TW201528541A - A method for producing light-emitting diode - Google Patents

A method for producing light-emitting diode Download PDF

Info

Publication number
TW201528541A
TW201528541A TW103100793A TW103100793A TW201528541A TW 201528541 A TW201528541 A TW 201528541A TW 103100793 A TW103100793 A TW 103100793A TW 103100793 A TW103100793 A TW 103100793A TW 201528541 A TW201528541 A TW 201528541A
Authority
TW
Taiwan
Prior art keywords
layer
substrate
epitaxial layer
manufacturing
emitting diode
Prior art date
Application number
TW103100793A
Other languages
Chinese (zh)
Other versions
TWI609503B (en
Inventor
Shih-Chieh Hsu
Chun-Yen Chang
Po-Min Tu
Hsiang-Pin Hou
Yung-Yu Lai
Original Assignee
Univ Tamkang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Tamkang filed Critical Univ Tamkang
Priority to TW103100793A priority Critical patent/TWI609503B/en
Publication of TW201528541A publication Critical patent/TW201528541A/en
Application granted granted Critical
Publication of TWI609503B publication Critical patent/TWI609503B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

This invention is a kind of production method of the light emitting diode, including the following steps. We pick up a substrate and grow a non-GaN doping epitaxial layer on it. And then, we etch the non-GaN doping epitaxial layer by an etching method to form a porous structural layer. On the layer, a GaN epitaxial layer, a metal layer, and a silicon substrate will be formed. We will use mechanical method to lift off the aforementioned structure from the substrate and plate it on an electrode layer. The micrometer-scaled column structure of the porous structural layer can achieve one-off and prompt lift-off effect without applying laser lift-off and long wet-etching lift-off to it.

Description

發光二極體之製造方法 Method for manufacturing light emitting diode

本發明係有關於一種發光二極體之製造方法,尤指一種以機械方式達到剝離基板之製造方法。 The invention relates to a method for manufacturing a light-emitting diode, and more particularly to a method for manufacturing a peeling substrate by mechanical means.

於現今半導體產業之發光二極體的製造過程中,氮化鎵(GaN)材料係製造短波段發光二極體元件中極為重要之材料。氮化鎵材料目前主要成長於藍寶石基板上,然藍寶石基板之導電性及導熱性不佳,為了解決此一問題,以置換基板來製作垂直式發光二極體結構的方法為目前製造發光二極體之新型解決方案。 In the manufacturing process of light-emitting diodes in the semiconductor industry today, gallium nitride (GaN) materials are extremely important materials for manufacturing short-wavelength light-emitting diode elements. The gallium nitride material is currently mainly grown on a sapphire substrate, but the conductivity and thermal conductivity of the sapphire substrate are not good. To solve this problem, the method of fabricating the vertical light-emitting diode structure by replacing the substrate is to manufacture the light-emitting diode. New solution for the body.

一般業界目前使用雷射剝離技術來進行基板置換,此技術乃運用準分子雷射使氮化鎵薄膜與藍寶石基板產生化學反應,進而達到分離基板之功效,然雷射剝離設備昂貴導致成本過高,且高溫環境容易破壞磊晶層,此外還有無法大面積剝離等種種缺點,故許多學者皆致力於研發能夠取代雷射剝離的新製程。目前較新被提出之解決方法主要為化學性濕式蝕刻剝離,關於化學性濕式蝕刻剝離之技術,其係採用添加一犧牲層於藍寶 石基板與氮化鎵薄膜之間,待氮化鎵發光二極體結構完成之後再對該犧牲層進行化學性蝕刻,因此得以分離氮化鎵薄膜與藍寶石基板。化學性濕式蝕刻剝離技術雖擁有成本低且能大量量產的優點,但此一技術仍然需要完成新基板的接合之後才能進行舊基板的蝕刻分離,並且製程時間長,蝕刻溶液又多為強酸強鹼溶液,過程中容易造成磊晶層的破壞。 In the industry, laser stripping technology is currently used for substrate replacement. This technique uses a pseudo-molecular laser to chemically react a gallium nitride film with a sapphire substrate to achieve the effect of separating the substrate. However, the laser stripping device is expensive and the cost is too high. Moreover, high-temperature environments are prone to damage the epitaxial layer, and there are various disadvantages such as the inability to peel off in a large area. Therefore, many scholars are working on a new process that can replace laser stripping. At present, the proposed new solution is mainly chemical wet etching stripping. The technique of chemical wet etching stripping is to add a sacrificial layer to the sapphire. Between the stone substrate and the gallium nitride film, after the structure of the gallium nitride light-emitting diode is completed, the sacrificial layer is chemically etched, thereby separating the gallium nitride film and the sapphire substrate. Although the chemical wet etching stripping technology has the advantages of low cost and mass production, this technology still needs to complete the etching of the old substrate after the bonding of the new substrate, and the processing time is long, and the etching solution is mostly strong acid. Strong alkali solution, the process is easy to cause destruction of the epitaxial layer.

