TW201524105A - Power controllers and relevant control methods capable of providing load compensation - Google Patents

Power controllers and relevant control methods capable of providing load compensation Download PDF

Info

Publication number
TW201524105A
TW201524105A TW102144150A TW102144150A TW201524105A TW 201524105 A TW201524105 A TW 201524105A TW 102144150 A TW102144150 A TW 102144150A TW 102144150 A TW102144150 A TW 102144150A TW 201524105 A TW201524105 A TW 201524105A
Authority
TW
Taiwan
Prior art keywords
current
voltage
signal
power supply
output
Prior art date
Application number
TW102144150A
Other languages
Chinese (zh)
Other versions
TWI506937B (en
Inventor
Yi-Lun Shen
Yu-Yun Huang
Original Assignee
Grenergy Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grenergy Opto Inc filed Critical Grenergy Opto Inc
Priority to TW102144150A priority Critical patent/TWI506937B/en
Publication of TW201524105A publication Critical patent/TW201524105A/en
Application granted granted Critical
Publication of TWI506937B publication Critical patent/TWI506937B/en

Links

Abstract

Controllers and related control methods for a switched mode power supply are disclosed. The switched mode power supply has an inductive device and a power switch connected in series. An output current estimator in a controller is configured for receiving a current-sense signal representing an inductor current flowing through the inductive device and a discharge-time signal indicating a discharge time of the inductive device. The output current estimator generates a charge current in response to the discharge-time signal and the current-sense signal, thereby the charge current substantially corresponding to an output current that the switched mode power supply outputs to a load. The charge current is limited not to exceed a maximum value. A current limiter is configured for limiting the current-sense signal when the charge current is the maximum value.

Description

可提供負載補償之電源控制器以及相關之控制方法 Power controller capable of providing load compensation and related control methods

本發明係相關於開關式電源供應器(switched mode power supply),尤其相關於可以預估輸出至一負載之一輸出電流的電源供應器。 The present invention relates to a switched mode power supply, and more particularly to a power supply that can predict an output current to one of the loads.

開關式電源供應器一般採用一功率開關來控制流經一電感元件之一電流。跟其他一般電源供應器相較之下,開關式電源供應器具有較小的產品體積以及較優越的轉換效率,所以廣受業界的歡迎與採用。 Switched power supplies typically employ a power switch to control the flow of current through an inductive component. Compared with other general power supplies, the switch power supply has a small product volume and superior conversion efficiency, so it is widely welcomed and adopted by the industry.

反馳式(flyback)架構的供應器,因為其提供了電隔絕的效果,所以廣泛的被採用。反馳式架構以一個變壓器,把連接到市電插座的輸入電源線,直流電隔絕於連接到負載的輸出電源線。一次側一般是指電連接到輸入電源線的那些電路所在的那一側;相對的,二次側一般指的是電連接到輸出電源線的那些電路所在的那一側。所謂二次側控制是採用電阻或一些電子元件,放在二次側,來偵測二次側之負載上的輸出電壓或是流過的輸出電流。二次側控制可以簡單的達到不錯的輸出電壓或是輸出電流調節(regulation),但是因為二次側的電阻或是電子元件不斷的消耗電能,因此二次側控制可能會有比較低的轉換效率。美國專利申請公開號US20100321956A1揭露了許多開關式電源供應器,其採用一次側控制來調 節二次側的最大額定輸出電流或是額定輸出電壓。美國專利申請公開號US20100321956A1可以使二次側的最大額定輸出電流,大約為一個不隨輸入電源線之輸入電壓而變化的定值。 The supply of the flyback architecture is widely used because it provides an electrical isolation effect. The flyback architecture uses a transformer to isolate the input power line connected to the mains outlet from the direct current to the output power line connected to the load. The primary side generally refers to the side on which the circuits electrically connected to the input power line are located; in contrast, the secondary side generally refers to the side on which the circuits electrically connected to the output power line are located. The so-called secondary side control is to use a resistor or some electronic components, placed on the secondary side to detect the output voltage on the secondary side of the load or the output current flowing. The secondary side control can simply achieve a good output voltage or output current regulation, but because the secondary side resistor or electronic components continue to consume power, the secondary side control may have a lower conversion efficiency. . U.S. Patent Application Publication No. US20100321956A1 discloses a number of switching power supplies that are adjusted using primary side control. The maximum rated output current of the secondary side of the section or the rated output voltage. U.S. Patent Application Publication No. US20100321956A1 allows the maximum rated output current of the secondary side to be approximately a constant value that does not vary with the input voltage of the input power line.

負載補償(load compensation)是一種在對負載之輸出電流增加時,就增加輸出電壓的一種技術,可以用來補償在電源供應器與負載之間傳輸線上的電壓損失。一種做到負載補償的傳統方法,是採用流經一變壓器之一峰值電流,來大約當作輸出至一負載之輸出電流的代表,據以改變電源供應器所調節之輸出電壓的目標值。但是,如同業界所知道的,峰值電流跟輸出電流是有相當大的差異的,所以,峰值電流根本不能用來代表輸出電流。 Load compensation is a technique that increases the output voltage as the output current to the load increases, and can be used to compensate for voltage losses on the transmission line between the power supply and the load. One conventional method of performing load compensation is to use a peak current flowing through a transformer to approximate the output current output to a load, thereby changing the target value of the output voltage regulated by the power supply. However, as is known in the industry, the peak current is quite different from the output current, so the peak current cannot be used to represent the output current at all.

實施例揭示有一種電源控制器,適用於一開關式電源供應器。該開關式電源供應器包含有串聯在一起的一電感元件以及一功率開關。該電源控制器包含有一輸出電流估算器以及一電流限制器。該輸出電流估算器,架構來提供一電流偵測信號以及一放電時間信號。該電流偵測信號代表流經該電感元件之一電感電流。該放電時間信號指示該電感元件之一放電時間。並依據該電流偵測信號以及該放電時間信號,該輸出電流估算器產生一充電電流,使其大約對應該開關式電源供應器對一負載輸出的一輸出電流。該充電電流被限制不大於一最大值。當該充電電流等於該最大值時,該電流限制器架構來用以限制該電流偵測信號。 The embodiment discloses a power supply controller suitable for a switching power supply. The switched power supply includes an inductive component and a power switch connected in series. The power controller includes an output current estimator and a current limiter. The output current estimator is configured to provide a current detection signal and a discharge time signal. The current detection signal represents an inductor current flowing through one of the inductive components. The discharge time signal indicates one of the inductive elements of the discharge time. And based on the current detection signal and the discharge time signal, the output current estimator generates a charging current that is approximately corresponding to an output current of the switching power supply to a load output. The charging current is limited to no more than a maximum value. When the charging current is equal to the maximum value, the current limiter architecture is used to limit the current detecting signal.

