TW201525998A - Memory system - Google Patents

Memory system Download PDF

Info

Publication number
TW201525998A
TW201525998A TW102147653A TW102147653A TW201525998A TW 201525998 A TW201525998 A TW 201525998A TW 102147653 A TW102147653 A TW 102147653A TW 102147653 A TW102147653 A TW 102147653A TW 201525998 A TW201525998 A TW 201525998A
Authority
TW
Taiwan
Prior art keywords
data
plane
word line
voltage
driver
Prior art date
Application number
TW102147653A
Other languages
Chinese (zh)
Other versions
TWI545567B (en
Inventor
Manabu Sato
Daiki Watanabe
Hiroshi Sukegawa
Tokumasa Hara
Hiroshi Yao
Naomi Takeda
Noboru Shibata
Takahiro Shimizu
Original Assignee
Toshiba Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Kk filed Critical Toshiba Kk
Priority to TW102147653A priority Critical patent/TWI545567B/en
Publication of TW201525998A publication Critical patent/TW201525998A/en
Application granted granted Critical
Publication of TWI545567B publication Critical patent/TWI545567B/en

Links

Abstract

A memory system of the present invention includes a memory device and a controller for controlling the memory device. The memory device is equipped with a plurality of memory cells in which data can be rewritten; a plurality of word lines connected to the plurality of memory cells; pages provided with a plurality of memory cells that are connected to the same word line; planes each provided with a plurality of pages; a memory cell array provided with a plurality of planes; a plurality of word-line drivers which apply voltage to the plurality of word lines; and a plurality of switches which are disposed on each of the planes and allocate the word-line drivers to each of the word lines.

Description

記憶體系統 Memory system

本實施形態係關於一種記憶體系統。 This embodiment relates to a memory system.

如今,隨著非揮發性半導體記憶裝置(記憶體)之用途擴大,記憶體之容量亦不斷增大。 Nowadays, as the use of non-volatile semiconductor memory devices (memory) expands, the capacity of memory continues to increase.

本發明之實施形態係提供一種可對位於不同之複數個平面內之頁面序號不同之頁面進行並行存取之記憶體系統。 Embodiments of the present invention provide a memory system that can concurrently access pages having different page numbers located in different planes.

本實施形態之記憶體系統具備記憶體裝置及控制上述記憶體裝置之控制器。上述記憶體裝置具備:複數個記憶體胞,其各自保持資料;複數條字元線,其係與上述複數個記憶體胞連接;頁面,其具有連接於相同字元線之上述複數個記憶體胞;平面,其具有上述複數個頁面;記憶體胞陣列,其具有複數個上述平面;及複數個字元線驅動器,其對上述複數條字元線施加電壓。上述控制器對上述記憶體裝置發行同時執行對特定之上述平面讀取第1資料、及對與上述特定之平面不同之平面讀取第2資料之指令。 The memory system of this embodiment includes a memory device and a controller that controls the memory device. The memory device includes: a plurality of memory cells each holding data; a plurality of word lines connected to the plurality of memory cells; and a page having the plurality of memories connected to the same word line a plane having a plurality of pages; a memory cell array having a plurality of said planes; and a plurality of word line drivers applying a voltage to said plurality of word lines. The controller issues, to the memory device, a command to simultaneously read the first material for the specific plane and the second data for the plane different from the specific plane.

00h‧‧‧指令 00h‧‧ directive

1‧‧‧3維積層型非揮發性半導體記憶裝置(記憶體 系統) 1‧‧‧3 dimensional laminated non-volatile semiconductor memory device (memory system)

1a‧‧‧邏輯物理轉換表格 1a‧‧‧Logical Physics Conversion Form

1b‧‧‧寫入/讀取控制部 1b‧‧‧Write/read control unit

2‧‧‧主機 2‧‧‧Host

10‧‧‧BiCS快閃記憶體 10‧‧‧BiCS flash memory

11‧‧‧記憶體胞陣列 11‧‧‧ Memory Cell Array

12‧‧‧感測放大器 12‧‧‧Sense Amplifier

13‧‧‧行位址緩衝器/行解碼器 13‧‧‧ row address buffer/row decoder

15‧‧‧控制電路 15‧‧‧Control circuit

16‧‧‧電壓產生電路 16‧‧‧Voltage generation circuit

17‧‧‧平面開關 17‧‧‧ plane switch

17a0~17a7‧‧‧開關 17a0~17a7‧‧‧ switch

17b0~17b7‧‧‧開關 17b0~17b7‧‧‧ switch

17c0~17c7‧‧‧開關 17c0~17c7‧‧‧ switch

17n‧‧‧開關 17n‧‧‧ switch

17o‧‧‧開關 17o‧‧‧Switch

17p‧‧‧開關 17p‧‧‧ switch

17q‧‧‧開關 17q‧‧‧ switch

17r‧‧‧開關 17r‧‧‧ switch

17s‧‧‧開關 17s‧‧‧ switch

17t‧‧‧開關 17t‧‧‧ switch

17u‧‧‧開關 17u‧‧‧ switch

18‧‧‧列位址緩衝器 18‧‧‧ column address buffer

19‧‧‧輸出入緩衝器 19‧‧‧Output buffer

20‧‧‧記憶體控制器 20‧‧‧ memory controller

21‧‧‧列解碼器 21‧‧‧ column decoder

21a‧‧‧逆變器 21a‧‧‧Inverter

21b‧‧‧逆變器 21b‧‧‧Inverter

21c‧‧‧NAND閘極 21c‧‧‧NAND gate

21d‧‧‧逆變器 21d‧‧‧Inverter

21e‧‧‧NAND閘極 21e‧‧‧NAND gate

21f‧‧‧逆變器 21f‧‧‧Inverter

21g‧‧‧NAND閘極 21g‧‧‧NAND gate

21h‧‧‧逆變器 21h‧‧‧Inverter

21i‧‧‧NAND閘極 21i‧‧‧NAND gate

21j‧‧‧逆變器 21j‧‧‧Inverter

21k‧‧‧MOS電晶體 21k‧‧‧MOS transistor

21l‧‧‧MOS電晶體 21l‧‧‧MOS transistor

21m‧‧‧MOS電晶體 21m‧‧‧MOS transistor

21n‧‧‧MOS電晶體 21n‧‧‧MOS transistor

30‧‧‧主機介面 30‧‧‧Host interface

71‧‧‧記憶體胞陣列 71‧‧‧ memory cell array

72‧‧‧行解碼器 72‧‧‧ line decoder

73‧‧‧資料輸出入緩衝器 73‧‧‧ Data output buffer

74‧‧‧資料輸出入端子 74‧‧‧ Data input terminal

75‧‧‧列解碼器 75‧‧‧ column decoder

76‧‧‧控制電路 76‧‧‧Control circuit

76-1‧‧‧電壓產生電路 76-1‧‧‧Voltage generation circuit

77‧‧‧控制信號輸入端子 77‧‧‧Control signal input terminal

78‧‧‧源極線控制電路 78‧‧‧Source line control circuit

79‧‧‧井控制電路 79‧‧‧ Well control circuit

80‧‧‧平面開關 80‧‧‧ plane switch

80a‧‧‧開關 80a‧‧‧ switch

80b‧‧‧開關 80b‧‧‧ switch

80c‧‧‧開關 80c‧‧‧ switch

80d‧‧‧開關 80d‧‧‧ switch

80h‧‧‧指令 80h‧‧ directive

161‧‧‧電源供應器 161‧‧‧Power supply

162‧‧‧CG驅動器 162‧‧‧CG driver

162a‧‧‧VCGSEL電路 162a‧‧‧VCGSEL circuit

162b‧‧‧CGN驅動器 162b‧‧‧CGN driver

162c‧‧‧CGBG驅動器/CGD驅動器 162c‧‧‧CGBG Drive/CGD Driver

162d‧‧‧CGN驅動器 162d‧‧‧CGN driver

162e‧‧‧CGU驅動器 162e‧‧‧CGU drive

162f‧‧‧VCGSEL2電路 162f‧‧‧VCGSEL2 circuit

162g‧‧‧CGD驅動器/CGBG驅動器 162g‧‧‧CGD driver/CGBG driver

162h‧‧‧CGU驅動器 162h‧‧‧CGU drive

163‧‧‧SG驅動器 163‧‧‧SG driver

171a‧‧‧平面開關CGSW 171a‧‧‧Flat switch CGSW

171b‧‧‧平面開關SGSW 171b‧‧‧Plane switch SSGS

172a‧‧‧平面開關CGSW 172a‧‧‧Flat switch CGSW

172b‧‧‧平面開關SGSW 172b‧‧‧Plane switch SSGS

211‧‧‧列解碼器 211‧‧‧ column decoder

212‧‧‧列解碼器 212‧‧‧ column decoder

300‧‧‧NAND型快閃記憶體 300‧‧‧NAND type flash memory

751‧‧‧列解碼器 751‧‧‧ column decoder

752‧‧‧列解碼器 752‧‧‧ column decoder

761‧‧‧電源供應器 761‧‧‧Power supply

762‧‧‧CG驅動器 762‧‧‧CG driver

762a‧‧‧VCGSEL電路 762a‧‧‧VCGSEL circuit

762b‧‧‧CGN驅動器 762b‧‧‧CGN driver

762c‧‧‧CGD驅動器 762c‧‧‧CGD driver

762d‧‧‧CGN驅動器 762d‧‧‧CGN driver

762e‧‧‧CGU驅動器 762e‧‧‧CGU driver

762f‧‧‧VCGSEL2電路 762f‧‧‧VCGSEL2 circuit

762g‧‧‧CGD驅動器 762g‧‧‧CGD driver

762h‧‧‧CGU驅動器 762h‧‧‧CGU driver

763‧‧‧SG驅動器 763‧‧‧SG driver

801a‧‧‧平面開關CGSW 801a‧‧‧Flat switch CGSW

801b‧‧‧平面開關SGSW 801b‧‧‧Flat switch SSGS

802a‧‧‧平面開關CGSW 802a‧‧ plane switch CGSW

802b‧‧‧平面開關SGSW 802b‧‧‧Plane Switch SGW

A‧‧‧使用者資料 A‧‧‧ User Profile

ALE‧‧‧位址鎖存器啟用信號 ALE‧‧‧ address latch enable signal

AR‧‧‧電壓 AR‧‧‧ voltage

B‧‧‧使用者資料 B‧‧ User data

B0~Bn‧‧‧區塊編號 B0~Bn‧‧‧ block number

Ba‧‧‧半導體基板 Ba‧‧‧Semiconductor substrate

BG‧‧‧背閘極線 BG‧‧‧ back gate line

Bk‧‧‧區塊 Bk‧‧‧ Block

BL‧‧‧位元線 BL‧‧‧ bit line

BLK‧‧‧區塊 BLK‧‧‧ Block

BLKAD‧‧‧區塊位址 BLKAD‧‧‧ block address

BLKx‧‧‧區塊 BLKx‧‧‧ Block

BLKy‧‧‧區塊 BLKy‧‧‧ Block

BR‧‧‧電壓 BR‧‧‧ voltage

BV‧‧‧電壓 BV‧‧‧ voltage

C‧‧‧使用者資料 C‧‧‧User Information

C1‧‧‧位址 C1‧‧‧ address

C2‧‧‧位址 C2‧‧‧ address

CGBG‧‧‧驅動器 CGBG‧‧‧ drive

CGBGI‧‧‧信號線 CGBGI‧‧‧ signal line

CGDDB‧‧‧驅動器 CGDDB‧‧‧ drive

CGDDBI‧‧‧信號線 CGDDBI‧‧‧ signal line

CGDDBSW‧‧‧信號 CGDDBSW‧‧‧ signal

CGDDI‧‧‧信號線 CGDDI‧‧‧ signal line

CGDDSW‧‧‧信號 CGDDSW‧‧‧ signal

CGDDSSW‧‧‧信號 CGDDSSW‧‧‧ signal

CGDDT‧‧‧驅動器 CGDDT‧‧‧ drive

CGDDTI‧‧‧信號線 CGDDTI‧‧‧ signal line

CGDDTSW‧‧‧信號 CGDDTSW‧‧‧ signal

CGDSB‧‧‧驅動器 CGDSB‧‧‧ drive

CGDSBI‧‧‧信號線 CGDSBI‧‧‧ signal line

CGDSBSW‧‧‧信號 CGDSBSW‧‧‧ signal

CGDSI‧‧‧信號線 CGDSI‧‧‧ signal line

CGDST‧‧‧驅動器 CGDST‧‧‧ drive

CGDSTI‧‧‧信號線 CGDSTI‧‧‧ signal line

CGDSTSW‧‧‧信號 CGDSTSW‧‧‧ signal

CGI‧‧‧信號線 CGI‧‧‧ signal line

CGN‧‧‧驅動器 CGN‧‧‧ drive

CGNA‧‧‧驅動器 CGNA‧‧‧ drive

CGNB‧‧‧驅動器 CGNB‧‧‧ drive

CGNC‧‧‧驅動器 CGNC‧‧‧ drive

CGND‧‧‧驅動器 CGND‧‧‧ drive

CGSW‧‧‧平面開關 CGSW‧‧ ‧ flat switch

CGU‧‧‧驅動器 CGU‧‧‧ drive

CL‧‧‧柱狀部 CL‧‧‧ Column

CL1‧‧‧第1半導體 CL1‧‧‧1st semiconductor

CL2‧‧‧第2半導體 CL2‧‧‧2nd semiconductor

CL3‧‧‧第3半導體 CL3‧‧‧3rd semiconductor

CL4‧‧‧第4半導體 CL4‧‧‧4th semiconductor

CLE‧‧‧指令鎖存器啟用信號 CLE‧‧‧Instruction Latch Enable Signal

CMD‧‧‧指令 CMD‧‧ directive

CR‧‧‧電壓 CR‧‧‧ voltage

D‧‧‧虛設串 D‧‧‧Virtual string

D1‧‧‧第1選擇閘極線 D1‧‧‧1st choice gate line

D2‧‧‧第3選擇閘極線 D2‧‧‧3rd choice gate line

E0h‧‧‧指令 E0h‧‧‧ Directive

F_DVPGHSLC‧‧‧參數 F_DVPGHSLC‧‧‧ parameters

F_DVPGMHSLC‧‧‧參數 F_DVPGMHSLC‧‧‧ parameters

F_NLP_HSLC‧‧‧參數 F_NLP_HSLC‧‧‧ parameters

F_VCG_HSLCV‧‧‧參數 F_VCG_HSLCV‧‧‧ parameters

F_VPGMHSLC‧‧‧參數 F_VPGMHSLC‧‧‧ parameters

hSLC‧‧‧資料 hSLC‧‧‧Information

HSLCV‧‧‧電壓 HSLCV‧‧‧ voltage

I/O‧‧‧外部輸出入端子 I/O‧‧‧External input and output terminals

JP‧‧‧連結部 JP‧‧‧Link Department

LMR‧‧‧電壓 LMR‧‧‧ voltage

LMV‧‧‧電壓 LMV‧‧‧ voltage

MLC-Lower‧‧‧資料 MLC-Lower‧‧‧Information

MLC-Upper‧‧‧資料 MLC-Upper‧‧‧Information

MS‧‧‧NAND串 MS‧‧‧NAND string

MT‧‧‧記憶體胞電晶體 MT‧‧‧ memory cell crystal

MTr‧‧‧記憶體電晶體 MTr‧‧‧ memory transistor

MTr0~MTr7‧‧‧電晶體 MTr0~MTr7‧‧‧O crystal

P0~Pn‧‧‧平面 P0~Pn‧‧‧ plane

PZ0~PZ4‧‧‧區 PZ0~PZ4‧‧‧

REn‧‧‧讀取啟用信號 REn‧‧‧Read enable signal

R1‧‧‧位址 R1‧‧‧ address

R2‧‧‧位址 R2‧‧‧ address

R3‧‧‧位址 R3‧‧‧ address

RY/BY‧‧‧就緒/忙碌信號 RY/BY‧‧‧Ready/Busy signal

RZ0~RZ6‧‧‧區 RZ0~RZ6‧‧‧

S2‧‧‧第2選擇閘極線 S2‧‧‧2nd choice gate line

SC‧‧‧U字型半導體 SC‧‧‧U-shaped semiconductor

SGD‧‧‧汲極側選擇閘極線 SGD‧‧‧汲polar selection gate line

SGDI‧‧‧信號線 SGDI‧‧‧ signal line

SGDTr‧‧‧汲極側選擇電晶體 SGDTr‧‧‧汲-selective transistor

SGS‧‧‧源極側選擇閘極線 SGS‧‧‧Source side selection gate line

SGSI‧‧‧信號線 SGSI‧‧‧ signal line

SGSTr‧‧‧源極側選擇電晶體 SGSTr‧‧‧Source side selection transistor

SGSW‧‧‧平面開關 SGSW‧‧ ‧ flat switch

SL‧‧‧源極線 SL‧‧‧ source line

SLC‧‧‧資料 SLC‧‧‧Information

SLCR‧‧‧電壓 SLCR‧‧‧ voltage

SLCV‧‧‧電壓 SLCV‧‧‧ voltage

STU‧‧‧串單元 STU‧‧‧ string unit

tR‧‧‧讀取時間 tR‧‧‧ reading time

USGDI‧‧‧信號線 USGDI‧‧‧ signal line

USGSI‧‧‧信號線 USGSI‧‧‧ signal line

VCELSRC‧‧‧電壓 VCELSRC‧‧‧ voltage

VCELSRCA‧‧‧電壓 VCELSRCA‧‧‧ voltage

VCELSRCB‧‧‧電壓 VCELSRCB‧‧‧ voltage

VCGRV‧‧‧電壓 VCGRV‧‧‧ voltage

VCGRVA‧‧‧電壓 VCGRVA‧‧‧ voltage

VCGSEL‧‧‧電壓 VCGSEL‧‧‧ voltage

VCGSEL_AB‧‧‧電壓 VCGSEL_AB‧‧‧ voltage

VCGSEL_CD‧‧‧電壓 VCGSEL_CD‧‧‧ voltage

VCPWELL‧‧‧電壓 VCPWELL‧‧‧ voltage

VCPWELLA‧‧‧電壓 VCPWELLA‧‧‧ voltage

VCPWELLB‧‧‧電壓 VCPWELLB‧‧‧ voltage

VGP‧‧‧電壓 VGP‧‧‧ voltage

VISO‧‧‧電壓 VISO‧‧‧ voltage

VPASS‧‧‧電壓 VPASS‧‧‧ voltage

VPASS1‧‧‧電壓 VPASS1‧‧‧ voltage

VPASS2‧‧‧電壓 VPASS2‧‧‧ voltage

VPASSH‧‧‧電壓 VPASSH‧‧‧ voltage

VPASSL‧‧‧電壓 VPASSL‧‧‧ voltage

VPGM‧‧‧電壓 VPGM‧‧‧ voltage

VREAD‧‧‧電壓 VREAD‧‧‧ voltage

VREADK‧‧‧電壓 VREADK‧‧‧ voltage

VSGD‧‧‧選擇閘極線 VSGD‧‧‧Selected gate line

VSGS‧‧‧選擇閘極線 VSGS‧‧‧Selected gate line

VSS‧‧‧電壓 VSS‧‧‧ voltage

Vth‧‧‧臨限值電壓 Vth‧‧‧ threshold voltage

VUSEL1‧‧‧電壓 VUSEL1‧‧‧ voltage

VUSEL1A‧‧‧電壓 VUSEL1A‧‧‧ voltage

VUSEL1B‧‧‧電壓 VUSEL1B‧‧‧ voltage

VUSEL1_CD‧‧‧電壓 VUSEL1_CD‧‧‧ voltage

VUSEL2‧‧‧電壓 VUSEL2‧‧‧ voltage

VUSEL2A‧‧‧電壓 VUSEL2A‧‧‧ voltage

VUSEL2B‧‧‧電壓 VUSEL2B‧‧‧ voltage

VUSEL2_CD‧‧‧電壓 VUSEL2_CD‧‧‧ voltage

Vxxxx‧‧‧電壓 Vxxxx‧‧‧ voltage

WEn‧‧‧寫入啟用信號 WEn‧‧‧ write enable signal

WL‧‧‧字元線 WL‧‧‧ character line

WLD‧‧‧虛設字元線 WLD‧‧‧Dummy word line

WLDD‧‧‧字元線 WLDD‧‧‧ character line

WLDDB‧‧‧字元線 WLDDB‧‧‧ character line

WLDDT‧‧‧字元線 WLDDT‧‧‧ character line

WLDSB‧‧‧字元線 WLDSB‧‧‧ character line

WLDST‧‧‧字元線 WLDST‧‧‧ character line

WLG‧‧‧字元線群 WLG‧‧‧ character line group

WLother‧‧‧字元線 WLother‧‧‧ character line

x‧‧‧頁面編號 X‧‧‧page number

xxh‧‧‧指令 Xxh‧‧ directive

圖1係顯示第1實施形態之3維積層型非揮發性半導體記憶裝置之電路構成之方塊圖。 Fig. 1 is a block diagram showing the circuit configuration of a three-dimensional laminated nonvolatile semiconductor memory device according to the first embodiment.

圖2係顯示第1實施形態之記憶體胞陣列。 Fig. 2 is a view showing the memory cell array of the first embodiment.

圖3係顯示第1實施形態之p-BiCS記憶體之1個區塊中,連接於1 條位元線之複數個U字型串之構成。 Fig. 3 is a view showing one block of the p-BiCS memory of the first embodiment, connected to one; The composition of a plurality of U-shaped strings of strip bits.

圖4係用以概略性顯示第1實施形態之驅動器與平面開關之關係之方塊圖。 Fig. 4 is a block diagram schematically showing the relationship between the driver and the plane switch of the first embodiment.

圖5係概略性顯示第1實施形態之CG驅動器之方塊圖。 Fig. 5 is a block diagram schematically showing a CG driver of the first embodiment.

圖6係第1實施形態之平面開關CGSW之CGN相關之開關之電路圖。 Fig. 6 is a circuit diagram of a CGN-related switch of the plane switch CCSW of the first embodiment.

圖7係第1實施形態之平面開關CGSW之CGD相關之開關之電路圖。 Fig. 7 is a circuit diagram of a CGD-related switch of the planar switch CCSW of the first embodiment.

圖8係第1實施形態之列解碼器之電路圖。 Fig. 8 is a circuit diagram of a decoder of the first embodiment.

圖9係顯示第1實施形態之半導體記憶裝置之編程動作時之CG映射之圖,且係顯示先前技術之編程及讀取動作時之CG映射之圖。 Fig. 9 is a view showing a CG map at the time of a program operation of the semiconductor memory device of the first embodiment, and showing a CG map at the time of programming and reading operations of the prior art.

圖10係顯示第1實施形態之半導體記憶裝置之讀取動作時之CG映射之圖。 Fig. 10 is a view showing a CG map at the time of a reading operation of the semiconductor memory device of the first embodiment.

圖11係顯示第1實施形態之半導體記憶裝置之抹除動作時之CG映射之圖。 Fig. 11 is a view showing a CG map at the time of erasing operation of the semiconductor memory device of the first embodiment.

圖12A係顯示抹除動作、編程動作、讀取動作時之區信號與CG驅動器之關係。 Fig. 12A shows the relationship between the zone signal and the CG driver when the erase operation, the program operation, and the read operation are performed.

圖12B係顯示開關信號與輸出信號之關係。 Fig. 12B shows the relationship between the switching signal and the output signal.

圖13係模式性顯示第2實施形態之半導體記憶裝置之基本構成之方塊圖。 Fig. 13 is a block diagram showing the basic configuration of the semiconductor memory device of the second embodiment.

圖14係顯示第2實施形態之存取統合動作之流程圖。 Fig. 14 is a flow chart showing the operation of access integration in the second embodiment.

圖15係圖示第2實施形態之半導體記憶裝置之不同平面內之區塊內之具有不同頁面序號之頁面上之資料並行地接受存取之情況者。 Fig. 15 is a view showing a case where data on a page having a different page number in a block in a different plane of the semiconductor memory device of the second embodiment is accessed in parallel.

圖16係顯示第3實施形態之存取統合動作之流程圖。 Fig. 16 is a flow chart showing the operation of access integration in the third embodiment.

圖17係圖示第3實施形態之半導體記憶裝置之不同平面內之區塊內之具有不同頁面序號之頁面上之資料並行地接受存取之情況者。 Fig. 17 is a view showing a case where data on a page having a different page number in a block in a different plane of the semiconductor memory device according to the third embodiment is accessed in parallel.

圖18(a)-(d)係顯示記憶體胞電晶體MT之臨限值分佈之圖表。 18(a)-(d) are graphs showing the distribution of the threshold value of the memory cell transistor MT.

圖19係顯示hSLC之專用參數。 Figure 19 shows the specific parameters of hSLC.

圖20係顯示第4實施形態之動作選項之讀取順序之圖。 Fig. 20 is a view showing a reading order of the operation options of the fourth embodiment.

圖21A係顯示SLC資料之讀取時之讀取動作波形。 Fig. 21A shows the waveform of the read operation when the SLC data is read.

圖21B係顯示MLC-Lower資料之讀取時之讀取動作波形。 Fig. 21B shows the waveform of the reading operation when the MLC-Lower data is read.

圖21C係顯示MLC-Upper資料之讀取時之讀取動作波形。 Fig. 21C shows the read operation waveform when the MLC-Upper data is read.

圖22A係顯示第4實施形態之動作選項A之SLC資料及hSLC資料之讀取時之讀取動作波形。 Fig. 22A is a view showing a reading operation waveform when the SLC data of the operation option A of the fourth embodiment and the hSLC data are read.

圖22B係顯示MLC-Lower資料及hSLC資料之讀取時之讀取動作波形。 Fig. 22B shows the read operation waveforms when the MLC-Lower data and the hSLC data are read.

圖22C係顯示MLC-Upper資料及hSLC資料之讀取時之讀取動作波形。 Fig. 22C shows the read operation waveforms when the MLC-Upper data and the hSLC data are read.

圖23A係顯示第4實施形態之動作選項B之SLC資料及hSLC資料之讀取時之讀取動作波形。 Fig. 23A is a view showing a reading operation waveform when the SLC data and the hSLC data of the operation option B of the fourth embodiment are read.

圖23B係顯示MLC-Lower資料及hSLC資料之讀取時之讀取動作波形。 Fig. 23B shows the read operation waveforms when the MLC-Lower data and the hSLC data are read.

圖23C係顯示MLC-Upper資料及hSLC資料之讀取時之讀取動作波形。 Fig. 23C shows the reading action waveforms when the MLC-Upper data and the hSLC data are read.

圖24係顯示指令順序所使用之記號與記號意義之表。 Fig. 24 is a table showing the meaning of symbols and symbols used in the order of instructions.

圖25係顯示hSLC資料之編程時之指令順序、與其內部動作波形之圖。 Figure 25 is a diagram showing the sequence of instructions for programming the hSLC data and its internal motion waveforms.

圖26係顯示hSLC資料之讀取時之指令順序、與其內部動作波形之圖。 Fig. 26 is a view showing the sequence of instructions and the internal operation waveforms when the hSLC data is read.

圖27係顯示資料輸出順序之具體例。 Fig. 27 is a view showing a specific example of the data output order.

圖28係顯示多平面存取時所使用之位址例。 Figure 28 is a diagram showing an example of an address used in multi-plane access.

圖29A係顯示讀取動作時選擇字元線WL在虛設字元線WLD附近 之情形之各信號之圖。 Figure 29A shows the selection word line WL near the dummy word line WLD when the read operation is performed. A diagram of each signal in the case.

圖29B係顯示使用於各字元線WL之CG驅動器之種類、與施加於字元線WL之電壓之圖。 Fig. 29B is a view showing the kind of CG driver used for each word line WL and the voltage applied to the word line WL.

圖30係概略性顯示第6實施形態之CG驅動器之方塊圖。 Fig. 30 is a block diagram schematically showing a CG driver of a sixth embodiment.

圖31係顯示構成記憶體胞陣列之複數個區塊。 Figure 31 shows a plurality of blocks constituting a memory cell array.

圖32係顯示構成記憶體胞陣列之複數個區塊。 Figure 32 shows a plurality of blocks constituting a memory cell array.

圖33係記憶體胞陣列之俯視圖。 Figure 33 is a top plan view of a memory cell array.

圖34係代表性顯示由字元線組構成之邏輯區塊。 Figure 34 is a representative representation of a logical block formed by a group of word lines.

圖35係模式性顯示第8實施形態之NAND型快閃記憶體之基本構成之方塊圖。 Fig. 35 is a block diagram showing the basic configuration of the NAND flash memory of the eighth embodiment.

圖36係用以概略性顯示第8實施形態之CG驅動器與平面開關之關係之方塊圖。 Figure 36 is a block diagram for schematically showing the relationship between the CG driver and the plane switch of the eighth embodiment.

圖37係概略性顯示第8實施形態之CG驅動器之方塊圖。 Fig. 37 is a block diagram schematically showing the CG driver of the eighth embodiment.

圖38係第8實施形態之平面開關CGSW之CGD相關之開關之電路圖。 Fig. 38 is a circuit diagram showing a CGD-related switch of the planar switch CCSW of the eighth embodiment.

圖39係顯示第8實施形態之半導體記憶裝置之編程動作時之CG映射之圖。 Fig. 39 is a view showing a CG map at the time of a programming operation of the semiconductor memory device of the eighth embodiment.

圖40係顯示第8實施形態之半導體記憶裝置之讀取動作時之CG映射之圖。 Fig. 40 is a view showing a CG map at the time of a reading operation of the semiconductor memory device of the eighth embodiment.