綜上所述,開發一種新穎用於製造發光二極體中之剝離基板的技術必為當務之急。 In summary, the development of a novel technique for fabricating a release substrate in a light-emitting diode must be a priority.

本發明為形成發光二極體之方法,其係利用多孔性結構層之微米或奈米柱結構並配合濕式蝕刻製程及晶圓鍵合技術之結合來完成基板剝離的目的,以製作出垂直式發光二極體。本發明之微米或奈米柱結構配合機械式剝離可以達到一次性且快速的剝離效果,並不需另外再使用雷射剝離或是時間冗長且具有破壞性的濕式蝕刻剝離。 The invention is a method for forming a light-emitting diode, which utilizes a micron or nano-pillar structure of a porous structural layer and cooperates with a wet etching process and a wafer bonding technique to complete the substrate stripping purpose to make a vertical Light-emitting diode. The micron or nano-pillar structure of the present invention, in combination with mechanical exfoliation, achieves a one-time and fast peeling effect without the need for additional laser lift-off or time-consuming and destructive wet etch stripping.

本發明之技術特徵在於氮化鎵發光二極體結構中舊基板的剝離。幾個習知技術中:雷射剝離技術製程設備相當昂貴且機台維護費用相當高,且於大尺寸的晶圓上無法快速量產,此外,雷射在氮化鎵薄膜上產生高熱,對於磊晶層造成傷害,影響元件性質。而化學性濕式剝離技術上,雖可以改善上述成本昂貴且無法大量量產的問題,但添加一犧牲層於藍寶石基板與氮化鎵薄 膜間,會影響到後續的磊晶品質,使得發光效率下降,且運用強酸強鹼的化學溶液進行蝕刻,若蝕刻時間過久,也會對磊晶層或是金屬層造成傷害。因此申請人致力於研發設計一種新穎之剝離技術,此方法主要運用濕式蝕刻技術所產生之多孔性氮化鎵結構層,於此結構層上成長氮化鎵磊晶層,之後再進行晶圓鍵合,藉由晶圓鍵合時產生之熱應力與正向壓力進而分離氮化鎵薄膜與藍寶石基板,此技術為一次製程,製程簡易且成本低,可以同時完成新基板的晶圓鍵合和舊基板的剝離,且在大尺寸晶圓上進行快速量產也沒有問題,因為沒有另外插入犧牲層,故亦不會對氮化鎵磊晶層造成傷害。 The technical feature of the present invention resides in the peeling of the old substrate in the gallium nitride light emitting diode structure. Among several conventional technologies: laser stripping technology process equipment is quite expensive and the maintenance cost of the machine is quite high, and it cannot be mass-produced on a large-sized wafer. In addition, the laser generates high heat on the gallium nitride film. The epitaxial layer causes damage and affects the properties of the component. On the chemical wet stripping technology, although the above-mentioned problems of high cost and mass production cannot be improved, a sacrificial layer is added to the sapphire substrate and the gallium nitride thin Between the films, the subsequent epitaxial quality is affected, so that the luminous efficiency is lowered, and the chemical solution of strong acid and alkali is used for etching. If the etching time is too long, the epitaxial layer or the metal layer may be damaged. Therefore, the applicant is committed to research and development of a novel stripping technology, which mainly uses a porous gallium nitride structure layer produced by wet etching technology, and a gallium nitride epitaxial layer is grown on the structure layer, and then the wafer is processed. Bonding, separating the gallium nitride film and the sapphire substrate by thermal stress and forward pressure generated during wafer bonding. This technology is a one-step process, simple in process and low in cost, and can simultaneously complete wafer bonding of new substrates. Stripping from the old substrate and rapid mass production on large-size wafers is no problem, because the sacrificial layer is not inserted, so that the gallium nitride epitaxial layer is not damaged.

