TW201523894A - Substrate with organic function layer and method of manufacturing same - Google Patents

Substrate with organic function layer and method of manufacturing same Download PDF

Info

Publication number
TW201523894A
TW201523894A TW103139392A TW103139392A TW201523894A TW 201523894 A TW201523894 A TW 201523894A TW 103139392 A TW103139392 A TW 103139392A TW 103139392 A TW103139392 A TW 103139392A TW 201523894 A TW201523894 A TW 201523894A
Authority
TW
Taiwan
Prior art keywords
layer
protective film
organic
substrate
functional layer
Prior art date
Application number
TW103139392A
Other languages
Chinese (zh)
Inventor
Shinji Imai
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of TW201523894A publication Critical patent/TW201523894A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)
  • Light Receiving Elements (AREA)
  • Formation Of Insulating Films (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

A substrate with organic function layer includes a substrate, an organic function layer disposed on the substrate, and a protection film disposed on the organic function layer. The protection film includes a plurality of silicon oxynitride layers represented by SiOxNy. An absolute value of difference of refractivity of each of the silicon oxynitride layers is within 0.1, and x and y satisfy 0.5 ≤ x ≤ 1.0 and -2.2y+2.1 ≤ x ≤ -2.2y+2.41. In the plurality of silicon oxynitride layers of the protection film, the x value of the silicon oxynitride layer at the side farther from the organic function layer is 0.05 or more larger than the silicon oxynitride layer formed at a position nearest to the organic function layer.

Description

帶有機機能層基板及其製造方法 Machine function layer substrate and manufacturing method thereof

本發明是有關於一種包含保護有機機能層的保護膜的帶有機機能層基板及其製造方法,特別是有關於一種可應用於彩色濾光片、攝影元件、有機太陽電池及有機電致發光(electrolumineScence,EL)元件等中之帶有機機能層基板及其製造方法。 The invention relates to an organic functional layer substrate comprising a protective film for protecting an organic functional layer and a manufacturing method thereof, in particular to a color filter, a photographic element, an organic solar cell and an organic electroluminescence ( An organic functional layer substrate and a method for producing the same in an electrolumine event, EL, or the like.

現在,提出了使用有機光電轉換層的彩色攝影裝置。現有的彩色攝影裝置包含:畫素電極,形成於形成有訊號讀出電路之半導體基板上;有機光電轉換層,形成於畫素電極上;對向電極(上部電極),形成於有機光電轉換層上;保護膜,形成於該對向電極上,對該對向電極進行保護;彩色濾光片等。保護膜包含由電漿化學氣相沈積(chemical vapor deposition,CVD)法而形成的SiOxNy膜。此種保護膜自先前起便有各種提案(參照專利文獻1、專利文獻2及非專利文獻1)。 Now, a color photographing apparatus using an organic photoelectric conversion layer has been proposed. A conventional color photographing apparatus includes: a pixel electrode formed on a semiconductor substrate on which a signal readout circuit is formed; an organic photoelectric conversion layer formed on a pixel electrode; and a counter electrode (upper electrode) formed on the organic photoelectric conversion layer And a protective film formed on the opposite electrode to protect the opposite electrode; a color filter or the like. The protective film contains a SiOxNy film formed by a plasma chemical vapor deposition (CVD) method. There have been various proposals for such a protective film since the prior art (see Patent Document 1, Patent Document 2, and Non-Patent Document 1).

於專利文獻1中記載了於包含有機光電轉換層的攝影元件中,使用藉由電漿CVD法而形成的氮氧化矽膜(SiOxNy膜) 作為保護對向電極的保護膜。記載了在該保護膜為單層的情況下,保護膜整體的內部應力為-50MPa~+60MPa。 Patent Document 1 discloses that a yttrium oxynitride film (SiOxNy film) formed by a plasma CVD method is used in an image pickup element including an organic photoelectric conversion layer. As a protective film for protecting the counter electrode. It is described that when the protective film is a single layer, the internal stress of the entire protective film is -50 MPa to +60 MPa.

於專利文獻2中記載了一種阻氣膜,其於聚醯亞胺膜的兩個面上順次形成有耐溶劑層(丙烯酸系硬化樹脂)、酚酞聚合物層(環氧系硬化樹脂)、氮氧化矽層。記載了該氮氧化矽層是由電漿CVD法而形成者。 Patent Document 2 describes a gas barrier film in which a solvent resistant layer (acrylic curing resin), a phenolphthalein polymer layer (epoxy hardening resin), and nitrogen are sequentially formed on both surfaces of a polyimide film. Oxide layer. It is described that the ruthenium oxynitride layer is formed by a plasma CVD method.

而且,除此以外亦記載了如下的阻氣膜,其藉由濺鍍而於耐溶劑層(丙烯酸系硬化樹脂)上形成SiOxNy層作為阻氣層,於其上形成酚酞聚合物層,於該酚酞聚合物層上形成氮氧化矽層。 Further, in addition to the above, a gas barrier film is formed which forms a SiOxNy layer as a gas barrier layer on a solvent-resistant layer (acrylic-based cured resin) by sputtering, and a phenolphthalein polymer layer is formed thereon. A layer of oxynitride is formed on the phenolphthalein polymer layer.

於專利文獻2中,記載了適合障壁性的SiNxOy的組成是x=0.5~1.5、y=0.15~1。記載了x的較佳範圍是0.5~1.5、更佳範圍是0.7~1.3,y的較佳範圍是0.15~1,更佳範圍是0.3~0.7。 Patent Document 2 describes that the composition of SiNxOy suitable for barrier properties is x=0.5 to 1.5 and y=0.15 to 1. It is described that the preferred range of x is from 0.5 to 1.5, more preferably from 0.7 to 1.3, the preferred range of y is from 0.15 to 1, and more preferably from 0.3 to 0.7.

於非專利文獻1中記載了一種透明阻氣材料,其是在PET基板上藉由反應性濺鍍而形成有SiON膜。在非專利文獻1中表示了SiOxNy膜的組成與氧透過率的關係。在非專利文獻1中表示了藉由使x自0.6增加至1.0而使阻氣性變佳。 Non-Patent Document 1 discloses a transparent gas barrier material in which an SiON film is formed by reactive sputtering on a PET substrate. Non-Patent Document 1 shows the relationship between the composition of the SiOxNy film and the oxygen permeability. Non-Patent Document 1 shows that gas barrier properties are improved by increasing x from 0.6 to 1.0.

[現有技術文獻] [Prior Art Literature]

[專利文獻] [Patent Literature]

[專利文獻1]日本專利特開2013-118363號公報 [Patent Document 1] Japanese Patent Laid-Open Publication No. 2013-118363

[專利文獻2]日本專利特開2009-241483號公報 [Patent Document 2] Japanese Patent Laid-Open Publication No. 2009-241483

[非專利文獻] [Non-patent literature]

[非專利文獻1]S. Iwamori等人,「真空(Vacuum)」68 (2003) 113-117. [Non-Patent Document 1] S. Iwamori et al., "Vacuum" 68 (2003) 113-117.

如上所述,在專利文獻1~專利文獻3中,關於作為保護膜而使用的SiOxNy膜,存在有與內部應力、膜組成及阻氣性相關的記載。然而,若SiOxNy膜的壓縮應力大則產生膜剝落,若拉伸應力起作用則無法獲得規定的阻氣性。如上所述,由於膜應力的狀態而產生膜剝離、阻氣性降低,膜應力具有適當的範圍。使阻氣性提高的SiOxNy膜的膜應力高而存在剝離的現象。 As described above, in Patent Document 1 to Patent Document 3, the SiOxNy film used as the protective film has a description relating to internal stress, film composition, and gas barrier properties. However, if the compressive stress of the SiOxNy film is large, film peeling occurs, and if the tensile stress acts, the predetermined gas barrier property cannot be obtained. As described above, film peeling occurs due to the state of the film stress, and gas barrier properties are lowered, and the film stress has an appropriate range. The SiOxNy film having improved gas barrier properties has a high film stress and is peeled off.

而且,在專利文獻1~專利文獻3中,關於高溫高濕度下的SiOxNy膜的穩定性並無任何表示,關於濕熱保管穩定性並無任何考慮。 Further, in Patent Document 1 to Patent Document 3, the stability of the SiOxNy film under high temperature and high humidity is not shown, and there is no consideration regarding the heat storage stability.

現狀是在作為保護膜而使用的SiOxNy膜中,並無設為上述適當的膜應力,且即使在高溫高濕度環境下阻氣性能也不劣化的SiOxNy膜。 In the SiOxNy film used as the protective film, the SiOxNy film which does not have the above-mentioned appropriate film stress and which does not deteriorate the gas barrier properties even in a high-temperature and high-humidity environment is not used.

本發明的目的在於解決基於所述現有技術的問題點,提供包含保護膜的帶有機機能層基板及其製造方法,所述保護膜並無由於反射光所造成的損失,膜應力處於規定的範圍,且高溫高濕度環境下的穩定性優異。 An object of the present invention is to provide an organic functional layer substrate including a protective film and a method for manufacturing the same according to the problems of the prior art, wherein the protective film has no loss due to reflected light, and the film stress is within a prescribed range. And excellent stability in high temperature and high humidity environment.

為了達成所述目的,本發明的第1態樣是提供一種帶有機機能層基板,其特徵在於:包含基材、配置於基材上的有機機 能層、配置於有機機能層上的保護膜;保護膜包含多個SiOxNy所表示的氮氧化矽層,各氮氧化矽層的折射率差的絕對值是0.1以內,更佳的是0.05以內,x、y滿足0.5≦x≦1.0、且-2.2y+2.1≦x≦-2.2y+2.41,在保護膜中,多個氮氧化矽層中,離有機機能層較遠側的氮氧化矽層的x的值比形成在最接近有機機能層的位置的氮氧化矽層之x的值大0.05以上。 In order to achieve the object, a first aspect of the present invention provides a substrate with an organic function layer, comprising: a substrate; and an organic machine disposed on the substrate An energy layer and a protective film disposed on the organic functional layer; the protective film comprising a plurality of yttrium oxynitride layers represented by SiOxNy, wherein the absolute value of the refractive index difference of each yttrium oxynitride layer is within 0.1, more preferably within 0.05, x, y satisfy 0.5≦x≦1.0, and -2.2y+2.1≦x≦-2.2y+2.41, in the protective film, among the plurality of layers of oxynitride, the ruthenium oxynitride layer farther from the organic functional layer The value of x is larger than the value of x of the yttrium oxynitride layer formed at the position closest to the organic functional layer by 0.05 or more.

保護膜亦可為在各氮氧化矽層之間包含其他層的構成。 The protective film may have a configuration in which another layer is included between the respective ruthenium oxynitride layers.

例如,較佳的是有機機能層是若照射光則產生電荷的有機光電轉換層,有機光電轉換層於基材側設有下部電極,於基材的相反側設有透明的上部電極,於上部電極上配置有保護膜。 For example, it is preferable that the organic functional layer is an organic photoelectric conversion layer that generates charges when irradiated with light, the organic photoelectric conversion layer is provided with a lower electrode on the substrate side, and a transparent upper electrode is provided on the opposite side of the substrate, and the upper electrode is provided on the upper electrode. A protective film is disposed on the upper surface.

而且,例如有機機能層是包含有機物的彩色濾光片層,於彩色濾光片層上配置有保護膜。 Further, for example, the organic functional layer is a color filter layer containing an organic substance, and a protective film is disposed on the color filter layer.

另外,較佳的是x、y滿足0.5≦x≦1.0、且-2.2y+2.1≦x≦-2.2y+2.32。 Further, it is preferable that x, y satisfy 0.5 ≦ x ≦ 1.0, and -2.2 y + 2.1 ≦ x ≦ - 2.2 y + 2.32.

本發明的第2態樣是提供一種帶有機機能層基板的製造方法,其特徵在於:包含保護膜形成步驟,在基材上所配置的有機機能層上,使用電漿CVD法形成多個SiOxNy所表示的氮氧化矽層作為保護膜;在保護膜形成步驟中,僅僅改變電漿CVD法中的成膜條件中的高頻功率,以x的值比形成在最接近有機機能層的位置的氮氧化矽層之x的值大0.05以上、更佳的是0.1以上、進一步更佳的是0.15以上的組成而形成離有機機能層較遠側的氮氧化矽層。 According to a second aspect of the present invention, there is provided a method for producing a substrate having an organic functional layer, comprising: a protective film forming step of forming a plurality of SiOxNy by a plasma CVD method on an organic functional layer disposed on a substrate; The yttrium oxynitride layer is represented as a protective film; in the protective film forming step, only the high frequency power in the film forming conditions in the plasma CVD method is changed, and the value ratio of x is formed at a position closest to the organic functional layer. The value of x of the ruthenium oxynitride layer is 0.05 or more, more preferably 0.1 or more, still more preferably 0.15 or more, to form a ruthenium oxynitride layer farther from the organic functional layer.

藉由本發明可提供包含保護膜的帶有機機能層基板,所述保護膜可抑制由於反射光所造成的損失,膜應力處於規定的範圍,且高溫高濕度環境下的穩定性優異。特別是在有機機能層中使用有機光電轉換層的情況下,可減低由於反射光所造成的感度損耗。 According to the present invention, it is possible to provide an organic functional layer substrate including a protective film which can suppress loss due to reflected light, has a film stress within a predetermined range, and is excellent in stability in a high temperature and high humidity environment. In particular, in the case where an organic photoelectric conversion layer is used in the organic functional layer, sensitivity loss due to reflected light can be reduced.

而且,藉由本發明可製造包含保護膜的帶有機機能層基板,所述保護膜可抑制由於反射光所造成的損失,膜應力處於規定的範圍,且高溫高濕度環境下的穩定性優異。 Further, according to the present invention, it is possible to manufacture an organic functional layer substrate including a protective film which can suppress loss due to reflected light, has a film stress in a predetermined range, and is excellent in stability in a high-temperature and high-humidity environment.

10‧‧‧帶有機層基板 10‧‧‧With organic layer substrate

10a、10b‧‧‧帶有機機能層基板 10a, 10b‧‧‧ with organic functional layer substrate

12‧‧‧基材 12‧‧‧Substrate

14‧‧‧有機機能層 14‧‧‧Organic functional layer

16、80‧‧‧保護膜 16, 80‧‧‧ protective film

16a、41a、81a‧‧‧第1氮氧化矽層 16a, 41a, 81a‧‧‧1st bismuth oxynitride layer

16b、41b、81b‧‧‧第2氮氧化矽層 16b, 41b, 81b‧‧‧2nd bismuth oxynitride layer

17‧‧‧第3氮氧化矽層 17‧‧‧3rd bismuth oxynitride layer

19‧‧‧其他構成層 19‧‧‧Other constituent layers

20‧‧‧攝影元件 20‧‧‧Photographic components

20a‧‧‧攝影元件 20a‧‧‧Photographic components

30、72、100‧‧‧基板 30, 72, 100‧‧‧ substrates

32‧‧‧絕緣層 32‧‧‧Insulation

32a‧‧‧絕緣層32的表面 32a‧‧‧ Surface of insulating layer 32

34‧‧‧畫素電極(下部電極) 34‧‧‧ pixel electrodes (lower electrode)

35‧‧‧電路基板(CMOS基板) 35‧‧‧Circuit board (CMOS board)

36‧‧‧有機層 36‧‧‧Organic layer

38‧‧‧對向電極(上部電極) 38‧‧‧ opposite electrode (upper electrode)

40‧‧‧保護膜(密封層) 40‧‧‧Protective film (sealing layer)

40a‧‧‧保護膜40的表面 40a‧‧‧ Surface of protective film 40

42‧‧‧彩色濾光片 42‧‧‧Color filters

44‧‧‧隔板 44‧‧‧Baffle

46‧‧‧遮光層 46‧‧‧Lighting layer

47‧‧‧遮光層46的表面 47‧‧‧ Surface of the light-shielding layer 46

48‧‧‧保護層 48‧‧‧Protective layer

49a‧‧‧第1氮氧化矽層 49a‧‧‧1st bismuth oxynitride layer

49b‧‧‧第2氮氧化矽層 49b‧‧‧2nd bismuth oxynitride layer

50‧‧‧電子阻隔層 50‧‧‧Electronic barrier

50a‧‧‧電子阻隔層50的表面 50a‧‧‧ Surface of the electronic barrier layer 50

52‧‧‧光電轉換層 52‧‧‧Photoelectric conversion layer

60‧‧‧讀出電路 60‧‧‧Readout circuit

62‧‧‧對向電極電壓供給部 62‧‧‧ Counter electrode voltage supply unit

64‧‧‧第1連接部 64‧‧‧1st connection

66‧‧‧第2連接部 66‧‧‧2nd connection

68‧‧‧配線層 68‧‧‧Wiring layer

70‧‧‧有機太陽電池 70‧‧‧Organic solar cells

70a‧‧‧有機EL元件 70a‧‧‧Organic EL components

74‧‧‧下部電極 74‧‧‧lower electrode

76‧‧‧有機光電轉換層 76‧‧‧Organic photoelectric conversion layer

78‧‧‧透明電極(上部電極) 78‧‧‧Transparent electrode (upper electrode)

82‧‧‧TFT 82‧‧‧TFT

84‧‧‧陰極 84‧‧‧ cathode

86‧‧‧有機EL層 86‧‧‧Organic EL layer

88‧‧‧電源 88‧‧‧Power supply

102‧‧‧薄膜 102‧‧‧film

200‧‧‧測定裝置 200‧‧‧Measurement device

202‧‧‧雷射照射部 202‧‧‧Laser Department

204‧‧‧分離器 204‧‧‧Separator

206‧‧‧鏡 206‧‧‧Mirror

208‧‧‧第1檢測部 208‧‧‧1st detection department

210‧‧‧第2檢測部 210‧‧‧2nd detection department

h‧‧‧基板100的厚度 h‧‧‧Thickness of substrate 100

L‧‧‧入射光 L‧‧‧ incident light

Px‧‧‧單位畫素 Px‧‧‧unit pixels

R‧‧‧曲率半徑 R‧‧‧ radius of curvature

t‧‧‧薄膜102的厚度 t‧‧‧Thickness of film 102

σc‧‧‧壓縮應力 σ c ‧‧‧compressive stress

σt‧‧‧拉伸應力 σ t ‧‧‧ tensile stress

圖1(a)是表示本發明的實施形態的帶有機機能層基板的示意圖,圖1(b)是表示本發明的實施形態的帶有機機能層基板的其他例的示意圖,圖1(c)是表示本發明的實施形態的帶有機機能層基板的其他例的示意圖,圖1(d)是表示於圖1(a)的帶有機機能層基板中形成保護膜之前的狀態的示意圖。 Fig. 1 (a) is a schematic view showing an organic functional layer substrate according to an embodiment of the present invention, and Fig. 1 (b) is a schematic view showing another example of the organic functional layer substrate according to the embodiment of the present invention, and Fig. 1 (c) It is a schematic view showing another example of the organic functional layer substrate according to the embodiment of the present invention, and FIG. 1(d) is a schematic view showing a state before the protective film is formed in the organic functional layer substrate of FIG. 1(a).