實施例揭示有一種控制方法,適用於一開關式電源供應器中,作為輸出電流偵測。該開關式電源供應器包含有一電感元件以及一功 率開關,串接在一起。該控制方法包含有:接收一電流偵測信號,其大致代表流經該電感元件之一電感電流;偵測該電感元件,以產生一放電時間信號,大致指示該電感元件之一放電時間;依據該電流偵測信號以及該放電時間信號,產生一充電電流,其中,該放電電流大約代表了該開關式電源供應器輸出至一負載的一輸出電流;限制使該充電電流不超過一最大值;以及,當該充電電流等於該最大值時,壓制該電流偵測信號。 The embodiment discloses a control method suitable for use in a switching power supply as an output current detection. The switching power supply includes an inductive component and a function Rate switches, connected in series. The control method includes: receiving a current detection signal, which generally represents an inductor current flowing through the inductive component; detecting the inductive component to generate a discharge time signal, substantially indicating a discharge time of the inductive component; The current detection signal and the discharge time signal generate a charging current, wherein the discharge current represents approximately an output current of the switching power supply output to a load; limiting the charging current to not exceed a maximum value; And, when the charging current is equal to the maximum value, the current detecting signal is pressed.

實施例另揭示有一種電源控制器,適用於一開關式電源供應器。該開關式電源供應器包含有串聯在一起的一電感元件以及一功率開關。該電源控制器包含有一輸出電流估算器以及一負載補償器。該輸出電流估算器架構來接收一電流偵測信號以及一放電時間信號。該電流偵測信號大致代表流經該電感元件之一電感電流,該放電時間信號大約指示該電感元件之一放電時間。該輸出電流估算器依據該電流偵測信號以及該放電時間信號,產生一充電電流。該充電電流大致對應該開關式電源供應器對一負載輸出之一輸出電流。該負載補償器,據該充電電流,架構來從一電阻汲取一偏壓電流,流到一接地線。該電感元件包含有一輔助繞組,且該電阻係連接於該輔助繞組以及該負載補償器之間。 Another embodiment discloses a power controller suitable for a switching power supply. The switched power supply includes an inductive component and a power switch connected in series. The power controller includes an output current estimator and a load compensator. The output current estimator architecture receives a current detection signal and a discharge time signal. The current detection signal generally represents an inductor current flowing through the inductive component, the discharge time signal indicating approximately one discharge time of the inductive component. The output current estimator generates a charging current according to the current detection signal and the discharge time signal. The charging current generally corresponds to one of the output power of the switched power supply to a load output. The load compensator, according to the charging current, is configured to draw a bias current from a resistor and flow to a ground line. The inductive component includes an auxiliary winding, and the resistor is coupled between the auxiliary winding and the load compensator.

