TW201525519A - 可攜式電子裝置與其光學成像鏡頭 - Google Patents

可攜式電子裝置與其光學成像鏡頭 Download PDF

Info

Publication number
TW201525519A
TW201525519A TW103142888A TW103142888A TW201525519A TW 201525519 A TW201525519 A TW 201525519A TW 103142888 A TW103142888 A TW 103142888A TW 103142888 A TW103142888 A TW 103142888A TW 201525519 A TW201525519 A TW 201525519A
Authority
TW
Taiwan
Prior art keywords
lens
optical axis
optical imaging
optical
imaging lens
Prior art date
Application number
TW103142888A
Other languages
English (en)
Other versions
TWI553336B (zh
Inventor
陳思翰
樊大正
陳雁斌
Original Assignee
玉晶光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 玉晶光電股份有限公司 filed Critical 玉晶光電股份有限公司
Publication of TW201525519A publication Critical patent/TW201525519A/zh
Application granted granted Critical
Publication of TWI553336B publication Critical patent/TWI553336B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本發明提供一種可攜式電子裝置與其光學成像鏡頭,其中光學成像鏡頭從物側至像側依序包括一第一、第二、第三、第四、第五及第六透鏡。本發明透過控制各透鏡的凹凸曲面排列,並以至少一條件式控制相關參數,而在維持良好光學性能之條件下,縮短鏡頭長度。

