TW201535423A - 絕緣電線,線圈及電子、電氣機器 - Google Patents

絕緣電線,線圈及電子、電氣機器 Download PDF

Info

Publication number
TW201535423A
TW201535423A TW103145132A TW103145132A TW201535423A TW 201535423 A TW201535423 A TW 201535423A TW 103145132 A TW103145132 A TW 103145132A TW 103145132 A TW103145132 A TW 103145132A TW 201535423 A TW201535423 A TW 201535423A
Authority
TW
Taiwan
Prior art keywords
thermoplastic resin
layer
resin layer
thickness
coating
Prior art date
Application number
TW103145132A
Other languages
English (en)
Inventor
Keisuke Ikeda
Makoto Oya
Hideo Fukuda
Original Assignee
Furukawa Electric Co Ltd
Furukawa Magnet Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Magnet Wire Co Ltd filed Critical Furukawa Electric Co Ltd
Publication of TW201535423A publication Critical patent/TW201535423A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/307Other macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0225Three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

本發明係一種絕緣電線、以及對該絕緣電線進行繞線加工而成之線圈及使用該線圈而成之電氣機器,該絕緣電線係於截面為矩形之導體上直接或介隔絕緣層(C)具有熱硬化性樹脂被覆(A),於熱硬化性樹脂被覆(A)之外周具有熱塑性樹脂被覆(B)者;熱塑性樹脂被覆(B)具有至少2層熱塑性樹脂層,相鄰之熱塑性樹脂層係由互不相同之熱塑性樹脂構成,熱塑性樹脂層之至少1層係由PEEK或改質PEEK構成,且熱塑性樹脂層之總厚度為60~120μm,最薄之熱塑性樹脂層之厚度為5~20μm。

