TW201528874A - Control circuit and control method for light-emitting diode module, and light-emitting diode device - Google Patents

Control circuit and control method for light-emitting diode module, and light-emitting diode device Download PDF

Info

Publication number
TW201528874A
TW201528874A TW104108732A TW104108732A TW201528874A TW 201528874 A TW201528874 A TW 201528874A TW 104108732 A TW104108732 A TW 104108732A TW 104108732 A TW104108732 A TW 104108732A TW 201528874 A TW201528874 A TW 201528874A
Authority
TW
Taiwan
Prior art keywords
current
light
emitting diode
diode module
coupled
Prior art date
Application number
TW104108732A
Other languages
Chinese (zh)
Other versions
TWI551188B (en
Inventor
Cheng-Tao Li
Original Assignee
Nuvoton Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuvoton Technology Corp filed Critical Nuvoton Technology Corp
Priority to TW104108732A priority Critical patent/TWI551188B/en
Publication of TW201528874A publication Critical patent/TW201528874A/en
Application granted granted Critical
Publication of TWI551188B publication Critical patent/TWI551188B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

Control techniques for light-emitting diode module are disclosed. A current sensor generates a feedback current between a difference calculation node and a ground terminal based on light emission of a light-emitting diode module. A reference current generator outputs a reference current to be coupled to the difference calculation node via a control switch that is for a current difference calculation. The control switch for the current difference calculation is turned on and off synchronously with an output current control switch within the light-emitting diode module. A filter has an input terminal that is coupled to the difference calculation node. A pulse signal generator generates a pulse-width modulation signal whose duty cycle is adjusted in accordance with a signal at an output terminal of the filter. The output current control switch is turned on and off in accordance with the pulse signal and thereby the light emission of the light-emitting diode module reaches to a level corresponding to the current level of the reference current.

Description

發光二極體模組控制電路與控制方法、以及發光二極體裝置 Light-emitting diode module control circuit and control method, and light-emitting diode device

本發明所述實施例係有關於發光二極體(Light-Emitting Diode,LED)模組之控制電路與控制方法,以及包括該發光二極體模組以及上述控制電路的發光二極體裝置。 The embodiment of the present invention relates to a control circuit and a control method for a Light-Emitting Diode (LED) module, and a light-emitting diode device including the LED module and the control circuit.

發光二極體為目前常見的發光半導體電子元件,一般採複數個串接在一起使用,其上流通的電流將決定發光量,可以脈衝寬度調變(PWM)的方式調節。 Light-emitting diodes are commonly used light-emitting semiconductor electronic components. Generally, a plurality of LEDs are used in series, and the current flowing thereon determines the amount of light, which can be adjusted by pulse width modulation (PWM).

本技術領域一項重要課題係以價位低且架構單純之設計實施以上脈衝寬度調變。 An important subject in the art is to implement the above pulse width modulation with a low price and simple architecture.

本案所述實施例揭露一種發光二極體模組之控制電路與控制方法,以及包括該發光二極體模組以及上述控制電路的發光二極體裝置。 The embodiment of the present invention discloses a control circuit and a control method for a light emitting diode module, and a light emitting diode device including the light emitting diode module and the control circuit.

根據本案一種實施方式所實現的一種發光二極體模組控制電路包括:一電流感測器;一參考電流源;一電流差值計算控制開關;一濾波器;以及一脈衝產生器。該電流感測 器係根據一發光二極體模組的發光量產生一回授電流,反映在一回授運算連結點以及一地端之間。該參考電流源係輸出一參考電流由該電流差值計算控制開關耦接至該回授運算連結點。 該電流差值計算控制開關係與該發光二極體模組中的一電流控制開關同步啟動與關閉。該濾波器具有一輸入端耦接該回授運算連結點,且具有一輸出端。該脈衝產生器用於產生工作週期隨該濾波器之該輸出端上的信號調整的一脈衝寬度調變信號,以控制該發光二極體模組中的該電流控制開關的啟動與關閉,使該發光二極體模組的發光量達該參考電流所對應的設定。 A light-emitting diode module control circuit implemented according to an embodiment of the present invention includes: a current sensor; a reference current source; a current difference calculation control switch; a filter; and a pulse generator. Current sensing The device generates a feedback current according to the amount of illumination of a light-emitting diode module, and is reflected between a feedback operation connection point and a ground end. The reference current source outputs a reference current coupled to the feedback calculation connection point by the current difference calculation control switch. The current difference calculation control relationship is started and closed synchronously with a current control switch in the LED module. The filter has an input coupled to the feedback connection point and has an output. The pulse generator is configured to generate a pulse width modulation signal whose duty cycle is adjusted with the signal at the output end of the filter to control activation and deactivation of the current control switch in the LED module. The amount of illumination of the LED module reaches the setting corresponding to the reference current.

本案更有一種實施方式係揭露一種發光二極體裝 置,其中包括上述發光二極體模組以及發光二極體模組控制電路。 In this case, a further embodiment discloses a light-emitting diode package. The device includes the above-mentioned light emitting diode module and the LED module control circuit.