本發明提供一種發光二極體之製造方法,其包含下列步驟:選取一第一基板,於該第一基板上生長一第一磊晶層;以蝕刻法但不限於此法之製程在該磊晶層上形成一多孔性結構層,其中該多孔性結構層之孔洞可以有規則性排列或無規則性排列,孔洞深度可以深至該第一基板與該多孔性結構層之交接面;接著於該多孔性結構層上生長一第二磊晶層,以及於該第二磊晶層上沈積一金屬層,該金屬層可為單層金屬層或包含歐姆式接觸層、擴散阻障層、反射層以及鍵合層之複合金屬層。並於該金屬層上以晶圓鍵合方式形成一第二基板;晶圓鍵合製程中同時以機械剝離方式使該第二磊晶層、金屬層以及該第二基板自該第一基板上剝離;並將該第二磊晶層、金屬層以及該第二基板進行後續晶粒製程,以獲得一發光二極體。 The invention provides a method for manufacturing a light-emitting diode, comprising the steps of: selecting a first substrate, growing a first epitaxial layer on the first substrate; and etching, but not limited to the process of the method Forming a porous structural layer on the crystal layer, wherein the pores of the porous structural layer may be regularly or irregularly arranged, and the depth of the hole may be deep to the interface between the first substrate and the porous structural layer; Depositing a second epitaxial layer on the porous structural layer, and depositing a metal layer on the second epitaxial layer, the metal layer being a single metal layer or comprising an ohmic contact layer, a diffusion barrier layer, a composite layer of a reflective layer and a bonding layer. Forming a second substrate on the metal layer by wafer bonding; and simultaneously bonding the second epitaxial layer, the metal layer and the second substrate from the first substrate by mechanical peeling in the wafer bonding process Stripping; and performing the subsequent grain processing on the second epitaxial layer, the metal layer, and the second substrate to obtain a light emitting diode.

較佳地,該第一基板係藍寶石基板。 Preferably, the first substrate is a sapphire substrate.

較佳地,該第一磊晶層係無摻雜氮化鎵磊晶層。 Preferably, the first epitaxial layer is an undoped gallium nitride epitaxial layer.

較佳地,該多孔性結構層係多孔性氮化鎵結構層。 Preferably, the porous structural layer is a porous gallium nitride structural layer.

較佳地,該製造多孔性結構層法係化學濕式蝕刻法,以熔融態之氫氧化鉀進行蝕刻。 Preferably, the porous structural layer method is a chemical wet etching method in which etching is performed in a molten state of potassium hydroxide.

較佳地,該第二磊晶層係氮化鎵磊晶層。 Preferably, the second epitaxial layer is a gallium nitride epitaxial layer.

較佳地,該氮化鎵磊晶層由下而上依次包含一第一披覆層、一活性發光層以及一第二披覆層。 Preferably, the gallium nitride epitaxial layer comprises a first cladding layer, an active light emitting layer and a second cladding layer in this order from bottom to top.

較佳地,該第二基板係高導電性、高散熱性的金屬基板或是矽基板。 Preferably, the second substrate is a metal substrate having high conductivity and high heat dissipation or a germanium substrate.