圖2(a)是表示本發明的實施形態的攝影元件的示意性剖面圖,圖2(b)是表示本發明的實施形態的攝影元件的其他例的示意性剖面圖。 Fig. 2 (a) is a schematic cross-sectional view showing an image pickup element according to an embodiment of the present invention, and Fig. 2 (b) is a schematic cross-sectional view showing another example of the image pickup element according to the embodiment of the present invention.

圖3(a)及圖3(b)是按照步驟順序表示本發明的實施形態的攝影元件的製造方法的示意性剖面圖。 3(a) and 3(b) are schematic cross-sectional views showing a method of manufacturing an imaging element according to an embodiment of the present invention in order of steps.

圖4(a)及圖4(b)是按照步驟順序表示本發明的實施形態 的攝影元件的製造方法的示意性剖面圖,表示圖3(b)的後製程。 4(a) and 4(b) are diagrams showing an embodiment of the present invention in order of steps A schematic cross-sectional view of a method of manufacturing a photographic element, showing the post process of Fig. 3(b).

圖5(a)是表示本發明的實施形態的有機太陽電池的示意性剖面圖,圖5(b)是表示本發明的實施形態的有機EL元件的示意性剖面圖。 Fig. 5 (a) is a schematic cross-sectional view showing an organic solar cell according to an embodiment of the present invention, and Fig. 5 (b) is a schematic cross-sectional view showing an organic EL device according to an embodiment of the present invention.

圖6(a)及圖6(b)分別是用以說明作用在基板上所形成的薄膜上的應力的示意性剖面圖。 6(a) and 6(b) are schematic cross-sectional views for explaining stress on a film formed on a substrate, respectively.

圖7是表示測定形成有薄膜的基板的翹曲量的測定裝置的示意圖。 FIG. 7 is a schematic view showing a measuring device for measuring the amount of warpage of a substrate on which a thin film is formed.

以下,基於隨附圖式中所示之適宜實施形態,對本發明的帶有機機能層基板及其製造方法加以詳細說明。 Hereinafter, the organic functional layer-attached substrate of the present invention and a method for producing the same will be described in detail based on a preferred embodiment shown in the accompanying drawings.

圖1(a)是表示本發明的實施形態的帶有機機能層基板的示意圖,圖1(b)是表示本發明的實施形態的帶有機機能層基板的其他例的示意圖,圖1(c)是表示本發明的實施形態的帶有機機能層基板的其他例的示意圖,圖1(d)是表示於圖1(a)的帶有機機能層基板中形成保護膜之前的狀態的示意圖。 Fig. 1 (a) is a schematic view showing an organic functional layer substrate according to an embodiment of the present invention, and Fig. 1 (b) is a schematic view showing another example of the organic functional layer substrate according to the embodiment of the present invention, and Fig. 1 (c) It is a schematic view showing another example of the organic functional layer substrate according to the embodiment of the present invention, and FIG. 1(d) is a schematic view showing a state before the protective film is formed in the organic functional layer substrate of FIG. 1(a).

如圖1(a)所示,帶有機機能層基板10包含基材12、有機機能層14、保護膜16。 As shown in FIG. 1(a), the organic-functional layer substrate 10 includes a substrate 12, an organic functional layer 14, and a protective film 16.

基材12是對有機機能層14與保護膜16進行支撐者。基材12可支撐有機機能層14與保護膜16,且對於製作有機機能層14及保護膜16時所施加的熱等具有規定的強度。例如由平板而構成。基材12例如可使用玻璃基材、帶絕緣層金屬基材、樹脂基材及金 屬基材等。另外,關於基材12,可根據有機機能層14的種類等而適宜使用導電性或絕緣性的基材。 The substrate 12 supports the organic functional layer 14 and the protective film 16. The substrate 12 can support the organic functional layer 14 and the protective film 16, and has a predetermined strength for heat or the like applied when the organic functional layer 14 and the protective film 16 are formed. For example, it consists of a flat plate. As the substrate 12, for example, a glass substrate, a metal substrate with an insulating layer, a resin substrate, and gold can be used. Is a substrate or the like. In addition, as the base material 12, a conductive or insulating base material can be suitably used depending on the type of the organic functional layer 14 or the like.

有機機能層14包含有機物,發揮規定的機能,耐熱性為245℃以下。有機機能層14例如是攝影元件中所使用的有機光電轉換層、有機太陽電池中所使用的包含有機物的光電轉換層、有機EL元件中所使用的有機EL層、及彩色濾光片等。 The organic functional layer 14 contains an organic substance and exhibits a predetermined function, and has heat resistance of 245 ° C or lower. The organic functional layer 14 is, for example, an organic photoelectric conversion layer used in a photographic element, a photoelectric conversion layer containing an organic substance used in an organic solar cell, an organic EL layer used in an organic EL element, and a color filter.

有機機能層14的使用形態存在有:如彩色濾光片這樣的以單體而使用的形態,如攝影元件中所使用的有機光電轉換層、有機太陽電池中所使用的包含有機物的光電轉換層及有機EL層這樣的設有電極而使用的形態等。 The use form of the organic functional layer 14 includes a form of a single color filter such as a color filter, such as an organic photoelectric conversion layer used in a photographic element, and a photoelectric conversion layer containing an organic substance used in an organic solar cell. A form in which an electrode is provided, such as an organic EL layer, or the like.

所謂耐熱性是可維持有機機能層14的機能的狀態的溫度。於本發明中為245℃以下,因此若溫度超過245℃則損及有機機能層14的機能。例如,若為彩色濾光片則產生透射度、色澤變化等不良現象,原來的分光特性變化。若為有機光電轉換層,則產生暗電流上升等性能降低。若為有機EL層則發光強度降低。 The heat resistance is a temperature at which the function of the organic functional layer 14 can be maintained. In the present invention, it is 245 ° C or lower. Therefore, if the temperature exceeds 245 ° C, the function of the organic functional layer 14 is impaired. For example, in the case of a color filter, defects such as transmittance and color change occur, and the original spectral characteristics change. In the case of the organic photoelectric conversion layer, performance such as an increase in dark current is lowered. If it is an organic EL layer, the luminous intensity will fall.

保護膜16是用以保護有機機能層14者。保護膜16具有在高溫高濕度環境下經過長時間保護有機機能層14的機能,且作為障壁膜而發揮機能。 The protective film 16 is for protecting the organic functional layer 14. The protective film 16 has a function of protecting the organic functional layer 14 for a long period of time in a high-temperature and high-humidity environment, and functions as a barrier film.

保護膜16是積層有多個SiOxNy所表示的氮氧化矽層的多層構造體。在圖1(a)中所示的例中,保護膜16是第1氮氧化矽層16a與第2氮氧化矽層16b。然而層數並無特別限定。而且,在圖1(a)的保護膜16中,直接設於有機機能層14上,但若可保護 有機機能層14,則保護膜16的配置並不限定於此。例如亦可為如下之構成:於有機機能層14上設有電極、透明電極、其他構成部或構造部等,於該電極、其他構成部或構造部上設有保護膜16。 The protective film 16 is a multilayer structure in which a plurality of ruthenium oxynitride layers represented by SiOxNy are laminated. In the example shown in FIG. 1(a), the protective film 16 is the first yttria layer 16a and the second yttrium oxynitride layer 16b. However, the number of layers is not particularly limited. Moreover, in the protective film 16 of FIG. 1(a), it is directly provided on the organic functional layer 14, but if it can be protected In the organic functional layer 14, the arrangement of the protective film 16 is not limited thereto. For example, the organic functional layer 14 may be provided with an electrode, a transparent electrode, another constituent portion, a structural portion, or the like, and the protective film 16 may be provided on the electrode, the other constituent portion or the structural portion.

在構成保護膜16的氮氧化矽層中,SiOxNy的x、y滿足0.5≦x≦1.0、且-2.2y+2.1≦x≦-2.2y+2.41(0.5≦y≦0.86)。較佳的是滿足0.5≦x≦1.0、且-2.2y+2.1≦x≦-2.2y+2.32。 In the yttrium oxynitride layer constituting the protective film 16, x and y of SiOxNy satisfy 0.5 ≦ x ≦ 1.0, and -2.2 y + 2.1 ≦ x ≦ - 2.2 y + 2.41 (0.5 ≦ y ≦ 0.86). It is preferable to satisfy 0.5 ≦ x ≦ 1.0 and -2.2 y + 2.1 ≦ x ≦ - 2.2 y + 2.32.

在保護膜16中,多個氮氧化矽層均組成不同,多個氮氧化矽層中,離有機機能層14較遠側的氮氧化矽層的x的值比形成在最接近有機機能層的位置的氮氧化矽層之x的值大0.05以上。具體而言,在圖1(a)的情況下,第1氮氧化矽層16a形成在有機機能層14的正上方,第2氮氧化矽層16b相當於離有機機能層14較遠側的氮氧化矽層。在圖1(a)的情況下,若將第2氮氧化矽層16b與第1氮氧化矽層16a加以比較,則在將第2氮氧化矽層16b的SiOxNy的x的值設為x2,將第1氮氧化矽層16a的SiOxNy的x的值設為x1時,x1+0.05≦x2In the protective film 16, a plurality of ruthenium oxynitride layers are different in composition, and among the plurality of ruthenium oxynitride layers, the value of x of the ruthenium oxynitride layer farther from the organic functional layer 14 is formed closer to the organic functional layer. The value of x in the niobium oxynitride layer at the position is 0.05 or more. Specifically, in the case of FIG. 1( a ), the first bismuth oxynitride layer 16 a is formed directly above the organic functional layer 14 , and the second bismuth oxynitride layer 16 b corresponds to nitrogen farther from the organic functional layer 14 . Oxide layer. In the case of FIG. 1(a), when the second bismuth oxynitride layer 16b is compared with the first bismuth oxynitride layer 16a, the value of x of the SiOxNy of the second bismuth oxynitride layer 16b is set to x 2 . When the value of x of SiOxNy of the first bismuth oxynitride layer 16a is x 1 , x 1 + 0.05 ≦ x 2 .

在2層以上的情況下,由於相對於有機機能層14的相對性位置關係,氮氧化矽層的SiOxNy的x的值不同,自有機機能層14側起x的值順次地至少大0.05。在保護膜16中,隨著氮氧化矽層成為最上層,x的值取在所述組成的範圍內大的值。保護膜16的最上層的y的值較佳的是0.60~0.68,更佳的是y的值為0.62~0.66。 In the case of two or more layers, the value of x of SiOxNy of the yttria layer is different due to the relative positional relationship with respect to the organic functional layer 14, and the value of x from the side of the organic functional layer 14 is sequentially at least 0.05. In the protective film 16, as the yttrium oxynitride layer becomes the uppermost layer, the value of x takes a large value within the range of the composition. The value of y of the uppermost layer of the protective film 16 is preferably 0.60 to 0.68, and more preferably the value of y is 0.62 to 0.66.

另外,雖然是x的值至少大0.05以上的組成,但更佳的是0.1 以上,進一步更佳的是0.15以上。 In addition, although the value of x is at least 0.05 or more, it is more preferably 0.1. More preferably, the above is 0.15 or more.

例如,如圖1(b)所示的帶有機機能層基板10a那樣,保護膜16為第1氮氧化矽層16a~第3氮氧化矽層17的3層構造的情況下,第1氮氧化矽層16a~第3氮氧化矽層17中的最上層的第3氮氧化矽層17取在所述組成範圍內最大的x的值。然而,並不限定於此,在3層以上的情況下,若第1氮氧化矽層16a與第2氮氧化矽層16b的構成滿足所述組成,且可由第1氮氧化矽層16a與第2氮氧化矽層16b發揮保護膜16的機能,則最上層的第3氮氧化矽層17亦可不滿足所述氮氧化矽層的組成。 For example, when the protective film 16 is a three-layer structure of the first yttria layer 16a to the third yttrium oxynitride layer 17 as in the organic functional layer substrate 10a shown in FIG. 1(b), the first nitrogen oxide is used. The uppermost third arsenic oxynitride layer 17 of the ruthenium layer 16a to the third ruthenium oxynitride layer 17 takes the value of x which is the largest in the composition range. However, the present invention is not limited thereto, and in the case of three or more layers, the first oxynitride layer 16a and the second oxynitride layer 16b have a composition satisfying the above composition, and the first oxynitride layer 16a and the first layer can be used. When the ruthenium oxynitride layer 16b functions as the protective film 16, the third ruthenium oxynitride layer 17 of the uppermost layer may not satisfy the composition of the ruthenium oxynitride layer.

相反,若第2氮氧化矽層16b與最上層的第3氮氧化矽層17的構成滿足所述組成,可由第2氮氧化矽層16b與最上層的第3氮氧化矽層17發揮保護膜16的機能,則第1氮氧化矽層16a亦可不滿足所述氮氧化矽層的組成。 On the other hand, when the second oxynitride layer 16b and the uppermost argon oxynitride layer 17 satisfy the above composition, the second oxynitride layer 16b and the uppermost third arsenide layer 17 can function as a protective film. In the function of 16, the first yttria layer 16a may not satisfy the composition of the yttrium oxynitride layer.

而且,保護膜16無需是帶有機機能層基板的最上層,亦可於保護膜16上進一步形成膜。在這種情況下,膜的構成及組成並無特別限定。 Further, the protective film 16 does not need to be the uppermost layer with the organic functional layer substrate, and a film may be further formed on the protective film 16. In this case, the constitution and composition of the film are not particularly limited.

而且,如圖1(c)所示的帶有機機能層基板10b那樣,於第1氮氧化矽層16a與第2氮氧化矽層16b之間亦可存在其他構成層。該其他構成層例如為透明電極、樹脂層或接著劑層。亦可應用於圖1(b)所示的3層構成的帶有機機能層基板10a中。 Further, as in the organic functional layer-attached substrate 10b shown in FIG. 1(c), another constituent layer may be present between the first hafnium oxynitride layer 16a and the second hafnium oxynitride layer 16b. The other constituent layer is, for example, a transparent electrode, a resin layer or an adhesive layer. It can also be applied to the organic functional layer substrate 10a having a three-layer structure as shown in Fig. 1(b).

於本發明中,較佳的是無論保護膜16的構成是何種構成,總厚為50nm以上。 In the present invention, it is preferable that the total thickness of the protective film 16 is 50 nm or more regardless of the constitution of the protective film 16.

由於使關於SiOxNy為所述組成的範圍,因此保護膜16成為透明且膜質穩定的氮氧化矽層。而且折射率處於1.65~1.75的範圍。 Since SiOxNy is in the range of the above composition, the protective film 16 becomes a transparent and film-stable yttrium oxynitride layer. Moreover, the refractive index is in the range of 1.65 to 1.75.

此處,所謂透明是指於波長為400nm~800nm(可見光區域)的波長範圍中,光吸收率不足0.2%。亦即,所謂透明是指於波長為400nm~800nm的波長範圍中的光吸收率的最大值不足0.2%。若上述可見光區域中的光吸收率為0.2%,則可無視光吸收。 Here, the term "transparent" means that the light absorptivity is less than 0.2% in a wavelength range of 400 nm to 800 nm (visible light region). That is, the term "transparent" means that the maximum value of the light absorptance in the wavelength range of 400 nm to 800 nm is less than 0.2%. If the light absorptivity in the visible light region is 0.2%, light absorption can be ignored.

作為保護膜16,若自所述組成的範圍偏離,則並不透明,且折射率並不進入1.65~1.75的範圍。另外,所謂並不透明是指所述可見光區域中的光吸收率為0.2%以上。 As the protective film 16, if it deviates from the range of the composition, it is not transparent, and the refractive index does not enter the range of 1.65 to 1.75. In addition, opaque means that the light absorptivity in the visible light region is 0.2% or more.

於保護膜16中,各氮氧化矽層的折射率差的絕對值為0.1以內,更佳的是0.05以內。具體而言,在圖1(a)中所示的例子中,第1氮氧化矽層16a與第2氮氧化矽層16b的折射率差的絕對值為0.1以內。而且,在保護膜16的層數為3以上的情況下,所有的氮氧化矽層的折射率差的絕對值為0.1以內。亦即,於保護膜16中,氮氧化矽層的折射率的最大值與最小值的差為0.1以內。由此可抑制於保護膜16的第1氮氧化矽層16a與第2氮氧化矽層16b的界面對入射光L進行反射。另外,較佳的是折射率差的絕對值為0.03以內。 In the protective film 16, the absolute value of the refractive index difference of each of the yttrium oxynitride layers is within 0.1, more preferably within 0.05. Specifically, in the example shown in FIG. 1( a ), the absolute value of the refractive index difference between the first argon oxynitride layer 16 a and the second bismuth oxynitride layer 16 b is within 0.1. Further, when the number of layers of the protective film 16 is 3 or more, the absolute value of the refractive index difference of all the ruthenium oxynitride layers is 0.1 or less. That is, in the protective film 16, the difference between the maximum value and the minimum value of the refractive index of the yttrium oxynitride layer is within 0.1. Thereby, the incident light L can be suppressed from being reflected at the interface between the first yttria layer 16a and the second yttrium oxynitride layer 16b of the protective film 16. Further, it is preferable that the absolute value of the refractive index difference is within 0.03.