根據本案一種實施方式所實現的發光二極體模組 控制方法包括:以一電流感測器根據一發光二極體模組的發光量產生一回授電流,反映在一回授運算連結點以及一地端之間;以一參考電流源輸出一參考電流由一電流差值計算控制開關耦接至該回授運算連結點,並令該電流差值計算控制開關係與該發光二極體模組中的一電流控制開關同步啟動與關閉;提供一濾波器,其中該濾波器具有一輸入端耦接該回授運算連結點,且具有一輸出端;以及,以一脈衝產生器產生工作週期隨該濾波器之該輸出端上的信號調整的一脈衝寬度調變信號,以控制該發光二極體模組中的該電流控制開關的啟動與關閉,使該發光二極體模組的發光量達該參考電流所對應的設定。 Light-emitting diode module realized according to an embodiment of the present invention The control method includes: generating, by a current sensor, a feedback current according to the illuminating quantity of the LED module, reflected between a feedback operation connection point and a ground end; and outputting a reference by using a reference current source The current is controlled by a current difference calculation control switch coupled to the feedback operation connection point, and the current difference calculation control open relationship is started and closed synchronously with a current control switch in the LED module; a filter, wherein the filter has an input coupled to the feedback connection point and has an output; and a pulse generator generates a pulse whose duty cycle is adjusted with a signal at the output of the filter And a width modulation signal for controlling activation and deactivation of the current control switch in the LED module, so that the illumination quantity of the LED module reaches a setting corresponding to the reference current.

下文特舉實施例,並配合所附圖示,詳細說明本發明內容。 The invention is described in detail below with reference to the accompanying drawings.

100‧‧‧發光二極體裝置 100‧‧‧Lighting diode device

102‧‧‧發光二極體模組 102‧‧‧Lighting diode module

104‧‧‧發光二極體 104‧‧‧Lighting diode

106‧‧‧電感 106‧‧‧Inductance

108‧‧‧二極體 108‧‧‧ diode

110‧‧‧電流控制開關 110‧‧‧current control switch

112‧‧‧電流感測器 112‧‧‧ Current Sensor

114‧‧‧電流差值計算控制開關 114‧‧‧ Current difference calculation control switch

116‧‧‧濾波器 116‧‧‧ Filter

118‧‧‧脈衝產生器 118‧‧‧Pulse generator

120‧‧‧電阻控制型電流產生器 120‧‧‧Resistance-Controlled Current Generator

122、126‧‧‧運算放大器 122, 126‧‧‧Operational Amplifier

124‧‧‧N型金氧半場效電晶體 124‧‧‧N type gold oxide half field effect transistor

128‧‧‧RS正反器 128‧‧‧RS forward and reverse

130‧‧‧緩衝器 130‧‧‧buffer

A1、A2‧‧‧I_sense、I_adj於工作區間Ton內的積分量C1、C2‧‧‧電容 A1, A2‧‧‧I_sense, I_adj integral amount in working area Ton C1, C2‧‧‧ capacitor

D、S、G‧‧‧N型金氧半場效電晶體的汲極、源極、閘極I_adj‧‧‧參考電流(源) D, S, G‧‧‧N-type gold-oxygen half-field effect transistor, drain, source, gate I_adj‧‧‧ reference current (source)

I_adj_nf‧‧‧經電流差值計算控制開關114調節後的參考電流 I_adj_nf‧‧‧ calculates the reference current after the current switch is controlled by the current difference

I_out‧‧‧電流控制開關110之源極S所輸出之電流 I_out‧‧‧ Current output from the source S of the current control switch 110

I_sense‧‧‧回授電流 I_sense‧‧‧Responding current

nL1、nL2‧‧‧電感106的第一端、第二端 nL1, nL2‧‧‧ first and second ends of the inductor 106

R、Rs‧‧‧電阻 R, Rs‧‧‧ resistance

S302…S308‧‧‧步驟 S302...S308‧‧‧Steps

SW_on‧‧‧脈衝寬度調變信號 SW_on‧‧‧ pulse width modulation signal

Ton‧‧‧工作區間 Ton‧‧ working area

VIN‧‧‧電源 VIN‧‧‧ power supply

Vref‧‧‧參考電位 Vref‧‧‧ reference potential

第1圖根據本案一種實施方式圖解一種發光二極體裝置100;第2圖圖解第1圖架構之信號波形。參考電流I_adj的值將決定發光二極體模組102的發光量;第3圖為流程圖,根據第1圖架構說明發光二極體模組102的一種控制方法。 1 is a diagram showing a light emitting diode device 100 according to an embodiment of the present invention; and FIG. 2 is a view showing a signal waveform of the first FIG. The value of the reference current I_adj will determine the amount of illumination of the LED module 102; and FIG. 3 is a flow chart illustrating a method of controlling the LED module 102 according to the architecture of FIG.

以下敘述列舉本發明的多種實施例。以下敘述介紹本發明的基本概念,且並非意圖限制本發明內容。實際發明範圍應依照申請專利範圍界定之。 The following description sets forth various embodiments of the invention. The following description sets forth the basic concepts of the invention and is not intended to limit the invention. The scope of the actual invention shall be defined in accordance with the scope of the patent application.

第1圖根據本案一種實施方式圖解一種發光二極體裝置100,其中包括一發光二極體模組102,且圖中其他元件屬於一發光二極體模組控制電路。 1 illustrates a light emitting diode device 100 including a light emitting diode module 102 according to an embodiment of the present invention, and other components in the figure belong to a light emitting diode module control circuit.

發光二極體模組102包括串接之複數個發光二極體104、一電感106、一二極體108以及一電流控制開關110。該電流控制開關110為一N型金氧半場效電晶體(並不意圖限定僅以此元件操作),其閘極G可為控制端,且其兩個連結端為汲極D以及源極S。電流控制開關110的汲極D可與電感106之第一端nL1耦接。該等發光二極體104係串接在一電源VIN以及該電感106之第二端nL2之間。該二極體108具有陽極耦接該電感106 的該第一端nL1、且具有一陰極耦接該電源VIN。電流控制開關110的閘極G係用於接收脈衝寬度調變信號SW_on,以控制該等發光二極體104的發光狀況,決定該發光二極體模組102的發光量。 The LED module 102 includes a plurality of LEDs 104 connected in series, an inductor 106, a diode 108, and a current control switch 110. The current control switch 110 is an N-type gold-oxygen half-field effect transistor (not intended to be limited to operation only by this element), the gate G thereof can be a control end, and the two connection ends thereof are the drain D and the source S. . The drain D of the current control switch 110 can be coupled to the first end nL1 of the inductor 106. The light emitting diodes 104 are connected in series between a power source VIN and a second terminal nL2 of the inductor 106. The diode 108 has an anode coupled to the inductor 106 The first end nL1 has a cathode coupled to the power source VIN. The gate G of the current control switch 110 is configured to receive the pulse width modulation signal SW_on to control the light emission state of the light emitting diodes 104, and determine the amount of light emitted by the light emitting diode module 102.