Description

可攜式電子裝置與其光學成像鏡頭
本發明乃是與一種可攜式電子裝置與其光學成像鏡頭相關,且尤其是與應用六片式透鏡之可攜式電子裝置與其光學成像鏡頭相關。
近年來,手機和數位相機的普及使得包含光學成像鏡頭、鏡筒及影像感測器等之攝影模組蓬勃發展,手機和數位相機的薄型輕巧化也讓攝影模組的小型化需求愈來愈高,隨著感光耦合元件(Charge Coupled Device,簡稱CCD)或互補性氧化金屬半導體元件(Complementary Metal-Oxide Semiconductor,簡稱CMOS)之技術進步和尺寸縮小,裝戴在攝影模組中的光學成像鏡頭也需要縮小體積,但光學成像鏡頭之良好光學性能也是必要顧及之處。
隨著消費者對於成像品質上的需求,傳統的四片式透鏡的結構,已無法滿足更高成像品質的需求。因此亟需發展一種小型且成像品質佳的光學成像鏡頭。
習知的光學成像鏡頭多為四片式光學成像鏡頭,由於透鏡片數較少,光學成像鏡頭長度可以縮得較短,然而隨著高規格的產品需求愈來愈多,使得光學成像鏡頭在畫素及品質上的需求快速提升,極需發展更高規格的產品,如利用六片式透鏡結構的光學成像鏡頭。然而,習知的六片式鏡頭如美國專利號7663814及8040618所示,其鏡頭長度動輒高達21mm以上,不利手機和數位相機的薄型化。
因此,極需要開發成像品質良好且鏡頭長度較短的六片式光學成像鏡頭。
本發明之一目的係在提供一種可攜式電子裝置與其光學成像鏡頭,透過控制各透鏡的凹凸曲面排列,並以至少一條件式控制相關參數,而在維持良好光學性能並維持系統性能之條件下,縮短系統長度。
依據本發明,提供一種光學成像鏡頭,從物側至像側沿一光軸依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡及一第六透鏡,每一透鏡都具有屈光率,而且具有一朝向物側且使成像光線通過的物側面及一朝向像側且使成像光線通過的像側面。
為了便於表示本發明所指的參數,在本說明書及圖示中定義:T1代表第一透鏡在光軸上的厚度、G12代表第一透鏡與第二透鏡之間在光軸上的空氣間隙寬度、T2代表第二透鏡在光軸上的厚度、G23代表第二透鏡與第三透鏡之間在光軸上的空氣間隙寬度、T3代表第三透鏡在光軸上的厚度、G34代表第三透鏡與第四透鏡之間在光軸上的空氣間隙寬度、T4代表第四透鏡在光軸上的厚度、G45代表第四透鏡與第五透鏡之間在光軸上的空氣間隙寬度、T5代表第五透鏡在光軸上的厚度、G56代表第五透鏡與第六透鏡之間在光軸上的空氣間隙寬度、T6代表第六透鏡在光軸上的厚度、G6F代表第六透鏡之像側面至紅外線濾光片之物側面在光軸上的距離、TF代表紅外線濾光片在光軸上的厚度、GFP代表紅外線濾光片像側面至成像面在光軸上的距離、f1代表第一透鏡的焦距、f2代表第二透鏡的焦距、f3代表第三透鏡的焦距、f4代表第四透鏡的焦距、f5代表第五透鏡的焦距、f6代表第六透鏡的焦距、n1代表第一透鏡的折射率、n2代表第二透鏡的折射率、n3代表第三透鏡的折射率、n4代表第四透鏡的折射率、n5代表第五透鏡的折射率、n6代表第六透鏡的折射率、v1代表第一透鏡的阿貝數、v2代表第二透鏡的阿貝數、v3代表第三透鏡的阿貝數、v4代表第四透鏡的阿貝數、v5代表第五透鏡的阿貝數、v6代表第六透鏡的阿貝數、EFL代表光學成像鏡頭的有效焦距、TTL代表第一透鏡之物側面至一成像面在光軸上的距離、ALT代表第一透鏡至第六透鏡在光軸上的六片透鏡厚度總和(即T1、T2、T3、T4、T5、T6之和)、AAG代表第一透鏡至第六透鏡之間在光軸上的五個空氣間隙寬度總和(即G12、G23、G34、G45、G56之和)、BFL代 表光學成像鏡頭的後焦距,即第六透鏡之像側面至成像面在光軸上的距離(即G6F、TF、GFP之和)。
依據本發明一面向的光學成像鏡頭,第一透鏡之像側面具有一位於光軸附近區域的凸面部,第二透鏡之材質為塑膠,第三透鏡之像側面具有一位於光軸附近區域的凹面部,第四透鏡之物側面具有一位於光軸附近區域的凹面部,第五透鏡之像側面具有一位於圓周附近區域的凸面部,第六透鏡之物側面具有一位於光軸附近區域的凸面部,其像側面具有一位於光軸附近區域的凹面部,且其材質為塑膠。光學成像鏡頭只包括上述六片具有屈光率的透鏡,並滿足下列條件式:AAG/T2≦4.3 條件式(1)。
其次,本發明可選擇性地控制部分參數之比值滿足其他條件式,如:控制T3、T6與G34滿足(T3+T6)/G34≦4.5 條件式(2);1.2≦(T3+T6)/G34≦4.5 條件式(2');控制G34與AAG滿足AAG/G34≦3 條件式(3);或者是G12、G23、G45與ALT表示滿足6.5≦ALT/(G12+G23+G45) 條件式(4);或者是控制T1、T4、T5與G34滿足(G34+T1+T5)/T4≦4 條件式(5);(G34+T1+T5)/T4≦3 條件式(5');或者是控制T1、T4與T5滿足(T1+T5)/T4≦2.8 條件式(6);或者是T2、G12、G23與G45滿足(G12+G23+G45)/T2≦2.1 條件式(7);或者是控制T4、T5與G34滿足(G34+T5)/T4≦2.2 條件式(8);或者是控制G12、G23、G45、G56與AAG滿足 1.6≦AAG/(G12+G23+G45+G56) 條件式(9);或者是控制G12、G23、G34與G45滿足(G12+G23+G45)/G34≦2.1 條件式(10);或者是控制T1、T5與G34滿足1.8≦(T1+T5)/G34≦6 條件式(11);或者是控制T4、G12、G23與G45滿足2.1≦T4/(G12+G23+G45) 條件式(12);或者是控制T3、T4與T6滿足(T3+T6)/T4≦2.1 條件式(13);或者是控制T2、T5與G34滿足2.5≦(G34+T5)/T2 條件式(14)。
前述所列之示例性限定條件式亦可任意選擇性地合併施用於本發明之實施態樣中,並不限於此。
在實施本發明時,除了上述條件式之外,亦可針對單一透鏡或廣泛性地針對多個透鏡額外設計出其他更多的透鏡的凹凸曲面排列等細部結構,以加強對系統性能及/或解析度的控制,例如:第六透鏡之像側面可額外具有一位於圓周附近區域的凸面部。須注意的是,此些細節需在無衝突之情況之下,選擇性地合併施用於本發明之其他實施例當中,並不限於此。
本發明可依據前述之各種光學成像鏡頭,提供一種可攜式電子裝置,包括:一機殼及一影像模組安裝於該機殼內。影像模組包括依據本發明之任一光學成像鏡頭、一鏡筒、一模組後座單元及一影像感測器。鏡筒俾供設置光學成像鏡頭,模組後座單元俾供設置鏡筒,影像感測器是設置於光學成像鏡頭的像側。
由上述中可以得知,本發明之可攜式電子裝置與其光學成像鏡頭,透過控制各透鏡的凹凸曲面排列,並以至少一條件式控制相關參數,以維持良好光學性能,並有效縮短鏡頭長度。
1,2,3,4,5,6,7,8,9‧‧‧光學成像鏡頭
20‧‧‧攝像裝置
21‧‧‧機殼
22‧‧‧影像模組
23‧‧‧鏡筒
24‧‧‧模組後座單元
100,200,300,400,500,600,700,800,900‧‧‧光圈
110,210,310,410,510,610,710,810,910‧‧‧第一透鏡
111,121,131,141,151,161,171,211,221,231,241,251,261,271,311,321,331,341,351,361,371,411,421,431,441,451,461,471,511,521,531,541,551,561,571,611,621,631,641,651,661,671,711,721,731,741,751,761,771,811,821,831,841,851,861,871,911,921,931,941,951,961,971‧‧‧物側面
112,122,132,142,152,162,172,212,222,232,242,252,262,272,312,322,332,342,352,362,372,412,422,432,442,452,462,472,512,522,532,542,552,562,572,612,622,632,642,652,662,672,712,722,732,742,752,762,772,812,822,832,842,852,862,872,912,922,932,942,952,962,972‧‧‧像側面
120,220,320,420,520,620,720,820,920‧‧‧第二透鏡
130,230,330,430,530,630,730,830,930‧‧‧第三透鏡
140,240,340,440,540,640,740,840,940‧‧‧第四透鏡
150,250,350,450,550,650,750,850,950‧‧‧第五透鏡
160,260,360,460,560,660,760,860,960‧‧‧第六透鏡
170,270,370,470,570,670,770,870,970‧‧‧濾光件
180,280,380,480,580,680,780,880,980‧‧‧成像面
181‧‧‧影像感測器
182‧‧‧基板
1111,1121,1221,1311,1421,1511,1611,2221,2421,3221,3311,4311,4421,5221,5311,5421,6221,6311,6421,7221,8221,8421,9221,9611‧‧‧位於光軸附近區域的凸面部
1112,1122,1212,1312,1422,1522,1622,2222,3222,4312,4412,5222,5412,6222,6322,6412,7222,8222,9222,9612‧‧‧位於圓周附近區域的凸面部
1211,1321,1411,1521,1621,2211,3211,4411,5211,5411,6211, 6321,6411,7211,7311,8211,8311,9211,9311‧‧‧位於光軸附近區域的凹面部
1222,1322,1412,1512,1612,2212,2422,3212,3312,4422,5212,5312,5422,6212,6312,6422,7212,7312,8212,8312,8422,9212,9312‧‧‧位於圓周附近區域的凹面部
5213,6213‧‧‧位於光軸附近區域與圓周附近區域之間的凸面部
1313,2223,23135223,6223‧‧‧位於光軸附近區域與圓周附近區域之間的凹面部
d1,d2,d3,d4,d5,d6,d7‧‧‧空氣間隙
A1‧‧‧物側
A2‧‧‧像側
I‧‧‧光軸
I-I'‧‧‧軸線
A,B,C,E‧‧‧區域
圖1顯示依據本發明之一實施例之一透鏡之剖面結構示意圖。
圖2顯示依據本發明之第一實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖。
圖3顯示依據本發明之第一實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖。
圖4顯示依據本發明之第一實施例光學成像鏡頭之各透鏡之詳細光學數據。
圖5顯示依據本發明之第一實施例之光學成像鏡頭之非球面數據。
圖6顯示依據本發明之第二實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖。
圖7顯示依據本發明之第二實施例光學成像鏡頭之縱向球差與各項像差圖示意圖。
圖8顯示依據本發明之第二實施例之光學成像鏡頭之各透鏡之詳細光學數據。
圖9顯示依據本發明之第二實施例之光學成像鏡頭之非球面數據。
圖10顯示依據本發明之第三實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖。
圖11顯示依據本發明之第三實施例光學成像鏡頭之縱向球差與各項像差圖示意圖。
圖12顯示依據本發明之第三實施例之光學成像鏡頭之各透鏡之詳細光學數據。
圖13顯示依據本發明之第三實施例之光學成像鏡頭之非球面數據。
圖14顯示依據本發明之第四實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖。
圖15顯示依據本發明之第四實施例光學成像鏡頭之縱向球 差與各項像差圖示意圖。
圖16顯示依據本發明之第四實施例之光學成像鏡頭之各透鏡之詳細光學數據。
圖17顯示依據本發明之第四實施例之光學成像鏡頭之非球面數據。
圖18顯示依據本發明之第五實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖。
圖19顯示依據本發明之第五實施例光學成像鏡頭之縱向球差與各項像差圖示意圖。
圖20顯示依據本發明之第五實施例之光學成像鏡頭之各透鏡之詳細光學數據。
圖21顯示依據本發明之第五實施例之光學成像鏡頭之非球面數據。
圖22顯示依據本發明之第六實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖。
圖23顯示依據本發明之第六實施例光學成像鏡頭之縱向球差與各項像差圖示意圖。
圖24顯示依據本發明之第六實施例之光學成像鏡頭之各透鏡之詳細光學數據。
圖25顯示依據本發明之第六實施例之光學成像鏡頭之非球面數據。
圖26顯示依據本發明之第七實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖。
圖27顯示依據本發明之第七實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖。
圖28顯示依據本發明之第七實施例光學成像鏡頭之各透鏡之詳細光學數據。
圖29顯示依據本發明之第七實施例之光學成像鏡頭之非球面數據。