Description

絕緣電線,線圈及電子、電氣機器
本發明係關於一種絕緣電線,線圈及電子、電氣機器。
對於反相器相關機器,例如高速開關元件、反相器馬達、變壓器等電子、電氣機器用線圈,主要使用作為漆包線之絕緣電線(insulating wire)作為磁性電線。對於該絕緣電線,要求將因由反相器突波(surge)引起之局部放電而導致之劣化抑制為最小限度。為了防止因局部放電而導致之劣化,而對提高局部放電起始電壓之方法進行研究,作為該方法之一,有加厚絕緣電線之絕緣被覆之厚度的方法。然而,若加厚絕緣被覆之厚度,則會降低與導體之接著性。
因此,嘗試於包漆燒附層之外側設置由性質與包漆燒附層不同之樹脂構成的被覆樹脂層作為多層絕緣被覆,藉此提高局部放電起始電壓,除此以外,利用新設置之被覆樹脂層而追加附加價值高之特性。例如,於專利文獻1中,藉由設置多層絕緣被覆,而提出「一種耐反相器突波絕緣電線,其可於不降低絕緣電線之導體與包漆層之接著強度之情況下,實現用以提高局部放電起始電壓之絕緣層的厚膜化」。又,於專利文獻2中,藉由設置多層絕緣被覆,而提出一種局部放電起始電壓較高且皮 膜之耐磨性等優異之絕緣電線。
[先前技術文獻]
[專利文獻]
[專利文獻1]日本專利第4904312號公報
[專利文獻2]日本專利第5306742號公報
以旋轉電機或變壓器為代表之電子、電氣機器(亦稱為電氣、電子機器或電氣機器)之小型化及高性能化不斷發展,從而越發多見如將對絕緣電線進行繞線加工(線圈加工)而成之繞線(線圈)壓入非常狹窄之部分而使用之使用方式。於此情形時,即便說「於轉子槽中能放入幾根對絕緣電線進行線圈加工而成之線圈」就決定了其馬達等旋轉電機之性能亦不為過。其結果,對提昇導體之截面面積相對於轉子槽截面面積之比率(下述之占空因數)之要求迅猛高漲。自以上原因考慮,作為提昇占空因數之手段,而使用導體之截面形狀類似四邊型(正方形或長方形)之扁平線。
又,於利用旋轉電機之各領域,因旋轉電機之高效率化而導致工作電壓變高,又,亦有因小型化而無法充分地確保散熱性之情形等。因此,對於絕緣電線,除電氣特性以外,對耐熱性之要求亦不斷增高。尤其是,要求於瞬間地、斷續地暴露於設計以上之高溫下後亦有充分 之絕緣性能。
進而,於由絕緣電線加工成線圈時,易損傷絕緣被覆,又,亦有因高速而使絕緣電線彼此多次相互摩擦之情況,故而亦要求耐損傷性(亦稱為耐傷性)。
另一方面,近年來對電氣機器之小型化、輕量化及高性能化等之要求不斷高漲。又,利用旋轉電機作為驅動馬達之HV(油電混合車)或EV(電動汽車)之開發亦急速發展。為了因應此類高性能化等之急速發展、特有之性能之表現、要求水準之提昇,習知技術尚未能滿足。
對習知技術進一步改善上述特性之提昇及占空因數之降低變得重要。
因此,本發明之課題在於提供一種絕緣電線、以及使用該絕緣電線之線圈及電氣機器,該絕緣電線即便絕緣被覆之厚度較薄,亦不會損害耐電壓特性,並且耐熱性及耐傷性亦優異。
本發明人等自耐電壓特性及絕緣電線之小型化之觀點出發,對多層絕緣被覆之構成、及樹脂之種類等進行潛心研究,結果發現:將熱塑性樹脂之被覆(稱為熱塑性樹脂被覆)設為積層有種類不同之熱塑性樹脂層之2層構造,並使其中1層薄至特定之厚度對熱塑性樹脂被覆之每單位厚度之耐電壓特性較為重要。並且發現:若由特定之樹脂形成構成熱塑性樹脂被覆之1層(可為與上述薄至特定之厚度之層相同的層,亦可為不同的層),則可提昇耐電壓特性,除此以外,亦可提高耐熱性及耐傷性,可滿足近來之經小型化及高性能化之電氣機器用之絕緣電線所要求的特性。本發明係基於該等見解而完成者。
即,本發明之上述課題係藉由以下之手段而達成。
(1)一種絕緣電線,其係於截面為矩形之導體上直接或介隔絕緣層(C)具有熱硬化性樹脂被覆(A),於該熱硬化性樹脂被覆(A)之外周具有熱塑性樹脂被覆(B)者;上述熱塑性樹脂被覆(B)具有至少2層熱塑性樹脂層,相鄰之上述熱塑性樹脂層係由互不相同之熱塑性樹脂構成,上述熱塑性樹脂層之至少1層係由聚醚醚酮或改質聚醚醚酮構成,且上述熱塑性樹脂層之總厚度為60~120μm,上述熱塑性樹脂層中最薄之熱塑性樹脂層之厚度為5~20μm。
(2)如(1)記載之絕緣電線,其中,上述熱塑性樹脂被覆(B)之最外層為上述由聚醚醚酮或改質聚醚醚酮構成之熱塑性樹脂層。
(3)如(1)或(2)記載之絕緣電線,其中,上述熱塑性樹脂被覆(B)由2層熱塑性樹脂層構成。
(4)如(1)至(3)中任一項記載之絕緣電線,其中,上述最薄之熱塑性樹脂層設置於上述由聚醚醚酮或改質聚醚醚酮構成之熱塑性樹脂層之內側。
(5)一種線圈,其對(1)至(4)中任一項記載之絕緣電線進行繞線加工而成。
(6)一種電子、電氣機器,其使用(5)記載之線圈而成。
於本發明中,所謂「由樹脂構成之層」意指由樹脂形成之層,亦稱為「樹脂之層」。
又,於本發明中,截面為矩形之導體意指包含截面為長方形之導體及 截面為正方形之導體兩者。
根據本發明,可提供一種絕緣電線、以及使用該絕緣電線之線圈及電氣機器,該絕緣電線即便絕緣被覆之厚度較薄,亦不會損害耐電壓特性,並且耐熱性及耐傷性亦優異。
本發明之絕緣電線中,熱塑性樹脂被覆(B)之每單位厚度之耐電壓特性提昇。藉此,於滿足電氣機器所要求之耐電壓特性之情形時,可使熱塑性樹脂被覆(B)薄於習知之絕緣電線。因此,可進一步減小組入電氣機器之本發明之絕緣電線之占空因數。又,本發明之絕緣電線之耐熱性及耐傷性得到改善,從而以較高水準兼具耐電壓特性、耐熱性及耐傷性各者。因此,藉由將本發明之絕緣電線用作線圈,而可實現電氣機器之進一步之小型化及高性能化。
本發明之上述及其他特徵及優點根據下述記載及隨附圖式而變得更明瞭。
1~3‧‧‧絕緣電線
11‧‧‧導體
12‧‧‧熱硬化性樹脂被覆
13A~13C‧‧‧熱塑性樹脂被覆
14A~14G‧‧‧熱塑性樹脂層
圖1係表示本發明之絕緣電線之較佳實施態樣之概略剖面圖。
圖2係表示本發明之絕緣電線之另一較佳實施態樣之概略剖面圖。
圖3係表示本發明之絕緣電線之又一較佳實施態樣之概略剖面圖。
<<絕緣電線>>
本發明之絕緣電線具有導體、直接或介隔絕緣層(C)設置於導體上之熱硬化性樹脂被覆(A)、及設置於熱硬化性樹脂被覆(A)之外周之熱塑性樹脂被覆(B)。
熱塑性樹脂被覆(B)具有至少2層熱塑性樹脂層。
至少2層之熱塑性樹脂層滿足下述(1)~(4)。
(1)相鄰之熱塑性樹脂層彼此由互不相同之熱塑性樹脂構成;(2)熱塑性樹脂層之至少1層由聚醚醚酮或改質聚醚醚酮構成;(3)熱塑性樹脂層之總厚度為60~120μm;(4)熱塑性樹脂層中最薄之熱塑性樹脂層之厚度為5~20μm。
於本發明中,絕緣層(C)及熱硬化性樹脂被覆(A)分別可為1層,亦可由2層以上之複數層構成。
於本發明中,於將構成(形成)層之樹脂及所含有之添加物完全相同之層鄰接地積層之情形時,合併該等而計數為1層。
另一方面,於即便為構成層之樹脂及所含有之添加物完全相同之層,但未鄰接地積層之情形時,即,於介隔其他層而積層之情形時,將各層分別計數為1層。例如,實施例4中,將熱塑性樹脂被覆(B)計數為3層。
又,於將即便由相同樹脂構成,但添加物之種類或調配量不同之層積層之情形時,無論鄰接與否,均將各層分別計數為1層。
以下,參照圖式對本發明之較佳之絕緣電線進行說明,但本發明並不限定於此。
圖1中示有剖面圖之本發明之較佳之絕緣電線1具有導體11、設置於導體11之外周面之熱硬化性樹脂被覆12、及設置於熱硬化性樹脂被覆12之外周面之熱塑性樹脂被覆13A。熱硬化性樹脂被覆12係由1層熱硬化性樹脂層構成。熱塑性樹脂被覆13A具有由設置於熱硬化性樹脂被覆12之外周面的熱塑性樹脂層14A及設置於熱塑性樹脂層14A之外周面的熱塑性樹脂層14B構成之2層構造。熱塑性樹脂層14A之厚度形成為薄於熱塑性樹脂層14B。
圖2中示有剖面圖之本發明之較佳之絕緣電線2除了熱塑性樹脂層之形成位置不同以外,與絕緣電線1相同。即,絕緣電線2具有導體11、熱硬化性樹脂被覆12、及熱塑性樹脂被覆13B。熱塑性樹脂被覆13B具有由設置於熱硬化性樹脂被覆12之外周面之熱塑性樹脂層14C及設置於熱塑性樹脂層14C之外周面之熱塑性樹脂層14D構成之2層構造。熱塑性樹脂層14D之厚度形成為薄於熱塑性樹脂層14C。
圖3中示有剖面圖之本發明之較佳之絕緣電線3除熱塑性樹脂被覆(B)不同以外,與絕緣電線1相同。即,絕緣電線3具有導體11、熱硬化性樹脂被覆12、及熱塑性樹脂被覆13C。熱塑性樹脂被覆13C具有由設置於熱硬化性樹脂被覆12之外周面之熱塑性樹脂層14E、設置於熱塑性樹脂層14E之外周面之熱塑性樹脂層14F、及設置於熱塑性樹脂層14F之外周面之熱塑性樹脂層14G構成之3層構造。熱塑性樹脂層14F係3層中最薄之熱塑性樹脂層,熱塑性樹脂層14E與熱塑性樹脂層14G之厚度可相同,亦可任一者較厚。
於本發明中,雖未圖示,但於絕緣電線1~3中,亦可於導 體11與熱硬化性樹脂被覆12之間設置絕緣層(C)。
以下,針對本發明之絕緣電線,自導體依序進行說明。
<導體>
作為本發明所使用之導體,可使用習知絕緣電線所使用者,可列舉銅線、鋁線等金屬導體。較佳為含氧量為30ppm以下之低氧銅,進而較佳為20ppm以下之低氧銅或無氧銅導體。若含氧量為30ppm以下,則於為了焊接而利用熱使導體熔融之情形時,於焊接部分不會產生起因於含有氧之孔隙,可防止焊接部分之電阻惡化,並且可保持焊接部分之強度。