第1圖其他部分更顯示所揭露之發光二極體模組控制電路,其包括:一電流感測器112;一參考電流源I_adj;一電流差值計算控制開關114;一濾波器116;以及一脈衝產生器118。 The other parts of FIG. 1 further show the disclosed LED module control circuit, comprising: a current sensor 112; a reference current source I_adj; a current difference calculation control switch 114; a filter 116; A pulse generator 118.

該電流感測器112可根據一發光二極體模組102的發光量產生一回授電流I_sense(I_sense=I_out/K,I_out為電流控制開關110之源極S所輸出之電流),反映在一回授運算連結點nf以及一地端(GND)之間。一種實施方式係以電流鏡(current mirror)技術以鏡射比例1/K(例如,設計電流鏡電晶體之長寬比)生成I_out/K數值的電流,以之為上述回授電流I_sense。該參考電流源I_adj可輸出一參考電流(同樣標號為I_adj)由該電流差值計算控制開關114耦接至該回授運算連結點nf。該電流差值計算控制開關114可與該發光二極體模組102中的電流控制開關110同步啟動與關閉;例如,皆由脈衝寬度調變信號SW_on控制。如此一來,參考電流I_adj實際流入該回授運算連結點nf的電流量為I_adj_nf。該濾波器116具有一輸入端耦接該回授運算連結點nf,且具有一輸出端。該濾波器116的該輸入端是對電流差值(I_adj_nf-I_sense)作濾波。該脈衝產生器118可用於產生工作週期隨該濾波器116之該輸出端上的信號調整的一脈衝寬度調變信號(即SW_on),以控制該發光二極體模組102中的該 電流控制開關110的啟動與關閉,使該發光二極體模組102的發光量達該參考電流I_adj所對應的設定。 The current sensor 112 generates a feedback current I_sense (I_sense=I_out/K, I_out is the current output by the source S of the current control switch 110) according to the amount of illumination of the LED module 102, which is reflected in A feedback operation is between the connection point nf and a ground terminal (GND). One embodiment uses a current mirror technique to generate a current of I_out/K value at a mirroring ratio of 1/K (eg, designing the aspect ratio of the current mirror transistor) as the feedback current I_sense. The reference current source I_adj can output a reference current (also denoted by I_adj). The current difference calculation control switch 114 is coupled to the feedback operation connection point nf. The current difference calculation control switch 114 can be started and turned off synchronously with the current control switch 110 in the LED module 102; for example, both are controlled by the pulse width modulation signal SW_on. As a result, the amount of current actually flowing into the feedback calculation connection point nf by the reference current I_adj is I_adj_nf. The filter 116 has an input coupled to the feedback connection point nf and has an output. The input of the filter 116 filters the current difference (I_adj_nf-I_sense). The pulse generator 118 can be configured to generate a pulse width modulation signal (ie, SW_on) whose duty cycle is adjusted with the signal at the output of the filter 116 to control the light-emitting diode module 102. The current control switch 110 is turned on and off, so that the amount of light emitted by the LED module 102 reaches the setting corresponding to the reference current I_adj.

整理之,本案可以電流形式收集回授信號,即回授電流I_sense。此外,所感測得的回授電流I_sense可先與經脈衝寬度調變信號SW_on切換後的電流I_adj_nf作差值(I_adj_nf-I_sense)(或(I_sense-I_adj_nf))計算後再對差值(I_adj_nf-I_sense)(或(I_sense-I_adj_nf))作濾波。以往,通常收集而得的電流會先透過設置的電阻轉換成電壓後,再透過一比較器比較此電壓與一參考電壓。在另一習知做法中,前述所設置的電阻為一高規格的感測電阻(Rsense),用以感測流經發光二極體(LED)的電流,此時的感測電阻(Rsense)需感測約1安培(A)的電流,因此承受電流的能力需較高,所以感測電阻(Rsense)的價格十分昂貴。然而,由於本案可直接收集電流並對此電流進行運算,因此,本案可無需額外設置電阻以及比較器,如此以電流形式先做回授差值運算再進行濾波的流程可使得本案發光二極體模組102的脈衝寬度調變控制架構單純、節省配置比較器及電阻的成本以及降低功率損耗。 In this case, the case can collect the feedback signal in the form of current, that is, the current I_sense is returned. In addition, the sensed feedback current I_sense may be first calculated by the difference (I_adj_nf-I_sense) (or (I_sense-I_adj_nf)) of the current I_adj_nf after the pulse width modulation signal SW_on is switched, and then the difference value (I_adj_nf- I_sense) (or (I_sense-I_adj_nf)) for filtering. In the past, the current collected is first converted into a voltage through a set resistor, and then compared to a reference voltage through a comparator. In another conventional method, the resistor is a high-standard sensing resistor (Rsense) for sensing the current flowing through the LED (LED), and the sensing resistor (Rsense) at this time. The current of about 1 ampere (A) needs to be sensed, so the ability to withstand current needs to be high, so the price of the sense resistor (Rsense) is very expensive. However, since the current can be directly collected and the current is calculated in this case, in this case, it is not necessary to additionally provide a resistor and a comparator, so that the process of performing the difference calculation and then filtering in the form of current can make the light-emitting diode of the present case The pulse width modulation control architecture of the module 102 is simple, saves the cost of configuring the comparator and the resistor, and reduces power loss.