圖30顯示依據本發明之第八實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖。
圖31顯示依據本發明之第八實施例光學成像鏡頭之縱向球差與各項像差圖示意圖。
圖32顯示依據本發明之第八實施例之光學成像鏡頭之各透鏡之詳細光學數據。
圖33顯示依據本發明之第八實施例之光學成像鏡頭之非球面數據。
圖34顯示依據本發明之第九實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖。
圖35顯示依據本發明之第九實施例光學成像鏡頭之縱向球差與各項像差圖示意圖。
圖36顯示依據本發明之第九實施例之光學成像鏡頭之各透鏡之詳細光學數據。
圖37顯示依據本發明之第九實施例之光學成像鏡頭之非球面數據。
圖38顯示依據本發明之以上九個實施例的T1、G12、T2、G23、T3、G34、T4、G45、T5、G56、T6、G6F、TF、GFP、EFL、ALT、AAG、BFL、TTL、AAG/T2、(T3+T6)/G34、AAG/G34、ALT/(G12+G23+G45)、(G34+T1+T5)/T4、(T1+T5)/T4、(G12+G23+G45)/T2、(G34+T5)/T4、AAG/(G12+G23+G45+G56)、(G12+G23+G45)/G34、(T1+T5)/G34、T4/(G12+G23+G45)、(T3+T6)/T4及(G34+T5)/T2值之比較表。
圖39顯示依據本發明之一實施例之可攜式電子裝置之一結構示意圖。
圖40顯示依據本發明之另一實施例之可攜式電子裝置之一結構示意圖。
為進一步說明各實施例,本發明乃提供有圖式。此些圖式乃 為本發明揭露內容之一部分,其主要係用以說明實施例,並可配合說明書之相關描述來解釋實施例的運作原理。配合參考這些內容,本領域具有通常知識者應能理解其他可能的實施方式以及本發明之優點。圖中的元件並未按比例繪製,而類似的元件符號通常用來表示類似的元件。
本篇說明書所言之「一透鏡具有正屈光率(或負屈光率)」,是指所述透鏡位於光軸附近區域具有正屈光率(或負屈光率)而言。「一透鏡的物側面(或像側面)包括位於某區域的凸面部(或凹面部)」,是指該區域相較於徑向上緊鄰該區域的外側區域,朝平行於光軸的方向更為「向外凸起」(或「向內凹陷」)而言。以圖1為例,其中I為光軸且此一透鏡是以該光軸I為對稱軸徑向地相互對稱,該透鏡之物側面於A區域具有凸面部、B區域具有凹面部而C區域具有凸面部,原因在於A區域相較於徑向上緊鄰該區域的外側區域(即B區域),朝平行於光軸的方向更為向外凸起,B區域則相較於C區域更為向內凹陷,而C區域相較於E區域也同理地更為向外凸起。「位於圓周附近區域」,是指位於透鏡上僅供成像光線通過之曲面之位於圓周附近區域,亦即圖中之C區域,其中,成像光線包括了主光線(chief ray)Lc及邊緣光線(marginal ray)Lm。「位於光軸附近區域」是指該僅供成像光線通過之曲面之光軸附近區域,亦即圖中之A區域。此外,該透鏡還包含一延伸部E,用以供該透鏡組裝於一光學成像鏡頭內,理想的成像光線並不會通過該延伸部E,但該延伸部E之結構與形狀並不限於此,以下之實施例為求圖式簡潔均省略了部分的延伸部。
本發明之光學成像鏡頭,乃是一定焦鏡頭,且是由從物側至像側沿一光軸依序設置之一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡及一第六透鏡所構成,每一透鏡都具有屈光率,而且具有一朝向物側且使成像光線通過的物側面及一朝向像側且使成像光線通過的像側面。本發明之光學成像鏡頭總共只有前述六片具有屈光率的透鏡,透過設計各透鏡之細部特徵,而可提供較寬廣的拍攝角度、較短的光學成像鏡頭長度及良好的光學性能。
在一實施態樣中,各透鏡之細部特徵如下:第一透鏡之像側面具有一位於光軸附近區域的凸面部,第二透鏡之材質為塑膠,第三透鏡 之像側面具有一位於光軸附近區域的凹面部,第四透鏡之物側面具有一位於光軸附近區域的凹面部,第五透鏡之像側面具有一位於圓周附近區域的凸面部,第六透鏡之物側面具有一位於光軸附近區域的凸面部,其像側面具有一位於光軸附近區域的凹面部,且其材質為塑膠。光學成像鏡頭滿足下列條件式:AAG/T2≦4.3 條件式(1)。
在此設計的前述各透鏡之特性主要是考量光學成像鏡頭的光學特性與鏡頭長度,舉例來說:第一透鏡的像側面形成有位於光軸附近區域的凸面部、第三透鏡的像側面形成有位於光軸附近區域的凹面部、第四透鏡的物側面形成有位於光軸附近區域的凹面部、第五透鏡的像側面形成有位於圓周附近區域的凸面部、第六透鏡的物側面形成有位於光軸附近區域的凸面部,且其像側面形成有位於光軸附近區域的凹面部,此些面型的搭配有助於修正像差。若再搭配在第六透鏡的像側面上形成位於圓周附近區域的凸面部,則可使修正像差的效果更好。其次,第二透鏡及第六透鏡的材質為塑膠,則有助於降低製造成本與減輕光學成像鏡頭的重量。進一步地,若再搭配至少一下列特徵,如:將光圈置於第一透鏡之前、在第一透鏡的物側面上形成凸面、在第一透鏡的像側面上形成位於圓周附近區域的凸面部、在第四透鏡的像側面上形成位於光軸附近區域的凸面部、在第五透鏡的物側面上形成位於光軸附近區域的凸面部、在第五透鏡的物側面上形成位於圓周附近區域的凹面部及在第五透鏡的像側面上形成位於光軸附近區域的凹面部,則在縮短鏡頭長度的過程中,得以更為有利地維持良好成像品質。另一方面,若將所有透鏡都使用塑膠製作時,能更為凸顯利於非球面的製造、降低成本及減輕鏡頭重量的優點。
此外,更搭配條件式(1)以維持較佳的光學特性和製造能力。在此以條件式(1)控制在面型中並無限制、其厚度可以縮短的比例較大的第二鏡片的透鏡厚度T2與AAG的比值為小於4.3。滿足此條件式時,可使AAG縮短的比例較T2更大,則會更有助鏡頭長度的縮短。
其次,在本發明之一實施例中,可選擇性地額外控制參數之比值滿足其他條件式,以協助設計者設計出具備良好光學性能、並可提供 較短的長度、較寬廣的拍攝角度且技術上可行之光學成像鏡頭,更甚者可進一步縮短鏡頭長度,此些條件式諸如:控制T3、T6與G34滿足(T3+T6)/G34≦4.5 條件式(2);1.2≦(T3+T6)/G34≦4.5 條件式(2');控制G34與AAG滿足AAG/G34≦3 條件式(3);或者是G12、G23、G45與ALT表示滿足6.5≦ALT/(G12+G23+G45) 條件式(4);或者是控制T1、T4、T5與G34滿足(G34+T1+T5)/T4≦4 條件式(5);(G34+T1+T5)/T4≦3 條件式(5');或者是控制T1、T4與T5滿足(T1+T5)/T4≦2.8 條件式(6);或者是T2、G12、G23與G45滿足(G12+G23+G45)/T2≦2.1 條件式(7);或者是控制T4、T5與G34滿足(G34+T5)/T4≦2.2 條件式(8);或者是控制G12、G23、G45、G56與AAG滿足1.6≦AAG/(G12+G23+G45+G56)條件式(9);或者是控制G12、G23、G34與G45滿足(G12+G23+G45)/G34≦2.1 條件式(10);或者是控制T1、T5與G34滿足1.8≦(T1+T5)/G34≦6 條件式(11);或者是控制T4、G12、G23與G45滿足2.1≦T4/(G12+G23+G45) 條件式(12);或者是控制T3、T4與T6滿足(T3+T6)/T4≦2.1 條件式(13);或者是控制T2、T5與G34滿足 2.5≦(G34+T5)/T2 條件式(14)。
前述所列之示例性限定關係亦可任意選擇性地合併施用於本發明之實施態樣中,並不限於此。
在前述條件式(2)/(2')、(3)、(10)、(11)中,(T3+T6)/G34、AAG/G34、(G12+G23+G45)/G34及(T1+T5)/G34值之設計乃是考量到受到形成於第三透鏡像側面上的位於光軸附近區域的凹面部和形成於第四透鏡物側面的位於光軸附近區域的凹面部的限制,使得G34可縮短的比例較小。如此造成(T3+T6)/G34、AAG/G34、(G12+G23+G45)/G34及(T1+T5)/G34較佳是趨小設計,並滿足前述條件式(2)、(3)、(10)、(11),藉此在光學成像鏡頭縮短鏡頭長度的過程中,使T1、T3、T5、T6、AAG、G12、G23、G34和G45有較好的配置,且具有容易製作、成像品質良好的成效。在此建議(T3+T6)/G34值以介於1.2~4.5之間為更佳,以滿足前述條件式(2'),當滿足此範圍時,G34較小,有利於其它鏡片厚度和空氣間隙在鏡頭縮短時的配置。
在前述條件式(5)/(5')、(6)、(8)、(12)、(13)中,(G34+T1+T5)/T4、(T1+T5)/T4、(G34+T5)/T4、T4/(G12+G23+G45)及(T3+T6)/T4值之設計乃是因為現今對於成像品質的要求愈來愈高,鏡頭的長度又需愈做愈短,所以透鏡在光軸附近與圓周附近區域的面型往往會因為考慮光線的路徑而有不同的變化,造成鏡頭中心與邊緣的鏡片厚度也會所有差異。因此,考量到光線的特性,愈是邊緣的光線愈需要在鏡頭內部經過較大角度的折射才會與在光軸附近入射的光聚焦到成像面,而第四透鏡的物側面在光軸附近區域形成有凹面部,使得在本設計中需要設計較大的T4才能縮小光軸與邊緣的像差差距。這種特性限制了T4能縮小的比例,故使得(G34+T1+T5)/T4、(T1+T5)/T4、(G34+T5)/T4及(T3+T6)/T4較佳地是趨小設計,T4/(G12+G23+G45)較大地是趨大設計,並且滿足前述條件式(5)、(6)、(8)、(12)、(13),如此可使得鏡頭長度有效縮短並維持良好光學成像效果。在此建議(G34+T1+T5)/T4值以小於或等於3為更佳,以滿足前述條件式(5'),當進步一滿足此限制時,更有利於鏡頭的組裝與製作。
在前述條件式(4)、(9)中,ALT/(G12+G23+G45)、AAG/(G12+G23+G45+G56)值之設計乃是著眼於G12因為第一透鏡像側面形 成有位於光軸附近的凸面部,所以可做得比較小,放大縮短的比例,而G23和G45因為第二透鏡像側面、第三透鏡物側面、第四透鏡像側面與第五透鏡物側面在光軸上並無任何面型限制,自然也可做得較小,放大縮短的比例,G56則是因為第六透鏡物側面亦形成有位於光軸附近的凸面部,所以可做得比較小,如此使得ALT/(G12+G23+G45)、AAG/(G12+G23+G45+G56)較佳地是趨大設計,並滿足於前述條件式(4)。
在前述條件式(7)、(14)中,(G12+G23+G45)/T2及(G34+T5)/T2值之設計原因如上所述,乃是著眼於G12、G23、G45相對於第二透鏡的厚度T2較無工藝上的限製,所以可以縮短的比例較大,是以(G12+G23+G45)/T2值較佳的趨小設計,而G34同上所述較難縮短,且第五透鏡的光學有效徑較大做的較大則容易製作,故(G34+T5)/T2值較佳是趨大設計,並滿足於前述條件式(7)、(14),此時所有參數有較好的配置。
有鑑於光學系統設計的不可預測性,在本發明的架構之下,符合上述條件式能較佳地使本發明鏡頭長度縮短、光圈數(Fno)變小、視場角增加、成像品質提升,或組裝良率提升而改善先前技術的缺點。
上述條件式較佳地,AAG/T2介於1.5~4.3之間,(T3+T6)/G34介於0.2~4.5之間,AAG/G34介於1.3~3.0之間,ALT/(G12+G23+G45)介於6.5~25之間,(G34+T1+T5)/T4介於1~4之間,(T1+T5)/T4介於0.5~2.8之間,(G12+G23+G45)/T2介於0.2~2.1之間,(G34+T5)/T4介於0.3~2.2之間,AAG/(G12+G23+G45+G56)介於1.6~3之間,(G12+G23+G45)/G34介於0.05~2.1之間,T4/(G12+G23+G45)介於2.1~6之間,(T3+T6)/T4介於0.1~2.1之間,(G34+T5)/T2介於2.5~7之間。
在實施本發明時,除了上述條件式之外,亦可針對單一透鏡或廣泛性地針對多個透鏡額外設計出其他更多的透鏡的凹凸曲面排列等細部結構,以加強對系統性能及/或解析度的控制,例如:第六透鏡之像側面可額外具有一位於圓周附近區域的凸面部。須注意的是,此些細節需在無衝突之情況之下,選擇性地合併施用於本發明之其他實施例當中,並不限於此。
為了說明本發明確實可在提供良好的光學性能的同時,提供 寬廣的拍攝角度,以下提供多個實施例以及其詳細的光學數據。首先請一併參考圖2至圖5,其中圖2顯示依據本發明之第一實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖3顯示依據本發明之第一實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖,圖4顯示依據本發明之第一實施例之光學成像鏡頭之詳細光學數據,其中f即是有效焦距EFL,圖5顯示依據本發明之第一實施例光學成像鏡頭之各透鏡之非球面數據。如圖2中所示,本實施例之光學成像鏡頭1從物側A1至像側A2依序包括一光圈(aperture stop)100、一第一透鏡110、一第二透鏡120、一第三透鏡130、一第四透鏡140、一第五透鏡150及一第六透鏡160。一濾光件170及一影像感測器的一成像面180皆設置於光學成像鏡頭1的像側A2。濾光件170在此示例性地為一紅外線濾光片(IR cut filter),設於第六透鏡160與成像面180之間,濾光件170將經過光學成像鏡頭1的光過濾掉特定波段的波長,如:過濾掉紅外線波段,可使人眼看不到的紅外線波段的波長不會成像於成像面180上。