圖41係顯示第8實施形態之半導體記憶裝置之抹除動作時之CG映射之圖。 Fig. 41 is a view showing a CG map at the time of erasing operation of the semiconductor memory device of the eighth embodiment.

圖42A係顯示抹除動作、編程動作、讀取動作時之區信號、與CG驅動器之關係。 Fig. 42A shows the relationship between the erase signal, the program operation, and the area signal at the time of the read operation, and the CG driver.

圖42B係顯示開關信號、與輸出信號之關係。 Fig. 42B shows the relationship between the switching signal and the output signal.

圖43A係顯示讀取動作時選擇字元線WL在虛設字元線WLD附近之情形之各信號之圖。 Fig. 43A is a view showing signals of a case where the word line WL is selected in the vicinity of the dummy word line WLD at the time of the read operation.

圖43B係顯示使用於各字元線WL之CG驅動器之種類、與施加於字元線WL之電壓之圖。 Fig. 43B is a view showing the kind of the CG driver used for each word line WL and the voltage applied to the word line WL.

圖44係概略性顯示第10實施形態之CG驅動器之方塊圖。 Fig. 44 is a block diagram schematically showing a CG driver of a tenth embodiment.

以下,參照圖式說明實施形態。另,以下說明中,對具有大致相同之功能及構成之構成要件標註相同符號,且僅在必要之情形時進行重複說明。又,圖式之尺寸比例並非限定於圖示之比例。又,以下所示之各實施形態係例示用以使該實施形態之技術思想具體化之裝置或方法者,實施形態之技術思想並非將構成零件之材質、形狀、構造、配置等特定於下述者。實施形態之技術思想可在專利申請範圍中加以多種變更。 Hereinafter, embodiments will be described with reference to the drawings. In the following description, constituent elements having substantially the same functions and configurations are denoted by the same reference numerals, and the description will be repeated only when necessary. Further, the dimensional ratio of the drawings is not limited to the illustrated ratio. In addition, each embodiment shown below exemplifies an apparatus or method for embodying the technical idea of the embodiment, and the technical idea of the embodiment is not to specify the material, shape, structure, arrangement, and the like of the components. By. The technical idea of the embodiment can be variously changed within the scope of the patent application.

(第1實施形態) (First embodiment)

<非揮發性半導體記憶裝置之構成> <Composition of non-volatile semiconductor memory device>

圖1係顯示第1實施形態之3維積層型非揮發性半導體記憶裝置(記憶體系統)之電路構成之方塊圖。 Fig. 1 is a block diagram showing the circuit configuration of a three-dimensional laminated nonvolatile semiconductor memory device (memory system) according to the first embodiment.

近年來,作為旨在提高NAND(Not-AND:反及)型快閃記憶體之位元密度之方法,有人提出積層有記憶體胞之積層型NAND快閃記憶體、及所謂BiCS(Bit-Cost Scalable)快閃記憶體之記憶體。 In recent years, as a method for increasing the bit density of a NAND (Not-AND) type flash memory, a laminated type NAND flash memory in which a memory cell is laminated and a so-called BiCS (Bit- Cost Scalable) The memory of flash memory.

本實施形態之3維積層型非揮發性半導體記憶裝置(記憶體系統)1具有BiCS快閃記憶體(亦簡稱為快閃記憶體或記憶體裝置等)10、及記憶體控制器20。 The three-dimensional laminated nonvolatile semiconductor memory device (memory system) 1 of the present embodiment has a BiCS flash memory (also simply referred to as a flash memory or a memory device) 10 and a memory controller 20.

此處,BiCS快閃記憶體10具備記憶體胞陣列11、感測放大器12、行位址緩衝器/行解碼器13、列解碼器21、控制電路15、電壓產生電路16、平面開關17、列位址緩衝器18、及輸出入緩衝器19。 Here, the BiCS flash memory 10 is provided with a memory cell array 11, a sense amplifier 12, a row address buffer/row decoder 13, a column decoder 21, a control circuit 15, a voltage generating circuit 16, a plane switch 17, The column address buffer 18 and the input/output buffer 19.

記憶體胞陣列11係如下所述,為複數個記憶體胞朝垂直方向積層之3維積層型非揮發性半導體記憶裝置。於記憶體胞陣列11之一部 分,記憶例如用以置換不良行之行置換資訊、決定各種動作模式之參數、或用以產生各種電壓之微調結果、及表示不良區塊之壞塊資訊。又,於記憶體胞陣列11之一部分,亦可記憶表示後天產生之壞塊之壞塊資訊。 The memory cell array 11 is a three-dimensional laminated nonvolatile semiconductor memory device in which a plurality of memory cells are stacked in the vertical direction as described below. In the memory cell array 11 The memory is used, for example, to replace bad row replacement information, to determine parameters of various operation modes, or to fine-tune various voltages, and to display bad block information of bad blocks. Moreover, in one part of the memory cell array 11, the bad block information indicating the bad block generated by the day after tomorrow can also be memorized.

<感測放大器及行位址緩衝器/行解碼器> <Sensor Amplifier and Row Address Buffer/Row Decoder>

如圖1所示,感測放大器12係經由位元線BL而與記憶體胞陣列11連接。記憶體胞陣列11包含複數個區塊BLK。例如位於相同區塊BLK內之記憶體胞電晶體MT之資料係統一抹除。與此相對,資料之讀取及寫入係就任一區塊BLK之任一記憶體組中共通連接於任一字元線WL之複數個記憶體胞電晶體MT統一進行。將該單位稱為「頁面」。感測放大器12在讀取時以頁面單位對記憶體胞陣列11之資料進行讀取,在寫入時以頁面單位將資料寫入於記憶體胞陣列11。 As shown in FIG. 1, the sense amplifier 12 is connected to the memory cell array 11 via a bit line BL. The memory cell array 11 includes a plurality of blocks BLK. For example, the data system of the memory cell transistor MT located in the same block BLK is erased. On the other hand, the reading and writing of data is performed uniformly for a plurality of memory cell transistors MT commonly connected to any of the word lines WL in any of the memory groups of any of the blocks BLK. This unit is called a "page." The sense amplifier 12 reads the data of the memory cell array 11 in page units at the time of reading, and writes the data to the memory cell array 11 in page units at the time of writing.

又,感測放大器12亦與行位址緩衝器/行解碼器13連接。感測放大器12將自行位址緩衝器/行解碼器13所輸入之選擇信號進行解碼,且選擇位元線BL之任一者進行驅動。 Also, the sense amplifier 12 is also coupled to the row address buffer/row decoder 13. The sense amplifier 12 decodes the selection signal input from the self address buffer/row decoder 13 and selects any one of the bit lines BL to drive.

感測放大器12亦兼具保持寫入時之資料之資料鎖存器之功能。本實施形態之感測放大器12具有複數個資料鎖存器電路。於例如1個胞中記憶2位元資料之多位階胞(MLC:Multi-level cell)所應用之感測放大器具有3個資料鎖存器。 The sense amplifier 12 also functions as a data latch that holds the data at the time of writing. The sense amplifier 12 of the present embodiment has a plurality of data latch circuits. A sense amplifier applied to, for example, a multi-level cell (MLC) that memorizes 2-bit data in one cell has three data latches.

行位址緩衝器/行解碼器13暫時地儲存自記憶體控制器20經由輸出入緩衝器19輸入之行位址信號,且根據行位址信號將選擇位元線BL之任一者之選擇信號輸出於感測放大器12。 The row address buffer/row decoder 13 temporarily stores the row address signal input from the memory controller 20 via the output-in buffer 19, and selects one of the selected bit lines BL according to the row address signal. The signal is output to the sense amplifier 12.

<列解碼器> <column decoder>

列解碼器21將經由列位址緩衝器18輸入之列位址信號進行解碼,且選擇記憶體胞陣列之字元線WL及選擇閘極線SGD、SGS進行驅動。又,該列解碼器21具有選擇記憶體胞陣列11之區塊之部分與選 擇頁面之部分。 The column decoder 21 decodes the column address signals input through the column address buffer 18, and selects the word line WL of the memory cell array and the selection gate lines SGD, SGS to drive. Moreover, the column decoder 21 has a portion of the block of the selected memory cell array 11 and is selected Select the part of the page.

另,本實施形態之BiCS快閃記憶體10具有未圖示之外部輸出入端子I/O,經由該外部輸出入端子I/O進行輸出入緩衝器19與記憶體控制器20之資料授受。經由外部輸出入端子I/O輸入之位址信號係經由列位址緩衝器18而輸出於列解碼器21及行位址緩衝器/行解碼器13。 In addition, the BiCS flash memory 10 of the present embodiment has an external input/output terminal I/O (not shown), and the data is transmitted and received by the input/output buffer 19 and the memory controller 20 via the external input/output terminal I/O. The address signals input via the external input/output terminal I/O are output to the column decoder 21 and the row address buffer/row decoder 13 via the column address buffer 18.

<控制電路> <control circuit>

控制電路15基於經由記憶體控制器20供給之各種外部控制信號(寫入啟用信號WEn、讀取啟用信號REn、指令鎖存器啟用信號CLE、位址鎖存器啟用信號ALE等)與指令CMD,進行資料之寫入及抹除之順序控制、及控制讀取動作。 The control circuit 15 is based on various external control signals (write enable signal WEn, read enable signal REn, command latch enable signal CLE, address latch enable signal ALE, etc.) supplied with the memory controller 20 and the instruction CMD. , sequence control of data writing and erasing, and control reading operation.

<電壓產生電路> <voltage generating circuit>

電壓產生電路16由控制電路15控制,產生寫入、抹除及讀取之動作所需之各種內部電壓。該電壓產生電路16具有用以產生較電源電壓更高之內部電壓之升壓電路。 The voltage generating circuit 16 is controlled by the control circuit 15 to generate various internal voltages required for the operations of writing, erasing, and reading. The voltage generating circuit 16 has a boosting circuit for generating an internal voltage higher than the power supply voltage.

<平面開關> <plane switch>

平面開關17連接於控制電路15、電壓產生電路16等。平面開關17基於來自控制電路15等之信號,而切換來自電壓產生電路16之電壓之輸出目標,且供給於列解碼器21。 The planar switch 17 is connected to the control circuit 15, the voltage generating circuit 16, and the like. The plane switch 17 switches the output target of the voltage from the voltage generating circuit 16 based on the signal from the control circuit 15 or the like, and supplies it to the column decoder 21.

<記憶體控制器> <memory controller>

記憶體控制器20通過主機介面30與主機(亦稱為主機裝置或外部機器等)2連接。記憶體控制器20輸出BiCS快閃記憶體10之動作所需之指令等,且進行BiCS快閃記憶體10之讀取、寫入或抹除。該記憶體控制器20包含CPU(central processing unit:中央處理單元)、ROM(Read only memory:唯讀記憶體)、RAM(Random Access Memory:隨機存取記憶體)、或ECC(Error Correcting Code:錯誤修正碼)電路。 The memory controller 20 is connected to a host (also referred to as a host device or an external device, etc.) 2 through a host interface 30. The memory controller 20 outputs an instruction or the like required for the operation of the BiCS flash memory 10, and performs reading, writing, or erasing of the BiCS flash memory 10. The memory controller 20 includes a CPU (central processing unit), a ROM (Read only memory), a RAM (Random Access Memory), or an ECC (Error Correcting Code: Error correction code) circuit.

<主機> <host>

主機2經由主機介面30對記憶體控制器20發行資料之讀取請求或寫入請求。如此,以下將主機2與記憶體控制器20間所交換之資料稱為使用者資料。使用者資料係一般於每512位元組等之特定單位分配被稱為邏輯位址之唯一序號而予以管理。 The host 2 issues a read request or a write request to the memory controller 20 via the host interface 30. Thus, the data exchanged between the host 2 and the memory controller 20 is hereinafter referred to as user data. User data is generally managed by assigning a unique serial number called a logical address to a specific unit of 512 bytes or the like.

<記憶體胞陣列> <Memory Cell Array>

圖2係顯示第1實施形態之記憶體胞陣列11。另,為簡化說明,圖2將字元線WL之層數設為4層。 Fig. 2 shows a memory cell array 11 of the first embodiment. In addition, in order to simplify the description, FIG. 2 sets the number of layers of the word line WL to four layers.

圖2係顯示本實施形態之記憶體胞陣列11之元件構造例之立體圖。本實施形態之記憶體胞陣列為將鄰接之串聯連接之複數個記憶體胞之下端以被稱為導管連接之電晶體連接之p-BiCS記憶體。 Fig. 2 is a perspective view showing an example of the structure of an element cell array 11 of the present embodiment. The memory cell array of the present embodiment is a p-BiCS memory in which a plurality of memory cells connected in series adjacent to each other are connected by a transistor called a catheter connection.

記憶體胞陣列11具有m×n個(m、n為自然數)NAND串MS。圖2係顯示m=6、n=2之一例。各NAND串MS係將鄰接之串聯連接之複數個電晶體(MTr0~MTr7)之下端進行導管連接,且於上端配置有源極側選擇電晶體SGSTr及汲極側選擇電晶體SGDTr。 The memory cell array 11 has m × n (m, n is a natural number) NAND string MS. Fig. 2 shows an example of m = 6 and n = 2. Each NAND string MS is connected to a lower end of a plurality of transistors (MTr0 to MTr7) connected in series adjacent to each other, and a source side selective transistor SGSTr and a drain side selection transistor SGDTr are disposed at the upper end.

在本實施形態之非揮發性半導體記憶裝置中,構成NAND串MS之記憶體電晶體MTr(以下稱為記憶體胞)係藉由積層複數層導電層而形成。各NAND串MS具有U字型半導體SC、字元線WL(WL0~WL7)、源極側選擇閘極線SGS、及汲極側選擇閘極線SGD。又,NAND串MS具有背閘極線BG。 In the nonvolatile semiconductor memory device of the present embodiment, the memory transistor MTr (hereinafter referred to as a memory cell) constituting the NAND string MS is formed by laminating a plurality of conductive layers. Each NAND string MS has a U-shaped semiconductor SC, word lines WL (WL0 to WL7), a source side selection gate line SGS, and a drain side selection gate line SGD. Also, the NAND string MS has a back gate line BG.

U字型半導體SC係自列方向觀察形成為U字型。U字型半導體SC具有相對於半導體基板Ba朝大致垂直方向延伸之一對柱狀部CL、及以使一對柱狀部CL之下端連結之方式所形成之連結部JP。 The U-shaped semiconductor SC is formed in a U shape as viewed from the column direction. The U-shaped semiconductor SC has a pair of columnar portions CL extending in a substantially vertical direction with respect to the semiconductor substrate Ba, and a connecting portion JP formed to connect the lower ends of the pair of columnar portions CL.

U字型半導體SC係以連結一對柱狀部CL之中心軸之直線於行方向成為平行之方式配置。又,U字型半導體SC係以於由列方向及行方向構成之面內成為矩陣狀之方式配置。 The U-shaped semiconductor SC is disposed such that a straight line connecting the central axes of the pair of columnar portions CL is parallel in the row direction. Further, the U-shaped semiconductor SC is arranged in a matrix shape in a plane formed by the column direction and the row direction.

各層之字元線WL於行方向上平行延伸。各層之字元線WL於行方向設置特定間隔,且彼此絕緣分離而形成為線狀。 The word lines WL of the respective layers extend in parallel in the row direction. The word lines WL of the respective layers are arranged at a specific interval in the row direction, and are insulated from each other to form a line.

設置於行方向之相同位置且沿列方向配置之記憶體胞(MTr0~MTr7)之閘極係連接於相同之字元線WL。各字元線WL係大致垂直地配置於NAND串MS。 The gates of the memory cells (MTr0 to MTr7) disposed at the same position in the row direction and arranged in the column direction are connected to the same word line WL. Each of the word lines WL is arranged substantially vertically in the NAND string MS.

汲極側選擇閘極線SGD設置於最上部之字元線WL之上方,且於列方向上平行延伸。源極側選擇閘極線SGS亦與汲極側選擇閘極線SGD相同,設置於最上部之字元線WL之上方,且於列方向上平行延伸。 The drain side selection gate line SGD is disposed above the uppermost word line WL and extends in parallel in the column direction. The source side selection gate line SGS is also disposed above the uppermost word line WL and in parallel in the column direction, similarly to the drain side selection gate line SGD.

又,源極側選擇電晶體SGSTr係連接於共通源極線SL,汲極側選擇電晶體SGDTr係連接於最上層之位元線BL。 Further, the source side selection transistor SGSTr is connected to the common source line SL, and the drain side selection transistor SGDTr is connected to the uppermost bit line BL.

<串之構成> <Structure of string>

圖3係顯示一般之p-BiCS記憶體之1個區塊中,連接於1條位元線之複數個U字型串之構成。該p-BiCS記憶體具有例如m(m為1以上之整數)層之字元線,複數個U字型串連接於1條位元線BL。以分別連接於複數條位元線BL之U字型串構成1區塊。 Fig. 3 is a view showing a configuration of a plurality of U-shaped strings connected to one bit line in one block of a general p-BiCS memory. The p-BiCS memory has, for example, a word line of m (m is an integer of 1 or more), and a plurality of U-shaped strings are connected to one bit line BL. A block is formed by a U-shaped string respectively connected to a plurality of bit lines BL.

以下,於各實施形態中,將具有共通之字元線之串之集合稱為物理區塊(Physical block)。又,於各實施形態中,區塊並非係指抹除單位。資料之抹除可以例如共有源極線SL之串單位或其他單位執行。 Hereinafter, in each of the embodiments, a set of strings having common word lines is referred to as a physical block. Further, in each of the embodiments, the block does not mean the erase unit. The erase of the data can be performed, for example, in a string unit of the source line SL or other units.

另,記憶體胞陣列11之構成係由美國專利申請案第12/407,403號(2009年3月19日申請)、美國專利申請案第12/406,524號(2009年3月18日申請)、美國專利申請案第13/816,799號(2011年9月22日申請)、美國專利申請案第12/532,030號(2009年3月23日申請)等予以揭示。本申請案包含該等美國專利申請案之全部內容。 In addition, the memory cell array 11 is composed of US Patent Application No. 12/407,403 (filed on March 19, 2009), U.S. Patent Application Serial No. 12/406,524 (filed on March 18, 2009), Patent Application No. 13/816,799 (filed on Sep. 22, 2011), and U.S. Patent Application Serial No. 12/532,030 (filed on March 23, 2009) are hereby incorporated. This application contains the entire contents of these U.S. patent applications.

<第1實施形態之驅動器之構成> <Configuration of Driver of First Embodiment>

圖4係用以概略性顯示第1實施形態之驅動器、與平面開關之關係之方塊圖。圖5係概略性顯示第1實施形態之CG驅動器之方塊圖。 Fig. 4 is a block diagram schematically showing the relationship between the driver and the plane switch of the first embodiment. Fig. 5 is a block diagram schematically showing a CG driver of the first embodiment.

於圖4中,為簡單起見,而就記憶體胞陣列11具有兩個平面之情形進行說明。且,於本實施形態中,就一個平面具有4區塊之情形進行說明。 In Fig. 4, for the sake of simplicity, the case where the memory cell array 11 has two planes will be described. Further, in the present embodiment, a case where one plane has four blocks will be described.

如圖4所示,電壓產生電路16具備電源供應器161、CG驅動器(亦稱為字元線驅動器)162、及SG驅動器163。電源供應器161將電力供給於CG驅動器162、SG驅動器163、及其他電路。 As shown in FIG. 4, the voltage generating circuit 16 includes a power supply 161, a CG driver (also referred to as a word line driver) 162, and an SG driver 163. The power supply 161 supplies power to the CG driver 162, the SG driver 163, and other circuits.

如圖5所示,CG驅動器162具備CGN驅動器162b、162d、CGD驅動器162c、及CGU驅動器162e,且若為P-BiCS,則進而具備CGBG驅動器162c。CGN驅動器以1條為單位驅動儲存資料之字元線WL(亦稱為DataWL)。 As shown in FIG. 5, the CG driver 162 includes CGN drivers 162b and 162d, a CGD driver 162c, and a CGU driver 162e. Further, if it is a P-BiCS, it further includes a CGBG driver 162c. The CGN driver drives the word line WL (also referred to as DataWL) that stores data in units of one.

如下所述,在NAND型半導體記憶裝置之編程動作時,重要的是對選擇字元線WLi(0以上之整數)上不進行寫入之胞之通道,自字元線WL閘極施加升壓以免產生通道電流之控制。因此,以可將NAND串中非選擇字元線WL(i±6)~WL(i±9)條左右之範圍之電壓控制為最佳之方式設計,且以晶片評估進行最佳設定並量產化。用於此之驅動器係CGN驅動器。 As described below, in the programming operation of the NAND type semiconductor memory device, it is important to apply a boost from the word line WL gate to the channel of the cell in which the word line WLi (an integer of 0 or more) is not written. In order to avoid the control of channel current. Therefore, it is possible to control the voltage in the range of the unselected word line WL(i±6)~WL(i±9) in the NAND string to be optimal, and to optimally set the amount by wafer evaluation. Production. The driver used for this is a CGN driver.

可研究,在NAND串之字元線WL條數為例如32條之NAND型半導體記憶裝置中,對1條儲存資料之字元線WL準備專用之1台CGN驅動器,無論對哪條字元線WL進行編程時,對其前後之字元線WL,皆可選擇最佳之電壓進行施加。然而,在NAND串之字元線WL條數增加至64條以上之情形時,若對1條字元線WL準備1台CGN驅動器,則隨著字元線WL之條數增加,CGN驅動器亦增加。其結果會產生晶片面積增加之問題。 It can be studied that in a NAND type semiconductor memory device in which the number of word lines WL of the NAND string is, for example, 32, a dedicated CGN driver is prepared for one word line WL for storing data, regardless of which word line is used. When WL is programmed, the optimum voltage can be applied to the word line WL before and after it. However, when the number of word lines WL of the NAND string is increased to 64 or more, if one CGN driver is prepared for one word line WL, as the number of word lines WL increases, the CGN driver also increase. As a result, there is a problem that the wafer area is increased.

於本實施形態中,根據選擇字元線WL資訊(區),適當切換可驅 動非選擇字元線WL(i±6)~WL(i±9)條左右之CGN驅動器、與集中驅動其以外之字元線WL之後述之CGU驅動器。將此稱為CGN驅動器之解碼方式,藉此,即使NAND串之WL條數增加至64~128以上,仍可將CGN驅動器之台數保持在16台~24台左右,從而可抑制晶片面積。 In this embodiment, according to the selection of the word line WL information (area), the appropriate drive can be switched. The CGN driver of the non-selected word line WL (i ± 6) ~ WL (i ± 9) and the CGU driver described later with the word line WL other than the driving are collectively driven. This is called the decoding method of the CGN driver, whereby even if the number of WLs of the NAND string is increased to 64 to 128 or more, the number of CGN drivers can be maintained at about 16 to 24, thereby suppressing the wafer area.

由於CGN驅動器係以分割單位切換連接,故以例如CGNA驅動器<0>~<3>(集中表述為<3:0>等)、CGNB驅動器<3:0>、CGNC驅動器<3:0>、CGND驅動器<3:0>之方式分組。另,以下,不區分CGNA驅動器<3:0>、CGNB驅動器<3:0>、CGNC驅動器<3:0>、CGND驅動器<3:0>之情形時,簡稱為CGN驅動器或CGN*等。 Since the CGN driver switches the connection in units of division, for example, CGNA drivers <0> to <3> (concentrated as <3:0>, etc.), CGNB drivers <3:0>, CGNC drivers <3:0>, Grouped by CGND driver <3:0>. In the following, when the CGNA driver <3:0>, the CGNB driver <3:0>, the CGNC driver <3:0>, and the CGND driver <3:0> are not distinguished, it is simply referred to as a CGN driver or CGN*.

如圖5所示,第1實施形態之CG驅動器162具備VCGSEL電路162a、CGN驅動器162b、162d(總計16台)、CGD驅動器162c(總計4台)、CGBG驅動器162c、及CGU驅動器162e。CGU驅動器162e以外之CG驅動器輸出電壓VCGSEL、VUSEL1、VUSEL2、及VSS之任一者之電壓。CGU驅動器162e輸出電壓VUSEL1、VUSEL2、及VSS。VCGSEL電路162a、CGN驅動器162b、162d、CGD驅動器162c、CGBG驅動器162c、及CGU驅動器162e係由來自控制電路15之控制信號予以控制。 As shown in FIG. 5, the CG driver 162 of the first embodiment includes a VCGSEL circuit 162a, CGN drivers 162b and 162d (16 in total), a CGD driver 162c (four in total), a CGBG driver 162c, and a CGU driver 162e. The CG driver other than the CGU driver 162e outputs voltages of any of the voltages VCGSEL, VUSEL1, VUSEL2, and VSS. The CGU driver 162e outputs voltages VUSEL1, VUSEL2, and VSS. The VCGSEL circuit 162a, the CGN drivers 162b, 162d, the CGD driver 162c, the CGBG driver 162c, and the CGU driver 162e are controlled by control signals from the control circuit 15.

電壓VCGSEL係由VCGSEL電路162a選擇之電壓。於VCGSEL電路162a,輸入例如電壓VPGM及VCGRV,VCGSEL電路162a根據控制電路15之控制信號選擇一者。 The voltage VCGSEL is the voltage selected by the VCGSEL circuit 162a. The VCGSEL circuit 162a inputs, for example, voltages VPGM and VCGRV, and the VCGSEL circuit 162a selects one based on the control signal of the control circuit 15.

電壓VPGM係在於選擇胞進行編程時施加於選擇字元線WLi之電壓(胞編程電壓)。電壓VCGRV係在讀取或編程驗證時施加於選擇字元線WLi之電壓(胞讀取電壓)。電壓VUSEL1係編程時通道升壓用之電壓VPASS1。讀取、或編程驗證時,施加於非選擇字元線WL(i±1)之電壓VREADK。電壓VUSEL2係編程時通道升壓用之電壓VPASS2。讀 取、或編程驗證時,係施加於選擇字元線WLi及非選擇字元線WL(i±1)以外之非選擇字元線WL之電壓VREAD。電壓VCELSRC及VCPWELL係連接於記憶體胞陣列11。 The voltage VPGM is based on the voltage (cell programming voltage) applied to the selected word line WLi when the cell is programmed. The voltage VCGRV is a voltage (cell read voltage) applied to the selected word line WLi at the time of reading or program verification. The voltage VUSEL1 is the voltage VPASS1 used for channel boosting during programming. The voltage VREADK applied to the non-selected word line WL(i±1) when reading or programming verification. The voltage VUSEL2 is the voltage VPASS2 used for channel boosting during programming. read In the case of program or program verification, the voltage VREAD applied to the non-selected word line WL other than the selected word line WLi and the unselected word line WL(i±1). The voltages VCELSRC and VCPWELL are connected to the memory cell array 11.

如圖5所示,各個CGN驅動器162b、162d包含選擇電源供應器161所產生之各種字元線WL施加用電壓進行輸出之具有開關功能之電路。 As shown in FIG. 5, each of the CGN drivers 162b and 162d includes a circuit having a switching function for selecting a voltage applied by a plurality of word lines WL generated by the power supply 161.

CGD驅動器162c以1條為單位驅動不儲存資料之字元線WL(亦稱為DummyWL)。CGD驅動器具備CGDDT驅動器、CGDDB驅動器、CGDSB驅動器、及CGDST驅動器。在本實施例之讀取動作中,CGDDT、CGDST驅動器選擇例如電壓VREADK輸出,CGDDB、CGDSB驅動器選擇VREAD輸出。又,以下,在不區分CGDDT驅動器、CGDDB驅動器、CGDSB驅動器、及CGDST驅動器之情形時,簡稱為CGD驅動器、或CGD*等。 The CGD driver 162c drives the word line WL (also referred to as DummyWL) that does not store data in units of one. The CGD driver has a CGDDT driver, a CGDDB driver, a CGDSB driver, and a CGDST driver. In the read operation of this embodiment, the CGDDT and CGDST drivers select, for example, the voltage VREADK output, and the CGDDB and CGDSB drivers select the VREAD output. In the following, when the CGDDT driver, the CGDDB driver, the CGDSB driver, and the CGDST driver are not distinguished, it is simply referred to as a CGD driver or CGD*.

CGU驅動器162e係可選之電壓較少但具有驅動力之驅動器。在編程或讀取動作時,距離選擇字元線WL較遠之字元線WL只要一律以相同電位驅動即可,因此使用CGU驅動器。 The CGU driver 162e is an optional driver with less voltage but driving force. In the programming or reading operation, the word line WL farther from the selected word line WL is only required to be driven at the same potential, so the CGU driver is used.

在本實施形態之記憶體胞陣列11中,於U字串(Strings)之底面設置有背閘極,CGBG驅動器162c係為驅動該背閘極而使用。 In the memory cell array 11 of the present embodiment, a back gate is provided on the bottom surface of the U-string (Strings), and the CGBG driver 162c is used to drive the back gate.

SG驅動器163係將電力供給於記憶體胞陣列11之選擇閘極等之驅動器。 The SG driver 163 supplies power to a driver such as a selection gate of the memory cell array 11.

平面開關17於記憶體胞陣列11之每個平面,設置有平面開關CGSW、及平面開關SGSW。更具體而言,平面開關17對應於平面<0>,具備平面開關CGSW171a、平面開關SGSW171b,且對應於平面<1>,具備平面開關CGSW172a、平面開關SGSW172b。 The plane switch 17 is provided with a plane switch CCSSW and a plane switch SGSW on each plane of the memory cell array 11. More specifically, the plane switch 17 includes a plane switch CGSW 171a and a plane switch SGSW 171b corresponding to the plane <0>, and includes a plane switch CGSW 172a and a plane switch SGSW 172b corresponding to the plane <1>.

平面開關CGSW171a自控制電路15接收區信號ZONE_P0<3:0>、模式信號MODE_P0<1:0>、CGD*SW_P0。又,平面開關 CGSW171a自CGNA驅動器<3:0>、CGNB驅動器<3:0>、CGNC驅動器<3:0>、CGND驅動器<3:0>、CGDDT驅動器、CGDDB驅動器、CGDSB驅動器、CGDST驅動器、CGBG驅動器、及CGU驅動器接收信號。且,平面開關CGSW171a基於來自控制電路15之信號,將自CG驅動器162接收之信號供給於列解碼器21。又,平面開關SGSW171b基於來自控制電路15之信號,將自SG驅動器163接收之SGS信號及SGD信號供給於列解碼器21。 The plane switch CCSW 171a receives the zone signal ZONE_P0<3:0>, the mode signals MODE_P0<1:0>, and CGD*SW_P0 from the control circuit 15. Again, the plane switch CGSW171a from CGNA driver <3:0>, CGNB driver <3:0>, CGNC driver <3:0>, CGND driver <3:0>, CGDDT driver, CGDDB driver, CGDSB driver, CGDST driver, CGBG driver, and The CGU driver receives the signal. Further, the plane switch CCSW 171a supplies the signal received from the CG driver 162 to the column decoder 21 based on the signal from the control circuit 15. Further, the plane switch SGSW 171b supplies the SGS signal and the SGD signal received from the SG driver 163 to the column decoder 21 based on the signal from the control circuit 15.

列解碼器21於每個平面設置有專用之列解碼器。更具體而言,列解碼器21具備:與平面<0>對應之列解碼器211、及與平面<1>對應之列解碼器212。 The column decoder 21 is provided with a dedicated column decoder for each plane. More specifically, the column decoder 21 includes a column decoder 211 corresponding to the plane <0> and a column decoder 212 corresponding to the plane <1>.

列解碼器211自控制電路15接收信號BLKADD_P0<1:0>、及信號RDEC_P0。又,列解碼器211自平面開關CGSW171a經由信號線CGI<31:0>、CGDDTI、CGDDBI、CGDSBI、CGDSTI、及CGBGI接收信號。再者,列解碼器211自平面開關SGSW171b經由信號線SGSI、SGDI、USGSI、及USGDI接收信號。列解碼器211基於接收信號,將信號供給於平面<0>。又,列解碼器212與列解碼器211同樣地動作。 The column decoder 211 receives the signals BLKADD_P0<1:0> and the signal RDEC_P0 from the control circuit 15. Further, the column decoder 211 receives signals from the plane switch CCSW 171a via the signal lines CGI<31:0>, CGDDTI, CGDDBI, CGDSBI, CGDSTI, and CGBGI. Furthermore, the column decoder 211 receives signals from the plane switches SGSW 171b via the signal lines SGSI, SGDI, USGSI, and USGDI. The column decoder 211 supplies a signal to the plane <0> based on the received signal. Further, the column decoder 212 operates in the same manner as the column decoder 211.

<平面開關CGSW之CGN相關之開關之構成> <Configuration of CGN-related switches of the planar switch CGSW>

其次,使用圖6概略性說明第1實施形態之平面開關CGSW之CGN相關之開關之構成。圖6係第1實施形態之平面開關CGSW之CGN相關之開關之電路圖。 Next, the configuration of the CGN-related switch of the planar switch CSWW of the first embodiment will be schematically described using FIG. Fig. 6 is a circuit diagram of a CGN-related switch of the plane switch CCSW of the first embodiment.

例如,於本實施形態中,平面開關CGSW171a具備開關17a0~17a7、17b0~17b7、17c0~17c7。 For example, in the present embodiment, the plane switch CCSW171a includes switches 17a0 to 17a7, 17b0 to 17b7, and 17c0 to 17c7.

於開關17a0、17a4之電壓路徑之一端輸入CGNA<3:0>,於開關17a1、17a5之電壓路徑之一端輸入CGNB<3:0>。又,於開關17a2、17a6之電壓路徑之一端輸入CGNC<3:0>,於開關17a3、 17a7之電壓路徑之一端輸入CGND<3:0>。 CGNA<3:0> is input to one of the voltage paths of the switches 17a0, 17a4, and CGNB<3:0> is input to one of the voltage paths of the switches 17a1, 17a5. Further, CGNC<3:0> is input to one of the voltage paths of the switches 17a2 and 17a6, and the switch 17a3, Input one of the voltage paths of 17a7 to CGND<3:0>.

又,開關17a0之電壓路徑之另一端連接於信號線CGI<3:0>,開關17a1之電壓路徑之另一端連接於信號線CGI<7:4>。又,開關17a2之電壓路徑之另一端連接於信號線CGI<11:8>,開關17a3之電壓路徑之另一端連接於信號線CGI<15:12>。再者,開關17a4之電壓路徑之另一端連接於信號線CGI<19:16>,開關17a5之電壓路徑之另一端連接於信號線CGI<23:20>。又,開關17a6之電壓路徑之另一端連接於信號線CGI<27:24>,開關17a7之電壓路徑之另一端連接於信號線CGI<31:28>。 Further, the other end of the voltage path of the switch 17a0 is connected to the signal line CGI<3:0>, and the other end of the voltage path of the switch 17a1 is connected to the signal line CGI<7:4>. Further, the other end of the voltage path of the switch 17a2 is connected to the signal line CGI<11:8>, and the other end of the voltage path of the switch 17a3 is connected to the signal line CGI<15:12>. Furthermore, the other end of the voltage path of the switch 17a4 is connected to the signal line CGI<19:16>, and the other end of the voltage path of the switch 17a5 is connected to the signal line CGI<23:20>. Further, the other end of the voltage path of the switch 17a6 is connected to the signal line CGI<27:24>, and the other end of the voltage path of the switch 17a7 is connected to the signal line CGI<31:28>.

於開關17b0、17b4之電壓路徑之一端輸入CGNC<3:0>,於開關17b1、17b5之電壓路徑之一端輸入CGND<3:0>。又,於開關17b2、17b6之電壓路徑之一端輸入CGNA<3:0>,於開關17b3、17b7之電壓路徑之一端輸入CGNB<3:0>。 CGNC<3:0> is input to one of the voltage paths of the switches 17b0 and 17b4, and CGND<3:0> is input to one of the voltage paths of the switches 17b1 and 17b5. Further, CGNA<3:0> is input to one of the voltage paths of the switches 17b2 and 17b6, and CGNB<3:0> is input to one of the voltage paths of the switches 17b3 and 17b7.

又,開關17b0之電壓路徑之另一端連接於信號線CGI<3:0>,開關17b1之電壓路徑之另一端連接於信號線CGI<7:4>。又,開關17b2之電壓路徑之另一端連接於信號線CGI<11:8>,開關17b3之電壓路徑之另一端連接於信號線CGI<15:12>。再者,開關17b4之電壓路徑之另一端連接於信號線CGI<19:16>,開關17b5之電壓路徑之另一端連接於信號線CGI<23:20>。又,開關17b6之電壓路徑之另一端連接於信號線CGI<27:24>,開關17b7之電壓路徑之另一端連接於信號線CGI<31:28>。 Further, the other end of the voltage path of the switch 17b0 is connected to the signal line CGI<3:0>, and the other end of the voltage path of the switch 17b1 is connected to the signal line CGI<7:4>. Further, the other end of the voltage path of the switch 17b2 is connected to the signal line CGI<11:8>, and the other end of the voltage path of the switch 17b3 is connected to the signal line CGI<15:12>. Furthermore, the other end of the voltage path of the switch 17b4 is connected to the signal line CGI<19:16>, and the other end of the voltage path of the switch 17b5 is connected to the signal line CGI<23:20>. Further, the other end of the voltage path of the switch 17b6 is connected to the signal line CGI<27:24>, and the other end of the voltage path of the switch 17b7 is connected to the signal line CGI<31:28>.

於開關17c0~17c7之電壓路徑之一端輸入CGU。開關17c0之電壓路徑之另一端連接於信號線CGI<3:0>,開關17c1之電壓路徑之另一端連接於信號線CGI<7:4>。又,開關17c2之電壓路徑之另一端連接於信號線CGI<11:8>,開關17c3之電壓路徑之另一端連接於信號線CGI<15:12>。再者,開關17c4之電壓路徑之另一端連接於信 號線CGI<19:16>,開關17c5之電壓路徑之另一端連接於信號線CGI<23:20>。又,開關17c6之電壓路徑之另一端連接於信號線CGI<27:24>,開關17c7之電壓路徑之另一端連接於信號線CGI<31:28>。 The CGU is input to one of the voltage paths of the switches 17c0 to 17c7. The other end of the voltage path of the switch 17c0 is connected to the signal line CGI<3:0>, and the other end of the voltage path of the switch 17c1 is connected to the signal line CGI<7:4>. Further, the other end of the voltage path of the switch 17c2 is connected to the signal line CGI<11:8>, and the other end of the voltage path of the switch 17c3 is connected to the signal line CGI<15:12>. Furthermore, the other end of the voltage path of the switch 17c4 is connected to the letter. The line CGI<19:16>, the other end of the voltage path of the switch 17c5 is connected to the signal line CGI<23:20>. Further, the other end of the voltage path of the switch 17c6 is connected to the signal line CGI<27:24>, and the other end of the voltage path of the switch 17c7 is connected to the signal line CGI<31:28>.

又,於開關17a0~a7、17b0~b7、17c0~c7之各個閘極,輸入來自控制電路15之兩種信號。更具體而言,於開關17a0~a7、17b0~b7、17c0~c7之閘極,輸入基於模式信號MODE<1:0>、及區信號ZONE<2:0>之信號。關於該模式信號MODE<1:0>、及區信號ZONE<2:0>,於後述進行說明。 Further, two kinds of signals from the control circuit 15 are input to the respective gates of the switches 17a0 to a7, 17b0 to b7, and 17c0 to c7. More specifically, signals based on the mode signals MODE<1:0> and the zone signals ZONE<2:0> are input to the gates of the switches 17a0 to a7, 17b0 to b7, and 17c0 to c7. The mode signal MODE<1:0> and the zone signal ZONE<2:0> will be described later.

<平面開關CGSW之CGD相關之開關之構成> <Configuration of CGD-related switches of the planar switch CGSW>

其次,使用圖7概略性說明第1實施形態之平面開關CGSW之CGD相關之開關之構成。圖7係第1實施形態之平面開關CGSW之CGD相關之開關之電路圖。 Next, the configuration of the CGD-related switch of the planar switch CCSSW of the first embodiment will be schematically explained using FIG. Fig. 7 is a circuit diagram of a CGD-related switch of the planar switch CCSW of the first embodiment.

例如,本實施形態中平面開關CGSW171a具備開關17n、17o、17p、17q、17r、17s、17t、及17u。 For example, in the present embodiment, the plane switch CCSW 171a includes switches 17n, 17o, 17p, 17q, 17r, 17s, 17t, and 17u.

於開關17n之電壓路徑之一端輸入CGDDT,電壓路徑之另一端連接於信號線CGDDTI,於閘極輸入來自控制電路15之CGDDTSW信號。 The CGDDT is input to one end of the voltage path of the switch 17n, the other end of the voltage path is connected to the signal line CGDDTI, and the CGDDTSW signal from the control circuit 15 is input to the gate.

於開關17o之電壓路徑之一端輸入CGDDB,電壓路徑之另一端連接於信號線CGDDTI,於閘極輸入來自控制電路15之CGDDTSW信號。 The CGDDB is input to one end of the voltage path of the switch 17o, the other end of the voltage path is connected to the signal line CGDDTI, and the CGDDTSW signal from the control circuit 15 is input to the gate.

於開關17p之電壓路徑之一端輸入CGDDT,電壓路徑之另一端連接於信號線CGDDBI,於閘極輸入來自控制電路15之CGDDBSW信號。 The CGDDT is input to one end of the voltage path of the switch 17p, the other end of the voltage path is connected to the signal line CGDDBI, and the CGDDBSW signal from the control circuit 15 is input to the gate.

於開關17q之電壓路徑之一端輸入CGDDB,電壓路徑之另一端連接於信號線CGDDBI,於閘極輸入來自控制電路15之CGDDBSW信 號。 The CGDDB is input to one end of the voltage path of the switch 17q, the other end of the voltage path is connected to the signal line CGDDBI, and the CGDDBSW letter from the control circuit 15 is input at the gate. number.

於開關17r之電壓路徑之一端輸入CGDST,電壓路徑之另一端連接於信號線CGDSTI,於閘極輸入來自控制電路15之CGDSTSW信號。 CGDST is input to one end of the voltage path of the switch 17r, and the other end of the voltage path is connected to the signal line CGDSTI, and the CGDSDSW signal from the control circuit 15 is input to the gate.

於開關17s之電壓路徑之一端輸入CGDSB,電壓路徑之另一端連接於信號線CGDSTI,於閘極輸入來自控制電路15之CGDSTSW信號。 The CGDSB is input to one end of the voltage path of the switch 17s, the other end of the voltage path is connected to the signal line CGDSTI, and the CGDSDSW signal from the control circuit 15 is input to the gate.

於開關17t之電壓路徑之一端輸入CGDST,電壓路徑之另一端連接於信號線CGDSBI,於閘極輸入來自控制電路15之CGDSBSW信號。 CGDST is input to one end of the voltage path of the switch 17t, and the other end of the voltage path is connected to the signal line CGDSBI, and the CGDSBSW signal from the control circuit 15 is input to the gate.

於開關17u之電壓路徑之一端輸入CGDSB,電壓路徑之另一端連接於信號線CGDSBI,於閘極輸入來自控制電路15之CGDSBSW信號。 The CGDSB is input to one end of the voltage path of the switch 17u, and the other end of the voltage path is connected to the signal line CGDSBI, and the CGDSBSW signal from the control circuit 15 is input to the gate.

<列解碼器之構成> <Structure of Column Decoder>

其次,使用圖8概略性說明第1實施形態之列解碼器之構成。圖8係第1實施形態之列解碼器之電路圖。 Next, the configuration of the column decoder of the first embodiment will be schematically explained using Fig. 8 . Fig. 8 is a circuit diagram of a decoder of the first embodiment.

列解碼器21基於區塊位址BLKAD<0>、BLKAD<1>、及解碼結果RDEC等選擇區塊BLK。 The column decoder 21 selects the block BLK based on the block address BLKAD<0>, BLKAD<1>, and the decoding result RDEC.

即,將與所選擇之記憶體胞電晶體MT包含之區塊BLK對應之MOS電晶體21k、21l、21m、21n設為開啟狀態。 That is, the MOS transistors 21k, 21l, 21m, and 21n corresponding to the block BLK included in the selected memory cell transistor MT are turned on.

例如,區塊位址BLKAD<0>為“H”、區塊位址<1>為“L”之情形時,於逆變器21a輸入“H”,於逆變器21b輸入“L”。 For example, when the block address BLKAD<0> is "H" and the block address <1> is "L", "H" is input to the inverter 21a, and "L" is input to the inverter 21b.

接著,對NAND閘極21c,自逆變器21a輸入“L”,且自逆變器21b輸入“H”。因於NAND閘極21c輸入有“L”,故不論RDEC,NAND閘極21c輸出“H”。因此,逆變器21d對MOS電晶體21k之閘極輸出“L”。 Next, for the NAND gate 21c, "L" is input from the inverter 21a, and "H" is input from the inverter 21b. Since the NAND gate 21c is input with "L", the NAND gate 21c outputs "H" regardless of the RDEC. Therefore, the inverter 21d outputs "L" to the gate of the MOS transistor 21k.

又,對NAND閘極21e,作為區塊位址BLKAD<0>輸入“H”,且自逆變器21b輸入“H”。若RDEC為“H”,則NAND閘極21c輸出“L”。因此,逆變器21f對MOS電晶體21l之閘極輸出“H”。因此,若RDEC為“H”,則選擇區塊BLK1。 Further, for the NAND gate 21e, "H" is input as the block address BLKAD<0>, and "H" is input from the inverter 21b. If RDEC is "H", the NAND gate 21c outputs "L". Therefore, the inverter 21f outputs "H" to the gate of the MOS transistor 21l. Therefore, if RDEC is "H", the block BLK1 is selected.

又,對NAND閘極21g,自逆變器21a輸入“L”,且作為區塊位址BLKAD<1>輸入“L”。因於NAND閘極21g輸入有“L”,故不論RDEC,NAND閘極21g輸出“H”。因此,逆變器21h對MOS電晶體21m之閘極輸出“L”。 Further, for the NAND gate 21g, "L" is input from the inverter 21a, and "L" is input as the block address BLKAD<1>. Since the NAND gate 21g is input with "L", the NAND gate 21g outputs "H" regardless of the RDEC. Therefore, the inverter 21h outputs "L" to the gate of the MOS transistor 21m.

又,對NAND閘極21i,作為區塊位址BLKAD<0>輸入“H”,且作為區塊位址BLKAD<1>輸入“L”。因於NAND閘極21i輸入有“L”,故不論RDEC,NAND閘極21i輸出“H”。因此,逆變器21j對MOS電晶體21n之閘極輸出“L”。 Further, for the NAND gate 21i, "H" is input as the block address BLKAD<0>, and "L" is input as the block address BLKAD<1>. Since the NAND gate 21i is input with "L", the NAND gate 21i outputs "H" regardless of the RDEC. Therefore, the inverter 21j outputs "L" to the gate of the MOS transistor 21n.

<CG映射之例> <Example of CG mapping>

使用圖9~圖11,概略性說明第1實施形態之CG映射。圖9係顯示第1實施形態之半導體記憶裝置之編程動作時之CG映射之圖。圖10係顯示第1實施形態之半導體記憶裝置之讀取動作時之CG映射之圖。圖11係顯示第1實施形態之半導體記憶裝置之抹除動作時之CG映射之圖。在圖9~圖11中,縱軸表示CG驅動器對字元線WL之分配,橫軸表示選擇字元線WL。 The CG map of the first embodiment will be schematically described with reference to Figs. 9 to 11 . Fig. 9 is a view showing a CG map at the time of a programming operation of the semiconductor memory device of the first embodiment. Fig. 10 is a view showing a CG map at the time of a reading operation of the semiconductor memory device of the first embodiment. Fig. 11 is a view showing a CG map at the time of erasing operation of the semiconductor memory device of the first embodiment. In FIGS. 9 to 11, the vertical axis represents the allocation of the CG driver to the word line WL, and the horizontal axis represents the selected word line WL.

另,於第1實施形態中,CGDST驅動器始終將專用電壓施加於字元線WLDST,CGDSB驅動器始終將專用電壓施加於字元線WLDSB。又,於第1實施形態中,CGDDB驅動器始終將專用電壓施加於字元線WLDDB,CGDDT驅動器始終將專用電壓施加於字元線WLDDT。再者,於第1實施形態中,CGBG驅動器始終將專用電壓施加於背閘極BG。 Further, in the first embodiment, the CGDST driver always applies a dedicated voltage to the word line WLDST, and the CGDSB driver always applies a dedicated voltage to the word line WLDSB. Further, in the first embodiment, the CGDDB driver always applies a dedicated voltage to the word line WLDDB, and the CGDDT driver always applies a dedicated voltage to the word line WLDDT. Furthermore, in the first embodiment, the CGBG driver always applies a dedicated voltage to the back gate BG.

<編程動作時之CG映射之例> <Example of CG mapping when programming action>

首先,就編程動作時之CG映射進行說明。如圖9所示,根據所選擇之字元線WL,適當切換對字元線WL施加電壓之CG驅動器。 First, the CG mapping at the time of programming operation will be described. As shown in FIG. 9, a CG driver that applies a voltage to the word line WL is appropriately switched in accordance with the selected word line WL.

圖9之橫軸所示之區係自控制電路15指示將CGN驅動器之任一者或CGU驅動器連接於各DataWL之資訊。例如,藉由自記憶體控制器20對BiCS快閃記憶體10輸入存取之種類(編程/讀取/抹除等)、與進行存取之平面及頁面位址,控制電路15對該平面之平面開關電路發送下述之MODE<1:0>及ZONE<3:0>,而指示各CGN、CGU驅動器如何與CGI即DataWL連接。 The area shown by the horizontal axis of Fig. 9 is from the control circuit 15 indicating information for connecting any of the CGN drivers or the CGU driver to each DataWL. For example, the control circuit 15 controls the plane by inputting the type of access (programming/reading/erasing, etc.) of the BiCS flash memory 10 from the memory controller 20, and the plane and page address to be accessed. The planar switch circuit sends the following MODE<1:0> and ZONE<3:0>, and indicates how each CGN and CGU driver is connected to the CGI or DataWL.

例如,對字元線WLDST、WL0~WL9進行編程時,對字元線WL0~3自CGNA驅動器施加期望之電壓,同樣,對字元線WL4~7自CGNB驅動器施加期望之電壓,對字元線WL8~11自CGNC驅動器施加期望之電壓,對字元線WL12~15自CGND驅動器施加期望之電壓,對字元線WL16~31自CGU驅動器施加期望之電壓。 For example, when the word lines WLDST, WL0 WL WL9 are programmed, the desired voltage is applied from the CGNA driver to the word lines WL0 WL3, and the desired voltage is applied from the CGNB driver to the word lines WL4 -7. Lines WL8~11 apply the desired voltage from the CGNC driver, apply the desired voltage to the word line WL12~15 from the CGND driver, and apply the desired voltage to the word line WL16~31 from the CGU driver.

在對字元線WL10~WL13進行編程時,以將CGNA驅動器連接於字元線WL16~19且將CGU驅動器連接於字元線WL0~3之方式產生切換。如此般進行以進行編程之字元線WL預先決定之CGN/CGU驅動器對CGI之連接,該連接之組合成為區PZ0~PZ4之5種。 When the word lines WL10 to WL13 are programmed, switching is performed such that the CGNA driver is connected to the word lines WL16 to 19 and the CGU driver is connected to the word lines WL0 to WL3. The CGN/CGU driver-to-CGI connection determined in advance by the word line WL for programming is performed in such a manner that the combination of the connections becomes five types of the areas PZ0 to PZ4.

將該區PZ0~PZ4之各者稱為編程時之區。為簡化切換電路,自記憶體控制器20對平面開關電路17輸入之ZONE信號,係輸入與後述之讀取時之區統合之簡單表示為「區」之信號。此時,編程時與讀取時之區係儘可能採取相同之區域,從而認為以CGN驅動器數、區數所大體決定之CG驅動器系統之電路面積成為最小。 Each of the areas PZ0 to PZ4 is referred to as a zone at the time of programming. In order to simplify the switching circuit, the ZONE signal input from the memory controller 20 to the plane switching circuit 17 is a signal which is simply expressed as a "region" in combination with a region to be read later. At this time, the area between the programming and the reading is as close as possible to the area, and it is considered that the circuit area of the CG driver system which is roughly determined by the number of CGN drivers and the number of zones is minimized.

選擇區PZ0之情形時,區信號為“000”或“001”,選擇區PZ1之情形時,區信號為“010”。選擇區PZ2之情形時,區信號為“011”,選擇區PZ3之情形時,區信號為“100”。選擇區PZ4之情形時,區信號為“101”、“110”、“111”。 When the zone PZ0 is selected, the zone signal is "000" or "001", and when the zone PZ1 is selected, the zone signal is "010". When the zone PZ2 is selected, the zone signal is "011", and when the zone PZ3 is selected, the zone signal is "100". When the area PZ4 is selected, the area signals are "101", "110", and "111".

於本實施形態中,設計為藉由使用合計16台CGN驅動器,可相對編程時之選擇字元線WLi(i:0~31),將非選擇字元線WL(i+1)~非選擇字元線WL(i+6)(參照圖中之D6)、或非選擇字元線WL(i-1)~非選擇字元線WL(i-6)(參照圖中之S6)之電壓藉由CGN驅動器最佳地控制電壓。 In this embodiment, it is designed to select the word line WLi (i: 0 to 31) relative to programming by using a total of 16 CGN drivers, and to select the non-selected word line WL(i+1) to be non-selected. Voltage of word line WL(i+6) (refer to D6 in the figure) or unselected word line WL(i-1) to non-selected word line WL(i-6) (refer to S6 in the figure) The voltage is optimally controlled by the CGN driver.

<讀取動作時之CG映射之例> <Example of CG mapping when reading action>

其次,就讀取動作時之CG映射進行說明。 Next, the CG mapping at the time of reading operation will be described.

NAND型半導體記憶裝置之讀取時,只要對選擇字元線WLi施加讀取電壓,對非選擇字元線WL(i±1)之字元線WL施加VREADK,且對其他字元線WL施加被稱為VREAD之電壓即可,可使必須控制之字元線WL之範圍相較於編程時變窄,從而減少必要之CGN驅動器之台數。由於為進行編程動作而準備16~24台左右,故存在於讀取時可以CGU驅動器代用WL電壓施加之CGN驅動器。於本實施形態中,在多平面讀取動作中,以於各平面選擇互不相同之WL之方式有效活用自該CGN代用為CGU及藉此所確保之CGN驅動器。 When reading the NAND type semiconductor memory device, as long as a read voltage is applied to the selected word line WLi, VREADK is applied to the word line WL of the unselected word line WL(i±1), and is applied to the other word lines WL. The voltage referred to as VREAD can be used to narrow the range of word lines WL that must be controlled compared to programming, thereby reducing the number of necessary CGN drivers. Since 16 to 24 units are prepared for the programming operation, there is a CGN driver that can be applied to the CGU driver by the WL voltage at the time of reading. In the present embodiment, in the multi-plane reading operation, the CGN which is used as the CGU and the CGN driver secured by the CGN is effectively utilized in such a manner that WLs different from each other are selected for each plane.

如圖10所示,根據所選擇之字元線WL,適當切換對字元線WL施加電壓之CG驅動器。 As shown in FIG. 10, a CG driver that applies a voltage to the word line WL is appropriately switched in accordance with the selected word line WL.

如圖10之橫軸所示,設定有讀取時之區RZ0~RZ6。 As shown on the horizontal axis of Fig. 10, the areas RZ0 to RZ6 at the time of reading are set.

具體而言,對字元線WLDST、WL0~WL5進行讀取時,對字元線WL0~3以CGNA驅動器或CGNC驅動器施加期望之電壓,同樣,對字元線WL4~7以CGNB驅動器或CGND驅動器施加期望之電壓,且對字元線WL8~31以CGU驅動器施加期望之電壓。與此相對,對字元線WL6~WL9進行讀取時,以將CGNA驅動器或CGNC驅動器連接於字元線WL8~11且將CGU連接於字元線WL0~3之方式產生切換。進行以進行讀取之字元線WL預先決定之連接,該連接之組合成為區RZ0~RZ6之7種。將該區RZ0~RZ6之各者稱為讀取時之區。 Specifically, when the word lines WLDST and WL0 to WL5 are read, a desired voltage is applied to the word lines WL0 to WL by a CGNA driver or a CGNC driver, and similarly, the word lines WL4 to 7 are CGNB drivers or CGND. The driver applies the desired voltage and applies the desired voltage to the word lines WL8-31 in a CGU driver. On the other hand, when the word lines WL6 to WL9 are read, switching is performed such that the CGNA driver or the CGNC driver is connected to the word lines WL8 to 11 and the CGU is connected to the word lines WL0 to WL9. The connection of the word line WL to be read is determined in advance, and the combination of the connections becomes seven types of the regions RZ0 to RZ6. Each of the regions RZ0 to RZ6 is referred to as a region at the time of reading.

選擇區RZ0之情形時,區信號為“000”,選擇區RZ1之情形時,區信號為“001”。選擇區RZ2之情形時,區信號為“010”,選擇區RZ3之情形時,區信號為“011”。選擇區RZ4之情形時,區信號為“100”或“101”,選擇區RZ5之情形時,區信號為“110”。且,選擇區RZ6之情形時,區信號為“111”。 When the zone RZ0 is selected, the zone signal is "000", and when the zone RZ1 is selected, the zone signal is "001". When the zone RZ2 is selected, the zone signal is "010", and when the zone RZ3 is selected, the zone signal is "011". When the zone RZ4 is selected, the zone signal is "100" or "101", and when the zone RZ5 is selected, the zone signal is "110". Also, in the case of selecting the zone RZ6, the zone signal is "111".

如此般,於本實施形態中,至少可相對選擇字元線WLi(i:0~31)藉由CGN驅動器切換非選擇字元線WL(i+1)(參照圖中D1)、或非選擇字元線WL(i-1)(參照圖中S1)之電壓,且藉由以CGNA及CGNB、以及CGNC及CGND分配為用以將電壓施加於不同平面之字元線WL之驅動器,可於多平面讀取時自由指定兩種字元線WL。具有例如16台CGN驅動器之情形時,為可於多平面讀取時選擇兩種字元線WL,將16個CGN驅動器分為4組,且將4組中之2組分配為1條字元線WL之選擇用,將剩餘2組分配為另1條字元線WL之選擇用。 In this manner, in the present embodiment, at least the non-selected word line WL(i+1) can be switched by the CGN driver with respect to the selected word line WLi (i: 0 to 31) (refer to D1 in the figure), or non-selected. The voltage of the word line WL(i-1) (refer to S1 in the figure), and by using CGNA and CGNB, and CGNC and CGND as drivers for applying voltages to word lines WL of different planes, Two word lines WL are freely specified when reading in a multi-plane. In the case of, for example, 16 CGN drivers, in order to select two word lines WL for multi-plane reading, 16 CGN drivers are divided into 4 groups, and 2 of the 4 groups are assigned as 1 character. The selection of the line WL is used to allocate the remaining two groups as the selection of the other word line WL.

具有4平面之情形時,藉由將16台CGN驅動器分為8組,可進行同樣之多平面讀取。皆可不增加電路面積較大之CGN驅動器之台數而實現。 In the case of a 4-plane, the same multi-plane reading can be performed by dividing 16 CGN drivers into 8 groups. It can be realized without increasing the number of CGN drivers with a large circuit area.

<抹除動作時之CG映射之例> <Example of CG mapping when erasing action>

其次,就抹除動作時之CG映射進行說明。 Next, the CG mapping at the time of erasing the action will be described.

如圖11所示,在抹除動作時,CGNA驅動器於字元線WL0~WL3、WL16~WL19施加電壓,CGNB驅動器於字元線WL4~WL7、WL20~WL23施加電壓。又,CGNC驅動器於字元線WL8~WL11、WL24~WL27施加電壓,CGND驅動器於字元線WL12~WL15、WL28~WL31施加電壓。另,因本實施形態與抹除動作無關,故省略詳細說明。 As shown in FIG. 11, during the erase operation, the CGNA driver applies voltages to the word lines WL0 to WL3 and WL16 to WL19, and the CGNB driver applies voltages to the word lines WL4 to WL7 and WL20 to WL23. Further, the CGNC driver applies voltages to the word lines WL8 to WL11 and WL24 to WL27, and the CGND driver applies voltages to the word lines WL12 to WL15 and WL28 to WL31. In addition, since this embodiment is not related to the erasing operation, detailed description is omitted.

<CG之連接表格> <CG connection form>

其次,使用圖12A及圖12B說明CG之連接表格。圖12A顯示對抹 除動作、編程動作、讀取動作時之區信號,自CGN/CGU驅動器向CGI之連接關係。圖12B顯示開關信號與輸出信號之關係。 Next, the connection table of CG will be described using FIG. 12A and FIG. 12B. Figure 12A shows the wipe In addition to actions, programming actions, zone signals when reading actions, connections from CGN/CGU drives to CGI. Figure 12B shows the relationship between the switching signal and the output signal.

如圖12A所示,抹除時,模式信號MODE<1:0>為“00”,編程時,模式信號MODE<1:0>為“01”。讀取時(Read-A),模式信號MODE<1:0>為“10”,讀取時(Read-B),模式信號MODE<1:0>為“11”。圖中之讀取時(Read-A)與讀取時(Read-B)雖然讀取動作本身實質上不變,但所使用之CG驅動器各不相同。 As shown in FIG. 12A, when erasing, the mode signal MODE<1:0> is "00", and when programming, the mode signal MODE<1:0> is "01". At the time of reading (Read-A), the mode signals MODE<1:0> are "10", and when reading (Read-B), the mode signals MODE<1:0> are "11". In the reading (Read-A) and reading (Read-B), although the reading operation itself is substantially unchanged, the CG drivers used are different.

圖12B顯示自CGD驅動器向CGD*I之連接關係。信號CGDDTSW為“0”之情形時,信號線CGDDTI輸出為CGDDT驅動器之輸出,信號CGDDTSW為“1”之情形時,信號線CGDDTI輸出為CGDDB驅動器之輸出。又,信號CGDDBSW為“0”之情形時,信號線CGDDBI輸出為CGDDB驅動器之輸出,信號CGDDBSW為“1”之情形時,信號線CGDDBI輸出為CGDDT驅動器之輸出。信號CGDSTSW為“0”之情形時,信號線CGDSTI輸出為CGDST驅動器之輸出,信號CGDSTSW為“1”之情形時,信號線CGDSTI輸出為CGDSB驅動器之輸出。又,信號CGDSBSW為“0”之情形時,信號線CGDSBI輸出為CGDSB驅動器之輸出,信號CGDSBSW為“1”之情形時,信號線CGDSBI輸出為CGDST驅動器之輸出。 Figure 12B shows the connection relationship from the CGD driver to CGD*I. When the signal CGDDTSW is "0", the signal line CGDDTI is output as the output of the CGDDT driver, and when the signal CGDDDSW is "1", the signal line CGDDTI is output as the output of the CGDDB driver. Further, when the signal CGDDBSW is "0", the signal line CGDDBI is output as the output of the CGDDB driver, and when the signal CGDDBSW is "1", the signal line CGDDBI is output as the output of the CGDDT driver. When the signal CGDSDSW is "0", the signal line CGDSTI is output as the output of the CGDST driver, and when the signal CGDDSSW is "1", the signal line CGDSTI is output as the output of the CGDSB driver. Further, when the signal CGDSBSW is "0", the signal line CGDSBI is output as the output of the CGDSB driver, and when the signal CGDSBSW is "1", the signal line CGDSBI is output as the output of the CGDST driver.

<第1實施形態之作用效果> <Effects of the first embodiment>

根據上述之第1實施形態,BiCS快閃記憶體10具備可重寫資料之複數個記憶體胞、及與複數個記憶體胞連接之複數條字元線WL。又,BiCS快閃記憶體10具備:頁面,其具有與相同字元線WL連接之複數個記憶體胞;平面,其具備複數個頁面;及記憶體胞陣列11,其具有複數個平面。再者,BiCS快閃記憶體10具備:複數個字元線驅動器(CG驅動器)162,其將電壓施加於複數條字元線WL;及複數個平面開關17,其設置於每個平面,且將字元線驅動器162分配於每條字 元線WL。記憶體控制器20對存在於BiCS快閃記憶體10內之某個頁面進行存取時,對快閃記憶體指定識別該頁面所屬之平面之序號(稱為平面序號)、識別相同平面內各區塊之序號(稱為區塊序號)、及識別相同區塊內各頁面之序號(稱為頁面序號)。以下,將其等分別稱為「平面序號」、「區塊序號」、及「頁面序號」。 According to the first embodiment described above, the BiCS flash memory 10 includes a plurality of memory cells rewritable data and a plurality of word lines WL connected to a plurality of memory cells. Further, the BiCS flash memory 10 includes a page having a plurality of memory cells connected to the same word line WL, a plane having a plurality of pages, and a memory cell array 11 having a plurality of planes. Furthermore, the BiCS flash memory 10 is provided with: a plurality of word line drivers (CG drivers) 162 that apply voltages to the plurality of word lines WL; and a plurality of plane switches 17 disposed on each plane, and A word line driver 162 is assigned to each word Yuan line WL. When the memory controller 20 accesses a certain page existing in the BiCS flash memory 10, the flash memory is assigned a number identifying the plane to which the page belongs (referred to as a plane number), and each of the same plane is identified. The serial number of the block (called the block number) and the serial number (called the page number) of each page in the same block. Hereinafter, these are referred to as "plane number", "block number", and "page number", respectively.

然而,於近年來之NAND型快閃記憶體中,隨著其微細化或多值(multi-level:多位階)化發展,所需之電壓種類亦增加。例如著眼於資料之編程時之情形時,應施加於非選擇字元線之電壓亦有複數種。 However, in recent years, in NAND-type flash memories, as the miniaturization or multi-level (multi-level) development progresses, the types of voltages required have also increased. For example, when focusing on the programming of data, there are a plurality of voltages that should be applied to the unselected word lines.

例如,施加於選擇字元線WLi(例如i為0~31)之電壓於編程時為VPGM,施加於在選擇閘極線SGD側與選擇字元線WLi鄰接之非選擇字元線WL(i+1)之電壓於編程時為VPASSH。又,施加於其他非選擇字元線WL之電壓於編程時有VPASS、VPASSL、VGP、VISO等。 For example, the voltage applied to the selected word line WLi (for example, i is 0 to 31) is VPGM at the time of programming, and is applied to the non-selected word line WL (i) adjacent to the selected word line WLi on the selected gate line SGD side. The voltage of +1) is VPASSH when programming. Further, the voltage applied to the other non-selected word line WL has VPASS, VPASSL, VGP, VISO, and the like at the time of programming.

例如,施加於選擇字元線WLi之電壓於讀取時為VCGRV,施加於在選擇閘極線SGD側與選擇字元線WLi鄰接之非選擇字元線WL(i+1)或WL(i-1)之電壓於編程時為VREADK。又,施加於其他非選擇字元線WL之電壓於讀取時為VREAD等。 For example, the voltage applied to the selected word line WLi is VCGRV at the time of reading, and is applied to the non-selected word line WL(i+1) or WL(i) adjacent to the selected word line WLi on the selected gate line SGD side. The voltage of -1) is VREADK when programmed. Further, the voltage applied to the other non-selected word line WL is VREAD or the like at the time of reading.

因此,必須以可選擇輸出各種電壓之CGN驅動器控制與選擇字元線WL鄰接之字元線WL。然而,CGN驅動器亦有電路面積較大之缺點。因此,必須以較少之CGN驅動器高效率地控制字元線WL。 Therefore, the word line WL adjacent to the selected word line WL must be controlled by a CGN driver that can selectively output various voltages. However, CGN drivers also have the disadvantage of having a large circuit area. Therefore, the word line WL must be efficiently controlled with fewer CGN drivers.

然而,於本實施形態中,針對鄰接於選擇字元線WL,且需要詳細之電壓之調整之字元線WL,可藉由平面開關17分配CGN驅動器。且,針對只要單純施加VPASS即可之其他字元線WL,可分配能藉由平面開關17選擇輸出之電壓種類較少,且電路面積較CGN驅動器要小之CGU驅動器。 However, in the present embodiment, the CGN driver can be allocated by the plane switch 17 for the word line WL adjacent to the selected word line WL and requiring detailed voltage adjustment. Further, for other word lines WL which can be simply applied with VPASS, a CGU driver which can select a type of voltage which can be selected by the plane switch 17 and has a smaller circuit area than a CGN driver can be allocated.

如此般,根據本實施形態,藉由設置平面開關17,且以區信號等控制平面開關,可以較少之CG驅動器有效率地控制字元線WL。 As described above, according to the present embodiment, by providing the plane switch 17 and controlling the plane switch by the area signal or the like, the CG driver can be efficiently controlled with the word line WL.

又,即使不藉由平面開關17等控制CG驅動器之切換,在產生對具有相同頁面序號x之不同之複數個平面P0、P1、...Pn之區塊序號B0、B1、...Bn之頁面(P0,B0,x)、(P1,B1,x)、...(Pn,Bn,x)同時進行存取之情形時,亦可統一該等存取請求且對快閃記憶體裝置發行,而進行並行存取。 Further, even if the switching of the CG driver is not controlled by the plane switch 17 or the like, the block numbers B0, B1, ... Bn of the plurality of planes P0, P1, ..., Pn having the same page number x are generated. When the pages (P0, B0, x), (P1, B1, x), ... (Pn, Bn, x) are simultaneously accessed, the access requests may be unified and the flash memory may be The device is issued and parallel access is performed.

然而,在產生對存在於不同之複數個平面P0、P1、...Pn所具有之區塊B0、B1、...Bn之屬於不同頁面序號x、y、...z之頁面(P0,B0,x)、(P1,B1,y)、...(Pn,Bn,z)之存取請求之情形時,因頁面序號不同之頁面有時屬於不同字元線,故,若不使用第1實施形態所說明之BiCS快閃記憶體10,則無法統一處理其等。 However, a page belonging to a different page number x, y, ... z of the blocks B0, B1, ... Bn which are present in the plurality of different planes P0, P1, ... Pn (P0) is generated. In the case of access requests of B0, x), (P1, B1, y), ... (Pn, Bn, z), pages with different page numbers sometimes belong to different word lines, so if not When the BiCS flash memory 10 described in the first embodiment is used, it is not possible to uniformly process the same.

因本實施形態之BiCS快閃記憶體10可藉由平面開關17,而於每個平面內將CG驅動器分配至適當之字元線WL,故可對位於不同之複數個平面內之頁面序號不同之頁面進行並行存取。即,於本實施形態之BiCS快閃記憶體10中,因字元線驅動器(CG驅動器)之制約,故不存在Program(編程)指令及Read(讀取)指令指定相同字元線WL且相同Lower/Upper之頁面之制約等。藉此,可改善NAND系統之性能。 Since the BiCS flash memory 10 of the present embodiment can allocate the CG driver to the appropriate word line WL in each plane by the plane switch 17, the page numbers in different planes can be different. The pages are accessed in parallel. That is, in the BiCS flash memory 10 of the present embodiment, due to the restriction of the word line driver (CG driver), there is no program (program) command and the Read (read) command designating the same word line WL and the same. The restrictions of the Lower/Upper page. Thereby, the performance of the NAND system can be improved.

(第2實施形態) (Second embodiment)

其次,說明第2實施形態。於第2實施形態中,就使用第1實施形態所說明之半導體記憶裝置之多平面存取進行說明。另,在第2實施形態中,關於具有與上述之第1實施形態大致相同之功能及構成之構成要件,標註相同符號,且僅在必要之情形時進行重複說明。 Next, a second embodiment will be described. In the second embodiment, multi-plane access using the semiconductor memory device described in the first embodiment will be described. In the second embodiment, the components having the same functions and configurations as those of the above-described first embodiment are denoted by the same reference numerals, and the description thereof will be repeated only when necessary.

<第2實施形態之半導體記憶裝置之構成> <Configuration of Semiconductor Memory Device According to Second Embodiment>

首先,使用圖13概略性說明第2實施形態之半導體記憶裝置之基本構成。圖13係模式性顯示第2實施形態之半導體記憶裝置之基本構成之方塊圖。 First, the basic configuration of the semiconductor memory device of the second embodiment will be schematically described using FIG. Fig. 13 is a block diagram showing the basic configuration of the semiconductor memory device of the second embodiment.

如圖13所示,記憶體控制器20進而具備邏輯物理轉換表格1a、及 寫入/讀取控制部1b。 As shown in FIG. 13, the memory controller 20 further includes a logical-physical conversion table 1a, and The write/read control unit 1b.

邏輯物理轉換表格1a係保持將具有自主機2通過主機介面30供給之邏輯位址之使用者資料儲存於BiCS快閃記憶體10內之哪個物理記憶體胞位置(物理位址)之資訊的表格。自主機2供給邏輯位址時,記憶體控制器20使用邏輯物理轉換表格1a,導出與所接收之邏輯位址對應之物理位址。 The logical-physical conversion table 1a is a table for maintaining information on which physical memory cell location (physical address) of the user data stored in the BiCS flash memory 10 having the logical address supplied from the host 2 through the host interface 30. . When the host 2 supplies the logical address, the memory controller 20 uses the logical physical conversion table 1a to derive the physical address corresponding to the received logical address.

寫入/讀取控制部1b可以此處未圖示之CPU等之硬體予以實現,亦可以於CPU及RAM上等進行動作之軟體予以實現。寫入/讀取控制部1b之詳細動作係予以後述。 The write/read control unit 1b can be realized by a hardware such as a CPU (not shown), or can be realized by a software that operates on a CPU or a RAM. The detailed operation of the write/read control unit 1b will be described later.

<第2實施形態之存取統合動作> <Access integration operation of the second embodiment>

其次,使用圖14、圖15,說明第2實施形態之存取統合動作。圖14係顯示第2實施形態之存取統合動作之流程圖。圖15係圖示對儲存於第2實施形態之BiCS快閃記憶體10之不同平面內之區塊內之具有不同頁面序號之頁面之資料並行存取之情況者。此處,為簡化,而將第i個平面之第j個區塊之第k個頁面表示為頁面(i,j,k)。 Next, the access integration operation of the second embodiment will be described with reference to Figs. 14 and 15 . Fig. 14 is a flow chart showing the operation of access integration in the second embodiment. Fig. 15 is a view showing a case where data parallel accesses of pages having different page numbers stored in blocks in different planes of the BiCS flash memory 10 of the second embodiment are illustrated. Here, for simplicity, the kth page of the jth block of the i-th plane is represented as a page (i, j, k).

[步驟S1001] [Step S1001]

記憶體控制器20接收來自主機2之存取請求(存取指令)。此處,所謂存取請求係包含讀取請求(讀取指令)與寫入請求(寫入指令)。 The memory controller 20 receives an access request (access command) from the host 2. Here, the access request includes a read request (read command) and a write request (write command).

[步驟S1002] [Step S1002]

記憶體控制器20在接收來自主機2之存取請求後,於可開始處理之時點,開始所接收之存取請求之處理。 After receiving the access request from the host 2, the memory controller 20 starts the processing of the received access request at the point in time at which processing can be started.

[步驟S1003] [Step S1003]

寫入/讀取控制部1b判定是否有複數個處理對象之存取請求。例如,記憶體控制器20具備例如未圖示之指令佇列區域等。該指令佇列區域保持自主機2所接收之指令。寫入/讀取控制部1b可參照保持於指令佇列區域之存取請求,可判定是否有複數個存取請求。 The write/read control unit 1b determines whether or not there is an access request for a plurality of processing targets. For example, the memory controller 20 includes, for example, a command queue area (not shown). The command queue area maintains instructions received from the host 2. The write/read control unit 1b can refer to the access request held in the command queue area to determine whether or not there are a plurality of access requests.

[步驟S1004] [Step S1004]

在步驟S1003中,寫入/讀取控制部1b判定為有複數個處理對象之存取請求之情形時,寫入/讀取控制部1b判定是否可統合複數個存取請求。若處理對象之複數個存取請求係針對相同BiCS快閃記憶體10之不同平面內之頁面者,則判定為該等存取請求可統合,若非此種情形,則判定為不可統合。更具體而言,關於處理對象之複數個存取請求,寫入/讀取控制部1b係分別參照存取目標之物理位址(於S1002中導出)。指定複數個存取請求之存取目標之物理位址不同之平面上之頁面,且存取內容同為讀取請求至寫入請求之情形時,判定為可統合該複數個存取請求。另一方面,不滿足以上條件之情形時,判定為不可統合。此處,所謂統合存取請求係指藉由一次對BiCS快閃記憶體之指令順序發行,而同時對有存取請求之複數個資料進行讀取動作至編程動作。 In the case where the write/read control unit 1b determines that there are a plurality of access requests to be processed in the step S1003, the write/read control unit 1b determines whether or not a plurality of access requests can be integrated. If the plurality of access requests of the processing object are for pages in different planes of the same BiCS flash memory 10, it is determined that the access requests can be integrated, and if not, the determination is not integrated. More specifically, regarding the plurality of access requests to be processed, the write/read control unit 1b refers to the physical address of the access target (derived in S1002). When a page on a plane different from the physical address of the access target of the plurality of access requests is specified, and the access content is the same as the read request to the write request, it is determined that the plurality of access requests can be integrated. On the other hand, when the above conditions are not satisfied, it is determined that the integration is not possible. Here, the integrated access request refers to the sequential issuance of the instructions to the BiCS flash memory, and simultaneously performs the reading operation to the programming operation on the plurality of data having the access request.

[步驟S1005] [Step S1005]

在步驟S1004中,寫入/讀取控制部1b判定為可統合複數個存取請求之情形時,寫入/讀取控制部1b統合複數個存取請求。 In step S1004, when the write/read control unit 1b determines that a plurality of access requests can be integrated, the write/read control unit 1b integrates a plurality of access requests.

[步驟S1006] [Step S1006]

在步驟S1003中,寫入/讀取控制部1b判定為處理對象之存取請求並非複數之情形時(即,處理對象之存取請求判定為1個之情形),寫入/讀取控制部1b基於處理對象之存取請求,進行對BiCS快閃記憶體10之存取。 In step S1003, when the write/read control unit 1b determines that the access request to be processed is not plural (that is, when the access request of the processing target is determined to be one), the write/read control unit 1b accesses the BiCS flash memory 10 based on the access request of the processing object.

在步驟S1004中,寫入/讀取控制部1b判定為不可統合複數個存取請求之情形時,寫入/讀取控制部1b基於各存取請求,逐次進行對BiCS快閃記憶體10之存取。 In step S1004, when the write/read control unit 1b determines that a plurality of access requests cannot be integrated, the write/read control unit 1b sequentially performs the BiCS flash memory 10 based on each access request. access.

寫入/讀取控制部1b統合複數個存取請求之情形時,寫入/讀取控制部1b基於統合之存取請求,進行對BiCS快閃記憶體10之存取(稱為 並行存取或多平面存取)。 When the write/read control unit 1b integrates a plurality of access requests, the write/read control unit 1b performs access to the BiCS flash memory 10 based on the integrated access request (referred to as Parallel access or multi-plane access).

使用圖15說明基於所統合之存取請求之對BiCS快閃記憶體10之存取。 Access to the BiCS flash memory 10 based on the integrated access request is illustrated using FIG.

如上所述,寫入/讀取控制部1b在處理對象之複數個存取請求為對相同BiCS快閃記憶體10之不同平面內之頁面者之情形時,統合複數個存取請求,且基於所統合之存取請求進行對BiCS快閃記憶體10之存取。圖15顯示基於所統合之存取請求對BiCS快閃記憶體10進行存取之情況。 As described above, the write/read control unit 1b integrates a plurality of access requests when a plurality of access requests of the processing target are pages in different planes of the same BiCS flash memory 10, and is based on The integrated access request performs access to the BiCS flash memory 10. Figure 15 shows the access to the BiCS flash memory 10 based on the integrated access request.

圖15係圖示有統合對存在於頁面(0,1,1)之使用者資料A之存取請求、對存在於頁面(1,2,0)之使用者資料B之存取請求、及對存在於頁面(n,1,2)之使用者資料C之存取請求,且基於所統合之存取請求進行存取。 Figure 15 is a diagram showing an access request for the user profile A existing on the page (0, 1, 1), an access request for the user profile B existing on the page (1, 2, 0), and An access request to the user profile C existing on the page (n, 1, 2), and access based on the integrated access request.

如圖15所示,於第2實施形態之半導體記憶裝置中,可對儲存於具有不同頁面序號之頁面(0,0,1)、(1,2,0)、...(n,1,2)之使用者資料A、B、C並行進行存取。另,所謂並行進行存取係指同時對有存取請求之使用者資料A、B、C所儲存之記憶體胞進行讀取動作至編程動作。 As shown in FIG. 15, in the semiconductor memory device of the second embodiment, pages (0, 0, 1), (1, 2, 0), ... (n, 1) having different page numbers can be stored. , 2) User data A, B, C are accessed in parallel. In addition, the parallel access means that the memory cell stored in the user data A, B, and C having the access request is simultaneously read to the programming operation.

<第2實施形態之作用效果> <Operation and Effect of Second Embodiment>

根據上述第2實施形態,使用可對第1實施形態所說明之位於不同之複數個平面內之頁面序號不同之頁面進行並行存取之BiCS快閃記憶體,統合對儲存於不同平面內之頁面序號不同之頁面之資料之存取請求,並並行進行存取。 According to the second embodiment described above, the BiCS flash memory that can be accessed in parallel in the pages of different page numbers in different planes described in the first embodiment is integrated, and the pages stored in different planes are integrated. Access requests for data on pages with different serial numbers and access in parallel.

如此,藉由統合複數個存取請求,可不必逐次進行資料存取,從而提高對BiCS快閃記憶體之資料存取之處理能力。 In this way, by integrating a plurality of access requests, it is not necessary to perform data access successively, thereby improving the processing capability of data access to the BiCS flash memory.

(第3實施形態) (Third embodiment)

其次,說明第3實施形態。於第3實施形態中,說明多平面存取 之其他例。另,於第3實施形態中,對具有與上述之第2實施形態大致相同之功能及構成之構成要件標註相同符號,且僅於必要之情形時進行重複說明。 Next, a third embodiment will be described. In the third embodiment, multi-plane access is explained. Other examples. In the third embodiment, the components having the same functions and configurations as those of the above-described second embodiment are denoted by the same reference numerals, and the description thereof will be repeated only when necessary.

<第3實施形態之存取統合動作> <Access integration operation of the third embodiment>

其次,使用圖16、圖17,說明第3實施形態之存取統合動作。圖16係顯示第3實施形態之存取統合動作之流程圖。圖17係圖示對儲存於第3實施形態之BiCS快閃記憶體10之不同平面內之區塊內之具有不同頁面序號之頁面之資料並行存取之情況者。一般而言,記憶體控制器20自主機2接收請求而對使用者資料進行存取時,利用與該使用者資料對應但並非使用者資料本身之某些資料作為次要資訊。以下,將此種記憶體控制器20為內部管理使用者資料而利用之資料稱為元資料。 Next, the access integration operation of the third embodiment will be described with reference to Figs. 16 and 17 . Fig. 16 is a flow chart showing the operation of access integration in the third embodiment. Fig. 17 is a view showing a case where data parallel accesses of pages having different page numbers stored in blocks in different planes of the BiCS flash memory 10 of the third embodiment are illustrated. Generally, when the memory controller 20 receives a request from the host 2 to access the user data, some data corresponding to the user data but not the user data itself is used as the secondary information. Hereinafter, the data that the memory controller 20 uses for internally managing user data is referred to as metadata.

於第3實施形態中,記憶體控制器20將與某使用者資料對應之元資料儲存於相同快閃記憶體裝置內不同之平面。此時,儲存使用者資料及與其對應之元資料之頁面係區塊序號、頁面序號可不同。又,於第3實施形態中,雖然將使用者資料儲存於平面0~n-1,且將元資料儲存於平面n,但不完全限定於此。 In the third embodiment, the memory controller 20 stores meta-data corresponding to a certain user data in different planes in the same flash memory device. At this time, the page number and the page number of the page for storing the user data and the metadata corresponding thereto may be different. Further, in the third embodiment, the user data is stored in the plane 0 to n-1, and the metadata is stored in the plane n, but the present invention is not limited thereto.

又,在決定與某使用者資料對應之元資料之儲存位置(物理位址)時,元資料之儲存位置可構成為可容易根據對應之使用者資料之儲存位置(物理位址)等之屬性進行計算。藉由如此般構成,可獲得容易求得與使用者資料對應之元資料之位置之優點。 Moreover, when determining the storage location (physical address) of the meta-data corresponding to a user profile, the storage location of the metadata may be configured as an attribute that can be easily stored according to the storage location (physical address) of the corresponding user profile. Calculation. With such a configuration, the advantage of easily obtaining the position of the metadata corresponding to the user data can be obtained.

[步驟S2001] [Step S2001]

記憶體控制器20接收來自主機2之讀取請求(參照圖14之步驟S1001)。 The memory controller 20 receives the read request from the host 2 (refer to step S1001 of FIG. 14).

[步驟S2002] [Step S2002]

記憶體控制器20在接收到來自主機2之讀取請求後,開始所接收 到之讀取請求之處理(參照圖14之步驟S1002)。 The memory controller 20 starts receiving after receiving a read request from the host 2. The processing of the read request is completed (refer to step S1002 of FIG. 14).

[步驟S2003] [Step S2003]

記憶體控制器20在開始來自主機2之存取請求處理後,取得與有存取請求之使用者資料對應之元資料之儲存位置。 After starting the access request processing from the host 2, the memory controller 20 acquires the storage location of the metadata corresponding to the user data having the access request.

[步驟S2004] [Step S2004]

寫入/讀取控制部1b對BiCS快閃記憶體10發行如對自主機2有存取請求之使用者資料、及與使用者資料對應之元資料並行進行存取之指令順序(參照圖14之步驟S1006)。 The write/read control unit 1b issues a command sequence for accessing the user data having an access request from the host 2 and the metadata corresponding to the user data in parallel to the BiCS flash memory 10 (refer to FIG. 14). Step S1006).

藉此,記憶體控制器20可並行進行對自主機2有存取請求之使用者資料、及與使用者資料對應之元資料之存取。 Thereby, the memory controller 20 can perform access to the user data having an access request from the host 2 and the metadata corresponding to the user data in parallel.

如圖17所示,藉由記憶體控制器20,將儲存於頁面(0,0,1)之使用者資料A與儲存於頁面(n,1,2)之元資料A相關聯。同樣,藉由寫入/讀取控制部1b,將儲存於頁面(1,2,0)之使用者資料B與儲存於頁面(n,1,1)之元資料B分別相關聯。 As shown in FIG. 17, the user data A stored in the page (0, 0, 1) is associated with the metadata A stored in the page (n, 1, 2) by the memory controller 20. Similarly, the user data B stored in the page (1, 2, 0) is associated with the metadata B stored in the page (n, 1, 1) by the write/read control unit 1b.

如圖17所示,寫入/讀取控制部1b可對使用者資料與元資料之組並行進行存取。這是因為記憶體控制器20將各使用者資料A、B及與其對應之元資料A、B儲存於相同BiCS快閃記憶體10內之不同平面。 As shown in FIG. 17, the write/read control unit 1b can access the user data and the metadata group in parallel. This is because the memory controller 20 stores the user data A, B and the metadata A and B corresponding thereto in different planes in the same BiCS flash memory 10.

<第3實施形態之作用效果> <Effects of the third embodiment>

根據上述之第3實施形態,將使用者資料、及與該使用者資料相關聯之元資料儲存於相同BiCS快閃記憶體10上之不同平面內。記憶體控制器20對使用者資料、及與該使用者資料相關聯之元資料進行存取時,對BiCS快閃記憶體10發行如對兩個資料並行進行存取之指令順序。藉此,使用者資料、及與該使用者資料相關聯之元資料可並行存取。 According to the third embodiment described above, the user data and the metadata associated with the user data are stored in different planes on the same BiCS flash memory 10. When the memory controller 20 accesses the user data and the metadata associated with the user profile, the BiCS flash memory 10 issues an instruction sequence for accessing the two data in parallel. Thereby, the user data and the metadata associated with the user profile can be accessed in parallel.

藉由並行存取使用者資料、及與該使用者資料相關聯之元資料,可不逐次進行資料存取,從而可提高處理能力。 By accessing the user data in parallel and the metadata associated with the user data, the data access can be performed one by one, thereby improving the processing capability.

(第4實施形態) (Fourth embodiment)

其次,說明第4實施形態。於第4實施形態中,就第1實施形態、第2實施形態、及第3實施形態所說明之半導體記憶裝置之編程動作、讀取動作進行說明。另,於第4實施形態中,對具有與上述各實施形態大致相同之功能及構成之構成要件標註相同符號,且僅於必要之情形時進行重複說明。 Next, a fourth embodiment will be described. In the fourth embodiment, the programming operation and the reading operation of the semiconductor memory device described in the first embodiment, the second embodiment, and the third embodiment will be described. In the fourth embodiment, the components having the same functions and configurations as those of the above-described embodiments are denoted by the same reference numerals, and the description thereof will be repeated only when necessary.

<資料之編程方法之例> <Example of programming method of data>

以下,將對電荷累積層注入電荷而使記憶體胞電晶體MT之臨限值電壓上升之情形稱為“x0”編程、“00”編程、“10”編程、“0”編程等。另一方面,將不對電荷累積層注入電荷,從而不使臨限值電壓變化之情形(換言之,係抑制為不會使保持資料轉變為其他位準之程度之電荷注入之情形)稱為“x1”編程、“11”編程、“1”編程等。 Hereinafter, a case where a charge is injected into the charge accumulating layer to raise the threshold voltage of the memory cell MT is referred to as "x0" programming, "00" programming, "10" programming, "0" programming, or the like. On the other hand, a case where the charge is not injected into the charge accumulating layer so as not to change the threshold voltage (in other words, it is suppressed to a level that does not cause the data to be converted to other levels) is called "x1". "Programming, "11" programming, "1" programming, etc.

使用圖18說明根據本實施態樣之記憶體中資料之編程方法之一例。但,為簡化說明,以下舉例說明4值(4-levels)、或2值(2-levels)NAND型快閃記憶體之情形。又,其他多值(multi-bit)NAND型快閃記憶體時亦相同。 An example of a method of programming data in a memory according to the present embodiment will be described using FIG. However, for simplification of the description, the following describes a case of a 4-value (4-levels) or a 2-value (2-levels) NAND-type flash memory. Also, the same is true for other multi-bit NAND type flash memories.

圖18係顯示記憶體胞電晶體MT之臨限值分佈之圖表。記憶體胞電晶體MT可保持4值資料(2位元資料)之情形時,記憶體胞電晶體MT可以臨限值電壓Vth之升序保持“11”、“01”、“00”、“10”4種資料。 Fig. 18 is a graph showing the distribution of the threshold value of the memory cell transistor MT. When the memory cell transistor MT can maintain the 4-value data (2-bit data), the memory cell transistor MT can maintain the "11", "01", "00", and "10" in ascending order of the threshold voltage Vth. "4 kinds of information.

<MLC編程方法之例> <Example of MLC programming method>

圖18(a)係顯示記憶體胞電晶體MT之臨限值分佈之圖表,顯示有MLC編程時下階(Lower)頁面之編程後之臨限值分佈之變化。圖18(b)係顯示記憶體胞電晶體MT之臨限值分佈之圖表,顯示有MLC(multi level cell:多位階胞)編程時上階(Upper)頁面之編程後之臨限值分佈 之變化。 Fig. 18(a) is a graph showing the distribution of the threshold value of the memory cell transistor MT, showing the change in the threshold distribution after the programming of the lower page in the MLC programming. Fig. 18(b) is a graph showing the distribution of the threshold value of the memory cell transistor MT, showing the distribution of the threshold value of the upper page of the MLC (multi level cell) programming. Change.

如圖18(a)及(b)所示,資料係對1頁面統一寫入。又,資料係以2位元中之1位元為單位予以寫入。此時,如圖所示,首先寫入2位元中之下階位元之資料,繼而寫入上階位元之資料。在對下階位元進行“0”編程之情形時,進行粗略編程。接著,在上階位元之編程時,於進行“00”編程時以使其臨限值變得較BV更高之方式進行編程,且在進行“10”編程時,以使其臨限值變得較CV更高之方式進行編程。 As shown in Fig. 18 (a) and (b), the data is uniformly written to one page. Moreover, the data is written in units of one bit of two bits. At this time, as shown in the figure, the data of the lower order bit in the 2-bit element is first written, and then the data of the upper order bit is written. In the case of "0" programming of the lower order bit, coarse programming is performed. Then, when programming the upper-order bit, programming is performed in such a way that the threshold value becomes higher than BV when "00" is programmed, and when the "10" programming is performed, the threshold is made. Programming becomes faster than CV.

<SLC編程方法之例> <Example of SLC programming method>

圖18(c)係顯示記憶體胞電晶體MT之臨限值分佈之圖表,顯示有SLC(Single level cell:單位階胞)編程後之臨限值分佈之變化。 Fig. 18(c) is a graph showing the distribution of the threshold value of the memory cell transistor MT, showing the change in the threshold distribution after programming of the SLC (Single level cell).

如圖18(c)所示,相較於MLC編程,進行更粗略之編程。接著,在進行“0”編程時,以使其臨限值變得較SLCV更高之方式進行編程。 As shown in Fig. 18(c), coarser programming is performed compared to MLC programming. Next, when "0" programming is performed, programming is performed in such a manner that its threshold becomes higher than SLCV.

又,該SLC資料係例如元資料等所使用。 Further, the SLC data is used, for example, for metadata.

<hSLC編程方法之例> <Example of hSLC programming method>

圖18(d)係顯示記憶體胞電晶體MT之臨限值分佈之圖表,顯示有hSLC(higher Single level cell:較高之單位階胞)編程後之臨限值分佈之變化。 Fig. 18(d) is a graph showing the distribution of the threshold value of the memory cell transistor MT, showing the change in the threshold distribution after programming with hSLC (higher Single level cell).

如圖18(d)所示,在進行“0”編程時,相較於SLC編程之“0”進行更高之編程。更具體而言,在進行“0”編程時,以使其臨限值變得較hSLCV更高之方式進行編程。在hSLC編程時,使用如圖19所示之hSLC專用參數進行編程。參數F_VPGMHSLC係定義hSLC編程中初始電壓VPGM之參數。參數F_DVPGMHSLC係定義hSLC編程中VPGM之增加量之參數。參數F_VCG_HSLCV係定義hSLC編程中驗證位準之參數。參數F_NLP_HSLC係定義hSLC編程中迴路之最大次數 之參數。另,該等參數係預先記憶於記憶體陣列11之一部分,且在電源投入時被傳送於控制電路15內之暫存器。 As shown in Fig. 18(d), when "0" programming is performed, higher programming is performed than "0" of SLC programming. More specifically, when "0" programming is performed, programming is performed in such a manner that its threshold becomes higher than hSLCV. During hSLC programming, the hSLC-specific parameters shown in Figure 19 are used for programming. The parameter F_VPGMHSLC defines the parameters of the initial voltage VPGM in hSLC programming. The parameter F_DVPGMHSLC is a parameter that defines the amount of increase in VPGM in hSLC programming. The parameter F_VCG_HSLCV defines the parameters for verifying the level in hSLC programming. The parameter F_NLP_HSLC defines the maximum number of loops in hSLC programming. The parameters. In addition, the parameters are pre-stored in a portion of the memory array 11 and are transmitted to the registers in the control circuit 15 when the power is turned on.

又,該hSLC資料係例如元資料等所使用。該hSLC資料之“0”係作為一例預先記為MLC之BV以上。 Further, the hSLC data is used, for example, in metadata. The "0" of the hSLC data is described as an example of BV or more as MLC in advance.

<讀取順序> <reading order>

其次,使用圖20說明第4實施形態之動作選項。圖20係顯示第4實施形態之動作選項之讀取順序之圖。此處,為簡化,而提取平面0與平面1兩個平面進行說明。 Next, the operation options of the fourth embodiment will be described using FIG. Fig. 20 is a view showing a reading order of the operation options of the fourth embodiment. Here, for simplification, two planes of plane 0 and plane 1 are extracted.

<動作選項A> <Action Option A>

首先,說明動作選項A。對hSLC資料以專用指令使記憶體胞之臨限值電壓成為MLC之BV以上。因此,該動作選項A係一方面進行SLC資料及MLC Lower/Upper資料之讀取,一方面亦同時進行hSLC資料之讀取。該動作選項A可防止讀取時間增大。 First, the action option A will be explained. The hSLC data is dedicated to the threshold voltage of the memory cell to be more than BV of the MLC. Therefore, the action option A is to read the SLC data and the MLC Lower/Upper data on the one hand, and simultaneously read the hSLC data on the other hand. This action option A prevents the read time from increasing.

讀取平面0之SLC資料、及平面1之hSLC資料之情形時,藉由對選擇字元線WL施加SLCR,可讀取兩者之資料。 When reading the SLC data of plane 0 and the hSLC data of plane 1, the data of both can be read by applying SLCR to the selected word line WL.

在讀取平面0之MLC-Lower(尚未進行Upper編程)資料、及平面1之hSLC資料之情形時,藉由將BR施加於選擇字元線WL,可讀取hSLC資料,此後,藉由將LMR施加於選擇字元線WL,可讀取MLC-Lower資料。 When reading the MLC-Lower of plane 0 (which has not been subjected to Upper programming) data and the hSLC data of plane 1, the hSLC data can be read by applying BR to the selected word line WL, after which, by The LMR is applied to the selected word line WL to read the MLC-Lower data.

在讀取平面0之MLC-Upper(尚未進行Upper編程)資料、及平面1之hSLC資料之情形時,藉由將AR施加於選擇字元線WL,可讀取hSLC資料,此後,藉由將CR施加於選擇字元線WL,可讀取MLC-Upper資料。 In the case of reading the MLC-Upper of plane 0 (the upper programming has not been performed) and the hSLC data of plane 1, the hSLC data can be read by applying AR to the selected word line WL, and thereafter, by The CR is applied to the selected word line WL to read the MLC-Upper data.

在讀取平面0之MLC-Lower(已進行Upper編程)資料、及平面1之hSLC資料之情形時,藉由將BR施加於選擇字元線WL,可讀取兩者之資料。 In the case of reading the MLC-Lower (Upper Programming) data of plane 0 and the hSLC data of plane 1, the data of both can be read by applying BR to the selected word line WL.

在讀取平面0之MLC-Upper(已進行Upper編程)資料、及平面1之hSLC資料之情形時,藉由將AR施加於選擇字元線WL,可讀取hSLC資料,此後,藉由將CR施加於選擇字元線WL,可讀取MLC-Upper資料。 In the case of reading the MLC-Upper (Upper Programming) data of plane 0 and the hSLC data of plane 1, the hSLC data can be read by applying AR to the selected word line WL, and thereafter, by The CR is applied to the selected word line WL to read the MLC-Upper data.

在動作選項A中,無讀取時間tR之時長,即可讀取平面0之資料(使用者資料)及平面1之資料(元資料)。 In the action option A, without the reading time tR, the data of the plane 0 (user data) and the data of the plane 1 (meta data) can be read.

另,選擇該選項之情形時,F_HSLC_MODE設為“1”。 Also, when this option is selected, F_HSLC_MODE is set to "1".

<動作選項B> <Action Option B>

其次,說明動作選項B。對hSLC資料以SLC指令使記憶體胞之臨限值電壓成為MLC之LMV以上且SLCV以上。因此,該動作選項B係一方面進行SLC資料及MLC Lower/Upper資料之讀取,一方面亦同時進行hSLC資料之讀取者。該動作選項B係因SLC之寫入位準與hSLC之寫入位準大致相同,故hSLC資料之W/E次數大致與SLC資料之W/E次數相同。hSLC資料之編程位準與SLC之編程位準完全相同之情形時,亦可於hSLC資料之編程時使用SLC編程指令,且在微調整寫入位準之情形時,只要使用hSLC資料之專用指令即可。 Next, the action option B will be explained. For the hSLC data, the threshold voltage of the memory cell is equal to or greater than the LMV of the MLC by SLC instruction and SLCV or more. Therefore, the action option B is to read the SLC data and the MLC Lower/Upper data on the one hand, and also to read the hSLC data at the same time. The action option B is that the write level of the SLC is substantially the same as the write level of the hSLC, so the W/E times of the hSLC data are approximately the same as the W/E times of the SLC data. When the programming level of the hSLC data is exactly the same as the programming level of the SLC, the SLC programming instruction can also be used when programming the hSLC data, and when the writing level is finely adjusted, only the dedicated instruction of the hSLC data is used. Just fine.

在讀取平面0之SLC資料、與平面1之hSLC資料之情形時,藉由對選擇字元線WL施加SLCR,可讀取兩者之資料。 In the case of reading the SLC data of plane 0 and the hSLC data of plane 1, the data of both can be read by applying SLCR to the selected word line WL.

在讀取平面0之MLC-Lower(尚未進行Upper編程)資料、與平面1之hSLC資料之情形時,藉由對選擇字元線WL施加LMR,可讀取hSLC及MLC-Lower資料。 The hSLC and MLC-Lower data can be read by applying LMR to the selected word line WL when reading the MLC-Lower of plane 0 (which has not been subjected to Upper programming) data and the hSLC data of plane 1.

在讀取平面0之MLC-Upper(尚未進行Upper編程)資料、與平面1之hSLC資料之情形時,藉由對選擇字元線WL施加AR,可讀取hSLC資料,此後,藉由對選擇字元線WL施加CR,可讀取MLC-Upper資料。 When reading the MLC-Upper of Plane 0 (without Upper Programming) data and the hSLC data of Plane 1, by applying AR to the selected word line WL, the hSLC data can be read, and thereafter, by selecting The character line WL applies CR to read the MLC-Upper data.

在讀取平面0之MLC-Lower(已進行Upper編程)資料、及平面1之 hSLC資料之情形時,藉由對選擇字元線WL施加LMR,可讀取MLC-Lower資料,此後,藉由對選擇字元線WL施加BR,可讀取hSLC資料。 MLC-Lower (Upper Programming) data for reading plane 0, and plane 1 In the case of the hSLC data, the MLC-Lower data can be read by applying LMR to the selected word line WL, after which the hSLC data can be read by applying BR to the selected word line WL.

在讀取平面0之MLC-Upper(已進行Upper編程)資料、及平面1之hSLC資料之情形時,藉由對選擇字元線WL施加AR,可讀取hSLC資料,此後,藉由對選擇字元線WL施加CR,可讀取MLC-Upper資料。 In the case of reading the MLC-Upper (Upper Programming) data of plane 0 and the hSLC data of plane 1, by applying AR to the selected word line WL, the hSLC data can be read, and thereafter, by selecting The character line WL applies CR to read the MLC-Upper data.

於動作選項B中,hSLC可以SLCV以上寫入,成為與SLC相同之tPROG/可靠性(W/E次數)。又,於動作選項B中,由於hSLC之編程只要使用SLC之編程指令即可,故可實現與SLC資料之多平面編程(編程時之字元線WL必須於全部平面相同)。又,於動作選項B中,對hSLC編程使用hSLC之編程指令之情形時,SLC可改變Vth分佈(臨限值分佈)。另,選擇該選項之情形時,F_HSLC_MODE設為“0”。 In action option B, hSLC can be written above SLCV, which is the same tPROG/reliability (W/E times) as SLC. Moreover, in the action option B, since the programming of the hSLC can be performed by using the programming instruction of the SLC, multi-plane programming with the SLC data can be realized (the word line WL during programming must be the same in all planes). Also, in the case of the action option B, when the hSLC programming instruction is used to program the hSLC, the SLC can change the Vth distribution (threshold distribution). Also, when this option is selected, F_HSLC_MODE is set to "0".

<動作波形> <action waveform>

其次,使用圖21A、圖21B、圖21C、圖22A、圖22B、圖22C、圖23A、圖23B、圖23C說明本實施形態之讀取動作時之動作波形。 Next, the operation waveforms at the time of the reading operation of the present embodiment will be described with reference to FIGS. 21A, 21B, 21C, 22A, 22B, 22C, 23A, 23B, and 23C.

圖21A顯示SLC資料之讀取時之讀取動作波形,圖21B顯示MLC-Lower資料之讀取時之讀取動作波形,圖21C顯示MLC-Upper資料之讀取時之讀取動作波形。 Fig. 21A shows the read operation waveform when the SLC data is read, Fig. 21B shows the read operation waveform when the MLC-Lower data is read, and Fig. 21C shows the read operation waveform when the MLC-Upper data is read.

圖22A顯示本實施形態之動作選項A中SLC資料及hSLC資料之讀取時之讀取動作波形,圖22B顯示MLC-Lower資料及hSLC資料之讀取時之讀取動作波形,圖22C顯示MLC-Upper資料及hSLC資料之讀取時之讀取動作波形。 Fig. 22A shows the read operation waveforms when the SLC data and the hSLC data are read in the operation option A of the embodiment, and Fig. 22B shows the read operation waveform when the MLC-Lower data and the hSLC data are read, and Fig. 22C shows the MLC. -Upper data and read motion waveforms when reading hSLC data.

圖23A顯示本實施形態之動作選項B中SLC資料及hSLC資料之讀取時之讀取動作波形,圖23B顯示MLC-Lower資料及hSLC資料之讀取時之讀取動作波形,圖23C顯示MLC-Upper資料及hSLC資料之讀取時之讀取動作波形。 FIG. 23A shows the read operation waveforms when the SLC data and the hSLC data are read in the operation option B of the embodiment, and FIG. 23B shows the read operation waveform when the MLC-Lower data and the hSLC data are read, and FIG. 23C shows the MLC. -Upper data and read motion waveforms when reading hSLC data.

如圖21A所示,在SLC資料之讀取時,對選擇字元線WLn施加電壓SLCR,且對非選擇字元線WL(n+1)、WL(n-1)施加電壓VREADK(VREADK>SLCR),並對其他非選擇字元線WL(稱為WLother等)施加電壓VREAD(VREADK>VREAD>SLCR)。 As shown in FIG. 21A, at the time of reading of the SLC data, a voltage SLCR is applied to the selected word line WLn, and a voltage VREADK (VREADK> is applied to the unselected word lines WL(n+1), WL(n-1). SLCR), and applies voltage VREAD (VREADK>VREAD>SLCR) to other non-selected word lines WL (referred to as WLother, etc.).

如圖21B所示,在MLC-Lower資料之讀取時,對選擇字元線WLn施加電壓BR,且對非選擇字元線WL(n+1)、WL(n-1)施加電壓VREADK(VREADK>BR),並對其他非選擇字元線WLother施加電壓VREAD(VREADK>VREAD>BR)。在未執行Upper編程之情形時(參照虛線部),對選擇字元線WLn施加電壓LMR(BR>LMR),且對非選擇字元線WL(n+1)、WL(n-1)施加電壓VREADK(VREADK>BR>LMR),並對其他非選擇字元線WLother施加電壓VREAD(VREADK>VREAD>BR>LMR),進行重讀。 As shown in FIG. 21B, at the time of reading the MLC-Lower data, a voltage BR is applied to the selected word line WLn, and a voltage VREADK is applied to the unselected word lines WL(n+1), WL(n-1) ( VREADK>BR), and applies a voltage VREAD (VREADK>VREAD>BR) to the other non-selected word line WLother. When the upper programming is not performed (refer to the dotted line portion), the voltage LMR (BR>LMR) is applied to the selected word line WLn, and the non-selected word lines WL(n+1), WL(n-1) are applied. The voltage VREADK (VREADK>BR>LMR) is applied to the other non-selected word line WLother by applying a voltage VREAD (VREADK>VREAD>BR>LMR).

如圖21C所示,在MLC-Upper資料之讀取時,對選擇字元線WLn施加電壓AR,此後對選擇字元線WLn施加電壓CR(CR>AR),且對非選擇字元線WL(n+1)、WL(n-1)施加電壓VREADK(VREADK>CR>AR),並對其他非選擇字元線WLother施加電壓VREAD(VREADK>VREAD>CR>AR)。 As shown in FIG. 21C, at the time of reading of the MLC-Upper data, a voltage AR is applied to the selected word line WLn, and thereafter a voltage CR (CR>AR) is applied to the selected word line WLn, and the non-selected word line WL is applied. (n+1), WL(n-1) applies a voltage VREADK (VREADK>CR>AR), and applies a voltage VREAD (VREADK>VREAD>CR>AR) to the other non-selected word line WLother.

又,如圖21A及圖22A所示,動作選項A中SLC資料及hSLC資料之讀取時之動作波形係與SLC資料之讀取時之動作波形相同。 Further, as shown in FIG. 21A and FIG. 22A, the operation waveforms at the time of reading the SLC data and the hSLC data in the operation option A are the same as those at the time of reading the SLC data.

又,如圖21B及圖22B所示,動作選項A中MLC-Lower資料及hSLC資料之讀取時之動作波形係與MLC-Lower資料之讀取時之動作波形相同。 Further, as shown in FIG. 21B and FIG. 22B, the action waveforms at the time of reading the MLC-Lower data and the hSLC data in the operation option A are the same as those at the time of reading the MLC-Lower data.

又,如圖21C及圖22C所示,動作選項A中MLC-Upper資料及hSLC資料之讀取時之動作波形係與MLC-Upper資料之讀取時之動作波形相同。 Further, as shown in FIG. 21C and FIG. 22C, the action waveforms at the time of reading the MLC-Upper data and the hSLC data in the operation option A are the same as those when the MLC-Upper data is read.

又,如圖21A及圖23A所示,動作選項B中SLC資料及hSLC資料 之讀取時之動作波形係與SLC資料之讀取時之動作波形相同。 Moreover, as shown in FIG. 21A and FIG. 23A, the SLC data and the hSLC data in the action option B are shown. The waveform of the action at the time of reading is the same as the waveform of the operation when the SLC data is read.

如圖23B所示,在MLC-Lower資料及hSLC資料之讀取時,對選擇字元線WLn施加電壓LMR,此後對選擇字元線WLn施加電壓BR(BR>LMR),且對非選擇字元線WL(n+1)、WL(n-1)施加電壓VREADK(VREADK>BR>LMR),並對其他非選擇字元線WLother施加電壓VREAD(VREADK>VREAD>BR>LMR)。由於該動作係讀取hSLC資料,故需要電壓LMR,相較於Upper編程執行前,Upper編程執行後讀取動作之頻率更高。因電壓LMR與電壓BR之兩次讀取之頻率較高,故按序連續施加電壓LMR、電壓BR,可減少非選擇字元線WL之放電及未圖示之感測放大器之Reset時間從而實現高速化。另,亦可採用未連續施加之圖22B之方式。 As shown in FIG. 23B, when reading the MLC-Lower data and the hSLC data, a voltage LMR is applied to the selected word line WLn, and thereafter a voltage BR (BR>LMR) is applied to the selected word line WLn, and the non-selected word is applied. The voltages VREADK (VREADK>BR>LMR) are applied to the WL(n+1) and WL(n-1), and the voltage VREAD (VREADK>VREAD>BR>LMR) is applied to the other non-selected word line WLother. Since the action reads the hSLC data, the voltage LMR is required, and the frequency of the read operation is higher after the upper program is executed than before the upper program is executed. Since the frequency of the two readings of the voltage LMR and the voltage BR is relatively high, the voltage LMR and the voltage BR are continuously applied in sequence, thereby reducing the discharge of the unselected word line WL and the reset time of the sense amplifier not shown. High speed. Alternatively, the method of Fig. 22B which is not continuously applied may be employed.

又,如圖21C及圖23C所示,動作選項B中MLC-Upper資料及hSLC資料之讀取時之動作波形係與MLC-Upper資料之讀取時之動作波形相同。 Further, as shown in FIG. 21C and FIG. 23C, the action waveforms at the time of reading the MLC-Upper data and the hSLC data in the operation option B are the same as those at the time of reading the MLC-Upper data.

<編程順序之例> <Example of programming sequence>

其次,使用圖24及圖25,說明第4實施形態之編程順序。 Next, the programming sequence of the fourth embodiment will be described with reference to Figs. 24 and 25 .

圖24係為便於理解指令順序,而顯示指令順序所使用之記號、及記號之意義之表。 Figure 24 is a table showing the meaning of the order of the instructions and the meaning of the symbols used to display the order of the instructions.

圖25係顯示hSLC資料之編程時之指令順序、與其內部動作波形之圖。此處,就對平面0、區塊BLKX、及選擇字元線WLn進行hSLC資料編程之例進行說明。另,本圖所示之R/B係表示記憶體控制器20、與BiCS快閃記憶體10間之信號線之就緒/忙碌者。 Figure 25 is a diagram showing the sequence of instructions for programming the hSLC data and its internal motion waveforms. Here, an example in which the hSLC data is programmed for the plane 0, the block BLKX, and the selected word line WLn will be described. In addition, the R/B shown in the figure indicates the ready/busy signal line between the memory controller 20 and the BiCS flash memory 10.

如圖25所示,對hSLC資料進行編程之情形時,記憶體控制器20對BiCS快閃記憶體10發行xxh指令與80h指令。接著,記憶體控制器20對BiCS快閃記憶體10發行特定之指令或位址、及寫入資料等。 As shown in FIG. 25, when the hSLC data is programmed, the memory controller 20 issues a xx instruction and an 80h instruction to the BiCS flash memory 10. Next, the memory controller 20 issues a specific command or address, write data, and the like to the BiCS flash memory 10.

如圖25所示,BiCS快閃記憶體10係當自記憶體控制器20輸入 hSLC資料之編程指令時,對記憶體胞陣列11進行編程動作。 As shown in FIG. 25, the BiCS flash memory 10 is input from the memory controller 20. When the programming instruction of the hSLC data is commanded, the memory cell array 11 is programmed.

如圖25所示,於第1次(LOOP#=1)編程時對選擇字元線WLn施加電壓VPGM,且對其他非選擇字元線WLother施加如上述之各種電壓Vxxxx(VPGM>Vxxxx)。另,電壓VPGM可以參數F_VPGMHSLC設定。 As shown in FIG. 25, the voltage VPGM is applied to the selected word line WLn at the time of the first (LOOP#=1) programming, and the various voltages Vxxxx (VPGM>Vxxxx) as described above are applied to the other non-selected word lines WLother. In addition, the voltage VPGM can be set by the parameter F_VPGMHSLC.

接著,為判定是否正常進行編程而進行第1次驗證動作。在驗證動作時,對選擇字元線WLn施加電壓HSLCV,且對非選擇字元線WL(n+1)、WL(n-1)施加電壓VREADK(VREADK>HSLCV),並對其他非選擇字元線WLother施加電壓VREAD(VREADK>VREAD>HSLCV)。另,電壓HSLCV可以參數F_VCG_HSLCV設定。 Next, the first verification operation is performed to determine whether or not programming is normally performed. In the verify operation, a voltage HSLCV is applied to the selected word line WLn, and a voltage VREADK (VREADK>HSLCV) is applied to the non-selected word lines WL(n+1), WL(n-1), and other non-selected words are applied. The line WLother applies a voltage VREAD (VREADK>VREAD>HSLCV). In addition, the voltage HSLCV can be set by the parameter F_VCG_HSLCV.

此處,藉由第1次編程動作,編程未結束之情形時,進行第2次編程動作。 Here, when the programming is not completed by the first programming operation, the second programming operation is performed.

在第2次(LOOP#=2)編程時,對選擇字元線WLn施加相較於第1次編程動作時之電壓VPGM更高之電壓VPGM,且對其他非選擇字元線WLother施加如上所述之多種電壓Vxxxx(VPGM>Vxxxx)。另,本次編程動作時之電壓VPGM自上一次編程動作時之電壓VPGM之上升幅度可以參數F_DVPGHSLC設定。 At the second (LOOP#=2) programming, a voltage VPGM higher than the voltage VPGM at the time of the first programming operation is applied to the selected word line WLn, and the other non-selected word line WLother is applied as above. The various voltages Vxxxx (VPGM>Vxxxx) are described. In addition, the voltage VPGM during the programming operation is increased by the voltage VPGM from the last programming operation by the parameter F_DVPGHSLC.

接著,與第1次驗證動作時相同,為判定是否正常進行編程,進行第2次驗證動作。 Next, in the same manner as in the case of the first verification operation, the second verification operation is performed to determine whether or not the programming is normally performed.

如圖25所示,在即使進行編程動作直至最大次數(LOOP#=MAX)驗證仍未變為OK之情形時,於BiCS快閃記憶體10之未圖示之狀態暫存器設定失敗而結束編程動作。另,迴路次數可以參數F_NLP_HSLC設定。 As shown in FIG. 25, when the program operation is not performed until the maximum number of times (LOOP#=MAX) verification has not been turned on, the state register setting of the unillustrated BiCS flash memory 10 fails and ends. Programming action. In addition, the number of loops can be set by the parameter F_NLP_HSLC.

<讀取順序之例> <Example of reading order>

其次,使用圖26說明第4實施形態之讀取順序。 Next, the reading order of the fourth embodiment will be described with reference to Fig. 26 .

圖26係顯示hSLC資料之讀取時之指令順序與編程時之動作波形 之圖。此處,就同時讀取保持於平面0、區塊BLKx、及選擇字元線WLn之hSLC資料、及保持於平面1、區塊BLKy、及選擇字元線WLm之MLC-Upper資料之例進行說明。如此般,將同時對不同平面進行之讀取動作稱為多平面讀取等。該多平面讀取與上述之並行存取意義相同。另,本圖所示之R/B係表示記憶體控制器20、與BiCS快閃記憶體10間之信號線之就緒/忙碌者。 Figure 26 shows the sequence of instructions and the waveform of the action when programming the hSLC data. Picture. Here, the HSLC data held in the plane 0, the block BLKx, and the selected word line WLn, and the MLC-Upper data held in the plane 1, the block BLKy, and the selected word line WLm are simultaneously read. Description. In this way, the reading operation performed on different planes at the same time is called multi-plane reading or the like. This multi-plane read has the same meaning as the parallel access described above. In addition, the R/B shown in the figure indicates the ready/busy signal line between the memory controller 20 and the BiCS flash memory 10.

如圖26所示,在讀取hSLC資料之情形時,記憶體控制器20對BiCS快閃記憶體10發行xxh指令、及00h指令。繼而,記憶體控制器20對BiCS快閃記憶體10發行特定之指令或位址等。進而,記憶體控制器20為讀取MLC-Upper資料,而對BiCS快閃記憶體10發行00h指令。繼而,記憶體控制器20對BiCS快閃記憶體10發行特定之指令或位址等。 As shown in FIG. 26, in the case of reading the hSLC data, the memory controller 20 issues a xx instruction and a 00h instruction to the BiCS flash memory 10. Then, the memory controller 20 issues a specific instruction or address to the BiCS flash memory 10. Further, the memory controller 20 issues a 00h command to the BiCS flash memory 10 for reading the MLC-Upper data. Then, the memory controller 20 issues a specific instruction or address to the BiCS flash memory 10.

如圖26所示,BiCS快閃記憶體10當自記憶體控制器20輸入各指令時,自記憶體胞陣列11進行讀取動作。 As shown in FIG. 26, when the BiCS flash memory 10 inputs each command from the memory controller 20, the read operation is performed from the memory cell array 11.

在平面0、區塊BLKx、頁面hSLC中,對選擇字元線WLn施加電壓AR,此後,對選擇字元線WLn施加電壓CR(CR>AR),且對非選擇字元線WL(n+1)、WL(n-1)施加電壓VREADK(VREADK>CR>AR),並對其他非選擇字元線WLother施加電壓VREAD(VREADK>VREAD>CR>AR)。另,藉由對選擇字元線WL施加電壓AR,而讀取hSLC資料。 In plane 0, block BLKx, page hSLC, a voltage AR is applied to the selected word line WLn, after which a voltage CR (CR > AR) is applied to the selected word line WLn, and the non-selected word line WL (n+) is applied. 1), WL(n-1) applies a voltage VREADK (VREADK>CR>AR), and applies a voltage VREAD (VREADK>VREAD>CR>AR) to the other non-selected word line WLother. In addition, the hSLC data is read by applying a voltage AR to the selected word line WL.

在平面1、區塊BLKy、頁面MLC-Upper中,對選擇字元線WLm施加電壓AR,此後,對選擇字元線WLn施加電壓CR(CR>AR),且對非選擇字元線WL(m+1)、WL(m-1)施加電壓VREADK(VREADK>CR>AR),並對其他非選擇字元線WLother施加電壓VREAD(VREADK>VREAD>CR>AR)。 In the plane 1, the block BLKy, the page MLC-Upper, a voltage AR is applied to the selected word line WLm, and thereafter, a voltage CR (CR > AR) is applied to the selected word line WLn, and the non-selected word line WL is applied ( m+1), WL(m-1) applies a voltage VREADK (VREADK>CR>AR), and applies a voltage VREAD (VREADK>VREAD>CR>AR) to the other non-selected word line WLother.

另,對平面0及平面1之存取可使用第1實施形態所說明之BiCS快 閃記憶體10同時進行存取。 In addition, access to plane 0 and plane 1 can be performed using the BiCS described in the first embodiment. The flash memory 10 is simultaneously accessed.

如此,可連續讀取hSLC資料與MLC-Upper資料。 In this way, hSLC data and MLC-Upper data can be continuously read.

<資料輸出順序之具體例> <Specific example of data output order>

其次,使用圖27及圖28,概略性說明讀取順序及資料輸出順序之具體例。圖27係顯示資料輸出順序之具體例。圖28係顯示多平面存取時所使用之位址例。另,本圖所示之R/B係表示記憶體控制器20、與BiCS快閃記憶體10間之信號線之就緒/忙碌者。 Next, a specific example of the reading order and the data output order will be briefly described using FIG. 27 and FIG. 28. Fig. 27 is a view showing a specific example of the data output order. Figure 28 is a diagram showing an example of an address used in multi-plane access. In addition, the R/B shown in the figure indicates the ready/busy signal line between the memory controller 20 and the BiCS flash memory 10.

如圖27所示,將平面0所保持之hSLC資料進行資料輸出之情形時,記憶體控制器20對BiCS快閃記憶體10發行00h指令。繼而,記憶體控制器20對BiCS快閃記憶體10發行位址C1、C2、R1、R2、R3、及指令E0h。藉此,自BiCS快閃記憶體10輸出hSLC資料(R-Data)。 As shown in FIG. 27, when the hSLC data held by the plane 0 is outputted, the memory controller 20 issues a 00h command to the BiCS flash memory 10. Then, the memory controller 20 issues the addresses C1, C2, R1, R2, R3, and the instruction E0h to the BiCS flash memory 10. Thereby, the hSLC data (R-Data) is output from the BiCS flash memory 10.

如圖27所示,將平面1所保持之MLC資料進行資料輸出之情形時,記憶體控制器20對BiCS快閃記憶體10發行00h指令。繼而,記憶體控制器20對BiCS快閃記憶體10發行位址C1、C2、R1、R2、R3、及指令E0h。藉此,自BiCS快閃記憶體10輸出MLC資料(R-Data)。 As shown in FIG. 27, when the MLC data held by the plane 1 is output as data, the memory controller 20 issues a 00h command to the BiCS flash memory 10. Then, the memory controller 20 issues the addresses C1, C2, R1, R2, R3, and the instruction E0h to the BiCS flash memory 10. Thereby, the MLC data (R-Data) is output from the BiCS flash memory 10.

如圖28所示,於本實施形態中,作為一例,快閃記憶體上之物理位址係以8位元×5週期之位址表現。 As shown in Fig. 28, in the present embodiment, as an example, the physical address on the flash memory is represented by an address of 8 bits × 5 cycles.

例如,於本實施例中,R1-1至R1-5之位元係在表示字元線WL之序號時使用,R2-3至R2-4之位元係在表示平面序號之情形時使用。 For example, in the present embodiment, the bits of R1-1 to R1-5 are used when representing the serial number of the word line WL, and the bits of R2-3 to R2-4 are used when the plane number is indicated.

於本申請案中,在對hSLC資料與MLC資料進行多平面存取之情形時,存在hSLC資料之字元線WL序號及平面序號、與MLC資料之字元線WL序號及平面序號不同之可能性。 In the present application, when multi-plane access is performed on the hSLC data and the MLC data, there is a possibility that the word line WL number and the plane number of the hSLC data are different from the character line WL number and the plane number of the MLC data. Sex.

<第4實施形態之作用效果> <Effects of the fourth embodiment>

根據上述第4實施形態,使用MLC資料或SLC資料作為使用者資料,且使用hSLC資料或SLC資料作為元資料。接著,可在對某平面進行通常之讀取(SLC、MLC-Lower/Upper資料)同時,於其他平面讀取 hSLC資料(元資料)。 According to the fourth embodiment described above, the MLC data or the SLC data is used as the user data, and the hSLC data or the SLC data is used as the metadata. Then, the normal reading (SLC, MLC-Lower/Upper data) can be performed on a certain plane while reading on other planes. hSLC data (metadata).

例如,不論是SLC、MLC-Lower/Upper資料之何者之讀取,只要是儲存於與進行該讀取之平面不同之平面內之hSLC資料,則可與SLC、MLC-Lower/Upper資料之任一者之讀取動作同時,進行hSLC資料之讀取動作。 For example, regardless of whether the SLC, MLC-Lower/Upper data is read, as long as it is stored in a plane different from the plane in which the reading is performed, it can be used with SLC, MLC-Lower/Upper data. At the same time as the reading operation of one, the reading operation of the hSLC data is performed.

又,若為MLC-Lower/Upper資料、或SLC資料、或hSLC資料彼此,則可在多平面動作中於各個平面選擇不同字元線WL。 Further, if the MLC-Lower/Upper data, or the SLC data, or the hSLC data are mutually different, different word lines WL can be selected in each plane in the multi-plane operation.

如上所述,藉由同時並行存取複數個平面,可不逐次進行資料存取,藉此可提高處理能力,可改善NAND系統之性能。 As described above, by simultaneously accessing a plurality of planes in parallel, data access can be performed sequentially, thereby improving processing capability and improving the performance of the NAND system.

(第5實施形態) (Fifth Embodiment)

其次,說明第5實施形態。於第5實施形態中,就虛設字元線附近之讀取動作進行說明。另,於第5實施形態中,對具有與上述各實施形態大致相同之功能及構成之構成要件,標註相同符號,且僅於必要之情形時進行重複說明。 Next, a fifth embodiment will be described. In the fifth embodiment, the reading operation in the vicinity of the dummy word line will be described. In the fifth embodiment, the components having the same functions and configurations as those of the above-described embodiments are denoted by the same reference numerals, and the description thereof will be repeated only when necessary.

使用圖29A及圖29B,說明選擇字元線WL於虛設字元線WLD附近時之讀取動作。圖29A係顯示讀取動作時,選擇字元線WL於虛設字元線WLD附近之情形之區信號ZONE<3:0>、模式信號MODE<1:0>、CGDDTSW信號、CGDDBSW信號、CGDSTSW信號、及CGDSBSW信號之圖。圖29B係顯示使用於各字元線WL之CG驅動器之種類、及施加於字元線WL之電壓之圖。另,此處為簡化,而著眼於平面0、平面1,說明自平面1讀取hSLC資料之情形。 The reading operation when the word line WL is selected in the vicinity of the dummy word line WLD will be described with reference to FIGS. 29A and 29B. 29A shows a zone signal ZONE<3:0>, a mode signal MODE<1:0>, a CGDDTSW signal, a CGDDBSW signal, and a CGDSDSW signal in the case where the word line WL is selected near the dummy word line WLD in the read operation. And the map of the CGDSSSW signal. Fig. 29B is a view showing the kind of the CG driver used for each word line WL and the voltage applied to the word line WL. In addition, here is a simplification, and attention is paid to plane 0 and plane 1, indicating the case where hSLC data is read from plane 1.

如圖29A及圖29B所示,於平面0中,選擇字元線WL為例如鄰接於虛設字元線WLDDT之字元線WL31之情形時,區信號ZONE<3:0>為“111”,模式信號MODE<1:0>為“10”,CGDDTSW信號為“0”,CGDDBSW信號為“0”,CGDSTSW信號為“1”,CGDSBSW信號為“0”。 As shown in FIG. 29A and FIG. 29B, in the case of the plane 0, when the word line WL is selected, for example, in the case of the word line WL31 adjacent to the dummy word line WLDDT, the area signal ZONE<3:0> is "111". The mode signal MODE<1:0> is "10", the CGDDTSW signal is "0", the CGDDBSW signal is "0", the CGDSDSW signal is "1", and the CGDSBSW signal is "0".

對選擇字元線WL31,藉由CGNB<3>驅動器施加電壓VCGRV,且對非選擇字元線WL30,藉由CGNB<2>驅動器施加電壓VREADK(VREADK>VCGRV)。接著,對虛設選擇字元線WLDDT,藉由CGDDT驅動器施加電壓VREADK(VREADK>VCGRV)。 For the selected word line WL31, the voltage VCGRV is applied by the CGNB<3> driver, and the voltage VREADK (VREADK>VCGRV) is applied to the non-selected word line WL30 by the CGNB<2> driver. Next, for the dummy select word line WLDDT, a voltage VREADK (VREADK > VCGRV) is applied by the CGDDT driver.

如圖29A及圖29B所示,在平面1中,選擇字元線WL為例如鄰接於虛設字元線WLDSB之字元線WL15之情形時,區信號ZONE<3:0>為“011”,模式信號MODE<1:0>為“11”,CGDDTSW信號為“1”,CGDDBSW信號為“0”,CGDSTSW信號為“1”,CGDSBSW信號為“1”。 As shown in FIG. 29A and FIG. 29B, in the case of the plane 1, when the word line WL is selected, for example, in the case of the word line WL15 adjacent to the dummy word line WLDSB, the area signal ZONE<3:0> is "011". The mode signal MODE<1:0> is "11", the CGDDTSW signal is "1", the CGDDBSW signal is "0", the CGDSDSW signal is "1", and the CGDSSSW signal is "1".

對選擇字元線WL15,藉由CGND<3>驅動器施加電壓VCGRV,且對非選擇字元線WL14,藉由CGND<2>驅動器施加電壓VREADK(VREADK>VCGRV)。接著,對虛設選擇字元線WLDSB,藉由CGDST驅動器施加電壓VREADK(VREADK>VCGRV)。 For the selected word line WL15, the voltage VCGRV is applied by the CGND<3> driver, and the voltage VREADK (VREADK>VCGRV) is applied to the non-selected word line WL14 by the CGND<2> driver. Next, for the dummy select word line WLDSB, a voltage VREADK (VREADK > VCGRV) is applied by the CGDST driver.

(第6實施形態) (Sixth embodiment)

其次,說明第6實施形態。於第6實施形態中,就與第1實施形態所說明之CG驅動器及電源供應器不同之CG驅動器及電源供應器進行說明。另,於第6實施形態中,對具有與上述各實施形態大致相同功能及構成之構成要件標註相同符號,且僅於必要之情形進行重複說明。 Next, a sixth embodiment will be described. In the sixth embodiment, a CG driver and a power supply device different from the CG driver and the power supply device described in the first embodiment will be described. In the sixth embodiment, the components having substantially the same functions and configurations as those of the above-described embodiments are denoted by the same reference numerals, and the description thereof will be repeated only when necessary.

如圖30所示,第6實施形態之電源供應器161及CG驅動器162係將電源分為平面A用及平面B用。如圖30所示,第6實施形態之CG驅動器162具備VCGSEL電路162a、CGN驅動器162b、162d(總計16台)、CGD驅動器162c(總計4台)、CGBG驅動器162c、CGU驅動器162e、VCGSEL2電路162f、CGD驅動器162g(總計4台)、CGBG驅動器162g、及CGU驅動器162h。 As shown in Fig. 30, the power supply 161 and the CG driver 162 of the sixth embodiment divide the power supply into a plane A and a plane B. As shown in FIG. 30, the CG driver 162 of the sixth embodiment includes a VCGSEL circuit 162a, CGN drivers 162b and 162d (16 in total), a CGD driver 162c (four in total), a CGBG driver 162c, a CGU driver 162e, and a VCGSEL2 circuit 162f. The CGD driver 162g (four in total), the CGBG driver 162g, and the CGU driver 162h.

VCGSEL電路162a根據來自控制電路15之控制信號,輸出電壓 VPGM或VCGRVA作為電壓VCGSEL_AB。 The VCGSEL circuit 162a outputs a voltage according to a control signal from the control circuit 15. VPGM or VCGRVA is used as the voltage VCGSEL_AB.

CGN驅動器162b、CGD驅動器162c、及CGBG驅動器162c根據來自控制電路15之控制信號,將電壓VCGSEL_AB、VUSEL1A、VUSEL2A、及VSS之任一者之電壓輸出於平面A。 The CGN driver 162b, the CGD driver 162c, and the CGBG driver 162c output the voltages of any of the voltages VCGSEL_AB, VUSEL1A, VUSEL2A, and VSS to the plane A based on the control signal from the control circuit 15.

CGU驅動器162e根據來自控制電路15之控制信號,將電壓VUSEL1A、VUSEL2A、及VSS之任一者之電壓輸出於平面A。 The CGU driver 162e outputs the voltages of any of the voltages VUSEL1A, VUSEL2A, and VSS to the plane A based on the control signal from the control circuit 15.

VCGSEL2電路162f根據來自控制電路15之控制信號,輸出電壓VPGM、VCGRVA、及VCGRVB作為電壓VCGSEL_CD。又,VCGSEL2電路162f根據來自控制電路15之控制信號,輸出電壓VUSEL1A、及VUSEL1B作為電壓VUSEL1_CD。又,VCGSEL2電路162f根據來自控制電路15之控制信號,輸出電壓VUSEL2A、及VUSEL2B作為電壓VUSEL2_CD。 The VCGSEL2 circuit 162f outputs voltages VPGM, VCGRVA, and VCGRVB as voltages VCGSEL_CD based on control signals from the control circuit 15. Further, the VCGSEL2 circuit 162f outputs the voltages VUSEL1A and VUSEL1B as the voltage VUSEL1_CD based on the control signal from the control circuit 15. Further, the VCGSEL2 circuit 162f outputs the voltages VUSEL2A and VUSEL2B as the voltage VUSEL2_CD based on the control signal from the control circuit 15.

CGN驅動器162d、CGD驅動器162g、及CGBG驅動器162g根據來自控制電路15之控制信號,將電壓VCGSEL_CD、VUSEL1_CD、VUSEL2_CD、及VSS之任一者之電壓輸出於平面B。 The CGN driver 162d, the CGD driver 162g, and the CGBG driver 162g output the voltages of any of the voltages VCGSEL_CD, VUSEL1_CD, VUSEL2_CD, and VSS to the plane B based on the control signal from the control circuit 15.

CGU驅動器162h根據來自控制電路15之控制信號,將電壓VUSEL1_CD、VUSEL2_CD、及VSS之任一者之電壓輸出於平面B。電壓VCELSRCA及VCPWELLA連接於平面A之記憶體胞陣列11。電壓VCELSRCB及VCPWELLB連接於平面B之記憶體胞陣列11。另,平面A及平面B可為任意平面。 The CGU driver 162h outputs the voltages of any of the voltages VUSEL1_CD, VUSEL2_CD, and VSS to the plane B based on the control signal from the control circuit 15. The voltages VCELSRCA and VCPWELLA are connected to the memory cell array 11 of the plane A. The voltages VCELSRCB and VCPWELLB are connected to the memory cell array 11 of the plane B. In addition, the plane A and the plane B may be any plane.

<第6實施形態之作用效果> <Effects of the sixth embodiment>

根據上述第6實施形態,與第1實施形態之電源供應器161比較,第6實施形態之電源供應器161具有兩個用於兩個平面之電壓系統,進而成可同時對兩個平面施加電壓之CG驅動器構成。因此,例如可同時讀取上述之MLC資料、及hSLC資料、或SLC及hSLC資料。 According to the sixth embodiment, the power supply unit 161 of the sixth embodiment has two voltage systems for two planes, so that voltage can be applied to both planes at the same time as compared with the power supply unit 161 of the first embodiment. The CG driver is constructed. Therefore, for example, the above MLC data, and hSLC data, or SLC and hSLC data can be simultaneously read.

(第7實施形態) (Seventh embodiment)

其次,說明第7實施形態。於第7實施形態中,與第1實施形態所說明之記憶體胞陣列11不同之記憶體胞陣列進行說明。另,於第7實施形態中,對具有與上述各實施形態大致相同之功能及構成標註相同符號,且僅於必要之情形進行重複說明。 Next, a seventh embodiment will be described. In the seventh embodiment, a memory cell array different from the memory cell array 11 described in the first embodiment will be described. In the seventh embodiment, functions and configurations that are substantially the same as those in the above-described embodiments are denoted by the same reference numerals, and the description thereof will be repeated only when necessary.

<串單元STU之構成> <Composition of string unit STU>

在BiCS快閃記憶體中,構成通道之柱狀半導體形成於縱橫比較大之開口部內。隨著BiCS快閃記憶體之微細化發展,要求縮短開口部間之間距(距離),而研究有將開口部配置成鋸齒狀之構成。 In the BiCS flash memory, the columnar semiconductor constituting the channel is formed in the opening portion having a relatively large aspect. With the development of the miniaturization of the BiCS flash memory, it is required to shorten the distance (distance) between the openings, and it has been studied to arrange the openings in a zigzag shape.

圖31~圖34顯示第7實施形態之構成。第7實施形態係與第1至第5實施形態串單元之構成不同。 31 to 34 show the configuration of the seventh embodiment. The seventh embodiment is different from the configuration of the string unit of the first to fifth embodiments.

圖31顯示構成記憶體胞陣列之複數個區塊Bk-1、Bk、Bk+1。複數個區塊Bk-1、Bk、Bk+1係沿複數條位元線BL配置。複數個區塊Bk-1、Bk、Bk+1之各者具有於位元線方向上配置之複數個串單元STU。各串單元STU係由例如3條選擇閘極線、及3個字元線群構成。 Figure 31 shows a plurality of blocks Bk-1, Bk, Bk+1 constituting a memory cell array. A plurality of blocks Bk-1, Bk, and Bk+1 are arranged along a plurality of bit lines BL. Each of the plurality of blocks Bk-1, Bk, and Bk+1 has a plurality of string units STUs arranged in the bit line direction. Each string unit STU is composed of, for example, three selection gate lines and three word line groups.

又,於各區塊彼此間,配置有虛設串D。因複數個區塊Bk-1、Bk、Bk+1之各者為相同構成,故使用區塊Bk說明串單元STU之構成。 Further, a dummy string D is disposed between the blocks. Since each of the plurality of blocks Bk-1, Bk, and Bk+1 has the same configuration, the block Bk is used to describe the configuration of the string unit STU.

如圖31、及圖32所示,於本實施形態中,串單元STU係藉由於字元線方向上複數個配置2個NAND串予以構成。2個NAND串係藉由共有作為汲極側選擇閘極線SGD之第1、第3選擇閘極線D1、D2、作為位於該等第1、第3選擇閘極線D1、D2間之源極側選擇閘極線SGS之第2選擇閘極線S2、包含與第1、第3選擇閘極線D1、D2對應配置之複數條字元線WL之字元線群WLG1、WLG3、及包含與第2選擇閘極線S2對應配置之複數條字元線WL之字元線群WLG2而構成。 As shown in FIG. 31 and FIG. 32, in the present embodiment, the string unit STU is configured by arranging two NAND strings in plural in the direction of the word line. The two NAND strings are used as the source between the first and third selection gate lines D1 and D2 by sharing the first and third selection gate lines D1 and D2 as the drain side selection gate line SGD. The second selection gate line S2 of the gate selection gate line SGS, and the word line groups WLG1, WLG3 including the plurality of word lines WL arranged corresponding to the first and third selection gate lines D1 and D2, and The character line group WLG2 of the plurality of word lines WL arranged corresponding to the second selection gate line S2 is configured.

即,第1、第3選擇閘極線D1、D2、第2選擇閘極線S2、與第1、 第3選擇閘極線D1、D2對應配置之字元線群WLG1、WLG3、及與第2選擇閘極線S2對應配置之字元線群WLG2係分別由2個U字型半導體SC所共有。2個U字型半導體SC係由第1至第4半導體CL1~CL4與連結部JP構成。 That is, the first and third selection gate lines D1, D2, the second selection gate line S2, and the first The character line groups WLG1 and WLG3 arranged corresponding to the third selection gate lines D1 and D2 and the word line group WLG2 arranged corresponding to the second selection gate line S2 are shared by the two U-shaped semiconductors SC, respectively. The two U-shaped semiconductors SC are composed of the first to fourth semiconductors CL1 to CL4 and the connection portion JP.

其次,具體說明串單元STU之構成。字元線群WLG1、WLG2、WLG3係分別於半導體基板Ba之上方積層複數條字元線WL而構成。第1、第2、第3字元線群WLG1、WLG2、WLG3、及第1、第2、第3選擇閘極線D1、S2、D2係朝與位元線BL正交之方向配置。 Next, the composition of the string unit STU will be specifically described. The word line groups WLG1, WLG2, and WLG3 are formed by stacking a plurality of word lines WL above the semiconductor substrate Ba. The first, second, and third character line groups WLG1, WLG2, and WLG3 and the first, second, and third selection gate lines D1, S2, and D2 are arranged in a direction orthogonal to the bit line BL.

於第1選擇閘極線D1與字元線群WLG1貫通有柱狀之第1半導體CL1。第1半導體CL1之一端連接於位元線BL1。 The columnar first semiconductor CL1 is inserted through the first selection gate line D1 and the word line group WLG1. One end of the first semiconductor CL1 is connected to the bit line BL1.

於第2選擇閘極線S2與字元線群WLG2貫通有柱狀之第2半導體CL2。該第2半導體CL2係如圖33所示,在字元線方向上,配置於與第1半導體CL1相同之位置。第2半導體CL2之一端連接於源極線SL。第2半導體CL2之另一端經由形成於半導體基板Ba內之連結部JP,電性連接於第1半導體CL1之另一端。 The columnar second semiconductor CL2 is inserted through the second selection gate line S2 and the word line group WLG2. As shown in FIG. 33, the second semiconductor CL2 is disposed at the same position as the first semiconductor CL1 in the word line direction. One end of the second semiconductor CL2 is connected to the source line SL. The other end of the second semiconductor CL2 is electrically connected to the other end of the first semiconductor CL1 via a connection portion JP formed in the semiconductor substrate Ba.

於第2選擇閘極線S2與字元線群WLG2貫通有柱狀之第3半導體CL3。該第3半導體CL3係如圖33所示,配置於相對第2半導體CL2於字元線方向上偏離之位置。第3半導體CL3之一端連接於源極線SL。 The columnar third semiconductor CL3 is penetrated through the second selection gate line S2 and the word line group WLG2. As shown in FIG. 33, the third semiconductor CL3 is disposed at a position shifted from the second semiconductor CL2 in the direction of the word line. One end of the third semiconductor CL3 is connected to the source line SL.

於第3選擇閘極線D2與字元線群WLG3貫通有柱狀之第4半導體CL4。該第4半導體CL4係如圖33所示,在字元線方向上,配置於與第3半導體CL3相同之位置。第4半導體CL4之一端連接於位元線B2。第4半導體CL4之另一端經由形成於半導體基板Ba內之連結部JP,電性連接於第3半導體CL3之另一端。 The columnar fourth semiconductor CL4 is penetrated through the third selection gate line D2 and the word line group WLG3. As shown in FIG. 33, the fourth semiconductor CL4 is disposed at the same position as the third semiconductor CL3 in the word line direction. One end of the fourth semiconductor CL4 is connected to the bit line B2. The other end of the fourth semiconductor CL4 is electrically connected to the other end of the third semiconductor CL3 via a connection portion JP formed in the semiconductor substrate Ba.

於上述第1、第2、第3、第4半導體CL1~CL4、與第1、第2、第3選擇閘極線D1、S2、D2之交點位置形成選擇電晶體,且於第1、第2、第3、第4半導體CL1~CL4、與字元線群WLG1、WLG2、WLG3之 交點位置形成記憶體胞。 Selective transistors are formed at intersections of the first, second, third, and fourth semiconductors CL1 to CL4 and the first, second, and third selection gate lines D1, S2, and D2, and are first and second. 2. The third and fourth semiconductors CL1 to CL4 and the word line groups WLG1, WLG2, and WLG3 The intersection point forms a memory cell.

各串單元構成邏輯區塊,且藉由第1邏輯區塊位址予以管理。另,亦可以半邏輯區塊構成包含1條源極線之一半之串單元,且將半邏輯區塊定義為第2邏輯區塊位址。 Each string of cells constitutes a logical block and is managed by the first logical block address. Alternatively, the semi-logic block may constitute a string unit including one half of one source line, and the semi-logic block is defined as the second logical block address.

另,邏輯區塊之構成並非限定於上述各實施形態之構成。邏輯區塊亦可以圖34所示之方式設定。圖34顯示有連接於未圖示之1條位元線之複數個串單元。因此,實際上於垂直紙面之方向上配置有共有各字元線之未圖示之複數個記憶體胞。 Further, the configuration of the logical block is not limited to the configuration of each of the above embodiments. The logical block can also be set in the manner shown in FIG. Fig. 34 shows a plurality of string units connected to one bit line (not shown). Therefore, a plurality of memory cells (not shown) sharing a respective word line are actually arranged in the direction of the vertical paper surface.

於圖34中,在串聯連接有各串單元之複數個記憶體胞中,鄰接之例如6個記憶體胞構成字元線組WLG1~WLGp、WLGp+1~WLG2p。各串單元之共通之字元線組WLG1~WLGp、WLGp+1~WLG2p分別構成邏輯區塊。因此,該例之情形時,存在2p個邏輯區塊。圖34係代表性顯示由字元線組WLG1構成之邏輯區塊。 In FIG. 34, among a plurality of memory cells in which each string unit is connected in series, for example, six memory cells adjacent to each other constitute word line groups WLG1 to WLGp and WLGp+1 to WLG2p. The common word line groups WLG1 to WLGp and WLGp+1 to WLG2p of each string unit respectively constitute logical blocks. Therefore, in the case of this example, there are 2p logical blocks. Figure 34 is a representative representation of a logical block composed of a word line group WLG1.

<第7實施形態之作用效果> <Effects of the seventh embodiment>

根據上述第7實施形態,在使用第7實施形態之BiCS快閃記憶體之記憶體裝置時,亦可獲得與上述各實施形態相同之效果。 According to the seventh embodiment described above, when the memory device of the BiCS flash memory of the seventh embodiment is used, the same effects as those of the above embodiments can be obtained.

(第8實施形態) (Eighth embodiment)

其次,說明第8實施形態之非揮發性半導體記憶裝置。於第8實施形態中,就將以碳作為主成分之膜應用於平面型之所謂浮動閘極型之NAND快閃記憶體之電荷累積層之例進行說明。另,於第8實施形態中,對具有與上述各實施形態大致相同之功能及構成之構成要件標註相同符號,且僅於必要之情形進行重複說明。 Next, a nonvolatile semiconductor memory device according to the eighth embodiment will be described. In the eighth embodiment, a case where a film containing carbon as a main component is applied to a charge accumulation layer of a planar type so-called floating gate type NAND flash memory will be described. In the eighth embodiment, the components having the same functions and configurations as those of the above-described embodiments are denoted by the same reference numerals, and the description thereof will be repeated only when necessary.

<NAND型快閃記憶體之整體構成> <Overall structure of NAND flash memory>

使用圖35概略性說明第8實施形態之NAND型快閃記憶體300之構成。圖35係模式性顯示第8實施形態之NAND型快閃記憶體300之基本構成之區塊圖。 The configuration of the NAND flash memory 300 of the eighth embodiment will be schematically described with reference to FIG. Fig. 35 is a block diagram showing the basic configuration of the NAND flash memory 300 of the eighth embodiment.

如圖35所示,NAND型快閃記憶體300具備記憶體胞陣列71、行解碼器72、資料輸出入緩衝器73、資料輸出入端子74、列解碼器75、控制電路76、控制信號輸入端子77、源極線控制電路78、井控制電路79、及平面開關80。 As shown in FIG. 35, the NAND flash memory 300 includes a memory cell array 71, a row decoder 72, a data input/output buffer 73, a data input/output terminal 74, a column decoder 75, a control circuit 76, and a control signal input. Terminal 77, source line control circuit 78, well control circuit 79, and plane switch 80.

記憶體胞陣列71包含複數條位元線BL、複數條字元線WL、及源極線SL。該記憶體胞陣列71係以將可電性重寫之記憶體胞電晶體(亦簡稱為記憶體胞等)MT配置成矩陣狀之複數個區塊BLK構成。記憶體胞電晶體MT係例如具有包含控制閘極電極及電荷累積層(例如浮動閘極電極)之積層閘極,且根據由注入於浮動閘極電極之電荷量決定之電晶體之臨限值之變化,記憶二值或多值資料。又,記憶體胞電晶體MT亦可為具有於氮化膜捕集電子之MONOS(Metal-Oxide-Nitride-Oxide-Silicon:金屬氧化氮氧化矽)構造者。 The memory cell array 71 includes a plurality of bit lines BL, a plurality of word lines WL, and a source line SL. The memory cell array 71 is composed of a plurality of blocks BLK in which electrically memorable memory cell transistors (also simply referred to as memory cells or the like) are arranged in a matrix. The memory cell transistor MT has, for example, a gate electrode including a control gate electrode and a charge accumulation layer (for example, a floating gate electrode), and a threshold value of the transistor according to the amount of charge injected into the floating gate electrode Changes, memory binary or multi-value data. Further, the memory cell transistor MT may be a MONOS (Metal-Oxide-Nitride-Oxide-Silicon) structure having electrons trapped in a nitride film.

行解碼器72具有感測放大記憶體胞陣列71內之位元線BL之電壓之感測放大器(未圖示)、及鎖存用於進行寫入之資料之資料記憶電路(未圖示)等。行解碼器72經由位元線BL讀取記憶體胞陣列71中之記憶體胞電晶體MT之資料,或經由位元線BL檢測該記憶體胞電晶體MT之狀態,或經由位元線BL於該記憶體胞電晶體MT施加寫入控制電壓且對該記憶體胞電晶體MT進行寫入。 The row decoder 72 has a sense amplifier (not shown) that senses the voltage of the bit line BL in the memory cell array 71, and a data memory circuit (not shown) that latches data for writing. Wait. The row decoder 72 reads the data of the memory cell transistor MT in the memory cell array 71 via the bit line BL, or detects the state of the memory cell transistor MT via the bit line BL, or via the bit line BL. A write control voltage is applied to the memory cell transistor MT and the memory cell transistor MT is written.

又,行解碼器72選擇行解碼器72內之資料記憶電路,且將讀取於該資料記憶電路之記憶體胞電晶體MT之資料經由資料輸出入緩衝器73自資料輸出入端子74朝外部(主機)輸出。 Further, the row decoder 72 selects the data memory circuit in the row decoder 72, and reads the data of the memory cell transistor MT read in the data memory circuit from the data output terminal 74 to the outside via the data output buffer 74. (host) output.

資料輸出入緩衝器73自資料輸出入端子74接收資料,且記憶於由行解碼器72所選擇之該資料記憶電路。又,資料輸出入緩衝器73經由資料輸出入端子74朝外部輸出資料。 The data output buffer 74 receives data from the data output terminal 74 and is stored in the data memory circuit selected by the row decoder 72. Further, the data input/output buffer 73 outputs data to the outside via the data output/output terminal 74.

資料輸出入端子74除寫入資料外,接收寫入、讀取、抹除、及狀態讀取等之各種指令、位址。 The data input/output terminal 74 receives various commands and addresses such as writing, reading, erasing, and status reading in addition to writing data.

列解碼器75在資料之讀取動作、寫入動作、或抹除動作時,選擇任一區塊BLK,且將剩餘區塊BLK設為非選擇。即,列解碼器75對記憶體胞陣列71之字元線WL及選擇閘極線VSGS、VSGD施加讀取動作、寫入動作、或抹除動作中必要之電壓。 The column decoder 75 selects any of the blocks BLK in the data reading operation, the writing operation, or the erasing operation, and sets the remaining block BLK to be non-selected. That is, the column decoder 75 applies a voltage necessary for the read operation, the write operation, or the erase operation to the word line WL and the selection gate lines VSGS and VSGD of the memory cell array 71.

源極線控制電路78連接於記憶體胞陣列71。源極線控制電路78控制源極線SL之電壓。 The source line control circuit 78 is connected to the memory cell array 71. The source line control circuit 78 controls the voltage of the source line SL.

井控制電路79連接於記憶體胞陣列71。該井控制電路79係控制予以形成記憶體胞電晶體MT之半導體基板(井)之電壓。 The well control circuit 79 is connected to the memory cell array 71. The well control circuit 79 controls the voltage of the semiconductor substrate (well) that forms the memory cell transistor MT.

控制電路76控制記憶體胞陣列71、行解碼器72、資料輸出入緩衝器73、列解碼器75、源極線控制電路78、及井控制電路79。於控制電路76包含有例如進行電源電壓之升壓之電壓產生電路76-1。控制電路76根據需要藉由電壓產生電路76-1將電源電壓升壓,且將升壓之電壓施加於行解碼器72、資料輸出入緩衝器73、列解碼器75、及源極線控制電路78。 The control circuit 76 controls the memory cell array 71, the row decoder 72, the data input/output buffer 73, the column decoder 75, the source line control circuit 78, and the well control circuit 79. The control circuit 76 includes, for example, a voltage generating circuit 76-1 that boosts the power supply voltage. The control circuit 76 boosts the power supply voltage by the voltage generating circuit 76-1 as needed, and applies the boosted voltage to the row decoder 72, the data output/input buffer 73, the column decoder 75, and the source line control circuit. 78.

控制電路76根據自外部經由控制信號輸入端子77輸入之控制信號(指令鎖存器啟用信號CLE、位址鎖存器啟用信號ALE、就緒/忙碌信號RY/BY等)、及自資料輸出入端子74經由資料輸出入緩衝器73輸入之指令進行控制動作。即,控制電路76根據該控制信號及指令,於資料之編程、驗證、讀取、抹除時,產生期望之電壓,且供給於記憶體胞陣列71之各部。 The control circuit 76 is based on a control signal (instruction latch enable signal CLE, address latch enable signal ALE, ready/busy signal RY/BY, etc.) input from the outside via the control signal input terminal 77, and a self-output terminal. The control operation is performed by a command input from the data output/input buffer 73. That is, the control circuit 76 generates a desired voltage during programming, verification, reading, and erasing of the data based on the control signal and the command, and supplies it to each unit of the memory cell array 71.

平面開關80連接於控制電路76、電壓產生電路76-1。平面開關80基於來自控制電路76等之信號,切換來自電壓產生電路76-1之電壓之輸出目標。 The planar switch 80 is connected to the control circuit 76 and the voltage generating circuit 76-1. The plane switch 80 switches the output target of the voltage from the voltage generating circuit 76-1 based on a signal from the control circuit 76 or the like.

另,記憶體胞陣列71之構成揭示於美國專利申請案第12/397,711號(2009年3月3日申請)、美國專利申請案第13/451,185號(2012年4月19日申請)、美國專利申請案第12/405,626號(2009年3月17日申請)、 美國專利申請案第09/956,986號(2001年9月21日申請)等。本申請案包含該等美國專利申請案之全部內容。 In addition, the composition of the memory cell array 71 is disclosed in U.S. Patent Application Serial No. 12/397,711 (filed on March 3, 2009), U.S. Patent Application Serial No. 13/451,185 (filed on April 19, 2012), Patent Application No. 12/405,626 (applied on March 17, 2009), U.S. Patent Application Serial No. 09/956,986 (filed on September 21, 2001). This application contains the entire contents of these U.S. patent applications.

<第8實施形態之驅動器之構成> <Configuration of Driver of Eighth Embodiment>

圖36係用於概略性顯示第8實施形態之CG驅動器、與平面開關之關係之方塊圖。 Fig. 36 is a block diagram for schematically showing the relationship between the CG driver and the plane switch of the eighth embodiment.

於圖36中,為簡化,就記憶體胞陣列71具有兩個平面之情形進行說明。且,於本實施形態中,說明1個平面具有4區塊之情形。 In Fig. 36, for the sake of simplicity, the case where the memory cell array 71 has two planes will be described. Further, in the present embodiment, a case where one plane has four blocks will be described.

如圖36所示,電壓產生電路76-1具備電源供應器761、CG驅動器762、及SG驅動器763。電源供應器761對CG驅動器762、SG驅動器763、及其他電路供給電力。 As shown in FIG. 36, the voltage generating circuit 76-1 includes a power supply 761, a CG driver 762, and an SG driver 763. The power supply 761 supplies power to the CG driver 762, the SG driver 763, and other circuits.

如圖37所示,第6實施形態之CG驅動器762具備VCGSEL電路762a、CGN驅動器762b、762d(總計16台)、CGD驅動器762c(總計2台)、及CGU驅動器762e。 As shown in FIG. 37, the CG driver 762 of the sixth embodiment includes a VCGSEL circuit 762a, CGN drivers 762b and 762d (16 in total), a CGD driver 762c (two in total), and a CGU driver 762e.

VCGSEL電路762a根據來自控制電路76之控制信號,輸出電壓VPGM或VCGRV作為電壓VCGSEL。 The VCGSEL circuit 762a outputs a voltage VPGM or VCGRV as a voltage VCGSEL based on a control signal from the control circuit 76.

CGN驅動器762b、762d、及CGD驅動器762c根據來自控制電路76之控制信號,輸出電壓VCGSEL、VUSEL1、VUSEL2、及VSS之任一者之電壓。 The CGN drivers 762b and 762d and the CGD driver 762c output voltages of any of the voltages VCGSEL, VUSEL1, VUSEL2, and VSS based on a control signal from the control circuit 76.

CGU驅動器762e根據來自控制電路76之控制信號,輸出電壓VUSEL1、VUSEL2、及VSS之任一者之電壓。電壓VCELSRC及VCPWELL連接於記憶體胞陣列71。 The CGU driver 762e outputs a voltage of any of the voltages VUSEL1, VUSEL2, and VSS in accordance with a control signal from the control circuit 76. The voltages VCELSRC and VCPWELL are connected to the memory cell array 71.

CGN驅動器以1條為單位驅動儲存資料之字元線WL(亦稱為DataWL)。又,CGN驅動器各自具備具有4個驅動器之CGNA驅動器、CGNB驅動器、CGNC驅動器、及CGND驅動器。CGD驅動器以1條為單位驅動未儲存資料之字元線WL(亦稱為DummyWL)。DummyWL為光微影餘裕與確保DataWL之胞特性而於每一代根據需要準備0條以 上。CGD驅動器具備CGDD驅動器、CGDS驅動器。CGDD選擇輸出例如電壓VREADK。又,CGDS選擇輸出VREAD。CGU驅動器係可選擇之電壓較少但具有驅動力之驅動器。在與記憶體相關之Program/Read動作時,距離選擇字元線WL較遠之字元線WL只要一律以相同電位驅動即可。在此種情形中,使用CGU驅動器。 The CGN driver drives the word line WL (also referred to as DataWL) that stores data in units of one. Further, each of the CGN drivers includes a CGNA driver having four drivers, a CGNB driver, a CGNC driver, and a CGND driver. The CGD driver drives the word line WL (also referred to as DummyWL) that does not store data in units of one. DummyWL is for the lithography margin and to ensure the cell characteristics of DataWL and prepare 0 pieces for each generation as needed. on. The CGD driver is equipped with a CGDD driver and a CGDS driver. The CGDD selects an output such as a voltage VREADK. Also, the CGDS selects and outputs VREAD. The CGU driver is a driver that has a selectable voltage but a driving force. In the program/read operation associated with the memory, the word line WL farther from the selected word line WL may be driven at the same potential. In this case, a CGU driver is used.

又,SG驅動器763係對記憶體胞陣列71之選擇閘極等供給電力之驅動器。 Further, the SG driver 763 is a driver that supplies electric power to a selection gate or the like of the memory cell array 71.

平面開關80於記憶體胞陣列71之每個平面,設置有平面開關CGSW、及平面開關SGSW。更具體而言,平面開關80對應於平面<0>,具備平面開關CGSW801a、及平面開關SGSW801b,且對應於平面<1>,具備平面開關CGSW802a、及平面開關SGSW802b。 The plane switch 80 is provided with a plane switch CCSSW and a plane switch SGSW on each plane of the memory cell array 71. More specifically, the plane switch 80 includes a plane switch CGSW 801a and a plane switch SGSW 801b corresponding to the plane <0>, and includes a plane switch CCSW 802a and a plane switch SGSW 802b corresponding to the plane <1>.

平面開關CGSW801a自控制電路76接收區信號ZONE_P0<3:0>、模式信號MODE_P0<1:0>、及CGD*SW_P0。又,平面開關CGSW801a自CG驅動器762接收CGNA<3:0>、CGNB<3:0>、CGNC<3:0>、CGND<3:0>、CGDD、CGDS及CGU。且,平面開關CGSW801a基於來自控制電路76之信號,將來自CG驅動器762之信號供給於列解碼器75。又,平面開關SGSW801b基於來自控制電路76之信號,將自SG驅動器763接收之SGS信號及SGD信號供給於列解碼器75。 The plane switch CCSW801a receives the zone signals ZONE_P0<3:0>, mode signals MODE_P0<1:0>, and CGD*SW_P0 from the control circuit 76. Further, the plane switch CCSW801a receives CGNA<3:0>, CGNB<3:0>, CGNC<3:0>, CGND<3:0>, CGDD, CGDS, and CGU from the CG driver 762. Further, the plane switch CCSW 801a supplies a signal from the CG driver 762 to the column decoder 75 based on a signal from the control circuit 76. Further, the plane switch SGSW 801b supplies the SGS signal and the SGD signal received from the SG driver 763 to the column decoder 75 based on the signal from the control circuit 76.

列解碼器75於每個平面設置有列解碼器。更具體而言,列解碼器75具備與平面<0>對應之列解碼器751、及與平面<1>對應之列解碼器752。 The column decoder 75 is provided with a column decoder for each plane. More specifically, the column decoder 75 includes a column decoder 751 corresponding to the plane <0> and a column decoder 752 corresponding to the plane <1>.

列解碼器751自控制電路76接收信號BLKADD_P0<1:0>、及信號RDEC_P0。又,列解碼器751自平面開關CGSW801a接收CGI<31:0>、CGDDI、CGDSI。再者,列解碼器751自平面開關SGSW801b接收SGSI、SGDI、USGSI、及USGDI。列解碼器751基於 接收信號,而將信號供給於平面<0>。又,列解碼器752與列解碼器751相同地進行動作。 Column decoder 751 receives signals BLKADD_P0<1:0> and signal RDEC_P0 from control circuit 76. Further, the column decoder 751 receives CGI<31:0>, CGDDI, and CGDSI from the plane switch CGSW801a. Furthermore, column decoder 751 receives SGSI, SGDI, USGSI, and USGDI from plane switch SGWW 801b. Column decoder 751 is based on The signal is received and the signal is supplied to plane <0>. Further, the column decoder 752 operates in the same manner as the column decoder 751.

<平面開關CGSW之CGD相關之開關之構成> <Configuration of CGD-related switches of the planar switch CGSW>

其次,使用圖38概略性說明第8實施形態之平面開關CGSW之CGD相關之開關之構成。 Next, the configuration of the CGD-related switch of the planar switch CCSW of the eighth embodiment will be schematically explained using FIG.

例如,於第8實施形態中,平面開關CGSW801a具備開關80a、80b、80c、及80d。 For example, in the eighth embodiment, the plane switch CCSW801a includes switches 80a, 80b, 80c, and 80d.

對開關80a之電壓路徑之一端輸入CGDD,電壓路徑之另一端連接於信號線CGDDI,且對閘極輸入來自控制電路76之信號。 The CGDD is input to one end of the voltage path of the switch 80a, the other end of the voltage path is connected to the signal line CGDDI, and the signal from the control circuit 76 is input to the gate.

對開關80b之電壓路徑之一端輸入CGDS,電壓路徑之另一端連接於信號線CGDDI,且對閘極輸入來自控制電路76之信號。 The CGDS is input to one of the voltage paths of the switch 80b, the other end of the voltage path is connected to the signal line CGDDI, and the signal from the control circuit 76 is input to the gate.

對開關80c之電壓路徑之一端輸入CGDD,電壓路徑之另一端連接於信號線CGDSI,且對閘極輸入來自控制電路76之信號。 The CGDD is input to one of the voltage paths of the switch 80c, the other end of the voltage path is connected to the signal line CGDSI, and the signal from the control circuit 76 is input to the gate.

對開關80d之電壓路徑之一端輸入CGDS,電壓路徑之另一端連接於信號線CGDSI,且對閘極輸入來自控制電路76之信號。 The CGDS is input to one of the voltage paths of the switch 80d, the other end of the voltage path is connected to the signal line CGDSI, and the signal from the control circuit 76 is input to the gate.

另,本實施形態之平面開關CGSW之CGN相關之開關之構成因與第1實施形態所說明之平面開關CGSW之CGN相關之開關之構成相同,故省略說明。 In addition, the configuration of the switch related to the CGN of the plane switch CGSW of the present embodiment is the same as the configuration of the switch related to the CGN of the plane switch CCSSW described in the first embodiment, and thus the description thereof is omitted.

<CG映射之例> <Example of CG mapping>

使用圖39~圖41,概略性說明第8實施形態之CG映射。圖39係顯示第8實施形態之半導體記憶裝置之編程動作時之CG映射之圖。圖40係顯示第8實施形態之半導體記憶裝置之讀取動作時之CG映射之圖。圖41係顯示第8實施形態之半導體記憶裝置之抹除動作時之CG映射之圖。在圖39~圖41中,縱軸表示CG驅動器對字元線WL之分配,橫軸表示選擇字元線WL。 The CG map of the eighth embodiment will be schematically described using Figs. 39 to 41. Fig. 39 is a view showing a CG map at the time of a programming operation of the semiconductor memory device of the eighth embodiment. Fig. 40 is a view showing a CG map at the time of a reading operation of the semiconductor memory device of the eighth embodiment. Fig. 41 is a view showing a CG map at the time of erasing operation of the semiconductor memory device of the eighth embodiment. In FIGS. 39 to 41, the vertical axis represents the allocation of the CG driver to the word line WL, and the horizontal axis represents the selected word line WL.

另,於第8實施形態中,於讀取動作以外,CGDD驅動器始終對 字元線WLDD施加專用電壓,CGDS驅動器始終對字元線WLDS施加專用電壓。 Further, in the eighth embodiment, the CGDD driver is always in addition to the reading operation. The word line WLDD applies a dedicated voltage, and the CGDS driver always applies a dedicated voltage to the word line WLDS.

<編程動作時之CG映射之例> <Example of CG mapping when programming action>

首先,說明編程動作時之CG映射。如圖39所示,根據所選擇之字元線WL,適當切換對字元線WL施加電壓之CG驅動器。 First, the CG mapping at the time of programming operation will be explained. As shown in FIG. 39, a CG driver that applies a voltage to the word line WL is appropriately switched in accordance with the selected word line WL.

圖39之橫軸所示之區係自控制電路指示於各DataWL連接CGN驅動器之任一者或CGU驅動器之資訊。例如,自主機2輸入對記憶體控制器20進行存取之平面及頁面位址。因此,藉由自記憶體控制器20輸入對NAND型快閃記憶體300進行存取之平面及頁面位址,記憶體裝置內控制電路76係藉由對該平面之平面開關電路80發送ZONE<3:0>而決定。具體而言,在對字元線WLDS、WL0~WL9進行編程時,對字元線WL0~3自CGNA驅動器施加期望之電壓,同樣對字元線WL4~7自CGNB驅動器施加期望之電壓,對字元線WL8~11自CGNC驅動器施加期望之電壓,對字元線WL12~15自CGND驅動器施加期望之電壓,對字元線WL16~31自CGU驅動器施加期望之電壓。 The area shown on the horizontal axis of Fig. 39 is information from the control circuit indicating that each DataWL is connected to any of the CGN drivers or the CGU driver. For example, the plane and page address for accessing the memory controller 20 are input from the host 2. Therefore, by inputting the plane and page address for accessing the NAND flash memory 300 from the memory controller 20, the memory device internal control circuit 76 transmits ZONE by the plane switching circuit 80 of the plane. 3:0> and decided. Specifically, when the word lines WLDS, WL0 WL WL9 are programmed, the desired voltage is applied from the CGNA driver to the word lines WL0 WL3, and the desired voltage is applied from the CGNB driver to the word lines WL4 -7, respectively. The word lines WL8~11 apply a desired voltage from the CGNC driver, apply a desired voltage to the word lines WL12~15 from the CGND driver, and apply a desired voltage to the word lines WL16~31 from the CGU driver.

與此相對,在對字元線WL10~WL13進行編程時,以將CGNA驅動器連接於字元線WL16~19,且將CGU連接於字元線WL0~3之方式進行切換。進行以進行編程之字元線WL預先決定之連接,該連接之組合為區PZ0~PZ4之5種。 On the other hand, when the word lines WL10 to WL13 are programmed, the CGNA driver is connected to the word lines WL16 to 19, and the CGU is connected to the word lines WL0 to WL3. A predetermined connection is made to the word line WL to be programmed, and the combination of the connections is five types of the areas PZ0 to PZ4.

如第1實施形態所說明,將該區PZ0~PZ4之各者稱為編程時之區。 As described in the first embodiment, each of the areas PZ0 to PZ4 is referred to as a zone at the time of programming.

於本實施形態中,藉由使用合計16台CGN驅動器,可相對編程時之選擇字元線WLi(i:0~31)由CGN驅動器高精度地控制非選擇字元線WL(i+1)~非選擇字元線WL(i+6)(參照圖中D6)、或非選擇字元線WL(i-1)~非選擇字元線WL(i-6)(參照圖中S6)之電壓。 In the present embodiment, by using a total of 16 CGN drivers, the non-selected word line WL(i+1) can be controlled with high precision by the CGN driver by selecting the word line WLi (i: 0 to 31) during programming. ~ Non-selected word line WL(i+6) (refer to D6 in the figure) or unselected word line WL(i-1) to non-selected word line WL(i-6) (refer to S6 in the figure) Voltage.

<讀取動作時之CG映射之例> <Example of CG mapping when reading action>

其次,說明讀取動作時之CG映射。 Next, the CG mapping at the time of the reading operation will be described.

NAND型半導體記憶裝置之讀取時,只要對選擇字元線WLi施加讀取電壓,對非選擇字元線WL(i±1)之字元線WL施加電壓VREADK,且對其他字元線WL施加被稱為電壓VREAD之電壓即可,必須控制之字元線WL之範圍相較於編程時變窄,從而可減少必要之CGN驅動器之台數。 When reading the NAND type semiconductor memory device, as long as a read voltage is applied to the selected word line WLi, a voltage VREADK is applied to the word line WL of the unselected word line WL (i±1), and the other word lines WL are applied. By applying a voltage called voltage VREAD, the range of word lines WL that must be controlled is narrower than that during programming, thereby reducing the number of necessary CGN drivers.

如圖40所示,根據所選擇之字元線WL,適當切換對各字元線WL施加電壓之CG驅動器。 As shown in FIG. 40, a CG driver that applies a voltage to each word line WL is appropriately switched in accordance with the selected word line WL.

如圖40之橫軸所示,設定有讀取時之區RZ0~RZ6。 As shown on the horizontal axis of Fig. 40, the areas RZ0 to RZ6 at the time of reading are set.

具體而言,對字元線WLDS、WL0~WL5進行讀取時,對字元線WL0~3以CGNA驅動器或CGNC驅動器施加期望之電壓,同樣,對字元線WL4~7以CGNB驅動器或CGND驅動器施加期望之電壓,且對字元線WL8~31以CGU驅動器施加期望之電壓。與此相對,對字元線WL6~WL9進行讀取時,以將CGNA驅動器或CGNC驅動器連接於字元線WL8~11,且將CGU驅動器連接於字元線WL0~3之方式產生切換。進行以進行讀取之字元線WL預先決定之連接,該連接之組合為區RZ0~RZ6之7種。將該區RZ0~RZ6之各者稱為讀取時之區。 Specifically, when reading the word lines WLDS, WL0 WL WL5, the desired voltage is applied to the word lines WL0 WL3 by the CGNA driver or the CGNC driver, and the CGNB driver or CGND is also applied to the word lines WL4 -7. The driver applies the desired voltage and applies the desired voltage to the word lines WL8-31 in a CGU driver. On the other hand, when the word lines WL6 to WL9 are read, switching is performed such that the CGNA driver or the CGNC driver is connected to the word lines WL8 to 11 and the CGU driver is connected to the word lines WL0 to WL3. A predetermined connection is made to the read word line WL, and the combination of the connections is seven types of the regions RZ0 to RZ6. Each of the regions RZ0 to RZ6 is referred to as a region at the time of reading.

選擇區RZ0之情形時,區信號成為“000”,選擇區RZ1之情形時,區信號成為“001”。選擇區RZ2之情形時,區信號成為“010”,選擇區RZ3之情形時,區信號成為“011”。選擇區RZ4之情形時,區信號成為“100”,選擇區RZ5之情形時,區信號成為“101”。且,選擇區RZ6之情形時,區信號成為“110”。 When the zone RZ0 is selected, the zone signal becomes "000", and when the zone RZ1 is selected, the zone signal becomes "001". When the area RZ2 is selected, the area signal becomes "010", and when the area RZ3 is selected, the area signal becomes "011". When the area RZ4 is selected, the area signal becomes "100", and when the area RZ5 is selected, the area signal becomes "101". Also, in the case of selecting the zone RZ6, the zone signal becomes "110".

如此,於本實施形態中,至少可藉由CGN驅動器相對選擇字元線WLi(i:0~31)切換非選擇字元線WL(i+1)(參照圖中D1)、或非選擇字元線WL(i-1)(參照圖中S1)之電壓,且藉由以CGNA及CGNB、CGNC及CGND分配用於不同平面之字元線WL施加,可於多平面讀取 時自由指定兩種字元線WL。因可以具有例如16台CGN驅動器之NAND型半導體記憶裝置於多平面讀取時選擇兩種字元線WL,故將驅動器分為4組,2組分配用於選擇1條字元線WL,剩餘2組分配用於選擇另1條字元線WL。 As described above, in the present embodiment, at least the non-selected word line WL(i+1) (refer to D1 in the drawing) or the non-selected word can be switched by the CGN driver with respect to the selected word line WLi (i: 0 to 31). The voltage of the line WL(i-1) (refer to S1 in the figure), and can be read by multi-plane by assigning the word line WL for different planes with CGNA and CGNB, CGNC and CGND The time is free to specify two word lines WL. Since the NAND type semiconductor memory device which can have, for example, 16 CGN drivers selects two word lines WL during multi-plane reading, the driver is divided into four groups, and two groups are allocated for selecting one word line WL, and the remaining The 2 group allocation is used to select another word line WL.

<抹除動作時之CG映射之例> <Example of CG mapping when erasing action>

其次,說明抹除動作時之CG映射。 Next, the CG mapping at the time of erasing the action will be described.

如圖41所示,在抹除動作時,CGNA驅動器將電壓施加至字元線WL0~WL3、WL16~WL19,CGNB驅動器將電壓施加至字元線WL4~WL7、WL20~WL23。又,CGNC驅動器將電壓施加至字元線WL8~WL11、WL24~WL27,CGND驅動器將電壓施加至字元線WL12~WL15、WL28~WL31。另,因本實施形態與抹除動作無關,故省略詳細說明。 As shown in FIG. 41, during the erase operation, the CGNA driver applies a voltage to the word lines WL0 to WL3, WL16 to WL19, and the CGNB driver applies a voltage to the word lines WL4 to WL7 and WL20 to WL23. Further, the CGNC driver applies a voltage to the word lines WL8 to WL11 and WL24 to WL27, and the CGND driver applies a voltage to the word lines WL12 to WL15 and WL28 to WL31. In addition, since this embodiment is not related to the erasing operation, detailed description is omitted.

<CG之連接表格> <CG connection form>

其次,使用圖42A及圖42B,說明CG之連接表格。圖42A顯示對抹除動作、編程動作、讀取動作時之區信號,自CGN/CGU驅動器對CGI之連接關係。圖42B顯示自CGD驅動器對CGD*I之連接關係。 Next, a connection table of CG will be described using FIG. 42A and FIG. 42B. Fig. 42A shows the connection relationship from the CGN/CGU driver to the CGI for the erase signal, the program operation, and the read operation. Figure 42B shows the connection relationship from the CGD driver to CGD*I.

如圖42A所示,抹除時,模式信號MODE<1:0>成為“00”,編程時,模式信號MODE<1:0>成為“01”。讀取時(Read-A),模式信號MODE<1:0>成為“10”,讀取時(Read-B),模式信號MODE<1:0>成為“11”。圖中之讀取時(Read-A)與讀取時(Read-B)雖然讀取動作本身實質上不變,但所使用之CG驅動器各不相同。 As shown in FIG. 42A, when erasing, the mode signal MODE<1:0> becomes "00", and when programming, the mode signal MODE<1:0> becomes "01". At the time of reading (Read-A), the mode signal MODE<1:0> becomes "10", and when reading (Read-B), the mode signal MODE<1:0> becomes "11". In the reading (Read-A) and reading (Read-B), although the reading operation itself is substantially unchanged, the CG drivers used are different.

如圖42B所示,CGDDSW為“0”之情形時,CGDDI輸出為CGDD驅動器之輸出,CGDDSW為“1”之情形時,CGDDI輸出為CGDS驅動器之輸出。又,CGDDSSW為“0”之情形時,CGDSI輸出為CGDS驅動器之輸出,CGDDSSW為“1”之情形時,CGDSI輸出為CGDD驅動器之輸出。 As shown in Fig. 42B, when CGDDSW is "0", the CGDDI output is the output of the CGDD driver, and when CGDDSW is "1", the CGDDI output is the output of the CGDS driver. Further, when CGDDSSW is "0", the CGDSI output is the output of the CGDS driver, and when the CGDDSSW is "1", the CGDSI output is the output of the CGDD driver.

<第8實施形態之作用效果> <Effects of the eighth embodiment>

根據上述之第8實施形態,於使用平面之NAND快閃記憶體之記憶體裝置中,亦可獲得與上述各實施形態相同之效果。 According to the eighth embodiment described above, in the memory device using the planar NAND flash memory, the same effects as those of the above embodiments can be obtained.

(第9實施形態) (Ninth Embodiment)

其次,說明第9實施形態。於第9實施形態中,就第8實施形態所說明之NAND型快閃記憶體300之虛設字元線附近之讀取動作進行說明。另,於第9實施形態中,對具有與上述之第8實施形態大致相同之功能及構成之構成要件標註相同符號,且僅於必要之情形進行重複說明。 Next, a ninth embodiment will be described. In the ninth embodiment, the reading operation in the vicinity of the dummy word line of the NAND flash memory 300 described in the eighth embodiment will be described. In the ninth embodiment, the components having the same functions and configurations as those of the above-described eighth embodiment are denoted by the same reference numerals, and the description thereof will be repeated only when necessary.

使用圖43A及圖43B,說明選擇字元線WL於虛設字元線WLD附近時之讀取動作、及選擇字元線WL未於虛設字元線WLD附近之情形之讀取動作。圖43A係顯示讀取動作時,選擇字元線WL於虛設字元線WLD附近之情形之區信號ZONE<3:0>、模式信號MODE<1:0>、CGDDSW信號、及CGDDSSW信號之圖。圖43B係顯示使用於各字元線WL之CG驅動器之種類、及施加於字元線WL之電壓之圖。另,此處為簡化,而著眼於平面0、平面1,就自平面1讀取hSLC資料之情形進行說明。 The reading operation when the word line WL is selected in the vicinity of the dummy word line WLD and the reading operation in the case where the selected word line WL is not in the vicinity of the dummy word line WLD will be described with reference to FIGS. 43A and 43B. 43A is a view showing a region signal ZONE<3:0>, a mode signal MODE<1:0>, a CGDDSW signal, and a CGDDSSW signal in the case where the word line WL is selected in the vicinity of the dummy word line WLD in the read operation. . Fig. 43B is a view showing the kind of the CG driver used for each word line WL and the voltage applied to the word line WL. In addition, here, for the sake of simplicity, attention is paid to the case where the plane 0 and the plane 1 are read, and the case where the hSLC data is read from the plane 1 will be described.

如圖43A及圖43B所示,於平面0中,選擇字元線WL為例如鄰接於虛設字元線WLDD之字元線WL31之情形時,區信號ZONE<3:0>為“110”,模式信號MODE<1:0>為“10”,CGDDSW信號為“0”,CGDSSW信號為“0”。 As shown in FIG. 43A and FIG. 43B, in the case of the plane 0, when the word line WL is selected, for example, in the case of the word line WL31 adjacent to the dummy word line WLDD, the area signal ZONE<3:0> is "110". The mode signal MODE<1:0> is "10", the CGDDSW signal is "0", and the CGDSSW signal is "0".

對選擇字元線WL31,藉由CGNB<3>驅動器施加電壓VCGRV,對非選擇字元線WL30,藉由CGNB<2>驅動器施加電壓VREADK(VREADK>VCGRV)。接著,對虛設選擇字元線WLDD,藉由CGDD驅動器施加電壓VREADK(VREADK>VCGRV)。 For the selected word line WL31, the voltage VCGRV is applied by the CGNB<3> driver, and the voltage VREADK (VREADK>VCGRV) is applied to the unselected word line WL30 by the CGNB<2> driver. Next, for the dummy select word line WLDD, a voltage VREADK (VREADK > VCGRV) is applied by the CGDD driver.

如圖43A及圖43B所示,在平面1中,選擇字元線WL為例如不鄰 接於虛設字元線WLD之字元線WL15之情形時,區信號ZONE<3:0>為“011”,模式信號MODE<1:0>為“11”,CGDDSW信號為“1”,CGDSSW信號為“0”。 As shown in FIG. 43A and FIG. 43B, in the plane 1, the selected word line WL is, for example, not adjacent. When the word line WL15 of the dummy word line WLD is connected, the area signal ZONE<3:0> is "011", the mode signal MODE<1:0> is "11", the CGDDSW signal is "1", CGDSWS The signal is "0".

對選擇字元線WL15,藉由CGND<3>驅動器施加電壓VCGRV,對非選擇字元線WL14、WL16,藉由CGND驅動器施加電壓VREADK(VREADK>VCGRV)。 For the selected word line WL15, the voltage VCGRV is applied by the CGND<3> driver, and the voltage VREADK (VREADK>VCGRV) is applied to the non-selected word lines WL14 and WL16 by the CGND driver.

(第10實施形態) (Tenth embodiment)

其次,說明第10實施形態。於第10實施形態中,就與第9實施形態所說明之CG驅動器及電源供應器不同之CG驅動器及電源供應器進行說明。另,於第10實施形態中,對具有與上述之各實施形態大致相同之功能及構成之構成要件標註相同符號,且僅於必要之情形進行重複說明。 Next, a tenth embodiment will be described. In the tenth embodiment, a CG driver and a power supply device different from the CG driver and the power supply device described in the ninth embodiment will be described. In the tenth embodiment, the components having the same functions and configurations as those of the above-described embodiments are denoted by the same reference numerals, and the description thereof will be repeated only when necessary.

如圖44所示,第10實施形態之電源供應器761及CG驅動器762係將電源分為平面A用及平面B用。如圖44所示,第10實施形態之CG驅動器762具備VCGSEL電路762a、CGN驅動器762b、762d(總計16台)、CGD驅動器762c(總計2台)、CGU驅動器762e、VCGSEL2電路762f、CGD驅動器762g(總計2台)、及CGU驅動器762h。 As shown in Fig. 44, the power supply 761 and the CG driver 762 of the tenth embodiment divide the power supply into a plane A and a plane B. As shown in FIG. 44, the CG driver 762 of the tenth embodiment includes a VCGSEL circuit 762a, CGN drivers 762b and 762d (16 in total), a CGD driver 762c (two in total), a CGU driver 762e, a VCGSEL2 circuit 762f, and a CGD driver 762g. (2 in total), and CGU driver 762h.

VCGSEL電路762a根據來自控制電路15之控制信號,輸出電壓VPGM或VCGRVA作為電壓VCGSEL_AB。 The VCGSEL circuit 762a outputs a voltage VPGM or VCGRVA as a voltage VCGSEL_AB in accordance with a control signal from the control circuit 15.

CGN驅動器762b、及CGD驅動器762c根據來自控制電路76之控制信號,將電壓VCGSEL_AB、VUSEL1A、VUSEL2A、及VSS之任一電壓輸出於平面A。 The CGN driver 762b and the CGD driver 762c output any of the voltages VCGSEL_AB, VUSEL1A, VUSEL2A, and VSS to the plane A based on the control signal from the control circuit 76.

CGU驅動器762e根據來自控制電路76之控制信號,將電壓VUSEL1A、VUSEL2A、及VSS之任一電壓輸出於平面A。 The CGU driver 762e outputs any of the voltages VUSEL1A, VUSEL2A, and VSS to the plane A based on the control signal from the control circuit 76.

VCGSEL2電路762f根據來自控制電路76之控制信號,輸出電壓VPGM、VCGRVA、及VCGRVB作為電壓VCGSEL_CD。又, VCGSEL2電路762f根據來自控制電路76之控制信號,輸出電壓VUSEL1A、及VUSEL1B作為電壓VUSEL1_CD。又,VCGSEL2電路762f根據來自控制電路76之控制信號,輸出電壓VUSEL2A、及VUSEL2B作為電壓VUSEL2_CD。 The VCGSEL2 circuit 762f outputs voltages VPGM, VCGRVA, and VCGRVB as voltages VCGSEL_CD based on control signals from the control circuit 76. also, The VCGSEL2 circuit 762f outputs voltages VUSEL1A and VUSEL1B as voltages VUSEL1_CD in accordance with a control signal from the control circuit 76. Further, the VCGSEL2 circuit 762f outputs the voltages VUSEL2A and VUSEL2B as the voltage VUSEL2_CD based on the control signal from the control circuit 76.

CGN驅動器762d、及CGD驅動器762g根據來自控制電路76之控制信號,將電壓VCGSEL_CD、VUSEL1_CD、VUSEL2_CD、及VSS之任一電壓輸出於平面B。 The CGN driver 762d and the CGD driver 762g output any voltages of the voltages VCGSEL_CD, VUSEL1_CD, VUSEL2_CD, and VSS to the plane B based on the control signal from the control circuit 76.

CGU驅動器762h根據來自控制電路76之控制信號,將電壓VUSEL1_CD、VUSEL2_CD、及VSS之任一電壓輸出於平面B。電壓VCELSRCA及VCPWELLA連接於平面A之記憶體胞陣列71。電壓VCELSRCB及VCPWELLB連接於平面B之記憶體胞陣列71。另,平面A及平面B亦可為任意平面。 The CGU driver 762h outputs any of the voltages VUSEL1_CD, VUSEL2_CD, and VSS to the plane B based on the control signal from the control circuit 76. The voltages VCELSRCA and VCPWELLA are connected to the memory cell array 71 of the plane A. The voltages VCELSRCB and VCPWELLB are connected to the memory cell array 71 of the plane B. In addition, the plane A and the plane B may be any plane.

<第10實施形態之作用效果> <Effects of the tenth embodiment>

根據上述第10實施形態,與第9實施形態之電源供應器761比較,第10實施形態之電源供應器761具有兩個電壓系統用於兩個平面,進而採用可同時對兩個平面施加電壓之CG驅動器構成。因此,可同時讀取例如上述之MLC資料、及hSLC資料、或SLC及hSLC資料。 According to the tenth embodiment, the power supply 761 of the tenth embodiment has two voltage systems for two planes as compared with the power supply 761 of the ninth embodiment, and that voltage can be applied to both planes simultaneously. The CG driver is constructed. Therefore, for example, the above-mentioned MLC data, and hSLC data, or SLC and hSLC data can be simultaneously read.

(變化例等) (changes, etc.)

另,第1~8實施形態可進行多種組合。 Further, the first to eighth embodiments can be combined in various combinations.

又,於上述各實施形態中,雖然CGN驅動器係設置有CGNA<3:0>、CGNB<3:0>、CGNC<3:0>、及CGNC<3:0>之16個,但未必限定於此。如上述各實施形態所說明,只要有可調整施加於選擇字元線WL附近之非選擇字元線WL之電壓之CGN驅動器即可。又,於上述之各實施形態中,雖然顯示CG映射,但僅為一例,若依據上述各實施形態之主旨,則亦可藉由CGN驅動器之個數之增減等, 適當變更CG映射。 Further, in each of the above embodiments, the CGN driver is provided with 16 CGNA<3:0>, CGNB<3:0>, CGNC<3:0>, and CGNC<3:0>, but is not necessarily limited. herein. As described in each of the above embodiments, a CGN driver that can adjust the voltage applied to the unselected word line WL near the selected word line WL may be used. Further, in each of the above embodiments, the CG mapping is displayed, but it is only an example. According to the gist of the above embodiments, the number of CGN drivers may be increased or decreased. Change the CG mapping as appropriate.

又,於上述之第2、第3實施形態中,雖然使用BiCS快閃記憶體進行說明,但具有平面NAND快閃記憶體之情形亦可獲得相同效果。 Further, in the second and third embodiments described above, the BiCS flash memory is used for the description, but the same effect can be obtained in the case of the planar NAND flash memory.

又,於上述各實施形態中,雖然說明2值或4值之記憶體胞,但不限定於此,可適當變更。 Further, in each of the above embodiments, a memory cell of two or four values is described, but the present invention is not limited thereto and can be appropriately changed.

又,上述各實施形態所說明之區之範圍僅為一例,區之範圍可適當變更。 Further, the range of the area described in each of the above embodiments is merely an example, and the range of the area can be appropriately changed.

又,於上述各實施形態中,雖然說明使用hSLC模式之編程方法等,但不必限定於此,亦可代替hSLC模式而使用SLC模式。 Further, in the above embodiments, the programming method using the hSLC mode or the like is described, but the present invention is not limited thereto, and the SLC mode may be used instead of the hSLC mode.

又,於上述各實施形態中,雖然說明記憶體胞陣列11具有平面<0>、平面<1>之情形,但不限定於此,記憶體胞陣列11亦可保持特定數量之平面。 Further, in each of the above embodiments, the memory cell array 11 has a plane <0> and a plane <1>. However, the memory cell array 11 is not limited to this, and the memory cell array 11 can also hold a specific number of planes.

以上,雖然已說明本發明之實施形態,但本發明並非限定於上述實施形態,在不脫離其主旨之範圍內可進行多種變化而實施。再者,上述實施形態中包含多種階段之發明,藉由適當組合所揭示之構成要件,可擷取多種發明。例如,若為自所揭示之構成要件中削除數個構成要件,仍可獲得特定效果者,則亦可擷取為發明。 The embodiments of the present invention have been described above, but the present invention is not limited to the embodiments described above, and various modifications can be made without departing from the spirit and scope of the invention. Furthermore, the above embodiments include various stages of the invention, and various inventions can be obtained by appropriately combining the disclosed constituent elements. For example, if a plurality of constituent elements are removed from the disclosed constituent elements and a specific effect is still obtained, the invention can also be taken as an invention.

11‧‧‧記憶體胞陣列 11‧‧‧ Memory Cell Array

15‧‧‧控制電路 15‧‧‧Control circuit

16‧‧‧電壓產生電路 16‧‧‧Voltage generation circuit

17‧‧‧平面開關 17‧‧‧ plane switch

19‧‧‧輸出入緩衝器 19‧‧‧Output buffer

21‧‧‧列解碼器 21‧‧‧ column decoder

161‧‧‧電源供應器 161‧‧‧Power supply

162‧‧‧CG驅動器 162‧‧‧CG driver

163‧‧‧SG驅動器 163‧‧‧SG driver

171a‧‧‧平面開關 171a‧‧‧Plane switch

171b‧‧‧平面開關 171b‧‧‧ plane switch

172a‧‧‧平面開關 172a‧‧‧Plane switch

172b‧‧‧平面開關 172b‧‧‧ plane switch

211‧‧‧列解碼器 211‧‧‧ column decoder

212‧‧‧列解碼器 212‧‧‧ column decoder

BG‧‧‧背閘極 BG‧‧‧ back gate

BLK‧‧‧區塊 BLK‧‧‧ Block

CGBG‧‧‧驅動器 CGBG‧‧‧ drive

CGBGI‧‧‧信號線 CGBGI‧‧‧ signal line

CGDDB‧‧‧驅動器 CGDDB‧‧‧ drive

CGDDBI‧‧‧信號線 CGDDBI‧‧‧ signal line

CGDDT‧‧‧驅動器 CGDDT‧‧‧ drive

CGDDTI‧‧‧信號線 CGDDTI‧‧‧ signal line

CGDSB‧‧‧驅動器 CGDSB‧‧‧ drive

CGDSBI‧‧‧信號線 CGDSBI‧‧‧ signal line

CGDST‧‧‧驅動器 CGDST‧‧‧ drive

CGDSTI‧‧‧信號線 CGDSTI‧‧‧ signal line

CGI‧‧‧信號線 CGI‧‧‧ signal line

CGNA‧‧‧驅動器 CGNA‧‧‧ drive

CGNB‧‧‧驅動器 CGNB‧‧‧ drive

CGNC‧‧‧驅動器 CGNC‧‧‧ drive

CGND‧‧‧驅動器 CGND‧‧‧ drive

CGU‧‧‧驅動器 CGU‧‧‧ drive

SGD‧‧‧汲極側選擇閘極線 SGD‧‧‧汲polar selection gate line

SGDI‧‧‧信號線 SGDI‧‧‧ signal line

SGS‧‧‧源極側選擇閘極線 SGS‧‧‧Source side selection gate line

SGSI‧‧‧信號線 SGSI‧‧‧ signal line

USGDI‧‧‧信號線 USGDI‧‧‧ signal line

USGSI‧‧‧信號線 USGSI‧‧‧ signal line

VSS‧‧‧電壓 VSS‧‧‧ voltage

WL‧‧‧字元線 WL‧‧‧ character line

WLD‧‧‧虛設字元線 WLD‧‧‧Dummy word line

Claims (19)

一種記憶體系統,其包含:記憶體裝置,其具備:複數個記憶體胞,其各自保持資料;複數條字元線,其係與上述複數個記憶體胞連接;頁面,其具備連接於相同字元線之上述複數個記憶體胞;平面,其具備上述複數個頁面;記憶體胞陣列,其具備複數個上述平面;及複數個字元線驅動器,其對上述複數條字元線施加電壓;及控制器,其控制上述記憶體裝置;且上述控制器對上述記憶體裝置發行指令,該指令同時執行對特定之上述平面讀取第1資料、及對與上述特定平面不同之平面讀取第2資料。 A memory system comprising: a memory device, comprising: a plurality of memory cells each holding data; a plurality of word lines connected to the plurality of memory cells; and a page having a connection to the same a plurality of memory cells of the word line; a plane having the plurality of pages; a memory cell array having a plurality of the planes; and a plurality of word line drivers for applying voltage to the plurality of word lines And a controller that controls the memory device; and the controller issues an instruction to the memory device, the command simultaneously performing reading of the first data on the specific plane and reading from a plane different from the specific plane The second information. 如請求項1之記憶體系統,其中上述記憶體裝置自上述控制器接收上述第1資料讀取指令、及上述第2資料讀取指令時,自上述特定平面、及與上述特定平面不同之平面同時讀取資料。 The memory system of claim 1, wherein the memory device receives the first data read command and the second data read command from the controller, from the specific plane and a plane different from the specific plane Read the data at the same time. 如請求項1之記憶體系統,其中上述記憶體裝置進而包含設置於每個上述平面、且將上述字元線驅動器分配於每條上述字元線之複數個開關。 The memory system of claim 1, wherein the memory device further comprises a plurality of switches disposed on each of the planes and allocating the word line driver to each of the word lines. 如請求項3之記憶體系統,其中上述控制器在對上述記憶體胞陣列有複數個存取請求之情形時,統合對彼此不同之上述平面之複數個存取,且使用上述字元線驅動器及上述開關,於每個上述平面,將上述複數個字元線驅動器分配於上述複數條字元線。 The memory system of claim 3, wherein said controller integrates a plurality of accesses to said different planes different from each other when said plurality of access requests are made to said memory cell array, and said word line driver is used And the switch, wherein the plurality of word line drivers are allocated to the plurality of word lines on each of the planes. 如請求項3之記憶體系統,其中上述控制器在對上述記憶體胞陣列有複數個存取請求之情形時,統合對屬於彼此不同之上述平面、且屬於彼此不同之上述字元線之頁面之複數個存取,且使用上述字元線驅動器及上述開關,於每個上述平面,將上述複數個字元線驅動器分配於上述複數條字元線。 The memory system of claim 3, wherein the controller, in the case of having a plurality of access requests to the memory cell array, integrates pages belonging to the above-mentioned planes different from each other and belonging to the above-mentioned word lines different from each other And a plurality of accesses, wherein the plurality of word line drivers are allocated to the plurality of word lines on each of the planes using the word line driver and the switch. 如請求項3之記憶體系統,其中上述控制器在對上述記憶體胞陣列有複數個存取請求之情形時,統合對不同平面且彼此關聯之資料之複數個存取,且使用上述字元線驅動器及上述開關,於每個上述平面,將上述複數個字元線驅動器分配於上述複數條字元線。 The memory system of claim 3, wherein the controller integrates a plurality of accesses to different planes and associated data, and uses the above characters when there are multiple access requests to the memory cell array. The line driver and the switch respectively distribute the plurality of word line drivers to the plurality of word lines on each of the planes. 如請求項4至6中任一項之記憶體系統,其中上述控制器統合與資料之讀取相關之上述複數個存取。 The memory system of any one of claims 4 to 6, wherein the controller integrates the plurality of accesses associated with reading of the data. 如請求項4至6中任一項之記憶體系統,其中上述控制器統合與資料之編程相關之上述複數個存取。 The memory system of any one of claims 4 to 6, wherein the controller integrates the plurality of accesses associated with programming of the data. 如請求項1之記憶體系統,其中進而包含對兩個上述平面供給電壓之電源供應器;且上述複數個字元線驅動器係同時對兩個上述平面供給自上述電源供應器所供給之電壓。 The memory system of claim 1, further comprising a power supply for supplying voltage to the two of said planes; and said plurality of word line drivers simultaneously supplying the two said planes with a voltage supplied from said power supply. 如請求項1之記憶體系統,其中上述控制器在判定為自外部供給之第1資料與第2資料相關聯之情形時,將上述第1資料與上述第2資料儲存於彼此不同之平面。 The memory system of claim 1, wherein the controller stores the first data and the second data on mutually different planes when it is determined that the first data supplied from the outside is associated with the second data. 如請求項1之記憶體系統,其中在上述複數個平面中,於第1平面儲存有MLC資料,且於第2平面儲存有臨限值較SLC資料更高之hSLC資料之情形時,上述控制器同時讀取儲存於上述第1平面之MLC資料、及儲存 於上述第2平面之hSLC資料。 The memory system of claim 1, wherein in the plurality of planes, the MLC data is stored in the first plane, and the hSLC data having a higher threshold than the SLC data is stored in the second plane, the foregoing control At the same time, the MLC data stored in the first plane described above is read and stored. hSLC data in the second plane above. 如請求項1之記憶體系統,其中在上述複數個平面中,於第1平面儲存有SLC資料,且於第2平面儲存有臨限值較SLC資料更高之hSLC資料之情形時,上述控制器同時讀取儲存於上述第1平面之SLC資料、及儲存於上述第2平面之hSLC資料。 The memory system of claim 1, wherein in the plurality of planes, the SLC data is stored in the first plane, and the hSLC data having a higher threshold than the SLC data is stored in the second plane, the foregoing control The device simultaneously reads the SLC data stored in the first plane and the hSLC data stored in the second plane. 如請求項1之記憶體系統,其中在上述複數個平面中,於第1平面儲存有MLC資料,且於第2平面儲存有SLC資料之情形時,上述控制器同時讀取儲存於上述第1平面之MLC資料、及儲存於上述第2平面之SLC資料。 The memory system of claim 1, wherein in the plurality of planes, when the MLC data is stored in the first plane and the SLC data is stored in the second plane, the controller is simultaneously read and stored in the first The MLC data of the plane and the SLC data stored in the second plane above. 如請求項1之記憶體系統,其中上述控制器進而包含接收複數個上述存取請求之佇列區域。 The memory system of claim 1, wherein the controller further comprises a queue region that receives the plurality of access requests. 如請求項1之記憶體系統,其中上述控制器以1次資料讀取順序,自屬於上述複數個平面之複數條字元線讀取複數個資料。 The memory system of claim 1, wherein the controller reads a plurality of data from a plurality of word lines belonging to the plurality of planes in a data reading order. 如請求項3之記憶體系統,其中上述控制器進而包含保持上述字元線之範圍資訊之記憶部;且基於上述範圍資訊而控制上述開關。 The memory system of claim 3, wherein the controller further comprises a memory portion that retains range information of the word line; and controls the switch based on the range information. 如請求項1之記憶體系統,其中上述記憶體胞陣列為3維積層型非揮發性半導體。 The memory system of claim 1, wherein the memory cell array is a 3-dimensional laminated non-volatile semiconductor. 如請求項1之記憶體系統,其中上述記憶體胞陣列為NAND快閃記憶體。 The memory system of claim 1, wherein the memory cell array is a NAND flash memory. 一種記憶體系統,其包含:記憶體裝置,其具備:複數個記憶體胞,其各自保持資料;複數條字元線,其係與上述複數個記憶體胞連接;頁面,其具備連接於相同字元線之上述複數個記憶體胞; 平面,其具備上述複數個頁面;記憶體胞陣列,其具備複數個上述平面;及複數個字元線驅動器,其對上述複數條字元線施加電壓;及控制器,其控制上述記憶體裝置;且上述控制器對上述彼此不同之頁面同時進行存取。 A memory system comprising: a memory device, comprising: a plurality of memory cells each holding data; a plurality of word lines connected to the plurality of memory cells; and a page having a connection to the same a plurality of memory cells of the word line; a plane having the plurality of pages; a memory cell array having a plurality of the planes; and a plurality of word line drivers for applying voltage to the plurality of word lines; and a controller for controlling the memory device And the above controller simultaneously accesses the pages different from each other described above.
TW102147653A 2013-12-20 2013-12-20 Memory system TWI545567B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102147653A TWI545567B (en) 2013-12-20 2013-12-20 Memory system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102147653A TWI545567B (en) 2013-12-20 2013-12-20 Memory system

Publications (2)

Publication Number Publication Date
TW201525998A true TW201525998A (en) 2015-07-01
TWI545567B TWI545567B (en) 2016-08-11

Family

ID=54197749

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102147653A TWI545567B (en) 2013-12-20 2013-12-20 Memory system

Country Status (1)

Country Link
TW (1) TWI545567B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9747173B2 (en) 2015-11-13 2017-08-29 Silicon Motion, Inc. Data storage devices and data maintenance methods
TWI685844B (en) * 2017-12-28 2020-02-21 美商美光科技公司 Techniques to update a trim parameter in non-volatile memory

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9747173B2 (en) 2015-11-13 2017-08-29 Silicon Motion, Inc. Data storage devices and data maintenance methods
US9852032B2 (en) 2015-11-13 2017-12-26 Silicon Motion, Inc. Data storage devices and data maintenance methods
TWI685844B (en) * 2017-12-28 2020-02-21 美商美光科技公司 Techniques to update a trim parameter in non-volatile memory
US10649656B2 (en) 2017-12-28 2020-05-12 Micron Technology, Inc. Techniques to update a trim parameter in non-volatile memory
US11928330B2 (en) 2017-12-28 2024-03-12 Micron Technology, Inc. Techniques to update a trim parameter in non-volatile memory

Also Published As

Publication number Publication date
TWI545567B (en) 2016-08-11

Similar Documents

Publication Publication Date Title
JP5866032B2 (en) Memory system
JP5259666B2 (en) Nonvolatile semiconductor memory device
CN107393589B (en) Three-dimensional flash memory device and data storage device having different dummy word lines
US7609549B2 (en) Non-volatile multilevel memory cell programming
US10978157B2 (en) Memory system having semiconductor memory device that performs verify operations using various verify voltages
US10573378B2 (en) Methods of programming memory devices
TW200849261A (en) Partial block erase architecture for flash memory
JP2013254537A (en) Semiconductor memory and controller
KR102650333B1 (en) Nonvolatile memory device and storage device including nonvolatile memory device
KR20140020628A (en) Semiconductor memory device
KR102273185B1 (en) Nonvolatle memory device, storage device having the same and operation method thereof
JP2021086631A (en) Storage device and operating method for storage device
JP6539608B2 (en) Semiconductor memory device
US9318214B2 (en) Nonvolatile semiconductor memory device with a three-dimensional structure in which sub-blocks are independently erasable
TWI545567B (en) Memory system
JP2020047321A (en) Semiconductor storage device
US11182108B2 (en) Memory system, memory controller, and operation method
JP2017168155A (en) Semiconductor storage device
KR20240066720A (en) Memory device for verifying memory cells in erase state and operating method thereof
TW202338836A (en) semiconductor memory device
CN112435705A (en) Memory system
KR20210022262A (en) Nonvolatile memory device
JP2009238328A (en) Nonvolatile semiconductor memory device and nonvolatile semiconductor memory system