在一實施例中,該電流控制開關110所輸出之電流I_out相對於該回授電流I_sense的比值K可設定使該回授電流I_sense控制在微安培(uA)等級。例如,K值可為2000x56,使得電流I_out為1120mA時,該回授電流I_sense為10uA,屬微安培等級。如此一來,濾波器116得以以低成本元件實現。此外,參考電流源I_adj所輸出的該參考電流I_adj亦因而可控制在例如10uA如此微安培等級,參考電流I_adj亦可以低成本電路架 構產生。另外,也因可透過電流形式收集回授信號,且回授電流I_sense為微安培等級,因此可降低功率損耗。 In an embodiment, the ratio K of the current I_out output by the current control switch 110 relative to the feedback current I_sense can be set such that the feedback current I_sense is controlled at a microamperes (uA) level. For example, the K value may be 2000x56, such that when the current I_out is 1120 mA, the feedback current I_sense is 10 uA, which is a microampere rating. As such, the filter 116 can be implemented with low cost components. In addition, the reference current I_adj outputted by the reference current source I_adj can thus be controlled at such a microampere level as 10uA, and the reference current I_adj can also be used in a low-cost circuit frame. Constructed. In addition, since the feedback signal is collected by the permeable current, and the feedback current I_sense is in the micro ampere level, the power loss can be reduced.

如圖所示,濾波器116為低通濾波器,包括電容C1、C2以及電阻R。電容C1耦接該濾波器116的輸入端至地端。電容C2耦接該濾波器116的輸出端至地端。電阻R耦接在該濾波器116的該輸入端以及該輸出端之間。濾波器116的實現方式不以第1圖所示為限,其更可以其它電路結構實現。 As shown, filter 116 is a low pass filter that includes capacitors C1, C2 and resistor R. The capacitor C1 is coupled to the input end of the filter 116 to the ground. The capacitor C2 is coupled to the output of the filter 116 to the ground. A resistor R is coupled between the input of the filter 116 and the output. The implementation of the filter 116 is not limited to that shown in FIG. 1, and can be implemented in other circuit configurations.

如圖所示,參考電流源I_adj所輸出的該參考電流I_adj係鏡射自一電阻控制型電流產生器120。該電阻控制型電流產生器120包括:一運算放大器122;一電阻Rs;以及一N型金氧半場效電晶體124。該運算放大器122具有一正端輸入(標號’+’)接收一參考電位Vref,且具有一負端輸入(標號’-’)以及一輸出端。電阻Rs之電阻值同樣標號為Rs,用以將該運算放大器122之該負端輸入’-‘接地。該N型金氧半場效電晶體124具有一汲極D耦接一電源、一閘極G耦接該運算放大器122之該輸出端、以及一源極S耦接該運算放大器122之該負端輸入’-‘。該參考電流源I_adj所輸出的該參考電流I_adj係與電流值Vref/Rs成比例(例如,採用電流鏡技術鏡射自該電阻控制型電流產生器120)。如此架構下,電阻Rs可設計為仟歐姆等級,如100K歐姆,為相當便宜的元件。在其他考量下,第1圖電阻控制型電流產生器120更可以其它電路結構實現。 As shown, the reference current I_adj outputted by the reference current source I_adj is mirrored from a resistance-controlled current generator 120. The resistance control type current generator 120 includes an operational amplifier 122, a resistor Rs, and an N-type MOS field effect transistor 124. The operational amplifier 122 has a positive input (reference '+') that receives a reference potential Vref and has a negative input (reference '-') and an output. The resistance value of the resistor Rs is also denoted as Rs for inputting the negative terminal of the operational amplifier 122 '-' to ground. The N-type MOS field-effect transistor 124 has a drain D coupled to a power supply, a gate G coupled to the output of the operational amplifier 122, and a source S coupled to the negative terminal of the operational amplifier 122. Enter '-'. The reference current I_adj output by the reference current source I_adj is proportional to the current value Vref/Rs (for example, mirrored from the resistance-controlled current generator 120 using a current mirror technique). With this architecture, the resistor Rs can be designed to be a ohm-ohm grade, such as 100K ohms, which is a relatively inexpensive component. In other considerations, the resistance control type current generator 120 of FIG. 1 can be implemented by other circuit configurations.

此段落討論脈衝產生器118之架構,其中可包括一運算放大器126、一RS正反器128以及一緩衝器130。運算放大器126具有一正端輸入(標號’+’)可接收一三角參考波、一負端 輸入(標號’-’)耦接該濾波器116的輸出端、且具有一輸出端。 RS正反器128以一重置輸入端(標號’R’)耦接該運算放大器126的該輸出端,並以一輸出端(標號’Q’)耦接該緩衝器130的輸入端。緩衝器130的輸出端即供應該脈衝寬度調變信號SW_on給電流控制開關110的控制端G,其中,電流控制開關110可位於發光二極體模組102中。由濾波器116所濾得的直流量(其可透過濾波器116的輸出端所輸出)越高,脈衝寬度調變信號SW_on的工作週期越長。特別是,第1圖脈衝產生器118更可以其它電路結構實現。 This paragraph discusses the architecture of pulse generator 118, which may include an operational amplifier 126, an RS flip-flop 128, and a buffer 130. The operational amplifier 126 has a positive input (label '+') to receive a triangular reference wave, a negative terminal An input (reference '-') is coupled to the output of the filter 116 and has an output. The RS flip-flop 128 is coupled to the output of the operational amplifier 126 by a reset input (reference 'R') and coupled to the input of the buffer 130 with an output (reference 'Q'). The output end of the buffer 130 is supplied with the pulse width modulation signal SW_on to the control terminal G of the current control switch 110. The current control switch 110 can be located in the LED module 102. The higher the amount of DC filtered by the filter 116 (which is output through the output of the filter 116), the longer the duty cycle of the pulse width modulation signal SW_on. In particular, the pulse generator 118 of FIG. 1 can be implemented in other circuit configurations.