較佳地,該發光二極體係垂直式發光二極體。 Preferably, the light emitting diode system is a vertical light emitting diode.

本發明另外提供一種發光二極體,其係以前述之製造方法所製得之垂直式發光二極體。 The present invention further provides a light-emitting diode which is a vertical light-emitting diode produced by the above-described manufacturing method.

藉由本發明之發光二極體的製造方法,可達到下列優點及功效: According to the manufacturing method of the light-emitting diode of the present invention, the following advantages and effects can be achieved:

1.本發明之發光二極體無需昂貴之雷射剝離設備或另外插入一犧牲層,其製造步驟簡易、成本低廉且適用於大面積之剝離。 1. The light-emitting diode of the present invention does not require an expensive laser stripping device or additionally inserts a sacrificial layer, and has a simple manufacturing process, low cost, and is suitable for large-area peeling.

2.本發明之製造方法在進行基板轉移時不需進行濕式蝕刻,不會對磊晶層造成傷害,而破壞發光效率。 2. The manufacturing method of the present invention does not require wet etching during substrate transfer, and does not cause damage to the epitaxial layer, thereby destroying luminous efficiency.

3.本發明之製造方法所產生之多孔性結構 層可輕易地以機械方式自基板上分離,且可同時完成晶圓鍵合和舊基板的剝離。 3. The porous structure produced by the manufacturing method of the present invention The layers can be easily mechanically separated from the substrate and wafer bonding and stripping of the old substrate can be performed simultaneously.

1‧‧‧藍寶石基板 1‧‧‧Sapphire substrate

2‧‧‧無摻雜氮化鎵磊晶層 2‧‧‧Undoped gallium nitride epitaxial layer

21‧‧‧多孔性氮化鎵結構層 21‧‧‧Porous GaN structural layer

3‧‧‧第一披覆層 3‧‧‧First coating

4‧‧‧活性發光層 4‧‧‧Active luminescent layer

5‧‧‧第二披覆層 5‧‧‧Second coating

6‧‧‧金屬層 6‧‧‧metal layer

7‧‧‧矽基板 7‧‧‧矽 substrate

8‧‧‧電極層 8‧‧‧electrode layer

第1圖為於一藍寶石基板1上生長一無摻雜氮化鎵磊晶層2;第2圖為蝕刻該無摻雜氮化鎵磊晶層2形成一多孔性氮化鎵結構層21;第3圖為於該多孔性氮化鎵結構層21上形成一氮化鎵磊晶層,其中該氮化鎵磊晶層由下而上依次包含一第一披覆層3、一活性發光層4以及一第二披覆層5;第4圖為沈積一金屬層6於該氮化鎵磊晶層上;第5圖為於該金屬層6上以晶圓鍵合方式形成一第二基板7後,同時以機械剝離方法將該氮化鎵磊晶層、該金屬層6以及該第二基板7自該藍寶石基板1上剝離;第6圖為將該該氮化鎵磊晶層、該金屬層6以及該矽基板7鍍上一電極層8進行發光二極體之晶粒製程。 1 is an undoped gallium nitride epitaxial layer 2 grown on a sapphire substrate 1; and FIG. 2 is an etching of the undoped gallium nitride epitaxial layer 2 to form a porous gallium nitride structural layer 21 FIG. 3 is a view showing a gallium nitride epitaxial layer formed on the porous gallium nitride structural layer 21, wherein the gallium nitride epitaxial layer comprises a first cladding layer 3 and an active light emission from bottom to top. a layer 4 and a second cladding layer 5; FIG. 4 is a deposition of a metal layer 6 on the gallium nitride epitaxial layer; and FIG. 5 is a wafer bonding method to form a second layer on the metal layer 6. After the substrate 7, the gallium nitride epitaxial layer, the metal layer 6 and the second substrate 7 are simultaneously peeled off from the sapphire substrate 1 by mechanical peeling; FIG. 6 is the gallium nitride epitaxial layer, The metal layer 6 and the germanium substrate 7 are plated with an electrode layer 8 to perform a crystal grain process of the light emitting diode.

