TW201530792A - Solar cell and manufacturing method thereof - Google Patents

Solar cell and manufacturing method thereof Download PDF

Info

Publication number
TW201530792A
TW201530792A TW103102652A TW103102652A TW201530792A TW 201530792 A TW201530792 A TW 201530792A TW 103102652 A TW103102652 A TW 103102652A TW 103102652 A TW103102652 A TW 103102652A TW 201530792 A TW201530792 A TW 201530792A
Authority
TW
Taiwan
Prior art keywords
layer
photoelectric conversion
conversion layer
solar cell
electrode
Prior art date
Application number
TW103102652A
Other languages
Chinese (zh)
Other versions
TWI514604B (en
Inventor
teng-yu Wang
Chien-Hsun Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW103102652A priority Critical patent/TWI514604B/en
Publication of TW201530792A publication Critical patent/TW201530792A/en
Application granted granted Critical
Publication of TWI514604B publication Critical patent/TWI514604B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A solar cell and a manufacturing method thereof are disclosed. The solar cell includes a transparent substrate, a first electrode, a photoelectric converting layer and a second electrode. The transparent substrate has a curved surface. The photoelectric converting layer is adhered to the curved surface of the transparent through an adhesive layer, so that the photoelectric converting layer is curved according to the curved surface. The thickness of the photoelectric converting layer is between 1 micrometer and 50 micrometers. The first electrode is clamped between the adhesive layer and the photoelectric converting layer. The first electrode is electrically connected to the photoelectric converting layer. The second electrode is disposed on the photoelectric converting layer and is at the opposite side to the first electrode. The second electrode is electrically connected to the photoelectric converting layer and the first electrode.

Description

太陽電池及其製備方法 Solar cell and preparation method thereof

本提案係關於一種太陽電池及其製備方法,特別是一種關於具有曲面的薄型太陽電池及其製備方法。 The present invention relates to a solar cell and a method of fabricating the same, and more particularly to a thin solar cell having a curved surface and a method of fabricating the same.

太陽能由於取得容易、污染性低、安全性高,並且幾乎是取之不盡、用之不竭,因而是各界所重視的焦點。在太陽電池的研究、開發等方面,如何降低太陽電池的生產成本以及改善太陽電池的效能,一直是各界所關注的課題。 Solar energy is the focus of attention from all walks of life because it is easy to obtain, low in pollution, high in safety, and almost inexhaustible. In the research and development of solar cells, how to reduce the production cost of solar cells and improve the performance of solar cells has always been a topic of concern.

近年來,隨著太陽電池的相關技術的發展,太陽電池的效能及生產成本也有了大幅改善。然而,隨著相關技術越趨成熟,技術的發展也遇到了瓶頸,而太陽電池的生產成本以及效能難以有進一步的突破。是以,如何進一步改善太陽電池的效能以及降低太陽電池的生產成本已成為各界所重視的課題。 In recent years, with the development of related technologies for solar cells, the efficiency and production cost of solar cells have also been greatly improved. However, as the related technologies become more mature, the development of technology has also encountered bottlenecks, and it is difficult to make further breakthroughs in the production cost and performance of solar cells. Therefore, how to further improve the performance of solar cells and reduce the production cost of solar cells has become a topic of great concern.

本提案是關於一種太陽電池及其製備方法,藉以改善太陽電池的效能以及降低太陽電池的生產成本。 This proposal is about a solar cell and its preparation method to improve the performance of the solar cell and reduce the production cost of the solar cell.

本提案一實施例所揭露的太陽電池,包含一透明載板、一第一電極、一光電轉換層以及一第二電極。透明載板具有一曲面。光電轉換層透過一 黏著層而貼附於透明載板之曲面。光電轉換層沿著曲面而撓曲。光電轉換層之厚度介於1微米至50微米之間。第一電極夾設於黏著層以及光電轉換層之間。第一電極電性連接於光電轉換層。第二電極設置於光電轉換層相反於第一電極之一側,且第二電極電性連接於光電轉換層以及第一電極。 The solar cell disclosed in one embodiment of the present invention comprises a transparent carrier, a first electrode, a photoelectric conversion layer and a second electrode. The transparent carrier has a curved surface. Photoelectric conversion layer Adhesive layer attached to the curved surface of the transparent carrier. The photoelectric conversion layer is deflected along the curved surface. The thickness of the photoelectric conversion layer is between 1 micrometer and 50 micrometers. The first electrode is sandwiched between the adhesive layer and the photoelectric conversion layer. The first electrode is electrically connected to the photoelectric conversion layer. The second electrode is disposed on a side opposite to the first electrode of the photoelectric conversion layer, and the second electrode is electrically connected to the photoelectric conversion layer and the first electrode.

本提案一實施例所揭露的太陽電池的製備方法,包含以下步驟。於一光電轉換層形成一第一電極。於光電轉換層設有第一電極之一側形成一黏著層。將光電轉換層透過黏著層而轉印至一透明載板之一曲面。於光電轉換層相反於第一電極之一側形成一第二電極。 The method for preparing a solar cell disclosed in an embodiment of the present invention comprises the following steps. A first electrode is formed on a photoelectric conversion layer. An adhesive layer is formed on one side of the photoelectric conversion layer provided with the first electrode. The photoelectric conversion layer is transferred to a curved surface of a transparent carrier through the adhesive layer. A second electrode is formed on the side of the photoelectric conversion layer opposite to the first electrode.