以濾波器116為例,其係對電流差值(I_adj_nf-I_sense)(或(I_sense-I_adj_nf))作濾波,以輸出其中直流部分供運算放大器126與運算放大器126正端輸入的三角參考波比較。回授電流I_sense與目標設定值差距越大,則電流差值(I_adj_nf-I_sense)(或(I_sense-I_adj_nf))越大,濾波器116濾得直流部分越高,運算放大器126輸出越不容易致動該RS正反器128的重置輸入端(標號’R’),故脈衝寬度調變信號SW_on的工作週期越長,發光二極體104通路發光時間增加,逼近參考電流I_adj設定的發光量。 Taking the filter 116 as an example, it filters the current difference value (I_adj_nf-I_sense) (or (I_sense-I_adj_nf)) to output a DC reference wave in which the DC portion is supplied to the positive terminal of the operational amplifier 126 and the positive terminal of the operational amplifier 126. . The larger the difference between the feedback current I_sense and the target set value, the larger the current difference (I_adj_nf-I_sense) (or (I_sense-I_adj_nf)), the higher the DC portion filtered by the filter 116, the less likely the output of the operational amplifier 126 is The reset input end of the RS flip-flop 128 (reference numeral 'R') is moved, so that the longer the duty cycle of the pulse width modulation signal SW_on is, the light-emitting time of the light-emitting diode 104 is increased, and the amount of illumination set by the reference current I_adj is approached. .

第2圖繪示一種圖解第1圖架構之信號波形。參考電流I_adj的值可決定發光二極體模組102的發光量。由於電流差值計算控制開關114可隨脈衝寬度調變信號SW_on之高、低準位而導通、斷路,故參考電流I_adj實際流入該回授運算連結點nf的電流量為I_adj_nf。本發明實施例所揭露之發光二極體模組控制電路可調整該脈衝寬度調變信號SW_on的工作區間 Ton,使得回授電流I_sense在工作區間Ton範圍內的積分值A1等於參考電流I_adj在工作區間Ton範圍內的積分值A2。以上條件滿足時,發光二極體模組102的發光量即可對應該參考電流I_adj之設定。 Figure 2 illustrates a signal waveform illustrating the architecture of Figure 1. The value of the reference current I_adj determines the amount of illumination of the LED module 102. Since the current difference calculation control switch 114 can be turned on and off with the high and low levels of the pulse width modulation signal SW_on, the current amount of the reference current I_adj actually flowing into the feedback operation connection point nf is I_adj_nf. The LED module control circuit disclosed in the embodiment of the invention can adjust the working interval of the pulse width modulation signal SW_on Ton, the integral value A1 of the feedback current I_sense in the range of the working range Ton is equal to the integral value A2 of the reference current I_adj in the range of the working range Ton. When the above conditions are satisfied, the amount of light emitted by the LED module 102 can correspond to the setting of the reference current I_adj.

第3圖為流程圖,根據第1圖架構說明發光二極體模組102的一種控制方法。在步驟S302中,電流感測器112可根據該發光二極體模組102的發光量產生回授電流I_sense,反映在回授運算連結點nf以及一地端之間。此實施例更涉及參考電流源I_adj輸出參考電流I_adj。參考電流I_adj可由電流差值計算控制開關114耦接至該回授運算連結點nf,使得實際流入該回授運算連結點nf的電流量為I_adj_nf,其中,該電流差值計算控制開關114可與該發光二極體模組102中的電流控制開關110一樣是透過脈衝寬度調變信號SW_on啟動與關閉。步驟S304用於運算電流差值(I_adj_nf-I_sense)。步驟S306可透過濾波器116對電流差值(I_adj_nf-I_sense)作濾波。步驟S308可透過該脈衝產生器118產生工作區間Ton隨該濾波器116之輸出端上的信號調整的一脈衝寬度調變信號SW_on,以控制該發光二極體模組102中的該電流控制開關110的啟動與關閉,使該發光二極體模組102的發光量可達該參考電流源I_adj所輸出的該參考電流I_adj所對應的設定。第3圖所示之流程係以迴圈方式常態執行。步驟S308後流程回到步驟S302。如前述討論,本發明所述實施例(例如:第1圖所述發光二極體模組控制電路或是第3圖所述發光二極體模組控制方法)可無須以電阻(例如一高價/規格電阻(Rsense))作大電流的電流-電壓轉換,而是直接作電流 收集以及電流運算(如,步驟S302…S306)。如此以電流形式先做回授差值運算再進行濾波的流程可使得發光二極體模組的脈衝寬度調變控制架構單純、節省配置比較器及電阻的成本以及降低功率損耗。 FIG. 3 is a flow chart showing a control method of the LED module 102 according to the structure of FIG. In step S302, the current sensor 112 generates a feedback current I_sense according to the amount of light emitted by the LED module 102, and is reflected between the feedback operation connection point nf and a ground end. This embodiment further relates to the reference current source I_adj outputting the reference current I_adj. The reference current I_adj may be coupled to the feedback operation connection point nf by the current difference calculation control switch 114 such that the amount of current actually flowing into the feedback operation connection point nf is I_adj_nf, wherein the current difference calculation control switch 114 is The current control switch 110 in the LED module 102 is turned on and off by the pulse width modulation signal SW_on. Step S304 is for calculating the current difference value (I_adj_nf-I_sense). Step S306 may filter the current difference value (I_adj_nf-I_sense) through the filter 116. Step S308, the pulse generator 118 generates a pulse width modulation signal SW_on adjusted by the signal on the output end of the filter 116 through the pulse generator 118 to control the current control switch in the LED module 102. The activation and deactivation of 110 enables the illuminating amount of the illuminating diode module 102 to reach a setting corresponding to the reference current I_adj output by the reference current source I_adj. The flow shown in Figure 3 is normally performed in a loop mode. After step S308, the flow returns to step S302. As discussed above, the embodiment of the present invention (for example, the LED module control circuit of FIG. 1 or the LED module control method of FIG. 3) does not need to have a resistor (for example, a high price). /Specsal resistance (Rsense) for current-voltage conversion of large current, but directly for current Collect and current calculations (eg, steps S302...S306). The process of performing the feedback calculation and then filtering in the form of current can make the pulse width modulation control structure of the LED module simple, save the cost of configuring the comparator and the resistor, and reduce the power loss.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟悉此項技藝者,在不脫離本發明之精神和範圍內,當可做些許界定者為準。 While the invention has been described above by way of example, the invention is not intended to be construed as limiting the scope of the invention.