本發明所使用之導體係截面形狀為矩形(扁平形狀)之導體。扁平形狀之導體與圓形者相比,於繞線時,對轉子槽之占空因數變高。因此,於此種用途較佳。
就抑制來自角部之局部放電之方面而言,扁平形狀之導體較理想為如圖1~3所示般於4角設置有倒角(曲率半徑r)之形狀。曲率半徑r較佳為0.6mm以下,更佳為0.2~0.4mm。
導體之大小並無特別限定,寬度(長邊)較佳為1~5mm,更佳為1.4~4.0mm,厚度(短邊)較佳為0.4~3.0mm,更佳為0.5~2.5mm。寬度(長邊)與厚度(短邊)之長度之比率(厚度:寬度)較佳為1:1~1:4。
<熱硬化性樹脂被覆(A)>
於本發明中,於導體上設置熱硬化性樹脂被覆(A)12作為包漆燒附層。該熱硬化性樹脂被覆(A)具有至少1層由熱硬化性樹脂構成之熱硬化性樹脂層。於熱硬化性樹脂被覆(A)由1層熱硬化性樹脂層形成時, 熱硬化性樹脂被覆(A)與熱硬化性樹脂層同義。
包漆燒附層係將樹脂清漆塗佈於導體上並進行燒附而形成者。包漆燒附層可直接設置於導體之外周,又,例如亦可介隔下述絕緣層(C)而設置。
所使用之樹脂清漆含有熱硬化性樹脂。
熱硬化性樹脂只要為可塗佈於導體並燒附而形成絕緣皮膜之熱硬化性樹脂即可,可使用聚醯亞胺(PI)、聚胺酯(polyurethane)、聚醯胺醯亞胺(PAI)、熱硬化性聚酯(PEst)、H種聚酯(HPE)、聚苯并咪唑、聚酯醯亞胺(PEsI)、三聚氰胺樹脂、環氧樹脂等。
於本發明中,作為熱硬化性樹脂,較佳為選自由聚醯亞胺、聚醯胺醯亞胺、H種聚酯及聚酯醯亞胺所組成之群中之熱硬化性樹脂。
聚醯亞胺並無特別限制,可使用全芳香族聚醯亞胺及熱硬化性芳香族聚醯亞胺等通常之聚醯亞胺。例如可使用市售品(商品名:U IMIDE(UNITIKA公司製造),商品名:U-Varnish(宇部興產公司製造))。或者,可使用藉由如下習知方法而獲得者:使用使芳香族四羧酸二酐與芳香族二胺類於極性溶劑中反應而獲得之聚醯胺酸溶液,藉由被覆時之燒附時之加熱處理而使其醯亞胺化。
聚醯胺醯亞胺只要為熱硬化性者即可,可使用市售品(例如日立化成公司製造,商品名:HI406,商品名:HCI Series)。或者,可使用根據習知方法,例如於極性溶劑中使三羧酸酐與二異氰酸酯類直接反應而獲得者,或於極性溶劑中使三羧酸酐與二胺類預先反應,首先導入醯亞胺鍵,繼而利用二異氰酸酯類進行醯胺化而獲得者。聚醯胺醯亞胺與其他 樹脂相比係熱導率較低、絕緣破壞電壓較高、且可燒附硬化者。
所謂H種聚酯,係指藉由於芳香族聚酯中添加酚樹脂等使樹脂改質而成者,且耐熱類型為H種者。市售之H種聚酯可列舉Isonel 200(商品名,美國Schenectady International公司製造)等。
聚酯醯亞胺只要為於分子內具有酯鍵與醯亞胺鍵之聚合物,且為熱硬化性者即可,例如可使用東特塗料公司製造之商品名:Neoheat 8600A等市售品。
又,聚酯醯亞胺並無特別限定,例如可使用藉由如下方式而獲得者:由三羧酸酐與胺形成醯亞胺鍵,由醇與羧酸或其烷基酯形成酯鍵,並且使醯亞胺鍵之游離酸基或酐基參與酯形成反應。此種聚酯醯亞胺例如亦可使用利用公知之方法使三羧酸酐、二羧酸化合物或其烷基酯、醇化合物及二胺化合物反應而獲得者。
熱硬化性樹脂可單獨使用僅1種,亦可併用2種以上。
又,於熱硬化性樹脂被覆(A)由複數層熱硬化性樹脂層構成之情形時,於各層可使用互不相同之熱硬化性樹脂,亦可使用不同之混合比率之熱硬化性樹脂。
本發明所使用之樹脂清漆亦可於不影響特性之範圍內含有氣泡化成核劑、抗氧化劑、抗靜電劑、紫外光抑制劑、光穩定劑、螢光增白劑、顏料、染料、相容劑、潤滑劑、強化劑、難燃劑、交聯劑、交聯助劑、塑化劑、增黏劑、減黏劑及彈性體等各種添加劑。又,對所獲得之絕緣電線可積層由含有該等添加劑之樹脂構成之層,亦可塗佈含有該等添加劑之塗料。
關於樹脂清漆,為了提昇熱硬化性樹脂層之彈性模數,亦可將玻璃纖維或奈米碳管等具有較大之縱橫比之粉體添加至塗料中並燒附。藉此,於加工時使粉體沿線之行進方向排列,使彎曲方向得到強化。
樹脂清漆為了使熱硬化性樹脂清漆化而含有有機溶劑等。作為有機溶劑,只要不阻礙熱硬化性樹脂之反應,則無特別限制,例如可列舉:N-甲基-2-吡咯啶酮(NMP)、N,N-二甲基乙醯胺(DMAC)、N,N-二甲基甲醯胺(DMF)等醯胺系溶劑;N,N-二甲基伸乙基脲、N,N-二甲基伸丙基脲、四甲基脲等脲系溶劑;γ-丁內酯、γ-己內酯等內酯系溶劑;碳酸伸丙酯等碳酸酯系溶劑;甲基乙基酮、甲基異丁基酮、環己酮等酮系溶劑;乙酸乙酯、乙酸正丁酯、丁基溶纖素乙酸酯、丁基卡必醇乙酸酯、乙基溶纖素乙酸酯、乙基卡必醇乙酸酯等酯系溶劑;二乙二醇二甲醚(diglyme)、三乙二醇二甲醚(triglyme)、四乙二醇二甲醚(tetraglyme)等乙二醇二甲醚(glyme)系溶劑;甲苯、二甲苯、環己烷等烴系溶劑;甲酚、苯酚、鹵化苯酚等酚系溶劑;環丁碸等碸系溶劑;二甲基亞碸(DMSO)等。
該等之中,若著眼於高溶解性、高反應促進性等,則較佳為醯胺系溶劑、脲系溶劑,就不具有易阻礙利用加熱之交聯反應之氫原子等方面而言,更佳為N-甲基-2-吡咯啶酮、N,N-二甲基乙醯胺、N,N-二甲基伸乙基脲、N,N-二甲基伸丙基脲、四甲基脲,尤佳為N,N-二甲基乙醯胺、N-甲基-2-吡咯啶酮、N,N-二甲基甲醯胺、二甲基亞碸。
有機溶劑等可單獨使用僅1種,亦可併用2種以上。
為了減少通過燒附爐之次數,防止導體與包漆燒附層之接著力極度降低,包漆燒附層之厚度(熱硬化性樹脂層之總厚度)較佳為60μm以下,進而較佳為50μm以下。又,為了不損害作為絕緣電線之漆包線所必需之特性即耐電壓特性或耐熱性,包漆燒附層較佳為具有一定程度之厚度者。包漆燒附層之下限之厚度只要為不產生針孔之程度之厚度,則無特別限制,較佳為3μm以上,進而較佳為6μm以上。
<熱塑性樹脂被覆(B)>
於本發明中,於作為包漆燒附層之熱硬化性樹脂被覆(A)上,較佳為設置作為擠出被覆之由至少2層熱塑性樹脂層構成之熱塑性樹脂被覆(B)。
設置熱塑性樹脂被覆(B)作為擠出被覆之優點在於:由於在製造步驟中無須通過燒附爐,故而可於不使導體之氧化被膜層之厚度成長之情況下,加厚熱塑性樹脂被覆(B)之厚度。
再者,熱塑性樹脂被覆(B)亦可如熱硬化性樹脂層般塗佈清漆並燒附而設置。
構成熱塑性樹脂被覆(B)之熱塑性樹脂層之數量只要為至少2層,則無特別限定,但就生產性、成本之方面而言,較佳為2~4層,較佳為2層或3層,更佳為2層。
熱塑性樹脂被覆(B)具有厚度最薄之熱塑性樹脂層。若積層構造之熱塑性樹脂被覆(B)具有最薄之熱塑性樹脂,則作為熱塑性樹脂被覆(B)整體,熱塑性樹脂被覆(B)之每單位厚度之耐電壓特性(電氣性能)提昇。尤其是,若最薄之熱塑性樹脂之厚度於下述範圍內, 則該耐電壓特性提昇效果較高,即便減薄熱塑性樹脂被覆(B)之總厚度,亦可維持耐電壓特性。因此,可於不損害耐電壓特性之情況下,減薄熱塑性樹脂被覆(B)之總厚度,進而可實現絕緣電線之小徑化。
於本發明中,熱塑性樹脂被覆(B)之每單位厚度之耐電壓特性之提昇效果例如可以發揮特定之耐電壓特性所必需之熱塑性樹脂被覆(B)之總厚度之減少率(有時簡稱為總厚度減少率)來進行評價。此處,總厚度減少率(%)係發揮特定之耐電壓特性所必需之單層之熱塑性樹脂被覆之厚度TA、與發揮特定之耐電壓特性所必需之本發明之熱塑性樹脂被覆(B)之總厚度TB的差量(TA-TB)除以厚度TA而得之比率((TA-TB)/TA(%))。再者,將導體11及熱硬化性被覆(A)12設為固定。
於本發明中,總厚度減少率只要超過0%,則無特別限定,但就小型化之觀點而言,較佳為10%以上,更佳為15%以上。關於上限,只要可形成最薄之熱塑性樹脂,則無特別限定,實際上為40%。
於本發明中,將總厚度減少率為10%以上設為較佳之原因在於電氣機器之小型化及高效率化。具體而言,已知若總厚度減少率為10%,則占空因數提昇約3%,輸出密度提昇約1.2%。如此,若可使輸出密度提昇1%以上,則對於逐步高功能、高性能化之近年來之電氣機器而言可獲得有益之效果。又,藉此不僅可實現小型化,亦可組入新功能。
如此,本發明為了提高耐電壓特性、即絕緣性能,並非加厚熱塑性樹脂被覆(B),而是相反地將其減薄。藉此,可維持耐電壓特性,並且可實現小型化。
又,關於熱塑性樹脂被覆(B),積層熱塑性樹脂層之態樣 只要為相鄰之熱塑性樹脂層彼此成為由互不相同之熱塑性樹脂形成之層之態樣,則任何形式之積層均可。
於本發明中,熱塑性樹脂層之至少1層為由聚醚醚酮或改質聚醚醚酮構成之熱塑性樹脂層(有時稱為PEEK層)。該PEEK層與具有特定之厚度之最薄之熱塑性樹脂相互作用,先前未能實現之提昇熱塑性樹脂被覆(B)之耐電壓特性之效果進一步提高,可維持耐電壓特性,並且增大總厚度減少率,且亦可改善耐熱性及耐傷性。
較佳為形成於熱塑性樹脂被覆(B)之最外側的最外層為PEEK層。若形成PEEK層作為最外層,則絕緣電線之耐熱性更優異。
又,較佳為最薄之熱塑性樹脂層設置於PEEK層之內側。藉此,PEEK層並非最薄之熱塑性樹脂層,而使耐傷性得以改善。此處,於熱塑性樹脂被覆(B)具有複數層PEEK層之情形時,最薄之熱塑性樹脂層設為形成於最外側之PEEK層之內側。
熱塑性脂層所使用之樹脂係熱塑性樹脂,其中較佳為耐熱性、耐化學藥品性優異之熱塑性樹脂。
