TW201528100A - Multi-touch capacitive sensing surface - Google Patents

Multi-touch capacitive sensing surface Download PDF

Info

Publication number
TW201528100A
TW201528100A TW103135213A TW103135213A TW201528100A TW 201528100 A TW201528100 A TW 201528100A TW 103135213 A TW103135213 A TW 103135213A TW 103135213 A TW103135213 A TW 103135213A TW 201528100 A TW201528100 A TW 201528100A
Authority
TW
Taiwan
Prior art keywords
electrode
electrodes
capacitance
plane
conductor
Prior art date
Application number
TW103135213A
Other languages
Chinese (zh)
Inventor
Li-Wen Magnetro Chen
Feng-Hsiung Hsu
Original Assignee
Microsoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Corp filed Critical Microsoft Corp
Publication of TW201528100A publication Critical patent/TW201528100A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Abstract

Disclosed are techniques and systems for distinguishing between inadvertent contact and an intentional key press on a touch-sensitive input device, such as a keyboard or other like peripheral. In some embodiments, a system may include a first electrode disposed in a first plane, and a second electrode disposed in a second plane substantially parallel to the first plane. The system may also include one of a flexible dielectric material and an air gap spacing the first electrode from the second electrode; and a third electrode disposed in a third plane substantially parallel to the first plane. The third electrode may extend substantially parallel to the first electrode, and may be spaced from the first electrode by the one of the flexible dielectric material and the air gap.

Description

多點觸控電容式感測表面 Multi-touch capacitive sensing surface

本發明係關於多點觸控電容式感測表面。 The present invention relates to a multi-touch capacitive sensing surface.

省略機械可移動鍵的傳統薄鍵盤技術無法提供滿意的打字效率與使用者體驗。普通的觸控感測鍵盤利用多個以網格形式定向之電極。通常,平行電極之第一層係利用恆定電荷驅動,同時垂直定向於第一層之平行電極之第二層係配置為接收電荷的一部分。當導體(例如,使用者手指)接近鍵盤時,影響電極層間產生之電場,藉此使第二層接收之電荷量產生變化。已知的觸控感測鍵盤依據電荷量的變化而決定導體所接觸鍵盤之位置(例如,觸控點),並依據所決定位置而解釋相應鍵之按壓。 Traditional thin keyboard technology that omits mechanically movable keys does not provide satisfactory typing efficiency and user experience. A conventional touch-sensing keyboard utilizes a plurality of electrodes oriented in a grid. Typically, the first layer of parallel electrodes is driven with a constant charge while the second layer of vertical electrodes oriented perpendicular to the first layer is configured to receive a portion of the charge. When a conductor (e.g., a user's finger) approaches the keyboard, the electric field generated between the electrode layers is affected, thereby causing a change in the amount of charge received by the second layer. The known touch sensing keyboard determines the position of the keyboard touched by the conductor (for example, the touch point) according to the change of the amount of charge, and interprets the pressing of the corresponding key according to the determined position.

雖然已知的觸控感測鍵盤能夠決定觸控點資訊,現今鍵盤設計並不能測量附加參數(如由導體施加至鍵盤之壓力),而無需使用附加感測技術。在習知觸控感測鍵盤上打字之使用者通常將他或她的手放在鍵盤之部分上,這導致由傳統觸控感測鍵盤接收之意外輸入。為了區分使用者之有意按鍵以及鍵盤與使用者的手之間的意外接觸,利用電阻式觸控 技術之現今鍵盤可採用力感測電阻(FSR)層,以在多種位置測量鍵盤與使用者之互動。然而,不幸的是,利用電阻式觸控技術(FSR)之現今鍵盤無法表示「壓力」資訊,以區分由使用者之有意按鍵以及鍵盤與使用者的手之間的意外接觸。此外,FSR為相對昂貴之部件,和使用這樣的FSR會顯著提高鍵盤之整體成本。製造能使特定FSR位置與一或更多個相應電極位置之間具有令人滿意的關聯的現今觸控感測鍵盤亦屬困難。 While known touch sensing keyboards are capable of determining touch point information, today's keyboard designs do not measure additional parameters (such as the pressure applied to the keyboard by the conductor) without the use of additional sensing techniques. A user typing on a conventional touch-sensing keyboard typically places his or her hand on a portion of the keyboard, which results in an accidental input received by a conventional touch-sensing keyboard. In order to distinguish between the user's intentional button and the accidental contact between the keyboard and the user's hand, resistive touch is used. The technology of today's keyboards can employ a force sensing resistor (FSR) layer to measure keyboard interaction with the user in a variety of locations. However, unfortunately, today's keyboards using resistive touch technology (FSR) cannot represent "pressure" information to distinguish between intentional touches by the user and accidental contact between the keyboard and the user's hand. In addition, FSR is a relatively expensive component, and the use of such an FSR can significantly increase the overall cost of the keyboard. It is also difficult to fabricate today's touch-sensing keyboards that enable a satisfactory correlation between a particular FSR location and one or more corresponding electrode locations.

本發明部分描述一種技術與系統,用於區分觸控感測輸入裝置(如鍵盤、觸控板、觸控螢幕或其他類似週邊)上之有意按鍵與裝置使用者之無意或意外觸控接觸。在一些實施例中,本文描述之技術可決定發生接觸之裝置表面上的位置。此外,這種技術可決定與接觸相關聯之壓力,且該技術可依據所決定之位置及/或壓力,將接觸描繪為有意或無意。舉例而言,該技術可依據與接觸相關聯之電容而描繪接觸。藉由此方式描繪接觸,本文描述之系統與裝置可避免意外動作之表現。此外,本文描述之裝置可經配置以決定壓力及/或與這種接觸相關聯之其他特性,而不使用FSR或其他類似部件。因此,可減少成本,並可最小化與製造這種裝置相關聯之困難。 The present invention describes a technique and system for distinguishing intentional or accidental touch contact between a user of a touch sensing input device (such as a keyboard, touch pad, touch screen, or the like). In some embodiments, the techniques described herein can determine the location on the surface of the device in which the contact occurs. In addition, this technique can determine the pressure associated with the contact, and the technique can depict the contact as intentional or unintentional depending on the determined location and/or pressure. For example, the technique can depict contact based on the capacitance associated with the contact. By depicting the contact in this manner, the systems and devices described herein avoid the performance of unexpected actions. Moreover, the devices described herein can be configured to determine pressure and/or other characteristics associated with such contact without the use of FSR or other similar components. Therefore, the cost can be reduced and the difficulties associated with manufacturing such a device can be minimized.

本發明內容係提供以下面實施方式中描述之簡化形式介紹概念之選擇。本發明內容並不意欲識別所要求保護主題之關鍵特徵或必要特徵,亦非意欲用於限制所要求保護主 題之範圍。 This Summary of the Invention provides a selection of concepts in a simplified form as described in the following embodiments. This Summary is not intended to identify key features or essential features of the claimed subject matter, and is not intended to limit the claimed invention. The scope of the question.

100‧‧‧架構 100‧‧‧Architecture

102‧‧‧計算裝置 102‧‧‧ Computing device

104‧‧‧處理器 104‧‧‧Processor

106‧‧‧記憶體 106‧‧‧ memory

108‧‧‧鍵盤 108‧‧‧ keyboard

110‧‧‧輔助感測器 110‧‧‧Auxiliary sensor

112‧‧‧觸控表面 112‧‧‧ touch surface

114‧‧‧顯示器 114‧‧‧Display

116‧‧‧分類模組 116‧‧‧Classification module

118‧‧‧鍵 118‧‧‧ keys

120‧‧‧外表面 120‧‧‧ outer surface

122‧‧‧使用者的手 122‧‧‧User's hand

124‧‧‧電源 124‧‧‧Power supply

202‧‧‧接地屏蔽 202‧‧‧ Grounding shield

204‧‧‧基材 204‧‧‧Substrate

206‧‧‧電極 206‧‧‧ electrodes

208‧‧‧第一平面 208‧‧‧ first plane

210‧‧‧介電材料 210‧‧‧ dielectric materials

212‧‧‧電極 212‧‧‧ electrodes

214‧‧‧第二平面 214‧‧‧ second plane

216‧‧‧網格 216‧‧‧Grid

218‧‧‧印刷電路板 218‧‧‧Printed circuit board

220‧‧‧電極 220‧‧‧electrode

222‧‧‧第三平面 222‧‧‧ third plane

302‧‧‧位置 302‧‧‧ position

700‧‧‧步驟 700‧‧‧ steps

702‧‧‧步驟 702‧‧‧Steps

704‧‧‧步驟 704‧‧‧Steps

706‧‧‧步驟 706‧‧‧Steps

708‧‧‧步驟 708‧‧ steps

710‧‧‧步驟 710‧‧ steps

712‧‧‧步驟 712‧‧‧Steps

714‧‧‧步驟 714‧‧‧Steps

實施方式中係參照隨附圖式描述。在圖式中,元件符號的最左邊數字係識別元件符合第一次出現之圖式。在不同圖式中之相同元件符號係指示相似或相同項目。 The embodiments are described with reference to the accompanying drawings. In the drawings, the leftmost digit of the component symbol identifies the component as conforming to the first occurrence of the drawing. The same component symbols in different figures indicate similar or identical items.

第1圖圖示包括計算裝置之示例性架構,該計算裝置經配置以利用多點觸控電容式感測表面接收使用者輸入。 FIG. 1 illustrates an exemplary architecture including a computing device configured to receive user input using a multi-touch capacitive sensing surface.

第2圖圖示利用多點觸控電容式感測表面之相關聯計算裝置之結構之實例。 Figure 2 illustrates an example of the structure of an associated computing device utilizing a multi-touch capacitive sensing surface.

第3圖係為如第2圖中所示之結構之進一步圖示。 Figure 3 is a further illustration of the structure as shown in Figure 2.

第4圖圖示利用多點觸控電容式感測表面之相關聯計算裝置之結構之另一實例。 Figure 4 illustrates another example of the structure of an associated computing device utilizing a multi-touch capacitive sensing surface.

第5圖係為如第4圖中所示之結構之進一步圖示。 Figure 5 is a further illustration of the structure as shown in Figure 4.

第6圖係為相關聯於具有多點觸控電容式感測表面之鍵盤的電容圖之實例。 Figure 6 is an example of a capacitance diagram associated with a keyboard having a multi-touch capacitive sensing surface.

第7圖係為接收使用者輸入與描繪使用者輸入之示例性處理之流程圖。 Figure 7 is a flow diagram of an exemplary process of receiving user input and depicting user input.

本發明之實施例係至少用於取得使用者輸入之技術與系統,其中至少部分可從鍵盤接收,以提高打字效率與使用者體驗。本文所描述之實施例可應用至鍵盤,或類似的人機介面裝置(HID),可包含一或更多個按鍵或按鈕。此處所用之鍵盤可為結合計算裝置或作為對計算裝置之週邊裝置的實體鍵盤(即利用物理結構而以有形材料所製)。實體鍵盤可 從一張紙到具有機械可動按鍵開關結構之鍵盤之結構與厚度的任何結構。舉例而言,板型或平板電腦(如使用由Redmond,WA之微軟公司製造之SurfaceTM平板之Touch CoverTM),筆記型或膝上型電腦、及類似物所使用之鍵盤可設想為使用於本發明之實施例中。然而,應理解,所揭示之實施例亦可用於其他類似類型之HID(即具有複數個鍵之HID)、具有按鍵或按鈕之指向裝置、操縱桿、用於電視或類似裝置之遙控輸入裝置、遊戲系統控制器、行動電話鍵盤、汽車使用者輸入機制、家庭自動化(如嵌在家具、牆壁等之中之鍵盤)、及類似物。術語「外部鍵盤」在此有時用於表示任何鍵盤,包括上面列出的那些,可拆卸式地連接至(經由有線或無線連接)相關計算裝置。對相關計算裝置為「外部的」任何鍵盤係表示不為螢幕上之軟式鍵盤,並可設想為使用於本文所揭示之實施例,無論是實體還是虛擬鍵盤,而螢幕上之軟式鍵盤顯示於計算裝置之輸出顯示螢幕之鍵盤GUI上。 Embodiments of the present invention are at least a technique and system for obtaining user input, at least partially receivable from a keyboard to improve typing efficiency and user experience. Embodiments described herein may be applied to a keyboard, or similar human interface device (HID), and may include one or more buttons or buttons. The keyboard used herein can be a physical keyboard in conjunction with a computing device or as a peripheral device to the computing device (i.e., made of tangible material using physical structures). The physical keyboard can be from a piece of paper to any structure of the structure and thickness of a keyboard having a mechanically movable key switch structure. For example, the tablet or plate-shaped (e.g., using the Touch Surface TM manufactured of a plate of Redmond, WA of Microsoft Cover TM), used in the notebook or laptop computer, a keyboard, and the like may be conceivable to use In an embodiment of the invention. However, it should be understood that the disclosed embodiments are also applicable to other similar types of HIDs (ie, HIDs having a plurality of keys), pointing devices with buttons or buttons, joysticks, remote input devices for televisions or the like, Game system controllers, mobile phone keypads, car user input mechanisms, home automation (such as keyboards embedded in furniture, walls, etc.), and the like. The term "external keyboard" is sometimes used herein to mean any keyboard, including those listed above, that is detachably connected (via a wired or wireless connection) to the associated computing device. Any keyboard system that is "external" to the computing device is not a soft keyboard on the screen, and can be thought of as being used in the embodiments disclosed herein, whether it is a physical or virtual keyboard, and the soft keyboard on the screen is displayed in the calculation. The output of the device is displayed on the keyboard GUI of the screen.

本文所揭示之技術與系統利用進階觸控感測表面配 置,以接收並處理可由複數個不同使用者處理所影響之資訊。本發明之裝置可利用經由觸控感測表面以各種不同方式接收之資訊。舉例而言,裝置之處理器及/或分類模組可將資訊分類為有意輸入或意外輸入。處理器可控制裝置以產生對應於有意輸入之輸出,如文本式輸出(如字符或字輸出)。處理器亦可控制裝置以避免與意外輸入相關聯之動作,而可增強使用者體驗。 The techniques and systems disclosed herein utilize advanced touch sensing surfaces Set to receive and process information that can be affected by a number of different user processes. The device of the present invention can utilize information received in a variety of different ways via touch sensing surfaces. For example, the processor and/or classification module of the device may classify the information as intentional or accidental. The processor can control the device to produce an output corresponding to an intentional input, such as a textual output (such as a character or word output). The processor can also control the device to avoid actions associated with accidental input, while enhancing the user experience.

本文所述之技術與系統可以多種方式實現。示例性實施係參照隨附圖式提供於下。 The techniques and systems described herein can be implemented in a variety of ways. Exemplary embodiments are provided below with reference to the accompanying drawings.

示例性計算系統Exemplary computing system

第1圖圖示包括計算裝置102之示例性架構100,計算裝置102經配置以接收資訊,該資訊係為來自相關聯於計算裝置102之一或更多個觸控感測輸入裝置之使用者輸入之形式。舉例而言,計算裝置102可為平板或筆記型電腦,經配置以接受來自鍵盤、觸控板、觸控螢幕、或其他類似週邊裝置之觸控感測表面之資訊。在一些實施例中,裝置102可經配置以利用表面識別無意使用者輸入(如觸控接觸、空氣輸入等),並避免執行與這種輸入相關聯之操作。舉例而言,裝置102可以評估上下文資訊,如當使用者的手接觸裝置102時,使用者施加至表面之壓力。裝置102亦可評估附加資訊,如這種接觸之位置,並可依據所接收資訊而將接觸分類為有意或意外。當將接觸分類為有意,裝置102可執行與接觸相關聯之動作,如輸出與對應鍵相關聯之期望字母、數字或符號,選擇介面元件,移動滑鼠指標或游標,滾動頁面等。反之,當將接觸分類為意外,可以不執行相關聯的動作。 1 illustrates an exemplary architecture 100 including a computing device 102 configured to receive information from a user associated with one or more touch sensing input devices associated with computing device 102 The form of input. For example, computing device 102 can be a tablet or notebook computer configured to accept information from a touch sensing surface of a keyboard, touch pad, touch screen, or other similar peripheral device. In some embodiments, device 102 can be configured to utilize surface recognition for unintended user input (eg, touch contact, air input, etc.) and to avoid performing operations associated with such input. For example, device 102 can evaluate contextual information, such as the pressure applied by a user to a surface when the user's hand contacts device 102. The device 102 can also evaluate additional information, such as the location of such contacts, and can classify the contacts as intentional or accidental based on the received information. When the contacts are classified as intentional, the device 102 can perform actions associated with the contacts, such as outputting desired letters, numbers, or symbols associated with the corresponding keys, selecting interface elements, moving mouse pointers or cursors, scrolling pages, and the like. Conversely, when the contact is classified as an accident, the associated action may not be performed.

裝置102可代表膝上型電腦、桌上型電腦、智慧型手機、電子閱讀器裝置、行動手持聽筒、個人數位助理(PDA)、可攜式導航裝置、可攜式遊戲裝置、遊戲控制台、平板電腦、手錶、可攜式媒體播放器等。在一些情況中,裝置102可包含行動裝置,而在其他情況下,裝置102可包含 固定裝置。 The device 102 can represent a laptop, a desktop, a smart phone, an e-reader device, a mobile handset, a personal digital assistant (PDA), a portable navigation device, a portable gaming device, a game console, Tablets, watches, portable media players, etc. In some cases, device 102 may include a mobile device, while in other cases, device 102 may include Fixtures.