此處,具有耐久性的氮氧化矽層(SiON膜)的壓縮的膜應力大。使保護膜的膜厚變薄而避免膜剝落的情况改變光程長度,入射光L的反射率增大,有機機能層14若為光電轉換層,則 由於其感度降低而無法採用。而且,在單層膜中無法兼顧應力與耐久性。因此,藉由將膜構成設為多層構成,且將各層的組成及折射率差設為所述本發明的範圍,可以並不改變整體膜厚地將高應力層僅設於表面,由此可兼顧保護膜的膜剝落的抑制、與反射率增大的抑制此兩者。 Here, the compressive film stress of the durable yttria layer (SiON film) is large. When the film thickness of the protective film is thinned to prevent the film from peeling off, the optical path length is changed, the reflectance of the incident light L is increased, and if the organic functional layer 14 is a photoelectric conversion layer, It cannot be used due to its reduced sensitivity. Moreover, stress and durability cannot be achieved in a single layer film. Therefore, by setting the film structure to a multilayer structure and setting the composition and refractive index difference of each layer to the range of the present invention, it is possible to provide the high stress layer only on the surface without changing the overall film thickness. Both the suppression of the film peeling of the protective film and the suppression of the increase in the reflectance are both.

保護膜16在將其密度設為ρ(g/m3)時2.20(g/m3)≦ρ≦2.60(g/m3)。較佳的是2.30(g/m3)≦ρ≦2.60(g/m3)。 The protective film 16 has a density of ρ (g/m 3 ) of 2.20 (g/m 3 ) ≦ρ ≦ 2.60 (g/m 3 ). Preferably, it is 2.30 (g/m 3 ) ≦ρ ≦ 2.60 (g/m 3 ).

若保護膜16的密度ρ(g/m3)為所述範圍,則具有規定的耐熱性,可保護有機機能層14。若保護膜16的密度不足2.20(g/m3),則未能獲得規定的耐熱性。另一方面,若保護膜16的密度超過2.60(g/m3),則保護膜16的膜應力變高,對下層的有機機能層14造成不良影響。 When the density ρ (g/m 3 ) of the protective film 16 is in the above range, it has predetermined heat resistance and can protect the organic functional layer 14 . If the density of the protective film 16 is less than 2.20 (g/m 3 ), the predetermined heat resistance cannot be obtained. On the other hand, when the density of the protective film 16 exceeds 2.60 (g/m 3 ), the film stress of the protective film 16 becomes high, which adversely affects the organic functional layer 14 of the lower layer.

作為SiOxNy所表示的保護膜16,自有機機能層14的耐熱性的觀點考慮,於製程腔室(process chamber)等反應室內,於溫度為245℃以下藉由電漿CVD法而形成。藉由使用電漿CVD法,可以比蒸鍍法等更快的成膜速度進行成膜。 The protective film 16 represented by SiOxNy is formed by a plasma CVD method at a temperature of 245 ° C or lower from the viewpoint of heat resistance of the organic functional layer 14 in a reaction chamber such as a process chamber. By using the plasma CVD method, film formation can be performed at a faster deposition rate than vapor deposition.

於圖1(a)的帶有機機能層基板10中,例如如圖1(d)所示那樣於基材12上形成有機機能層14之後,於有機機能層14上如上所述於基板溫度(成膜溫度)為245℃以下,使用電漿CVD法而形成所述組成的範圍的氮氧化矽層而作為保護膜16。關於氮氧化矽層的組成及其密度,預先改變反應氣體的流量等而形成氮氧化矽層,藉由預先決定成膜條件(成膜溫度(基板溫度)、成膜 時的反應室內的壓力(以下稱為成膜時的壓力)、成膜時的高頻功率、氣體種類(SiH4、NH3、N2O)及氣體的混合比等),可形成處於所述組成的範圍的氮氧化矽層。 In the organic functional layer substrate 10 of FIG. 1(a), for example, as shown in FIG. 1(d), after the organic functional layer 14 is formed on the substrate 12, the substrate temperature is as described above on the organic functional layer 14 ( The film formation temperature is 245 ° C or lower, and a ruthenium oxynitride layer in the range of the composition is formed by a plasma CVD method to serve as the protective film 16 . The composition and density of the yttrium oxynitride layer are changed to form a ruthenium oxynitride layer by changing the flow rate of the reaction gas or the like in advance, and the film formation conditions (film formation temperature (substrate temperature) and pressure in the reaction chamber at the time of film formation are determined in advance ( Hereinafter, it is referred to as "pressure at the time of film formation", high-frequency power at the time of film formation, gas type (SiH 4 , NH 3 , N 2 O), and gas mixing ratio, etc., and nitrogen oxidation in the range of the composition can be formed.矽 layer.

於保護膜16中,形成多個氮氧化矽層,組成分別不同。在這種情況下,僅僅改變電漿CVD法中的成膜條件中的高頻功率,可使氮氧化矽層的SiOxNy的x的值比形成在最接近有機機能層14的位置的氮氧化矽層之x的值大0.05以上。在多個氮氧化矽層時,亦可於並不停止供給原料氣體的情况下僅僅改變作為成膜條件的高頻功率,連續地形成多個氮氧化矽層。而且,亦可停止供給原料氣體,僅僅改變高頻功率而連續地形成多個氮氧化矽層。可如上所述地藉由僅僅改變高頻功率,而改變氮氧化矽層的組成,形成多個氮氧化矽層,因此多個氮氧化矽層的形成所需的製程腔室等反應室為1個即可。因此,變得無需基材的送入送出、成膜環境所需的時間等,可抑制保護膜的成膜時間增加,進而可降低生產成本。 In the protective film 16, a plurality of ruthenium oxynitride layers are formed, and the compositions are different. In this case, by merely changing the high-frequency power in the film formation conditions in the plasma CVD method, the value of x of SiOxNy of the yttria layer can be made to be higher than that of the yttrium oxynitride formed at the position closest to the organic functional layer 14. The value of x of the layer is greater than 0.05. In the case of a plurality of ruthenium oxynitride layers, it is also possible to continuously form a plurality of yttrium oxynitride layers by merely changing the high frequency power as a film formation condition without stopping the supply of the material gas. Further, it is also possible to stop the supply of the material gas and continuously change the high frequency power to continuously form a plurality of ruthenium oxynitride layers. The composition of the yttrium oxynitride layer can be changed by changing only the high frequency power as described above to form a plurality of ruthenium oxynitride layers. Therefore, a reaction chamber such as a process chamber required for formation of a plurality of ruthenium oxynitride layers is 1 Just one. Therefore, it is possible to suppress an increase in the film formation time of the protective film, and further reduce the production cost, without requiring a time required for the substrate to be fed and fed, and the film formation environment.

而且,於保護膜16中,可改變氮氧化矽層的組成而形成,由此可調整保護膜16的膜應力。另外,關於膜應力及其測定方法,於後文加以詳細說明。保護膜16的膜應力是多層構造體中的應力的值。若保護膜為如圖1(c)所示那樣在氮氧化矽層之間具有其他層的構成,則膜應力是多層構造體的狀態下的應力的值。 Further, in the protective film 16, the composition of the yttrium oxynitride layer can be changed, whereby the film stress of the protective film 16 can be adjusted. Further, the film stress and its measuring method will be described in detail later. The film stress of the protective film 16 is a value of stress in the multilayer structure. When the protective film has a configuration in which another layer is provided between the yttria layers as shown in FIG. 1(c), the film stress is a value of the stress in the state of the multilayer structure.

以下,對本發明的帶有機機能層基板的具體例加以說明。本發明的帶有機機能層基板具體而言例如可稱為有機互補金 屬氧化物半導體(Complementary Metal Oxide Semiconductor,CMOS)。 Hereinafter, a specific example of the organic functional layer substrate of the present invention will be described. The organic functional layer substrate of the present invention may be specifically referred to as an organic complementary gold, for example. It is an oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS).

圖2(a)是表示本發明的實施形態的攝影元件的示意性剖面圖,圖2(b)是表示本發明的實施形態的攝影元件的其他例的示意性剖面圖。 Fig. 2 (a) is a schematic cross-sectional view showing an image pickup element according to an embodiment of the present invention, and Fig. 2 (b) is a schematic cross-sectional view showing another example of the image pickup element according to the embodiment of the present invention.

圖2(a)中所示的攝影元件20是被稱為有機CMOS者,將可見光影像轉換為電訊號。攝影元件20包含:基板30、絕緣層32、畫素電極(下部電極)34、有機層36、對向電極(上部電極)38、保護膜(密封層)40、彩色濾光片42、隔板44、遮光層46、保護層48。於基板30上形成有讀出電路60、對向電極電壓供給部62。 The photographic element 20 shown in Fig. 2(a) is referred to as an organic CMOS, and converts a visible light image into an electrical signal. The photographic element 20 includes a substrate 30, an insulating layer 32, a pixel electrode (lower electrode) 34, an organic layer 36, a counter electrode (upper electrode) 38, a protective film (sealing layer) 40, a color filter 42, and a spacer. 44. A light shielding layer 46 and a protective layer 48. A readout circuit 60 and a counter electrode voltage supply unit 62 are formed on the substrate 30.

基板30相當於本發明的基材12(參照圖1(a))。基板30可使用例如玻璃基板或Si等半導體基板。於基板30上形成有包含公知的絕緣材料的絕緣層32。於絕緣層32的表面形成有多個畫素電極34。畫素電極34例如於絕緣層32的表面32a上配置為矩陣狀。 The substrate 30 corresponds to the substrate 12 of the present invention (see FIG. 1(a)). As the substrate 30, for example, a glass substrate or a semiconductor substrate such as Si can be used. An insulating layer 32 containing a known insulating material is formed on the substrate 30. A plurality of pixel electrodes 34 are formed on the surface of the insulating layer 32. The pixel electrodes 34 are arranged in a matrix shape, for example, on the surface 32a of the insulating layer 32.

於絕緣層32上形成有連接畫素電極34與讀出電路60的第1連接部64。進一步形成有連接對向電極38與對向電極電壓供給部62的第2連接部66。第2連接部66形成於並不與畫素電極34及有機層36連接的位置。第1連接部64及第2連接部66由導電性材料而形成。 A first connecting portion 64 that connects the pixel electrode 34 and the readout circuit 60 is formed on the insulating layer 32. Further, a second connection portion 66 that connects the counter electrode 38 and the counter electrode voltage supply portion 62 is formed. The second connecting portion 66 is formed at a position that is not connected to the pixel electrode 34 and the organic layer 36. The first connecting portion 64 and the second connecting portion 66 are formed of a conductive material.

於絕緣層32的內部形成有用以將讀出電路60及對向電 極電壓供給部62與例如攝影元件20的外部連接的包含導電性材料的配線層68。 Formed inside the insulating layer 32 to use the readout circuit 60 and the opposite phase The pole voltage supply unit 62 is connected to a wiring layer 68 of a conductive material, for example, to the outside of the imaging element 20.

如上所述,將在基板30上的絕緣層32的表面32a形成有與各第1連接部64連接的畫素電極34的基板稱為電路基板35。另外,該電路基板35亦稱為CMOS基板。 As described above, the substrate on which the pixel electrodes 34 connected to the respective first connection portions 64 are formed on the surface 32a of the insulating layer 32 on the substrate 30 is referred to as a circuit substrate 35. In addition, the circuit board 35 is also referred to as a CMOS board.

覆蓋多個畫素電極34且避開第2連接部66而形成有機層36,該有機層36是跨越多個畫素電極34而形成。有機層36是接受至少包含可見光的入射光L,產生與其光量對應的電荷者,包含光電轉換層52與電子阻隔層50。 The organic layer 36 is formed by covering the plurality of pixel electrodes 34 and avoiding the second connection portion 66. The organic layer 36 is formed to span the plurality of pixel electrodes 34. The organic layer 36 is a person who receives incident light L containing at least visible light and generates a charge corresponding to the amount of light, and includes a photoelectric conversion layer 52 and an electron blocking layer 50.

至於有機層36,電子阻隔層50形成於畫素電極34側,於電子阻隔層50的表面50a形成有光電轉換層52。另外,有機層36亦可不設置電子阻隔層50而為光電轉換層52單層。 As for the organic layer 36, the electron blocking layer 50 is formed on the side of the pixel electrode 34, and the photoelectric conversion layer 52 is formed on the surface 50a of the electron blocking layer 50. Further, the organic layer 36 may be a single layer of the photoelectric conversion layer 52 without providing the electron blocking layer 50.

電子阻隔層50是用以抑制自畫素電極34向光電轉換層52注入電子之層。 The electron blocking layer 50 is a layer for suppressing injection of electrons from the pixel electrode 34 into the photoelectric conversion layer 52.

光電轉換層52是產生與入射光L、例如可見光等所接受的光的光量對應的電荷的層。光電轉換層52是主要包含有機材料的有機光電轉換層,跨越多個畫素電極34而形成於電子阻隔層50上。 The photoelectric conversion layer 52 is a layer that generates electric charges corresponding to the amount of light received by the incident light L, for example, visible light or the like. The photoelectric conversion layer 52 is an organic photoelectric conversion layer mainly containing an organic material, and is formed on the electron blocking layer 50 across the plurality of pixel electrodes 34.

光電轉換層52及電子阻隔層50若於畫素電極34上為固定的膜厚,則除此以外膜厚亦可不固定。在這種情況下,所謂膜厚是指膜厚固定的區域的厚度。另外,關於光電轉換層52,於後文加以詳細說明。 When the photoelectric conversion layer 52 and the electron blocking layer 50 have a fixed film thickness on the pixel electrode 34, the film thickness may not be fixed. In this case, the film thickness means the thickness of the region where the film thickness is fixed. Further, the photoelectric conversion layer 52 will be described in detail later.

對向電極38是與畫素電極34對向的電極,覆蓋光電轉 換層52。於畫素電極34與對向電極38之間設有光電轉換層52。 The counter electrode 38 is an electrode opposed to the pixel electrode 34, covering the photoelectric conversion Change layer 52. A photoelectric conversion layer 52 is provided between the pixel electrode 34 and the counter electrode 38.

為了使光入射至光電轉換層52,對向電極38包含相對於入射光L(至少包含可見光的光)而透明的導電性材料。對向電極38與配置於光電轉換層52的更外側的第2連接部66電性連接,經由第2連接部66而與對向電極電壓供給部62連接。 In order to cause light to enter the photoelectric conversion layer 52, the counter electrode 38 includes a conductive material that is transparent with respect to the incident light L (light containing at least visible light). The counter electrode 38 is electrically connected to the second connection portion 66 disposed on the outer side of the photoelectric conversion layer 52, and is connected to the counter electrode voltage supply unit 62 via the second connection portion 66.

對向電極38的材料例如可列舉金屬、金屬氧化物、金屬氮化物、金屬硼化物、有機導電性化合物、該些的混合物等。具體例可列舉氧化錫、氧化鋅、氧化銦、氧化銦錫(Indium Tin Oxide,ITO)、氧化銦鋅(Indium Zinc Oxide,IZO)、氧化銦鎢(IWO)、氧化鈦等導電性金屬氧化物,TiN等金屬氮化物,金(Au)、鉑(Pt)、銀(Ag)、鉻(Cr)、鎳(Ni)、鋁(Al)等金屬,進一步可列舉該些金屬與導電性金屬氧化物的混合物或積層物,聚苯胺、聚噻吩、聚吡咯等有機導電性化合物,該些與ITO的積層物等。作為透明導電膜的材料而特佳的是ITO、IZO、氧化錫、摻銻氧化錫(Antimony Tin Oxide,ATO)、摻氟氧化錫(Fluorine-doped Tin Oxide,FTO)、氧化鋅、摻銻氧化鋅(Antimony Zinc Oxide,AZO)、摻鎵氧化鋅(Gallium-doped Zinc Oxide,GZO)的任意材料。該對向電極38的材料中特佳的材料是ITO。 Examples of the material of the counter electrode 38 include a metal, a metal oxide, a metal nitride, a metal boride, an organic conductive compound, a mixture of these, and the like. Specific examples thereof include conductive metal oxides such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (Indium Zinc Oxide, IZO), indium oxide tungsten (IWO), and titanium oxide. a metal nitride such as TiN, a metal such as gold (Au), platinum (Pt), silver (Ag), chromium (Cr), nickel (Ni), or aluminum (Al), and further oxidizing the metal and the conductive metal. A mixture or laminate of the substance, an organic conductive compound such as polyaniline, polythiophene or polypyrrole, or a laminate with ITO. Particularly preferred as the material of the transparent conductive film are ITO, IZO, tin oxide, antimony tin oxide (ATO), Fluorine-doped Tin Oxide (FTO), zinc oxide, ytterbium-doped oxidation. Any material of zinc (Antimony Zinc Oxide, AZO) or gallium-doped Zinc Oxide (GZO). A particularly preferred material for the counter electrode 38 is ITO.

對向電極38的透光率於可見光波長下較佳的是60%以上,更佳的是80%以上,更佳的是90%以上,更佳的是95%以上。 The light transmittance of the counter electrode 38 is preferably 60% or more, more preferably 80% or more, still more preferably 90% or more, and still more preferably 95% or more at the wavelength of visible light.