光學成像鏡頭1之第一透鏡110、第二透鏡120、第三透鏡130、第四透鏡140、第五透鏡150及第六透鏡160在此示例性地以塑膠材質所構成,且形成細部結構如下:第一透鏡110具有正屈光率,並具有一朝向物側A1的物側面111及一朝向像側A2的像側面112。物側面111為一凸面,且包括一位於光軸附近區域的凸面部1111及一位於圓周附近區域的凸面部1112。像側面112為一凸面,且包括一位於光軸附近區域的凸面部1121及一位於圓周附近區域的凸面部1122。
第二透鏡120具有正屈光率,並具有一朝向物側A1的物側面121及一朝向像側A2的像側面122。物側面121包括一位於光軸附近區域的凹面部1211及一位於圓周附近區域的凸面部1212。像側面122包括一位於光軸附近區域的凸面部1221及一位於圓周附近區域的凹面部1222。
第三透鏡130具有負屈光率,並具有一朝向物側A1的物側面131及一朝向像側A2的像側面132。物側面131包括一位於光軸附近區域的凸面部1311、一位於圓周附近區域的凸面部1312及一位於光軸附近區 域與圓周附近區域之間的凹面部1313。像側面132為一凹面,且包括一位於光軸附近區域的凹面部1321及一位於圓周附近區域的凹面部1322。
第四透鏡140具有正屈光率,並具有一朝向物側A1的物側面141及具有一朝向像側A2的像側面142。物側面141為一凹面,並包括一位於光軸附近區域的凹面部1411及一位於圓周附近區域的凹面部1412。像側面142為一凸面,且包括一位於光軸附近區域的凸面部1421及一位於圓周附近區域的凸面部1422。
第五透鏡150具有負屈光率,並具有一朝向物側A1的物側面151及一朝向像側A2的像側面152。物側面151包括一位於光軸附近區域的凸面部1511及一位於圓周附近區域的凹面部1512。像側面152包括一位於光軸附近區域的凹面部1521及一位於圓周附近區域的凸面部1522。
第六透鏡160具有正屈光率,並具有一朝向物側A1的物側面161及一朝向像側A2的像側面162。物側面161包括一位於光軸附近區域的凸面部1611及一位於圓周附近區域的凹面部1612。像側面162包括一位於光軸附近區域的凹面部1621及一位於圓周附近區域的凸面部1622。
在本實施例中,係設計各透鏡110、120、130、140、150、160、濾光件170及影像感測器的成像面180之間皆存在空氣間隙,如:第一透鏡110與第二透鏡120之間存在空氣間隙d1、第二透鏡120與第三透鏡130之間存在空氣間隙d2、第三透鏡130與第四透鏡140之間存在空氣間隙d3、第四透鏡140與第五透鏡150之間存在空氣間隙d4、第五透鏡150與第六透鏡160之間存在空氣間隙d5、第六透鏡160與濾光件170之間存在空氣間隙d6、及濾光件170與影像感測器的成像面180之間存在空氣間隙d7,然而在其他實施例中,亦可不具有前述其中任一空氣間隙,如:將兩相對透鏡的表面輪廓設計為彼此相應,而可彼此貼合,以消除其間之空氣間隙。由此可知,空氣間隙d1即為G12、空氣間隙d2即為G23、空氣間隙d3即為G34、空氣間隙d4即為G45、空氣間隙d5即為G56,空氣間隙d1、d2、d3、d4、d5的和即為AAG。
關於本實施例之光學成像鏡頭1中的各透鏡之各光學特性及各空氣間隙之寬度,請參考圖4,關於T1、G12、T2、G23、T3、G34、 T4、G45、T5、G56、T6、G6F、TF、GFP、EFL、ALT、AAG、BFL、TTL、AAG/T2、(T3+T6)/G34、AAG/G34、ALT/(G12+G23+G45)、(G34+T1+T5)/T4、(T1+T5)/T4、(G12+G23+G45)/T2、(G34+T5)/T4、AAG/(G12+G23+G45+G56)、(G12+G23+G45)/G34、(T1+T5)/G34、T4/(G12+G23+G45)、(T3+T6)/T4及(G34+T5)/T2之數值,請參考圖50。
須注意的是,在本實施例之光學成像鏡頭1中,從第一透鏡物側面111至成像面180在光軸上之厚度為5.075mm,相較於先前技術確實縮短光學成像鏡頭1之鏡頭長度。
第一透鏡110的物側面111及像側面112、第二透鏡120的物側面121及像側面122、第三透鏡130的物側面131及像側面132、第四透鏡140的物側面141及像側面142、第五透鏡150的物側面151及像側面152、第六透鏡160的物側面161及像側面162,共計十二個非球面皆是依下列非球面曲線公式定義:
其中:Z表示非球面之深度(非球面上距離光軸為Y的點,其與相切於非球面光軸上頂點之切面,兩者間的垂直距離);R表示透鏡表面之曲率半徑;Z表示非球面之深度(非球面上距離光軸為Y的點,其與相切於非球面光軸上頂點之切面,兩者間的垂直距離);Y表示非球面曲面上的點與光軸的垂直距離;K為錐面係數(Conic Constant);a2i為第2i階非球面係數。
各個非球面之參數詳細數據請一併參考圖5。
另一方面,從圖3當中可以看出,在本實施例的縱向球差(longitudinal spherical aberration)(a)中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在±0.03mm以內,故本第一較佳實施例確實明顯改善不同波長的球差。此外,三種代表波長彼此間的距離亦相當接 近,代表不同波長光線的成像位置已相當集中,因而使色像差獲得明顯改善。
在弧矢(sagittal)方向的像散像差(astigmatism aberration)(b)、子午(tangential)方向的像散像差(c)的二個像散像差圖示中,三種代表波長在整個視場範圍內的焦距變化量落在±0.12mm內,說明第一較佳實施例的光學成像鏡頭1能有效消除像差。此外,三種代表波長彼此間的距離已相當接近,代表軸上的色散也有明顯的改善。
畸變像差(distortion aberration)(d)則顯示光學成像鏡頭1的畸變像差維持在±0.6%的範圍內。
因此,本實施例之光學成像鏡頭1在縱向球差、弧矢方向的像散像差、子午方向的像散像差、或畸變像差的表現都十分良好。由上述中可以得知,本實施例之光學成像鏡頭1確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考圖6至圖9,其中圖6顯示依據本發明之第二實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖7顯示依據本發明之第二實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖8顯示依據本發明之第二實施例之光學成像鏡頭之詳細光學數據,圖9顯示依據本發明之第二實施例之光學成像鏡頭之各透鏡之非球面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的標號開頭改為2,例如第三透鏡物側面為231,第三透鏡像側面為232,其它元件標號在此不再贅述。如圖6中所示,本實施例之光學成像鏡頭2從物側A1至像側A2依序包括一光圈200、一第一透鏡210、一第二透鏡220、一第三透鏡230、一第四透鏡240、一第五透鏡250及一第六透鏡260。
第二實施例之第一透鏡210、第二透鏡220、第三透鏡230、第四透鏡240、第五透鏡250及第六透鏡260的屈光率以及包括朝向物側A1的物側面211、231、241、251、261、及朝向像側A2的像側面212、232、252、262之各透鏡表面的凹凸配置大致上與第一實施例類似,唯第二實施例的各透鏡表面的曲率半徑、透鏡厚度、空氣間隙寬度、後焦距等相關光學參數及物側面221和像側面222、242的表面凹凸配置與第一實施例不同。 在此為了更清楚顯示圖面,表面凹凸配置的特徵僅標示與第一實施例不同之處,而省略相同之處的標號。詳細地說,其間差異在於本實施例的第二透鏡220之物側面221是一凹面,且具有一位於光軸附近區域的凹面部2211及一位於圓周附近區域的凹面部2212;第二透鏡220之像側面222具有一位於光軸附近區域的凸面部2221、一位於圓周附近區域的凸面部2222及一位於光軸附近區域與圓周附近區域之間的凹面部2223;第四透鏡240之像側面242具有一位於光軸附近區域的凸面部2421及一位於圓周附近區域的凹面部2422。關於本實施例之光學成像鏡頭2的各透鏡之各光學特性及各空氣間隙之寬度,請參考圖8,關於T1、G12、T2、G23、T3、G34、T4、G45、T5、G56、T6、G6F、TF、GFP、EFL、ALT、AAG、BFL、TTL、AAG/T2、(T3+T6)/G34、AAG/G34、ALT/(G12+G23+G45)、(G34+T1+T5)/T4、(T1+T5)/T4、(G12+G23+G45)/T2、(G34+T5)/T4、AAG/(G12+G23+G45+G56)、(G12+G23+G45)/G34、(T1+T5)/G34、T4/(G12+G23+G45)、(T3+T6)/T4及(G34+T5)/T2之數值,請參考圖50。
須注意的是,在本實施例之光學成像鏡頭2中,從第一透鏡物側面211至成像面280在光軸上之厚度為5.216mm,相較於先前技術確實縮短光學成像鏡頭2之鏡頭長度。
另一方面,從圖7當中可以看出,本實施例之光學成像鏡頭2在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好。由上述中可以得知,本實施例之光學成像鏡頭2確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考圖10至圖13,其中圖10顯示依據本發明之第三實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖11顯示依據本發明之第三實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖12顯示依據本發明之第三實施例之光學成像鏡頭之詳細光學數據,圖13顯示依據本發明之第三實施例之光學成像鏡頭之各透鏡之非球面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的標號開頭改為3,例如第三透鏡物側面為331,第三透鏡像側面為332,其它元件標號在此不再贅述。如圖10中所示,本實施例之光學成像鏡頭3從 物側A1至像側A2依序包括一光圈300、一第一透鏡310、一第二透鏡320、一第三透鏡330、一第四透鏡340、一第五透鏡350及一第六透鏡360。
第三實施例之第一透鏡310、第二透鏡320、第三透鏡330、第四透鏡340及第五透鏡350的屈光率以及包括朝向物側A1的物側面311、341、351、361、及朝向像側A2的像側面312、332、342、352、362等透鏡表面的凹凸配置大致上與第一實施例類似,唯第三實施例的各透鏡表面的曲率半徑、透鏡厚度、空氣間隙寬度、後焦距等相關光學參數、第六透鏡360的屈光率及物側面321、331及像側面322等透鏡表面的凹凸配置與第一實施例不同。在此為了更清楚顯示圖面,表面凹凸配置的特徵僅標示與第一實施例不同之處,而省略相同之處的標號。詳細地說,其間差異在於本實施例的第二透鏡320之物側面321是一凹面,且包括一位於光軸附近區域的凹面部3211及一位於圓周附近區域的凹面部3212;第二透鏡320之像側面322是一凸面,且包括一位於光軸附近區域的凸面部3221及一位於圓周附近區域的凸面部3222;第三透鏡330之物側面331具有一位於光軸附近區域的凸面部3311及一位於圓周附近區域的凹面部3312;第六透鏡360具有負屈光率。關於本實施例之光學成像鏡頭3的各透鏡之各光學特性及各空氣間隙之寬度,請參考圖12,關於T1、G12、T2、G23、T3、G34、T4、G45、T5、G56、T6、G6F、TF、GFP、EFL、ALT、AAG、BFL、TTL、AAG/T2、(T3+T6)/G34、AAG/G34、ALT/(G12+G23+G45)、(G34+T1+T5)/T4、(T1+T5)/T4、(G12+G23+G45)/T2、(G34+T5)/T4、AAG/(G12+G23+G45+G56)、(G12+G23+G45)/G34、(T1+T5)/G34、T4/(G12+G23+G45)、(T3+T6)/T4及(G34+T5)/T2之數值,請參考圖50。
須注意的是,在本實施例之光學成像鏡頭3中,從第一透鏡物側面311至成像面380在光軸上之厚度為5.222mm,相較於先前技術確實縮短光學成像鏡頭3之鏡頭長度。
另一方面,從圖11當中可以看出,本實施例之光學成像鏡頭3在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好,甚至在弧矢方向的像散像差(b)及子午方向的像散像差(c)的表現上達到可抑制在±0.10mm內,更甚於第一實施例。因 此,使得第三實施例的成像品質優於第一實施例。由上述中可以得知,本實施例之光學成像鏡頭3確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考圖14至圖17,其中圖14顯示依據本發明之第四實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖15顯示依據本發明之第四實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖16顯示依據本發明之第四實施例之光學成像鏡頭之詳細光學數據,圖17顯示依據本發明之第四實施例之光學成像鏡頭之各透鏡之非球面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的標號開頭改為4,例如第三透鏡物側面為431,第三透鏡像側面為432,其它元件標號在此不再贅述。如圖14中所示,本實施例之光學成像鏡頭4從物側A1至像側A2依序包括一光圈400、一第一透鏡410、一第二透鏡420、一第三透鏡430、一第四透鏡440、一第五透鏡450及一第六透鏡460。