作為可用於本發明之熱塑性樹脂,可列舉:聚醯胺(亦稱為尼龍)、聚縮醛(POM)、聚碳酸酯(PC)、聚苯醚(PPE,包含改質聚苯醚)、間規聚苯乙烯樹脂(SPS)、聚對苯二甲酸丁二酯(PBT)、聚對苯二甲酸乙二酯(PET)、聚萘二甲酸乙二酯(PEN)、超高分子量聚乙烯等通用工程塑膠;及聚醚醯亞胺(PEI)、聚苯碸(PPSU)、聚碸(PSU)、聚碸(PSF)、聚醚碸(PES)、聚苯硫醚、聚芳酯(PAR)、聚醚酮(PEK)、聚芳醚酮(PAEK)、四氟乙烯-乙烯共聚物(ETFE)、聚醚醚酮(PEEK)、改 質PEEK、聚醚酮酮(PEKK)、四氟乙烯-全氟烷基乙烯基醚共聚物(PFA)、聚四氟乙烯(PTFE)、熱塑性聚醯亞胺樹脂(TPI)、熱塑性聚醯胺醯亞胺、液晶聚酯等超級工程塑膠;進而以聚對苯二甲酸乙二酯(PET)、聚萘二甲酸乙二酯(PEN)為基底樹脂之聚合物合金;ABS/聚碳酸酯、尼龍6,6、芳香族聚醯胺樹脂、聚苯醚/尼龍6,6、聚苯醚/聚苯乙烯、聚對苯二甲酸丁二酯/聚碳酸酯等包含上述工程塑膠之聚合物合金。
作為PEEK,例如可列舉KetaSpire KT-820(Solvay Specialty Polymers公司製造,商品名)、PEEK450G(Victrex Japan公司製造,商品名);作為改質PEEK,可列舉AvaSpire AV-650(Solvay Specialty Polymers公司製造,商品名);作為TPI,可列舉AURUM PL450C(三井化學公司製造,商品名);作為PPS,可列舉FORTRON 0220A9(POLYPLASTICS公司製造,商品名)、PPS FZ-2100(DIC公司製造,商品名);作為SPS,可列舉XAREC S105(出光興產公司製造,商品名);作為熱塑性PA,可列舉尼龍6,6之FDK-1(UNITIKA公司製造,商品名)、尼龍4,6之F-5000(UNITIKA公司製造,商品名)、尼龍6,T之ARLEN AE-420(三井石油化學公司製造,商品名)、尼龍9,T之GENESTAR N1006D(KURARAY公司製造,商品名)等市售品。
作為改質PEEK,除上述者以外,有對PEEK使PPS、PES、PPSU、PEI合金化而成者等,例如亦可列舉Solvay Specialty Polymers公司製造之AvaSpire AV-621、AV-630、AV-651、AV-722、AV-848等。
又,作為PES,例如可列舉SUMIKA EXCEL 4800G(住友 化學公司製造,商品名)、PES(三井化學公司製造,商品名)、ULTRASONE E(BASF Japan公司製造,商品名)、Radel A(Solvay Advanced Polymers公司製造,商品名)之市售品。
作為PPE,例如可列舉Zylon(旭化成化學公司製造,商品名)、Iupiace(Mitsubishi Engineering-Plastics公司製造,商品名)之市售品。
作為PSU,例如可列舉Udel PSU(Solvay Advanced Polymers公司製造,商品名)之市售品。
作為PEI,例如可列舉ULTEM 1010(SABIC Innovative Plastics公司製造,商品名)之市售品。
作為PPSU,例如可列舉Radel R5800(Solvay Advanced Polymers公司製造,商品名)之市售品。
作為PAR,例如可列舉U polymer U-100(UNITIKA公司製造,商品名)之市售品。
再者,熱塑性樹脂之使用樹脂並不受上述所示之樹脂名之限定,除上述列舉之樹脂以外,只要為性能上較該等樹脂優異之樹脂,當然亦可使用。
PEEK層以外之熱塑性樹脂層可無特別限定地使用上述熱塑性樹脂中PEEK及改質PEEK以外者。
例如,厚度最薄之熱塑性樹脂層較佳為由非晶性之熱塑性樹脂構成之層,其以外之熱塑性樹脂層較佳為由結晶性熱塑性樹脂構成之層。此處,所謂「結晶性」,係指於適合結晶化之環境下,可於高分子之鏈之至少一部分具有有規則地排列之結晶組織之特性。另一方面,所謂「非晶性」, 係指保持幾乎不具有晶體結構之無定形狀態,係指於硬化時高分子之鏈變為無規之狀態之特性。
作為非晶性之熱塑性樹脂,例如可列舉上述熱塑性樹脂中之聚醚碸、聚碸、聚苯醚、聚醚醯亞胺、聚苯碸、聚芳酯等。
作為結晶性之熱塑性樹脂,例如可列舉上述熱塑性樹脂中之聚醯胺、聚縮醛、聚對苯二甲酸丁二酯、聚對苯二甲酸乙二酯、超高分子量聚乙烯等通用工程塑膠,間規聚苯乙烯樹脂、聚苯硫醚、聚醚酮、聚芳醚酮、聚醚酮酮、熱塑性聚醯亞胺樹脂等。
其中,就高耐熱性(250℃以上之高熔點)之方面而言,較佳為間規聚苯乙烯樹脂、聚苯硫醚、聚芳醚酮、聚醚酮酮、聚醯胺(尤其是尼龍6,6)、聚醚酮、熱塑性聚醯亞胺樹脂。
形成各熱塑性樹脂層之熱塑性樹脂可單獨使用1種,又,亦可併用2種以上。
於將2種熱塑性樹脂混合而使用之情形時,例如可將兩者進行聚合物合金化而作為相容型之均勻混合物使用,或可使用相容劑使非相容系之摻合物形成相容狀態而使用。
於本發明中,於不影響特性之範圍內,亦可於獲得熱塑性樹脂層之原料中含有上述各種添加劑。又,對所獲得之絕緣電線可積層由含有該等添加劑之樹脂構成之層,亦可塗佈含有該等添加劑之塗料。
熱塑性樹脂層之總厚度、即熱塑性樹脂被覆(B)之厚度為60~120μm。若總厚度未達60μm,則可期待利用厚度最薄之熱塑性樹脂層獲得之提昇耐電壓特性之效果,但終究還是有作為熱塑性樹脂被覆 (B)整體之耐電壓特性較低之情況。另一方面,若總厚度超過120μm,則利用厚度最薄之熱塑性樹脂層獲得之提昇耐電壓特性之效果較小,例如有熱塑性樹脂被覆(B)之總厚度減少率(%)未達到10%,耐電壓特性降低之情況。又,有占空因數降低而變得無法使電氣機器小型化之情況。就可以較高水準兼具耐電壓特性與占空因數之方面而言,總厚度更佳為60~100μm。
熱塑性樹脂層中厚度最薄之熱塑性樹脂層之層厚為5~20μm。若層厚未達5μm,則耐電壓特性提昇效果優異,可減薄熱塑性樹脂被覆(B)之總厚度,但有難以使該熱塑性樹脂層均勻地成形,易產生缺陷之問題。另一方面,若層厚超過20μm,則耐電壓特性提昇效果較低,例如有熱塑性樹脂被覆(B)之總厚度減少率(%)未達到10%,耐電壓特性降低之情況。
就耐電壓特性提昇效果更優異之方面而言,上述層厚更佳為5~15μm。
關於熱塑性樹脂層中厚度最薄之熱塑性樹脂層以外之熱塑性樹脂層之厚度,可於滿足熱塑性樹脂被覆(B)之總厚度之範圍內,根據厚度最薄之熱塑性樹脂層之層厚、熱塑性樹脂層之層數等而適當選擇。
例如,若最外層之厚度為50μm以上,則耐傷性優異。最外層之厚度係於層厚不超過120μm之範圍內設定,例如為115μm以下。
尤佳為熱塑性樹脂被覆(B)具有PEEK層,總厚度為100μm以下,進而較佳為最薄之熱塑性樹脂層之厚度為5~15μm。
<絕緣層(C)>
於本發明中,亦可於導體與熱硬化性樹脂層之間設置絕緣層。該絕緣層係將導體絕緣者,只要為熱硬化性樹脂被覆(A)及熱塑性樹脂被覆(B)以外之絕緣層(稱為其他絕緣層),則無特別限定。作為形成絕緣層(C)之樹脂,只要為於燒附樹脂清漆時不會引起外觀不良,且不會使與導體11之密接性及與熱硬化性樹脂被覆(A)之密接性顯著降低之樹脂,任何樹脂均可使用。作為此種樹脂,例如由聚胺酯、聚酯等熱塑性樹脂形成。
有將形成有絕緣層(C)之導體11稱為被覆導線之情況,尤其是有將具有由聚胺酯構成之絕緣層(C)者稱為聚胺酯線之情況。
<絕緣電線之特性>
本發明之絕緣電線之耐電壓特性、耐熱性及耐傷性優異。
例如,本發明之絕緣電線較佳為使用絕緣破壞試驗機以如下方式測定之耐電壓特性中,導體與設置於最外層之熱塑性樹脂層上之鋁箔之通電電壓為12kV以上者。
具體而言,於各絕緣電線之長度為300mm之部分捲繞鋁箔,將剝離終端後之電極之一端連接於導體,將另一端連接於鋁箔。此處,以升壓速度500V/sec進行升壓,讀取流動15mA以上之電流時之電壓。以n=5實施,測定其平均電壓,藉此而獲得。
<<絕緣電線之製造方法>>
本發明之絕緣電線可於導體之外周根據所需依次形成絕緣層(C)、熱硬化性樹脂被覆(A)、熱塑性樹脂被覆(B)而製造。
絕緣層(C)可根據公知之方法將樹脂塗佈於導體之外周 並進行燒附而形成。
熱硬化性樹脂被覆(A)係形成熱硬化性樹脂層而設置。熱硬化性樹脂層係於導體或絕緣層(C)上塗佈樹脂清漆並進行燒附而形成。塗佈樹脂清漆之方法可按照習知方法,例如可使用呈與導體形狀相似形狀之清漆塗佈用模具之方法,或者於導體截面形狀為矩形之情形時,可使用形成為井字狀之稱為「通用模具」之模具。
塗佈有該等樹脂清漆之導體係按照習知方法於燒附爐內進行燒附。具體之燒附條件受所使用之爐之形狀等影響,但若為大致8m之自然對流式堅式爐,則藉由於爐內溫度400~650℃將通過時間設定為10~90秒而可達成。
樹脂清漆之燒附可為1次,但通常較佳為重複數次。於重複數次之情形時,可為相同之燒附條件,亦可為不同之燒附條件。
如此,可形成1層熱硬化性樹脂層。於形成複數層熱硬化性樹脂層之情形時,只要替換所使用之樹脂清漆即可。
繼而,於形成有熱硬化性樹脂被覆(A)之導體之外周面設置熱塑性樹脂被覆(B)。
熱塑性樹脂被覆(B)可依次或同時形成2層以上之熱塑性樹脂層而設置。
例如,使用共擠出機將形成有熱硬化性樹脂被覆(A)之導體(亦稱為漆包線)與1種熱塑性樹脂共擠出而形成1層熱塑性樹脂層,同樣地,依次擠出不同種類之熱塑性樹脂,而可設置熱塑性樹脂被覆(B)。於已經設置之熱塑性樹脂層由非晶性熱塑性樹脂構成之情形時,較佳為擠出於較 非晶性之熱塑性樹脂之玻璃轉移溫度高之溫度下成為熔融狀態之不同種類的熱塑性樹脂,接觸於已經設置之熱塑性樹脂層,並使之熱熔合而形成。