裝置102可配有一或更多個處理器104、記憶體 106、鍵盤108、輔助感測器110、觸控表面112及/或顯示器114。在一些實施例中,裝置102之觸控表面112可提供軟式鍵盤108。儘管未示出於第1圖中,裝置102亦可包括或者相關聯於一或更多個網路介面、其他輸入及/或輸出週邊裝置(如滑鼠、非整合式鍵盤、操縱桿、麥克風、照相機、喇叭、列表機等)、及/或通常與計算裝置相關聯之其他元件。裝置102之上述部件之一些或全部,不論圖示或未圖示,可與彼此通訊及/或經由一或更多個匯流排或其他已知構件連接。這種連接示意性地圖示於第1圖。 The device 102 can be equipped with one or more processors 104, memory 106. A keyboard 108, an auxiliary sensor 110, a touch surface 112, and/or a display 114. In some embodiments, the touch surface 112 of the device 102 can provide a soft keyboard 108. Although not shown in FIG. 1, device 102 may also include or be associated with one or more network interfaces, other input and/or output peripheral devices (eg, mouse, non-integrated keyboard, joystick, microphone) , cameras, speakers, listers, etc.), and/or other components typically associated with computing devices. Some or all of the above-described components of device 102, whether illustrated or not shown, may be in communication with one another and/or via one or more busbars or other known components. This connection is schematically illustrated in Figure 1.

一或更多個處理器104可包括中央處理單元 (CPU)、圖形處理單元(GPU)、微處理器等。處理器104可替換或附加地包括一或更多個硬體邏輯部件。例如但不限於,硬體邏輯部件之示例性類型可用於包括現場可程式化閘陣列(FPGA)、特定程式整合電路(ASIC)、特定程式標準產品(ASSP)、系統級晶片系統(SOC)、複雜可程式化邏輯裝置(CPLD)等。處理器104可為可操作地連接至及/或與本文所描述之裝置102之記憶體106及/或其他部件通訊。在一些實施例中,處理器104亦可包括板上記憶體,經配置以儲存與處理器104之各種操作及/或功能相關聯之資訊。 One or more processors 104 may include a central processing unit (CPU), graphics processing unit (GPU), microprocessor, etc. Processor 104 may alternatively or additionally include one or more hardware logic components. For example, without limitation, exemplary types of hardware logic components can be used to include a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), an application specific standard product (ASSP), a system level chip system (SOC), Complex programmable logic devices (CPLDs), etc. The processor 104 can be operatively coupled to and/or in communication with the memory 106 and/or other components of the device 102 described herein. In some embodiments, processor 104 may also include onboard memory configured to store information associated with various operations and/or functions of processor 104.

記憶體106可包括可操作地連接至處理器104之電 腦可讀取媒體之一者或組合。電腦可讀取媒體可包括電腦儲存媒體及/或通訊媒體。電腦儲存媒體包括以任何方法或技術 儲存資訊(如電腦可讀取指令、資料結構、程式模組或其他資料)而實現之可揮發與不可揮發、可移除與不可移除媒體。 電腦儲存媒體包括但不限於,相變記憶體(PRAM)、靜態隨機存取記憶體(SRAM)、動態隨機存取記憶體(DRAM)、其他類型之隨機存取記憶體(RAM)、唯讀記憶體(ROM)、電子可抹除可程式化唯讀記憶體(EEPROM)、快閃記憶體或其他記憶體技術、壓縮碟唯讀記憶體(CD-ROM)、數位多功能碟(DVD)或其他光學儲存、磁匣、磁帶、磁碟儲存或其他磁儲存裝置,或可藉由計算裝置存取用於儲存資訊的任何其他非傳輸媒體。對之,通訊媒體可實施電腦可讀取指令、資料結構、程式模組或調製資料訊號(如載波或其他傳輸機制)中之其他資料。如本文所定義,電腦儲存媒體不包括通訊媒體。 Memory 106 can include power operatively coupled to processor 104 The brain can read one or a combination of media. Computer readable media can include computer storage media and/or communication media. Computer storage media includes any method or technology Volatile and non-volatile, removable and non-removable media implemented by storing information such as computer readable instructions, data structures, program modules or other materials. Computer storage media includes, but is not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only Memory (ROM), electronically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disk read-only memory (CD-ROM), digital versatile disc (DVD) Or other optical storage, magnetic tape, magnetic tape, disk storage or other magnetic storage device, or any other non-transportable media for storing information by means of a computing device. For this purpose, the communication medium may implement computer readable instructions, data structures, program modules or other data in modulated data signals (such as carrier waves or other transmission mechanisms). As defined herein, computer storage media does not include communication media.

裝置102可經由一或更多個網路(未圖示)與一或更多個如裝置、伺服器、服務供應商、或其他類似部件通訊。一或更多個網路可包括多種不同類型網路之任何一種或組合,如蜂巢式網路、無線網路、區域網路(LAN)、廣域網路(WAN)、個人區域網路(PAN)、以及網路。此外,服務供應商可提供一或更多個服務至裝置102。服務供應商可包括一或更多個計算裝置,如一或更多個桌上型電腦、膝上型電腦、伺服器、及類似物。一或更多個計算裝置可配置於集群、資料中心、雲端計算環境中、或其組合。在一個實例中,一或更多個計算裝置提供雲端計算資源,包括計算資源、儲存資源、及類似物,並遠端連接至裝置102而操作。 Device 102 can communicate with one or more devices, servers, service providers, or other similar components via one or more networks (not shown). One or more networks may include any one or combination of a plurality of different types of networks, such as a cellular network, a wireless network, a local area network (LAN), a wide area network (WAN), and a personal area network (PAN). And the internet. In addition, the service provider can provide one or more services to the device 102. The service provider may include one or more computing devices, such as one or more desktop computers, laptops, servers, and the like. The one or more computing devices can be configured in a cluster, a data center, a cloud computing environment, or a combination thereof. In one example, one or more computing devices provide cloud computing resources, including computing resources, storage resources, and the like, and are remotely coupled to device 102 for operation.

記憶體106可包括經配置為一或更多個「模組」之 軟體功能。術語「模組」意欲表示便於討論之軟體示例性分割,並不意欲表示任何類型之要求或必須方法、方式或組織。 因此,在討論多種「模組」時,其功能及/或類似功能可以不同地佈置(例如,組合成更少數量的模組,切碎成更多數量的模組等)。此外,雖然某些功能與模組在本文中描述為藉由處理器104執行之軟體及/或韌體而實施,但在其他實施例中,任何或所有模組可藉由裝置102之其他硬體部件(例如,作為ASIC、專用處理單元等)全部或部分實施,以執行所述功能。在一些情況下,功能及/或模組係實施為作業系統之一部分。在其他情況下,功能及/或模組係實施為裝置驅動程式(如觸控表面之驅動程式)、韌體等之一部分。如第1圖所示,記憶體106可包括分類模組116。儘管未圖示於第1圖,在其他實施例中,記憶體106可附加或可替換地包括學習模組及/或一或更多個附加模組。儘管在第1圖之架構100中分類模組116係圖示為包括於裝置102中,可替換地,分類模組116、學習模組、及/或與裝置102相關聯之其他模組可包括於上述之服務供應商或網路中。因此,在一些情況下,裝置102可作為接收使用者輸入與輸出內容之輸入/輸出裝置,而服務供應商執行分類使用者輸入、學習資訊以及其他操作之功能。 The memory 106 can include one or more "modules" configured Software function. The term "module" is intended to mean an exemplary segmentation of a software that is convenient for discussion and is not intended to represent any type of requirement or method, manner, or organization. Therefore, when discussing various "modules", their functions and/or similar functions can be arranged differently (for example, combined into a smaller number of modules, shredded into a larger number of modules, etc.). Moreover, while certain functions and modules are described herein as being implemented by software and/or firmware executed by processor 104, in other embodiments, any or all of the modules may be otherwise hard by device 102. Body components (eg, as ASICs, dedicated processing units, etc.) are implemented in whole or in part to perform the functions described. In some cases, the functions and/or modules are implemented as part of the operating system. In other cases, the functions and/or modules are implemented as part of a device driver (such as a driver for a touch surface), firmware, and the like. As shown in FIG. 1, the memory 106 can include a classification module 116. Although not shown in FIG. 1, in other embodiments, memory 106 may additionally or alternatively include a learning module and/or one or more additional modules. Although the classification module 116 is illustrated as being included in the device 102 in the architecture 100 of FIG. 1, alternatively, the classification module 116, the learning module, and/or other modules associated with the device 102 may include In the above service providers or the Internet. Thus, in some cases, device 102 can function as an input/output device that receives user input and output content, while a service provider performs functions that classify user input, learning information, and other operations.

分類模組116可分類透過裝置102(如經由鍵盤108 及/或觸控表面112)接收之使用者輸入(如觸控接觸、空氣輸入等)。分類可依據上下文資訊及/或其他類型之資訊。舉例而言,分類可依據與鍵盤108發生接觸之位置相關聯之位置 資訊。在其他例子中,分類可依據與接觸相關聯之位置資訊及/或壓力資訊。舉例而言,分類可至少部分依據使用者接觸鍵盤108而施加至鍵盤108之壓力。這種分類可保存於記憶體106及/或藉由通訊模組116提供至處理器104,以用於裝置102之進一步操作。 Classification module 116 can be categorized through device 102 (eg, via keyboard 108) And/or touch surface 112) receiving user input (eg, touch contact, air input, etc.). Classification can be based on contextual information and/or other types of information. For example, the classification can be based on the location associated with the location at which the keyboard 108 is in contact. News. In other examples, the classification may be based on location information and/or stress information associated with the contact. For example, the classification can be based at least in part on the pressure applied to the keyboard 108 by the user touching the keyboard 108. This classification may be stored in memory 106 and/or provided to processor 104 by communication module 116 for further operation of device 102.

在一些實施例中,學習模組(未圖示)可學習關於 裝置102之使用者互動之資訊。舉例而言,學習模組可學習使用者的平均打字速率(例如,每單位時間之鍵筆劃數量)、關於使用者的手之特徵(如使用者手指、手掌大小等)、使用者在打字後多常使用觸控表面112等。此資訊可用於建立個人化使用者體驗及/或配置文件,以用於觸控表面112及/或其他輸入裝置。這種個人化使用者體驗及/或配置文件可保存於記憶體106及/或提供至處理器104,以用於裝置102之進一步操作。 In some embodiments, a learning module (not shown) can learn about Information about the user interaction of device 102. For example, the learning module can learn the average typing rate of the user (for example, the number of keystrokes per unit time), the characteristics of the user's hand (such as the user's finger, the size of the palm, etc.), and the user after typing The touch surface 112 and the like are often used. This information can be used to create a personalized user experience and/or profile for the touch surface 112 and/or other input devices. Such personalized user experience and/or configuration files may be stored in memory 106 and/or provided to processor 104 for further operation of device 102.

在一些實施例中,鍵盤108的一些部分可以比鍵盤 108的其他部分關聯於更高程度的有意接觸。舉例而言,鍵盤108可包括一組機械或壓力感測按鈕,而在其他情況下,鍵盤108可透過本文所述之觸控螢幕或其他類型之觸控表面112而實施。鍵盤108之按鈕可包括字母數字鍵(如字母或數字)、控制鍵(如位移、輸入、F1-F12、ESC等)、或任何其他類型的鍵118。這種鍵118可佈置於,基本上內嵌於,及/或形成於鍵盤108之外表面120。第1圖之鍵盤108圖示一個示例性佈局,但應理解,本文所述之實施例不限於任何特定鍵盤佈局,因此可使用具有以任何排列或佈局的任何數量的鍵118 之鍵盤,而不改變裝置102之基本特徵。鍵118可為致動式或非致動式、實體或虛擬,而每一鍵118可適當地標記,以利用一或更多個字符(如字母、數字、符號等)識別特定鍵。 鍵118一般可在鍵118啟動後記錄特定字符、符號或功能,鍵118啟動可從如下所述之偵測輸入事件而確定。 In some embodiments, portions of keyboard 108 may be comparable to keyboards The other parts of 108 are associated with a higher degree of intentional contact. For example, keyboard 108 can include a set of mechanical or pressure sensing buttons, while in other cases keyboard 108 can be implemented via a touch screen or other type of touch surface 112 as described herein. The buttons of keyboard 108 may include alphanumeric keys (such as letters or numbers), control keys (such as displacement, input, F1-F12, ESC, etc.), or any other type of key 118. Such a key 118 can be disposed, substantially embedded in, and/or formed on the outer surface 120 of the keyboard 108. The keyboard 108 of Figure 1 illustrates an exemplary layout, but it should be understood that the embodiments described herein are not limited to any particular keyboard layout, and thus any number of keys 118 having any arrangement or layout may be used. The keyboard does not change the basic features of device 102. The keys 118 can be actuated or unactuated, physical or virtual, and each key 118 can be appropriately labeled to identify a particular key with one or more characters (eg, letters, numbers, symbols, etc.). The key 118 can generally record a particular character, symbol or function after the key 118 is activated, and the activation of the key 118 can be determined from the detection of an input event as described below.

在一些實施例中,鍵盤108之外表面120可包括觸 控表面112。在這種實施例中,若上下文資訊(即指示觸控接觸之位置及/或壓力資訊)指示使用者的手122在外側及/或不與鍵118之一或更多者及/或觸控表面112相關聯之位置接觸外表面120,則分類模組116可將觸控接觸分類為無意。而另一方面,若這種資訊表示使用者的手指及/或使用者的手122的其他部分接觸鍵118及/或觸控表面112之一或更多者,則分類模組116可將觸控接觸分類為有意。分類觸控接觸之其他實例將討論於下。 In some embodiments, the outer surface 120 of the keyboard 108 can include touch Control surface 112. In such an embodiment, if the context information (ie, the location and/or pressure information indicating the touch contact) indicates that the user's hand 122 is on the outside and/or is not one or more of the keys 118 and/or touches The location associated with surface 112 contacts outer surface 120, and classification module 116 can classify the touch contact as unintentional. On the other hand, if the information indicates that the user's finger and/or other portions of the user's hand 122 are touching one or more of the keys 118 and/or the touch surface 112, the sorting module 116 can touch Controlled contacts are classified as intentional. Other examples of categorical touch contacts will be discussed below.

輔助感測器110可表示偵測物體接近裝置102之接 近感測器(如偵測使用者握持裝置102之感測器等)、存在感測器、紅外(IR)/熱感測器、Wi-Fi®感測器、相機、麥克風等。在一些情況下,相機及/或麥克風可用於偵測物體接近裝置102(如藉由分析接近裝置之物體之視訊或音訊)。儘管本文許多示例性技術討論使用者輸入為對應於觸控接觸,該技術可類似地適用於其他類型的使用者輸入,如空氣輸入。如本文中所使用之「空氣輸入」可指未接觸外表面120而接收(如透過空氣)之任何類型的輸入。在一種情況下,空氣輸入包含空氣姿態,如使用者揮手以開啟動作,使用者維持手 在特定方向或方式(如握拳或豎起大拇指),或任何其他類型之身體動作或位置。因此,在一些情況下,裝置102之輔助感測器110可包括相機、溫度感測器、接近感測器、IR感測器、麥克風、或其他裝置,以偵測空氣輸入。 The auxiliary sensor 110 can represent the proximity of the detecting object to the device 102. Near sensors (such as sensors that detect the user's grip device 102, etc.), presence sensors, infrared (IR) / thermal sensors, Wi-Fi® sensors, cameras, microphones, and the like. In some cases, the camera and/or microphone can be used to detect an object approaching device 102 (eg, by analyzing video or audio of an object approaching the device). While many of the exemplary techniques discussed herein describe user input as corresponding to touch contact, the technique can be similarly applied to other types of user input, such as air input. As used herein, "air input" may refer to any type of input that receives (eg, transmits air) without contacting the outer surface 120. In one case, the air input contains an air attitude, such as the user waving to open the action, the user maintains the hand In a particular direction or manner (such as a fist or a thumbs up), or any other type of body movement or position. Thus, in some cases, the auxiliary sensor 110 of the device 102 can include a camera, a temperature sensor, a proximity sensor, an IR sensor, a microphone, or other device to detect air input.

觸控表面112可包含經配置以偵測觸控接觸的任何 類型的數位轉換器。偵測可依據電容、光學、或任何其他感測技術。在一個實例中,觸控表面112包括具有觸覺感測器之觸控板(也稱為軌跡板),以感測(接觸面積之)觸控、壓力及/或力。可替換或附加地,觸控表面112可包括觸控螢幕。 在一些情況下,觸控表面112可實施為包括觸控板與滑鼠之裝置(如外部或整合至裝置102之組合觸控板滑鼠裝置)。此外,在一些情況下,觸控表面112可實施為經配置以顯示內容之觸控螢幕顯示器,而觸控板可配置為不顯示內容。 Touch surface 112 can include any configured to detect touch contacts Type of digital converter. Detection can be based on capacitive, optical, or any other sensing technique. In one example, touch surface 112 includes a touchpad (also referred to as a trackpad) having a tactile sensor to sense (contact area) touch, pressure, and/or force. Alternatively or additionally, the touch surface 112 can include a touch screen. In some cases, touch surface 112 can be implemented as a device that includes a touchpad and a mouse (eg, a combined touchpad mouse device externally or integrated into device 102). Moreover, in some cases, touch surface 112 can be implemented as a touch screen display configured to display content, while a touch pad can be configured to not display content.