第四實施例之第一透鏡410、第二透鏡420、第三透鏡430、第四透鏡440、第五透鏡450及第六透鏡460的屈光率以及包括朝向物側A1的物側面411、421、451、461、及朝向像側A2的像側面412、422、432、452、462等透鏡表面的凹凸配置大致上與第一實施例類似,唯第四實施例的各透鏡表面的曲率半徑、透鏡厚度、空氣間隙寬度、後焦距等相關光學參數及物側面431、441和像側面442等透鏡表面的凹凸配置與第一實施例不同。在此為了更清楚顯示圖面,表面凹凸配置的特徵僅標示與第一實施例不同之處,而省略相同之處的標號。詳細地說,其間差異在於本實施例的第三透鏡430之物側面431是一凸面,且其包括一位於光軸附近區域的凸面部4311及一位於圓周附近區域的凸面部4312;第四透鏡440之物側面441具有一位於光軸附近區域的凹面部4411及一位於圓周附近區域的凸面部4412;第四透鏡440之像側面442具有一位於光軸附近區域的凸面部4421及一位於圓周附近區域的凹面部4422。關於本實施例之光學成像鏡頭4的各透鏡之各光學特性及各空氣間隙之寬度,請參考圖16,關於T1、G12、T2、G23、T3、G34、T4、G45、T5、G56、T6、G6F、TF、GFP、EFL、ALT、AAG、BFL、TTL、AAG/T2、(T3+T6)/G34、AAG/G34、ALT/(G12+G23+G45)、(G34+T1+T5)/T4、(T1+T5)/T4、(G12+G23+G45)/T2、(G34+T5)/T4、 AAG/(G12+G23+G45+G56)、(G12+G23+G45)/G34、(T1+T5)/G34、T4/(G12+G23+G45)、(T3+T6)/T4及(G34+T5)/T2之數值,請參考圖50。
須注意的是,在本實施例之光學成像鏡頭4中,從第一透鏡物側面411至成像面480在光軸上之厚度為5.119mm,相較於先前技術確實縮短光學成像鏡頭4之鏡頭長度。
另一方面,從圖15當中可以看出,本實施例之光學成像鏡頭4在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好,甚至在縱向球差(a)的表現上達到可抑制在±0.25mm內,更甚於第一實施例。因此,使得第四實施例的成像品質優於第一實施例。因此,由上述中可以得知,本實施例之光學成像鏡頭4確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考圖18至圖21,其中圖18顯示依據本發明之第五實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖19顯示依據本發明之第五實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖20顯示依據本發明之第五實施例之光學成像鏡頭之詳細光學數據,圖21顯示依據本發明之第五實施例之光學成像鏡頭之各透鏡之非球面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的標號開頭改為5,例如第三透鏡物側面為531,第三透鏡像側面為532,其它元件標號在此不再贅述。如圖18中所示,本實施例之光學成像鏡頭5從物側A1至像側A2依序包括一光圈500、一第一透鏡510、一第二透鏡520、一第三透鏡530、一第四透鏡540、一第五透鏡550及一第六透鏡560。
第五實施例之第一透鏡510、第二透鏡520、第三透鏡530、第四透鏡540、第五透鏡550及第六透鏡560之屈光率以及包括朝向物側A1的物側面511、551、561及朝向像側A2的像側面512、532、552、562的透鏡表面的凹凸配置大致上與第一實施例類似,唯第五實施例的各曲率半徑、透鏡厚度、空氣間隙寬度、後焦距等相關光學參數及物側面521、531、541和像側面522、542的透鏡表面的凹凸配置與第一實施例不同。在此為了更清楚顯示圖面,表面凹凸配置的特徵僅標示與第一實施例不同之處,而省略相同之處的標號。詳細地說,其間差異在於本實施例的第二透鏡520 之物側面521具有一位於光軸附近區域的凹面部5211、一位於圓周附近區域的凹面部5212及一位於光軸附近區域與圓周附近區域之間的凸面部5213;第二透鏡520之像側面522具有一位於光軸附近區域的凸面部5221、一位於圓周附近區域的凸面部5222及一位於光軸附近區域與圓周附近區域之間的凹面部5223;第三透鏡530之物側面531具有一位於光軸附近區域的凸面部5311及一位於圓周附近區域的凹面部5312;第四透鏡540之物側面541具有一位於光軸附近區域的凹面部5411及一位於圓周附近區域的凸面部5412;第四透鏡540之像側面542具有一位於光軸附近區域的凸面部5421及一位於圓周附近區域的凹面部5422。其次,關於本實施例之光學成像鏡頭5的各透鏡之各光學特性及各空氣間隙之寬度,請參考圖20,關於T1、G12、T2、G23、T3、G34、T4、G45、T5、G56、T6、G6F、TF、GFP、EFL、ALT、AAG、BFL、TTL、AAG/T2、(T3+T6)/G34、AAG/G34、ALT/(G12+G23+G45)、(G34+T1+T5)/T4、(T1+T5)/T4、(G12+G23+G45)/T2、(G34+T5)/T4、AAG/(G12+G23+G45+G56)、(G12+G23+G45)/G34、(T1+T5)/G34、T4/(G12+G23+G45)、(T3+T6)/T4及(G34+T5)/T2,請參考圖50。
須注意的是,在本實施例之光學成像鏡頭5中,從第一透鏡物側面511至成像面580在光軸上之厚度為4.994mm,相較於先前技術確實縮短光學成像鏡頭5之鏡頭長度,且本實施例的鏡頭長度更是縮短地比第一實施例的鏡頭長度還短。
另一方面,從圖19當中可以看出,本實施例之光學成像鏡頭5在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好。因此,由上述中可以得知,本實施例之光學成像鏡頭5確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考圖22至圖25,其中圖22顯示依據本發明之第六實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖23顯示依據本發明之第六實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖24顯示依據本發明之第六實施例之光學成像鏡頭之詳細光學數據,圖25顯示依據本發明之第六實施例之光學成像鏡頭之各透鏡之非球面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的 標號開頭改為6,例如第三透鏡物側面為631,第三透鏡像側面為632,其它元件標號在此不再贅述。如圖22中所示,本實施例之光學成像鏡頭6從物側A1至像側A2依序包括一光圈600、一第一透鏡610、一第二透鏡620、一第三透鏡630、一第四透鏡640、一第五透鏡650及一第六透鏡660。
第六實施例之第一透鏡610、第二透鏡620、第三透鏡630、第四透鏡640、第五透鏡650及第六透鏡660的屈光率以及包括朝向物側A1的物側面611、651、661及朝向像側A2的像側面612、652、662的透鏡表面的凹凸配置大致上與第一實施例類似,唯第六實施例的各透鏡表面的曲率半徑、透鏡厚度、空氣間隙寬度、後焦距等相關光學參數及物側面621、631、641和像側面622、632、642的透鏡表面的凹凸配置與第一實施例不同。在此為了更清楚顯示圖面,表面凹凸配置的特徵僅標示與第一實施例不同之處,而省略相同之處的標號。詳細地說,其間差異在於本實施例的第二透鏡620之物側面621具有一位於光軸附近區域的凹面部6211、一位於圓周附近區域的凹面部6212及一位於光軸附近區域與圓周附近區域之間的凸面部6213;第二透鏡620之像側面622具有一位於光軸附近區域的凸面部6221、一位於圓周附近區域的凸面部6222及一位於光軸附近區域與圓周附近區域之間的凹面部6223;第三透鏡630之物側面631具有一位於光軸附近區域的凸面部6311及一位於圓周附近區域的凹面部6312;第三透鏡630之像側面632具有一位於光軸附近區域的凹面部6321及一位於圓周附近區域的凸面部6322;第四透鏡640之物側面641具有一位於光軸附近區域的凹面部6411及一位於圓周附近區域的凸面部6412;第四透鏡640之像側面642具有一位於光軸附近區域的凸面部6421及一位於圓周附近區域的凹面部6422。關於本實施例之光學成像鏡頭6的各透鏡之各光學特性及各空氣間隙之寬度,請參考圖24,關於T1、G12、T2、G23、T3、G34、T4、G45、T5、G56、T6、G6F、TF、GFP、EFL、ALT、AAG、BFL、TTL、AAG/T2、(T3+T6)/G34、AAG/G34、ALT/(G12+G23+G45)、(G34+T1+T5)/T4、(T1+T5)/T4、(G12+G23+G45)/T2、(G34+T5)/T4、AAG/(G12+G23+G45+G56)、(G12+G23+G45)/G34、(T1+T5)/G34、T4/(G12+G23+G45)、(T3+T6)/T4及(G34+T5)/T2之數值,請參考圖50。
須注意的是,在本實施例之光學成像鏡頭6中,從第一透鏡物側面611至成像面680在光軸上之厚度為5.119mm,相較於先前技術確實縮短光學成像鏡頭6之鏡頭長度。
另一方面,從圖23當中可以看出,本實施例之光學成像鏡頭6在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好,甚至在縱向球差(a)的表現上達到可抑制在±0.20mm內,更甚於第一實施例。因此,使得第六實施例的成像品質優於第一實施例。因此,由上述中可以得知,本實施例之光學成像鏡頭6確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考圖26至圖29,其中圖26顯示依據本發明之第七實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖27顯示依據本發明之第七實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖28顯示依據本發明之第七實施例之光學成像鏡頭之詳細光學數據,圖29顯示依據本發明之第七實施例之光學成像鏡頭之各透鏡之非球面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的標號開頭改為7,例如第三透鏡物側面為731,第三透鏡像側面為732,其它元件標號在此不再贅述。如圖26中所示,本實施例之光學成像鏡頭7從物側A1至像側A2依序包括一光圈700、一第一透鏡710、一第二透鏡720、一第三透鏡730、一第四透鏡740、一第五透鏡750及一第六透鏡760。
第七實施例之第一透鏡710、第二透鏡720、第三透鏡730、第四透鏡740及第五透鏡750的屈光率以及包括朝向物側A1的物側面711、741、751、761及朝向像側A2的像側面712、732、742、752、762的透鏡表面的凹凸配置大致上與第一實施例類似,唯第七實施例的各透鏡表面的曲率半徑、透鏡厚度、空氣間隙寬度、後焦距等相關光學參數、第六透鏡760的屈光率及物側面721、731和像側面722的透鏡表面凹凸配置與第一實施例不同。在此為了更清楚顯示圖面,表面凹凸配置的特徵僅標示與第一實施例不同之處,而省略相同之處的標號。詳細地說,其間差異在於本實施例的第二透鏡720之物側面721是一凹面,且其包括一位於光軸附近區域的凹面部7211及一位於圓周附近區域的凹面部7212;第二透鏡720之像側面 722是一凸面,且其包括一位於光軸附近區域的凸面部7221及一位於圓周附近區域的凸面部7222;第三透鏡730之物側面731是一凹面,且其包括一位於光軸附近區域的凹面部7311及一位於圓周附近區域的凹面部7312;第六透鏡760具有負屈光率。關於本實施例之光學成像鏡頭7的各透鏡之各光學特性及各空氣間隙之寬度,請參考圖28,關於T1、G12、T2、G23、T3、G34、T4、G45、T5、G56、T6、G6F、TF、GFP、EFL、ALT、AAG、BFL、TTL、AAG/T2、(T3+T6)/G34、AAG/G34、ALT/(G12+G23+G45)、(G34+T1+T5)/T4、(T1+T5)/T4、(G12+G23+G45)/T2、(G34+T5)/T4、AAG/(G12+G23+G45+G56)、(G12+G23+G45)/G34、(T1+T5)/G34、T4/(G12+G23+G45)、(T3+T6)/T4及(G34+T5)/T2之數值,請參考圖50。
須注意的是,在本實施例之光學成像鏡頭7中,從第一透鏡物側面711至成像面780在光軸上之厚度為5.358mm,相較於先前技術確實縮短光學成像鏡頭7之鏡頭長度。