對向電極38較佳的是厚度為5nm~30nm。藉由使對向電極38為5nm以上的膜厚,可充分包覆下層而獲得均一的性能。另一 方面,若對向電極38的膜厚超過30nm,則存在對向電極38與畫素電極34局部短路,從而造成暗電流上升的現象。藉由使對向電極38為30nm以下的膜厚,可抑制產生局部的短路。 The counter electrode 38 preferably has a thickness of 5 nm to 30 nm. By making the counter electrode 38 a film thickness of 5 nm or more, the lower layer can be sufficiently coated to obtain uniform performance. another On the other hand, when the film thickness of the counter electrode 38 exceeds 30 nm, the counter electrode 38 and the pixel electrode 34 are partially short-circuited, which causes a dark current to rise. By making the counter electrode 38 a film thickness of 30 nm or less, local short-circuiting can be suppressed.

對向電極電壓供給部62是經由第2連接部66而對對向電極38施加規定的電壓者。在需對對向電極38施加的電壓高於攝影元件20的電源電壓的情況下,藉由電荷泵等升壓電路使電源電壓升壓而供給所述規定電壓。 The counter electrode voltage supply unit 62 applies a predetermined voltage to the counter electrode 38 via the second connection unit 66. When the voltage to be applied to the counter electrode 38 is higher than the power supply voltage of the imaging element 20, the voltage is boosted by a booster circuit such as a charge pump to supply the predetermined voltage.

畫素電極34是用以捕獲光電轉換層52中所產生的電荷的電荷捕獲用電極。畫素電極34經由第1連接部64而與讀出電路60連接。該讀出電路60與多個畫素電極34的各個對應而設於基板30上,讀出與由對應的畫素電極34而捕獲的電荷相應的訊號。 The pixel electrode 34 is a charge trapping electrode for trapping charges generated in the photoelectric conversion layer 52. The pixel electrode 34 is connected to the readout circuit 60 via the first connection portion 64. The readout circuit 60 is provided on the substrate 30 corresponding to each of the plurality of pixel electrodes 34, and reads a signal corresponding to the electric charge captured by the corresponding pixel electrode 34.

畫素電極34的材料例如可列舉金屬、具有導電性的金屬氧化物、金屬氮化物及金屬硼化物、以及有機導電性化合物、該些的混合物等。具體例可列舉氧化錫、氧化鋅、氧化銦、氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化銦鎢(IWO)、氧化鈦等導電性金屬氧化物,氮化鈦(TiN)、氮化鉬、氮化鉭、氮化鎢等導電性金屬氮化物,金(Au)、鉑(Pt)、銀(Ag)、鉻(Cr)、鎳(Ni)、鋁(Al)等金屬,進一步可列舉該些金屬與導電性金屬氧化物的混合物或積層物,聚苯胺、聚噻吩、聚吡咯等有機導電性化合物,該些與ITO的積層物等。透明導電膜的材料特佳的是ITO、IZO、氧化錫、摻銻氧化錫(ATO)、摻氟氧化錫(FTO)、氧化鋅、摻銻 氧化鋅(AZO)、摻鎵氧化鋅(GZO)的任意材料。該畫素電極34的材料中最佳的材料是氮化鈦、氮化鉬、氮化鉭、氮化鎢的任意材料。 Examples of the material of the pixel electrode 34 include a metal, a conductive metal oxide, a metal nitride, a metal boride, an organic conductive compound, and a mixture thereof. Specific examples thereof include conductive metal oxides such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), indium tungsten oxide (IWO), and titanium oxide, and titanium nitride (TiN). Conductive metal nitrides such as molybdenum nitride, tantalum nitride, and tungsten nitride; metals such as gold (Au), platinum (Pt), silver (Ag), chromium (Cr), nickel (Ni), and aluminum (Al). Further, a mixture or laminate of the metal and the conductive metal oxide, an organic conductive compound such as polyaniline, polythiophene or polypyrrole, and a laminate with ITO may be mentioned. The material of the transparent conductive film is particularly excellent in ITO, IZO, tin oxide, antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), zinc oxide, and antimony-doped Any material of zinc oxide (AZO) or gallium-doped zinc oxide (GZO). The most preferable material of the material of the pixel electrode 34 is any material of titanium nitride, molybdenum nitride, tantalum nitride, or tungsten nitride.

讀出電路60例如包含電荷耦合元件(Charge Coupled Device,CCD)、金屬氧化物半導體(Metal Oxide Semiconductor,MOS)電路、或薄膜電晶體(Thin-Film Transistor,TFT)電路等,藉由絕緣層32內所設的遮光層(未圖示)而進行遮光。另外,自雜訊及高速性的觀點考慮,較佳的是讀出電路60採用CMOS電路。 The readout circuit 60 includes, for example, a charge coupled device (CCD), a metal oxide semiconductor (MOS) circuit, or a thin film transistor (TFT) circuit, etc., by an insulating layer 32. The light shielding layer (not shown) provided inside shields light. Further, from the viewpoint of noise and high speed, it is preferable that the readout circuit 60 employs a CMOS circuit.

另外,雖未圖示,但例如於基板30形成有由p區域所圍的高濃度的n區域,於該n區域上連接有第1連接部64。於p區域設有讀出電路60。n區域作為累積光電轉換層52的電荷的電荷累積部而發揮機能。於n區域所累積的訊號電荷由讀出電路60而轉換為與其電荷量相應的訊號,例如經由配線層68而輸出至攝影元件20的外部等。 Further, although not shown, for example, a high-concentration n region surrounded by the p region is formed on the substrate 30, and the first connection portion 64 is connected to the n region. A readout circuit 60 is provided in the p region. The n region functions as a charge accumulation portion that accumulates charges of the photoelectric conversion layer 52. The signal charge accumulated in the n region is converted into a signal corresponding to the amount of charge by the read circuit 60, and is output to the outside of the image pickup device 20 via the wiring layer 68, for example.

於攝影元件20中,有機層36相當於本發明的有機機能層,耐熱性為245℃以下。保護膜40覆蓋對向電極38。保護膜40並不直接設於有機層36上。然而,保護膜40可將包含光電轉換層52的有機層36自水分子、氧等劣化因素保護起來。 In the image forming element 20, the organic layer 36 corresponds to the organic functional layer of the present invention, and has heat resistance of 245 ° C or lower. The protective film 40 covers the counter electrode 38. The protective film 40 is not directly provided on the organic layer 36. However, the protective film 40 can protect the organic layer 36 including the photoelectric conversion layer 52 from deterioration factors such as water molecules and oxygen.

藉由保護膜40,於攝影元件20的各製造步驟中,阻止有機溶劑等溶液、電漿等中所含的使有機光電轉換材料劣化的因素浸入而保護有機層36。而且,於攝影元件20的製造後,阻止水分子、 氧等使有機光電轉換材料劣化的因素浸入,可經過長時間的保存、及長期的使用而防止有機層36劣化。另外,於形成保護膜40時,並不使已形成的有機層36劣化。而且,入射光L通過保護膜40而到達有機層36。因此,保護膜40相對於有機層36所檢測的波長的光、例如可見光而透明。 By the protective film 40, in the respective manufacturing steps of the image forming element 20, the organic layer 36 is protected by preventing the factor of deterioration of the organic photoelectric conversion material contained in a solution such as an organic solvent or a plasma or the like from being impregnated. Moreover, after the manufacture of the photographic element 20, the water molecules are prevented, The factor of deterioration of the organic photoelectric conversion material such as oxygen is immersed, and the organic layer 36 can be prevented from being deteriorated after long-term storage and long-term use. Further, when the protective film 40 is formed, the formed organic layer 36 is not deteriorated. Further, the incident light L passes through the protective film 40 to reach the organic layer 36. Therefore, the protective film 40 is transparent with respect to light of a wavelength detected by the organic layer 36, for example, visible light.

保護膜40是與所述保護膜16相同的多層構造體。保護膜40具有與所述保護膜16相同的組成及密度,形成2層SiOxNy所表示的氮氧化矽層。保護膜40是積層有第1氮氧化矽層41a與第2氮氧化矽層41b者。保護膜40是於溫度245℃以下,藉由電漿CVD法而形成。 The protective film 40 is the same multilayer structure as the protective film 16. The protective film 40 has the same composition and density as the protective film 16, and forms two layers of ruthenium oxynitride represented by SiOxNy. The protective film 40 is a layer in which the first hafnium oxynitride layer 41a and the second hafnium oxynitride layer 41b are laminated. The protective film 40 is formed by a plasma CVD method at a temperature of 245 ° C or lower.

而且,例如保護膜40的總膜厚為50nm~500nm。 Further, for example, the total thickness of the protective film 40 is 50 nm to 500 nm.

若保護膜40的總膜厚低於50nm,則存在障壁性降低,或彩色濾光片相對於顯影液的耐受性降低之虞。另一方面,若保護膜40的總膜厚超過500nm,則在將畫素尺寸切為1μm的情況下,變得難以抑制混色。 When the total film thickness of the protective film 40 is less than 50 nm, the barrier property is lowered, or the resistance of the color filter to the developer is lowered. On the other hand, when the total film thickness of the protective film 40 exceeds 500 nm, when the pixel size is cut to 1 μm, it becomes difficult to suppress color mixture.

另外,例如在畫素尺寸不足2μm、特別是1μm左右的攝影元件20中,若彩色濾光片42與光電轉換層52的距離、亦即保護膜40的總膜厚厚,則存在保護膜40內的入射光(可見光)的斜入射成分的影響變大而產生混色之虞。因此,較佳的是保護膜40的總膜厚薄。 Further, for example, in the imaging element 20 having a pixel size of less than 2 μm, particularly about 1 μm, if the distance between the color filter 42 and the photoelectric conversion layer 52, that is, the total thickness of the protective film 40 is thick, the protective film 40 is present. The influence of the oblique incident component of the incident light (visible light) inside becomes large, and the color mixture is caused. Therefore, it is preferable that the total film thickness of the protective film 40 is thin.

彩色濾光片42形成於保護膜40上的與各畫素電極34對向的位置。隔板44設於保護膜40上的彩色濾光片42彼此之間, 用以使彩色濾光片42的透光效率提高。遮光層46形成於保護膜40上的設有彩色濾光片42及隔板44的區域(有效畫素區域)以外的區域,防止光入射至形成於有效畫素區域以外的區域的光電轉換層52。彩色濾光片42、隔板44及遮光層46例如可藉由光微影(photolithography)法而形成。 The color filter 42 is formed on the protective film 40 at a position facing each of the pixel electrodes 34. The spacer 44 is disposed between the color filters 42 on the protective film 40, It is used to improve the light transmission efficiency of the color filter 42. The light shielding layer 46 is formed on a region other than the region (effective pixel region) where the color filter 42 and the spacer 44 are provided on the protective film 40, and prevents light from entering the photoelectric conversion layer formed in a region other than the effective pixel region. 52. The color filter 42, the spacer 44, and the light shielding layer 46 can be formed, for example, by a photolithography method.

另外,雖然設為設置彩色濾光片42的構成,但亦可不設置彩色濾光片42。在這種情況下,於彩色濾光片42以外並未設置隔板44及遮光層46,因此保護膜40成為最上層。於保護膜40中,亦可為與所述保護膜16同樣地在第1氮氧化矽層41a與第2氮氧化矽層41b之間包含其他構成層的構成。 Further, although the configuration of the color filter 42 is provided, the color filter 42 may not be provided. In this case, since the spacer 44 and the light shielding layer 46 are not provided outside the color filter 42, the protective film 40 is the uppermost layer. In the protective film 40, similarly to the protective film 16, a configuration in which another constituent layer is included between the first oxynitride layer 41a and the second oxynitride layer 41b may be employed.

保護(overcoat)層48用以將彩色濾光片42自後製程等保護起來,覆蓋彩色濾光片42、隔板44及遮光層46。 The overcoat layer 48 is used to protect the color filter 42 from a post process or the like, and covers the color filter 42, the spacer 44, and the light shielding layer 46.

於攝影元件20中,於上方設有有機層36、對向電極38及彩色濾光片42的畫素電極34的1個成為單位畫素Px。 In the imaging element 20, one of the pixel electrodes 34 on which the organic layer 36, the counter electrode 38, and the color filter 42 are provided is a unit pixel Px.

保護層48可適宜使用如丙烯酸系樹脂、聚矽氧烷系樹脂、聚苯乙烯系樹脂及氟樹脂等這樣的高分子材料,或如氧化矽及氮化矽這樣的無機材料。若使用聚苯乙烯系等感光性樹脂,則可藉由光微影法而對保護層48進行圖案化,因此變得容易作為對焊接用墊上的周邊遮光層、密封層、絕緣層等進行開口時的光阻劑而使用,變得容易將保護層48自身加工為微透鏡而較佳。另一方面,亦可將保護層48用作抗反射層,亦較佳的是對作為彩色濾光片42的隔板而使用的各種低折射率材料進行成膜。而且,為了 追求對後製程的作為保護層的機能、作為抗反射層的機能,亦可將保護層48設為組合有所述材料的2層以上的構成。 As the protective layer 48, a polymer material such as an acrylic resin, a polyoxyalkylene resin, a polystyrene resin, or a fluororesin, or an inorganic material such as cerium oxide or cerium nitride can be suitably used. When a photosensitive resin such as polystyrene is used, the protective layer 48 can be patterned by photolithography, and thus it is easy to open the peripheral light shielding layer, the sealing layer, the insulating layer, and the like on the pad for soldering. When it is used as a photoresist, it is preferable to process the protective layer 48 itself into a microlens. On the other hand, the protective layer 48 may be used as an antireflection layer, and it is also preferable to form a film of various low refractive index materials used as a spacer of the color filter 42. And, in order In the pursuit of the function as a protective layer for the post-process, and the function as an anti-reflection layer, the protective layer 48 may have a configuration in which two or more layers of the material are combined.

彩色濾光片42包含有機物,相當於本發明的有機機能層。因此,亦可將保護層48與上述保護膜40同樣地製成具有與所述保護膜16相同的組成及密度,形成有2層SiOxNy所表示的氮氧化矽層者。在這種情況下,如圖2(b)中所示的攝影元件20a那樣,保護層48亦可為積層有第1氮氧化矽層48a與第2氮氧化矽層48b者。另外,圖2(b)中所示的攝影元件20a與圖2(a)中所示的攝影元件20相比而言,保護層48的構成不同,除此以外為同一構成物,因此省略其詳細說明。 The color filter 42 contains an organic substance and corresponds to the organic functional layer of the present invention. Therefore, the protective layer 48 may be formed to have the same composition and density as the protective film 16 in the same manner as the protective film 40 described above, and two layers of oxynitride layers represented by SiOxNy may be formed. In this case, as in the imaging element 20a shown in FIG. 2(b), the protective layer 48 may be a layer in which the first hafnium oxynitride layer 48a and the second hafnium oxynitride layer 48b are laminated. Further, the imaging element 20a shown in FIG. 2(b) differs from the imaging element 20 shown in FIG. 2(a) in that the protective layer 48 has a different configuration and is the same constituent, and therefore its description is omitted. Detailed description.

作為攝影元件20,即使在溫度為85℃、相對濕度為85%這樣的高溫高濕度的嚴酷環境下,亦可藉由保護膜40而經過長時間地保護有機層36。因此,即使在所述高溫高濕度的嚴酷環境下,亦可經過長時間地並不使性能降低地使用攝影元件20。因此,攝影元件20適於監視攝像機(monitoring camera)等使用環境嚴格的用途。 As the imaging element 20, the organic layer 36 can be protected for a long period of time by the protective film 40 even in a severe environment of high temperature and high humidity such as a temperature of 85 ° C and a relative humidity of 85%. Therefore, even in the severe environment of the high temperature and high humidity, the photographic element 20 can be used over a long period of time without deteriorating the performance. Therefore, the photographic element 20 is suitable for a use environment in which the use environment such as a monitoring camera is strict.

而且,保護膜40的折射率差小至0.1以內、較佳的是0.05以內,可抑制產生反射光,於攝影元件20中的感度損耗亦少。由此可提高攝影元件20的效率。 Further, the refractive index difference of the protective film 40 is as small as 0.1 or less, preferably 0.05 or less, and generation of reflected light can be suppressed, and the loss of sensitivity in the imaging element 20 is also small. Thereby, the efficiency of the photographic element 20 can be improved.

另外,於本實施形態中,畫素電極34是形成於絕緣層32的表面的構成,但並不限定於此,亦可為埋設於絕緣層32的表面部的構成。而且,設為設置1個第2連接部66及對向電極電壓 供給部62的構成,亦可為多個。例如,藉由自對向電極38的兩個端部向對向電極38供給電壓,可抑制對向電極38的電壓降低。第2連接部66及對向電極電壓供給部62的組件的數目可考慮元件的晶片面積而適宜增減。 In the present embodiment, the pixel electrode 34 is formed on the surface of the insulating layer 32. However, the present invention is not limited thereto, and may be embedded in the surface portion of the insulating layer 32. Further, it is assumed that one second connection portion 66 and the counter electrode voltage are provided. The configuration of the supply unit 62 may be plural. For example, by supplying a voltage from the opposite ends of the counter electrode 38 to the counter electrode 38, the voltage drop of the counter electrode 38 can be suppressed. The number of components of the second connection portion 66 and the counter electrode voltage supply portion 62 can be appropriately increased or decreased in consideration of the wafer area of the element.

其次,關於構成有機層36的光電轉換層52及電子阻隔層50而進行更詳細的說明。 Next, the photoelectric conversion layer 52 and the electron blocking layer 50 constituting the organic layer 36 will be described in more detail.