裝置102可以可操作地連接至電源124。在一些實 施例中,電源124可包括可移除地連接至裝置102之可再充電電池。在這種實施例中,電源124基本上可佈置在裝置102的一部分之中,並且可根據需要而移除或更換。可替換地,電源124可包含可連接至裝置102之外部直流電源之牆壁插座或其他類似來源。電源124可以可操作地連接至裝置102之處理器104、鍵盤108、輔助感測器110、及/或其他部件,並可經配置以在裝置102之操作期間提供電功率至這些部件。裝置102及/或電源124可包括一或更多個驅動器、變壓器、電源電路、轉換器、穩壓器、及/或其他類似部件(未圖示),經配置以根據需要而調節由電源124提供之電功率。 Device 102 can be operatively coupled to power source 124. In some real In an embodiment, the power source 124 can include a rechargeable battery that is removably coupled to the device 102. In such an embodiment, the power source 124 can be disposed substantially within a portion of the device 102 and can be removed or replaced as needed. Alternatively, power source 124 can include a wall outlet or other similar source that can be connected to an external DC power source of device 102. The power source 124 can be operatively coupled to the processor 104 of the device 102, the keyboard 108, the auxiliary sensor 110, and/or other components, and can be configured to provide electrical power to the components during operation of the device 102. Device 102 and/or power source 124 may include one or more drivers, transformers, power circuits, converters, voltage regulators, and/or the like (not shown) configured to be regulated by power source 124 as needed. The electrical power provided.

示例性裝置Exemplary device

第2及3圖圖示第1圖之具有多點觸控電容式感測表面之裝置102之示例性結構細節。更特定言之,第2圖圖示與裝置102相關聯之鍵盤108之局部分解圖。第3圖圖示第2圖中所示之鍵盤108之側視圖。如上所示,鍵盤108係為包括多點觸控電容式感測表面之輸入裝置之一個實例,而包括如本文所述之多點觸控電容式感測表面的其他輸入裝置可包括壓力感測觸控輸入裝置,如壓力感測觸控表面112,可包括觸控板及/或觸控螢幕等。鍵盤108可嵌入於計算裝置102中,或可移除地耦接至計算裝置102,以作為外部鍵盤。舉例而言,鍵盤108可物理性地透過電耦合(如線、接腳、連接器等)連接至計算裝置102,或鍵盤108可無線地耦接至計算裝置,如經由短波無線電頻率(如藍牙)或另一合適的無線通訊協定連接至計算裝置102。 2 and 3 illustrate exemplary structural details of the device 102 having a multi-touch capacitive sensing surface of FIG. More specifically, FIG. 2 illustrates a partial exploded view of keyboard 108 associated with device 102. Figure 3 illustrates a side view of the keyboard 108 shown in Figure 2. As indicated above, keyboard 108 is an example of an input device that includes a multi-touch capacitive sensing surface, while other input devices including multi-touch capacitive sensing surfaces as described herein can include pressure sensing The touch input device, such as the pressure sensing touch surface 112, may include a touch panel and/or a touch screen. The keyboard 108 can be embedded in the computing device 102 or removably coupled to the computing device 102 as an external keyboard. For example, keyboard 108 can be physically coupled to computing device 102 via electrical coupling (eg, wires, pins, connectors, etc.), or keyboard 108 can be wirelessly coupled to a computing device, such as via a short-wave radio frequency (eg, Bluetooth) Or another suitable wireless communication protocol is coupled to computing device 102.

第2及3圖中,鍵盤108及/或其他觸控輸入裝置(如觸控表面112)可包括經配置以決定電容或電容變化之複數個部件,而這些部件可包含多點觸控電容式感測表面、裝置及/或鍵盤108及/或觸控表面112之部件。更特定言之,這些部件的組件可稱為「堆疊式」配置,經配置以使用各種電容式感測技術並利用外表面120提供及/或決定多個觸控及/或空氣接觸之位置。在這些實施例中,本文所述之堆疊式配置亦可經配置以決定與這種接觸相關聯之壓力,如由使用者在所決定之接觸位置施加之壓力。本發明之部件(如鍵盤部件及/或觸控表面部件)可以可操作地連接至如裝置102之處理器 104、記憶體106、電源124、及/或其他部件,而這些部件可經配置以提供電訊號形式之資料至這些裝置組件來處理。 In FIGS. 2 and 3, the keyboard 108 and/or other touch input devices (eg, touch surface 112) may include a plurality of components configured to determine a change in capacitance or capacitance, and these components may include multi-touch capacitive The components of the surface, device and/or keyboard 108 and/or touch surface 112 are sensed. More specifically, the components of these components may be referred to as a "stacked" configuration configured to provide and/or determine the location of multiple touch and/or air contacts using external capacitive sensing techniques using various capacitive sensing techniques. In these embodiments, the stacked configurations described herein can also be configured to determine the pressure associated with such contact, such as the pressure applied by the user at the determined contact location. Components of the present invention, such as keyboard components and/or touch surface components, may be operatively coupled to a processor such as device 102 104, memory 106, power source 124, and/or other components, and these components can be configured to provide data in the form of electrical signals to these device components for processing.

第2及3圖中,鍵盤108及/或觸控表面112可包括 基層,包括接地網或屏蔽202。在一些實施例中,接地屏蔽202可安裝至,嵌入至,及/或以其他方式基本上容納於鍵盤108及/或其他觸控輸入裝置(如觸控表面112)之外殼(未圖示)中。可替代地,接地屏蔽202可包含鍵盤108及/或其他觸控輸入裝置之外底表面上。在一些實施例中,接地屏蔽202可包含支撐層,經配置為大致消除來自周圍環境之電干擾。 舉例而言,在將鍵盤108及/或其他觸控輸入裝置佈置及/或使用於具有不平或不均勻之介電常數之表面上之應用中,接地屏蔽202可經配置以減少及/或大致消除由這些材料造成之電干擾,這些材料係佈置於鍵盤108及/或其他觸控輸入裝置之電容式感測部件之相對接近處。在一些實施例中,接地屏蔽202可由具有相對低之介電常數的任何材料製成,而這些材料可包括,如矽氧樹脂、聚合物、或其他類似材料。這些材料可具有例如約1至約5之間的介電常數。可替換地,在其他實施例中,可省略接地屏蔽202。 In Figures 2 and 3, the keyboard 108 and/or the touch surface 112 can include The base layer includes a grounding grid or shield 202. In some embodiments, the ground shield 202 can be mounted to, and/or otherwise substantially housed in, a housing (not shown) of the keyboard 108 and/or other touch input device (eg, touch surface 112). in. Alternatively, the ground shield 202 can include a keyboard 108 and/or other touch input device on the bottom surface. In some embodiments, the ground shield 202 can include a support layer configured to substantially eliminate electrical interference from the surrounding environment. For example, in applications where the keyboard 108 and/or other touch input devices are disposed and/or used on a surface having an uneven or non-uniform dielectric constant, the ground shield 202 can be configured to reduce and/or approximate Electrical interference caused by these materials is eliminated, and these materials are disposed in relatively close proximity to the capacitive sensing components of the keyboard 108 and/or other touch input devices. In some embodiments, the ground shield 202 can be made of any material having a relatively low dielectric constant, and these materials can include, for example, a silicone resin, a polymer, or other similar materials. These materials may have a dielectric constant of, for example, between about 1 and about 5. Alternatively, in other embodiments, the ground shield 202 can be omitted.

電極支撐基材204可佈置於及/或可操作地連接至接 地屏蔽202。這種基材204可提供大致剛性之基座,可設置一或更多個電極206。在一些實施例中,基材204可為大致平坦的,或可替換地,亦可具有經配置以提供鍵盤108人體工學優點之任何輕微弧度。舉例而言,基板204或其部分可大致凸起,以提供使用者更舒適的打字體驗。基材204可由上述 關於接地屏蔽202之材料之一或更多者所製成。舉例而言,基材204可由具有相對低的介電常數的一或更多個聚合物所製成。因此,除了提供上述電極206之支撐,基板204可進一步協助減少及/或大致消除由材料造成之電干擾,該等材料具有不平或不均勻的介電常數,並佈置於接近鍵盤108及/或其他觸控輸入裝置之電極206及/或其他電容感測部件。 The electrode support substrate 204 can be disposed on and/or operatively connected to Ground shield 202. Such a substrate 204 can provide a substantially rigid pedestal with one or more electrodes 206. In some embodiments, the substrate 204 can be substantially flat or, alternatively, can have any slight curvature configured to provide the ergonomic advantages of the keyboard 108. For example, the substrate 204 or portions thereof can be generally raised to provide a more comfortable typing experience for the user. The substrate 204 can be as described above One or more of the materials of the ground shield 202 are made. For example, substrate 204 can be made from one or more polymers having a relatively low dielectric constant. Thus, in addition to providing support for the electrodes 206 described above, the substrate 204 can further assist in reducing and/or substantially eliminating electrical interference caused by materials having an uneven or non-uniform dielectric constant and disposed adjacent to the keyboard 108 and/or Electrodes 206 and/or other capacitive sensing components of other touch input devices.

電極206可包含由鍵盤108及/或其他觸控輸入裝置 採用之複數個第一電極,用於決定在使用鍵盤108及/或其他觸控輸入裝置期間所形成電場之電容、相對電容及/或其他特徵。在一些實施例中,本文所述之各種電極可包含一或更多個電容感測器,經配置成在位置接近導體時測量電容之變化。這些電極可包含任何類型的感測器,經配置以偵測導體(如使用者的手122之手指)之存在,或其他具有不同於空氣介電常數之物件。在一些實施例中,電極206可包括由銅、氧化銦錫、銀、碳、印刷油墨、及/或任何其他已知導電材料所製成之第一導電層。在使用期間,電壓可施加至導電層,產生從導電層延伸之電場。當導體佈置於電場時,形成電容器,而電極206可測量由於導體存在於電場中而產生之電容變化。舉例而言,電容可能隨著電極206之導電層與導體間之距離改變而改變。電極206可經配置以產生指示這種電容及/或電容變化的一或更多個訊號,而電容變化可依據在電極206與導體之間的距離。這些訊號可藉由電極206發送至如處理器104及/或記憶體106以供分析。各種演算法可藉由處理器104使用,以依據這些訊號決定這種電容或電容變化。應 理解,任何種類之轉換器及/或其他電氣部件可與處理器104一起用於調節及/或解釋由電極206產生之訊號。舉例而言,處理器104可包括軟體及/或硬體轉換器(未圖示),而這種轉換器可經配置以將由電極206產生之電容輸入訊號轉換為代表所測量電容之數值或「計數」。 The electrode 206 can include a keyboard 108 and/or other touch input device A plurality of first electrodes are employed for determining capacitance, relative capacitance, and/or other characteristics of the electric field formed during use of the keyboard 108 and/or other touch input devices. In some embodiments, the various electrodes described herein can include one or more capacitive sensors configured to measure a change in capacitance as it approaches a conductor. These electrodes can include any type of sensor configured to detect the presence of a conductor, such as a finger of a user's hand 122, or other object having a different dielectric constant than air. In some embodiments, electrode 206 can comprise a first conductive layer made of copper, indium tin oxide, silver, carbon, printing ink, and/or any other known electrically conductive material. During use, a voltage can be applied to the conductive layer to create an electric field that extends from the conductive layer. When the conductor is placed in an electric field, a capacitor is formed, and the electrode 206 can measure a change in capacitance due to the presence of the conductor in the electric field. For example, the capacitance may change as the distance between the conductive layer of the electrode 206 and the conductor changes. Electrode 206 can be configured to generate one or more signals indicative of such changes in capacitance and/or capacitance, which can vary depending on the distance between electrode 206 and the conductor. These signals can be sent by electrodes 206 to, for example, processor 104 and/or memory 106 for analysis. Various algorithms can be used by processor 104 to determine such capacitance or capacitance changes based on these signals. should It is understood that any type of converter and/or other electrical component can be used with processor 104 to condition and/or interpret the signals generated by electrode 206. For example, processor 104 can include a software and/or hardware converter (not shown) that can be configured to convert the capacitive input signal generated by electrode 206 to a value representative of the measured capacitance or " count".

在一些實施例中,電極206可佈置於第一平面208, 並可佈置成鄰近及/或基本上嵌入於介電材料210中。在可替換實施例中,圖示於第2及3圖之介電材料210可包含空氣間隙。在本發明之一些實施例中,介電材料及/或空氣間隙210可將複數個第一電極206從複數個第二電極212間隔開。在這種實施例中,複數個第二電極212可佈置於第二平面214,而第二平面214可大致平行於第一平面208。如第2及3圖所示,複數個第一電極中之每一電極206可大致平行於複數個第一電極206之至少一個相鄰電極206而延伸。類似地,複數個第二電極212中之每一電極212可大致平行於複數個第二電極212之至少一個相鄰電極212而延伸。此外,複數個第一電極206可延伸於第一方向,而第二複數個電極212可延伸於第二方向,第二方向大致垂直於第一方向。舉例而言,如第2圖中所示,設置於第一平面208之電極206可延伸於X軸方向,而設置於第二平面214之電極212可延伸於Z軸方向。複數個第一與第二電極206、212可藉由介電材料及/或空氣間隙210在Y軸方向彼此間隔開。 In some embodiments, the electrode 206 can be disposed on the first plane 208, It can be arranged adjacent and/or substantially embedded in the dielectric material 210. In an alternative embodiment, the dielectric material 210 illustrated in Figures 2 and 3 can include an air gap. In some embodiments of the invention, the dielectric material and/or air gap 210 may space the plurality of first electrodes 206 from the plurality of second electrodes 212. In such an embodiment, the plurality of second electrodes 212 can be disposed on the second plane 214 and the second plane 214 can be substantially parallel to the first plane 208. As shown in FIGS. 2 and 3, each of the plurality of first electrodes 206 can extend substantially parallel to at least one adjacent electrode 206 of the plurality of first electrodes 206. Similarly, each of the plurality of second electrodes 212 can extend substantially parallel to at least one adjacent electrode 212 of the plurality of second electrodes 212. Additionally, the plurality of first electrodes 206 can extend in a first direction, and the second plurality of electrodes 212 can extend in a second direction that is substantially perpendicular to the first direction. For example, as shown in FIG. 2, the electrode 206 disposed on the first plane 208 may extend in the X-axis direction, and the electrode 212 disposed on the second plane 214 may extend in the Z-axis direction. The plurality of first and second electrodes 206, 212 may be spaced apart from one another in the Y-axis direction by a dielectric material and/or air gap 210.

介電材料及/或空氣間隙210之特徵可在於相對低且大致均勻之介電常數。舉例而言,適合用於本發明之實施例 使用之介電材料210可包括矽樹脂、聚合物、泡沫、橡膠、及/或其他類似材料。在一些實施例中,這種介電材料210可包括具有小於約5之介電常數的矽橡膠泡沫。在一些實施例中,由本設計使用之矽橡膠泡沫及/或其他介電材料210之特徵可在於隨著壓力施加而增加之介電常數。這種介電常數之增加可以如正比於施加之壓力及/或可藉由其他關係(如自然大致呈對數、大致呈指數,或大致呈階層狀之關係)來管理。 The dielectric material and/or air gap 210 may be characterized by a relatively low and substantially uniform dielectric constant. For example, embodiments suitable for use in the present invention The dielectric material 210 used may include tantalum resin, polymer, foam, rubber, and/or the like. In some embodiments, such dielectric material 210 can comprise a ruthenium rubber foam having a dielectric constant of less than about 5. In some embodiments, the ruthenium rubber foam and/or other dielectric material 210 used in the present design may be characterized by an increased dielectric constant as pressure is applied. This increase in dielectric constant can be governed by, for example, a pressure applied and/or by other relationships (e.g., naturally logarithmically, roughly exponential, or substantially hierarchical).

此外,具有介電常數為1之空氣間隙210可用於在 Y軸方向將複數個第一電極206從複數個第二電極212間隔開。舉例而言,如第3圖所示,介電材料及/或空氣間隙210可在Y軸方向上以任意期望距離d將複數個第一電極206從複數個第二電極212間隔開。在一些實施例中,距離d可大致等於介電材料及/或空氣間隙210之高度及/或厚度。此外,如至少於第3圖所示,距離d可小於介電材料及/或空氣間隙210之相應高度及/或厚度。 In addition, an air gap 210 having a dielectric constant of 1 can be used in The plurality of first electrodes 206 are spaced apart from the plurality of second electrodes 212 in the Y-axis direction. For example, as shown in FIG. 3, the dielectric material and/or air gap 210 may space the plurality of first electrodes 206 from the plurality of second electrodes 212 at any desired distance d in the Y-axis direction. In some embodiments, the distance d can be substantially equal to the height and/or thickness of the dielectric material and/or air gap 210. Moreover, as shown at least in FIG. 3, the distance d can be less than the corresponding height and/or thickness of the dielectric material and/or air gap 210.