另一方面,從圖27當中可以看出,本實施例之光學成像鏡頭7在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好,甚至在弧矢方向的像散像差(b)和子午方向的像散像差(c)的表現上達到可抑制在±0.06mm內,更甚於第一實施例。因此,使得第七實施例的成像品質優於第一實施例。由上述中可以得知,本實施例之光學成像鏡頭7確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考圖30至圖33,其中圖30顯示依據本發明之第八實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖31顯示依據本發明之第八實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖32顯示依據本發明之第八實施例之光學成像鏡頭之詳細光學數據,圖33顯示依據本發明之第八實施例之光學成像鏡頭之各透鏡之非球面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的標號開頭改為8,例如第三透鏡物側面為831,第三透鏡像側面為832,其它元件標號在此不再贅述。如圖30中所示,本實施例之光學成像鏡頭8從物側A1至像側A2依序包括一光圈800、一第一透鏡810、一第二透鏡820、一第三透鏡830、一第四透鏡840、一第五透鏡850及一第六透鏡860。
第八實施例之第一透鏡810、第二透鏡820、第三透鏡830、第四透鏡840及第五透鏡850的屈光率以及包括朝向物側A1的物側面811、841、851、861及朝向像側A2的像側面812、832、852、862的透鏡表面的凹凸配置大致上與第一實施例類似,唯第八實施例的各透鏡表面的曲率半徑、透鏡厚度、空氣間隙寬度、後焦距等相關光學參數、第六透鏡860的屈光率及物側面821、831和像側面822、842的透鏡表面凹凸配置與第一實施例不同。在此為了更清楚顯示圖面,表面凹凸配置的特徵僅標示與第一實施例不同之處,而省略相同之處的標號。詳細地說,其間差異在於本實施例的第二透鏡820之物側面821是一凹面,且其包括一位於光軸附近區域的凹面部8211及一位於圓周附近區域的凹面部8212;第二透鏡820之像側面822是一凸面,且其包括一位於光軸附近區域的凸面部8221及一位於圓周附近區域的凸面部8222;第三透鏡830之物側面831是一凹面,且其包括一位於光軸附近區域的凹面部8311及一位於圓周附近區域的凹面部8312;第四透鏡840之像側面842具有一位於光軸附近區域的凸面部8421及一位於圓周附近區域的凹面部8422;第六透鏡860具有負屈光率。關於本實施例之光學成像鏡頭8的各透鏡之各光學特性及各空氣間隙之寬度,請參考圖32,關於T1、G12、T2、G23、T3、G34、T4、G45、T5、G56、T6、G6F、TF、GFP、EFL、ALT、AAG、BFL、TTL、AAG/T2、(T3+T6)/G34、AAG/G34、ALT/(G12+G23+G45)、(G34+T1+T5)/T4、(T1+T5)/T4、(G12+G23+G45)/T2、(G34+T5)/T4、AAG/(G12+G23+G45+G56)、(G12+G23+G45)/G34、(T1+T5)/G34、T4/(G12+G23+G45)、(T3+T6)/T4及(G34+T5)/T2之數值,請參考圖50。
須注意的是,在本實施例之光學成像鏡頭8中,從第一透鏡物側面811至成像面880在光軸上之厚度為5.365mm,相較於先前技術確實縮短光學成像鏡頭8之鏡頭長度。
另一方面,從圖31當中可以看出,本實施例之光學成像鏡頭8在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好,甚至在弧矢方向的像散像差(b)和子午方向的像散像差(c)、或畸變像差(d)的表現上達到可抑制在±0.06mm內,更甚於第一實施例。因此,使得第八實施例的成像品質優於第一實施例。由上述 中可以得知,本實施例之光學成像鏡頭8確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考圖34至圖37,其中圖34顯示依據本發明之第九實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖35顯示依據本發明之第九實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖36顯示依據本發明之第九實施例之光學成像鏡頭之詳細光學數據,圖37顯示依據本發明之第九實施例之光學成像鏡頭之各透鏡之非球面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的標號開頭改為9,例如第三透鏡物側面為931,第三透鏡像側面為932,其它元件標號在此不再贅述。如圖34中所示,本實施例之光學成像鏡頭9從物側A1至像側A2依序包括一光圈900、一第一透鏡910、一第二透鏡920、一第三透鏡930、一第四透鏡940、一第五透鏡950及一第六透鏡960。
第九實施例之第一透鏡910、第二透鏡920、第三透鏡930、第四透鏡940及第五透鏡950的屈光率以及包括朝向物側A1的物側面911、941、951及朝向像側A2的像側面912、932、942、952、962的透鏡表面的凹凸配置大致上與第一實施例類似,唯第九實施例的各透鏡表面的曲率半徑、透鏡厚度、空氣間隙寬度、後焦距等相關光學參數、第六透鏡960的屈光率及與物側面921、931和像側面922、961的透鏡表面的凹凸配置第一實施例不同。在此為了更清楚顯示圖面,表面凹凸配置的特徵僅標示與第一實施例不同之處,而省略相同之處的標號。詳細地說,其間差異在於本實施例的第二透鏡920之物側面921是一凹面,且其包括一位於光軸附近區域的凹面部9211及一位於圓周附近區域的凹面部9212;第二透鏡920之像側面922是一凸面,且其包括一位於光軸附近區域的凸面部9221及一位於圓周附近區域的凸面部9222;第三透鏡930之物側面931是一凹面,且其包括一位於光軸附近區域的凹面部9311及一位於圓周附近區域的凹面部9312;第六透鏡960具有負屈光率;第六透鏡960之物側面961是一凸面,且其包括一位於光軸附近區域的凸面部9611及一位於圓周附近區域的凸面部9612。關於本實施例之光學成像鏡頭9的各透鏡之各光學特性及各空氣間隙之寬度,請參考圖36,關於T1、G12、T2、G23、T3、G34、T4、G45、 T5、G56、T6、G6F、TF、GFP、EFL、ALT、AAG、BFL、TTL、AAG/T2、(T3+T6)/G34、AAG/G34、ALT/(G12+G23+G45)、(G34+T1+T5)/T4、(T1+T5)/T4、(G12+G23+G45)/T2、(G34+T5)/T4、AAG/(G12+G23+G45+G56)、(G12+G23+G45)/G34、(T1+T5)/G34、T4/(G12+G23+G45)、(T3+T6)/T4及(G34+T5)/T2之數值,請參考圖50。
須注意的是,在本實施例之光學成像鏡頭9中,從第一透鏡物側面911至成像面980在光軸上之厚度為5.354mm,相較於先前技術確實縮短光學成像鏡頭9之鏡頭長度。
另一方面,從圖35當中可以看出,本實施例之光學成像鏡頭9在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好,甚至在弧矢方向的像散像差(b)和子午方向的像散像差(c)的表現上達到可抑制在±0.08mm內,更甚於第一實施例。因此,使得第九實施例的成像品質優於第一實施例。由上述中可以得知,本實施例之光學成像鏡頭9確實可維持良好光學性能,並有效縮短鏡頭長度。
圖38統列出以上九個實施例的T1、G12、T2、G23、T3、G34、T4、G45、T5、G56、T6、G6F、TF、GFP、EFL、ALT、AAG、BFL、TTL、AAG/T2、(T3+T6)/G34、AAG/G34、ALT/(G12+G23+G45)、(G34+T1+T5)/T4、(T1+T5)/T4、(G12+G23+G45)/T2、(G34+T5)/T4、AAG/(G12+G23+G45+G56)、(G12+G23+G45)/G34、(T1+T5)/G34、T4/(G12+G23+G45)、(T3+T6)/T4及(G34+T5)/T2值,可看出本發明之光學成像鏡頭確實可滿足前述條件式(1)和條件式(2)/(2')、條件式(3)、條件式(4)、條件式(5)/(5')、條件式(6)、條件式(7)、條件式(8)、條件式(9)、條件式(10)、條件式(11)、條件式(12)、條件式(13)及/或條件式(14)。
請參閱圖39,為應用前述光學成像鏡頭的可攜式電子裝置20的一第一較佳實施例,可攜式電子裝置20包含一機殼21及一安裝在機殼21內的影像模組22。在此僅是以手機為例說明可攜式電子裝置20,但可攜式電子裝置20的型式不以此為限,舉例來說,可攜式電子裝置20還可包括但不限於相機、平板電腦、個人數位助理(personal digital assistant,簡稱PDA)等。
如圖中所示,影像模組22內具有一焦距為固定不變之光學成像鏡頭,其包括一如前所述的光學成像鏡頭,如在此示例性地選用前述第一實施例之光學成像鏡頭1、一用於供光學成像鏡頭1設置的鏡筒23、一用於供鏡筒23設置的模組後座單元(module housing unit)24、一供該模組後座單元設置之基板182及一設置於光學成像鏡頭1像側的影像感測器181。成像面180是形成於影像感測器181。
須注意的是,本實施例雖顯示濾光件170,然而在其他實施例中亦可省略濾光件170之結構,並不以濾光件170之必要為限,且機殼21、鏡筒23、及/或模組後座單元24可為單一元件或多個元件組裝而成,無須限定於此;其次,乃是本實施例所使用的影像感測器181是採用板上連接式晶片封裝(Chip on Board,COB)的封裝方式直接連接在基板182上,和傳統晶片尺寸封裝(Chip Scale Package,CSP)之封裝方式的差別在於板上連接式晶片封裝不需使用保護玻璃(cover glass),因此在光學成像鏡頭1中並不需要在影像感測器181之前設置保護玻璃,然本發明並不以此為限。
整體具有屈光率的六片式透鏡110、120、130、140、150、160示例性地是以相對兩透鏡之間分別存在一空氣間隙的方式設置於鏡筒23內。
模組後座單元24包括一用以供鏡筒23設置的鏡頭後座2401及一影像感測器後座2406。鏡筒23是和鏡頭後座2401沿一軸線I-I'同軸設置,且鏡筒23設置於鏡頭後座2401內側,影像感測器後座2406位於該鏡頭後座2401和該影像感測器181之間,且該影像感測器後座2406和該鏡頭後座2401相貼合,然在其它的實施態樣中,不一定存在影像感測器後座2406。
由於光學成像鏡頭1之長度僅5.075mm,因此可將可攜式電子裝置20之尺寸設計地更為輕薄短小,且仍然能夠提供良好的光學性能與成像品質。藉此,使本實施例除了具有減少機殼原料用量的經濟效益外,還能滿足輕薄短小的產品設計趨勢與消費需求。
另請參閱圖40,為應用前述光學成像鏡頭1的可攜式電子裝置20'的一第二較佳實施例,第二較佳實施例的可攜式電子裝置20'與第一 較佳實施例的可攜式電子裝置20的主要差別在於:鏡頭後座2401具有一第一座體單元2402、一第二座體單元2403、一線圈2404及一磁性元件2405。第一座體單元2402與鏡筒23外側相貼合且沿一軸線I-I'設置、第二座體單元2403沿軸線I-I'並環繞著第一座體單元2402外側設置。線圈2404設置在第一座體單元2402外側與第二座體單元2403內側之間。磁性元件2405設置在線圈2404外側與第二座體單元2403內側之間。
第一座體單元2402可帶著鏡筒23及設置在鏡筒23內的光學成像鏡頭1沿軸線I-I'移動。可攜式電子裝置20'的第二實施例的其他元件結構則與第一實施例的可攜式電子裝置20類似,在此不再贅述。
類似地,由於光學成像鏡頭1之長度僅5.075mm,因此可將可攜式電子裝置20'之尺寸設計地更為輕薄短小,且仍然能夠提供良好的光學性能與成像品質。藉此,使本實施例除了具有減少機殼原料用量的經濟效益外,還能滿足輕薄短小的產品設計趨勢與消費需求。
由上述中可以得知,本發明之可攜式電子裝置與其光學成像鏡頭,透過控制六片透鏡各透鏡的細部結構之設計,並以至少一條件式控制相關參數,以維持良好光學性能,並有效縮短鏡頭長度。
以上敍述依據本發明多個不同實施例,其中各項特徵可以單一或不同結合方式實施。因此,本發明實施方式之揭露為闡明本發明原則之具體實施例,應不拘限本發明於所揭示的實施例。進一步言之,先前敍述及其附圖僅為本發明示範之用,並不受其限囿。其他元件之變化或組合皆可能,且不悖于本發明之精神與範圍。
1‧‧‧光學成像鏡頭
100‧‧‧光圈
110‧‧‧第一透鏡
111,121,131,141,151,161,171‧‧‧物側面
112,122,132,142,152,162,172‧‧‧像側面
120‧‧‧第二透鏡
130‧‧‧第三透鏡
140‧‧‧第四透鏡
150‧‧‧第五透鏡
160‧‧‧第六透鏡
170‧‧‧濾光件
180‧‧‧成像面
1111,1121,1221,1311,1421,1511,1611‧‧‧位於光軸附近區域的凸面部
1112,1122,1212,1312,1422,1522,1622‧‧‧位於圓周附近區域的凸面部
1211,1321,1411,1521,1621‧‧‧位於光軸附近區域的凹面部
1222,1322,1412,1512,1612‧‧‧位於圓周附近區域的凹面部
1313‧‧‧位於光軸附近區域與圓周附近區域之間的凹面部
d1,d2,d3,d4,d5,d6,d7‧‧‧空氣間隙
A1‧‧‧物側
A2‧‧‧像側

