometric device of claim 5, wherein the biochip further comprises a wire bonding zone, the wire bonding zone comprising a data input pad electrically connected to the processing unit and the first one of the N control units a data output pad electrically connected to the processing unit and the Nth control unit of the N control units, a clock pad electrically connected to the processing unit and the N control units, a first control pad, and a first control pad a second control pad, and a third control pad, the wire bonding area is disposed on one side of the micro electrode dot array And not located under the cover for use in the biochip wire package.
TW103110503A 2014-03-20 2014-03-20 An inspecting equipment and a biochip TWI510780B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW103110503A TWI510780B (en) 2014-03-20 2014-03-20 An inspecting equipment and a biochip
CN201410244540.4A CN104931550B (en) 2014-03-20 2014-06-04 Biological detection apparatus and biochip
US14/341,466 US9573129B2 (en) 2014-03-20 2014-07-25 Sensing system and sensor chip thereof
JP2015010049A JP6073938B2 (en) 2014-03-20 2015-01-22 Sensor chip and detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103110503A TWI510780B (en) 2014-03-20 2014-03-20 An inspecting equipment and a biochip

Publications (2)

Publication Number Publication Date
TW201537167A true TW201537167A (en) 2015-10-01
TWI510780B TWI510780B (en) 2015-12-01

Family

ID=54118819

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103110503A TWI510780B (en) 2014-03-20 2014-03-20 An inspecting equipment and a biochip

Country Status (4)

Country Link
US (1) US9573129B2 (en)
JP (1) JP6073938B2 (en)
CN (1) CN104931550B (en)
TW (1) TWI510780B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736688B (en) * 2016-11-17 2021-08-21 瑞典商指紋卡公司 Fingerprint sensing using measuring configurations with different principal directions of extensions

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI539755B (en) * 2014-12-19 2016-06-21 國立交通大學 Readout system
CN109569749A (en) * 2018-11-16 2019-04-05 华南师范大学 The portable sliceable digital microcurrent-controlled driving circuit of one kind, apparatus and system
CN114336511A (en) * 2020-09-30 2022-04-12 富佳生技股份有限公司 Dielectric wetting device and circuit detection method thereof
EP4059604A1 (en) * 2021-03-19 2022-09-21 National Yang Ming Chiao Tung University Microfluidic test system and microfluidic test method
CN113769802B (en) * 2021-09-24 2023-03-10 上海天马微电子有限公司 Microfluidic device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7163612B2 (en) 2001-11-26 2007-01-16 Keck Graduate Institute Method, apparatus and article for microfluidic control via electrowetting, for chemical, biochemical and biological assays and the like
JP3882773B2 (en) 2003-04-03 2007-02-21 ソニー株式会社 Image display device, drive circuit device, and light-emitting diode defect detection method
TWI303312B (en) * 2005-12-21 2008-11-21 Ind Tech Res Inst Matrix electrodes controlling device and digital fluid detection platform thereof
US9046514B2 (en) * 2007-02-09 2015-06-02 Advanced Liquid Logic, Inc. Droplet actuator devices and methods employing magnetic beads
KR20100016343A (en) * 2007-04-10 2010-02-12 어드밴스드 리퀴드 로직, 아이엔씨. Droplet dispensing device and methods
KR101394435B1 (en) 2007-09-28 2014-05-14 삼성디스플레이 주식회사 Backlight driver and liquid crystal display comprising the same
TW200940828A (en) 2008-03-27 2009-10-01 jun-neng Zhong Power generation device capable of collecting wind from multiple directions
TWI383144B (en) 2008-09-23 2013-01-21 Univ Nat Chiao Tung Sensing element, manufacturing method and detecting system thereof
CN201488972U (en) * 2009-04-16 2010-05-26 福州大学 Multi-channel gating device of electrochemical electrode array chip
US8685325B2 (en) * 2010-03-09 2014-04-01 Sparkle Power Inc. Field-programmable lab-on-a-chip based on microelectrode array architecture
TWI510296B (en) * 2011-02-17 2015-12-01 Gary Wang Droplet manipulations on ewod microelectrode array architecture
JP5468687B2 (en) 2012-01-11 2014-04-09 シャープ株式会社 Static random access cell, matrix active matrix device, array element circuit
DE112012005457B4 (en) 2012-02-14 2018-07-12 Mitsubishi Electric Corporation Semiconductor device with electrically isolated communication devices for driving
CN103386332A (en) * 2013-07-09 2013-11-13 苏州大学 Method of transporting liquid drops by micro-fluidic chip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736688B (en) * 2016-11-17 2021-08-21 瑞典商指紋卡公司 Fingerprint sensing using measuring configurations with different principal directions of extensions

Also Published As

Publication number Publication date
US9573129B2 (en) 2017-02-21
US20150268185A1 (en) 2015-09-24
CN104931550A (en) 2015-09-23
JP6073938B2 (en) 2017-02-01
JP2015184275A (en) 2015-10-22
CN104931550B (en) 2017-09-05
TWI510780B (en) 2015-12-01

Similar Documents

Publication Publication Date Title
TWI510780B (en) An inspecting equipment and a biochip
US10183292B2 (en) Capacitance detection in a droplet actuator
US10078986B2 (en) Active matrix device and method of driving
JP5893603B2 (en) Active matrix type dielectric electrowetting device and driving method thereof
US9662651B2 (en) Active matrix device and method of driving the same
US8764958B2 (en) High-voltage microfluidic droplets actuation by low-voltage fabrication technologies
EP2484449B1 (en) Active matrix device
JP5960117B2 (en) Efficient dilution method, including washing method for immunoassay
EP2570188A1 (en) Active matrix device for fluid control by electro-wetting and dielectrophoresis and method of driving
Ho et al. Design of a micro-electrode cell for programmable lab-on-CMOS platform
US20160313282A1 (en) Motft and array circuit for chemical/biochemical applications
US20220297120A1 (en) Microfluidic test system and microfluidic test method
CN114798011A (en) Pixel circuit, micro-fluidic chip and using method thereof
Sheikh et al. On enhancing the reliability of digital microfluidic biochips (DMFB) through electrode cells health classification
US20220297131A1 (en) Microelectrode device, microfluidic chip, and microfluidic examination method
EP4310172A1 (en) Microelectrode element, microfluidic wafer, and microfluidic test method
US20220404345A1 (en) Sensing chip with fluidic device
TW202306647A (en) Digital microfluidic device with capacitive sensing