如上所述,複數個第一電極206可設置成大致垂直 於複數個第二電極212,並且在這種配置中,複數個電極206、212可彼此重疊,以形成從Y軸觀察之電容感測節點網格216。因此,複數個第一與第二電極206、212可經配置以測量及/或決定由於導體(如使用者的手122)接近節點而造成節點之電容變化。在一些實施例中,由複數個第一與第二電極206、212形成之節點可經配置以隨著手122接觸外表面120決定由使用者的手122之手指及/或其他部分施加之壓力。此外,如將在下文中更詳細描述,由複數個第二電極212形成 之一或更多個節點與鍵盤108之一或更多個附加電極可經配置以決定使用者的手122之手指及/或其他部分接觸外表面120之位置。由於上述配置,本發明之鍵盤108能夠決定及/或監測使用者之多點觸控。 As described above, the plurality of first electrodes 206 can be disposed to be substantially vertical The plurality of second electrodes 212, and in this configuration, the plurality of electrodes 206, 212 can overlap each other to form a capacitive sensing node grid 216 as viewed from the Y-axis. Thus, the plurality of first and second electrodes 206, 212 can be configured to measure and/or determine a change in capacitance of the node due to the proximity of the conductor (eg, the user's hand 122) to the node. In some embodiments, the nodes formed by the plurality of first and second electrodes 206, 212 can be configured to determine the pressure applied by the fingers and/or other portions of the user's hand 122 as the hand 122 contacts the outer surface 120. Furthermore, as will be described in more detail below, formed by a plurality of second electrodes 212 One or more of the nodes and one or more additional electrodes of the keyboard 108 can be configured to determine the position at which the fingers and/or other portions of the user's hand 122 contact the outer surface 120. Due to the above configuration, the keyboard 108 of the present invention is capable of determining and/or monitoring the multi-touch of the user.

鍵盤108及/或其他觸控輸入裝置(如觸控表面112) 的各種結構可包括壓力感測觸控板及/或觸控螢幕等,如上所述之關於網格216之電容感測節點可操作為自電容系統、互電容系統、及/或這些系統之組合。當配置為自電容系統,與由本文所述之空間分離電極形成之節點相關聯的電容可相對於已知或參考電容而決定。舉例而言,在實施例中,鍵盤108及/或其他觸控輸入裝置包括接地屏蔽202,每一節點之電容可相對於接地而決定。在這種實施例中,複數個第一電極206中之至少一者與複數個第二電極212中之至少一者可操作地經由裝置102之處理器104及/或其他部件連接至電源124,並可藉由電源124以恆定電壓驅動。 Keyboard 108 and/or other touch input devices (eg, touch surface 112) The various structures may include a pressure sensing touchpad and/or a touch screen, etc., as described above, the capacitive sensing node with respect to the grid 216 may operate as a self-capacitor system, a mutual capacitance system, and/or a combination of these systems. . When configured as a self-capacitance system, the capacitance associated with a node formed by the spatially separated electrodes described herein can be determined relative to a known or reference capacitance. For example, in an embodiment, the keyboard 108 and/or other touch input devices include a ground shield 202, the capacitance of each node being determinable relative to ground. In such an embodiment, at least one of the plurality of first electrodes 206 and at least one of the plurality of second electrodes 212 are operatively coupled to the power source 124 via the processor 104 and/or other components of the device 102, It can be driven by the power source 124 at a constant voltage.

第2及3圖中,鍵盤108及/或其他觸控輸入裝置(如 觸控表面112)亦可包括大致平坦的印刷電路板218。在一些實施例中,印刷電路板218可包含任何基本上軟性之材料,如Kapton®,或經配置用於觸控感測裝置之其他常見的電路板材料。印刷電路板218可作為一或更多個電極的平台或支撐結構,例如那些本文所述關於鍵盤108及/或其他觸控輸入裝置者。舉例而言,複數個第二電極212可佈置為在印刷電路板218之第一側,基本上嵌入印刷電路板218之第一側,及/或固定於印刷電路板218之第一側,印刷電路板218之第 一側面對介電材料及/或空氣間隙210。印刷電路板218亦可包括第二側,第二側與第一側相對,並背對介電材料及/或空氣間隙210。在一些實施例中,印刷電路板218可藉由介電材料及/或空氣間隙210將第一電極206間隔開。在這些實施例中,鍵盤108及/或其他觸控輸入裝置(如觸控表面112)亦可包括複數個第三電極220設置於印刷電路板218之第二側,基本上嵌入於印刷電路板218之第二側,及/或固定至印刷電路板218之第二側。在這些實施例中,複數個第三電極220可藉由印刷電路板218之寬度、厚度及/或其他部分將複數個第二電極212間隔開。同樣地,複數個第二電極212可設置於複數個第一電極206與複數個第三電極220之間。 In Figures 2 and 3, the keyboard 108 and/or other touch input devices (e.g. The touch surface 112) can also include a substantially planar printed circuit board 218. In some embodiments, printed circuit board 218 can comprise any substantially flexible material, such as Kapton®, or other common circuit board materials configured for touch sensing devices. Printed circuit board 218 can serve as a platform or support structure for one or more electrodes, such as those described herein with respect to keyboard 108 and/or other touch input devices. For example, the plurality of second electrodes 212 can be disposed on a first side of the printed circuit board 218, substantially embedded on a first side of the printed circuit board 218, and/or on a first side of the printed circuit board 218, printed Circuit board 218 One side faces the dielectric material and/or air gap 210. The printed circuit board 218 can also include a second side opposite the first side and facing away from the dielectric material and/or air gap 210. In some embodiments, printed circuit board 218 can be spaced apart by first dielectric 206 by a dielectric material and/or air gap 210. In these embodiments, the keyboard 108 and/or other touch input devices (such as the touch surface 112) may also include a plurality of third electrodes 220 disposed on the second side of the printed circuit board 218, substantially embedded in the printed circuit board. The second side of 218 is and/or secured to the second side of printed circuit board 218. In these embodiments, the plurality of third electrodes 220 may space the plurality of second electrodes 212 by the width, thickness, and/or other portions of the printed circuit board 218. Similarly, a plurality of second electrodes 212 may be disposed between the plurality of first electrodes 206 and the plurality of third electrodes 220.

複數個第三電極220中之至少一個電極220可佈置 於第三平面222,第三平面222大致平行於第一平面208及/或第二平面214。在這些實施例中,第三電極220可大致平行於(即,在X軸方向)第一電極206中之至少一者而延伸,並可大致垂直於第二電極212中之至少一者而延伸。此外,如上所述,相對於複數個第一電極206,複數個第三電極220中之每一電極220可設置為大致彼此平行。此外,第一與第二電極206、212中之至少一者可經配置以經由自電容測量與互電容測量中之一者,決定與接觸外表面120之導體(如使用者的手122之手指)相關聯之第一特徵。在這些實施例中,第二與第三電極212、220中之至少一者可經配置以依據自電容測量與互電容測量之另一者,決定與接觸外表面120之導體相關聯之第二特徵。此外,在一些實施例中,本文所述之 電極206、212、218中之一或更多者可經配置以操作為接近感測器,以偵測物體接近裝置102,類似於上述輔助感測器110。電極206、212、218的這種操作可取決於如經由自電容測量與互電容測量中之一者接收用顯著訊號。 At least one of the plurality of third electrodes 220 may be arranged In the third plane 222, the third plane 222 is substantially parallel to the first plane 208 and/or the second plane 214. In these embodiments, the third electrode 220 can extend substantially parallel to (ie, in the X-axis direction) at least one of the first electrodes 206 and can extend substantially perpendicular to at least one of the second electrodes 212. . Further, as described above, each of the plurality of third electrodes 220 may be disposed substantially parallel to each other with respect to the plurality of first electrodes 206. Additionally, at least one of the first and second electrodes 206, 212 can be configured to determine a conductor that contacts the outer surface 120 (eg, a finger of the user's hand 122 via one of self-capacitance measurement and mutual capacitance measurement) ) the associated first feature. In these embodiments, at least one of the second and third electrodes 212, 220 can be configured to determine a second associated with the conductor contacting the outer surface 120 based on the other of the self capacitance measurement and the mutual capacitance measurement. feature. Moreover, in some embodiments, described herein One or more of the electrodes 206, 212, 218 can be configured to operate as a proximity sensor to detect an object access device 102, similar to the auxiliary sensor 110 described above. Such operation of the electrodes 206, 212, 218 may depend on receiving significant signals, such as via one of self capacitance measurements and mutual capacitance measurements.

在一些實施例中,複數個第一電極206或複數個第 二電極212可以可操作地經由與處理器104相關聯之驅動電路連接至電源124。在這些實施例中,複數個第一電極206與複數個第二電極212之另一者可以可操作地連接至處理器104及/或分類模組116中之感測電路(未圖示)。在這些實施例中,由電源124驅動之一或更多個電極可包含自電容系統之發射器,而可操作地連接至感測電路的一或更多個電極可包含自電容系統之接收器。當導體接近及/或接觸如外表面120時,自電容系統之這種接收機可決定每一節點之電容(而這種決定可相對於接地而做出)。 In some embodiments, the plurality of first electrodes 206 or a plurality of The two electrodes 212 can be operatively coupled to the power source 124 via a drive circuit associated with the processor 104. In these embodiments, the other of the plurality of first electrodes 206 and the plurality of second electrodes 212 can be operatively coupled to the sensing circuitry (not shown) in the processor 104 and/or the classification module 116. In these embodiments, driving one or more of the electrodes by the power source 124 can include a transmitter of the self-capacitance system, and one or more electrodes operatively coupled to the sensing circuit can include a receiver of the self-capacitance system . Such a receiver of a self-capacitance system can determine the capacitance of each node when the conductor approaches and/or contacts, such as outer surface 120 (and this determination can be made with respect to ground).

另一方面,當配置為互電容感測系統,可決定如複 數個第一電極中之電極206與複數個第二電極中之電極212間之互電容。舉例而言,在互電容感測佈置中,互電容可決定於由空間分離電極206、212之交叉而形成之每一節點。在這些實施例中,複數個第一電極206或複數個第二電極212可經由與處理器104相關聯之驅動電路可操作地連接至電源124。同樣地,如上所述,複數個第一電極206與複數個第二電極212之另一者可以可操作地連接至處理器104及/或分類模組116中之感測電路(未圖示)。在這些實施例中,由電源124驅動的一或更多個電極可包含互電容系統之發射器,同時 可操作地連接至感測電路之一或更多個電極可包含互電容系統之接收器。 On the other hand, when configured as a mutual capacitance sensing system, it can be decided The mutual capacitance between the electrode 206 of the plurality of first electrodes and the electrode 212 of the plurality of second electrodes. For example, in a mutual capacitance sensing arrangement, the mutual capacitance may be determined by each node formed by the intersection of spatially separated electrodes 206, 212. In these embodiments, the plurality of first electrodes 206 or the plurality of second electrodes 212 can be operatively coupled to the power source 124 via a drive circuit associated with the processor 104. Similarly, as described above, the other of the plurality of first electrodes 206 and the plurality of second electrodes 212 can be operatively coupled to the sensing circuitry (not shown) in the processor 104 and/or the classification module 116. . In these embodiments, one or more electrodes driven by power source 124 may comprise a transmitter of a mutual capacitance system while One or more electrodes operatively coupled to the sensing circuit can include a receiver of the mutual capacitance system.

然而,在互電容感測系統中,連接至感測電路之複 數個電極可相對於其他可操作地連接至電源124及由電壓驅動之其他複數個電極,而決定每一節點之互電容。舉例而言,在電壓可施加至複數個第一電極206中之每一電極206之操作期間,並由於電極206、212間之每一節點之電容關係,這種電壓可能會導致複數個第二電極212中之可測量電流及/或電壓。施加至複數個第一電極206之電壓與出現於複數個第二電極212之電流及/或電壓之間的關係,可作為複數個第一電極206與複數個第二電極212間之電容。此外,如上所述,此經決定之互電容可能會受到導體(如使用者的手122的手指及/或其他部分)佈置於接近節點之一或更多者的影響。 However, in a mutual capacitance sensing system, the connection to the sensing circuit The plurality of electrodes can be operatively coupled to the power source 124 and the other plurality of electrodes driven by the voltage to determine the mutual capacitance of each node. For example, during operation of a voltage that can be applied to each of the plurality of first electrodes 206, and due to the capacitive relationship of each node between the electrodes 206, 212, such a voltage can result in a plurality of seconds. The measurable current and/or voltage in the electrode 212. The relationship between the voltage applied to the plurality of first electrodes 206 and the current and/or voltage appearing in the plurality of second electrodes 212 serves as a capacitance between the plurality of first electrodes 206 and the plurality of second electrodes 212. Moreover, as discussed above, this determined mutual capacitance may be affected by one or more of the conductors (e.g., the fingers and/or other portions of the user's hand 122) being disposed adjacent to the node.

在一些實施例中,鍵盤120可包含自電容系統與互 電容組合系統。這種組合系統可經配置以大致同時決定與鍵盤108及/或其他觸控輸入裝置(如觸控表面112)相關聯之各種特性。本文所用之術語「大致同時」可包括精確地同時,以及幾乎同時之事件。舉例而言,大致同時之事件可開始於大約相同時間,並結束於大約相同時間。此外,大致同時之事件可能發生於至少部分重疊之時間段。舉例而言,第一與第二電極206、212可經配置以經由自電容測量決定使用者的手122施加至外表面120之壓力,而第二與第三電極212、220可經配置以經由互電容測量決定使用者的手122接觸表面120的外表面120上之位置302。在這些實施例中,第一、第 二及第三電極206、212、220可經配置以大致同時決定與這種接觸相關聯之壓力與位置。 In some embodiments, keyboard 120 can include a self-capacitor system and mutual Capacitor combination system. Such a combined system can be configured to substantially simultaneously determine various characteristics associated with keyboard 108 and/or other touch input devices, such as touch surface 112. As used herein, the term "substantially simultaneously" may include precisely simultaneous, and nearly simultaneous events. For example, substantially simultaneous events may begin at approximately the same time and end at approximately the same time. In addition, substantially simultaneous events may occur during at least partially overlapping time periods. For example, the first and second electrodes 206, 212 can be configured to determine the pressure applied by the user's hand 122 to the outer surface 120 via self-capacitance measurements, while the second and third electrodes 212, 220 can be configured to pass via The mutual capacitance measurement determines the position 302 of the user's hand 122 that contacts the outer surface 120 of the surface 120. In these embodiments, the first, the first The second and third electrodes 206, 212, 220 can be configured to determine the pressure and position associated with such contact substantially simultaneously.

在附加實施例中,第一與第二電極206、212可經配 置以經由互電容測量決定壓力、表面120上之位置302、及/或與導體接觸表面120相關聯之其他特性。在另一實施例中,第二與第三電極212、220可經配置以經由自電容測量決定壓力、表面120上之位置302、及/或與導體接觸表面120相關聯之其他特徵。此外,儘管第一與第三電極206、220在本文已主要描述為包含藉由從電源124接收之電壓所驅動之發射器電極,而第二電極212在本文已主要描述為包含可操作地連接至處理器104之感測電路的接收器電極(例如,發射器-接收器-發送器(TRT)配置),在替代實施例中,此配置可相反。舉例而言,在其他實施例中,第一與第三電極206、220可包含可操作地連接至處理器104之感測電路的接收器電極,而第二電極212可包含藉由從電源124接收之電壓所驅動之發射器電極(例如,接收器-發射器-接收器(RTR)配置)。 In an additional embodiment, the first and second electrodes 206, 212 can be matched The pressure is determined via mutual capacitance measurements, the location 302 on the surface 120, and/or other characteristics associated with the conductor contact surface 120. In another embodiment, the second and third electrodes 212, 220 can be configured to determine pressure, position 302 on the surface 120, and/or other features associated with the conductor contact surface 120 via self-capacitance measurements. Moreover, although the first and third electrodes 206, 220 have been primarily described herein as including transmitter electrodes driven by the voltage received from the power source 124, the second electrode 212 has been primarily described herein as comprising an operatively coupled To the receiver electrode of the sensing circuit of processor 104 (eg, a transmitter-receiver-transmitter (TRT) configuration), in an alternate embodiment, this configuration may be reversed. For example, in other embodiments, the first and third electrodes 206, 220 can include a receiver electrode operatively coupled to the sensing circuit of the processor 104, and the second electrode 212 can include a slave power source 124 Transmitter electrodes driven by the received voltage (eg, Receiver-Transmitter-Receiver (RTR) configuration).