又,亦可使用多色擠出成形機,將複數種熱塑性樹脂多色擠出成形於漆包線,而一舉形成熱塑性樹脂被覆(B)。
再者,熱塑性樹脂層亦可使用有機溶劑等與熱塑性樹脂而形成。
於使用非晶性熱塑性樹脂之情形時,除擠出成形以外,亦可使用與導體之形狀相似形狀之模具,將溶解於有機溶劑等而成之清漆塗佈於漆包線上並進行燒附而形成。
用於清漆之有機溶劑較佳為於上述樹脂清漆中列舉之有機溶劑。
又,具體之燒附條件受所使用之爐之形狀等影響,較佳為熱硬化性樹脂被覆(A)之條件中記載之條件。
本發明之絕緣電線可較佳地作為經線圈加工而成之線圈而利用於各種電氣機器等必需耐電壓性或耐熱性之領域。例如,本發明之絕緣電線可進行線圈加工而用於馬達或變壓器等,可構成高性能之電氣機器。尤其是,可較佳地用作HV或EV之驅動馬達用之繞線。如此,根據本發明,可提供將上述絕緣電線用作經線圈加工而成之線圈的電氣機器、尤其是HV及EV之驅動馬達。再者,於將本發明之絕緣電線用於馬達線圈之情形時,亦稱為馬達線圈用絕緣電線。
尤其是,具有上述性能之本發明之絕緣電線近年來被較佳地用作小型化及高性能化顯著之HV或EV之驅動馬達用之繞線。
[實施例]
以下,基於實施例對本發明進行更詳細之說明,但其並非限制本發明。
實施例1
本例中,製造圖1所示之絕緣電線1。
導體11係使用截面平角(長邊3.2mm×短邊2.4mm,且四角之倒角之曲率半徑r=0.3mm)之平角導體(含氧量15ppm之銅)。
於形成熱硬化性樹脂被覆(A)12時,使用與形成於導體11上之熱硬化性樹脂被覆(A)之形狀相似形狀之模具。利用上述模具將聚醯胺醯亞胺樹脂(PAI)清漆(日立化成股份有限公司製造,商品名:HI406)塗佈於導體11,使其以通過時間為15秒之速度通過爐內溫度設定為550℃之爐長8m之燒附爐內,重複數次該操作,藉此形成厚度35μm之熱硬化性樹脂層。如此,獲得具有熱硬化性樹脂被覆(A)12之漆包線。
繼而,使PEI(SABIC Innovative Plastics公司製造,商品名:ULTEM 1010)溶解於NMP中,製備清漆。
使用與導體11之形狀相似形狀之模具將該清漆塗佈於漆包線,使其以通過時間為15秒之速度通過設定為450℃之爐長8m之燒附爐內,形成厚度15μm之由PEI構成之熱塑性樹脂層14A。如此,獲得附有熱塑性樹脂層14A之漆包線。
將所獲得之漆包線用作芯線,又,使用擠出機,於熱塑性樹脂層14A之外側形成PEEK層。該擠出機之螺桿係設為30mm全螺紋、L/D=20、壓縮比3。藉由使用熱塑性樹脂層14B之截面之外形之形狀成為與導體11之形狀相似形狀之擠出模具將聚醚醚酮(Solvay Specialty Polymers公司製造,商品名:KetaSpire KT-820)擠出至熱塑性樹脂層14A之外側,於400℃(擠出模具之溫度。以下相同)下進行PEEK之擠出被覆,形成厚度50μm之熱塑性樹脂層14B。如此,獲得具有2層構造之熱塑性樹脂被覆(B)13A之絕緣電線1。
實施例2
本例中,製造圖1所示之絕緣電線1。
於實施例1中,使用聚醯亞胺樹脂清漆(UNITIKA公司製造,商品名:U IMIDE)代替聚醯胺醯亞胺樹脂清漆,除此以外,與實施例1同樣地形成厚度30μm之熱硬化性樹脂層,獲得具有熱硬化性樹脂被覆(A)12之漆包線。
繼而,使PES(住友化成公司製造,商品名:SUMIKA EXCEL 4800G)溶解於NMP中,製備清漆。使用與導體11之形狀相似形狀之模具將該清漆塗佈於漆包線,使其以通過時間為15秒之速度通過設定為450℃之爐長8m之燒附爐內,形成厚度5μm之由PES構成之熱塑性樹脂層14A。如此,獲得附有熱塑性樹脂層14A之漆包線。
與實施例1同樣地,於熱塑性樹脂層14A之外側形成由PEEK構成之厚度60μm之熱塑性樹脂層14B,獲得具有2層構造之熱塑性樹脂被覆(B)13A之絕緣電線1。
實施例3
本例中,製造圖1所示之絕緣電線1。
於實施例1中,使用H種聚酯清漆(美國Schenectady International公司製造,商品名:Isonel 200)代替聚醯胺醯亞胺樹脂清漆,除此以外,與 實施例1同樣地形成厚度30μm之熱硬化性樹脂層,獲得具有熱硬化性樹脂被覆(A)12之漆包線。
繼而,使PPSU(Solvay Specialty Polymers製造,商品名:Radel R5800)溶解於NMP中,製備清漆。
使用與導體11之形狀相似形狀之模具將該清漆塗佈於漆包線,使其以通過時間為15秒之速度通過設定為450℃之爐長8m之燒附爐內,形成厚度10μm之由PPSU構成之熱塑性樹脂層14A。如此,獲得附有熱塑性樹脂層14A之漆包線。
於實施例1中,於熱塑性樹脂層14A之外側,使用改質聚醚醚酮(Solvay Specialty Polymers公司製造,商品名:AvaSpire AV-651)代替聚醚醚酮(Solvay Specialty Polymers公司製造,商品名:KetaSpire KT-820),形成厚度70μm之熱塑性樹脂層14B。如此,獲得具有2層構造之熱塑性樹脂被覆(B)13A之絕緣電線1。
實施例4
本例中,製造圖3所示之絕緣電線3。
與實施例2同樣地形成厚度25μm之熱硬化性樹脂層,獲得具有熱硬化性樹脂被覆(A)12之漆包線。
與實施例1同樣地,於漆包線之外側形成由PEEK構成之厚度40μm之熱塑性樹脂層14E,獲得具有熱塑性樹脂層14E之漆包線。
繼而,與實施例2同樣地,將使PES溶解於NMP而成之清漆塗佈於附有熱塑性樹脂層14E之漆包線,形成厚度10μm之由PES構成之熱塑性樹脂層14F,獲得附有熱塑性樹脂層14F之漆包線。
進而,與實施例1同樣地,於熱塑性樹脂層14F之外側形成由PEEK構成之厚度40μm之熱塑性樹脂層14G。如此,獲得具有3層構造之熱塑性樹脂被覆(B)13C之絕緣電線3。
實施例5
本例中,製造圖2所示之絕緣電線2。
與實施例1同樣地形成厚度30μm之熱硬化性樹脂層,獲得具有熱硬化性樹脂被覆(A)12之漆包線。
與實施例1同樣地,於熱硬化性樹脂被覆(A)12之外側形成由PEEK構成之厚度90μm之熱塑性樹脂層14C,獲得附有熱塑性樹脂層14C之漆包線。
繼而,於實施例1中,使用擠出模具以使熱塑性樹脂層14D之截面之外形之形狀成為與導體11之形狀相似形狀之方式,將TPI(三井化學公司製造,商品名:AURUM PL450C)代替聚醚醚酮(Solvay Specialty Polymers公司製造,商品名:KetaSpire KT-820)於410℃擠出至熱塑性樹脂層14C之外側,形成厚度15μm之由TPI構成之熱塑性樹脂層14D。如此,獲得具有2層構造之熱塑性樹脂被覆(B)13B之絕緣電線2。
實施例6
本例中,製造圖1所示之絕緣電線1。
與實施例2同樣地形成厚度30μm之熱硬化性樹脂層,獲得具有熱硬化性樹脂被覆(A)12之漆包線。
於實施例1中,將改質聚醚醚酮(Solvay Specialty Polymers 公司製造,商品名:AvaSpire AV-651)代替聚醚醚酮(Solvay Specialty Polymers公司製造,商品名:KetaSpire KT-820)於400℃擠出至熱硬化性樹脂被覆(A)12之外側,形成厚度20μm之熱塑性樹脂層14A。如此,獲得附有熱塑性樹脂層14A之漆包線。
繼而,與實施例1同樣地,於熱塑性樹脂層14A之外側形成由PEEK(Solvay Specialty Polymers公司製造,商品名:KetaSpire KT-820)構成之厚度90μm之熱塑性樹脂層14B。如此,獲得具有2層構造之熱塑性樹脂被覆(B)13A之絕緣電線1。
比較例1
本例中,製造具有由1層熱塑性樹脂層構成之熱塑性樹脂被覆之絕緣電線。
與實施例1同樣地形成厚度35μm之熱硬化性樹脂層,獲得具有熱硬化性樹脂被覆之漆包線。
繼而,與實施例1同樣地於熱硬化性樹脂被覆之外側形成由PEEK(Solvay Specialty Polymers公司製造,商品名:KetaSpire KT-820)構成之厚度70μm之熱塑性樹脂層,獲得具有1層構造之熱塑性樹脂被覆之絕緣電線。
比較例2
本例中,製造具有由1層熱塑性樹脂層構成之熱塑性樹脂被覆之絕緣電線。
與實施例2同樣地形成厚度35μm之熱硬化性樹脂層,獲得具有熱硬化性樹脂被覆之漆包線。
繼而,於實施例1中,將PEI(SABIC Innovative Plastics公司製造,商品名:ULTEM 1010)代替聚醚醚酮(Solvay Specialty Polymers公司製造,商品名:KetaSpire KT-820)於360℃擠出至熱硬化性樹脂被覆之外側,形成厚度70μm之由PEI構成之熱塑性樹脂層。如此,獲得具有1層構造之熱塑性樹脂被覆之絕緣電線。
比較例3
本例中,製造具有由2層熱塑性樹脂層構成之熱塑性樹脂被覆之絕緣電線。
與實施例2同樣地形成厚度40μm之熱硬化性樹脂層,獲得具有熱硬化性樹脂被覆之漆包線。
繼而,與實施例2同樣地形成厚度20μm之由PES構成之熱塑性樹脂層,獲得附有熱塑性樹脂層之漆包線。