光電轉換層52包含p型有機半導體材料與n型有機半導體材料。藉由使p型有機半導體材料與n型有機半導體材料接合而形成施體受體界面,可使激子解離效率增加。因此,使p型有機半導體材料與n型有機半導體材料接合而構成的光電轉換層表現出高的光電轉換效率。特別是混合有p型有機半導體材料與n型有機半導體材料的光電轉換層的接合界面增大而使光電轉換效率提高,因此較佳。 The photoelectric conversion layer 52 includes a p-type organic semiconductor material and an n-type organic semiconductor material. The exciton dissociation efficiency can be increased by forming a donor acceptor interface by bonding a p-type organic semiconductor material to an n-type organic semiconductor material. Therefore, the photoelectric conversion layer formed by bonding the p-type organic semiconductor material and the n-type organic semiconductor material exhibits high photoelectric conversion efficiency. In particular, it is preferable that the junction interface of the photoelectric conversion layer in which the p-type organic semiconductor material and the n-type organic semiconductor material are mixed is increased to improve the photoelectric conversion efficiency.

p型有機半導體材料(化合物)是施體性有機半導體材料(化合物),主要以電洞傳輸性有機化合物為代表,是指具有容易提供電子的性質的有機化合物。更詳細而言,是指在使2種有機材料接觸而使用時,游離電位(ionization potential)小的有機化合物。因此,施體性有機化合物若為具有提供電子性的有機化合物則可使用任意有機化合物。例如可使用具有如下化合物作為配位基的金屬錯合物等:三芳基胺化合物、聯苯胺化合物、吡唑啉化合物、苯乙烯基胺化合物、腙化合物、三苯基甲烷化合物、咔唑化合物、聚矽烷化合物、噻吩化合物、酞菁化合物、花青化 合物、部花青化合物、氧喏化合物、多元胺化合物、吲哚化合物、吡咯化合物、吡唑化合物、聚伸芳基化合物、縮合芳香族碳環化合物(萘衍生物、蒽衍生物、菲衍生物、稠四苯衍生物、芘衍生物、苝衍生物、熒蒽衍生物)、含氮雜環化合物。另外,並不限定於此,若為具有比如上所述地用作n型(受體性)化合物的有機化合物的游離電位更小的有機化合物,則亦可作為施體性有機半導體而使用。 The p-type organic semiconductor material (compound) is a donor organic semiconductor material (compound), and is mainly represented by a hole transporting organic compound, and is an organic compound having a property of easily providing electrons. More specifically, it means an organic compound having a small ionization potential when two kinds of organic materials are used in contact with each other. Therefore, any organic compound can be used if the donor organic compound is an organic compound having electron donability. For example, a metal complex or the like having a compound as a ligand can be used: a triarylamine compound, a benzidine compound, a pyrazoline compound, a styrylamine compound, an anthracene compound, a triphenylmethane compound, a carbazole compound, Polydecane compound, thiophene compound, phthalocyanine compound, cyanine Compound, merocyanine compound, oxonium compound, polyamine compound, hydrazine compound, pyrrole compound, pyrazole compound, polyaryl compound, condensed aromatic carbocyclic compound (naphthalene derivative, anthracene derivative, phenanthrene derivative) , a thick tetraphenyl derivative, an anthracene derivative, an anthracene derivative, a fluoranthene derivative), a nitrogen-containing heterocyclic compound. In addition, the organic compound having a smaller free potential of the organic compound used as the n-type (acceptor) compound as described above can also be used as a donor organic semiconductor.

n型有機半導體材料(化合物)是受體性有機半導體材料,主要以電子傳輸性有機化合物為代表,是指具有容易接受電子的性質的有機化合物。更詳細而言,所謂n型有機半導體是指在使2種有機化合物接觸而使用時,電子親和力大的有機化合物。因此,受體性有機化合物若為具有電子接受性的有機化合物,則可使用任意的有機化合物。例如可列舉具有如下化合物作為配位基的金屬錯合物等:縮合芳香族碳環化合物(萘衍生物、蒽衍生物、菲衍生物、稠四苯衍生物、芘衍生物、苝衍生物、熒蒽衍生物)、含有氮原子、氧原子、硫原子的5員~7員的雜環化合物(例如吡啶、吡嗪、嘧啶、噠嗪、三嗪、喹啉、喹噁啉、喹唑啉、酞嗪、噌啉、異喹啉、喋啶、吖啶、啡嗪、啡啉、四唑、吡唑、咪唑、噻唑、噁唑、吲唑、苯并咪唑、苯并三唑、苯并噁唑、苯并噻唑、咔唑、嘌呤、三唑并噠嗪、三唑并嘧啶、四氮雜茚、噁二唑、咪唑并吡啶、吡咯啶、吡咯并吡啶、噻二唑并吡啶、二苯并氮呯、三苯并氮呯等)、聚伸芳基化合物、茀化合物、環戊二烯化 合物、矽烷基化合物、含氮雜環化合物。另外,並不限定於此,若為具有比如上所述地用p型(施體性)化合物的有機化合物的電子親和力更大的有機化合物,則亦可作為受體性有機半導體而使用。 The n-type organic semiconductor material (compound) is an acceptor organic semiconductor material, and is mainly represented by an electron-transporting organic compound, and is an organic compound having a property of easily accepting electrons. More specifically, the n-type organic semiconductor refers to an organic compound having a large electron affinity when the two organic compounds are brought into contact with each other. Therefore, if the acceptor organic compound is an organic compound having electron acceptability, any organic compound can be used. For example, a metal complex or the like having a compound as a ligand: a condensed aromatic carbocyclic compound (naphthalene derivative, an anthracene derivative, a phenanthrene derivative, a thick tetraphenyl derivative, an anthracene derivative, an anthracene derivative, or the like) a fluoranthene derivative), a 5- to 7-membered heterocyclic compound containing a nitrogen atom, an oxygen atom, or a sulfur atom (for example, pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxaline, quinazoline) , pyridazine, porphyrin, isoquinoline, acridine, acridine, phenazine, phenanthroline, tetrazole, pyrazole, imidazole, thiazole, oxazole, oxazole, benzimidazole, benzotriazole, benzo Oxazole, benzothiazole, oxazole, hydrazine, triazolopyrazine, triazolopyrimidine, tetraazaindene, oxadiazole, imidazopyridine, pyrrolidine, pyrrolopyridine, thiadiazole pyridine, Benzodiazepine, tribenzoazepine, etc., poly-arylene compound, hydrazine compound, cyclopentadiene a compound, a decyl group compound, a nitrogen-containing heterocyclic compound. Further, the present invention is not limited thereto, and an organic compound having a larger electron affinity than an organic compound having a p-type (donor) compound as described above may be used as an acceptor organic semiconductor.

p型有機半導體材料、或n型有機半導體材料亦可使用任意的有機色素,較佳的是可列舉花青色素、苯乙烯基(styryl)色素、半花青色素、部花青染料(包含零次甲基部花青(簡單部花青))、3核部花青染料、4核部花青染料、若丹菁色素、錯合花青色素、錯合部花青色素、阿羅波勒色素(alopolar dye)、氧喏色素、半氧喏色素、角鯊鐺鹽色素、克酮鎓色素、氮雜次甲基色素、香豆素色素、亞芳基色素、蒽醌色素、三苯基甲烷色素、偶氮色素、偶氮次甲基色素、螺環化合物、茂金屬色素、茀酮色素、俘精酸酐色素、苝色素、紫環酮色素、啡嗪色素、啡噻嗪色素、醌色素、二苯基甲烷色素、多烯色素、吖啶色素、吖啶酮色素、二苯基胺色素、喹吖啶酮色素、喹酞酮染料、啡噁嗪色素、酞並苝色素、二酮基吡咯并吡咯色素、二噁烷色素、卟啉色素、葉綠素色素、酞菁色素、金屬錯合物色素、縮合芳香族碳環系色素(萘衍生物、蒽衍生物、菲衍生物、稠四苯衍生物、芘衍生物、苝衍生物、熒蒽衍生物)。 Any organic pigment may be used as the p-type organic semiconductor material or the n-type organic semiconductor material, and preferably, a cyanine dye, a styryl dye, a hemicyan pigment, a merocyanine dye (including zero) may be used. Hypomethyl part cyanine (simple part cyanine), 3 nucleus cyanine dye, 4 nucleus cyanine dye, rhodamine pigment, miscellaneous cyanine pigment, staggered cyanine pigment, Aropole Alopolar dye, oxonium pigment, hemi-oxygen pigment, squalane salt, ketone oxime pigment, azamethine pigment, coumarin pigment, arylene pigment, anthraquinone pigment, triphenyl Methane pigment, azo dye, azo methine dye, spiro compound, metallocene pigment, anthrone dye, fulgide dye, anthraquinone, purple ketone, morphazine, phenothiazine, anthraquinone , diphenylmethane pigment, polyene pigment, acridine pigment, acridone pigment, diphenylamine pigment, quinacridone dye, quinophthalone dye, morphine dye, anthraquinone pigment, diketone Pyrrolopyrrole pigment, dioxane pigment, porphyrin pigment, chlorophyll pigment, phthalocyanine , Metal complex dye, a condensed aromatic carbocyclic ring dye (naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene fused derivatives, pyrene derivatives, perylene derivative, fluoranthene derivative).

作為n型有機半導體材料,特佳的是使用電子傳輸性優異的富勒烯或富勒烯衍生物。所謂富勒烯是表示富勒烯C60、富勒烯C70、富勒烯C76、富勒烯C78、富勒烯C80、富勒烯C82、富勒 烯C84、富勒烯C90、富勒烯C96、富勒烯C240、富勒烯C540、混合富勒烯、富勒烯奈米管,所謂富勒烯衍生物是表示於該些富勒烯上加成有取代基的化合物。 As the n-type organic semiconductor material, it is particularly preferable to use a fullerene or a fullerene derivative excellent in electron transport property. The fullerene means fullerene C 60 , fullerene C 70 , fullerene C 76 , fullerene C 78 , fullerene C 80 , fullerene C 82 , fullerene C 84 , Fuller Alkene C 90 , fullerene C 96 , fullerene C 240 , fullerene C 540 , mixed fullerenes, fullerene nanotubes, so-called fullerene derivatives are indicated on the fullerene A compound having a substituent.

富勒烯衍生物的取代基較佳的是烷基、芳基、或雜環基。烷基更佳的是碳數為1~12的烷基,芳基、及雜環基較佳的是苯環、萘環、蒽環、菲環、茀環、聯伸三苯環、稠四苯環、聯苯環、吡咯環、呋喃環、噻吩環、咪唑環、噁唑環、噻唑環、吡啶環、吡嗪環、嘧啶環、噠嗪環、吲哚嗪環、吲哚環、苯并呋喃環、苯并噻吩環、異苯并呋喃環、苯并咪唑環、咪唑并吡啶環、喹嗪環、喹啉環、酞嗪環、萘啶環、喹噁啉環、喹噁唑啉環、異喹啉環、咔唑環、啡啶環、吖啶環、啡啉環、噻蒽環、苯并吡喃環、二苯并哌喃環、啡噁噻環、啡噻嗪環、或吩嗪環,更佳的是苯環、萘環、蒽環、菲環、吡啶環、咪唑環、噁唑環、或噻唑環,特佳的是苯環、萘環、或吡啶環。該些亦可進一步具有取代基,該取代基亦可儘可能地鍵結而形成環。另外,亦可具有多個取代基,該些取代基可相同亦可不同。而且,多個取代基亦可儘可能地鍵結而形成環。 The substituent of the fullerene derivative is preferably an alkyl group, an aryl group or a heterocyclic group. More preferably, the alkyl group is an alkyl group having 1 to 12 carbon atoms, and the aryl group and the heterocyclic group are preferably a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, an anthracene ring, a terphenyl group, and a thick tetraphenyl group. Ring, biphenyl ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, pyridazine ring, anthracene ring, benzo Furan ring, benzothiophene ring, isobenzofuran ring, benzimidazole ring, imidazopyridine ring, quinazine ring, quinoline ring, pyridazine ring, naphthyridine ring, quinoxaline ring, quinoxaline ring , isoquinoline ring, indazole ring, phenazin ring, acridine ring, phenanthroline ring, thioxan ring, benzopyran ring, dibenzopyran ring, morphine ring, phenothiazine ring, or The phenazine ring is more preferably a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyridine ring, an imidazole ring, an oxazole ring or a thiazole ring, and particularly preferably a benzene ring, a naphthalene ring or a pyridine ring. These may further have a substituent which may also bond as much as possible to form a ring. Further, it may have a plurality of substituents which may be the same or different. Moreover, a plurality of substituents may also be bonded as much as possible to form a ring.

光電轉換層藉由包含富勒烯或富勒烯衍生物,而可經由富勒烯分子或富勒烯衍生物分子,將由於光電轉換而產生的電子快速地傳輸至畫素電極34或對向電極38。若成為富勒烯分子或富勒烯衍生物分子相連的狀態而形成電子的路徑,則電子傳輸性提高而變得可實現光電轉換元件的高速響應性。因此,較佳的是於 光電轉換層中包含40%(體積比)以上的富勒烯或富勒烯衍生物。富勒烯或富勒烯衍生物若過多,則p型有機半導體變少,接合界面變小而造成激子解離效率降低。 The photoelectric conversion layer can rapidly transfer electrons generated by photoelectric conversion to the pixel electrode 34 or by means of a fullerene molecule or a fullerene derivative molecule by containing a fullerene or a fullerene derivative molecule. Electrode 38. When a path in which electrons are formed in a state in which molecules of a fullerene molecule or a fullerene derivative are connected to each other, electron transport properties are improved, and high-speed responsiveness of the photoelectric conversion element can be achieved. Therefore, it is preferred that The photoelectric conversion layer contains 40% by volume or more of fullerene or fullerene derivative. When the fullerene or fullerene derivative is too large, the p-type organic semiconductor decreases, and the bonding interface becomes small, resulting in a decrease in exciton dissociation efficiency.

作為於光電轉換層52中與富勒烯或富勒烯衍生物一同混合的p型有機半導體材料,若使用日本專利第4213832號公報等中所記載的三芳基胺化合物,則變得可表現出光電轉換元件的高SN比而特佳。若光電轉換層內的富勒烯或富勒烯衍生物的比率過大,則三芳基胺化合物變少而造成入射光的吸收量降低。藉此可減低光電轉換效率,因此較佳的是光電轉換層中所含的富勒烯或富勒烯衍生物為85%(體積比)以下的組成。 The p-type organic semiconductor material which is mixed with the fullerene or the fullerene derivative in the photoelectric conversion layer 52 can be expressed by using the triarylamine compound described in Japanese Patent No. 4213832 or the like. The high SN ratio of the photoelectric conversion element is particularly excellent. When the ratio of the fullerene or fullerene derivative in the photoelectric conversion layer is too large, the amount of the triarylamine compound decreases and the amount of absorption of incident light decreases. Thereby, the photoelectric conversion efficiency can be reduced. Therefore, it is preferable that the fullerene or fullerene derivative contained in the photoelectric conversion layer has a composition of 85% by volume or less.

於電子阻隔層50中可使用提供電子性有機材料。具體而言,低分子材料可使用N,N'-雙(3-甲基苯基)-(1,1'-聯苯)-4,4'-二胺(TPD)及4,4'-雙[N-(萘基)-N-苯基-胺基]聯苯(α-NPD)等芳香族二胺化合物,噁唑、噁二唑、三唑、咪唑、咪唑酮、芪衍生物、吡唑啉衍生物、四氫咪唑、多芳基烷烴、丁二烯、4,4',4"-三(N-(3-甲基苯基)N-苯基胺基)三苯基胺(m-MTDATA)、卟吩、四苯基卟啉銅、酞菁、銅酞菁、鈦酞菁氧化物等卟啉化合物,三唑衍生物、噁二唑衍生物、咪唑衍生物、多芳基烷烴衍生物、吡唑啉衍生物、吡唑啉酮衍生物、苯二胺衍生物、退火胺(anneal amine)衍生物、胺基取代查耳酮衍生物、噁唑衍生物、苯乙烯基蒽衍生物、茀酮衍生物、腙衍生物、矽氮烷衍生物、咔唑衍生物、二茀衍生物等,高分子材料可使用對苯乙炔(phenylenevinylene)、茀、 咔唑、吲哚、芘、吡咯、甲基吡啶、噻吩、乙炔及聯乙炔等之聚合物、以及其衍生物。即使不是提供電子性化合物,若為具有充分的電洞傳輸性的化合物,則亦可使用。 An electronic organic material can be used in the electron blocking layer 50. Specifically, N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD) and 4,4'- can be used as the low molecular material. An aromatic diamine compound such as bis[N-(naphthyl)-N-phenyl-amino]biphenyl (α-NPD), oxazole, oxadiazole, triazole, imidazole, imidazolidinone, anthracene derivative, Pyrazoline derivatives, tetrahydroimidazoles, polyarylalkanes, butadiene, 4,4',4"-tris(N-(3-methylphenyl)N-phenylamino)triphenylamine (m-MTDATA), porphyrin, tetraphenylporphyrin copper, phthalocyanine, copper phthalocyanine, titanium phthalocyanine oxide and other porphyrin compounds, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyaryl Alkane derivative, pyrazoline derivative, pyrazolone derivative, phenylenediamine derivative, annealing amine derivative, amine-substituted chalcone derivative, oxazole derivative, styryl group Anthracene derivatives, anthrone derivatives, anthracene derivatives, indole derivatives, carbazole derivatives, diterpene derivatives, etc., and phenylenevinylene, hydrazine, A polymer of carbazole, hydrazine, hydrazine, pyrrole, picoline, thiophene, acetylene, and diacetylene, and derivatives thereof. Even if it is not provided with an electronic compound, it can also be used as a compound which has sufficient hole-transportability.