根據本提案實施例所揭露之太陽電池及其製備方法,由於光電轉換層是透過轉印方法而貼附於透明載板的曲面,因而光電轉換層可以具有較薄的厚度。同時,透過轉印的製程,光電轉換層可沿著曲面撓曲而具有對應的曲面結構。也就是說,本提案之太陽電池的光電轉換層同時具有較薄的厚度(1微米至50微米)以及曲面結構之特徵。由於本提案之太陽電池的光電轉換層的厚度介於1微米至50微米之間,因而在保有良好的光電轉換能力下,還大幅減少了光電轉換層所需使用的材料,而可有效降低太陽電池的生產成本。另一方面,由於本提案之光電轉換層具有曲面結構,因而光電轉換層除了可吸收直接照射於光電轉換層的光線,還可吸收自其他區域所反射的光線,而可達到二次吸收之效果。因此,本提案之光電轉換層可以吸收較大量的光線,而具有較佳之有效集光效率。 According to the solar cell disclosed in the embodiment of the present invention and the method of manufacturing the same, since the photoelectric conversion layer is attached to the curved surface of the transparent carrier by the transfer method, the photoelectric conversion layer can have a thin thickness. At the same time, through the transfer process, the photoelectric conversion layer can be flexed along the curved surface to have a corresponding curved surface structure. That is to say, the photoelectric conversion layer of the solar cell of the present proposal has both a thin thickness (1 micrometer to 50 micrometers) and a curved surface structure. Since the thickness of the photoelectric conversion layer of the solar cell of the present invention is between 1 micrometer and 50 micrometers, the material required for the photoelectric conversion layer is greatly reduced while maintaining good photoelectric conversion capability, and the solar energy can be effectively reduced. Battery production costs. On the other hand, since the photoelectric conversion layer of the present invention has a curved surface structure, the photoelectric conversion layer can absorb the light directly reflected from the photoelectric conversion layer, and can absorb the light reflected from other regions, thereby achieving the effect of secondary absorption. . Therefore, the photoelectric conversion layer of the present invention can absorb a relatively large amount of light and has a better effective light collecting efficiency.

以上之關於本提案內容之說明及以下之實施方式之說明係用以示範與解釋本提案之原理,並且提供本提案之申請專利範圍更進一步之解釋。 The above description of the contents of this proposal and the following description of the implementation of the proposal are used to demonstrate and explain the principles of this proposal, and provide a further explanation of the scope of the patent application of this proposal.

9‧‧‧太陽電池陣列 9‧‧‧Solar battery array

10、10x、10'、10"‧‧‧太陽電池 10, 10x, 10', 10" ‧ ‧ solar cells

11‧‧‧透明載板 11‧‧‧Transparent carrier

110‧‧‧曲面 110‧‧‧ Surface

12、12x、12'‧‧‧光電轉換層 12, 12x, 12'‧‧‧ photoelectric conversion layer

121‧‧‧射極層 121‧‧ ‧ emitter layer

122‧‧‧基極層 122‧‧‧base layer

123‧‧‧中性層 123‧‧‧Neutral

13‧‧‧第一電極 13‧‧‧First electrode

14‧‧‧第二電極 14‧‧‧second electrode

15‧‧‧黏著層 15‧‧‧Adhesive layer

16‧‧‧抗反射層 16‧‧‧Anti-reflective layer

17‧‧‧基板 17‧‧‧Substrate

E‧‧‧端緣 E‧‧‧ edge

第1A圖為本提案一實施例所揭露之太陽電池之立體示意圖。 FIG. 1A is a perspective view of a solar cell disclosed in an embodiment of the present invention.

第1B圖為第1A圖之太陽電池沿剖切線A-A繪示之剖切示意圖。 Fig. 1B is a cross-sectional view showing the solar cell of Fig. 1A taken along line A-A.

第1C圖為本提案另一實施例所揭露之太陽電池之上視圖。 1C is a top view of a solar cell disclosed in another embodiment of the present proposal.

第1D圖為本提案另一實施例所揭露之太陽電池之側視圖。 FIG. 1D is a side view of a solar cell disclosed in another embodiment of the present proposal.

第1E圖為本提案另一實施例所揭露之太陽電池之剖切示意圖。 FIG. 1E is a schematic cross-sectional view of a solar cell disclosed in another embodiment of the present proposal.

第1F圖為光電轉換層的厚度與光電轉換能力之關係圖。 Fig. 1F is a graph showing the relationship between the thickness of the photoelectric conversion layer and the photoelectric conversion capability.

第2A圖為本提案一實施例所揭露之太陽電池的製備方法之流程圖。 FIG. 2A is a flow chart of a method for preparing a solar cell according to an embodiment of the present invention.

第2B圖為本提案另一實施例所揭露之太陽電池的製備方法之流程圖。 FIG. 2B is a flow chart of a method for preparing a solar cell according to another embodiment of the present proposal.

第3A圖至第3D圖為分別對應第2A圖中步驟S101至S104之側視圖。 3A to 3D are side views corresponding to steps S101 to S104 in Fig. 2A, respectively.

第4A圖為對應第2B圖中步驟S202之側視圖。 Fig. 4A is a side view corresponding to step S202 in Fig. 2B.

第4B圖為根據第2B圖之製備方法所製成之太陽電池之側視圖。 Fig. 4B is a side view of the solar cell fabricated according to the preparation method of Fig. 2B.

第4C圖為根據本提案另一實施例所揭露之太陽電池的製備方法所製成之太陽電池的側視圖。 4C is a side view of a solar cell fabricated by a method of fabricating a solar cell according to another embodiment of the present proposal.

第4D圖為根據本提案另一實施例所揭露之太陽電池的製備方法所製成之太陽電池的側視圖。 4D is a side view of a solar cell fabricated by a method of fabricating a solar cell according to another embodiment of the present proposal.

第5圖為本提案實施例之太陽電池以及比較例之太陽電池之有效集光效率以及入射角度之關係圖。 Fig. 5 is a graph showing the relationship between the effective light collection efficiency and the incident angle of the solar cell of the embodiment of the present invention and the solar cell of the comparative example.

第6A圖為本提案實施例之太陽電池所組成之太陽電池陣列之示意圖。 6A is a schematic view of a solar cell array composed of solar cells of the embodiment of the present invention.

第6B圖為第6A圖之太陽電池陣列之集光示意圖。 Fig. 6B is a schematic view showing the collection of light of the solar cell array of Fig. 6A.