本發明將以下列實施例及圖式更為詳盡地說明本發明之發光二極體的製造方法。 The present invention will be described in more detail with reference to the following examples and drawings to illustrate a method of producing a light-emitting diode of the present invention.

本發明技術內容詳細敘述如下。請參見如第 1圖所示,取一藍寶石基板1,運用有機金屬氣相沉積法於該藍寶石基板1上生長一無摻雜氮化鎵磊晶層2。 The technical contents of the present invention are described in detail below. See as in the first As shown in FIG. 1, a sapphire substrate 1 is taken, and an undoped gallium nitride epitaxial layer 2 is grown on the sapphire substrate 1 by an organometallic vapor deposition method.

接著請參見第2圖之製備方法所示,以化學濕式蝕刻法對該無摻雜氮化鎵磊晶層2進行多孔性氮化鎵結構層21,本發明係以熔融態之氫氧化鉀進行蝕刻,並且進一步地控制蝕刻出之多孔性結構孔洞大小,於蝕刻過程中,於蝕刻剛開始時,該無摻雜氮化鎵磊晶層2即被蝕刻出許多的蝕刻孔洞來,而後加長蝕刻時間,其蝕刻液繼續會沿著孔洞進行蝕刻,當蝕刻至該無摻雜氮化鎵磊晶層2與該藍寶石基板1之交接面時,蝕刻液之蝕刻方向會轉為水平蝕刻,在經過一定時間之後,蝕刻液會開始由下往上蝕刻,進而製造出具有多孔性氮化鎵結構層21於其上之藍寶石基板1,後續將再進行再長晶的製程。 Next, referring to the preparation method of FIG. 2, the undoped gallium nitride epitaxial layer 2 is subjected to a porous gallium nitride structural layer 21 by chemical wet etching, and the present invention is a potassium hydroxide in a molten state. Etching is performed, and the size of the etched porous structure is further controlled. During the etching process, the undoped gallium nitride epitaxial layer 2 is etched with a plurality of etched holes at the beginning of the etching, and then lengthened. During the etching time, the etching solution continues to be etched along the holes. When etching to the interface between the undoped gallium nitride epitaxial layer 2 and the sapphire substrate 1, the etching direction of the etching solution is turned into a horizontal etching. After a certain period of time, the etching liquid starts to be etched from the bottom to the top, thereby producing the sapphire substrate 1 having the porous gallium nitride structural layer 21 thereon, and then further re-crystallizing.

請參見第3圖所示,接著運用有機金屬化學氣相沉積法於該多孔性氮化鎵結構層21上依序生長為一氮化鎵磊晶層,其中該氮化鎵磊晶層由下而上依次包含一第一披覆層3、一活性發光層4以及一第二披覆層5。請參見如第4圖所示,再運用電子槍蒸鍍法於該第二披覆層5上塗鍍一複合金屬層6。待上述步驟皆完成之後,即可利用晶圓鍵合方式來鍵合第二基板並進而達到使用機械剝離的目的,請參見第5圖所示,令一第二基板7形成於該金屬層6上,運用該機械剝離方法可有效地利用鍵合時所施予之正向壓力,以及升降溫時因該第二基板7與該藍寶石基板1間所產生之熱應力,結合兩 種應力便可使該多孔性氮化鎵結構層21斷裂,使得該氮化鎵磊晶層、該金屬層6以及該第二基板7自該藍寶石基板1上脫離,而達到基板轉移之目的。 Referring to FIG. 3, the porous gallium nitride structural layer 21 is sequentially grown into a gallium nitride epitaxial layer by an organometallic chemical vapor deposition method, wherein the gallium nitride epitaxial layer is formed by The upper layer comprises a first cladding layer 3, an active luminescent layer 4 and a second cladding layer 5. Referring to FIG. 4, a composite metal layer 6 is coated on the second cladding layer 5 by electron gun evaporation. After the above steps are completed, the second substrate can be bonded by wafer bonding and the mechanical peeling can be achieved. Referring to FIG. 5, a second substrate 7 is formed on the metal layer 6. In the above, the mechanical peeling method can effectively utilize the forward pressure applied during bonding, and the thermal stress generated between the second substrate 7 and the sapphire substrate 1 during the temperature rise and fall, combining two The stress can break the porous gallium nitride structural layer 21, so that the gallium nitride epitaxial layer, the metal layer 6 and the second substrate 7 are detached from the sapphire substrate 1 to achieve the purpose of substrate transfer.