於實施例1中,將尼龍6,6(稱為PA66。UNITIKA公司製造,商品名:FDK-1)代替聚醚醚酮(Solvay Specialty Polymers公司製造,商品名:KetaSpire KT-820)於300℃擠出至由PES構成之熱塑性樹脂層之外側,形成厚度40μm之由PA66構成之熱塑性樹脂層。如此,獲得具有2層構造之熱塑性樹脂被覆之絕緣電線。
比較例4
本例中,製造具有由2層之熱塑性樹脂層構成之熱塑性樹脂被覆之絕緣電線。
與實施例2同樣地形成厚度25μm之熱硬化性樹脂層,獲得具有熱硬化性樹脂被覆之漆包線。
繼而,於實施例2中,將PPS(DIC公司製造,商品名:FZ-2100)代替PES於320℃擠出至熱硬化性樹脂被覆之外側,形成厚度30μm之熱塑性樹脂層,獲得附有熱塑性樹脂層之漆包線。
繼而,於實施例2中,將PET(帝人公司製造,商品名:TR8550)代替聚醚醚酮(Solvay Specialty Polymers公司製造,商品名:KetaSpire KT-820)於290℃擠出至由PPS構成之熱塑性樹脂層之外側,形成厚度30μm之由PET構成之熱塑性樹脂層。如此,獲得具有2層構造之熱塑性樹脂被覆之絕緣電線。
比較例5
本例中,製造具有由2層熱塑性樹脂層構成之熱塑性樹脂被覆之絕緣電線。
與實施例1同樣地形成厚度35μm之熱硬化性樹脂層,獲得具有熱硬化性樹脂被覆之漆包線。
與實施例1同樣地,於熱硬化性樹脂被覆之外側形成厚度30μm之由PEI構成之熱塑性樹脂層,獲得附有熱塑性樹脂層之漆包線。
繼而,與實施例1同樣地,於由PEI構成之熱塑性樹脂層之外側形成由PEEK(Solvay Specialty Polymers公司製造,商品名:KetaSpire KT-820)構成之厚度30μm之熱塑性樹脂層。如此,獲得具有2層構造之熱塑性樹脂被覆之絕緣電線。
比較例6
本例中,製造具有由2層熱塑性樹脂層構成之熱塑性樹脂被覆之絕緣電線。
與實施例2同樣地形成厚度25μm之熱硬化性樹脂層,獲得具有熱硬化性樹脂被覆之漆包線。
與實施例3同樣地形成厚度5μm之由PPSU構成之熱塑性樹脂層,獲得附有熱塑性樹脂層之漆包線。
繼而,與實施例1同樣地,於由PPSU構成之熱塑性樹脂層之外側形成由PEEK(Solvay Specialty Polymers公司製造,商品名:KetaSpire KT-820)構成之厚度40μm之熱塑性樹脂層。如此,獲得具有2層構造之熱塑性樹脂被覆之絕緣電線。
比較例7
本例中,製造具有由2層熱塑性樹脂層構成之熱塑性樹脂被覆之絕緣電線。該比較例7係假定專利文獻1中記載之發明者。
與實施例1同樣地形成厚度20μm之熱硬化性樹脂層,獲得具有熱硬化性樹脂被覆之漆包線。
與實施例3同樣地形成厚度5μm之由PPSU構成之熱塑性樹脂層,獲得附有熱塑性樹脂層之漆包線。
繼而,於實施例1中,使用PPS(DIC公司製造,商品名:FZ-2100)代替PEEK,將其於320℃擠出至由PPSU構成之熱塑性樹脂層之外側,形成厚度40μm之由PPS構成之熱塑性樹脂層。如此,獲得具有2層構造之熱塑性樹脂被覆之絕緣電線。
比較例8
本例中,製造具有由2層熱塑性樹脂層構成之熱塑性樹脂被覆之絕緣電線。該比較例8係假定專利文獻2中記載之發明者。
與實施例1同樣地形成厚度40μm之熱硬化性樹脂層,獲得具有熱硬化性樹脂被覆之漆包線。
與實施例3同樣地形成厚度5μm之由PPSU構成之熱塑性樹脂層,獲得附有熱塑性樹脂層之漆包線。
繼而,於實施例1中,使用PPS(DIC公司製造,商品名:FZ-2100)代替PEEK,將其於320℃擠出至由PPSU構成之熱塑性樹脂層之外側,形成厚度115μm之熱塑性樹脂層。如此,獲得具有2層構造之熱塑性樹脂被覆之絕緣電線。
比較例9
本例中,製造具有由1層熱塑性樹脂層構成之熱塑性樹脂被覆之絕緣電線。
於比較例1中,將熱塑性樹脂層之厚度變更為75μm,除此以外,與比較例1同樣地獲得具有1層構造之熱塑性樹脂被覆之絕緣電線。
對如上述般製作之各絕緣電線進行下述測定及評價。將所獲得之結果匯總示於下述表1。
[耐熱性(200℃)]
藉由熱老化特性對各絕緣電線之耐熱性進行評價。具體而言,以JIS C 3216-6「繞線試驗方法-第1部:總體事項」之「3.耐熱衝擊(適用於漆包線及帶狀繞線)」為參考,將拉伸1%後之筆直狀之各絕緣電線於220℃之高溫槽內靜置500小時後,以目視確認於熱硬化性樹脂被覆(A)或熱塑性樹脂被覆(B)是否產生龜裂。
將於熱硬化性樹脂被覆(A)及熱塑性樹脂被覆(B)均未確認到龜裂 之情形設為合格表示為「A」,將於熱塑性樹脂被覆(B)確認到龜裂之情形設為不合格表示為「C」。
又,同樣地,將即便於上述高溫槽內靜置超過1000小時,於熱硬化性樹脂被覆(A)及熱塑性樹脂被覆(B)亦均未確認到龜裂之情形設為尤佳表示為「AA」。
[耐電壓特性]
各絕緣電線之耐電壓特性係使用絕緣破壞試驗機,測定電壓而進行評價。
具體而言,於各絕緣電線之長度為300mm之部分捲繞鋁箔,將剝離終端後之電極之一端連接於導體,將另一端連接於鋁箔。以升壓速度500V/sec進行升壓,讀取流動15mA以上之電流時之電壓。以n=5實施,以其平均值進行評價。將平均值超過12kV者設為合格表示為「A」,將12kV以下者設為不合格表示為「C」。
[耐傷性]
利用耐磨性試驗對各絕緣電線之耐傷性進行評價。具體而言,以JIS C 3216-6「繞線試驗方法-第3部:機械特性」之「6.耐磨耗(適用於漆包圓線)」為參考,對扁平線進行測定。以施加連續增加之力之針摩擦試驗片,將皮膜可耐受之最大力為2000g以上之情形設為合格表示為「A」,將2500g以上之情形設為尤佳表示為「AA」。將不合格之情形表示為「C」。此處,所謂「皮膜可耐受」係指無皮膜之破裂及下層之露出之狀態。
由表1可明確,具有上述構成等之熱塑性樹脂被覆(B)之實施例1~6之絕緣電線即便熱塑性樹脂被覆(B)之總厚度較薄,耐熱性、耐電壓特性及耐傷性亦均優異。
於實施例之絕緣電線中,即便熱塑性樹脂被覆(B)之總厚度較薄,亦可維持耐電壓特性,該情況例如藉由實施例1之絕緣電線與比較例1之絕緣電線之對比而明瞭。即,關於實施例1之絕緣電線,熱塑性樹脂被覆(B)具有由厚度最薄之PEI(15μm)構成之熱塑性樹脂層14A與PEEK層(厚度50μm),總厚度為65μm。另一方面,比較例1之絕緣電線具有由1層厚度70μm之PEEK構成之熱塑性樹脂被覆。通常,若樹脂被覆之厚度變厚,則耐電壓特性提昇,但熱塑性樹脂被覆之厚度較厚之比較例1之絕緣電線為不合格,相對於此,熱塑性樹脂被覆之厚度較薄之實施例1之絕緣電線為合格。如此,具有厚度最薄之PEI層作為構成熱塑性樹脂被覆之層之實施例1的絕緣電線為了提昇耐電壓特性,無須加厚熱塑性樹脂被覆(絕緣被覆),相反地可將其減薄。
又,可知將熱塑性樹脂被覆(B)設為包含PEEK層之2層構造,並且將PEEK層以外之熱塑性樹脂層設為薄至特定之厚度,如此構成,則可大幅提昇耐電壓特性。
例如,若將熱塑性樹脂被覆(B)之總厚度為75μm之比較例9與實施例1相比較,則實施例1之絕緣電線之熱塑性樹脂被覆(B)之總厚度相對於比較例變薄10μm(相對於比較例9之厚度之總厚度減少率為13.3%)。然而,總厚度較厚之比較例9之絕緣電線之耐電壓特性為不合格,相對於此,實施例1之絕緣電線為合格。即,可知於實施例1中,無 論提昇耐電壓特性與否,均可使熱塑性樹脂被覆(B)之總厚度薄10%以上。再者,該效果並不限於PEEK,於其他熱塑性樹脂亦得到確認。
如此,實施例1之絕緣電線可保持耐電壓特性且降低占空因數,可貢獻於電氣機器之小型化及高性能化。再者,實施例2~6亦可獲得與實施例1之上述效果相同之效果。於用作近年來小型化及高性能化顯著之HV或EV之驅動馬達用之繞線時亦可同樣地發揮出該效果。
尤其是,具備具有PEEK層與厚度為5~15μm之最薄之熱塑性樹脂層之2層構造,且總厚度為100μm以下的熱塑性樹脂被覆(B)之實施例1~3之絕緣電線以更高水準兼具耐熱性、耐電壓特性及耐傷性。
另一方面,熱塑性樹脂被覆由1層熱塑性樹脂構成之比較例1及2之絕緣電線未滿足耐電壓特性。
又,熱塑性樹脂被覆不具有PEEK層之比較例2及3之絕緣電線之耐熱性不充分。
熱塑性樹脂被覆不具有PEEK層,且最薄之熱塑性樹脂層之厚度厚於本發明所規定之厚度之比較例4之絕緣電線之耐熱性、耐電壓特性及耐傷性均不合格。
構成熱塑性樹脂被覆之最薄之熱塑性樹脂層之厚度厚於本發明所規定之厚度之比較例5之絕緣電線即便熱塑性樹脂被覆具有PEEK層,耐電壓特性亦不合格。
熱塑性樹脂被覆之總厚度薄於本發明規定之總厚度之比較例6之絕緣電線即便熱塑性樹脂被覆具有PEEK層,亦未滿足耐電壓特性。
熱塑性樹脂被覆不具有PEEK層,且熱塑性樹脂被覆之總厚度薄於本發明所規定之總厚度之比較例7之耐熱性及耐電壓特性未達到本發明所設定之合格水平。
又,即便最外層為由PPS構成之熱塑性樹脂層,但熱塑性樹脂被覆不具有PEEK層之比較例8之耐熱性亦未達到本發明所設定之合格水平。
上文將本發明與其實施態樣一併進行了說明,但我等認為,只要未特別指定,則於說明之任何細節均未意欲限定我等之發明,應於不違背隨附之申請專利範圍所示之發明之精神與範圍之情況下進行廣泛之解釋。
本申請案係主張基於2013年12月26日於日本提出申請之日本特願2013-270754之優先權者,且參照其並將其內容作為本說明書之記載之一部分而併入本文中。
1‧‧‧絕緣電線
11‧‧‧導體
12‧‧‧熱硬化性樹脂被覆
13A‧‧‧熱塑性樹脂被覆
14A‧‧‧熱塑性樹脂層
14B‧‧‧熱塑性樹脂層