此外,儘管第一與第二電極206、212在本文已主要 描述為經配置以決定施加至表面120之壓力,而第二與第三電極212、220在本文已主要描述為經配置以決定接觸發生於表面120之位置302,在替代實施例中,第一與第二電極206、212可經配置以決定這種位置302,而第二與第三電極212、220可經配置以決定這種壓力。此外,儘管第2及3圖圖示包括三個第一電極206、三個第二電極212、及三個第三電極220之鍵盤108及/或其他觸控輸入裝置(如觸控表面112)之實 施例,在另一實施例中,鍵盤108及/或其他觸控輸入裝置(如觸控表面112)可包括任何數量(大於或小於3)之第一、第二及第三電極206、212、220。藉由增加使用電極206、212、220之數量,用於感測電容及/或其他特性之鍵盤108或其他壓力感測觸控表面112之解析度及/或靈敏度可改善。在實施例中,依據外表面120及/或觸控表面112之形狀、大小、配置、及/或其他特性可決定利用電極206、212、220之數量。 In addition, although the first and second electrodes 206, 212 are primarily in this document Described as being configured to determine the pressure applied to surface 120, while second and third electrodes 212, 220 have been primarily described herein as being configured to determine that contact occurs at location 302 of surface 120, in an alternate embodiment, first The second electrodes 206, 212 can be configured to determine such a location 302, and the second and third electrodes 212, 220 can be configured to determine such pressure. In addition, although FIGS. 2 and 3 illustrate a keyboard 108 including three first electrodes 206, three second electrodes 212, and three third electrodes 220, and/or other touch input devices (eg, touch surface 112) Real In another embodiment, the keyboard 108 and/or other touch input devices (such as the touch surface 112) may include any number (greater than or less than 3) of the first, second, and third electrodes 206, 212. 220. By increasing the number of electrodes 206, 212, 220 used, the resolution and/or sensitivity of the keyboard 108 or other pressure sensing touch surface 112 for sensing capacitance and/or other characteristics can be improved. In an embodiment, the number of utilized electrodes 206, 212, 220 may be determined depending on the shape, size, configuration, and/or other characteristics of the outer surface 120 and/or the touch surface 112.

第2及3圖中,外表面120可覆蓋於鍵盤108及/或 觸控輸入裝置(如觸控表面112)之電極220及/或其餘部件中之至少一者上。在這些實施例中,外表面120可包含鍵盤108及/或觸控輸入裝置的具有相對低的介電常數的保護層。 如上所述,這種相對低的介電常數可小於約5。舉例而言,外表面120可包含大致透明的及/或相對薄的聚合物、塑膠、及/或其他類似材料,經配置以防止外表面120與導體間接觸期間之靜電場分流。舉例而言,可選擇外表面120之厚度、成分、介電常數、及/或其他特徵,以在使用者的手122的手指接觸表面120時最小化及/或大致消除由電極206、212、220之一或更多者所產生之靜電場分流。藉由以此方式大致消除靜電場分流,鍵盤108及/或觸控輸入裝置之外表面120及/或其他部件可協助區分使用者之無意觸控接觸與有意輸入。 舉例而言,最小化這種靜電場分流可使各種電極206、212、220能夠決定使用者的手122之無意接觸與使用者手指之有意接觸間之相對大的電容變化。在一些實施例中,鍵盤108及/或觸控輸入裝置之重疊電極間之電容(CTXRX)可由處理器 104及/或分類模組116根據以下等式決定:CTXRX0εr(A/d)其中,ε0=8.854(10-12)F/m;εr=材料之介電常數(空氣=1);A=電極重疊區;以及d=Y軸方向上之電極間之距離。 In FIGS. 2 and 3, the outer surface 120 can cover at least one of the keyboard 108 and/or the electrode 220 of the touch input device (eg, the touch surface 112) and/or the remaining components. In these embodiments, the outer surface 120 can include a protective layer of the keyboard 108 and/or the touch input device having a relatively low dielectric constant. As noted above, this relatively low dielectric constant can be less than about 5. For example, outer surface 120 can comprise a substantially transparent and/or relatively thin polymer, plastic, and/or the like that is configured to prevent electrostatic field shunting during contact between outer surface 120 and the conductor. For example, the thickness, composition, dielectric constant, and/or other features of the outer surface 120 can be selected to minimize and/or substantially eliminate the electrodes 206, 212 when the finger of the user's hand 122 contacts the surface 120, An electrostatic field shunt generated by one or more of 220. By substantially eliminating electrostatic field shunting in this manner, keyboard 108 and/or touch input device outer surface 120 and/or other components can assist in distinguishing between unintentional touch contact and intended input by the user. For example, minimizing such electrostatic field shunting can enable the various electrodes 206, 212, 220 to determine a relatively large change in capacitance between the unintentional contact of the user's hand 122 and the intended contact of the user's finger. In some embodiments, the capacitance between the overlapping electrodes of the keyboard 108 and/or the touch input device (C TXRX ) may be determined by the processor 104 and/or the classification module 116 according to the following equation: C TXRX = ε 0 ε r ( A / d) where ε 0 = 8.854 (10-12) F / m; ε r = dielectric constant of the material (air = 1); A = electrode overlap region; and d = Y-axis direction between the electrodes distance.

當使用者的手122或另一工具(如導體)施加壓力 (如力)施加至外表面120時,由於鍵盤偏向及/或介電材料及/或空氣間隙210之壓縮,而可減少第一電極206與第二電極212間之距離d。根據上述等式,距離d之這種減少將導致經決定之電容CTXRX之相應增加。舉例而言,接觸以及距離d之相應減少可能造成複數個第一電極206與複數個第二電極212間所測量之自電容增加。電極206、212可決定這種自電容增加,處理器104可依據增加而決定施加至鍵盤108及/或觸控輸入裝置之相對壓力。應理解,使用上述方程之這些電容與相應壓力之決定可用於鍵盤108及/或其他觸控輸入裝置(如觸控表面112)之RTR與TRT配置。 When a user's hand 122 or another tool (such as a conductor) applies pressure (eg, a force) to the outer surface 120, the first may be reduced due to keyboard bias and/or compression of the dielectric material and/or air gap 210. The distance d between the electrode 206 and the second electrode 212. According to the above equation, this reduction in distance d will result in a corresponding increase in the determined capacitance C TXRX . For example, a corresponding decrease in contact and distance d may result in an increase in self-capacitance measured between the plurality of first electrodes 206 and the plurality of second electrodes 212. The electrodes 206, 212 can determine this increase in self-capacitance, and the processor 104 can determine the relative pressure applied to the keyboard 108 and/or the touch input device depending on the increase. It should be understood that the determination of these capacitances and corresponding pressures using the above equations can be used for RTR and TRT configurations of keyboard 108 and/or other touch input devices, such as touch surface 112.

當在第2及3圖中所示之電極以RTR配置操作時, 第二電極212可藉由從電源124接收之電壓依順序驅動(如以順序212a、212b、212c)。在此配置中,第一與第三電極206、220可大致同時掃描經充電之第二電極212,以測量及/或決定驅動電壓。舉例而言,第一與第三電極206、220之成對可大致同時依順序掃描經充電之第二電極212。這種大致同 時依順序掃描可以順序206a、220a;206b、220b、206c、220c成對完成。以此方式,在RTR配置中,第一與第三電極206、220可「共享」指向掃描週期期間之每一經充電之第二電極212的驅動電壓。由於在RTR配置中複數個第一與第三電極206、220大致同時掃描第二電極212,可大致同時決定壓力與位置資訊。然而,由於驅動電壓係由第一與第三電極206、220共享,導體接近鍵盤108及/或觸控輸入裝置可相對容易分流由電極206、212、220建立之靜電場。因此,在一些情況下,由使用者的手122的手指觸控的多個或相對高之壓力可能降低由第一與第三電極206、220接收之訊號。 When the electrodes shown in Figures 2 and 3 are operated in the RTR configuration, The second electrode 212 can be driven sequentially (eg, in the order 212a, 212b, 212c) by the voltage received from the power source 124. In this configuration, the first and third electrodes 206, 220 can scan the charged second electrode 212 substantially simultaneously to measure and/or determine the drive voltage. For example, the pair of first and third electrodes 206, 220 can scan the charged second electrode 212 substantially simultaneously in sequence. This kind of roughly the same The sequential scans can be performed in pairs 206a, 220a; 206b, 220b, 206c, 220c in pairs. In this manner, in the RTR configuration, the first and third electrodes 206, 220 can "share" the drive voltages directed to each of the charged second electrodes 212 during the scan period. Since the plurality of first and third electrodes 206, 220 scan the second electrode 212 substantially simultaneously in the RTR configuration, the pressure and position information can be determined substantially simultaneously. However, since the driving voltage is shared by the first and third electrodes 206, 220, the proximity of the conductor to the keyboard 108 and/or the touch input device can relatively easily shunt the electrostatic field established by the electrodes 206, 212, 220. Thus, in some cases, multiple or relatively high pressures touched by the fingers of the user's hand 122 may reduce the signals received by the first and third electrodes 206, 220.

另一方面,當第2及3圖中所示之電極在TRT配置 中操作時,第一與第三電極206、220可利用從電源124接收之電壓而單獨驅動。此配置導致即使由電極206、212、220建立之靜電場之部分係藉由導體接近及/或接觸外表面120而分流,單獨驅動之第一與第三電極206、220可各別單獨提供分量電荷至第二電極212。因此,TRT配置消除在二組接收機電極(第一與第三電極206、220)之間共享電源124所提供之電壓之需求。然而,在TRT配置中,第一與第三電極206、220可藉由從電源124接收之電壓依順序驅動,而複數個第三電極220可在複數個第一電極206之前依順序驅動。舉例而言,在TRT配置中,複數個第三電極220可利用順序220a、220b、220c之驅動電壓而設置,並隨著每一第三電極220利用驅動電壓設置,複數個第二電極212可依順序212a、212b、212c而依順序掃描複數個第三電極220。以此方式,第一或 「觸控」地圖可藉由第二與第三電極212、220產生。一旦產生觸控地圖,複數個第一電極206可依順序206a、206b、206c而驅動,並隨著第一電極206利用驅動電壓設置,複數個第二電極212可依順序212a、212b、212c,順序掃描複數個第一電極206。因此,第二或「壓力」地圖可藉由第一與第二電極206、212產生。由於在TRT配置中,提供至發射機電極206、220之驅動電壓並不共享,此配置之特徵通常在於相對高的訊號強度。然而,由於第一與第三電極206、220分別掃描(即大致不同時),TRT配置通常不能大致同時決定壓力與位置資訊(即壓力與觸控地圖)。 On the other hand, when the electrodes shown in Figures 2 and 3 are configured in the TRT In operation, the first and third electrodes 206, 220 can be individually driven using the voltage received from the power source 124. This configuration results in that even if portions of the electrostatic field established by the electrodes 206, 212, 220 are shunted by the proximity and/or contact of the outer surface 120, the separately driven first and third electrodes 206, 220 can each separately provide a component. The charge is to the second electrode 212. Thus, the TRT configuration eliminates the need to share the voltage provided by the power supply 124 between the two sets of receiver electrodes (the first and third electrodes 206, 220). However, in the TRT configuration, the first and third electrodes 206, 220 can be sequentially driven by the voltage received from the power source 124, and the plurality of third electrodes 220 can be sequentially driven before the plurality of first electrodes 206. For example, in the TRT configuration, the plurality of third electrodes 220 can be set by using the driving voltages of the sequences 220a, 220b, and 220c, and the plurality of second electrodes 212 can be disposed with each of the third electrodes 220 by using the driving voltage. A plurality of third electrodes 220 are sequentially scanned in sequence 212a, 212b, and 212c. In this way, first or The "touch" map can be generated by the second and third electrodes 212, 220. Once the touch map is generated, the plurality of first electrodes 206 can be driven in the order 206a, 206b, 206c, and the plurality of second electrodes 212 can be in sequence 212a, 212b, 212c as the first electrode 206 is set by the driving voltage. A plurality of first electrodes 206 are sequentially scanned. Thus, a second or "pressure" map can be generated by the first and second electrodes 206, 212. Since the drive voltages provided to the transmitter electrodes 206, 220 are not shared in a TRT configuration, this configuration is typically characterized by a relatively high signal strength. However, since the first and third electrodes 206, 220 are scanned separately (i.e., substantially different), the TRT configuration typically does not substantially simultaneously determine pressure and position information (i.e., pressure and touch map).

第4及5圖圖示鍵盤108之附加實施例之結構細節。如上所述,鍵盤108係為包括多點觸控電容式感測表面之輸入裝置之一個實例,而如本文所述之包括多點觸控電容式感測表面的其他觸控輸入裝置可包括壓力感測觸控輸入裝置,如壓力感測觸控表面112,可包括觸控板及/或觸控螢幕等。更特定言之,第4圖圖示鍵盤108及/或其他觸控輸入裝置(如觸控表面112)之分解圖,其中省略第三電極220,且其中第二電極212已設置於,基本上嵌入於,及/或以其他方式固定於印刷電路板218之第二表面(如頂部)。第5圖圖示第4圖所示之鍵盤及/或其他觸控輸入裝置之側視圖。在圖示實例子,第4及5圖中所示之鍵盤108及/或其他觸控輸入裝置之部件、材料、配置、方向、及/或其他態樣係大致各別相同於第2及3圖中所示之鍵盤108及/或其他觸控輸入裝置之對應態樣。因此,除非另有說明,本文之各種鍵盤108及/或 其他觸控輸入裝置適用於第2-5圖所示之實施例。 Figures 4 and 5 illustrate the structural details of an additional embodiment of the keyboard 108. As noted above, keyboard 108 is an example of an input device that includes a multi-touch capacitive sensing surface, while other touch input devices including multi-touch capacitive sensing surfaces as described herein can include pressure The sensing touch input device, such as the pressure sensing touch surface 112, may include a touch panel and/or a touch screen. More specifically, FIG. 4 illustrates an exploded view of the keyboard 108 and/or other touch input devices (eg, touch surface 112), wherein the third electrode 220 is omitted, and wherein the second electrode 212 is disposed, substantially Embedded in, and/or otherwise secured to, a second surface (eg, top) of printed circuit board 218. Figure 5 illustrates a side view of the keyboard and/or other touch input device shown in Figure 4. In the illustrated example, the components, materials, configurations, orientations, and/or other aspects of the keyboard 108 and/or other touch input devices shown in FIGS. 4 and 5 are substantially identical to the second and third. Corresponding aspects of the keyboard 108 and/or other touch input devices shown in the figures. Therefore, unless otherwise stated, various keyboards 108 and/or herein Other touch input devices are suitable for the embodiment shown in Figures 2-5.

舉例而言,在第4及5圖中所示之實施例,第一與 第二電極206、212可包含如上所述之自電容感測系統或互電容感測系統。舉例而言,在自電容感測系統中,第一及/或第二電極206、212之電容可參照於接地而決定,且接地屏蔽202可用於這些電容決定。在這些實施例中,第一與第二電極206、212中之至少一者可經配置以決定使用者的手122之手指施加至外表面120之壓力,而第一與第二電極206、212中之另一者可經配置以決定使用者手指接觸外表面120的表面120之位置302。此外,在這些實施例中,第一與第二電極206、212中之一者可配置為發送器,而第一與第二電極206、212可配置為接收器。 For example, in the embodiments shown in Figures 4 and 5, the first The second electrodes 206, 212 can comprise a self-capacitance sensing system or a mutual capacitance sensing system as described above. For example, in a self-capacitance sensing system, the capacitance of the first and/or second electrodes 206, 212 can be determined with reference to ground, and the ground shield 202 can be used for these capacitance decisions. In these embodiments, at least one of the first and second electrodes 206, 212 can be configured to determine the pressure applied by the finger of the user's hand 122 to the outer surface 120, while the first and second electrodes 206, 212 The other of the ones can be configured to determine the location 302 of the surface 120 of the outer surface 120 of the user's finger. Moreover, in these embodiments, one of the first and second electrodes 206, 212 can be configured as a transmitter, and the first and second electrodes 206, 212 can be configured as a receiver.

另一方面,在互電容感測系統中,空間分離之第一 與第二電極206、212之間的電容可在第4圖中所示之網格402之每一交叉點而決定。此外,將第一電極206從第二電極212間隔開之介電材料及/或空氣間隙210可協助減少在接近位置302之節點(如使用者的手122之手指接近位置302)所決定之互電容。這種互電容之減少係藉由第6圖中所示之電容圖之區段A所圖示。應理解,互電容之此減少之特徵在於電容圖之區段A為負斜率。 On the other hand, in the mutual capacitance sensing system, the first space separation The capacitance between the second electrodes 206, 212 can be determined at each intersection of the grid 402 shown in FIG. Moreover, the dielectric material and/or air gap 210 separating the first electrode 206 from the second electrode 212 can help reduce the mutual determination of the node near the location 302 (eg, the finger of the user's hand 122 approaches the location 302). capacitance. This reduction in mutual capacitance is illustrated by section A of the capacitance diagram shown in FIG. It should be understood that this reduction in mutual capacitance is characterized by the fact that section A of the capacitance map is a negative slope.

一旦導體(如使用者的手122之手指)接觸位置 302,而導體開始將壓力施加至外表面120,接近位置302之節點所決定之互電容可依比例增加。藉由如使用者的手指與外表面120接觸係圖示於第6圖中之區段B,而互電容之增 加則圖示於區段C。舉例而言,當使用者手指施加壓力至外表面120時,接近位置302之第一與第二電極206、212間之互電容測量可能增加,而接近位置302之電極212、218間之互電容測量可能略有減少。使用者手指施加至外表面120的最高壓力係圖示於區段D。應理解,互電容之增加之特徵在於電容圖之區段C具有正斜率。一旦使用者手指開始從外表面120縮回,在接近位置302之節點所決定之互電容可再次降低,直到手指從外表面120間隔開電極206、212之感測範圍。互電容之此減少係由第6圖之區段E所圖示。 Once the conductor (such as the finger of the user's hand 122) touches the position 302, and the conductor begins to apply pressure to the outer surface 120, and the mutual capacitance determined by the node near the position 302 can be increased proportionally. By the contact of the user's finger with the outer surface 120, which is shown in section B in FIG. 6, the mutual capacitance is increased. The addition is shown in section C. For example, when a user's finger applies pressure to the outer surface 120, the mutual capacitance measurement between the first and second electrodes 206, 212 near the position 302 may increase, and the mutual capacitance between the electrodes 212, 218 near the position 302. Measurements may be slightly reduced. The highest pressure applied by the user's finger to the outer surface 120 is illustrated in section D. It should be understood that the increase in mutual capacitance is characterized by the fact that the section C of the capacitance map has a positive slope. Once the user's finger begins to retract from the outer surface 120, the mutual capacitance determined at the node near the position 302 can be lowered again until the finger is spaced apart from the outer surface 120 by the sensing range of the electrodes 206, 212. This reduction in mutual capacitance is illustrated by section E of Figure 6.