以下在實施方式中詳細敘述本提案的詳細特徵以及優點,其內容 足以使任何熟習相關技術者了解本提案的技術內容並據以實施,且根據本說明書所揭露的內容、申請專利範圍及圖式,任何熟習相關技術者可輕易地理解本提案相關的目的及優點。以下的實施例係進一步詳細說明本提案的觀點,但非以任何觀點限制本提案的範疇。 The detailed features and advantages of the present proposal are described in detail below in the embodiments. It is sufficient for any skilled person to understand the technical content of this proposal and implement it according to the content, patent application scope and schema disclosed in this specification, and anyone skilled in the art can easily understand the related purposes and advantages of this proposal. . The following examples further illustrate the views of this proposal in detail, but do not limit the scope of this proposal by any point of view.

首先,請參閱第1A圖與第1B圖,第1A圖為本提案一實施例所揭露之太陽電池之立體示意圖,第1B圖為第1A圖之太陽電池沿剖切線A-A繪示之剖切示意圖。 First, please refer to FIG. 1A and FIG. 1B. FIG. 1A is a perspective view of a solar cell according to an embodiment of the present disclosure, and FIG. 1B is a schematic cross-sectional view of the solar cell of FIG. 1A along a cutting line AA. .

太陽電池10包含一透明載板11、一光電轉換層12、一第一電極13以及一第二電極14。透明載板11具有一曲面110。須注意的是,本提案所述之曲面110並不包含曲率為0之平面。 The solar cell 10 includes a transparent carrier 11, a photoelectric conversion layer 12, a first electrode 13, and a second electrode 14. The transparent carrier 11 has a curved surface 110. It should be noted that the curved surface 110 described in this proposal does not include a plane with a curvature of zero.

如第1A圖及第1B圖所示,本實施例之曲面110的曲率沿著方向X是保持相同,並且曲面110的底緣在方向Z上是維持於相同的水平面。然而,上述二結構特徵並非用以限定本提案。請參閱第1C圖以及第1D圖,第1C圖為本提案另一實施例所揭露之太陽電池之上視圖,第1D圖為本提案另一實施例所揭露之太陽電池之側視圖。在第1C圖之實施例中,曲面110a的曲率是沿著方向X而變化,因而於第1C圖中,曲面110a的相對二端緣E是沿著方向X而有波浪狀的變化。在第1D圖之實施例中,曲面110b的的底緣沿著方向X是位於相異的水平面,因而於第1D圖中,曲面110b的底緣是沿著方向Z而有波浪狀的變化。 As shown in FIGS. 1A and 1B, the curvature of the curved surface 110 of the present embodiment remains the same along the direction X, and the bottom edge of the curved surface 110 is maintained at the same horizontal plane in the direction Z. However, the above two structural features are not intended to limit the proposal. Referring to FIG. 1C and FIG. 1D, FIG. 1C is a top view of a solar cell disclosed in another embodiment of the present invention, and FIG. 1D is a side view of a solar cell disclosed in another embodiment of the present proposal. In the embodiment of Fig. 1C, the curvature of the curved surface 110a varies along the direction X. Therefore, in the first C-figure, the opposite end edges E of the curved surface 110a are wavyly changed along the direction X. In the embodiment of Fig. 1D, the bottom edge of the curved surface 110b is located at a different horizontal plane along the direction X. Therefore, in the first DD, the bottom edge of the curved surface 110b is wavyly changed along the direction Z.

在本實施例中,曲面110為一凸面(如第1B圖所示),並且曲面110的曲率是介於0.005至0.01(公分-1)之間。其中,曲率是指曲面110的曲率半徑的倒數。也就是說,當曲面110的曲率為0.005時,所對應的曲率半徑 為200公分;當曲面110的曲率為0.01時,所對應的曲率半徑為100公分。 In the present embodiment, the curved surface 110 is a convex surface (as shown in FIG. 1B), and the curvature of the curved surface 110 is between 0.005 and 0.01 (cm -1 ). Wherein, the curvature refers to the reciprocal of the radius of curvature of the curved surface 110. That is to say, when the curvature of the curved surface 110 is 0.005, the corresponding radius of curvature is 200 cm; when the curvature of the curved surface 110 is 0.01, the corresponding radius of curvature is 100 cm.

光電轉換層12透過一黏著層15而貼附在透明載板11的曲面110,並且光電轉換層12是沿著曲面110而撓曲。是以,光電轉換層12具有對應於曲面110的曲面結構。另一方面,光電轉換層12的厚度介於1微米至50微米之間。因此,相較於一般的太陽能電池而言,本提案之光電轉換層12具有較薄的厚度。 The photoelectric conversion layer 12 is attached to the curved surface 110 of the transparent carrier 11 through an adhesive layer 15, and the photoelectric conversion layer 12 is deflected along the curved surface 110. Therefore, the photoelectric conversion layer 12 has a curved surface structure corresponding to the curved surface 110. On the other hand, the thickness of the photoelectric conversion layer 12 is between 1 micrometer and 50 micrometers. Therefore, the photoelectric conversion layer 12 of the present proposal has a relatively thin thickness as compared with a general solar cell.

更詳細來說,光電轉換層12包含一射極層121以及一基極層122。射極層121設置於基極層122上,且射極層121與基極層122共同形成一個p-n接面結構(PN junction)。光電轉換層12的射極層121設置在透明載板11的曲面110。射極層121與基極層122例如為單晶矽、多晶矽或者非晶矽。然而,射極層121與基極層122中矽的晶體形式並非用以限定本提案。 In more detail, the photoelectric conversion layer 12 includes an emitter layer 121 and a base layer 122. The emitter layer 121 is disposed on the base layer 122, and the emitter layer 121 and the base layer 122 together form a p-n junction structure (PN junction). The emitter layer 121 of the photoelectric conversion layer 12 is disposed on the curved surface 110 of the transparent carrier 11 . The emitter layer 121 and the base layer 122 are, for example, single crystal germanium, polycrystalline germanium or amorphous germanium. However, the crystal form of the germanium in the emitter layer 121 and the base layer 122 is not intended to limit the present proposal.

須注意的是,本提案之黏著層15係為透明,以避免黏著層遮蔽、降低進入光電轉換層12的光量。 It should be noted that the adhesive layer 15 of the present proposal is transparent to prevent the adhesive layer from being shielded and to reduce the amount of light entering the photoelectric conversion layer 12.

第一電極13例如但不限於為一金屬導線。第一電極13夾設於黏著層15以及光電轉換層12之間,並且第一電極13電性連接於光電轉換層12。 The first electrode 13 is, for example but not limited to, a metal wire. The first electrode 13 is interposed between the adhesive layer 15 and the photoelectric conversion layer 12 , and the first electrode 13 is electrically connected to the photoelectric conversion layer 12 .

第二電極14設置於光電轉換層12相反於第一電極13之一側(如第1B圖所示),因而第一電極13與第二電極14是分別位於光電轉換層12的相反兩側。並且,第二電極14電性連接於光電轉換層12以及第一電極13。 The second electrode 14 is disposed on the side of the photoelectric conversion layer 12 opposite to the first electrode 13 (as shown in FIG. 1B), and thus the first electrode 13 and the second electrode 14 are located on opposite sides of the photoelectric conversion layer 12, respectively. Further, the second electrode 14 is electrically connected to the photoelectric conversion layer 12 and the first electrode 13.

在本實施例及部分其他實施例中,太陽電池10還包含一抗反射層16。抗反射層16設置於光電轉換層12,並且抗反射層16是夾設於光電轉換層12以及黏著層15之間。抗反射層16的材料組成可以是氧化銦錫(Indium Tin Oxide,ITO)、氧化鋁(Aluminum Oxide,AlOx)或氮化矽(Silicon Nitride,SiNx)。 In this embodiment and some other embodiments, the solar cell 10 further includes an anti-reflection layer 16. The anti-reflection layer 16 is disposed on the photoelectric conversion layer 12, and the anti-reflection layer 16 is interposed between the photoelectric conversion layer 12 and the adhesive layer 15. The material composition of the anti-reflective layer 16 may be Indium Tin Oxide (ITO), Aluminium Oxide (AlOx) or Silicon Nitride (SiNx).

請參閱第1E圖,第1E圖為本提案另一實施例所揭露之太陽電池之剖切示意圖。在本實施例與第1B圖之實施例相似,其差異在於,本實施例之太陽電池10x之光電轉換層12x另包含一中性層123,中性層123設置於射極層121與基極層122之間。射極層121、基極層122與中性層123形成一p-i-n結構。中性層123例如是未摻雜的矽薄膜層,但並不以此為限。 Please refer to FIG. 1E. FIG. 1E is a schematic cross-sectional view of a solar cell according to another embodiment of the present disclosure. The present embodiment is similar to the embodiment of FIG. 1B in that the photoelectric conversion layer 12x of the solar cell 10x of the present embodiment further includes a neutral layer 123, and the neutral layer 123 is disposed on the emitter layer 121 and the base. Between layers 122. The emitter layer 121, the base layer 122 and the neutral layer 123 form a p-i-n structure. The neutral layer 123 is, for example, an undoped germanium film layer, but is not limited thereto.

請參閱第1F圖,第1F圖為光電轉換層的厚度與光電轉換能力之關係圖,如第1F圖所示,於1微米至50微米之厚度區間內(即本提案實施例之太陽電池10的光電轉換層12的厚度),光電轉換層12仍具有良好的光電轉換能力。一般太陽電池的光電轉換層的厚度大於160微米,相較之下,本提案之太陽電池10的光電轉換層12具有較薄的厚度,因而在保有良好的光電轉換能力之情形下,同時大幅減少了光電轉換層12所需使用的材料,而可降低太陽電池10的生產成本。另一方面,由於本提案之光電轉換層12具有曲面結構,因而光電轉換層12除了可吸收直接照射於光電轉換層12的光線以外,光電轉換層12的各區域還可吸收自其他區域所反射的光線,而可達到二次吸收的效果。一般的太陽電池由於是平面的,因而無法吸收自其他區域所反射的光線。相較之下,本提案之光電轉換層12可以吸收較大量的光線,而具有較佳之有效集光效率。 Please refer to FIG. 1F. FIG. 1F is a diagram showing the relationship between the thickness of the photoelectric conversion layer and the photoelectric conversion capability. As shown in FIG. 1F, in the thickness range of 1 micrometer to 50 micrometers (ie, the solar cell 10 of the presently proposed embodiment). The thickness of the photoelectric conversion layer 12), the photoelectric conversion layer 12 still has good photoelectric conversion capability. Generally, the thickness of the photoelectric conversion layer of the solar cell is greater than 160 micrometers. In contrast, the photoelectric conversion layer 12 of the solar cell 10 of the present invention has a thin thickness, and thus, while maintaining good photoelectric conversion capability, the size is greatly reduced. The material to be used for the photoelectric conversion layer 12 can reduce the production cost of the solar cell 10. On the other hand, since the photoelectric conversion layer 12 of the present invention has a curved surface structure, the photoelectric conversion layer 12 can absorb light directly irradiated to the photoelectric conversion layer 12, and each region of the photoelectric conversion layer 12 can also be absorbed from other regions. The light can achieve the effect of secondary absorption. Since a typical solar cell is flat, it cannot absorb light reflected from other areas. In contrast, the photoelectric conversion layer 12 of the present invention can absorb a relatively large amount of light and has a better effective light collecting efficiency.

以下介紹本提案之太陽電池的製備方法,請參閱第2A圖以及第3A圖至第3D圖,第2A圖為本提案一實施例所揭露之太陽電池的製備方法之流程圖,第3A圖至第3D圖為分別對應第2A圖中步驟S101至S104之側視圖。 The following is a description of the preparation method of the solar cell of the present invention. Please refer to FIG. 2A and FIGS. 3A to 3D. FIG. 2A is a flow chart of a method for preparing a solar cell according to an embodiment of the present invention, and FIG. 3A to Fig. 3D is a side view corresponding to steps S101 to S104 in Fig. 2A, respectively.

首先,於一光電轉換層12'形成一第一電極13(S101),並且使第一電極13電性連接於光電轉換層12'。其中,光電轉換層12'是設置於一基板 17上(如第3A圖所示)。基板17例如為氧化鋁(如:藍寶石)、氧化矽(如:石英)、碳化矽、矽晶片或氧化物晶體,但並不以此為限。 First, a first electrode 13 is formed on a photoelectric conversion layer 12' (S101), and the first electrode 13 is electrically connected to the photoelectric conversion layer 12'. Wherein, the photoelectric conversion layer 12' is disposed on a substrate 17 on (as shown in Figure 3A). The substrate 17 is, for example, alumina (such as sapphire), yttrium oxide (such as quartz), tantalum carbide, tantalum wafer or oxide crystal, but is not limited thereto.

接著,於光電轉換層12'設有第一電極13之一側(亦即,相反於基板17之一側)形成一黏著層15(S102)(如第3B圖所示)。 Next, an adhesive layer 15 (S102) is formed on one side of the photoelectric conversion layer 12' on which one side of the first electrode 13 is provided (that is, opposite to the side of the substrate 17) (as shown in FIG. 3B).

然後,將光電轉換層12'透過黏著層15而轉印至一透明載板11之一曲面110,而使得光電轉換層12'脫離基板17(S103)(如第3C圖所示)。由於光電轉換層12'是透過轉印的方法而貼附在透明載板11的曲面110,因而光電轉換層12'會沿著曲面110而撓曲,而使得光電轉換層12'具有對應於曲面110的曲面結構。 Then, the photoelectric conversion layer 12' is transferred to a curved surface 110 of a transparent carrier 11 through the adhesive layer 15, and the photoelectric conversion layer 12' is separated from the substrate 17 (S103) (as shown in Fig. 3C). Since the photoelectric conversion layer 12' is attached to the curved surface 110 of the transparent carrier 11 by a transfer method, the photoelectric conversion layer 12' is deflected along the curved surface 110, so that the photoelectric conversion layer 12' has a surface corresponding to the curved surface. The curved structure of 110.

在透過轉印以形成光電轉換層的曲面結構之步驟(S103)中,操作溫度係低於300℃。例如,可在室溫(如:25℃)環境下進行轉印。相較於一般的太陽電池,本實施例形成光電轉換層的曲面結構所需的操作溫度較低。 In the step (S103) of transmitting the curved structure to form the photoelectric conversion layer, the operating temperature is lower than 300 °C. For example, the transfer can be carried out at room temperature (e.g., 25 ° C). Compared with a general solar cell, the operating temperature required to form the curved surface structure of the photoelectric conversion layer in this embodiment is low.

最後,於光電轉換層12'相反於第一電極13之一側形成一第二電極14(S104)(如第3D圖所示)。詳細來說,第二電極14例如是以電鍍之方法而形成於光電轉換層12'上。如第3D圖所示,製備完成之太陽電池10'之第一電極13與第二電極14是分別位於光電轉換層12'的相反兩側。 Finally, a second electrode 14 is formed on the side of the photoelectric conversion layer 12' opposite to the first electrode 13 (S104) (as shown in FIG. 3D). In detail, the second electrode 14 is formed on the photoelectric conversion layer 12' by, for example, electroplating. As shown in FIG. 3D, the first electrode 13 and the second electrode 14 of the prepared solar cell 10' are located on opposite sides of the photoelectric conversion layer 12', respectively.

請參閱第2B圖、第4A圖及第4B圖,第2B圖為本提案另一實施例所揭露之太陽電池的製備方法之流程圖,第4A圖為對應第2B圖中步驟S202之側視圖,第4B圖為根據第2B圖之製備方法所製成之太陽電池之側視圖。 Please refer to FIG. 2B, FIG. 4A and FIG. 4B. FIG. 2B is a flowchart of a method for preparing a solar cell according to another embodiment of the present disclosure, and FIG. 4A is a side view corresponding to step S202 of FIG. 2B. Fig. 4B is a side view of the solar cell produced according to the preparation method of Fig. 2B.

第2B圖之實施例與第2A圖之實施例相似,其差異在於,第2B圖之實施例在形成黏著層15之步驟前,還包含形成一抗反射層16於光電轉換層12'之步驟(S202)。如第4A圖所示,抗反射層16是夾設於光電轉換層12' 以及黏著層15之間。抗反射層16的材料組成例如為氧化銦錫或氧化鋁,但並不以此為限。製備完成之太陽電池10"如第4B圖所示。 The embodiment of FIG. 2B is similar to the embodiment of FIG. 2A except that the embodiment of FIG. 2B includes the step of forming an anti-reflective layer 16 on the photoelectric conversion layer 12' before the step of forming the adhesive layer 15. (S202). As shown in FIG. 4A, the anti-reflection layer 16 is interposed on the photoelectric conversion layer 12'. And between the adhesive layers 15. The material composition of the anti-reflection layer 16 is, for example, indium tin oxide or aluminum oxide, but is not limited thereto. The prepared solar cell 10" is as shown in Fig. 4B.

請參閱第3A圖、第4C圖及第4D圖,第4C圖為根據本提案另一實施例所揭露之太陽電池的製備方法所製成之太陽電池的側視圖,第4D圖為根據本提案另一實施例所揭露之太陽電池的製備方法所製成之太陽電池的側視圖。如第4C圖所示,本實施例之太陽電池10的光電轉換層12包含一射極層121以及一基極層122。射極層121設置於基極層122上,而射極層121相反於基極層122之一側設置在透明載板11的曲面110。詳細來說,射極層121及一基極層122係以化學氣相沉積之方式(即,磊晶方式)而形成於基板17(如第3A圖所示)。例如,可在200℃之操作溫度下,通入SiH4氣體,以在基板17上形成微晶矽之射極層121、基極層122;也可利用高溫磊晶的方式,例如在1000℃之操作溫度下,通入SiHCl3或SiCl4氣體,以在基板17上形成單晶矽之射極層121、基極層122。如第4D圖所示,在本提案部分其他實施例中,太陽電池10x的光電轉換層12x還包含一中性層123。中性層123設置於射極層121以及基極層122之間。中性層123例如是未摻雜的矽薄膜層,但並不以此為限。 Please refer to FIG. 3A, FIG. 4C and FIG. 4D. FIG. 4C is a side view of a solar cell produced by a method for preparing a solar cell according to another embodiment of the present proposal, and FIG. 4D is a diagram according to the proposal. A side view of a solar cell made by a method of preparing a solar cell disclosed in another embodiment. As shown in FIG. 4C, the photoelectric conversion layer 12 of the solar cell 10 of the present embodiment includes an emitter layer 121 and a base layer 122. The emitter layer 121 is disposed on the base layer 122, and the emitter layer 121 is disposed on the curved surface 110 of the transparent carrier 11 opposite to one side of the base layer 122. In detail, the emitter layer 121 and the base layer 122 are formed on the substrate 17 by chemical vapor deposition (ie, epitaxial) (as shown in FIG. 3A). For example, the SiH 4 gas may be introduced at an operating temperature of 200 ° C to form the micro-array emitter layer 121 and the base layer 122 on the substrate 17; or by high-temperature epitaxy, for example, at 1000 ° C. At the operating temperature, SiHCl 3 or SiCl 4 gas is introduced to form a single crystal germanium emitter layer 121 and a base layer 122 on the substrate 17. As shown in FIG. 4D, in other embodiments of the present proposal, the photoelectric conversion layer 12x of the solar cell 10x further includes a neutral layer 123. The neutral layer 123 is disposed between the emitter layer 121 and the base layer 122. The neutral layer 123 is, for example, an undoped germanium film layer, but is not limited thereto.

在本提案中,光電轉換層的曲面結構是透過轉印製程而形成。在一般的太陽電池中,光電轉換層的曲面結構是透過高溫、高壓的壓鑄製程而形成。相較之下,本提案之製備方法所需的操作溫度較低,因而可避免太陽電池的元件因為高溫、高壓而損壞。另一方面,以壓鑄製程所製成之太陽電池,還會有內應力殘留於太陽電池內,而造成太陽電池結構上的瑕疵。 In the present proposal, the curved structure of the photoelectric conversion layer is formed by a transfer process. In a general solar cell, the curved surface structure of the photoelectric conversion layer is formed by a high temperature, high pressure die casting process. In contrast, the preparation method of the present proposal requires a lower operating temperature, thereby preventing the components of the solar cell from being damaged due to high temperature and high pressure. On the other hand, in the solar cell made by the die-casting process, internal stress remains in the solar cell, causing paralysis on the structure of the solar cell.

此外,本提案是透過磊晶方法以形成光電轉換層,相較於以切割方法形成光電轉換層之製程會有相當的材料損失,本提案可避免這樣的材料損 失。另一方面,本提案透過磊晶方法以形成光電轉換層之方法也不需要晶體生長之程序。由於晶體生長程序需要高溫的操作環境,因而需要消耗相當大量的能源。本提案由於不需要晶體生長之程序,因此還可大幅降低太陽電池的生產成本。同時,本提案是將電池製備與模組封裝之步驟合一,還可以進一步簡化降低太陽電池的製程。 In addition, this proposal is to form a photoelectric conversion layer by an epitaxial method, which has a considerable material loss compared to a process of forming a photoelectric conversion layer by a dicing method. This proposal can avoid such material damage. Lost. On the other hand, the method of forming a photoelectric conversion layer by the epitaxial method does not require a crystal growth process. Since the crystal growth process requires a high temperature operating environment, it requires a considerable amount of energy to be consumed. This proposal can significantly reduce the production cost of solar cells because it does not require a crystal growth process. At the same time, this proposal combines the steps of battery preparation and module packaging, and further simplifies the process of reducing solar cells.

在以下段落中,係分別測試本提案實施例之太陽電池以及比較例之太陽電池。其中,本提案實施例之太陽電池的曲率分別為0.005以及0.01,而比較例之太陽電池的曲率分別為0.25以及0(亦即,平面的光電轉換層)。請參閱第5圖,第5圖為本提案實施例之太陽電池以及比較例之太陽電池之有效集光效率以及入射角度之關係圖。 In the following paragraphs, the solar cells of the embodiments of the present proposal and the solar cells of the comparative examples were tested separately. Among them, the solar cells of the embodiments of the present invention have curvatures of 0.005 and 0.01, respectively, and the solar cells of the comparative examples have curvatures of 0.25 and 0, respectively (that is, planar photoelectric conversion layers). Please refer to FIG. 5. FIG. 5 is a diagram showing the relationship between the effective light collection efficiency and the incident angle of the solar cell of the embodiment of the present invention and the solar cell of the comparative example.

在第5圖中,實施例一之太陽電池的光電轉換層的曲率為0.005,實施例二之太陽電池的光電轉換層的曲率為0.01,比較例一之太陽電池的光電轉換層的曲率為0(即平面),比較例二之太陽電池的光電轉換層的曲率為0.25。 In Fig. 5, the curvature of the photoelectric conversion layer of the solar cell of the first embodiment is 0.005, and the curvature of the photoelectric conversion layer of the solar cell of the second embodiment is 0.01, and the curvature of the photoelectric conversion layer of the solar cell of the first comparative example is 0. (i.e., plane), the photoelectric conversion layer of the solar cell of Comparative Example 2 has a curvature of 0.25.