Claims (6)

  1. 一種絕緣電線,其係於截面為矩形之導體上直接或介隔絕緣層(C)具有熱硬化性樹脂被覆(A),於該熱硬化性樹脂被覆(A)之外周具有熱塑性樹脂被覆(B)者;上述熱塑性樹脂被覆(B)具有至少2層熱塑性樹脂層,相鄰之上述熱塑性樹脂層係由互不相同之熱塑性樹脂構成,上述熱塑性樹脂層之至少1層係由聚醚醚酮或改質聚醚醚酮構成,且上述熱塑性樹脂層之總厚度為60~120μm,上述熱塑性樹脂層中最薄之熱塑性樹脂層之厚度為5~20μm。
  2. 如申請專利範圍第1項之絕緣電線,其中,上述熱塑性樹脂被覆(B)之最外層為上述由聚醚醚酮或改質聚醚醚酮構成之熱塑性樹脂層。
  3. 如申請專利範圍第1或2項之絕緣電線,其中,上述熱塑性樹脂被覆(B)由2層熱塑性樹脂層構成。
  4. 如申請專利範圍第1至3項中任一項之絕緣電線,其中,上述最薄之熱塑性樹脂層設置於上述由聚醚醚酮或改質聚醚醚酮構成之熱塑性樹脂層之內側。
  5. 一種線圈,其係對申請專利範圍第1至4項中任一項之絕緣電線進行繞線加工而成者。
  6. 一種電子、電氣機器,其使用申請專利範圍第5項之線圈而成。
TW103145132A 2013-12-26 2014-12-24 絕緣電線,線圈及電子、電氣機器 TW201535423A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013270574 2013-12-26