因此,在一些實施例中,藉由第一與第二電極206、 212所決定之互電容測量可用於促進區分使用者與外表面120之無意接觸與有意按鍵或其他類似輸入。舉例而言,圖示於區段B之初始接觸與圖示於區段D之最大壓力間所決定之電容可在約2%與約15%之變化。此外,在其他實施例中,所決定之電容可小於約2%或大於約15%。由於使用者的手122之手指初始接觸面120時所決定之互電容(區段B)與當手指施加最大壓力至外表面120所決定之互電容(區段D)間的相對可觀差異,分類模組116可經配置以將這些決定與相關聯於無意接觸及有意按鍵之閥值比較。在這些實施例中,分類模組116可經配置以依據這些比較,分類這些接觸為無意或有意。 Therefore, in some embodiments, by the first and second electrodes 206, The mutual capacitance measurement determined by 212 can be used to facilitate distinguishing between the user's unintentional contact with the outer surface 120 and intentional keys or other similar inputs. For example, the capacitance determined between the initial contact of segment B and the maximum pressure illustrated for segment D can vary from about 2% to about 15%. Moreover, in other embodiments, the determined capacitance can be less than about 2% or greater than about 15%. The relative difference between the mutual capacitance (section B) determined by the finger of the user's hand 122 initially contacting the surface 120 and the mutual capacitance (section D) determined by the maximum pressure applied by the finger to the outer surface 120, Module 116 can be configured to compare these decisions to thresholds associated with unintentional contacts and intentional buttons. In these embodiments, the classification module 116 can be configured to classify the contacts as unintentional or intentional based on the comparisons.

舉例而言,第6圖圖示相關聯於無意接觸之電容的 第一閥值與相關聯於有意按鍵之電容的第二閥值。在一些實施例中,若第一與第二電極206、212決定互電容在區段F中 減少至低於第一閥值之值,則分類模組116可將這種接觸分類為無意。然而,若第一與第二電極206、212決定互電容在區段G中增加至高於第二閥值之值,則分類模組116可將這種接觸分類為使用者有意按鍵。 For example, Figure 6 illustrates the capacitance associated with unintentional contacts. The first threshold is associated with a second threshold of the capacitance of the intentional button. In some embodiments, if the first and second electrodes 206, 212 determine the mutual capacitance in the segment F Reduced to a value below the first threshold, the classification module 116 can classify such contacts as unintentional. However, if the first and second electrodes 206, 212 determine that the mutual capacitance increases in the segment G to a value above the second threshold, the classification module 116 can classify the contact as a user intentional key press.

第6圖亦圖示當導體在如上所述之感測範圍外時, 代表由電極206、212、220所決定之電容之「無觸控」電容基準。在一些實施例中,若無觸控基準與經測量之電容間的差異大於預定閥值(如在第6圖所示之第一閥值),則外表面120與導體間之接觸可分類為無意。另一方面,若無觸控基準與經測量之電容間的差異小於預定閥值(如在第6圖所示之第二閥值),則外表面120與導體間之接觸可分類為使用者有意按鍵。舉例而言,如將在下面相對於第7圖描述,本發明之一些處理可包括決定基準電容地圖,決定相關聯於導體接近及/或接觸鍵盤108之外表面120之經測量電容,以及決定基準電容地圖與經測量之電容間之一或更多個差異。與外表面120之接觸之特徵可在於依據這些電容差異(即,變化量),並且這些處理可用於本文所述任何關於第2-5圖之實施例。 Figure 6 also shows that when the conductor is outside the sensing range as described above, A "touchless" capacitance reference representing the capacitance determined by electrodes 206, 212, 220. In some embodiments, if the difference between the no-touch reference and the measured capacitance is greater than a predetermined threshold (as indicated by the first threshold in FIG. 6), the contact between the outer surface 120 and the conductor can be classified as Unintentional. On the other hand, if the difference between the no-touch reference and the measured capacitance is less than a predetermined threshold (such as the second threshold shown in FIG. 6), the contact between the outer surface 120 and the conductor can be classified as a user. Intentional button. For example, as will be described below with respect to FIG. 7, some of the processes of the present invention can include determining a reference capacitance map, determining the measured capacitance associated with the conductor approaching and/or contacting the outer surface 120 of the keyboard 108, and determining One or more differences between the reference capacitance map and the measured capacitance. Contact with outer surface 120 may be characterized by these capacitance differences (i.e., amounts of change), and these processes may be used with any of the embodiments described herein with respect to Figures 2-5.

示例性處理Exemplary processing

第7圖圖示作為邏輯流程圖之方塊集合的處理700。處理700代表可在硬體、軟體或其組合而實現之一系列操作。在軟體之上下文中,第7圖所圖示之方塊代表當藉由一或更多個處理器(如處理器104)執行時實行所述操作之電腦可執行指令。通常,電腦可執行指令包括常式、程式、物件、部件、資料結構及類似物,以實行特定功能或實現特定 抽象資料類型。所述操作中之順序並不意欲解釋為限制,而任何數量的所述方塊可在任何順序及/或平行組合以實現處理。出於討論之目的,處理700係參照第1圖之架構100與第1-3圖之鍵盤108。然而,應理解,圖示於第7圖之處理700同樣適用於第4及5圖中所示之鍵盤108之實施例。 Figure 7 illustrates a process 700 as a set of blocks of a logic flow diagram. Process 700 represents a series of operations that can be implemented in hardware, software, or a combination thereof. In the context of software, the blocks illustrated in Figure 7 represent computer executable instructions that when executed by one or more processors (e.g., processor 104) perform the operations. Generally, computer-executable instructions include routines, programs, objects, components, data structures, and the like to perform specific functions or to implement specific Abstract data type. The order of the operations is not intended to be construed as limiting, and any number of the blocks may be combined in any order and/or in parallel to effect processing. For purposes of discussion, the process 700 is directed to the architecture 100 of FIG. 1 and the keyboard 108 of FIGS. 1-3. However, it should be understood that the process 700 illustrated in FIG. 7 is equally applicable to the embodiment of the keyboard 108 shown in FIGS. 4 and 5.

在702處,電極206、212、220之一或更多者可決 定與鍵盤108相關聯之第一電容。舉例而言,在702處,電極206、212、220之一或更多者可決定一系列第一電容,而這些第一電容可包含與鍵盤108相關聯之基準地圖。基準地圖藉由上述關於第6圖之無觸控電容基準而以圖形示出。 At 702, one or more of the electrodes 206, 212, 220 can be determined A first capacitance associated with the keyboard 108 is determined. For example, at 702, one or more of the electrodes 206, 212, 220 can determine a series of first capacitances, and the first capacitances can include a reference map associated with the keyboard 108. The reference map is graphically represented by the touchless capacitance reference described above with respect to FIG.

在實施例中,電極206、212、220可操作於RTR配 置中,處理器104可在702處藉由依次(如以順序212a、212b、212c)將驅動電壓引導至第二電極212之每一者,而決定第一電容(即,基準地圖)。在此配置中,當將驅動電壓引導至電極212a,成對之第一與第三電極206、220可大致同時掃描經充電之第二電極212a,以測量及/或決定驅動電壓。這種掃描可藉由成對之第一與第三電極206、220依順序執行,如以順序206a、220a;206b、220b;206c、220c。當沒有導體在電極206、212、220之感測範圍之內,這些電容測量可在702處決定,並以此方式可在702處產生電容基準地圖。應理解,這種基準地圖可在鍵盤108之上電期間產生,或可在其他任何使用期間產生。在702處產生之基準地圖可儲存於記憶體106中以供稍候使用。 In an embodiment, the electrodes 206, 212, 220 are operable in an RTR In the middle, the processor 104 can determine the first capacitance (ie, the reference map) at 702 by sequentially directing (eg, in the order 212a, 212b, 212c) the drive voltage to each of the second electrodes 212. In this configuration, when the drive voltage is directed to the electrode 212a, the pair of first and third electrodes 206, 220 can scan the charged second electrode 212a substantially simultaneously to measure and/or determine the drive voltage. This scanning can be performed sequentially by the pair of first and third electrodes 206, 220, such as in the order 206a, 220a; 206b, 220b; 206c, 220c. When no conductor is within the sensing range of electrodes 206, 212, 220, these capacitance measurements can be determined at 702, and in this manner a capacitance reference map can be generated at 702. It should be understood that such a reference map may be generated during power up of keyboard 108 or may be generated during any other use. The baseline map generated at 702 can be stored in memory 106 for later use.

此外,在實施例中,電極206、212、220可操作於 TRT配置中,處理器104可藉由依順序將驅動電壓導引至第一與第三電極206、220在702處決定一對基準地圖,並利用複數個第二電極212依順序掃描每一經充電之電極。舉例而言,在TRT配置中,複數個第三電極220可在順序220a、220b、220c下提供驅動電壓。在此配置中,當將驅動電壓提供至第三電極220a時,第二電極212可依順序掃描經充電之第三電極220a,以順序212a、212b、212c測量及/或決定驅動電壓。 驅動電壓可接著提供至第三電極220b,並第二電極212可再次依順序掃描經充電之第三電極220b,以決定驅動電壓。此處理可在702處持續,直到第三電極220之每一者已驅動並掃描,並由於這些決定,處理器104可產生觸控基準的地圖。 觸控基準地圖可儲存於記憶體106中以供稍後使用。 Moreover, in an embodiment, the electrodes 206, 212, 220 are operable In the TRT configuration, the processor 104 can determine a pair of reference maps at 702 by sequentially directing the driving voltages to the first and third electrodes 206, 220, and sequentially scan each of the charged electrodes by using the plurality of second electrodes 212. electrode. For example, in a TRT configuration, a plurality of third electrodes 220 can provide drive voltages in the order 220a, 220b, 220c. In this configuration, when a driving voltage is supplied to the third electrode 220a, the second electrode 212 may sequentially scan the charged third electrode 220a to measure and/or determine the driving voltage in the order 212a, 212b, 212c. The driving voltage may then be supplied to the third electrode 220b, and the second electrode 212 may scan the charged third electrode 220b again in sequence to determine the driving voltage. This process can continue at 702 until each of the third electrodes 220 has been driven and scanned, and due to these decisions, the processor 104 can generate a map of touch references. The touch reference map can be stored in the memory 106 for later use.

一旦觸控基準地圖已生成並儲存於702處,第一電 極可根據相同協定驅動及掃描。因此,壓力基準地圖可在702處產生,而壓力基準地圖可儲存於記憶體106中以供稍後使用。此外,觸控與壓力基準地圖可在鍵盤108之上電期間或在任何使用期間產生。 Once the touch reference map has been generated and stored at 702, the first Extremely driven and scanned according to the same protocol. Thus, a pressure reference map can be generated at 702, and a pressure reference map can be stored in memory 106 for later use. Additionally, the touch and pressure reference map can be generated during power up of the keyboard 108 or during any use.

在704處,電極206、212、220之一或更多者可決 定與鍵盤108相關聯的第二電容。舉例而言,在704處,電極206、212、220之一或更多者可決定一系列第二電容,而這些第二電容可包含與正常使用的鍵盤108相關聯之網格掃描。舉例而言,在使用期間,電極206、212、220可做出與導體(如使用者的手122)相對於及/或與外表面120接觸之移動相關聯的一系列連續電容決定。整體而言,這些決定係 代表704處之第二電容。在一些實施例中,在704處之第二電容決定可依據電極206、212、220之配置而不同。舉例而言,如上關於702所述,取決於電極206、212、220可操作於RTR配置或TRT配置,用於在704處決定第二電容之協定可以不同。 At 704, one or more of the electrodes 206, 212, 220 can be determined A second capacitor associated with keyboard 108 is defined. For example, at 704, one or more of the electrodes 206, 212, 220 can determine a series of second capacitances, and these second capacitances can include a grid scan associated with the keyboard 108 that is normally used. For example, during use, the electrodes 206, 212, 220 can make a series of continuous capacitance decisions associated with movement of the conductor (eg, the user's hand 122) with respect to and/or in contact with the outer surface 120. Overall, these decisions are Represents the second capacitor at 704. In some embodiments, the second capacitance decision at 704 may vary depending on the configuration of the electrodes 206, 212, 220. For example, as described above with respect to 702, depending on whether the electrodes 206, 212, 220 are operable in an RTR configuration or a TRT configuration, the protocol for determining the second capacitance at 704 can be different.

在實施例中,電極206、212、220可操作於RTR配 置中,在704處之第二電極212可隨著上述相對於702而依順序提供以驅動電壓。成對之第一與第三電極206、220可接著依順序206a、220a;206b、220b;206c、220c大致同時掃描每一經充電之第二電極212。處理器104可處理在704處決定之電容值,並可儲存這些值於記憶體106中。隨著在704處導體接近鍵盤108之外表面120,導體可開始分流電極206、212、220所建立之靜電場之一部分,藉此使得在704處決定之第二電容值變化。更特定言之,隨著導體接近外表面120,第二與第三電極212、220可決定互電容之減少。隨著導體開始接觸外表面120,藉由第二與第三電極212、220決定之互電容可藉由處理器104用於決定接觸位置302。 In an embodiment, the electrodes 206, 212, 220 are operable in an RTR Centered, the second electrode 212 at 704 can be sequentially provided with a drive voltage as described above with respect to 702. The paired first and third electrodes 206, 220 can then scan each of the charged second electrodes 212 substantially simultaneously in sequence 206a, 220a; 206b, 220b; 206c, 220c. Processor 104 can process the capacitance values determined at 704 and can store these values in memory 106. As the conductor approaches the outer surface 120 of the keyboard 108 at 704, the conductor can begin to shunt a portion of the electrostatic field established by the electrodes 206, 212, 220, thereby causing the second capacitance value determined at 704 to change. More specifically, as the conductor approaches the outer surface 120, the second and third electrodes 212, 220 can determine a reduction in mutual capacitance. As the conductor begins to contact the outer surface 120, the mutual capacitance determined by the second and third electrodes 212, 220 can be used by the processor 104 to determine the contact location 302.

同樣地,在704處,第一與第二電極206、212可隨 著導體(如使用者的手122的手指)將壓力施加於外表面120而決定增加自電容。更特定言之,在第一電極206與第二電極212間之距離d可隨著壓力由使用者手指施加至外表面120而減少。這種距離d之減少可藉由將第一電極206從第二電極212間隔開之軟性介電材料及/或空氣間隙210之使用而促進。更特定言之,這種軟性介電材料及/或空氣間隙可隨著使 用者的手122的手指在位置302施加壓力至外表面120而壓縮。第一與第二電極206、212隨著使用者手指施加最大壓力至外表面120而決定之自電容可藉由處理器104用於決定與接觸相關聯之壓力。處理器104可導引由電極206、212、220決定之資訊至記憶體106中以供稍後使用。 Similarly, at 704, the first and second electrodes 206, 212 can follow A conductor, such as the finger of the user's hand 122, applies pressure to the outer surface 120 to determine the increase in self-capacitance. More specifically, the distance d between the first electrode 206 and the second electrode 212 may decrease as pressure is applied to the outer surface 120 by the user's finger. This reduction in distance d can be facilitated by the use of a soft dielectric material and/or air gap 210 that separates the first electrode 206 from the second electrode 212. More specifically, such soft dielectric materials and/or air gaps can The finger of the user's hand 122 applies pressure to the outer surface 120 at location 302 for compression. The self-capacitance determined by the first and second electrodes 206, 212 as the user's finger applies the maximum pressure to the outer surface 120 can be used by the processor 104 to determine the pressure associated with the contact. The processor 104 can direct information determined by the electrodes 206, 212, 220 into the memory 106 for later use.

在實施例中,電極206、212、220可操作於TRT配 置中,在704處,複數個第三電極220與複數個第一電極206可如上述之702依順序設置驅動電壓。此外,第二電極212可依順序掃描經充電之第三與第一電極220、206之每一者,以測量及/或決定各別驅動電壓。處理器104可處理在704處決定之電容值,並可將這些值儲存於記憶體106中。隨著在704處導體接近鍵盤108之外表面120,導體可開始分流由電極206、212、220建立之靜電場之一部分,藉此使在704處由第一與第三電極206、220決定之第二電容值變化。更特定言之,隨著導體接近外表面120,第二與第三電極212、220可決定減少互電容。隨著導體開始接觸外表面120,由第二與第三電極212、220決定之互電容可藉由處理器104用於決定接觸之位置302。 In an embodiment, the electrodes 206, 212, 220 are operable with a TRT In the middle, at 704, the plurality of third electrodes 220 and the plurality of first electrodes 206 can sequentially set the driving voltages as described above. Additionally, the second electrode 212 can sequentially scan each of the charged third and first electrodes 220, 206 to measure and/or determine the respective drive voltage. Processor 104 can process the capacitance values determined at 704 and can store these values in memory 106. As the conductor approaches the outer surface 120 of the keyboard 108 at 704, the conductor can begin to shunt a portion of the electrostatic field established by the electrodes 206, 212, 220, thereby causing the first and third electrodes 206, 220 to be determined at 704. The second capacitance value changes. More specifically, as the conductor approaches the outer surface 120, the second and third electrodes 212, 220 may decide to reduce mutual capacitance. As the conductor begins to contact the outer surface 120, the mutual capacitance determined by the second and third electrodes 212, 220 can be used by the processor 104 to determine the location 302 of the contact.