Claims (19)

  1. 一種光學成像鏡頭,從物側至像側沿一光軸依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡及一第六透鏡,每一透鏡都具有屈光率,且具有一朝向物側且使成像光線通過的物側面及一朝向像側且使成像光線通過的像側面,其中:該第一透鏡之該像側面具有一位於光軸附近區域的凸面部;該第二透鏡之材質為塑膠;該第三透鏡之該像側面具有一位於光軸附近區域的凹面部;該第四透鏡之該物側面具有一位於光軸附近區域的凹面部;及該第五透鏡之該像側面具有一位於圓周附近區域的凸面部;該第六透鏡之該物側面具有一位於光軸附近區域的凸面部,該像側面具有一位於光軸附近區域的凹面部,且其材質為塑膠;其中,該光學成像鏡頭只包括上述六片具有屈光率的透鏡,並滿足下列條件式:AAG/T2≦4.3;T2為該第二透鏡在光軸上的厚度,AAG為該第一透鏡至該第六透鏡之間在光軸上的五個空氣間隙寬度總和。
  2. 申請專利範圍第1項所述的光學成像鏡頭,其中該光學成像鏡頭還滿足(T3+T6)/G34≦4.5的條件式,T3為該第三透鏡在光軸上的厚度,T6為該第六透鏡在光軸上的厚度,G34為該第三透鏡與該第四透鏡之間在光軸上的空氣間隙寬度。
  3. 如申請專利範圍第2項所述的光學成像鏡頭,其中該光學成像鏡頭還滿足AAG/G34≦3的條件式。
  4. 如申請專利範圍第3項所述的光學成像鏡頭,其中該光學成像鏡頭還滿足(G34+T5)/T4≦2.2的條件式,T4為該第四透鏡在光軸上的厚度,T5為該第五透鏡在光軸上的厚度。
  5. 如申請專利範圍第1項所述的光學成像鏡頭,其中該光學成像鏡頭還滿足1.2≦(T3+T6)/G34≦4.5的條件式,T3為該第三透鏡在光軸上的厚度,T6為該第六透鏡在光軸上的厚度,G34為該第三透鏡與該第四透鏡之間在光軸上的空氣間隙寬度。
  6. 如申請專利範圍第5項所述的光學成像鏡頭,其中還滿足6.5≦ALT/(G12+G23+G45)的條件式,G12為該第一透鏡與該第二透鏡之間在光軸上的空氣間隙寬度,G23為該第二透鏡與該第三透鏡之間在光軸上的空氣間隙寬度,G45為該第四透鏡與該第五透鏡之間在光軸上的空氣間隙寬度,ALT為該第一透鏡至該第六透鏡在光軸上的六片透鏡厚度總和。
  7. 如申請專利範圍第6項所述的光學成像鏡頭,其中還滿足(G34+T1+T5)/T4≦4的條件式,T1為該第一透鏡在光軸上的厚度,T4為該第四透鏡在光軸上的厚度,T5為該第五透鏡在光軸上的厚度。
  8. 如申請專利範圍第6項所述的光學成像鏡頭,其中還滿足(T1+T5)/T4≦2.8的條件式,T1為該第一透鏡在光軸上的厚度,T4為該第四透鏡在光軸上的厚度,T5為該第五透鏡在光軸上的厚度。
  9. 如申請專利範圍第1項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足(G12+G23+G45)/T2≦2.1的條件式,G12為該第一透鏡與該第二透鏡之間在光軸上的空氣間隙寬度,G23為該第二透鏡與該第三透鏡之間在光軸上的空氣間隙寬度,G45為該第四透鏡與該第五透鏡之間在光軸上的空氣間隙寬度。
  10. 如申請專利範圍第9項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足(G34+T1+T5)/T4≦3的條件式,T1為該第一透鏡在光軸上的厚度,T4為該第四透鏡在光軸上的厚度,T5為該第五透鏡在光軸上的厚度,G34為該第三透鏡與該第四透鏡之間在光軸上的空氣間隙寬度。
  11. 如申請專利範圍第1項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足(G34+T5)/T4≦2.2的條件式,T4為該第四透鏡在光軸上的厚度,T5為該第五透鏡在光軸上的厚度,G34為該第三透鏡與該第四透鏡之間在光軸上的空氣間隙寬度。
  12. 如申請專利範圍第11項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足1.6≦AAG/(G12+G23+G45+G56)的條件式,G12為該第一透鏡與該第二透鏡之間在光軸上的空氣間隙寬度,G23為該第二透鏡與該第三透鏡之間在光軸上的空氣間隙寬度,G45為該第四透鏡與該第五透鏡之間在光軸上的空氣間隙寬度,G56為該第五透鏡與該第六透鏡之間在光軸上的空氣間隙寬度。
  13. 如申請專利範圍第11項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足(G12+G23+G45)/G34≦2.1的條件式,G12為該第一透鏡與該第二透鏡之間在光軸上的空氣間隙寬度,G23為該第二透鏡與該第三透鏡之間在光軸上的空氣間隙寬度,G45為該第四透鏡與該第五透鏡之間在光軸上的空氣間隙寬度。
  14. 如申請專利範圍第1項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足1.8≦(T1+T5)/G34≦6的條件式,T1為該第一透鏡在光軸上的厚度,T5為該第五透鏡在光軸上的厚度,G34為該第三透鏡與該第四透鏡之間在光軸上的空氣間隙寬度。
  15. 如申請專利範圍第14項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足2.1≦T4/(G12+G23+G45)的條件式,T4為該第四透鏡在光軸上的厚度,G12為該第一透鏡與該第二透鏡之間在光軸上的空氣間隙寬度,G23為該第二透鏡與該第三透鏡之間在光軸上的空氣間隙寬度,G45為該第四透鏡與該第五透鏡之間在光軸上的空氣間隙寬度。
  16. 如申請專利範圍第1項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足(T3+T6)/T4≦2.1的條件式,T3為該第三透鏡在光軸上的厚度,T4為該第 四透鏡在光軸上的厚度,T6為該第六透鏡在光軸上的厚度。
  17. 如申請專利範圍第16項所述的光學成像鏡頭,其中該第六透鏡的該像側面更包括一位於圓周附近區域的凸面部。
  18. 如申請專利範圍第17項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足2.5≦(G34+T5)/T2的條件式,T5為該第五透鏡在光軸上的厚度,G34為該第三透鏡與該第四透鏡之間在光軸上的空氣間隙寬度。
  19. 一種可攜式電子裝置,包括:一機殼;及一影像模組,安裝於該機殼內,包括:一如申請專利範圍第1項至第18項中任一項所述的光學成像鏡頭;一鏡筒,俾供設置該光學成像鏡頭;一模組後座單元,俾供設置該鏡筒;及一影像感測器,設置於該光學成像鏡頭的像側。
TW103142888A 2014-04-18 2014-12-09 可攜式電子裝置與其光學成像鏡頭 TWI553336B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410159396 2014-04-18
CN201410159368 2014-04-18
CN201410158290 2014-04-18
CN201410249205.3A CN105093489B (zh) 2014-04-18 2014-06-06 可携式电子装置与其光学成像镜头

Publications (2)

Publication Number Publication Date
TW201525519A true TW201525519A (zh) 2015-07-01
TWI553336B TWI553336B (zh) 2016-10-11

Family

ID=54197589

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103142888A TWI553336B (zh) 2014-04-18 2014-12-09 可攜式電子裝置與其光學成像鏡頭

Country Status (3)

Country Link
US (1) US9798108B2 (zh)
CN (1) CN105093489B (zh)
TW (1) TWI553336B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI699549B (zh) * 2019-11-26 2020-07-21 大陸商玉晶光電(廈門)有限公司 光學成像鏡頭

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103777321B (zh) * 2013-09-06 2016-02-03 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
CN104330875B (zh) * 2014-07-07 2017-11-10 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
DE102014213454A1 (de) * 2014-07-10 2016-01-14 Siemens Aktiengesellschaft Verfahren und System zur Erkennung einer Manipulation von Datensätzen
TWI547713B (zh) 2014-07-30 2016-09-01 大立光電股份有限公司 攝影用光學鏡頭、取像裝置以及電子裝置
TWI529417B (zh) 2015-04-15 2016-04-11 大立光電股份有限公司 攝像鏡頭組、取像裝置及電子裝置
KR101762006B1 (ko) * 2015-07-24 2017-07-26 삼성전기주식회사 촬상 광학계 및 서로 다른 화각을 가진 복수의 촬상 광학계가 장착된 모바일 기기
JP5895095B1 (ja) * 2015-12-21 2016-03-30 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像レンズ
TWI574040B (zh) * 2016-04-15 2017-03-11 大立光電股份有限公司 光學成像系統組、取像裝置及電子裝置
TWI618944B (zh) 2016-04-29 2018-03-21 大立光電股份有限公司 光學影像系統、取像裝置及電子裝置
JP6566492B2 (ja) * 2017-05-29 2019-08-28 カンタツ株式会社 撮像レンズ
CN109270658B (zh) * 2017-07-18 2021-11-09 富晋精密工业(晋城)有限公司 成像镜头
CN107422457B (zh) * 2017-08-18 2023-04-25 深圳市晶钛光学股份有限公司 一种光学镜头组、光学模组及电子设备
CN108345092B (zh) * 2018-05-14 2023-05-26 浙江舜宇光学有限公司 光学成像镜头
CN109100853A (zh) * 2018-07-13 2018-12-28 玉晶光电(厦门)有限公司 光学成像镜头
CN110286471B (zh) * 2019-06-30 2021-08-17 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110346907B (zh) * 2019-06-30 2021-09-21 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110346905B (zh) * 2019-06-30 2021-08-17 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110244437B (zh) * 2019-06-30 2021-08-17 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110389425B (zh) * 2019-06-30 2021-08-17 瑞声光学解决方案私人有限公司 摄像光学镜头
CN111208623A (zh) * 2020-02-14 2020-05-29 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE540329T1 (de) 2007-04-09 2012-01-15 Fujifilm Corp Endoskopobjektivlinse und endoskop
US7663814B2 (en) 2007-12-20 2010-02-16 Fujinon Corporation Imaging lens system and imaging apparatus
JP5345823B2 (ja) 2008-10-28 2013-11-20 富士フイルム株式会社 撮像レンズおよびこの撮像レンズを用いた撮像装置
JP2009104669A (ja) * 2009-02-12 2009-05-14 Toshiba Corp 文書検索方法、システム及びプログラム
JP5324321B2 (ja) 2009-05-29 2013-10-23 富士フイルム株式会社 内視鏡用対物レンズおよび内視鏡
WO2012008357A1 (ja) 2010-07-16 2012-01-19 コニカミノルタオプト株式会社 撮像レンズ
TWI485464B (zh) 2010-12-30 2015-05-21 Largan Precision Co Ltd 成像用光學鏡片組
CN102621664B (zh) 2011-01-27 2014-05-21 大立光电股份有限公司 影像撷取镜头组
TWI447473B (zh) * 2011-03-25 2014-08-01 Largan Precision Co Ltd 攝影用光學鏡頭組
TWI431312B (zh) * 2011-06-28 2014-03-21 Largan Precision Co Ltd 光學影像拾取鏡片組
JP5924121B2 (ja) * 2012-05-22 2016-05-25 株式会社オプトロジック 撮像レンズ
TWI472826B (zh) 2012-06-06 2015-02-11 Largan Precision Co Ltd 光學影像透鏡系統組
TWI456249B (zh) 2012-07-04 2014-10-11 Largan Precision Co Ltd 影像系統鏡組
CN204422845U (zh) 2012-07-18 2015-06-24 富士胶片株式会社 摄像镜头以及具备摄像镜头的摄像装置
JP5975386B2 (ja) * 2012-08-17 2016-08-23 株式会社オプトロジック 撮像レンズ
JP5763141B2 (ja) * 2012-09-10 2015-08-12 サムソン エレクトロ−メカニックス カンパニーリミテッド. 撮像光学系
TWI487944B (zh) 2012-12-28 2015-06-11 Largan Precision Co Ltd 光學結像鏡頭
TWI477803B (zh) 2013-03-05 2015-03-21 Largan Precision Co Ltd 攝像系統透鏡組
CN103676106B (zh) 2013-08-29 2016-05-11 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI699549B (zh) * 2019-11-26 2020-07-21 大陸商玉晶光電(廈門)有限公司 光學成像鏡頭

Also Published As

Publication number Publication date
CN105093489B (zh) 2017-10-20
TWI553336B (zh) 2016-10-11
US20150301315A1 (en) 2015-10-22
US9798108B2 (en) 2017-10-24
CN105093489A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
TWI553336B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI516791B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI507722B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI541556B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI541536B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI516793B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI507725B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI521234B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI525341B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI479185B (zh) 可攜式電子裝置與其光學成像鏡頭(一)
TWI484214B (zh) 可攜式電子裝置與其光學成像鏡頭
TW201425989A (zh) 可攜式電子裝置與其光學成像鏡頭(二)
TWI490533B (zh) 攝像裝置與其光學成像鏡頭
TW201409067A (zh) 可攜式電子裝置與其光學成像鏡頭
TW201348731A (zh) 可攜式電子裝置與其光學成像鏡頭
TWI594004B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI471592B (zh) 可攜式電子裝置與其光學成像鏡頭
TW201348733A (zh) 可攜式電子裝置與其光學成像鏡頭
TWI471590B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI503569B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI507718B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI592687B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI592688B (zh) 可攜式電子裝置與其光學成像鏡頭
TW201428335A (zh) 可攜式電子裝置與其光學成像鏡頭
TW201604580A (zh) 可攜式電子裝置與其光學成像鏡頭