Publications (1)

Publication Number Publication Date
TW201535423A true TW201535423A (zh) 2015-09-16

Family

ID=53478504

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103145132A TW201535423A (zh) 2013-12-26 2014-12-24 絕緣電線,線圈及電子、電氣機器

Country Status (5)

Country Link
US (1) US9892819B2 (zh)
EP (1) EP3089169B1 (zh)
JP (1) JPWO2015098640A1 (zh)
TW (1) TW201535423A (zh)
WO (1) WO2015098640A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718511B (zh) * 2018-03-30 2021-02-11 日商古河電氣工業股份有限公司 絕緣電線材料及其製造方法、以及線圈及電氣、電子機器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026446B2 (ja) * 2014-01-10 2016-11-16 古河電気工業株式会社 平角絶縁電線および電動発電機用コイル
US10424428B2 (en) * 2014-06-18 2019-09-24 Hitachi, Ltd. Super-conducting wire, super-conducting coil, and magnetic resonance imaging device
JP6373309B2 (ja) 2016-07-19 2018-08-15 古河電気工業株式会社 絶縁電線、コイル及び電気・電子機器
BR112020006382A2 (pt) * 2017-09-28 2020-09-24 Arkema Inc. verniz com base em poli(aril etercetona) para revestimento de fio e método para revestir um fio a partir de uma solução
EP4192681A1 (en) * 2020-08-07 2023-06-14 Essex Furukawa Magnet Wire USA LLC Magnet wire with thermoplastic insulation
FR3134476A1 (fr) * 2022-04-06 2023-10-13 Tresse Metallique J. Forissier Dispositif de connexion électrique à résistance au feu accrue

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440118A3 (en) * 1990-01-31 1992-02-26 Fujikura Ltd. Electric insulated wire and cable using the same
US5393929A (en) * 1993-11-23 1995-02-28 Junkosha Co. Ltd. Electrical insulation and articles thereof
FR2732030B1 (fr) * 1995-03-20 1997-04-30 Plastic Omnium Cie Meteriau de revetement a base de polytetrafluoroethylene apte au marquage par laser.
US6403889B1 (en) * 2000-05-31 2002-06-11 Tyco Electronics Corporation Bi-layer covering sheath
CN1892927B (zh) * 2001-06-01 2010-11-24 古河电气工业株式会社 多层绝缘电线及使用该电线的变压器
JP4177295B2 (ja) * 2003-12-17 2008-11-05 古河電気工業株式会社 耐インバータサージ絶縁ワイヤおよびその製造方法
JP4904312B2 (ja) 2003-12-17 2012-03-28 古河電気工業株式会社 耐インバータサージ絶縁ワイヤおよびその製造方法
JP2009245652A (ja) * 2008-03-28 2009-10-22 Furukawa Electric Co Ltd:The 絶縁電線
JP5306742B2 (ja) * 2008-08-28 2013-10-02 古河電気工業株式会社 絶縁ワイヤ
JP5401742B2 (ja) * 2010-02-10 2014-01-29 日立金属株式会社 絶縁電線
JP5877159B2 (ja) * 2010-10-01 2016-03-02 古河電気工業株式会社 絶縁電線

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718511B (zh) * 2018-03-30 2021-02-11 日商古河電氣工業股份有限公司 絕緣電線材料及其製造方法、以及線圈及電氣、電子機器
US11670436B2 (en) 2018-03-30 2023-06-06 Furukawa Electric Co., Ltd. Insulated wire material and method of manufacturing the same, and coil and electrical/electronic equipment

Also Published As

Publication number Publication date
JPWO2015098640A1 (ja) 2017-03-23
US20160307662A1 (en) 2016-10-20
WO2015098640A1 (ja) 2015-07-02
EP3089169A4 (en) 2017-08-16
EP3089169B1 (en) 2018-07-04
US9892819B2 (en) 2018-02-13
EP3089169A1 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
TWI639168B (zh) Insulated wire and method of manufacturing same
TWI656538B (zh) Insulated wire, motor coil, electrical and electronic equipment, and method of manufacturing insulated wire
TW201535423A (zh) 絕緣電線,線圈及電子、電氣機器
JP6382224B2 (ja) 絶縁ワイヤ、コイルおよび電気・電子機器ならびに皮膜剥離防止絶縁ワイヤの製造方法
JP6310533B2 (ja) 絶縁ワイヤ、電気機器および絶縁ワイヤの製造方法
CN107004466B (zh) 绝缘电线、线圈和电气/电子设备以及绝缘电线的制造方法
CN107004465B (zh) 绝缘电线、线圈和电气/电子设备以及绝缘电线的制造方法
TWI700710B (zh) 絕緣線、線圈及電氣、電子機器
TW201535428A (zh) 多層絕緣電線,線圈及電氣、電子機器
CN108028099B (zh) 绝缘电线、绝缘电线的制造方法、线圈、旋转电机和电气/电子设备
JP6490505B2 (ja) 絶縁電線、コイル及び電気・電子機器
JP7257558B1 (ja) 絶縁電線、コイル、回転電機および電気・電子機器