同樣地,在704處,第一與第二電極206、212可隨 著導體施加壓力至外表面120而決定增加自電容,藉此使第一電極206與第二電極212間之距離d減少。隨著使用者的手指施加最大壓力至外表面120,由第一與第二電極206、212決定之自電容可藉由處理器104用於決定與接觸相關聯之壓力。處理器104可導引由電極206、212、220決定之資訊至 記憶體106中以供稍後使用。應理解,不論使用TRT或RTR配置,在704處之互電容之增加與自電容之減少可為類似。 Similarly, at 704, the first and second electrodes 206, 212 can follow The conductor is applied to the outer surface 120 to determine the increase in self-capacitance, thereby reducing the distance d between the first electrode 206 and the second electrode 212. As the user's finger applies maximum pressure to the outer surface 120, the self-capacitance determined by the first and second electrodes 206, 212 can be used by the processor 104 to determine the pressure associated with the contact. The processor 104 can direct the information determined by the electrodes 206, 212, 220 to The memory 106 is for later use. It should be understood that regardless of the TRT or RTR configuration, the increase in mutual capacitance at 704 can be similar to the decrease in self capacitance.

在706處,處理器104可依據在702及704處從電 極206、212、220所接收之資訊而決定由使用者手指施加至外表面120之壓力。在706處,處理器104亦可依據在702及704處所接收之資訊決定使用者手指接觸外表面120的外表面120位置302。舉例而言,處理器104可輸入這種資訊至儲存於記憶體106中之一或更多個演算法、查找表、資料圖、及/或其他部件。這些構件可輸出壓力及/或位置資訊,可由處理器104用於決定是否實行與所偵測接觸相關聯之預期任務。舉例而言,在實施例中,電極206、212、220可操作於RTR配置中,處理器104可決定在702處決定之基準地圖與在704處決定之多種電容值間之差(即差量(delta))。處理器104可決定基準地圖與指示所測量之由使用者手指接近外表面120造成之互電容減少之值之間的一或更多個「位置」差量。在706處,處理器104亦可決定基準地圖與指示所測量隨著使用者手指施加壓力至外表面120造成之自電容增加之值之間的一或更多個「壓力」差量。舉例而言,最大觸控差量可能決定於基準地圖與使用者手指開始接觸外表面120時之自電容值之間,而最大壓力差量可能決定於基準地圖與使用者手指施加最大壓力至外表面120(如按鍵)之自電容值之間。 At 706, the processor 104 can receive power from 702 and 704. The information received by the poles 206, 212, 220 determines the pressure applied by the user's finger to the outer surface 120. At 706, the processor 104 can also determine the location 302 of the outer surface 120 of the outer surface 120 of the user's finger based on the information received at 702 and 704. For example, processor 104 can input such information to one or more algorithms, lookup tables, data maps, and/or other components stored in memory 106. These components may output pressure and/or position information that may be used by processor 104 to determine whether to perform an intended task associated with the detected contact. For example, in an embodiment, the electrodes 206, 212, 220 are operable in an RTR configuration, and the processor 104 can determine the difference between the reference map determined at 702 and the plurality of capacitance values determined at 704 (ie, the difference) (delta)). The processor 104 can determine one or more "position" differences between the reference map and a value indicative of a decrease in mutual capacitance caused by the user's finger approaching the outer surface 120. At 706, the processor 104 may also determine a reference map and one or more "pressure" differences between the values indicative of the increase in self-capacitance caused by the user's finger applying pressure to the outer surface 120. For example, the maximum touch difference may be determined between the self-capacitance value of the reference map and the user's finger when contacting the outer surface 120, and the maximum pressure difference may be determined by the maximum pressure exerted by the reference map and the user's finger. Between the self-capacitance values of surface 120 (such as a button).

在實施例中,電極206、212、220可操作於TRT配 置中,在706處,處理器104可決定在702中決定之觸控基 準地圖與指示所測量之由使用者手指接近外表面120造成之互電容減少之值之間的一或更多個位置差量。在706處,處理器104亦可決定在702處決定之壓力基準地圖與指示所測量隨著使用者手指施加壓力至外表面120造成之自電容增加之值之間的一或更多個壓力差量。 In an embodiment, the electrodes 206, 212, 220 are operable with a TRT Centered at 706, processor 104 may determine the touch base determined in 702. The quasi map and one or more positional differences between the values of the mutual capacitance reduction caused by the user's finger approaching the outer surface 120 as measured. At 706, the processor 104 may also determine one or more pressure differences between the pressure reference map determined at 702 and the value indicative of the increase in self-capacitance as measured by the user's finger applying pressure to the outer surface 120. the amount.

在708處,處理器104可利用測量、計算、及/或以 決定之一或更多個702-706之資訊,以區分及/或分類導體與鍵盤108間之接觸為使用者之無意接觸或有意按鍵。舉例而言,在708處,處理器104可利用上述關於702-706之資訊之一些或全部作為分類模組116之輸入。舉例而言,在708處,分類模組116可比較在706處決定之一或更多個位置差量與位置差量閥值。若一或更多個位置差量超過這種位置差量閥值,則分類模組116可接著決定在706處決定之一或更多個壓力差量是否超過預定壓力差量閥值。 At 708, the processor 104 can utilize measurements, calculations, and/or The information of one or more of 702-706 is determined to distinguish and/or classify the contact between the conductor and the keyboard 108 as an unintentional or intentional key press by the user. For example, at 708, processor 104 may utilize some or all of the above information regarding 702-706 as input to classification module 116. For example, at 708, the classification module 116 can compare one or more position differences and position difference thresholds at 706. If one or more of the position differences exceeds the position difference threshold, the sorting module 116 can then determine at 706 whether one or more of the pressure differentials exceeds the predetermined pressure difference threshold.

如果壓力與位置差量兩者都足以超過,則處理器104 可接著在708處決定使用者的手122接觸外表面120之位置302是否大致對應於鍵盤108之鍵118。若例如位置302大致重疊及/或在鍵118之外邊界內(如外表面120的至少一部分所定義),則可以滿足位置302與鍵118之間的這種實質對應。因此,若一或更多個位置差量超過位置差量閥值,一或更多個壓力差量超過壓力閥值,且使用者的手122接觸表面120之位置302大致對應於鍵盤108之鍵118,則分類模組116可在708處將所討論之接觸分類為相關聯於有意按鍵。 If both the pressure and the position difference are sufficient to exceed, the processor 104 A determination can then be made at 708 as to whether the location 302 of the user's hand 122 contacting the outer surface 120 substantially corresponds to the key 118 of the keyboard 108. This substantial correspondence between position 302 and key 118 may be satisfied if, for example, position 302 substantially overlaps and/or within the outer boundary of key 118 (as defined by at least a portion of outer surface 120). Thus, if one or more position differences exceed the position difference threshold, one or more pressure differences exceed the pressure threshold, and the position 302 of the user's hand 122 contacting the surface 120 substantially corresponds to the key of the keyboard 108 118, the classification module 116 can classify the contact in question as being associated with an intentional button at 708.

另一方面,若位置差量小於位置差量閥值,壓力差 量小於壓力差量閥值,或使用者的手122接觸表面120的位置302大致不對應在鍵盤108之特定鍵118,則分類模組116可在708處將第一與第二電容分類為相關聯於外表面120之無意接觸。 On the other hand, if the position difference is less than the position difference threshold, the pressure difference The amount is less than the pressure difference threshold, or the position 302 of the user's hand 122 contacting the surface 120 does not substantially correspond to the particular key 118 of the keyboard 108, and the classification module 116 can classify the first and second capacitances as relevant at 708. Unintentional contact with the outer surface 120.

在710處,處理器104可依據在708處之一或更多 個分類決定所討論之接觸是否解釋為有意輸入(如按鍵)。若處理器104在710處決定這種接觸不應該解釋為有意輸入,則處理器104可在712處無視於無意接觸,並控制可進行至702。另一方面,若處理器104在710處決定這種接觸應解釋為有意輸入,則處理器104可在714處繼續執行對應於這種接觸之預期任務。舉例而言,在714處,接觸可由處理器104轉化為手勢(例如,鍵入與按鍵118相關聯之特定字母/數字、放大/縮小、平移、改為粗體字等)。這種接觸亦可轉化為其他非文本式之輸出,如編輯動作(如刪除等)、插入點導航、應用控制、或任何合適的輸入或鍵盤功能。 At 710, the processor 104 can rely on one or more at 708 The classification determines whether the contact in question is interpreted as an intentional input (such as a button). If processor 104 determines at 710 that such contact should not be interpreted as an intentional input, processor 104 may ignore unintentional contact at 712 and control may proceed to 702. On the other hand, if processor 104 determines at 710 that such contact should be interpreted as an intentional input, processor 104 may continue to perform the expected task corresponding to such contact at 714. For example, at 714, the contact can be converted to a gesture by the processor 104 (eg, typing a particular letter/number associated with the button 118, zooming in/out, panning, changing to bold, etc.). This contact can also be translated into other non-textual output such as editing actions (such as deletion, etc.), insertion point navigation, application control, or any suitable input or keyboard function.

本文所述之環境與各別元件當然可包括許多其他邏 輯、程式、及實體部件,其中那些在隨附圖式中所示者僅為本文討論之實例。 The environment and individual components described herein may of course include many other logic The series, the program, and the physical components, of which those shown in the accompanying drawings are only examples of the discussion herein.

其他結構可用於實現所述功能,並意欲於本發明之 範圍之內。此外,儘管由於上述討論之目的而定義職責之特定分佈,不同的功能與職責可能視情況以不同方式分佈及分割。 Other structures may be used to implement the described functionality and are intended to be Within the scope. Moreover, although specific distributions of responsibilities are defined for the purposes of the above discussion, different functions and responsibilities may be distributed and divided in different ways depending on the circumstances.

結論in conclusion

最後,儘管在各種實施例中以特定結構特徵及/或方 法行為之語言而進行描述,但應理解,在隨附之表示定義之主題不必限於所描述之具體特徵或動作。反之,具體特徵與動作係揭示為實現所要求保護主題之示例性形式。 Finally, although in certain embodiments specific structural features and/or The language of the act is described, but it is understood that the subject matter defined in the accompanying claims is not limited to the specific features or acts described. Conversely, specific features and acts are disclosed as exemplary forms of implementing the claimed subject matter.

100‧‧‧架構 100‧‧‧Architecture

102‧‧‧計算裝置 102‧‧‧ Computing device

104‧‧‧處理器 104‧‧‧Processor

106‧‧‧記憶體 106‧‧‧ memory

108‧‧‧鍵盤 108‧‧‧ keyboard

110‧‧‧輔助感測器 110‧‧‧Auxiliary sensor

112‧‧‧觸控表面 112‧‧‧ touch surface

114‧‧‧顯示器 114‧‧‧Display

116‧‧‧分類模組 116‧‧‧Classification module

118‧‧‧鍵 118‧‧‧ keys

120‧‧‧外表面 120‧‧‧ outer surface

122‧‧‧使用者的手 122‧‧‧User's hand

124‧‧‧電源 124‧‧‧Power supply

Claims (20)