請參見第6圖所示,待完成基板轉移後,再運用乾式蝕刻法去除殘留之該無摻雜氮化鎵磊晶層2,接著應用半導體製程技術來進行後續之晶粒製程,即可完成本發明之垂直式發光二極體。 Please refer to FIG. 6 , after the substrate is transferred, the residual undoped gallium nitride epitaxial layer 2 is removed by dry etching, and then the semiconductor process technology is applied to perform the subsequent grain process. The vertical light emitting diode of the present invention.

利用本發明之發光二極體的製造方法,其所所製造之垂直式發光二極體無需昂貴之雷射剝離設備且可適用於大面積之剝離,另外亦不具有如化學性濕式蝕刻剝離技術之蝕刻時間過長而造成磊晶層破壞之問題。 再者,本發明之發光二極體的製造方法所製造之多孔性氮化鎵結構層,其可為微米或奈米等級,以及其蝕刻後之外形可以是柱狀或其他規則或不規則不同之形狀體,本發明之該多孔性結構體係符合後續進行之機械式剝離以及符合後續再磊晶成長的要件。 According to the manufacturing method of the light-emitting diode of the present invention, the vertical light-emitting diode manufactured by the invention does not require an expensive laser stripping apparatus and can be applied to a large-area peeling, and does not have a chemical wet etching peeling. The etching time of the technology is too long to cause the destruction of the epitaxial layer. Furthermore, the porous gallium nitride structural layer produced by the method for producing a light-emitting diode of the present invention may be in the order of micrometers or nanometers, and the shape after etching may be columnar or other regular or irregular. The shape of the body, the porous structural system of the present invention conforms to the subsequent mechanical peeling and the requirements for subsequent re-elevation growth.

1‧‧‧藍寶石基板 1‧‧‧Sapphire substrate

2‧‧‧無摻雜氮化鎵磊晶層 2‧‧‧Undoped gallium nitride epitaxial layer

Claims (10)