電子阻隔層50亦可使用無機材料。一般情況下,無機材料較有機材料的介電常數更大,因此在電子阻隔層50中使用的情況下,可對光電轉換層施加多的電壓,可提高光電轉換效率。可成為電子阻隔層50的材料存在有氧化鈣、氧化鉻、氧化鉻銅、氧化錳、氧化鈷、氧化鎳、氧化銅、氧化鎵銅、氧化鍶銅、氧化鈮、氧化鉬、氧化銦銅、氧化銦銀、氧化銥等。 An inorganic material can also be used for the electron blocking layer 50. In general, the inorganic material has a larger dielectric constant than the organic material. Therefore, in the case of use in the electron blocking layer 50, a large voltage can be applied to the photoelectric conversion layer, and the photoelectric conversion efficiency can be improved. The material which can be the electron blocking layer 50 is calcium oxide, chromium oxide, copper chromium oxide, manganese oxide, cobalt oxide, nickel oxide, copper oxide, gallium oxide copper, copper beryllium oxide, cerium oxide, molybdenum oxide or indium copper oxide. Indium oxide silver, ruthenium oxide, and the like.

於包含多層的電子阻隔層中,與多層中的光電轉換層52鄰接的層較佳的是包含與光電轉換層52中所含的p型有機半導體相同材料的層。如上所述,藉由於電子阻隔層50中亦使用相同的p型有機半導體,可抑制於與光電轉換層52鄰接的層的界面形成中間能級,可進一步抑制暗電流。 In the electron blocking layer including the plurality of layers, the layer adjacent to the photoelectric conversion layer 52 in the plurality of layers is preferably a layer containing the same material as the p-type organic semiconductor contained in the photoelectric conversion layer 52. As described above, since the same p-type organic semiconductor is also used in the electron blocking layer 50, an intermediate level can be suppressed from being formed at the interface of the layer adjacent to the photoelectric conversion layer 52, and dark current can be further suppressed.

在電子阻隔層50為單層的情況下,可使該層為包含無機材料的層,在多層的情況下,可使1個或2個以上層為包含無機材料的層。 When the electron blocking layer 50 is a single layer, the layer may be a layer containing an inorganic material, and in the case of a plurality of layers, one or two or more layers may be a layer containing an inorganic material.

其次,關於攝影元件20的製造方法而加以說明。 Next, a method of manufacturing the imaging element 20 will be described.

圖3(a)及圖3(b)是按照步驟順序表示本發明的實施形態的攝影元件的製造方法的示意性剖面圖,圖4(a)及圖4(b)是按照步驟順序表示本發明的實施形態的攝影元件的製造方法的示意性剖面圖,表示圖3(b)的後製程。 3(a) and 3(b) are schematic cross-sectional views showing a method of manufacturing an imaging element according to an embodiment of the present invention in order of steps, and Figs. 4(a) and 4(b) are diagrams showing the steps in order. A schematic cross-sectional view of a method of manufacturing an imaging element according to an embodiment of the present invention shows a post-process of FIG. 3(b).

於本發明的實施形態的攝影元件20的製造方法中,首先如圖3(a)所示那樣,準備電路基板35(CMOS基板),其於形成有讀出電路60與對向電極電壓供給部62的基板30上,形成第1連接部64與第2連接部66、設有配線層68的絕緣層32,進一步於絕緣層32的表面32a上形成有與各第1連接部64連接的畫素電極34。在這種情況下,如上所述地第1連接部64與讀出電路60連接,第2連接部66與對向電極電壓供給部62連接。畫素電極34例如藉由TiN而形成。 In the method of manufacturing the imaging device 20 according to the embodiment of the present invention, first, as shown in FIG. 3(a), a circuit board 35 (CMOS substrate) is prepared, and a readout circuit 60 and a counter electrode voltage supply unit are formed. On the substrate 30 of 62, the first connection portion 64 and the second connection portion 66, the insulating layer 32 provided with the wiring layer 68, and the surface 32a of the insulating layer 32 are formed with the first connection portion 64. Prime electrode 34. In this case, as described above, the first connection portion 64 is connected to the readout circuit 60, and the second connection portion 66 is connected to the counter electrode voltage supply portion 62. The pixel electrode 34 is formed, for example, by TiN.

其次,於電子阻隔層50的成膜室(未圖示)中以規定的搬送路徑而進行搬送,如圖3(b)所示那樣,例如使用蒸鍍法而於規定的真空下對電子阻隔材料進行成膜,形成除第2連接部66上以外、且覆蓋所有畫素電極34的電子阻隔層50。電子阻隔材料使用例如咔唑衍生物,更佳的是使用二茀衍生物。 Next, the film is transported in a film forming chamber (not shown) of the electron blocking layer 50 by a predetermined transport path, and as shown in FIG. 3(b), for example, a vapor deposition method is used to block electrons under a predetermined vacuum. The material is formed into a film to form an electron blocking layer 50 covering all of the pixel electrodes 34 except for the second connecting portion 66. The electron blocking material uses, for example, a carbazole derivative, and more preferably a diterpene derivative.

其次,於光電轉換層52的成膜室(未圖示)中以規定的搬送路徑進行搬送,於電子阻隔層50的表面50a上,使用例如蒸鍍法而於規定的真空下形成光電轉換層52。光電轉換材料例如可使用p型有機半導體材料與富勒烯或富勒烯衍生物。藉此形成光電轉換層52,形成有機層36。 Then, it is transported in a film forming chamber (not shown) of the photoelectric conversion layer 52 by a predetermined transport path, and a photoelectric conversion layer is formed on the surface 50a of the electron blocking layer 50 by a vapor deposition method under a predetermined vacuum. 52. As the photoelectric conversion material, for example, a p-type organic semiconductor material and a fullerene or a fullerene derivative can be used. Thereby, the photoelectric conversion layer 52 is formed, and the organic layer 36 is formed.

其次,於對向電極38的成膜室(未圖示)中以規定的搬送路徑進行搬送之後,藉由覆蓋有機層36(光電轉換層52及電子阻隔層50)、且形成於第2連接部66上的圖案,使用例如濺鍍法而於規定的真空下形成對向電極38。 Then, after being transported in a film forming chamber (not shown) of the counter electrode 38 by a predetermined transport path, the organic layer 36 (the photoelectric conversion layer 52 and the electron blocking layer 50) is covered and formed in the second connection. The pattern on the portion 66 is formed by a sputtering method to form the counter electrode 38 under a predetermined vacuum.

其次,於保護膜40的成膜室(未圖示)中以規定的搬送路徑進行搬送,如圖4(a)所示那樣覆蓋對向電極38,且於絕緣層32的表面32a,藉由例如RF電漿CVD法,積層形成厚度為100nm的第1氮氧化矽層41a與厚度為100nm的第2氮氧化矽層41b而作為保護膜40。 Next, the film is formed in a film forming chamber (not shown) of the protective film 40 by a predetermined transport path, and as shown in FIG. 4(a), the counter electrode 38 is covered on the surface 32a of the insulating layer 32. For example, in the RF plasma CVD method, the first yttria layer 41a having a thickness of 100 nm and the second bismuth oxynitride layer 41b having a thickness of 100 nm are formed as a protective film 40.

在這種情況下,在基板溫度(成膜溫度)為245℃以下,使用電漿CVD法形成所述組成及密度的範圍的氮氧化矽層而作為保護膜40。關於氮氧化矽層的組成及其密度,可藉由預先改變反應氣體的流量等而形成氮氧化矽層,藉由預先決定成膜條件(成膜溫度、成膜時的壓力、成膜時的高頻功率、氣體種類(SiH4、NH3、N2O)及氣體的混合比等)而形成處於所述組成的範圍的氮氧化矽層。 In this case, the substrate layer (film formation temperature) is 245 ° C or lower, and the ruthenium oxynitride layer having the composition and the density is formed by the plasma CVD method as the protective film 40. With respect to the composition and density of the yttrium oxynitride layer, the yttrium oxynitride layer can be formed by changing the flow rate of the reaction gas or the like in advance, and the film formation conditions (film formation temperature, pressure at the time of film formation, and film formation) can be determined in advance. A high-frequency power, a gas type (SiH 4 , NH 3 , N 2 O), a mixing ratio of gases, and the like are formed to form a ruthenium oxynitride layer in the range of the composition.

於保護膜40的形成中,與所述保護膜16同樣地形成第1氮氧化矽層41a之後,僅僅改變成膜條件中的高頻功率而形成第2氮氧化矽層41b。藉此可使第2氮氧化矽層41b的x的值比第1氮氧化矽層41a的x的值大0.05以上,可改變組成。而且,可使折射率差為0.1以內,也可使其為0.05以內。 In the formation of the protective film 40, after the first yttrium oxynitride layer 41a is formed in the same manner as the protective film 16, the second oxynitride layer 41b is formed by merely changing the high frequency power in the film formation conditions. Thereby, the value of x of the second hafnium oxynitride layer 41b can be made larger than the value of x of the first hafnium oxynitride layer 41a by 0.05 or more, and the composition can be changed. Further, the refractive index difference may be made 0.1 or less, or may be made 0.05 or less.

而且,僅僅改變成膜條件中的高頻功率,可於並不停止成膜氣體的情况下連續地形成第1氮氧化矽層41a與第2氮氧化矽層41b。 Further, by merely changing the high-frequency power in the film formation conditions, the first hafnium oxynitride layer 41a and the second hafnium oxynitride layer 41b can be continuously formed without stopping the film formation gas.

其次,如圖4(b)所示那樣,使用例如光微影法而於保護膜40的表面40a形成彩色濾光片42、隔板44及遮光層46。彩 色濾光片42、隔板44及遮光層46使用於有機固體攝影元件中所使用的公知者。彩色濾光片42、隔板44及遮光層46的形成步驟可於規定的真空下進行,亦可於非真空下進行。 Next, as shown in FIG. 4(b), the color filter 42, the spacer 44, and the light shielding layer 46 are formed on the surface 40a of the protective film 40 by, for example, photolithography. color The color filter 42, the spacer 44, and the light shielding layer 46 are used by those skilled in the art of organic solid-state imaging devices. The steps of forming the color filter 42, the spacer 44, and the light shielding layer 46 may be performed under a predetermined vacuum or under a vacuum.

其次,使用例如塗佈法而形成覆蓋彩色濾光片42、隔板44及遮光層46的表面47的保護層48。藉此可形成如圖2所示的攝影元件20。保護層48可使用在有機固體攝影元件中所使用的公知者。保護層48的形成步驟可於規定的真空下進行,亦可於非真空下進行。 Next, a protective layer 48 covering the surface 47 of the color filter 42, the spacer 44, and the light shielding layer 46 is formed by, for example, a coating method. Thereby, the photographic element 20 as shown in FIG. 2 can be formed. The protective layer 48 can be used by a person skilled in the art of organic solid-state imaging elements. The step of forming the protective layer 48 can be carried out under a prescribed vacuum or under a vacuum.

在藉由多層氮氧化矽層(SiOxNy層)而構成保護層48的情況下,可藉由與保護膜40同樣的方法而形成。 When the protective layer 48 is formed by a plurality of layers of oxynitride oxynitride (SiOxNy layer), it can be formed by the same method as the protective film 40.

以下,對帶有機機能層基板的其他具體例加以說明。 Hereinafter, other specific examples of the organic functional layer substrate will be described.

本發明的帶有機機能層基板例如亦可設為被稱為有機太陽電池及有機EL元件者。 The organic functional layer substrate of the present invention may be, for example, an organic solar cell or an organic EL device.

圖5(a)是表示本發明的實施形態的有機太陽電池的示意性剖面圖,圖5(b)是表示本發明的實施形態的有機EL元件的示意性剖面圖。 Fig. 5 (a) is a schematic cross-sectional view showing an organic solar cell according to an embodiment of the present invention, and Fig. 5 (b) is a schematic cross-sectional view showing an organic EL device according to an embodiment of the present invention.

圖5(a)中所示的有機太陽電池70包含有機光電轉換層76。該有機光電轉換層76相當於本發明的有機機能層,耐熱性為245℃以下。有機太陽電池70是於基板72上順次積層下部電極74、有機光電轉換層76、透明電極(上部電極)78、保護膜80而成。入射光L自透明電極78側入射。 The organic solar cell 70 shown in FIG. 5(a) includes an organic photoelectric conversion layer 76. The organic photoelectric conversion layer 76 corresponds to the organic functional layer of the present invention, and has heat resistance of 245 ° C or lower. The organic solar cell 70 is formed by sequentially laminating a lower electrode 74, an organic photoelectric conversion layer 76, a transparent electrode (upper electrode) 78, and a protective film 80 on a substrate 72. The incident light L is incident from the side of the transparent electrode 78.

保護膜80是與所述保護膜16相同的2層構造,且具有 與保護膜16相同的組成及密度。該保護膜80可藉由與保護膜16同樣的製造方法而形成。因此,省略其詳細說明。基板72相當於本發明的基材12(參照圖1(a))。 The protective film 80 is the same two-layer structure as the protective film 16, and has The same composition and density as the protective film 16. This protective film 80 can be formed by the same manufacturing method as the protective film 16. Therefore, the detailed description thereof will be omitted. The substrate 72 corresponds to the substrate 12 of the present invention (see FIG. 1(a)).

保護膜80包含第1氮氧化矽層81a與第2氮氧化矽層81b。保護膜80可與保護膜16相同地設為圖1(b)、圖1(c)中所示的構成。 The protective film 80 includes a first bismuth oxynitride layer 81a and a second bismuth oxynitride layer 81b. The protective film 80 can be configured as shown in FIGS. 1(b) and 1(c) in the same manner as the protective film 16.

下部電極74、有機光電轉換層76及透明電極78包含於公知的有機太陽電池中所一般使用者。因此,省略其詳細說明。 The lower electrode 74, the organic photoelectric conversion layer 76, and the transparent electrode 78 are included in a general user of a known organic solar cell. Therefore, the detailed description thereof will be omitted.

藉由入射光L的照射而於有機光電轉換層76中所產生的電流可藉由下部電極74與透明電極78而取出至外部。 The current generated in the organic photoelectric conversion layer 76 by the irradiation of the incident light L can be taken out to the outside by the lower electrode 74 and the transparent electrode 78.

於此種構成的有機太陽電池70中,亦可藉由設置與所述保護膜16相同的保護膜80而於高溫高濕度環境下經過長時間地保護有機光電轉換層76。藉此可使有機太陽電池70的耐久性提高。而且,保護膜80如上所述地透明,並不妨礙入射光L向有機光電轉換層76入射。 In the organic solar cell 70 of such a configuration, the organic photoelectric conversion layer 76 can be protected for a long period of time in a high-temperature and high-humidity environment by providing the same protective film 80 as the protective film 16. Thereby, the durability of the organic solar cell 70 can be improved. Further, the protective film 80 is transparent as described above, and does not prevent the incident light L from entering the organic photoelectric conversion layer 76.

圖5(b)中所示的有機EL元件70a是使用有機EL層86的發光元件,被稱為頂部發光方式。另外,於有機EL元件70a中,對與圖5(a)中所示的有機太陽電池70同樣的構成物附以相同的符號,省略其詳細說明。 The organic EL element 70a shown in Fig. 5(b) is a light-emitting element using the organic EL layer 86, and is called a top emission method. In the organic EL element 70a, the same components as those of the organic solar cell 70 shown in Fig. 5(a) are denoted by the same reference numerals, and detailed description thereof will be omitted.

有機EL層86相當於本發明的有機機能層,耐熱性為245℃以下。有機EL元件70a於基板72上順次積層有TFT 82、陰極84、有機EL層86、透明電極(上部電極)78、保護膜80。於TFT 82、 陰極84及透明電極78上連接有電源88。保護膜80與所述圖5(a)中所示的有機太陽電池70相同,為2層構造。在這種情況下,保護膜80也可以與保護膜16相同地設為圖1(b)、圖1(c)中所示的構成。 The organic EL layer 86 corresponds to the organic functional layer of the present invention, and has heat resistance of 245 ° C or lower. The organic EL element 70a has a TFT 82, a cathode 84, an organic EL layer 86, a transparent electrode (upper electrode) 78, and a protective film 80 laminated on the substrate 72 in this order. On TFT 82, A power source 88 is connected to the cathode 84 and the transparent electrode 78. The protective film 80 has the same two-layer structure as the organic solar cell 70 shown in FIG. 5(a). In this case, the protective film 80 may be configured as shown in FIGS. 1(b) and 1(c) in the same manner as the protective film 16.

有機EL層86是發光的部位,順次積層有電洞注入層、電洞傳輸層、發光層、電子注入.傳輸層等。 The organic EL layer 86 is a portion where light is emitted, and a hole injection layer, a hole transport layer, a light emitting layer, and electron injection are successively laminated. Transport layer, etc.

陰極84與透明電極78是用以施加使有機EL層86發光所需的電壓者,TFT 82是用以控制有機EL元件70a的發光者。 The cathode 84 and the transparent electrode 78 are for applying a voltage required to cause the organic EL layer 86 to emit light, and the TFT 82 is a light source for controlling the organic EL element 70a.

電源88是產生使有機EL層86發光所需的電壓,且對TFT 82進行驅動。 The power source 88 generates a voltage required to cause the organic EL layer 86 to emit light, and drives the TFT 82.

另外,TFT82、陰極84、有機EL層86及透明電極78由公知的有機EL元件中所使用的一般者而適宜構成。因此,省略其詳細說明。 Further, the TFT 82, the cathode 84, the organic EL layer 86, and the transparent electrode 78 are suitably configured by a general one used in a known organic EL device. Therefore, the detailed description thereof will be omitted.

於此種構成的有機EL元件70a中,亦可藉由設置與所述保護膜16相同的保護膜80,而於高溫高濕度環境下經過長時間地保護有機EL層86。藉此可使有機EL元件70a的耐久性提高。而且,保護膜80如上所述地透明,並不對有機EL層86的發光光造成影響。 In the organic EL element 70a having such a configuration, the organic EL layer 86 can be protected for a long period of time in a high-temperature and high-humidity environment by providing the same protective film 80 as the protective film 16. Thereby, the durability of the organic EL element 70a can be improved. Further, the protective film 80 is transparent as described above, and does not affect the light emission of the organic EL layer 86.

本發明的保護膜並不限定於上述任意例,可於高溫高濕度環境下經過長時間地保護耐熱性為245℃以下的有機機能層,且要求並不妨礙光向有機機能層入射及來自有機機能層的光出射的透明性者中適宜地利用。 The protective film of the present invention is not limited to the above-described examples, and can protect the organic functional layer having a heat resistance of 245 ° C or less over a long period of time in a high-temperature and high-humidity environment, and the requirement is that the light is not incident on the organic functional layer and is derived from the organic The transparency of the light emission of the functional layer is suitably used.

以下,關於保護膜16及保護膜40的膜應力、及其測定方法加以說明。另外,保護膜16與保護膜40是同樣的構成,因此以保護膜16為例而加以說明。另外,保護層48亦可設為與保護膜40同樣的構成。因此,下述膜應力及其測定方法的說明亦包含保護層48。 Hereinafter, the film stress of the protective film 16 and the protective film 40, and the measuring method thereof will be described. Further, since the protective film 16 has the same configuration as the protective film 40, the protective film 16 will be described as an example. Further, the protective layer 48 may have the same configuration as that of the protective film 40. Therefore, the following description of the film stress and the method for measuring the same also includes the protective layer 48.

如圖6(a)及圖6(b)所示那樣,以形成有相當於保護膜16的薄膜102的基板100為例,將對薄膜102起作用的應力作為對保護膜16起作用的應力而加以說明。保護膜16是多層構造體,若將多層構造體設為1個膜而測定應力,則可獲得保護膜16的膜應力。而且,亦可分別於單層狀態下測定保護膜16的各氮氧化矽層的應力,求出各應力的平均值,藉此而測定保護膜16的膜應力。 As shown in FIGS. 6(a) and 6(b), the substrate 100 on which the thin film 102 corresponding to the protective film 16 is formed is taken as an example, and the stress acting on the thin film 102 is used as a stress acting on the protective film 16. And explain it. The protective film 16 is a multilayer structure. When the multilayer structure is a single film and stress is measured, the film stress of the protective film 16 can be obtained. Further, the stress of each of the yttria layers of the protective film 16 can be measured in a single layer state, and the average value of each stress can be obtained, thereby measuring the film stress of the protective film 16.

圖6(a)是用箭頭表示在使形成有薄膜102的基板100膨脹時,對薄膜102起作用的壓縮應力σc的方向。如圖6(a)所示那樣,若使形成有薄膜102之側突出而使基板100翹曲,則於基板100上所形成的薄膜102膨脹,對基板100所密接的薄膜102作用壓縮的力。該力是壓縮應力σcFig. 6(a) is a view showing the direction of the compressive stress σ c acting on the film 102 when the substrate 100 on which the thin film 102 is formed is expanded by arrows. As shown in FIG. 6(a), when the side on which the thin film 102 is formed is protruded and the substrate 100 is warped, the film 102 formed on the substrate 100 is expanded, and the film 102 which is in close contact with the substrate 100 is subjected to a compressive force. . This force is the compressive stress σ c .

圖6(b)是用箭頭表示在使形成有薄膜102的基板100收縮時,對薄膜102起作用的拉伸應力σt的方向。如圖6(b)所示那樣,若使形成有薄膜102之側凹陷而使基板100彎曲,則基板100上所形成的薄膜102收縮,對基板100所密接的薄膜102作用使其伸長的力。該力是拉伸應力σtFig. 6(b) is a view showing the direction of the tensile stress σ t acting on the film 102 when the substrate 100 on which the film 102 is formed is shrunk by arrows. As shown in FIG. 6(b), when the side on which the film 102 is formed is recessed and the substrate 100 is bent, the film 102 formed on the substrate 100 is shrunk, and the film 102 that is in close contact with the substrate 100 acts to extend the force. . This force is the tensile stress σ t .

此處,薄膜102的壓縮應力σc及拉伸應力σt對基板100 的翹曲量產生影響。其次,可基於基板100的翹曲量,使用光槓桿(optical lever)法而測定應力。 Here, the compressive stress σ c and the tensile stress σ t of the film 102 affect the amount of warpage of the substrate 100. Next, the stress can be measured using an optical lever method based on the amount of warpage of the substrate 100.

圖7是表示測定形成有薄膜的基板的翹曲量的測定裝置的示意圖。圖7中所示的測定裝置200包含:雷射照射部202,照射雷射光;分離器204,使自雷射照射部202所照射的光中的一部分光反射且使其他光透過;鏡206,對透過分離器204的光進行反射。在基板100的其中一個面上形成有作為被測定物的薄膜102。將分離器204所反射的光照射於基板100的薄膜102上,用第1檢測部208檢測此時薄膜102的表面所反射的光的反射角度。將鏡206所反射的光照射於基板100的薄膜102上,用第2檢測部210檢測此時薄膜102的表面所反射的光的反射角度。 FIG. 7 is a schematic view showing a measuring device for measuring the amount of warpage of a substrate on which a thin film is formed. The measuring device 200 shown in FIG. 7 includes a laser irradiation unit 202 that irradiates laser light, and a separator 204 that reflects a part of light emitted from the laser irradiation unit 202 and transmits other light; the mirror 206, The light transmitted through the separator 204 is reflected. A film 102 as an object to be measured is formed on one surface of the substrate 100. The light reflected by the separator 204 is irradiated onto the thin film 102 of the substrate 100, and the first detecting portion 208 detects the reflection angle of the light reflected by the surface of the film 102 at this time. The light reflected by the mirror 206 is irradiated onto the film 102 of the substrate 100, and the second detecting unit 210 detects the angle of reflection of the light reflected by the surface of the film 102 at this time.

另外,於圖7中表示測定使基板100的形成有薄膜102之側的面突出而使其翹曲,從而對薄膜102起作用的壓縮應力的例子。此處,將基板100的厚度設為h,將薄膜102的厚度設為t。 In addition, FIG. 7 shows an example of measuring the compressive stress that acts on the film 102 so that the surface on the side where the thin film 102 is formed on the substrate 100 protrudes and warps. Here, the thickness of the substrate 100 is h, and the thickness of the film 102 is t.

其次,對測定裝置200的薄膜應力的測定順序加以說明。 Next, the measurement procedure of the film stress of the measuring device 200 will be described.

作為測定中所使用的裝置,例如可使用東朋技術公司製造的薄膜壓力測定裝置FLX-2320-S。以下表示使用該裝置的情況下的測定條件。 As the apparatus used for the measurement, for example, a membrane pressure measuring device FLX-2320-S manufactured by Dongpeng Technology Co., Ltd. can be used. The measurement conditions in the case of using this device are shown below.

(雷射光(雷射照射部202)) (Laser light (laser irradiation unit 202))

使用雷射:KLA-Tencor-2320-S Use laser: KLA-Tencor-2320-S

雷射輸出功率:4mW Laser output power: 4mW

雷射波長:670nm Laser wavelength: 670nm

掃描速度:30mm/s Scanning speed: 30mm/s

(基板) (substrate)

基板材質:矽(Si) Substrate material: 矽 (Si)

方位:<100> Direction: <100>

類型:P型(摻雜劑:硼) Type: P type (dopant: boron)

厚度:250μm±25μm或280μm±25μm Thickness: 250μm±25μm or 280μm±25μm

(測定順序) (measurement order)

預先計測形成有薄膜102的基板100的翹曲量,求出基板100的曲率半徑R1。繼而,於基板100的其中一個面形成薄膜102,計測基板100的翹曲量,求出曲率半徑R2。此處,翹曲量是如圖7所示那樣,用雷射對基板100的形成有薄膜102之側的面進行掃描,根據自基板100所反射的雷射光的反射角度算出翹曲量,根據翹曲量而算出曲率半徑R=R1.R2/(R1-R2)。 The amount of warpage of the substrate 100 on which the thin film 102 is formed is measured in advance, and the radius of curvature R1 of the substrate 100 is obtained. Then, a film 102 is formed on one surface of the substrate 100, and the amount of warpage of the substrate 100 is measured to obtain a radius of curvature R2. Here, as shown in FIG. 7, the amount of warpage is scanned by the surface of the substrate 100 on the side where the thin film 102 is formed by the laser, and the amount of warpage is calculated from the angle of reflection of the laser light reflected from the substrate 100, according to Calculate the radius of curvature R=R1 by the amount of warpage. R2/(R1-R2).

其後,根據下述計算式而算出薄膜102的應力。薄膜102的應力的單位以Pa而表示。若為壓縮應力則顯示負的值,若為拉伸應力則顯示正的值。另外,測定薄膜102的應力的方法並無特別限定,可使用公知的方法。 Thereafter, the stress of the film 102 was calculated according to the following calculation formula. The unit of stress of the film 102 is represented by Pa. If it is a compressive stress, it shows a negative value, and if it is a tensile stress, it shows a positive value. Further, the method of measuring the stress of the film 102 is not particularly limited, and a known method can be used.

(應力壓力計算式) (stress pressure calculation formula)

σ=E×h2/6(1-v)Rt σ=E×h 2 /6(1- v )Rt

其中,E/(1-v):基底基板的2軸彈性係數(Pa)、v:帕松比 h:基底基板的厚度(m)、t:薄膜的膜厚(m)、R:基底基板的曲率半徑(m)、σ:薄膜的平均應力(Pa)。 Wherein E/(1- v ): two-axis elastic modulus (Pa) of the base substrate, v : Passon's ratio h: thickness (m) of the base substrate, t: film thickness (m) of the film, and R: base substrate Radius of curvature (m), σ: average stress (Pa) of the film.

本發明基本上如上所述地構成。以上,關於本發明的帶有機機能層基板及其製造方法而加以詳細說明,但本發明並不限定於所述實施形態,當然亦可於不脫離本發明的主旨的範圍中進行各種改良或變更。 The invention is basically constructed as described above. In the above, the organic-functional layer substrate and the method for producing the same according to the present invention are described in detail. However, the present invention is not limited to the embodiment, and various modifications and changes may be made without departing from the spirit and scope of the invention. .

[實施例] [Examples]

以下,關於本發明的保護膜的效果而加以具體說明。 Hereinafter, the effect of the protective film of the present invention will be specifically described.

於本實施例中,製作實施例1、實施例2及比較例1~比較例9的樣品,確認本發明的保護膜的效果。 In the present Example, samples of Example 1, Example 2, and Comparative Example 1 to Comparative Example 9 were produced, and the effects of the protective film of the present invention were confirmed.

於本實施例中,使用如下的光電轉換元件本體作為樣品:於基材上,於基材表面的一部分區域形成畫素電極,覆蓋該畫素電極且於基材上形成有機機能層作為光電轉換層,於該有機機能層上形成對向電極,形成覆蓋該對向電極的保護膜的構成得到簡略化的光電轉換元件本體。 In the present embodiment, the following photoelectric conversion element body is used as a sample: on the substrate, a pixel electrode is formed on a portion of the surface of the substrate, the pixel electrode is covered, and an organic functional layer is formed on the substrate as photoelectric conversion. In the layer, a counter electrode is formed on the organic functional layer, and a photoelectric conversion element body having a simplified structure in which a protective film covering the counter electrode is formed is formed.

另外,於保護膜中使用SiOxNy所表示的氮氧化矽層的2層構造者。各氮氧化矽層 Further, a two-layer structure of a ruthenium oxynitride layer represented by SiOxNy is used for the protective film. Niobium oxynitride layer

實施例1、實施例2及比較例1~比較例9的樣品除了保護膜的構成以外,使用相同構成的後述的元件單元。 In the samples of Example 1, Example 2, and Comparative Example 1 to Comparative Example 9, an element unit of the same configuration, which will be described later, was used in addition to the configuration of the protective film.

以下,關於元件單元而加以說明。 Hereinafter, the element unit will be described.

於各樣品中準備如下所示而形成的元件單元。 Element units formed as follows were prepared for each sample.

準備厚度為0.7mm的無鹼玻璃基材作為基材,於該基材上藉由濺鍍法而形成厚度為100nm的氧化銦錫(ITO)膜作為畫素電極。 An alkali-free glass substrate having a thickness of 0.7 mm was prepared as a substrate, and an indium tin oxide (ITO) film having a thickness of 100 nm was formed as a pixel electrode on the substrate by a sputtering method.

其次,於基材上,藉由電阻加熱蒸鍍法而將下述化學式1所示的材料以10nm/s~20nm/s的蒸鍍速度蒸鍍為100nm的厚度而作為覆蓋影像電極的電子阻隔層。其次,分別以16nm/s~18nm/s、25nm/s~28nm/s的蒸鍍速度,以下述化學式2所表示的材料與下述化學式3所表示的材料的體積比為1:3的比例而對下述化學式2所表示的材料(富勒烯C60)與下述化學式3所表示的材料進行共蒸鍍,形成為400nm的厚度為作為有機層(光電轉換層)。 Next, the material represented by the following Chemical Formula 1 was deposited on the substrate by a resistance heating vapor deposition method at a deposition rate of 10 nm/s to 20 nm/s to a thickness of 100 nm to serve as an electron barrier covering the image electrode. Floor. Next, at a vapor deposition rate of 16 nm/s to 18 nm/s and 25 nm/s to 28 nm/s, the volume ratio of the material represented by the following chemical formula 2 to the material represented by the following chemical formula 3 is 1:3. On the other hand, the material represented by the following Chemical Formula 2 (fullerene C 60 ) and the material represented by the following Chemical Formula 3 were co-deposited to have a thickness of 400 nm as an organic layer (photoelectric conversion layer).

[化2] [Chemical 2]

其次,藉由濺鍍法以覆蓋有機層的方式於有機層上形成厚度為10nm的氧化銦錫(ITO)膜而作為對向電極。 Next, an indium tin oxide (ITO) film having a thickness of 10 nm was formed on the organic layer by a sputtering method so as to cover the organic layer as a counter electrode.

其次,於對向電極上,藉由原子層化學氣相蒸鍍法(AL-CVD法)而形成厚度為30nm的氧化鋁膜(AlOx膜)。 Next, an aluminum oxide film (AlOx film) having a thickness of 30 nm was formed on the counter electrode by an atomic layer chemical vapor deposition method (AL-CVD method).

實施例1的樣品可如下所述地製作。 The sample of Example 1 can be produced as follows.

於如上所述而準備的元件單元的氧化鋁膜上及基材上,藉由電漿CVD法形成300nm的厚度的氮氧化矽層(SiOxNy層)而作為保護膜。如上所述地製作實施例1的樣品。 A ruthenium oxynitride layer (SiOxNy layer) having a thickness of 300 nm was formed on the aluminum oxide film and the substrate of the element unit prepared as described above as a protective film by a plasma CVD method. The sample of Example 1 was prepared as described above.

實施例1、實施例2及比較例1~比較例9的各樣品的 保護膜的組成如下述表1所示。另外,保護膜可預先求出成為規定的組成及密度的成膜條件(成膜溫度(基板溫度)、成膜時的壓力、成膜時的高頻功率、氣體種類(SiH4、NH3、N2O)及氣體的混合比等),於該製造條件下進行成膜。固定氣體的流量、成膜溫度、成膜時的壓力及成膜時的高頻波的頻率,僅僅改變高頻功率而製作保護膜,分別製作實施例1、實施例2及比較例1~比較例3的各樣品的保護膜。比較例4、比較例5是改變高頻功率與成膜溫度之兩者而分別製作各樣品的保護膜。 The compositions of the protective films of the respective samples of Example 1, Example 2, and Comparative Example 1 to Comparative Example 9 are shown in Table 1 below. In addition, the film forming conditions (film forming temperature (substrate temperature), film forming temperature, film forming high-frequency power, gas type (SiH 4 , NH 3 , etc.) which are predetermined compositions and densities can be obtained in advance. N 2 O) and a gas mixture ratio, etc., are formed under the production conditions. The flow rate of the fixed gas, the film formation temperature, the pressure at the time of film formation, and the frequency of the high-frequency wave at the time of film formation were changed, and only the high-frequency power was changed to prepare a protective film, and Example 1, Example 2, and Comparative Example 1 to Comparative Example 3 were produced, respectively. Protective film for each sample. In Comparative Example 4 and Comparative Example 5, a protective film of each sample was produced by changing both of the high frequency power and the film formation temperature.

實施例1、實施例2及比較例1~比較例9在下述表1中未明確記載成膜溫度的情況下將成膜溫度設為154℃。若無特別說明,則於成膜中使用SiH4、NH3、N2O的成分比固定的相同的氣體種類。 In Example 1, Example 2, and Comparative Example 1 to Comparative Example 9, when the film formation temperature was not clearly described in Table 1 below, the film formation temperature was set to 154 °C. Unless otherwise specified, the same gas species as those of SiH 4 , NH 3 , and N 2 O are used for film formation.

而且,比較例6的下層與比較例7的上層是將成膜溫度改變為350℃,將氣體種類改變為氣體種類A而進行成膜。比較例8的下層與比較例9的上層是將成膜溫度改變為350℃,將氣體種類改變為氣體種類B而進行成膜。另外,氣體種類A是與所述若無特別說明而於成膜中使用的氣體種類相比而言,所述成分中的NH3的成分量多的氣體種類。氣體種類B是與所述若無特別說明而於成膜中使用的氣體種類相比而言,所述成分中的N2O的成分量多的氣體種類。 Further, the lower layer of Comparative Example 6 and the upper layer of Comparative Example 7 were formed by changing the film formation temperature to 350 ° C and changing the gas type to the gas type A. The lower layer of Comparative Example 8 and the upper layer of Comparative Example 9 were formed by changing the film formation temperature to 350 ° C and changing the gas type to the gas type B. In addition, the gas type A is a gas type in which the component amount of NH 3 in the component is larger than the gas type used for film formation unless otherwise specified. The gas type B is a gas type having a larger amount of components of N 2 O in the component than the gas type used in the film formation unless otherwise specified.

於本實施例中,關於實施例1、實施例2及比較例1~比較例9的各樣品的保護膜,測定膜應力,使用橢圓儀而測定波 長為550nm下的折射率。將其結果表示於下述表1中。 In the present Example, the film stress was measured on the protective films of the respective samples of Example 1, Example 2, and Comparative Example 1 to Comparative Example 9, and the wave was measured using an ellipsometer. The length is 550 nm. The results are shown in Table 1 below.

而且,將實施例1、實施例2及比較例1~比較例9的各樣品放置在溫度85℃、相對濕度85%的環境中,測定於所述環境下放置後的暗電流成為於所述環境中放置前的2倍的值為止的時間。將該測定時間作為壽命。將其結果表示於下述表1中。 Further, each sample of Example 1, Example 2, and Comparative Example 1 to Comparative Example 9 was placed in an environment having a temperature of 85 ° C and a relative humidity of 85%, and the dark current after being placed in the environment was measured. The time until the value twice before the environment is placed. This measurement time was taken as the life. The results are shown in Table 1 below.

關於膜應力,使用上述圖7中所示的方法而測定。 The film stress was measured using the method shown in Fig. 7 described above.

膜的組成可如下所述地測定(XPS)。 The composition of the film can be determined as described below (XPS).

膜組成的測定機器使用PHI製造的QuanteraSXM,X射線源使用15kV-25W的單色化Al-Kα射線。深度方向分析是藉由Ar+蝕刻/XPS而進行。關於Ar+蝕刻,將Ar+的加速電壓設為3kV,將蝕刻面積設為2×2mm2。關於XPS,將X射線照射範圍及分析範圍設為300×300μm2,將通能(Pass Energy)設為112eV,將階差(Step)設為0.2eV。帶電校正設為有(併用電子槍、低速離子槍),藉由感度係數對C1s、O1s、N1s、Si2p的各強度進行校正,轉換為原子數比。 The measurement apparatus for the film composition used QuanteraSXM manufactured by PHI, and the X-ray source used monochromated Al-Kα rays of 15 kV to 25 W. The depth direction analysis was performed by Ar + etching / XPS. Regarding Ar + etching, the acceleration voltage of Ar + was set to 3 kV, and the etching area was set to 2 × 2 mm 2 . Regarding XPS, the X-ray irradiation range and the analysis range were set to 300 × 300 μm 2 , the Pass Energy was set to 112 eV, and the step (Step) was set to 0.2 eV. The charging correction is set to (with an electron gun and a low-speed ion gun), and the respective intensities of C1s, O1s, N1s, and Si2p are corrected by the sensitivity coefficient, and converted into an atomic ratio.

關於暗電流,在對光電轉換元件本體進行遮光的狀態下、60℃的環境下,於對向電極側施加2×105V/cm的電場,將在該狀態下使用電源電錶(吉時利(Keithley)公司製造的6430)而測定的電流的值作為暗電流。 In the dark current, an electric field of 2 × 10 5 V/cm is applied to the counter electrode side in a state where the photoelectric conversion element body is shielded from light, and an electric current meter is used in this state (Ki Shili) The value of the current measured by (6430) manufactured by Keithley was used as the dark current.

另外,比較例6~比較例9在形成保護膜時,上層及下層中的任意一者的成膜溫度高達350℃,雖然可形成保護膜但有機層(光電轉換層)損傷。因此,於下述表1的「85℃、85%RH經時耐受 性(相對時間)」之欄中記為「NG」。 Further, in Comparative Example 6 to Comparative Example 9, when the protective film was formed, the film formation temperature of any of the upper layer and the lower layer was as high as 350 ° C, and the protective film was formed, but the organic layer (photoelectric conversion layer) was damaged. Therefore, in the following Table 1, "85 ° C, 85% RH withstand time In the column of sex (relative time), it is marked as "NG".

如所述表1所示那樣,實施例1、實施例2的保護膜的整體膜應力為0MPa~-220MPa,是作為膜應力而適宜的區域。而且,即使在溫度85℃、相對濕度85%的環境下,暗電流成為2倍的時間最低也長達實施例1的1000小時,可使耐久性提高。於實施例1、實施例2中,藉由改變高頻功率而改變上層與下層的組成。 As shown in the above Table 1, the overall film stress of the protective films of Examples 1 and 2 is 0 MPa to 220 MPa, which is a suitable region as a film stress. Further, even in the environment of a temperature of 85 ° C and a relative humidity of 85%, the time when the dark current is twice doubled is as long as 1000 hours in the first embodiment, and the durability can be improved. In the first embodiment and the second embodiment, the composition of the upper layer and the lower layer is changed by changing the high frequency power.

另一方面,當比較例1是保護膜的上層與下層相同的組成,保護膜的整體膜應力為+5MPa時,拉伸應力起作用,且溫度 85℃、相對濕度85%的耐受性亦低至100小時。 On the other hand, when Comparative Example 1 is the same composition of the upper layer and the lower layer of the protective film, when the overall film stress of the protective film is +5 MPa, the tensile stress acts, and the temperature The tolerance at 85 ° C and 85% relative humidity is also as low as 100 hours.

當比較例2是保護膜的上層與下層相同的組成,保護膜的整體膜應力為-120MPa時,壓縮應力起作用,但溫度85℃、相對濕度85%的耐受性低至350小時。 When Comparative Example 2 is the same composition of the upper layer and the lower layer of the protective film, when the overall film stress of the protective film is -120 MPa, the compressive stress acts, but the resistance at a temperature of 85 ° C and a relative humidity of 85% is as low as 350 hours.

當比較例3是保護膜的上層與下層相同的組成,保護膜的整體膜應力為-280MPa時,壓縮應力起作用。溫度85℃、相對濕度85%的耐受性為1000小時。 When Comparative Example 3 is the same composition of the upper layer and the lower layer of the protective film, and the overall film stress of the protective film is -280 MPa, the compressive stress acts. The tolerance at a temperature of 85 ° C and a relative humidity of 85% was 1000 hours.

比較例4的保護膜的下層超過x的值的上限值。而且,於比較例4中,為了形成保護膜的上層與下層,需要在形成下層時改變成膜溫度。因此,比較例4無法藉由本發明的製造方法而製造。 The lower layer of the protective film of Comparative Example 4 exceeded the upper limit of the value of x. Further, in Comparative Example 4, in order to form the upper layer and the lower layer of the protective film, it is necessary to change the film formation temperature when the lower layer is formed. Therefore, Comparative Example 4 cannot be produced by the production method of the present invention.

比較例5的保護膜的下層滿足x的值及y的式子,上層超過x的值的上限值。因此,障壁性變低,溫度85℃、相對濕度85%的耐受性為10小時。 The lower layer of the protective film of Comparative Example 5 satisfies the value of x and the formula of y, and the upper layer exceeds the upper limit of the value of x. Therefore, the barrier property was lowered, and the resistance at a temperature of 85 ° C and a relative humidity of 85% was 10 hours.

比較例6~比較例9雖然如上所述地成膜溫度高達350℃而可形成保護膜,但有機層(光電轉換層)損傷。 In Comparative Example 6 to Comparative Example 9, although the film formation temperature was as high as 350 ° C as described above, a protective film could be formed, but the organic layer (photoelectric conversion layer) was damaged.

而且,比較例6、比較例7均是折射率差為0.12而超出本發明的範圍,因此無法抑制入射光的反射,反射率增大,光電轉換元件本體的感度降低。 Further, in Comparative Example 6 and Comparative Example 7, since the refractive index difference was 0.12 and was outside the range of the present invention, reflection of incident light could not be suppressed, reflectance increased, and sensitivity of the photoelectric conversion element body was lowered.

比較例8的下層未能滿足y的式子,上層滿足x的值及y的式子。比較例8的保護膜整體的膜應力大至-350MPa,產生膜剝落。 The lower layer of Comparative Example 8 failed to satisfy the formula of y, and the upper layer satisfies the value of x and the expression of y. The film stress of the entire protective film of Comparative Example 8 was as large as -350 MPa, and film peeling occurred.

比較例9的下層滿足x的值及y的式子,上層並未滿足y的 式子。比較例9的保護膜整體的膜應力大至-350MPa,產生膜剝落。 The lower layer of Comparative Example 9 satisfies the value of x and the expression of y, and the upper layer does not satisfy y. formula. The film stress of the entire protective film of Comparative Example 9 was as large as -350 MPa, and film peeling occurred.

10‧‧‧帶有機層基板 10‧‧‧With organic layer substrate

10a、10b‧‧‧帶有機機能層基板 10a, 10b‧‧‧ with organic functional layer substrate

12‧‧‧基材 12‧‧‧Substrate

14‧‧‧有機機能層 14‧‧‧Organic functional layer

16‧‧‧保護膜 16‧‧‧Protective film

16a‧‧‧第1氮氧化矽層 16a‧‧‧1st bismuth oxynitride layer

16b‧‧‧第2氮氧化矽層 16b‧‧‧2nd bismuth oxynitride layer

17‧‧‧第3氮氧化矽層 17‧‧‧3rd bismuth oxynitride layer

19‧‧‧其他構成層 19‧‧‧Other constituent layers

Claims (10)

一種帶有機機能層基板,其特徵在於包含:基材、配置於基材上的有機機能層、配置於所述有機機能層上的保護膜;所述保護膜包含多個SiOxNy所表示的氮氧化矽層,所述各氮氧化矽層的折射率差的絕對值是0.1以內,所述x、y滿足0.5≦x≦1.0、且-2.2y+2.1≦x≦-2.2y+2.41,在所述保護膜中,多個所述氮氧化矽層中,離所述有機機能層較遠側的氮氧化矽層的所述x的值比形成在最接近所述有機機能層的位置的氮氧化矽層之x的值大0.05以上。 A substrate with an organic functional layer, comprising: a substrate, an organic functional layer disposed on the substrate, and a protective film disposed on the organic functional layer; the protective film comprising a plurality of oxynitride represented by SiOxNy In the ruthenium layer, the absolute value of the refractive index difference of each of the ruthenium oxynitride layers is 0.1 or less, and the x and y satisfy 0.5 ≦ x ≦ 1.0, and -2.2 y + 2.1 ≦ x ≦ - 2.2 y + 2.41. In the protective film, among the plurality of the ruthenium oxynitride layers, the value of x of the ruthenium oxynitride layer farther from the organic functional layer is larger than the value of nitrogen oxidized at a position closest to the organic functional layer. The value of x in the enamel layer is 0.05 or more. 如申請專利範圍第1項所述之帶有機機能層基板,其中,所述保護膜的總厚為50nm以上。 The organic functional layer substrate according to claim 1, wherein the protective film has a total thickness of 50 nm or more. 如申請專利範圍第1項所述之帶有機機能層基板,其中,所述保護膜在各氮氧化矽層之間包含其他層。 The organic functional layer substrate according to claim 1, wherein the protective film contains other layers between the respective ruthenium oxynitride layers. 如申請專利範圍第2項所述之帶有機機能層基板,其中,所述保護膜在各氮氧化矽層之間包含其他層。 The organic functional layer substrate according to claim 2, wherein the protective film contains another layer between the respective ruthenium oxynitride layers. 如申請專利範圍第1項至第4項中任一項所述之帶有機機能層基板,其中,所述有機機能層是若照射光則產生電荷的有機光電轉換層,所述有機光電轉換層於所述基材側設有下部電極,於所述基材的相反側設有透明的上部電極, 於所述上部電極上配置有所述保護膜。 The organic functional layer substrate according to any one of claims 1 to 4, wherein the organic functional layer is an organic photoelectric conversion layer that generates a charge when irradiated with light, and the organic photoelectric conversion layer is a lower electrode is disposed on the substrate side, and a transparent upper electrode is disposed on an opposite side of the substrate. The protective film is disposed on the upper electrode. 如申請專利範圍第1項至第4項中任一項所述之帶有機機能層基板,其中,所述有機機能層是包含有機物的彩色濾光片層,於所述彩色濾光片層上配置有所述保護膜。 The organic functional layer substrate according to any one of claims 1 to 4, wherein the organic functional layer is a color filter layer containing an organic substance on the color filter layer. The protective film is disposed. 如申請專利範圍第1項至第4項中任一項所述之帶有機機能層基板,其中,所述x、y滿足0.5≦x≦1.0、且-2.2y+2.1≦x≦-2.2y+2.32。 The organic functional layer substrate according to any one of claims 1 to 4, wherein the x, y satisfy 0.5≦x≦1.0, and -2.2y+2.1≦x≦-2.2y +2.32. 如申請專利範圍第5項中任一項所述之帶有機機能層基板,其中,所述x、y滿足0.5≦x≦1.0、且-2.2y+2.1≦x≦-2.2y+2.32。 The organic functional layer substrate according to any one of claims 5, wherein the x, y satisfy 0.5 ≦ x ≦ 1.0, and -2.2 y + 2.1 ≦ x ≦ - 2.2 y + 2.32. 如申請專利範圍第6項中任一項所述之帶有機機能層基板,其中,所述x、y滿足0.5≦x≦1.0、且-2.2y+2.1≦x≦-2.2y+2.32。 The organic functional layer substrate according to any one of claims 6 to 6, wherein the x, y satisfy 0.5 ≦ x ≦ 1.0, and -2.2 y + 2.1 ≦ x ≦ - 2.2 y + 2.32. 一種帶有機機能層基板的製造方法,其特徵在於包含:保護膜形成步驟,在配置於基材上的有機機能層上,使用電漿化學氣相沈積法形成多個SiOxNy所表示的氮氧化矽層作為保護膜;在所述保護膜形成步驟中,僅僅改變所述電漿化學氣相沈積法中的成膜條件中的高頻功率,以所述x的值比形成在最接近所述有機機能層的位置的氮氧化矽層之x的值大0.05以上的組成而形成離所述有機機能層較遠側的氮氧化矽層。 A manufacturing method of an organic functional layer substrate, comprising: a protective film forming step of forming a plurality of bismuth oxynitride represented by SiOxNy by plasma chemical vapor deposition on an organic functional layer disposed on a substrate a layer as a protective film; in the protective film forming step, only the high frequency power in the film forming conditions in the plasma chemical vapor deposition method is changed, and the value ratio of x is formed closest to the organic The value of x of the yttrium oxynitride layer at the position of the functional layer is 0.05 or more, and a ruthenium oxynitride layer farther from the organic functional layer is formed.
TW103139392A 2013-12-05 2014-11-13 Substrate with organic function layer and method of manufacturing same TW201523894A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013252293A JP6026395B2 (en) 2013-12-05 2013-12-05 Substrate with organic functional layer and method for producing the same

Publications (1)

Publication Number Publication Date
TW201523894A true TW201523894A (en) 2015-06-16

Family

ID=53273268

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103139392A TW201523894A (en) 2013-12-05 2014-11-13 Substrate with organic function layer and method of manufacturing same

Country Status (3)

Country Link
JP (1) JP6026395B2 (en)
TW (1) TW201523894A (en)
WO (1) WO2015083497A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10444414B2 (en) * 2015-07-27 2019-10-15 Konica Minolta, Inc. Silver reflector, and manufacture method and examination method therefor
CN111065514B (en) * 2017-09-27 2022-01-25 富士胶片株式会社 Gas barrier film
KR102469745B1 (en) * 2017-10-23 2022-11-23 삼성디스플레이 주식회사 Display apparatus and method of manufacturing the same
JP7077889B2 (en) * 2018-09-14 2022-05-31 住友電気工業株式会社 Semiconductor light receiving element
WO2020066420A1 (en) * 2018-09-25 2020-04-02 富士フイルム株式会社 Light-shielding composition, cured film, light-shielding film, and solid-state imaging element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161709A (en) * 1993-12-13 1995-06-23 Nec Corp Semiconductor device and its manufacture
JP3977974B2 (en) * 1998-12-29 2007-09-19 株式会社半導体エネルギー研究所 Semiconductor device
JP4493779B2 (en) * 2000-01-31 2010-06-30 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
JP5445179B2 (en) * 2010-02-01 2014-03-19 コニカミノルタ株式会社 Gas barrier film, method for producing gas barrier film, and organic electronic device
JP5625648B2 (en) * 2010-09-08 2014-11-19 株式会社村田製作所 Method for forming silicon oxynitride film and method for manufacturing boundary acoustic wave device
JP5800682B2 (en) * 2011-10-31 2015-10-28 富士フイルム株式会社 Method for manufacturing photoelectric conversion element and method for manufacturing imaging element
JP2014056879A (en) * 2012-09-11 2014-03-27 Rohm Co Ltd Semiconductor light-emitting element

Also Published As

Publication number Publication date
JP6026395B2 (en) 2016-11-16
WO2015083497A1 (en) 2015-06-11
JP2015109384A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
JP5819799B2 (en) Photoelectric conversion element and imaging element
TWI636599B (en) Photoelectric conversion device and imaging device
TWI521687B (en) Image device
JP6046649B2 (en) Photoelectric conversion device and imaging device using the same
TWI663743B (en) Photoelectric conversion device and imaging device
TWI549271B (en) Solid-state image sensor
JP6025243B2 (en) Photoelectric conversion device and imaging device using the same
TW201533941A (en) Substrate with organic function layer and method of manufacturing same
KR20160043016A (en) Photoelectric conversion element and imaging element
JP6128593B2 (en) Organic photoelectric conversion element and imaging element
TW201523894A (en) Substrate with organic function layer and method of manufacturing same
US9123858B2 (en) Method for manufacturing photoelectric conversion device and a solid-state imaging device having a photoelectric conversion device formed in accordance with the method
JP5824436B2 (en) Photoelectric conversion device and imaging device using the same
TW201522083A (en) Substrate with organic function layer and method of manufacturing same
JP5800682B2 (en) Method for manufacturing photoelectric conversion element and method for manufacturing imaging element
KR20140068917A (en) Photoelectric conversion element manufacturing method and image capture element manufacturing method