10‧‧‧開關式電源供應器 10‧‧‧Switching power supply

20‧‧‧橋式整流器 20‧‧‧Bridge rectifier

24‧‧‧負載 24‧‧‧load

26‧‧‧電源控制器 26‧‧‧Power Controller

28、30‧‧‧電阻 28, 30‧‧‧ resistance

34‧‧‧功率開關 34‧‧‧Power switch

36‧‧‧電流偵測電阻 36‧‧‧ Current Sense Resistor

38‧‧‧傳輸線 38‧‧‧ transmission line

62‧‧‧取樣保持電路 62‧‧‧Sampling and holding circuit

64‧‧‧放電時間決定器 64‧‧‧Discharge time determiner

66‧‧‧負載補償電路 66‧‧‧Load compensation circuit

68‧‧‧誤差放大器 68‧‧‧Error amplifier

70‧‧‧輸出電流估算器 70‧‧‧Output current estimator

72‧‧‧震盪器 72‧‧‧ oscillator

74‧‧‧比較器 74‧‧‧ comparator

76‧‧‧比較器 76‧‧‧ Comparator

78‧‧‧SR紀錄器 78‧‧‧SR Recorder

90‧‧‧轉導器 90‧‧‧Transducer

92、94‧‧‧電位轉換器 92, 94‧‧‧potentiometer

96‧‧‧更新電路 96‧‧‧Update circuit

98‧‧‧收集電容 98‧‧‧Collection capacitor

99‧‧‧電容 99‧‧‧ Capacitance

100‧‧‧CS峰值電壓偵測器 100‧‧‧CS peak voltage detector

102‧‧‧電壓控制電流源 102‧‧‧Voltage Control Current Source

103‧‧‧斜直線 103‧‧‧ oblique line

104‧‧‧開關 104‧‧‧ switch

ACC‧‧‧收集端 ACC‧‧‧ Collector

AUX‧‧‧輔助繞組 AUX‧‧‧Auxiliary winding

CS‧‧‧電流偵測端 CS‧‧‧current detection terminal

FB‧‧‧回饋端 FB‧‧‧ feedback end

GATE‧‧‧驅動端 GATE‧‧‧ drive side

ICHARGE‧‧‧充電電流 I CHARGE ‧‧‧Charging current

IDIS‧‧‧放電電流 I DIS ‧‧‧discharge current

IOFFSET‧‧‧偏壓電流 I OFFSET ‧‧‧Bias Current

IOUT‧‧‧輸出電流 I OUT ‧‧‧Output current

IPRM‧‧‧電流 I PRM ‧‧‧current

IREF‧‧‧預設值 I REF ‧‧‧Preset value

ISEC‧‧‧二次側繞組電流 I SEC ‧‧‧secondary winding current

PRM‧‧‧一次側繞組 PRM‧‧‧ primary side winding

SDIS‧‧‧放電時間信號 S DIS ‧‧‧discharge time signal

SEC‧‧‧二次側繞組 SEC‧‧‧secondary winding

SUPDATE‧‧‧更新信號 S UPDATE ‧‧‧Update signal

TCYC‧‧‧開關週期 T CYC ‧‧‧ Switching Cycle

TDIS‧‧‧放電時間 T DIS ‧‧‧Discharge time

TOFF‧‧‧關閉時間 T OFF ‧‧‧Closed time

TON‧‧‧開啟時間 T ON ‧‧‧Opening time

VACC‧‧‧回饋電壓 V ACC ‧‧‧ feedback voltage

VAUX‧‧‧跨壓 V AUX ‧‧‧cross pressure

VCC‧‧‧操作電源 V CC ‧‧‧Operating power supply

VCOM‧‧‧補償電壓 V COM ‧‧‧compensation voltage

VCS‧‧‧電流偵測電壓 V CS ‧‧‧current detection voltage

VCS-PEAK‧‧‧電壓 V CS-PEAK ‧‧‧ voltage

VFB‧‧‧回饋電壓信號 V FB ‧‧‧ feedback voltage signal

VGATE‧‧‧驅動信號 V GATE ‧‧‧ drive signal

VIN‧‧‧輸入電源 V IN ‧‧‧Input power supply

VLC‧‧‧負載代表電壓 V LC ‧‧‧load represents voltage

VLIMIT‧‧‧限制電壓 V LIMIT ‧‧‧Limit voltage

VM‧‧‧電壓 V M ‧‧‧ voltage

VOUT‧‧‧輸出電源 V OUT ‧‧‧output power supply

VREF‧‧‧參考電壓 V REF ‧‧‧reference voltage

VREF-M‧‧‧預設電壓 V REF-M ‧‧‧Preset voltage

VTAR‧‧‧目標電壓 V TAR ‧‧‧target voltage

第1圖顯示依據本發明所實施的一開關式電源供應器。 Figure 1 shows a switched mode power supply implemented in accordance with the present invention.

第2圖顯示第1圖中的一些信號的波形。 Figure 2 shows the waveforms of some of the signals in Figure 1.

第3圖舉例第1圖中的電源控制器。 Figure 3 illustrates the power controller in Figure 1.

第4圖舉例第3圖中的輸出電流估算器。 Figure 4 illustrates the output current estimator in Figure 3.

第5A圖顯示在一些實施例中,充電電流ICHARGE跟電壓VM的關係。 Figure 5A shows the charge current I CHARGE versus voltage V M in some embodiments.

第5B圖顯示在一些實施例中,偏壓電流IOFFSET跟充電電流ICHARGE的關係。 Figure 5B shows the bias current I OFFSET versus charge current I CHARGE in some embodiments.

本發明的一實施例具有設置於一次側的一電源控制器,其可以依據流經一變壓器之一次側繞組的一電流,以及該變壓器的一放電時間,來產生估計信號。這些估計信號的其中之一是一充電電流,其產生的方法將在此說明書中解釋,並證明此充電電流相當程度地可以代表一電源供應器對一負載所輸出的一輸出電流。而且,透過限制該充電電流的最大值,該輸出電流也可以被準確地調節的不超過該電源供應器的最大額定輸出電流。此外,此充電電流非常精準地或是相當程度地可以代表該輸出電流,所以該充電電流可以做為一個輸入,來產生要做為負載補償的一偏壓電流(offset current),而得到一個精準控制之結果。 An embodiment of the present invention has a power supply controller disposed on the primary side that can generate an estimated signal based on a current flowing through a primary winding of a transformer and a discharge time of the transformer. One of these estimated signals is a charging current, the method of which will be explained in this specification, and it is demonstrated that this charging current can represent a considerable amount of output current output by a power supply to a load. Moreover, by limiting the maximum value of the charging current, the output current can also be accurately adjusted to not exceed the maximum rated output current of the power supply. In addition, the charging current can represent the output current very accurately or to a considerable extent, so the charging current can be used as an input to generate an offset current to be compensated for the load, and to obtain an accurate The result of control.

第1圖顯示依據本發明所實施的一開關式電源供應器10,其採用一次側控制。橋式整流器20提供全波式整流,將市電插座供應來的交流電(AC)電源,轉換成直流電(DC)輸入電源VIN。輸入電源VIN的電壓,可能具有M型的波形,或是大致為一個不變常數。電源控制器26可以是一積體電路,其具有數個接腳,可以電連接到周邊裝置或元件。透過驅動端GATE,電源控制器26可以週期地開啟或是關閉功率開關34。當功率開關34開啟時,該變壓器的一次側繞組PRM儲能;當功率開關34關閉時,該變壓器透過二次側繞組SEC與輔助繞組AUX釋能,分別建立出輸出電源VOUT以及操作電源VCC,分別供應給負載24與電源控制器26。連接在負載24與二次繞組 之間有傳輸線38,其寄生電阻以標示於其中的電阻表示。 1 shows a switched mode power supply 10 implemented in accordance with the present invention that employs primary side control. The bridge rectifier 20 provides full-wave rectification to convert an alternating current (AC) power source supplied from a mains outlet into a direct current (DC) input power source V IN . The voltage input to the power supply V IN may have an M-type waveform or be approximately an invariant constant. The power controller 26 can be an integrated circuit having a plurality of pins that can be electrically connected to peripheral devices or components. The power controller 26 can periodically turn the power switch 34 on or off through the driver GATE. When the power switch 34 is turned on, the primary side winding PRM of the transformer stores energy; when the power switch 34 is turned off, the transformer is discharged through the secondary side winding SEC and the auxiliary winding AUX, respectively, and the output power supply V OUT and the operating power supply V are respectively established. CC is supplied to the load 24 and the power controller 26, respectively. Connected between the load 24 and the secondary winding is a transmission line 38 whose parasitic resistance is represented by the resistance indicated therein.

電阻28與30可以視為一個分壓器,用來偵測輔助繞組AUX上的跨壓VAUX,然後提供一回饋電壓信號VFB,到電源控制器26的一回饋端FB。當功率開關34關閉時,跨壓VAUX大約會是比例於二次側繞組SEC上的跨壓之一映射電壓(reflective voltage)。依據回饋電壓信號VFB,電源控制器26控制功率開關34的工作週期(duty cycle)。透過電流偵測端CS,電源控制器26偵測電流偵測電壓VCS,其代表了流經電流偵測電阻36、功率開關34以及一次側繞組PRM的電流IPRMResistors 28 and 30 can be considered as a voltage divider for detecting the voltage across the auxiliary winding AUX, V AUX , and then providing a feedback voltage signal V FB to a feedback terminal FB of the power supply controller 26. When the power switch 34 is turned off, the voltage across the V AUX will be approximately proportional to the reflective voltage across the voltage across the secondary winding SEC. Based on the feedback voltage signal V FB , the power controller 26 controls the duty cycle of the power switch 34. Through the current detecting terminal CS, the power controller 26 detects the current detecting voltage V CS , which represents the current I PRM flowing through the current detecting resistor 36, the power switch 34, and the primary winding PRM .

第2圖顯示第1圖中的一些信號的波形。在驅動端GATE上的驅動信號VGATE為邏輯上的1時,功率開關34開啟。功率開關34維持在開啟的時間,稱為開啟時間(ON time)TON;相對的,功率開關34維持在關閉的時間,稱為關閉時間(OFF time)TOFF,如同第2圖所示。一個開關週期(cycle time)TCYC等於一個開啟時間TON與一個關閉時間TOFF的總和,如同第2圖所顯示的。在開啟時間TON時,輔助繞組AUX上的跨壓VAUX是負值,映射輸入電源VIN的電壓。此時,一次側繞組PRM儲能,代表電流IPRM的電流偵測電壓VCS將隨著時間而增加。在功率開關34被關閉的瞬間,二次側繞組SEC開始產生二次側繞組電流ISEC,其隨著時間而減少,直到二次側繞組SEC完全的釋能。如同第2圖所示,二次側繞組SEC釋能的時間,或是二次側繞組電流ISEC大於0的時間,稱為放電時間TDIS。在放電時間TDIS時,跨壓VAUX為正值,大約映射輸出電源VOUT的電壓。在放電時間TDIS結束後,跨壓VAUX開始震盪,往0V收斂。在第2圖中,放電時間TDIS僅僅是關閉時間TOFF中的一部分,因為開關式電源供應器10是假定操作於不連續導通模式(discontinuous conduction mode,DCM)。萬一開關式電源供應器10是操作於連續導通模式(continuous conduction mode,CCM),放電時間TDIS大約會等於關閉時間TOFFFigure 2 shows the waveforms of some of the signals in Figure 1. The driving signal V GATE GATE is at the end of the drive is a logical 1, the power switch 34 is turned on. The power switch 34 is maintained at the on time, referred to as the ON time T ON ; in contrast, the power switch 34 is maintained at the off time, referred to as the OFF time T OFF , as shown in FIG. A cycle time T CYC is equal to the sum of one on time T ON and one off time T OFF , as shown in FIG. 2 . At the turn-on time T ON , the voltage across the auxiliary winding AUX, V AUX , is a negative value, mapping the voltage of the input power supply V IN . At this time, the primary side winding PRM stores energy, and the current detection voltage V CS representing the current I PRM will increase with time. At the instant when the power switch 34 is turned off, the secondary winding SEC begins to generate a secondary winding current I SEC which decreases over time until the secondary winding SEC is fully discharged. As shown in Fig. 2, the time during which the secondary winding SEC is released, or the time when the secondary winding current I SEC is greater than 0, is called the discharge time T DIS . At the discharge time T DIS , the voltage across the voltage V AUX is a positive value, approximately the voltage of the output power source V OUT . After the discharge time T DIS ends, the voltage across the V AUX begins to oscillate and converges to 0V. In Fig. 2, the discharge time T DIS is only a part of the off time T OFF because the switch mode power supply 10 is assumed to operate in a discontinuous conduction mode (DCM). In case the switch mode power supply 10 is operated in a continuous conduction mode (CCM), the discharge time T DIS will be approximately equal to the off time T OFF .

第3圖舉例第1圖中的電源控制器26。震盪器72週期地設置SR紀錄器(SR register)78,因此驅動信號VGATE變成邏輯上的1,所以開始了開啟時間TON。取樣保持電路62適時地在放電時間TDIS時,對回饋電壓信號VFB進行取樣,然後誤差放大器68比較取樣保持電路62的取樣結果,跟一預設的目標電壓VTAR,來產生補償電壓VCOM。當電流偵測電壓VCS超過了補償電壓VCOM時,比較器74重置SR紀錄器78,開始了關閉時間TOFF。在關閉時間TOFF內,電流偵測電壓VCS突然地降到0V,如同第2圖所示。換言之,補償電壓VCOM控制或是壓制了電流偵測電壓VCS的峰值。 Fig. 3 illustrates the power supply controller 26 in Fig. 1. The oscillator 72 periodically sets the SR register 78 so that the drive signal V GATE becomes a logical one, so the on time T ON is started. The sample-and-hold circuit 62 samples the feedback voltage signal V FB at the discharge time T DIS in a timely manner, and then the error amplifier 68 compares the sampling result of the sample-and-hold circuit 62 with a predetermined target voltage V TAR to generate a compensation voltage V. COM . When the current detection voltage V CS exceeds the compensation voltage V COM , the comparator 74 resets the SR recorder 78 and starts the off time T OFF . During the off time T OFF , the current detection voltage V CS suddenly drops to 0V, as shown in FIG. In other words, the compensation voltage V COM controls or suppresses the peak value of the current detection voltage V CS .

放電時間決定器64電連接到回饋端FB,透過偵測回饋電壓信號VFB的波形,放電時間決定器64提供一放電時間信號SDIS,來指示放電時間TDIS的時間。放電時間信號SDIS不必要一定跟放電時間TDIS完全的同步。舉例來說,在一實施例中,放電時間信號SDIS在放電時間TDIS開始一段時間之後,才變成邏輯上的1,然後在放電時間TDIS結束一段時間後,才變成邏輯上的0,因此,放電時間信號SDIS為邏輯上1的時間,大約等於放電時間TDISThe discharge time determiner 64 is electrically connected to the feedback terminal FB. By detecting the waveform of the feedback voltage signal V FB , the discharge time determiner 64 provides a discharge time signal S DIS to indicate the time of the discharge time T DIS . The discharge time signal S DIS does not necessarily have to be completely synchronized with the discharge time T DIS . For example, in an embodiment, the discharge time signal S DIS becomes a logical one after a period of time from the start of the discharge time T DIS , and then becomes a logical zero after a period of time at which the discharge time T DIS ends. Therefore, the discharge time signal S DIS is a logically one time, approximately equal to the discharge time T DIS .

依據放電時間信號SDIS以及電流偵測電壓VCS,輸出電流估算器70提供負載代表電壓VLC給負載補償電路66。這裡,負載代表電壓VLC對應到一充電電流ICHARGE。稍後將說明,充電電流ICHARGE大致上比例於第1圖中輸出到負載24的輸出電流IOUT。負載補償電路66產生偏壓電流IOFFSET,其在放電時間,從回饋端FB汲取電流,流到接地線。一般而言,輸出電流IOUT越大,充電電流ICHARGE越大,偏壓電流IOFFSET越大,跨壓VAUX就需要越 大來維持取樣保持電路62之取樣結果大約等於目標電壓VTAR,所以輸出電源VOUT的電壓越高。因此,負載補償電路66可以使得輸出電源VOUT的電壓大致等於“IOUT * K1+K2 * VTAR”,其中K1與K2是兩個定值。只要適當地選取電阻28與30之電阻值,IOUT * K1就可以大約等於第1圖中的傳輸線38上的跨壓損耗,因此負載24可以收到調節結果相當不錯的電源電壓(=K2 * VTAR)。負載補償就此準確的實現。 Based on the discharge time signal S DIS and the current sense voltage V CS , the output current estimator 70 provides a load representative voltage V LC to the load compensation circuit 66. Here, the load representative voltage V LC corresponds to a charging current I CHARGE . As will be described later, the charging current I CHARGE is substantially proportional to the output current I OUT outputted to the load 24 in FIG. The load compensation circuit 66 generates a bias current I OFFSET which draws current from the feedback terminal FB at the discharge time and flows to the ground line. In general, the larger the output current I OUT , the larger the charging current I CHARGE and the larger the bias current I OFFSET , the larger the voltage across the voltage V AUX is to maintain the sampling result of the sample and hold circuit 62 approximately equal to the target voltage V TAR , Therefore, the voltage of the output power V OUT is higher. Therefore, the load compensation circuit 66 can cause the voltage of the output power source V OUT to be approximately equal to "I OUT * K 1 + K 2 * V TAR ", where K 1 and K 2 are two fixed values. As long as the resistance values of the resistors 28 and 30 are properly selected, I OUT * K 1 can be approximately equal to the voltage across the transmission line 38 in Fig. 1, so that the load 24 can receive a supply voltage with a fairly good regulation result (=K). 2 * V TAR ). Load compensation is thus accurately implemented.

輸出電流估算器70另提供了限制電壓VLIMIT給比較器76。一但電流偵測信號VCS超過了限制電壓VLIMIT,比較器76重置SR紀錄器78,結束開啟時間TON,並開始了關閉時間TOFF。因此,限制電壓VLIMIT也可以控制或壓制電流偵測信號VCS的峰值。 Output current estimator 70 additionally provides a limit voltage V LIMIT to comparator 76. Once the current detection signal V CS exceeds the limit voltage V LIMIT , the comparator 76 resets the SR recorder 78, ends the turn-on time T ON , and begins the off time T OFF . Therefore, the limit voltage V LIMIT can also control or suppress the peak value of the current detection signal V CS .

第4圖舉例輸出電流估算器70,其具有轉導器90、電位轉換器(level shifter)92與94、一更新電路96、一收集電容98、一開關104、一電壓控制電流源(voltage-controlled current source)102、以及一CS峰值電壓偵測器100。 Figure 4 illustrates an output current estimator 70 having a transducer 90, level shifters 92 and 94, an update circuit 96, a collection capacitor 98, a switch 104, and a voltage controlled current source (voltage- Controlled current source 102, and a CS peak voltage detector 100.

CS峰值電壓偵測器100產生電壓VCS-PEAK,其代表了電流偵測信號VCS的一峰值。舉例來說,美國專利申請公開號US20100321956A1中的第10圖就提供了CS峰值電壓偵測器100之一例子。在一些實施例中,CS峰值電壓偵測器100可以用美國專利申請公開號US20100321956A1之第17圖或18圖中所舉例之平均電流偵測器所取代。電壓控制電流源102將電壓VCS-PEAK轉換成放電電流IDIS,其僅有在放電時間信號SDIS為邏輯上之1時,對收集端ACC放電。換言之,放電電流IDIS對收集端ACC的放電時間,等效上大約等於放電時間TDIS。在一些實施例中,第4圖中的開關104可以省略,取 而代之的,放電時間信號SDIS用來啟動(activate)或是關閉(deactivate)電壓控制電流源102。在電容99上的電壓VM,被位移轉換後,送給轉導器90,用來跟一預設參考電壓VREF比較。轉導器90依據比較結果,來輸出充電電流ICHARGE,對收集端ACC持續地充電。透過偵測充電電流ICHARGE,可以產生負載代表電壓VLC。更新電路96受更新信號SUPDATE所觸發,對收集端ACC上的回饋電壓VACC取樣,來更新電壓VM,可以每次開關週期來更新一次。更新信號SUPDATE並不必要每次開關週期就使得更新電路96執行更新一次,舉例來說,也可以每兩個開關週期執行更新一次。在一實施例中,更新信號SUPDATE可以等同於驅動信號VGATE,意味著更新的動作在關閉時間TOFF一開始時被執行。電壓VM平時都是保持在一個定值,直到更新電路96對它更新後,才會變成另一個定值。依據電壓VM,電位轉換器94提供限制電壓VLIMIT。從以上說明可以發現,當電壓VM不變時,充電電流ICHARGE也會維持不變。 The CS peak voltage detector 100 generates a voltage V CS-PEAK that represents a peak of the current detection signal V CS . An example of a CS peak voltage detector 100 is provided, for example, in FIG. 10 of U.S. Patent Application Publication No. US20100321956A1. In some embodiments, the CS peak voltage detector 100 can be replaced with an average current detector as exemplified in FIG. 17 or FIG. 18 of US Patent Application Publication No. US20100321956A1. The voltage controlled current source 102 converts the voltage V CS-PEAK into a discharge current I DIS which discharges the collector terminal ACC only when the discharge time signal S DIS is a logical one. In other words, the discharge time of the discharge current I DIS to the collector terminal ACC is equivalently approximately equal to the discharge time T DIS . In some embodiments, the switch 104 in FIG. 4 can be omitted. Instead, the discharge time signal S DIS is used to activate or deactivate the voltage controlled current source 102. The voltage V M on the capacitor 99 is shifted and sent to the transducer 90 for comparison with a predetermined reference voltage V REF . The transducer 90 outputs a charging current I CHARGE according to the comparison result, and continuously charges the collecting terminal ACC. By detecting the charging current I CHARGE , the load representative voltage V LC can be generated. The update circuit 96 is triggered by the update signal S UPDATE to sample the feedback voltage V ACC on the collector ACC to update the voltage V M , which can be updated once per switching cycle. The update signal S UPDATE does not necessarily cause the update circuit 96 to perform an update once per switching cycle, for example, it may be performed every two switching cycles. In an embodiment, the update signal S UPDATE may be equivalent to the drive signal V GATE , meaning that the updated action is performed at the beginning of the off time T OFF . The voltage V M is always kept at a constant value until the update circuit 96 updates it to become another constant value. Depending on the voltage V M , the potential converter 94 provides a limiting voltage V LIMIT . From the above description, it can be found that when the voltage V M is constant, the charging current I CHARGE will remain unchanged.

類似美國專利申請公開號US20100321956A1中所分析的,當充電電流ICHARGE為一個定值,且回饋電壓VACC在被取樣時的值,等於上一次被取樣時的值,那充電電流ICHARGE就會是跟輸出到負載24的輸出電流IOUT成比例。為了使充電電流ICHARGE跟輸出電流IOUT成比例,所以回饋電壓VACC每次被取樣時的值,必須要一樣或是穩定。更新電路96、電位轉換器92、以及轉導器90一起形成了具有負迴路增益(negative loop gain)的一迴路,而這個迴路最後可能可以使得回饋電壓VACC每次被取樣時的值,穩定在一個值。舉例來說,如果充電電流ICHARGE大於跟輸出電流IOUT成比例的一期望值,那回饋電壓VACC在下次的取樣時,就會變大,造成更新後的電壓VM也隨著變大,因此,充電電流ICHARGE就會變小。反之亦然。所以,充電電流 ICHARGE可以在最後,變的大約跟輸出電流IOUT成比例。 Similar to the analysis in U.S. Patent Application Publication No. US20100321956A1, when the charging current I CHARGE is a fixed value and the value of the feedback voltage V ACC when being sampled is equal to the value of the previous sampling, the charging current I CHARGE will be It is proportional to the output current I OUT output to the load 24. In order to make the charging current I CHARGE proportional to the output current I OUT , the value of the feedback voltage V ACC every time it is sampled must be the same or stable. The update circuit 96, the potential converter 92, and the transducer 90 together form a loop having a negative loop gain, and this loop may eventually stabilize the value of the feedback voltage V ACC each time it is sampled. At a value. For example, if the charging current I CHARGE is greater than a desired value proportional to the output current I OUT , the feedback voltage V ACC will become larger at the next sampling, causing the updated voltage V M to become larger as well. Therefore, the charging current I CHARGE becomes small. vice versa. Therefore, the charging current I CHARGE can be changed at approximately the same as the output current I OUT .

第5A圖顯示在一些實施例中,充電電流ICHARGE跟電壓VM的關係。電壓VM透過電位轉換器92以及轉導器90,控制了充電電流ICHARGE。如同第5A圖所示的,轉導器90所輸出的充電電流ICHARGE並沒有負值,最低就是OA。當電壓VM低於預設電壓VREF-M(其對應到第4圖中的參考電壓VREF)時,充電電流ICHARGE大約是一極大值,也就是第5A圖上所示的IMAXFigure 5A shows the charge current I CHARGE versus voltage V M in some embodiments. The voltage V M is transmitted through the potential converter 92 and the transducer 90 to control the charging current I CHARGE . As shown in Fig. 5A, the charging current I CHARGE outputted by the transducer 90 has no negative value, and the lowest is OA. When the voltage V M is lower than the preset voltage V REF-M (which corresponds to the reference voltage V REF in FIG. 4 ), the charging current I CHARGE is approximately a maximum value, that is, I MAX shown in FIG. 5A. .

當負載24不大或是很輕時,輸出電流IOUT還沒有到最大額定輸出電流,所以電壓VM將穩定在大於預設電壓VREF-M的某個值,使得充電電流ICHARGE跟輸出電流IOUT成比例。此時,第3圖中的電源控制器26操作於定電壓模式,調節輸出電源VOUT之電壓,使其穩定於預設值。但是當負載24非常重時,充電電流ICHARGE會固定在IMAX,且導致電壓VM掉到預設電壓VREF-M之下。此時,如果輸出電流IOUT超過了其最大額定輸出電流(跟IMAX比例),那電壓VM與限制電壓VLIMIT兩者都會隨著一個個開關週期,而減少,直到限制電壓VLIMIT壓低了電壓VCS-PEAK,使得輸出電流IOUT等於最大額定輸出電流。換句話說,當電壓VM低於預設電壓VREF-M時,電源控制器26會操作於定電流模式。 When the load 24 is not large or very light, the output current I OUT has not reached the maximum rated output current, so the voltage V M will stabilize at a certain value greater than the preset voltage V REF-M , so that the charging current I CHARGE and the output The current I OUT is proportional. At this time, the power controller 26 in FIG. 3 operates in the constant voltage mode, and adjusts the voltage of the output power source V OUT to stabilize it at a preset value. However, when the load 24 is very heavy, the charging current I CHARGE is fixed at I MAX and causes the voltage V M to fall below the preset voltage V REF-M . At this time, if the output current I OUT exceeds its maximum rated output current (proportional to I MAX ), both the voltage V M and the limit voltage V LIMIT will decrease with each switching cycle until the limiting voltage V LIMIT is depressed The voltage V CS-PEAK is such that the output current I OUT is equal to the maximum rated output current. In other words, when the voltage V M is lower than the preset voltage V REF-M , the power controller 26 operates in the constant current mode.

在定電壓操作時,轉導器90的轉導增益大致決定了電壓VM值的位置。轉導增益越大,電壓VM的可能位置範圍越窄,回饋電壓VACC就可以有更多的操作電壓空間可以使用。但是,轉導增益也不能太大,因為提高轉導增益同時也提高了負迴路增益,而過大的負迴路增益將可能導致震盪,使得電壓VM無法穩定。 At constant voltage operation, the transducing gain of the transducer 90 roughly determines the position of the voltage V M value. The larger the transduction gain, the narrower the possible range of the voltage V M , and the feedback voltage V ACC can have more operating voltage space available. However, the transduction gain should not be too large, because increasing the transconductance gain also increases the negative loop gain, while excessive negative loop gain may cause oscillation, making the voltage V M unstable.

第5B圖顯示在一些實施例中,偏壓電流IOFFSET跟充電電流 ICHARGE的關係,這關係可由負載補償電路66所執行。在一實施例中,負載代表電壓VLC與偏壓電流IOFFSET可以透過映射充電電流ICHARGE來產生。一些實施例中,當負載很輕或是無載時,負載補償並不需要產生。因此,如同第5B圖所示的,當充電電流ICHARGE比一預設值IREF來的低時,偏壓電流IOFFSET就消失,等於0A。當充電電流ICHARGE比一預設值IREF高時,兩者大約是一個線性關係,如同第5B圖中的斜直線103所舉例的。 FIG. 5B shows the relationship of the bias current I OFFSET to the charging current I CHARGE in some embodiments, which relationship may be performed by the load compensation circuit 66. In an embodiment, the load representative voltage V LC and the bias current I OFFSET can be generated by mapping the charging current I CHARGE . In some embodiments, load compensation does not need to be generated when the load is very light or unloaded. Therefore, as shown in FIG. 5B, when the charging current I CHARGE is lower than a predetermined value I REF , the bias current I OFFSET disappears, which is equal to 0A. When the charging current I CHARGE is higher than a predetermined value I REF , the two are approximately a linear relationship, as exemplified by the oblique line 103 in FIG. 5B.

輸出電流估算器70僅僅使用了一個內部、具有負迴路增益的一迴路,就達到了兩個重要的功能:提供跟輸出電流IOUT成比例的充電電流ICHARGE,以及控制輸出電流IOUT不超過最大額定輸出電流。 Output current estimator 70 uses only an internal, having a negative loop gain of the loop, it reached two important functions: to provide with an output current I OUT is proportional to the charging current I CHARGE of, and controlling the output current I OUT is not more than Maximum rated output current.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

70‧‧‧輸出電流估算器 70‧‧‧Output current estimator

90‧‧‧轉導器 90‧‧‧Transducer

92、94‧‧‧電位轉換器 92, 94‧‧‧potentiometer

96‧‧‧更新電路 96‧‧‧Update circuit

98‧‧‧收集電容 98‧‧‧Collection capacitor

99‧‧‧電容 99‧‧‧ Capacitance

100‧‧‧CS峰值電壓偵測器 100‧‧‧CS peak voltage detector

102‧‧‧電壓控制電流源 102‧‧‧Voltage Control Current Source

104‧‧‧開關 104‧‧‧ switch

ACC‧‧‧收集端 ACC‧‧‧ Collector

ICHARGE‧‧‧充電電流 I CHARGE ‧‧‧Charging current

IDIS‧‧‧放電電流 I DIS ‧‧‧discharge current

SDIS‧‧‧放電時間信號 S DIS ‧‧‧discharge time signal

SUPDATE‧‧‧更新信號 S UPDATE ‧‧‧Update signal

VACC‧‧‧回饋電壓 V ACC ‧‧‧ feedback voltage

VCS‧‧‧電流偵測電壓 V CS ‧‧‧current detection voltage

VCS-PEAK‧‧‧電壓 V CS-PEAK ‧‧‧ voltage

VLC‧‧‧負載代表電壓 V LC ‧‧‧load represents voltage

VLIMIT‧‧‧限制電壓 V LIMIT ‧‧‧Limit voltage

VM‧‧‧電壓 V M ‧‧‧ voltage

VREF‧‧‧參考電壓 V REF ‧‧‧reference voltage

Claims (10)

一種電源控制器,適用於一開關式電源供應器,該開關式電源供應器包含有串聯在一起的一電感元件以及一功率開關,該電源控制器包含有:一輸出電流估算器,架構來提供一電流偵測信號,其代表流經該電感元件之一電感電流,以及一放電時間信號,其指示該電感元件之一放電時間,並依據該電流偵測信號以及該放電時間信號,用以產生一充電電流,使其大約對應該開關式電源供應器對一負載輸出的一輸出電流,其中該充電電流被限制不大於一最大值;以及一電流限制器,當該充電電流等於該最大值時,架構來用以限制該電流偵測信號。 A power controller for a switching power supply, the switch power supply includes an inductive component connected in series and a power switch, the power controller includes: an output current estimator, and the architecture provides a current detection signal representing an inductor current flowing through the inductive component, and a discharge time signal indicating a discharge time of the inductive component, and generating the signal according to the current detection signal and the discharge time signal a charging current that is approximately corresponding to an output current of the switching power supply to a load output, wherein the charging current is limited to not greater than a maximum value; and a current limiter when the charging current is equal to the maximum value The architecture is used to limit the current detection signal. 如專利申請範圍第1項之電源控制器,其中,該電感元件包含有一輔助繞組,該開關式電源供應器具有一電阻,連接至該輔助繞組,該電源控制器另包含有:一負載補償器,依據該充電電流,架構來從該電阻汲取一偏壓電流。 The power supply controller of claim 1, wherein the inductive component comprises an auxiliary winding, the switching power supply has a resistor connected to the auxiliary winding, and the power controller further comprises: a load compensator, Based on the charging current, the architecture draws a bias current from the resistor. 如專利申請範圍第1項之電源控制器,其中,該充電電流不會是負值。 The power controller of claim 1, wherein the charging current is not a negative value. 如專利申請範圍第1項之電源控制器,其中,該輸出電流估算器,依據該充電電流、該放電時間信號以及該電流偵測信號,產生一電壓信號,該輸出電流估算器具有一轉導器,其比較該電壓信號以及一參考電壓,來產生該充電電流。 The power controller of claim 1, wherein the output current estimator generates a voltage signal according to the charging current, the discharging time signal, and the current detecting signal, and the output current estimator has a transducer And comparing the voltage signal with a reference voltage to generate the charging current. 如專利申請範圍第4項之電源控制器,其中,該電壓信號在該開關式電源供應器的每一開關週期內,更新一次。 The power controller of claim 4, wherein the voltage signal is updated once during each switching cycle of the switched mode power supply. 如專利申請範圍第4項之電源控制器,其中,該充電電流持續對一收集 端充電,該輸出電流估算器依據該電流偵測信號提供一放電電流,該放電電流在該放電時間內對該收集端放電,且該電壓信號係透過取樣該收集端上之一回饋電壓而被更新。 A power controller as in the fourth application of the patent application, wherein the charging current continues to be collected End charging, the output current estimator provides a discharge current according to the current detection signal, the discharge current discharges the collection end during the discharge time, and the voltage signal is filtered by sampling a feedback voltage on the collection end Update. 如專利申請範圍第6項之電源控制器,其中,該電流偵測信號之一峰值,決定該放電電流。 The power controller of claim 6, wherein one of the current detection signals has a peak value that determines the discharge current. 如專利申請範圍第6項之電源控制器,其中,該輸出電流估算器另包含一收集電容,連接至該收集端,一更新電路連接至該收集端,用以取樣該回饋電壓。 The power controller of claim 6, wherein the output current estimator further comprises a collecting capacitor connected to the collecting end, and an updating circuit is connected to the collecting end for sampling the feedback voltage. 如專利申請範圍第1項之電源控制器,其中,該輸出電流估算器依據該充電電流、該放電時間信號、以及該電流偵測信號,產生一電壓信號,該輸出電流估算器另包含有一電位轉換器,用以將該電壓信號轉換為一第二電壓信號,該電流電流限制器包含有一比較器,用以比較該第二電壓信號以及該電流偵測信號,來控制該功率開關。 The power controller of claim 1, wherein the output current estimator generates a voltage signal according to the charging current, the discharging time signal, and the current detecting signal, and the output current estimator further comprises a potential The converter is configured to convert the voltage signal into a second voltage signal, and the current current limiter includes a comparator for comparing the second voltage signal and the current detection signal to control the power switch. 一種控制方法,適用於一開關式電源供應器中,作為輸出電流偵測,該開關式電源供應器包含有一電感元件以及一功率開關,串接在一起,該控制方法包含有:接收一電流偵測信號,其大致代表流經該電感元件之一電感電流;偵測該電感元件,以產生一放電時間信號,大致指示該電感元件之一放電時間;依據該電流偵測信號以及該放電時間信號,產生一充電電流,其中,該放電電流大約代表了該開關式電源供應器輸出至一負載的一輸出電流; 限制使該充電電流不超過一最大值;以及當該充電電流等於該最大值時,壓制該電流偵測信號。 A control method is applicable to a switching power supply device. As an output current detection, the switching power supply includes an inductance component and a power switch connected in series. The control method includes: receiving a current detection a signal, which generally represents an inductor current flowing through the inductive component; detecting the inductive component to generate a discharge time signal, substantially indicating a discharge time of the inductive component; and the current detection signal and the discharge time signal according to the signal Generating a charging current, wherein the discharging current represents approximately an output current of the switching power supply output to a load; Limiting that the charging current does not exceed a maximum value; and when the charging current is equal to the maximum value, suppressing the current detecting signal.
TW102144150A 2013-12-03 2013-12-03 Power controllers and relevant control methods capable of providing load compensation TWI506937B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102144150A TWI506937B (en) 2013-12-03 2013-12-03 Power controllers and relevant control methods capable of providing load compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102144150A TWI506937B (en) 2013-12-03 2013-12-03 Power controllers and relevant control methods capable of providing load compensation

Publications (2)

Publication Number Publication Date
TW201524105A true TW201524105A (en) 2015-06-16
TWI506937B TWI506937B (en) 2015-11-01

Family

ID=53935858

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102144150A TWI506937B (en) 2013-12-03 2013-12-03 Power controllers and relevant control methods capable of providing load compensation

Country Status (1)

Country Link
TW (1) TWI506937B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI559112B (en) * 2015-07-03 2016-11-21
TWI566510B (en) * 2015-08-27 2017-01-11 台達電子企業管理(上海)有限公司 Output device
TWI632755B (en) * 2016-07-26 2018-08-11 廣東歐珀移動通信有限公司 Adapter and charging control method
US10291060B2 (en) 2016-02-05 2019-05-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Adapter and charging control method
TWI751489B (en) * 2020-02-11 2022-01-01 宏碁股份有限公司 Charging system and charging device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384342B (en) * 2008-08-01 2013-02-01 Leadtrend Tech Corp Current control method and apparatus
CN101854124B (en) * 2009-03-30 2014-05-07 通嘉科技股份有限公司 Power converter and use method thereof
TWI460975B (en) * 2011-09-07 2014-11-11 Leadtrend Tech Corp Power controllers with load compensation and related control methods
US9112498B2 (en) * 2011-11-01 2015-08-18 Dialog Semiconductor Inc. Dynamic MOSFET gate drivers

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI559112B (en) * 2015-07-03 2016-11-21
TWI566510B (en) * 2015-08-27 2017-01-11 台達電子企業管理(上海)有限公司 Output device
US10243306B2 (en) 2015-08-27 2019-03-26 Delta Electronics (Shanghai) Co., Ltd. Output device including DC transmission cable and connector
US10291060B2 (en) 2016-02-05 2019-05-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Adapter and charging control method
US10541553B2 (en) 2016-02-05 2020-01-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Adapter and charging control method
US10566828B2 (en) 2016-02-05 2020-02-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Adapter and charging control method
US10644529B2 (en) 2016-02-05 2020-05-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Adapter and method for charging control
US10819134B2 (en) 2016-02-05 2020-10-27 Guangdong Oppo Mobile Telecommuncations Corp., Ltd. Adapter and method for charging control
TWI632755B (en) * 2016-07-26 2018-08-11 廣東歐珀移動通信有限公司 Adapter and charging control method
TWI635690B (en) * 2016-07-26 2018-09-11 廣東歐珀移動通信有限公司 Adapter and charging control method
TWI656708B (en) * 2016-07-26 2019-04-11 大陸商廣東歐珀移動通信有限公司 Adapter and charging control method
TWI751489B (en) * 2020-02-11 2022-01-01 宏碁股份有限公司 Charging system and charging device

Also Published As

Publication number Publication date
TWI506937B (en) 2015-11-01

Similar Documents

Publication Publication Date Title
TWI568159B (en) Flyback power converter and control circuit and control method thereof
US8879282B2 (en) Control methods for switching power supplies
TWI542134B (en) System controller and method for adjusting the power conversion system
US7969754B2 (en) Control circuit for a switch unit of a clocked power supply circuit, and resonance converter
JP5668291B2 (en) Power supply controller, power supply integrated circuit controller, and power supply
JP5693877B2 (en) Controller for power supply, power supply, and method of controlling power supply
TWI556545B (en) Charge control circuit, flyback power conversion system and charging control method
TWI506937B (en) Power controllers and relevant control methods capable of providing load compensation
TWI613883B (en) Constant on-time converter having fast transient response
US10263510B2 (en) DC/DC resonant converters and power factor correction using resonant converters, and corresponding control methods
TWI606682B (en) Pulse-width modulation controller and relevant control method suitable for switched-mode power supply with high power factor
JP2011166941A (en) Switching power supply device
US9190918B2 (en) Controllers and related control methods for generating signals representing an output current to a load in a switched mode power supply
US11606036B2 (en) Switching power converter and controller for a switching power converter
TWI460975B (en) Power controllers with load compensation and related control methods
CN111654189B (en) Resonant power conversion device
US9130469B2 (en) Primary-side feedback controlled AC/DC converter with an improved error amplifier
JP6868031B2 (en) Power factor correction using DC / DC resonant converters and resonant converters, and corresponding control methods
TWI617123B (en) Current mode voltage converter having fast transient response
TWI605671B (en) Control methods and switching mode power supplies with improved dynamic response and reduced switching loss
TWI445291B (en) Methods and power controllers for primary side control
JP2014099948A (en) Switching power supply device
TWI548185B (en) Power control method and related apparatus capable of providing compensation to inductance variation
US10630186B2 (en) Switching power supply device and semiconductor device
TWI672894B (en) Power controllers and control methods thereof