一種發光二極體之製造方法,其包含下列步驟:選取一第一基板,於該第一基板上生長一第一磊晶層;以蝕刻法但不限於此法之製程使該磊晶層形成一多孔性結構層,其中該多孔性結構層可以是有規則性排列或無規則性排列,孔洞深度可以但不限於深至該第一基板與該多孔性結構層之交接面;於該多孔性結構層上生長一第二磊晶層,以及於該第二磊晶層上沈積一金屬層,該金屬層可以為多功能之單層金屬或包含歐姆式接觸層、擴散阻障層、反射層和鍵合層的複合金屬層,接著於該金屬層上形成一第二基板;以晶圓鍵合方式使第一基板、第一磊晶層、第二磊晶層和金屬層與第二基板鍵合在一起,並同時利用機械剝離方式使該第二磊晶層、金屬層以及該第二基板自該第一基板上剝離;最終將該第二磊晶層、金屬層以及該第二基板透過半導體製程技術進行後續晶粒製程,以獲得一垂直式發光二極體。 A method for manufacturing a light-emitting diode, comprising the steps of: selecting a first substrate, growing a first epitaxial layer on the first substrate; forming the epitaxial layer by etching, but not limited to the process of the method a porous structural layer, wherein the porous structural layer may be arranged in a regular or irregular manner, and the depth of the hole may be, but not limited to, a depth to the interface between the first substrate and the porous structural layer; a second epitaxial layer is grown on the structural layer, and a metal layer is deposited on the second epitaxial layer. The metal layer can be a multifunctional single layer metal or include an ohmic contact layer, a diffusion barrier layer, and a reflection layer. a composite metal layer of the layer and the bonding layer, and then forming a second substrate on the metal layer; the first substrate, the first epitaxial layer, the second epitaxial layer and the metal layer and the second layer are bonded by wafer bonding Bonding the substrates together, and simultaneously peeling off the second epitaxial layer, the metal layer, and the second substrate from the first substrate by mechanical peeling; finally, the second epitaxial layer, the metal layer, and the second Substrate through semiconductor process technology Subsequent die process, to obtain a vertical light emitting diode. 如申請專利範圍第1項之製造方法,其中該第一基板係藍寶石基板或其餘可供成長氮化鎵材料的基板。 The manufacturing method of claim 1, wherein the first substrate is a sapphire substrate or the remaining substrate for growing a gallium nitride material. 如申請專利範圍第1或2項之製造方法,其中該第一磊晶層係無摻雜氮化鎵磊晶層。 The manufacturing method of claim 1 or 2, wherein the first epitaxial layer is an undoped gallium nitride epitaxial layer. 如申請專利範圍第3項之製造方法,其中該多孔性結構層係多孔性氮化鎵結構層。 The manufacturing method of claim 3, wherein the porous structural layer is a porous gallium nitride structural layer. 如申請專利範圍第4項之製造方法,其中該蝕刻法可以是但不限於化學濕式蝕刻法,以熔融態之氫氧化鉀進行蝕刻。 The manufacturing method of claim 4, wherein the etching method is, but not limited to, chemical wet etching, and etching is performed in a molten state of potassium hydroxide. 如申請專利範圍第5項之製造方法,其中該第二磊晶層係氮化鎵磊晶層。 The manufacturing method of claim 5, wherein the second epitaxial layer is a gallium nitride epitaxial layer. 如申請專利範圍第6項之製造方法,其中該氮化鎵磊晶層由下而上依次包含一第一披覆層、一活性發光層以及一第二披覆層。 The manufacturing method of claim 6, wherein the gallium nitride epitaxial layer comprises a first cladding layer, an active light emitting layer and a second cladding layer in this order from bottom to top. 如申請專利範圍第6項之製造方法,其中該第二基板係高導電性、高散熱性的基板。 The manufacturing method of claim 6, wherein the second substrate is a substrate having high conductivity and high heat dissipation. 如申請專利範圍第7項之製造方法,其中該發光二極體係垂直式發光二極體。 The manufacturing method of claim 7, wherein the light emitting diode system is a vertical light emitting diode. 一種發光二極體,習知此技術者利用但不限於申請專利範圍第1至9項中任一項之製造方法所製得之垂直式發光二極體。 A light-emitting diode, which is conventionally used by those skilled in the art, but is not limited to the vertical light-emitting diode produced by the manufacturing method of any one of claims 1 to 9.
TW103100793A 2014-01-09 2014-01-09 A method for producing light-emitting diode TWI609503B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103100793A TWI609503B (en) 2014-01-09 2014-01-09 A method for producing light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103100793A TWI609503B (en) 2014-01-09 2014-01-09 A method for producing light-emitting diode

Publications (2)

Publication Number Publication Date
TW201528541A true TW201528541A (en) 2015-07-16
TWI609503B TWI609503B (en) 2017-12-21

Family

ID=54198410

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103100793A TWI609503B (en) 2014-01-09 2014-01-09 A method for producing light-emitting diode

Country Status (1)