如第5圖所示,在入射角度為30至約50度之範圍內,實施例一之太陽電池的有效集光面積相較於比較例一之太陽電池有明顯的改善。當太陽電池的光電轉換層的曲率提升至0.01時(實施例二),在入射角度為0至約50度之範圍內,實施例二之太陽電池均具有較佳的有效集光面積。然而,當太陽電池的光電轉換層的曲率提升至0.25時(比較例二),在入射角度為0至90度之範圍內,比較例二的有效集光面積均較比較例一劣勢。也就是說,太陽電池的光電轉換層的曲率與有效集光面積並非呈現簡單的正相關關係。太陽電池的光電轉換層的曲率在0.005至0.01之範圍內,才具有較佳的有效集光面積。 As shown in Fig. 5, the effective light collecting area of the solar cell of the first embodiment is significantly improved as compared with the solar cell of the first comparative example in the range of the incident angle of 30 to about 50 degrees. When the curvature of the photoelectric conversion layer of the solar cell is raised to 0.01 (Embodiment 2), the solar cells of Embodiment 2 have a better effective concentrating area in the range of 0 to about 50 degrees. However, when the curvature of the photoelectric conversion layer of the solar cell was raised to 0.25 (Comparative Example 2), the effective collection area of Comparative Example 2 was inferior to Comparative Example 1 in the range of the incident angle of 0 to 90 degrees. That is to say, the curvature of the photoelectric conversion layer of the solar cell does not exhibit a simple positive correlation with the effective collection area. The photoelectric conversion layer of the solar cell has a curvature in the range of 0.005 to 0.01 to have a better effective light collecting area.

請參閱第6A圖及第6B圖,第6圖A為本提案實施例之太陽電池所組成之太陽電池陣列之示意圖,第6B圖為第6A圖之太陽電池陣列之集光示意圖。如圖所示,可將本提案實施例之太陽電池組成一太陽電池陣列9,而可做為大型的發電模組。在本實施例中,每一太陽電池10除了太陽電池10本身所反射的光線,還可吸收其他太陽電池10所反射的光線,而可進一步提高所吸收的光量,並進一步提高太陽電池陣列9整體之有效集光效率。 Please refer to FIG. 6A and FIG. 6B. FIG. 6A is a schematic diagram of a solar cell array composed of a solar cell according to an embodiment of the present invention, and FIG. 6B is a schematic diagram of a solar cell array of FIG. 6A. As shown in the figure, the solar cell of the embodiment of the present invention can be formed into a solar cell array 9, and can be used as a large power generation module. In the present embodiment, each solar cell 10 can absorb the light reflected by the other solar cells 10 in addition to the light reflected by the solar cell 10, thereby further increasing the amount of light absorbed and further improving the overall solar cell array 9. Effective collection efficiency.

雖然本提案之實施例揭露如上所述,然並非用以限定本提案,任何熟習相關技術者,在不脫離本提案之精神和範圍內,舉凡依本提案申請範圍所述之形狀、構造、特徵及精神當可做些許之變更,因此本提案之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。 Although the embodiments of the present disclosure are as described above, they are not intended to limit the proposal, and any person skilled in the art may, without departing from the spirit and scope of the proposal, the shapes, structures, and features described in the scope of application of the proposal. And the spirit of the patent may be subject to change, so the scope of patent protection of this proposal shall be subject to the definition of the scope of the patent application attached to this specification.

10‧‧‧太陽電池 10‧‧‧Solar battery

11‧‧‧透明載板 11‧‧‧Transparent carrier

110‧‧‧曲面 110‧‧‧ Surface

12‧‧‧光電轉換層 12‧‧‧ photoelectric conversion layer

121‧‧‧射極層 121‧‧ ‧ emitter layer

122‧‧‧基極層 122‧‧‧base layer

13‧‧‧第一電極 13‧‧‧First electrode

14‧‧‧第二電極 14‧‧‧second electrode

15‧‧‧黏著層 15‧‧‧Adhesive layer

16‧‧‧抗反射層 16‧‧‧Anti-reflective layer

Claims (13)