100‧‧‧發光二極體裝置 100‧‧‧Lighting diode device

102‧‧‧發光二極體模組 102‧‧‧Lighting diode module

104‧‧‧發光二極體 104‧‧‧Lighting diode

106‧‧‧電感 106‧‧‧Inductance

108‧‧‧二極體 108‧‧‧ diode

110‧‧‧電流控制開關 110‧‧‧current control switch

112‧‧‧電流感測器 112‧‧‧ Current Sensor

114‧‧‧電流差值計算控制開關 114‧‧‧ Current difference calculation control switch

116‧‧‧濾波器 116‧‧‧ Filter

118‧‧‧脈衝產生器 118‧‧‧Pulse generator

120‧‧‧電阻控制型電流產生器 120‧‧‧Resistance-Controlled Current Generator

122‧‧‧運算放大器 122‧‧‧Operational Amplifier

124‧‧‧N型金氧半場效電晶體 124‧‧‧N type gold oxide half field effect transistor

126‧‧‧運算放大器 126‧‧‧Operational Amplifier

128‧‧‧RS正反器 128‧‧‧RS forward and reverse

130‧‧‧緩衝器 130‧‧‧buffer

C1、C2‧‧‧電容 C1, C2‧‧‧ capacitor

D、S、G‧‧‧N型金氧半電晶體的汲極、源極、閘極 D, S, G‧‧‧N-type gold oxide semi-transistor, drain, source, gate

I_adj‧‧‧參考電流(源) I_adj‧‧‧reference current (source)

I_adj_nf‧‧‧開關114調節後的參考電流 I_adj_nf‧‧‧Switch 114 adjusted reference current

I_out‧‧‧電流控制開關110之源極S所輸出之電流 I_out‧‧‧ Current output from the source S of the current control switch 110

I_sense‧‧‧回授電流 I_sense‧‧‧Responding current

nL1、nL2‧‧‧電感106的第一端、第二端 nL1, nL2‧‧‧ first and second ends of the inductor 106

R、Rs‧‧‧電阻 R, Rs‧‧‧ resistance

SW_on‧‧‧脈衝寬度調變信號 SW_on‧‧‧ pulse width modulation signal

VIN‧‧‧電源 VIN‧‧‧ power supply

Vref‧‧‧參考電位 Vref‧‧‧ reference potential

Claims (14)