一種系統,包含:一處理器;一電腦可讀取媒體,可操作以連接至該處理器;以及一觸控感測輸入裝置,可操作以連接至該處理器或該電腦可讀取媒體中之至少一者,該觸控感測輸入裝置包括:一表面;大致平行之第一複數個電極,設置於一第一平面中;大致平行之第二複數個電極,設置於一第二平面中,該第二平面大致平行於該第一平面,該等第二複數個電極中之一電極大致垂直於該等第一複數個電極中之一電極而延伸;大致平行之第三複數個電極,設置於一第三平面中,該第三平面大致平行於該第一與第二平面,該等第三複數個電極中之一電極大致平行於該等第一複數個電極中之該電極而延伸;以及一軟性介電材料與一空氣間隙中之至少一者,將該等第一複數個電極從該等第二複數個電極間隔開,該等第一複數個電極與該等第二複數個電極經配置以決定與一導體接觸該表面相關聯之一第一電容,而該等第二複數個電極與該等第三複數個電極經配置以決定與該導體接觸該表面相關聯之一第二電容,該第一電容或該第二電容之一者係至少部分依據一自電容測量而決定,而該第一電容或該第二電容之另一者 係至少部分依據一互電容測量而決定。 A system comprising: a processor; a computer readable medium operative to connect to the processor; and a touch sensing input device operative to connect to the processor or the computer readable medium At least one of the touch sensing input devices includes: a surface; a first plurality of electrodes that are substantially parallel, disposed in a first plane; and a second plurality of electrodes that are substantially parallel, disposed in a second plane The second plane is substantially parallel to the first plane, and one of the second plurality of electrodes extends substantially perpendicular to one of the first plurality of electrodes; the third plurality of electrodes are substantially parallel, Provided in a third plane, the third plane is substantially parallel to the first and second planes, and one of the third plurality of electrodes extends substantially parallel to the one of the first plurality of electrodes And at least one of a soft dielectric material and an air gap, the first plurality of electrodes are spaced apart from the second plurality of electrodes, the first plurality of electrodes and the second plurality of electrodes Electrode Positioning a first capacitor associated with the surface in contact with a conductor, and the second plurality of electrodes and the third plurality of electrodes are configured to determine a second capacitance associated with the surface in contact with the conductor One of the first capacitor or the second capacitor is determined at least in part according to a self-capacitance measurement, and the other of the first capacitor or the second capacitor It is determined at least in part by a mutual capacitance measurement. 如請求項1所述之系統,其中該處理器經配置以依據該第一電容或該第二電容中之至少一者,分類該導體與該表面間之該接觸為一無意接觸與一有意按鍵中之一者。 The system of claim 1, wherein the processor is configured to classify the contact between the conductor and the surface as an unintentional contact and an intentional button according to at least one of the first capacitance or the second capacitance One of them. 如請求項1所述之系統,其中該處理器經配置以依據該第一電容決定與接觸該表面之該導體相關聯之一壓力,並依據該第二電容決定該導體接觸該表面之該表面上之一位置。 The system of claim 1, wherein the processor is configured to determine a pressure associated with the conductor contacting the surface in accordance with the first capacitance, and to determine the surface of the conductor that contacts the surface in accordance with the second capacitance On one of the locations. 如請求項3所述之系統,其中該第一電容係至少部分依據該自電容測量而決定,而該第二電容係至少部分依據該互電容測量而決定。 The system of claim 3, wherein the first capacitance is determined based at least in part on the self-capacitance measurement, and the second capacitance is determined based at least in part on the mutual capacitance measurement. 如請求項4所述之系統,經配置以大致同時決定該第一電容與該第二電容。 The system of claim 4, configured to determine the first capacitance and the second capacitance substantially simultaneously. 如請求項1所述之系統,其中該等第二與第三複數個電極經配置以決定與該導體接近該表面相關聯之一互電容減少,而該等第一與第二複數個電極經配置以決定與該導體施加壓力至該表面相關聯之一自電容增加。 The system of claim 1, wherein the second and third plurality of electrodes are configured to determine a mutual capacitance reduction associated with the conductor in proximity to the surface, and the first and second plurality of electrodes are The configuration determines a self-capacitance increase associated with applying pressure to the surface to the surface. 一種系統,包含:一第一電極,設置於一第一平面中; 一第二電極,設置於一第二平面中,該第二平面大致平行於該第一平面,該第二電極大致垂直於該第一電極而延伸;一軟性介電材料與一空氣間隙中之至少一者,將該第一電極從該第二電極間隔開;以及一第三電極,設置於一第三平面中,該第三平面大致平行於該第一平面,該第三電極大致平行於該第一電極而延伸,並藉由該軟性介電材料與該空氣間隙中之該至少一者從該第一電極間隔開。 A system comprising: a first electrode disposed in a first plane; a second electrode disposed in a second plane, the second plane being substantially parallel to the first plane, the second electrode extending substantially perpendicular to the first electrode; a soft dielectric material and an air gap At least one of the first electrodes is spaced apart from the second electrode; and a third electrode is disposed in a third plane that is substantially parallel to the first plane, the third electrode being substantially parallel to The first electrode extends and is spaced apart from the first electrode by the soft dielectric material and the at least one of the air gaps. 如請求項7所述之系統,進一步包含一軟性印刷電路板,藉由該軟性介電材料與該空氣間隙中之該至少一者從該第一電極間隔開,該第二電極係固定至該印刷電路板。 The system of claim 7, further comprising a flexible printed circuit board, the flexible electrode material being spaced apart from the first electrode by the at least one of the air gaps, the second electrode being fixed to the A printed circuit board. 如請求項7所述之系統,其中該第二電極係設置於該第一電極與該第三電極之間。 The system of claim 7, wherein the second electrode is disposed between the first electrode and the third electrode. 如請求項7所述之系統,其中該第一電極係為設置於該第一平面之大致平行之第一複數個電極中之一者,該第二電極係為設置於該第二平面之大致平行之第二複數個電極中之一者,而該第三電極係為設置於該第三平面之大致平行之第三複數個電極中之一者。 The system of claim 7, wherein the first electrode is one of a first plurality of electrodes disposed substantially parallel to the first plane, the second electrode being substantially disposed on the second plane One of the second plurality of electrodes in parallel, and the third electrode is one of a third plurality of electrodes disposed substantially parallel to the third plane. 如請求項7所述之系統,其中該軟性介電材料與該空氣間隙中之該至少一者係設置於該第一電極與該第三電極之 間。 The system of claim 7, wherein the at least one of the flexible dielectric material and the air gap are disposed between the first electrode and the third electrode between. 如請求項7所述之系統,其中該第一電極與該第三電極兩者皆包含一電容式接收器或一電容式發射器中之一者,且其中該第二電極包含該電容式接收器或該電容式發射器中之另一者。 The system of claim 7, wherein the first electrode and the third electrode both comprise a capacitive receiver or a capacitive transmitter, and wherein the second electrode comprises the capacitive receiving The other of the or the capacitive transmitter. 如請求項7所述之系統,其中該第一電極與該第二電極經配置以至少部分依據一自電容測量決定與一導體接觸一表面相關聯之一第一特性,而該第二電極與該第三電極經配置以至少部分依據一互電容測量決定與該導體接觸該表面相關聯之一第二特性。 The system of claim 7, wherein the first electrode and the second electrode are configured to determine a first characteristic associated with a surface of a conductor contact based at least in part on a self-capacitance measurement, and the second electrode The third electrode is configured to determine a second characteristic associated with contacting the conductor with the surface based at least in part on a mutual capacitance measurement. 如請求項13所述之系統,其中該第一特性包含由該導體施加至該表面之一壓力,而該第二特性包含該導體接觸該表面之該表面上之一位置。 The system of claim 13 wherein the first characteristic comprises a pressure applied to the surface by the conductor and the second characteristic comprises a location on the surface of the surface that the conductor contacts the surface. 如請求項13所述之系統,其中該第一、第二、及第三電極經配置以大致同時決定該第一與第二特性。 The system of claim 13 wherein the first, second, and third electrodes are configured to determine the first and second characteristics substantially simultaneously. 一種方法,包含以下步驟:決定與一導體接觸一觸控感測輸入裝置之一表面相關聯之一第一電容,該第一電容係藉由設置於一第一平面中之一第一電極與設置於一第二平面中之一第二電極而決定,該第 二平面大致平行於該第一平面,該第一電極大致垂直於該第二電極而延伸,並藉由一軟性介電材料與一空氣間隙中之至少一者從該第二電極間隔開;決定與該導體接觸該表面相關聯之一第二電容,該第二電容係藉由設置於該第二電極與設置於一第三平面中之一第三電極而決定,該第三平面大致平行於該第一平面,該第三電極大致平行於該第一電極而延伸,並藉由該軟性介電材料與該空氣間隙中之該至少一者從該第一電極間隔開;從該輸入裝置導引指示該第一電容與該第二電容之資訊至一處理器,該處理可操作連接至該輸入裝置;利用該處理器依據指示該第一電容之該資訊決定由導體施加至該表面之一壓力;以及依據指示該第二電容之該資訊決定該導體接觸該表面之該表面上之一位置。 A method comprising the steps of: determining a first capacitance associated with a surface of a touch sensing input device in contact with a conductor, the first capacitance being coupled to a first electrode disposed in a first plane Setting a second electrode in a second plane to determine The second plane is substantially parallel to the first plane, the first electrode extends substantially perpendicular to the second electrode, and is separated from the second electrode by at least one of a soft dielectric material and an air gap; Contacting the conductor with a second capacitor associated with the surface, the second capacitor being determined by being disposed on the second electrode and a third electrode disposed in a third plane, the third plane being substantially parallel to The first plane, the third electrode extends substantially parallel to the first electrode, and is separated from the first electrode by the soft dielectric material and the at least one of the air gaps; Directing information indicating the first capacitor and the second capacitor to a processor, the process being operatively coupled to the input device; using the processor to determine the information applied to the surface by the conductor according to the information indicating the first capacitor Pressure; and determining, based on the information indicative of the second capacitance, a location on the surface of the surface that the conductor contacts the surface. 如請求項16所述之方法,進一步包含利用該第二與第三電極決定與該導體接近該表面相關聯之一互電容減少之步驟。 The method of claim 16 further comprising the step of utilizing the second and third electrodes to determine a mutual capacitance reduction associated with the conductor in proximity to the surface. 如請求項16所述之方法,進一步包含利用該第一與第二電極決定與該導體施加壓力至該表面相關聯之一自電容增加之步驟。 The method of claim 16 further comprising the step of utilizing the first and second electrodes to determine an increase in self-capacitance associated with applying pressure to the surface to the conductor. 如請求項16所述之方法,進一步包含大致同時決定該第 一電容與該第二電容之步驟。 The method of claim 16, further comprising determining the first a step of a capacitor and the second capacitor. 如請求項16所述之方法,進一步包含以下步驟:決定該第一電容與第二電容中之至少一者與一各別基準之間的一差異;以及至少部分依據該差異,將該導體與該表面間之該接觸分類為一無意接觸與一有意按鍵中之一者。 The method of claim 16, further comprising the steps of: determining a difference between at least one of the first capacitance and the second capacitance and a respective reference; and at least partially determining the conductor according to the difference The contact between the surfaces is classified as one of an unintentional contact and an intentional button.
TW103135213A 2013-11-12 2014-10-09 Multi-touch capacitive sensing surface TW201528100A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/078,383 US10120506B2 (en) 2013-11-12 2013-11-12 Multi-touch capacitive sensing surface

Publications (1)

Publication Number Publication Date
TW201528100A true TW201528100A (en) 2015-07-16

Family

ID=52001057

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103135213A TW201528100A (en) 2013-11-12 2014-10-09 Multi-touch capacitive sensing surface

Country Status (3)

Country Link
US (1) US10120506B2 (en)
TW (1) TW201528100A (en)
WO (1) WO2015073235A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI567612B (en) * 2015-11-19 2017-01-21 業成光電(深圳)有限公司 Touch display device
CN107145253A (en) * 2016-02-19 2017-09-08 苹果公司 Power sensing architecture
CN108958532A (en) * 2017-05-19 2018-12-07 宏达国际电子股份有限公司 Electronic system and proximity method for sensing
TWI650700B (en) * 2016-08-31 2019-02-11 美商蘋果公司 Force sensing architectures
US10817118B2 (en) 2015-08-24 2020-10-27 Innolux Corporation Display touch device

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9195354B2 (en) 2013-03-12 2015-11-24 Synaptics Incorporated Device and method for localized force and proximity sensing
US9405379B2 (en) * 2013-06-13 2016-08-02 Microsoft Technology Licensing, Llc Classification of user input
US9201468B2 (en) 2013-06-28 2015-12-01 Synaptics Incorporated Device and method for proximity sensing with force imaging
JP5897055B2 (en) * 2014-03-07 2016-03-30 日本写真印刷株式会社 Pressure sensor and touch panel
JP6139590B2 (en) * 2014-03-24 2017-05-31 株式会社 ハイディープHiDeep Inc. Touch detection method and touch detector for performing the same
US20150277620A1 (en) * 2014-03-31 2015-10-01 Synaptics Incorporated Methods and apparatus for capacitive force sensing on keyboard keys using a compressible dielectric
US10095345B2 (en) * 2014-05-30 2018-10-09 Apple Inc. Low power scan for device wake up and unlock
US9851853B2 (en) 2014-05-30 2017-12-26 Apple Inc. Low power scan for device wake up and unlock
US9841850B2 (en) 2014-06-16 2017-12-12 Synaptics Incorporated Device and method for proximity sensing with force imaging
CN104199572B (en) * 2014-08-18 2017-02-15 京东方科技集团股份有限公司 Touch positioning method of touch display device and touch display device
US9632638B2 (en) 2014-09-10 2017-04-25 Synaptics Incorporated Device and method for force and proximity sensing employing an intermediate shield electrode layer
US10185427B2 (en) 2014-09-11 2019-01-22 Synaptics Incorporated Device and method for localized force sensing
US9983745B2 (en) * 2014-09-19 2018-05-29 Kabushiki Kaisha Tokai Rika Denki Seisakusho Touch sensor device and controller
TWI582677B (en) * 2014-12-15 2017-05-11 精材科技股份有限公司 Chip package and manufacturing method thereof
JP2016162364A (en) * 2015-03-04 2016-09-05 ソニー株式会社 Input device and information processor
US9785296B2 (en) 2015-03-31 2017-10-10 Synaptics Incorporated Force enhanced input device with shielded electrodes
US10161814B2 (en) 2015-05-27 2018-12-25 Apple Inc. Self-sealing sensor in an electronic device
US10222889B2 (en) 2015-06-03 2019-03-05 Microsoft Technology Licensing, Llc Force inputs and cursor control
US10416799B2 (en) * 2015-06-03 2019-09-17 Microsoft Technology Licensing, Llc Force sensing and inadvertent input control of an input device
US9836152B1 (en) * 2015-06-25 2017-12-05 Amazon Technologies, Inc. Single substrate layer force sensor
JP6585404B2 (en) * 2015-07-10 2019-10-02 シャープ株式会社 Image display device
CN106502444B (en) 2015-09-03 2019-03-19 敦泰电子股份有限公司 Touch display device, driving method thereof and pressure detection method
US10019085B2 (en) 2015-09-30 2018-07-10 Apple Inc. Sensor layer having a patterned compliant layer
TWI609303B (en) * 2016-01-18 2017-12-21 速博思股份有限公司 Integral sensing apparatus for touch and pressure sensing and method for the same
TWI566150B (en) * 2016-02-05 2017-01-11 速博思股份有限公司 High-precision force-touch sensor with multilayered electrodes
JP6742822B2 (en) * 2016-06-01 2020-08-19 株式会社ジャパンディスプレイ Display device
KR102044083B1 (en) * 2016-06-16 2019-11-12 선전 구딕스 테크놀로지 컴퍼니, 리미티드 Touch detection device and detection method, and touch device
KR102579132B1 (en) * 2016-08-02 2023-09-18 삼성전자주식회사 Electronic apparatus with display
KR102628789B1 (en) * 2016-09-09 2024-01-25 삼성전자주식회사 Electronic device and method for cotrolling of the electronic device
KR102344581B1 (en) * 2016-09-09 2021-12-31 센셀, 인크. System for detecting and characterizing inputs on a touch sensor
KR20180047593A (en) * 2016-10-31 2018-05-10 엘지디스플레이 주식회사 Electronic device having force touch function
KR102610415B1 (en) * 2016-11-30 2023-12-08 삼성디스플레이 주식회사 Touch sensor, display device including the same and method for driving touch sensor
CN106775150A (en) * 2016-12-08 2017-05-31 深圳市万普拉斯科技有限公司 touch control method, system and mobile terminal
CN106802748B (en) * 2017-03-15 2019-12-31 上海大学 Touch sensor and preparation method thereof
KR102487508B1 (en) 2017-08-15 2023-01-10 애플 인크. Self-Capacitance and Mutual-Capacitance Hybrid Touch Sensor Panel Architecture
WO2019068020A1 (en) * 2017-09-29 2019-04-04 Apple Inc. Touch sensor panel architecture with multiple sensing mode capabilities
JP6430088B1 (en) * 2018-01-31 2018-11-28 三菱電機株式会社 Touch panel device
US10461746B2 (en) * 2018-03-20 2019-10-29 Ford Global Technologies, Llc Proximity switch assembly and method therefor
US10983642B2 (en) * 2018-07-30 2021-04-20 Texas Instruments Incorporated Using driven shield and touch elements lock algorithm for achieving liquid tolerant capacitive touch solution
JP2020030712A (en) * 2018-08-24 2020-02-27 富士通コンポーネント株式会社 Input device
US10921854B2 (en) 2018-09-06 2021-02-16 Apple Inc. Electronic device with sensing strip
US11079882B2 (en) 2018-09-28 2021-08-03 Apple Inc. Diamond based touch sensor panel architectures
CN110231890B (en) * 2019-06-28 2022-04-29 京东方科技集团股份有限公司 Pressure sensing device, display panel, manufacturing method of display panel and display equipment
US11418193B2 (en) * 2020-04-08 2022-08-16 Pixart Imaging Inc. Key unit and keyboard using the same
CN113641249B (en) * 2020-05-11 2024-04-02 重庆达方电子有限公司 Touch keyboard and keyboard touch electrode module thereof
US11334192B1 (en) * 2021-05-17 2022-05-17 Microsoft Technology Licensing, Llc Dual touchscreen device calibration

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995752B2 (en) 2001-11-08 2006-02-07 Koninklijke Philips Electronics N.V. Multi-point touch pad
US7561146B1 (en) * 2004-08-25 2009-07-14 Apple Inc. Method and apparatus to reject accidental contact on a touchpad
US7928964B2 (en) * 2005-04-22 2011-04-19 Microsoft Corporation Touch input data handling
US7812827B2 (en) 2007-01-03 2010-10-12 Apple Inc. Simultaneous sensing arrangement
US20120268420A1 (en) 2007-07-31 2012-10-25 Duane Marhefka Writing tablet information recording device
US20110102331A1 (en) * 2009-10-29 2011-05-05 Qrg Limited Redundant touchscreen electrodes
JP5526761B2 (en) * 2009-12-22 2014-06-18 ソニー株式会社 Sensor device and information processing device
EP2559164B1 (en) 2010-04-14 2014-12-24 Frederick Johannes Bruwer Pressure dependent capacitive sensing circuit switch construction
US8599165B2 (en) * 2010-08-16 2013-12-03 Perceptive Pixel Inc. Force and true capacitive touch measurement techniques for capacitive touch sensors
US9022575B2 (en) 2011-03-23 2015-05-05 Microsoft Technology Licensing, Llc Flexible mobile display
US8823678B2 (en) * 2012-01-09 2014-09-02 Broadcom Corporation Waterproof baseline tracking in capacitive touch controllers
KR101403025B1 (en) * 2012-02-29 2014-06-11 주식회사 팬택 Device including touch display and method for preventing wrong operation by touch

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10817118B2 (en) 2015-08-24 2020-10-27 Innolux Corporation Display touch device
TWI567612B (en) * 2015-11-19 2017-01-21 業成光電(深圳)有限公司 Touch display device
CN107145253A (en) * 2016-02-19 2017-09-08 苹果公司 Power sensing architecture
US11803276B2 (en) 2016-02-19 2023-10-31 Apple Inc. Force sensing architectures
TWI650700B (en) * 2016-08-31 2019-02-11 美商蘋果公司 Force sensing architectures
CN108958532A (en) * 2017-05-19 2018-12-07 宏达国际电子股份有限公司 Electronic system and proximity method for sensing
US10459544B2 (en) 2017-05-19 2019-10-29 Htc Corporation Electronic system and proximity sensing method
TWI709064B (en) * 2017-05-19 2020-11-01 宏達國際電子股份有限公司 Electronic system and proximity sensing method
CN108958532B (en) * 2017-05-19 2021-08-20 宏达国际电子股份有限公司 Electronic system and proximity sensing method

Also Published As

Publication number Publication date
WO2015073235A1 (en) 2015-05-21
US20150130742A1 (en) 2015-05-14
US10120506B2 (en) 2018-11-06

Similar Documents

Publication Publication Date Title
TW201528100A (en) Multi-touch capacitive sensing surface
CN105278735B (en) Apparatus and method for proximity sensing using force imaging
US9383881B2 (en) Input device and method with pressure-sensitive layer
CN107148608B (en) Apparatus and method for force and proximity sensing with intermediate shield electrode layers
US10209148B2 (en) Force-sensitive fingerprint sensing input
US9785251B2 (en) Actuation lock for a touch sensitive mechanical keyboard
US9041663B2 (en) Selective rejection of touch contacts in an edge region of a touch surface
KR102040481B1 (en) Systems and methods for determining types of user input
US8314780B2 (en) Touch device
MX2014010533A (en) Pressure sensitive keys.
US20140253454A1 (en) Keyboard with integrated touch sensing
JP2010244302A (en) Input device and input processing method
US20120306752A1 (en) Touchpad and keyboard
US20150084921A1 (en) Floating touch method and touch device
US10289210B1 (en) Enabling touch on a tactile keyboard
KR20130035763A (en) Touch screen panel
US10139922B2 (en) Spring configuration for touch-sensitive input device
US20150070278A1 (en) Device and method for disambiguating button presses on a capacitive sensing mouse
US20130009908A1 (en) Resistive touch panel
JP6199541B2 (en) Touch input device
US11836297B2 (en) Keyboard with capacitive key position, key movement, or gesture input sensors
US9035904B2 (en) Input method and input apparatus using input pad
JP6331022B2 (en) Display device, display control method, and display control program
CN113544631A (en) Touch detection device and method
JP2016143392A (en) Input device, push button device and electronic equipment