一種太陽電池,包含:一透明載板,具有一曲面;一光電轉換層,透過一黏著層而貼附於該透明載板之該曲面,該光電轉換層沿著該曲面而撓曲,該光電轉換層之厚度介於1微米至50微米之間;一第一電極,夾設於該黏著層以及該光電轉換層之間,該第一電極電性連接於該光電轉換層;以及一第二電極,設置於該光電轉換層相反於該第一電極之一側,且該第二電極電性連接於該光電轉換層以及該第一電極。 A solar cell comprising: a transparent carrier having a curved surface; a photoelectric conversion layer attached to the curved surface of the transparent carrier through an adhesive layer, the photoelectric conversion layer being flexed along the curved surface, the photoelectric The thickness of the conversion layer is between 1 micrometer and 50 micrometers; a first electrode is sandwiched between the adhesive layer and the photoelectric conversion layer, the first electrode is electrically connected to the photoelectric conversion layer; and a second The electrode is disposed on the side of the photoelectric conversion layer opposite to the first electrode, and the second electrode is electrically connected to the photoelectric conversion layer and the first electrode. 如請求項1所述之太陽電池,其中該透明載板之該曲面的曲率介於0.005至0.01(公分-1)之間。 The solar cell of claim 1, wherein the curvature of the curved surface of the transparent carrier is between 0.005 and 0.01 (cm -1 ). 如請求項1所述之太陽電池,其中該光電轉換層包含一射極層以及一基極層,該射極層設置於該基極層,該射極層相反於該基極層之一側貼附於該透明載板之該曲面。 The solar cell of claim 1, wherein the photoelectric conversion layer comprises an emitter layer and a base layer, the emitter layer is disposed on the base layer, and the emitter layer is opposite to one side of the base layer Attached to the curved surface of the transparent carrier. 如請求項3所述之太陽電池,其中該光電轉換層另包含一中性層,該中性層設置於該射極層以及該基極層之間。 The solar cell of claim 3, wherein the photoelectric conversion layer further comprises a neutral layer disposed between the emitter layer and the base layer. 如請求項1所述之太陽電池,另包含一抗反射層,設置於該光電轉換層,該抗反射層夾設於該光電轉換層以及該黏著層之間。 The solar cell of claim 1, further comprising an anti-reflection layer disposed on the photoelectric conversion layer, the anti-reflection layer being interposed between the photoelectric conversion layer and the adhesive layer. 如請求項1所述之太陽電池,其中該曲面為一凸面。 The solar cell of claim 1, wherein the curved surface is a convex surface. 如請求項6所述之太陽電池,其中該透明載板相反於該曲面之一側具有一凹面。 The solar cell of claim 6, wherein the transparent carrier has a concave surface opposite to one side of the curved surface. 一種太陽電池的製備方法,包含: 於一光電轉換層形成一第一電極;於該光電轉換層設有該第一電極之一側形成一黏著層;將該光電轉換層透過該黏著層而轉印至一透明載板之一曲面;以及於該光電轉換層相反於該第一電極之一側形成一第二電極。 A method for preparing a solar cell, comprising: Forming a first electrode on a photoelectric conversion layer; forming an adhesive layer on one side of the photoelectric conversion layer; and transferring the photoelectric conversion layer to a curved surface of a transparent carrier through the adhesive layer And forming a second electrode on the side opposite to the first electrode of the photoelectric conversion layer. 如請求項8所述之太陽電池的製備方法,其中於該光電轉換層設有該第一電極之一側形成該黏著層前,另包含形成一抗反射層於該光電轉換層,該抗反射層夾設於該光電轉換層以及該第一電極之間。 The method for preparing a solar cell according to claim 8, wherein before the one surface of the first electrode is formed on the photoelectric conversion layer, the anti-reflection layer is formed on the photoelectric conversion layer. The layer is sandwiched between the photoelectric conversion layer and the first electrode. 如請求項8所述之太陽電池的製備方法,其中於將該光電轉換層透過該黏著層而轉印至該透明載板之該曲面之步驟的操作溫度低於300℃。 The method of producing a solar cell according to claim 8, wherein the step of transferring the photoelectric conversion layer through the adhesive layer to the curved surface of the transparent carrier is performed at an operating temperature of less than 300 °C. 如請求項8所述之太陽電池的製備方法,其中於該光電轉換層形成該第一電極前,該光電轉換層設置於一基板上,該光電轉換層包含一射極層以及一基極層,該射極層設置於該基極層,該射極層以及該基極層係以化學氣相沉積之方式形成於該基板。 The method for preparing a solar cell according to claim 8, wherein the photoelectric conversion layer is disposed on a substrate, the photoelectric conversion layer comprising an emitter layer and a base layer before the photoelectric conversion layer forms the first electrode The emitter layer is disposed on the base layer, and the emitter layer and the base layer are formed on the substrate by chemical vapor deposition. 如請求項11所述之太陽電池的製備方法,其中該光電轉換層另包含一中性層,該中性層設置於該射極層以及該基極層之間。 The method of preparing a solar cell according to claim 11, wherein the photoelectric conversion layer further comprises a neutral layer disposed between the emitter layer and the base layer. 如請求項11所述之太陽電池的製備方法,其中於將該光電轉換層透過該黏著層而轉印至該透明載板之該曲面後,該光電轉換層與該基板相分離。 The method of preparing a solar cell according to claim 11, wherein the photoelectric conversion layer is separated from the substrate after the photoelectric conversion layer is transferred to the curved surface of the transparent carrier through the adhesive layer.
TW103102652A 2014-01-24 2014-01-24 Solar cell and manufacturing method thereof TWI514604B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103102652A TWI514604B (en) 2014-01-24 2014-01-24 Solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103102652A TWI514604B (en) 2014-01-24 2014-01-24 Solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201530792A true TW201530792A (en) 2015-08-01
TWI514604B TWI514604B (en) 2015-12-21

Family

ID=54342846

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103102652A TWI514604B (en) 2014-01-24 2014-01-24 Solar cell and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI514604B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536379B2 (en) * 1973-11-30 1978-03-07
US20050098202A1 (en) * 2003-11-10 2005-05-12 Maltby Robert E.Jr. Non-planar photocell
TW201029199A (en) * 2009-01-22 2010-08-01 Gloria Solar Co Ltd Method of installing plastic solar module
TW201314926A (en) * 2010-09-27 2013-04-01 Astrowatt Inc Electronic device including a semiconductor layer and a metal-containing layer, and a process of forming the same
KR101279586B1 (en) * 2011-01-20 2013-06-27 한국과학기술연구원 Flexible electrodes and preparation method thereof, and flexible dye-sensitized solar cells using the same
CN103258881B (en) * 2013-05-07 2015-11-11 宁波山迪光能技术有限公司 Thin-film solar cell panel and preparation method thereof

Also Published As

Publication number Publication date
TWI514604B (en) 2015-12-21

Similar Documents

Publication Publication Date Title
JP6975368B1 (en) Solar cells and solar cell modules
US20120031454A1 (en) Efficient nanoscale solar cell and fabrication method
US20100089449A1 (en) High efficiency solar cell and manufacturing method thereof
JP2008053731A (en) Nano-wire in thin film silicon solar cell
CN102751371B (en) Solar thin film battery and manufacturing method thereof
US20120235268A1 (en) Photoelectric conversion module, method for manufacturing same, and power generation device
US20110308582A1 (en) Photoelectric conversion device and manufacturning method thereof
US20110308589A1 (en) Photoelectric conversion device and method for manufacturing the same
CN111403554A (en) Preparation method of solar cell and solar cell obtained by preparation method
JP2016029675A (en) Light-transmissible insulation board for thin film solar battery and integration type thin film silicon solar battery
CN105742402A (en) Preparation method of laminated solar battery, and structure of lamination solar battery
KR100906748B1 (en) Solar cell and method for manufacturing the same
CN104681651A (en) Silicon-based multi-junction solar cell
TWI514604B (en) Solar cell and manufacturing method thereof
JP3236533U (en) A tandem diamond thin-film solar cell device that also uses wind power generation.
CN104064619B (en) Microcrystalline silicon amorphous silicon radial double-junction nanowire solar cell
CN101814554A (en) Structural design method of film solar cell
KR20110015998A (en) Solar cell and method for manufacturing the same
CN103107240B (en) Multi-crystal silicon film solar battery and preparation method thereof
TW201238062A (en) Photovoltaic cell module
TW201001731A (en) Photovoltaic device and method of manufacturing a photovoltaic device
KR20190143744A (en) Multi-junction solar cell and method of manufacturing the same
KR101032270B1 (en) Photovoltaic device including flexible or inflexibel substrate and method for manufacturing the same
KR100999177B1 (en) Solar cell and method for manufacturing the same
CN202977493U (en) Polysilicon thin-film solar cell