一種發光二極體模組控制電路,包括:一電流感測器,根據一發光二極體模組的發光量產生一回授電流,反映在一回授運算連結點以及一地端之間;一參考電流源以及一電流差值計算控制開關,其中,該參考電流源輸出一參考電流以由該電流差值計算控制開關耦接至該回授運算連結點,且該電流差值計算控制開關係與該發光二極體模組中的一電流控制開關同步啟動與關閉;一濾波器,具有一輸入端耦接該回授運算連結點,且具有一輸出端;以及一脈衝產生器,產生工作週期隨該濾波器之該輸出端上的信號調整的一脈衝寬度調變信號,以控制該發光二極體模組中的該電流控制開關的啟動與關閉,使該發光二極體模組的發光量達該參考電流所對應的設定。 A light-emitting diode module control circuit includes: a current sensor, generating a feedback current according to a light-emitting amount of a light-emitting diode module, reflected between a feedback operation connection point and a ground end; a reference current source and a current difference calculation control switch, wherein the reference current source outputs a reference current to be coupled to the feedback calculation connection point by the current difference calculation control switch, and the current difference calculation control is turned on The relationship is started and closed synchronously with a current control switch in the LED module; a filter having an input coupled to the feedback connection point and having an output; and a pulse generator for generating a pulse width modulation signal adjusted by a signal on the output end of the filter to control activation and deactivation of the current control switch in the LED module to enable the LED module The amount of illuminance reaches the setting corresponding to the reference current. 如申請專利範圍第1項所述之發光二極體模組控制電路,其中:該電流感測器所產生、且反映在該回授運算連結點以及該地端之間的該回授電流係為該發光二極體模組的該電流控制開關所輸出的電流之K分之一;K值係使該回授電流控制在微安培等級。 The illuminating diode module control circuit of claim 1, wherein: the feedback current generated by the current sensor and reflected between the feedback computing connection point and the ground end It is one-k of the current output by the current control switch of the light-emitting diode module; the K value is such that the feedback current is controlled at the microampere level. 如申請專利範圍第1項所述之發光二極體模組控制電路,其中:該參考電流源所輸出的該參考電流係鏡射自一電阻控制型電流產生器;且該電阻控制型電流產生器包括: 一運算放大器,具有一正端輸入接收一參考電位Vref,且具有一負端輸入以及一輸出端;一電阻,具有電阻值Rs,將該運算放大器之該負端輸入接地;以及一N型金氧半場效電晶體,具有一汲極耦接一電源、一閘極耦接該運算放大器之該輸出端、以及一源極耦接該運算放大器之該負端輸入;且該參考電流源所輸出的該參考電流係與電流值Vref/Rs成比例。 The light-emitting diode module control circuit of claim 1, wherein: the reference current source outputs the reference current mirrored from a resistance-controlled current generator; and the resistance-controlled current generation The device includes: An operational amplifier having a positive terminal input receiving a reference potential Vref and having a negative terminal input and an output terminal; a resistor having a resistance value Rs, the negative terminal input of the operational amplifier being grounded; and an N-type gold An oxygen half field effect transistor having a drain coupled to a power supply, a gate coupled to the output of the operational amplifier, and a source coupled to the negative input of the operational amplifier; and the reference current source output The reference current is proportional to the current value Vref/Rs. 如申請專利範圍第3項所述之發光二極體模組控制電路,其中該電阻所具有的上述電阻值Rs為仟歐姆等級。 The illuminating diode module control circuit of claim 3, wherein the resistor has a resistance value Rs of 仟 ohms. 如申請專利範圍第1項所述之發光二極體模組控制電路,其中該濾波器為低通濾波器。 The light-emitting diode module control circuit of claim 1, wherein the filter is a low-pass filter. 如申請專利範圍第5項所述之發光二極體模組控制電路,其中該濾波器包括:一第一電容,耦接該濾波器的該輸入端與該地端之間;一第二電容,耦接該濾波器的該輸出端與該地端之間;以及一電阻,耦接在該濾波器的該輸入端以及該輸出端之間。 The illuminating diode module control circuit of claim 5, wherein the filter comprises: a first capacitor coupled between the input end of the filter and the ground; a second capacitor And coupling the output end of the filter to the ground end; and a resistor coupled between the input end of the filter and the output end. 如申請專利範圍第1項所述之發光二極體模組控制電路,其中該脈衝產生器包括:一運算放大器,具有一正端輸入接收一三角參考波、一負端輸入耦接該濾波器的該輸出端、以及一輸出端; 一RS正反器,以一重置輸入端耦接該運算放大器的該輸出端;以及一緩衝器,具有一輸入端耦接該RS正反器的輸出端、且具有一輸出端耦接該發光二極體模組中的該電流控制開關的控制端。 The light-emitting diode module control circuit of claim 1, wherein the pulse generator comprises: an operational amplifier having a positive-end input receiving a triangular reference wave and a negative-end input coupled to the filter The output end and an output end; An RS-reactor having a reset input coupled to the output of the operational amplifier; and a buffer having an input coupled to the output of the RS flip-flop and having an output coupled to the output The control terminal of the current control switch in the LED module. 一種發光二極體裝置,包括:如申請專利範圍第1項所述之發光二極體模組控制電路;以及由該發光二極體模組控制電路控制的該發光二極體模組。 A light-emitting diode device comprising: the light-emitting diode module control circuit according to claim 1; and the light-emitting diode module controlled by the light-emitting diode module control circuit. 如申請專利範圍第8項所述之發光二極體裝置,其中該發光二極體模組包括:上述電流控制開關;一電感,具有一第一端耦接至該電流控制開關的一連結端、且具有一第二端;串接在一電源以及該電感之該第二端之間的複數個發光二極體;以及一二極體,具有一陽極耦接該電感的該第一端、且具有一陰極耦接該電源。 The illuminating diode device of claim 8, wherein the illuminating diode module comprises: the current control switch; an inductor having a first end coupled to a connecting end of the current control switch And having a second end; a plurality of light emitting diodes connected in series between a power source and the second end of the inductor; and a diode having an anode coupled to the first end of the inductor, And having a cathode coupled to the power source. 一種發光二極體模組控制方法,包括:以一電流感測器根據一發光二極體模組的發光量產生一回授電流,反映在一回授運算連結點以及一地端之間;以一參考電流源輸出一參考電流,該參考電流由一電流差值計算控制開關耦接至該回授運算連結點,並令該電流差 值計算控制開關係與該發光二極體模組中的一電流控制開關同步啟動與關閉;提供一濾波器,其中該濾波器具有一輸入端耦接該回授運算連結點,且具有一輸出端;以及以一脈衝產生器產生工作週期隨該濾波器之該輸出端上的信號調整的一脈衝寬度調變信號,以控制該發光二極體模組中的該電流控制開關的啟動與關閉,使該發光二極體模組的發光量達該參考電流源所輸出的該參考電流所對應的設定。 A method for controlling a light-emitting diode module includes: generating, by a current sensor, a feedback current according to a light-emitting amount of a light-emitting diode module, which is reflected between a feedback operation connection point and a ground end; And outputting a reference current by a reference current source, wherein the reference current is coupled to the feedback operation connection point by a current difference calculation control switch, and the current difference is The value calculation control relationship is started and closed synchronously with a current control switch in the LED module; a filter is provided, wherein the filter has an input coupled to the feedback connection point and has an output end And a pulse width modulation signal that is adjusted by a pulse generator with a signal on the output end of the filter to control activation and deactivation of the current control switch in the LED module. The illuminating amount of the illuminating diode module is set to correspond to the reference current output by the reference current source. 如申請專利範圍第10項所述之發光二極體模組控制方法,其中:反映在該回授運算連結點以及該地端之間的該回授電流係與經該電流差值計算控制開關耦接至該回授運算連結點的該參考電流比較後耦接該濾波器的該輸入端。 The method for controlling a light-emitting diode module according to claim 10, wherein: the feedback current system reflected between the feedback calculation connection point and the ground end and the current difference calculation control switch The reference current coupled to the feedback connection point is coupled to the input of the filter. 如申請專利範圍第10項所述之發光二極體模組控制方法,更包括:令該電流感測器所產生、且反映在該回授運算連結點以及該地端之間的該回授電流係為該發光二極體模組的該電流控制開關所輸出的電流之K分之一;其中,K值係使該回授電流控制在微安培等級。 The method for controlling a light-emitting diode module according to claim 10, further comprising: causing the current sensor to generate and reflect the feedback between the feedback operation connection point and the ground end The current is one-k of the current output by the current control switch of the LED module; wherein the K value is such that the feedback current is controlled at a microampere level. 如申請專利範圍第10項所述之發光二極體模組控制方法,更包括:令該參考電流源所輸出的該參考電流係鏡射自一電阻控制型電流產生器。 The method for controlling a light-emitting diode module according to claim 10, further comprising: causing the reference current source outputted by the reference current source to be mirrored from a resistance-controlled current generator. 如申請專利範圍第10項所述之發光二極體模組控制方法,包括以低通濾波器實現該濾波器。 The method for controlling a light-emitting diode module according to claim 10, comprising implementing the filter with a low-pass filter.
TW104108732A 2015-03-19 2015-03-19 Control circuit and control method for light-emitting diode module, and light-emitting diode device TWI551188B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104108732A TWI551188B (en) 2015-03-19 2015-03-19 Control circuit and control method for light-emitting diode module, and light-emitting diode device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104108732A TWI551188B (en) 2015-03-19 2015-03-19 Control circuit and control method for light-emitting diode module, and light-emitting diode device

Publications (2)

Publication Number Publication Date
TW201528874A true TW201528874A (en) 2015-07-16
TWI551188B TWI551188B (en) 2016-09-21

Family

ID=54198520

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104108732A TWI551188B (en) 2015-03-19 2015-03-19 Control circuit and control method for light-emitting diode module, and light-emitting diode device

Country Status (1)

Country Link
TW (1) TWI551188B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI584099B (en) * 2016-04-06 2017-05-21 普誠科技股份有限公司 Current control circuits

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102650608B1 (en) * 2020-12-18 2024-03-25 세메스 주식회사 Light processing member, substrate processing apparatus including the same and substrate processing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205974B2 (en) * 2008-01-08 2013-06-05 ミツミ電機株式会社 DC power supply, LED drive power supply, and power supply control semiconductor integrated circuit
TWI406595B (en) * 2008-07-25 2013-08-21 Richtek Technology Corp LED driver and controller for its use
US9370069B2 (en) * 2013-08-19 2016-06-14 Infineon Technologies Austria Ag Multi-function pin for light emitting diode (LED) driver
CN103648202B (en) * 2013-12-18 2017-02-08 矽力杰半导体技术(杭州)有限公司 Active power factor correction control circuit, chip and LED (Light Emitting Diode) drive circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI584099B (en) * 2016-04-06 2017-05-21 普誠科技股份有限公司 Current control circuits

Also Published As

Publication number Publication date
TWI551188B (en) 2016-09-21

Similar Documents

Publication Publication Date Title
TWI486098B (en) Control circuit of led driver and offline control circuit thereof
US9847736B2 (en) Driver circuit for LEDs for time-of-flight calculation
JP4741942B2 (en) LED lighting device
JP4778226B2 (en) DC-DC converter
US8680781B1 (en) Circuit and method for driving LEDs
US20130082675A1 (en) Digital Switching Converter Control
JP4945918B2 (en) LED drive device
KR101956494B1 (en) Dimming circuit and dimming system suitable for SCR dimmer circuit
KR102180175B1 (en) Hybrid dimming for lighting circuits
TWI494732B (en) Hysteresis led driver with improved iled accuracy
CN101389168A (en) High-voltage large power LCD constant current driving device
USRE45990E1 (en) Converter device
TWI583120B (en) A system and method for providing an output current to one or more light emitting diodes
KR101087749B1 (en) Apparatus for detecting current, and driver for light emitting diode comprising the same
TWI551188B (en) Control circuit and control method for light-emitting diode module, and light-emitting diode device
TWI436691B (en) Light emitting diode circuit, light emitting diode driving circuit, voltage selection circuit, and method for driving thereof
TWI584673B (en) Light emitting element drive device
US20160094291A1 (en) Optical communication device and control method thereof
WO2018198594A1 (en) Led driver, and led drive circuit device and electronic equipment that use said led driver
CN112654108B (en) Dimming control circuit, control chip, power conversion device and dimming method
Capodivacca et al. Integrated buck LED driver with application specific digital architecture
TWI399128B (en) Method and circuit of controlling an led charge pump driving circuit
CN108337761B (en) Dimming method and dimming system of high-power LED
US10405384B2 (en) Driving circuit using buck converter capable of generating sufficient voltage to power a LED circuit and associated auxiliary circuitry in a normal mode of operation, and insufficient to power the LED circuit but sufficient to power the associated auxiliary circuitry in an off mode of operation
EP3410825A1 (en) Method and circuit for efficient and accurate driving of leds on both high and low currents