Country Link
TW (1) TWI609503B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310252A (en) * 2020-10-16 2021-02-02 深圳市华星光电半导体显示技术有限公司 Micro LED crystal grain, Micro LED substrate and preparation method thereof
CN112864287A (en) * 2021-01-11 2021-05-28 深圳市华星光电半导体显示技术有限公司 Transfer method, micro device array and preparation method thereof
CN112993103A (en) * 2021-02-08 2021-06-18 广东省科学院半导体研究所 Strippable nitride structure and stripping method thereof
TWI735263B (en) * 2020-06-19 2021-08-01 台灣愛司帝科技股份有限公司 Method of manufacturing a red light-emitting chip carrying structure
TWI789617B (en) * 2017-12-07 2023-01-11 晶元光電股份有限公司 Semiconductor device and method of manufacturing thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815618B2 (en) * 2008-08-29 2014-08-26 Tsmc Solid State Lighting Ltd. Light-emitting diode on a conductive substrate
TWI459460B (en) * 2010-11-24 2014-11-01 Univ Nat Taiwan Method for forming semiconductor nano-micro rods and applications thereof
CN102623579A (en) * 2011-01-28 2012-08-01 展晶科技(深圳)有限公司 Manufacturing method of semiconductor light-emitting chip

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI789617B (en) * 2017-12-07 2023-01-11 晶元光電股份有限公司 Semiconductor device and method of manufacturing thereof
TWI735263B (en) * 2020-06-19 2021-08-01 台灣愛司帝科技股份有限公司 Method of manufacturing a red light-emitting chip carrying structure
CN112310252A (en) * 2020-10-16 2021-02-02 深圳市华星光电半导体显示技术有限公司 Micro LED crystal grain, Micro LED substrate and preparation method thereof
CN112310252B (en) * 2020-10-16 2022-02-22 深圳市华星光电半导体显示技术有限公司 Micro LED crystal grain, Micro LED substrate and preparation method thereof
CN112864287A (en) * 2021-01-11 2021-05-28 深圳市华星光电半导体显示技术有限公司 Transfer method, micro device array and preparation method thereof
CN112993103A (en) * 2021-02-08 2021-06-18 广东省科学院半导体研究所 Strippable nitride structure and stripping method thereof
CN112993103B (en) * 2021-02-08 2022-06-03 广东省科学院半导体研究所 Strippable nitride structure and stripping method thereof

Also Published As

Publication number Publication date
TWI609503B (en) 2017-12-21

Similar Documents

Publication Publication Date Title
TWI647335B (en) Method for stripping growth substrate by chemical etching
JP5199057B2 (en) Semiconductor device manufacturing method, stacked structure manufacturing method, semiconductor wafer, and stacked structure.
TWI609503B (en) A method for producing light-emitting diode
TWI423473B (en) Method of forming vertical structure light emitting diode with heat exhaustion structure
JP2018087128A (en) Method for growing nitride semiconductor layer
US20130228809A1 (en) Semiconductor structure for substrate separation and method for manufacturing the same
KR101144671B1 (en) Method for stripping GaN from sapphire substrate without damage by using solid-state laser
US9356188B2 (en) Tensile separation of a semiconducting stack
CN102790138A (en) Production method for GaN-based film chip
TW201121110A (en) Method of forming vertical structure light emitting diode with heat exhaustion structure
JP4836218B1 (en) Semiconductor device and method for manufacturing semiconductor device
CN105322060B (en) The manufacture method of chip
TWI734359B (en) Method for manufacturing optoelectronic semiconductor chip and bonded wafer used therefor
TW201003981A (en) Substrate structure and method of removing the substrate structure
JP5603812B2 (en) Manufacturing method of semiconductor device
CN106449931B (en) A kind of passivation deposition method of LED flip chip
CN111430218B (en) Method for preparing GaN single crystal substrate through self-separation
KR20090092091A (en) Light emitting device and method for manufacturing thereof
US20140151714A1 (en) Gallium nitride substrate and method for fabricating the same
KR101352242B1 (en) Manufacturing method of semiconductor
CN109728138B (en) Aluminum nitride self-supporting substrate and preparation method thereof
TW201443255A (en) Method for producing gallium nitride
KR100990635B1 (en) Method for forming vertically structured Light Emitting Diode device
KR102211486B1 (en) Manufacturing method of free standing gallium nitride using electrochemical etching method and photoelectric electrode for water decomposition gydrogen production including the same
CN111564545A (en) Sapphire composite substrate and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees