TW201514541A - Projection optical system, adjusting method thereof, exposing device and method, and device manufacturing method - Google Patents

Projection optical system, adjusting method thereof, exposing device and method, and device manufacturing method Download PDF

Info

Publication number
TW201514541A
TW201514541A TW103132184A TW103132184A TW201514541A TW 201514541 A TW201514541 A TW 201514541A TW 103132184 A TW103132184 A TW 103132184A TW 103132184 A TW103132184 A TW 103132184A TW 201514541 A TW201514541 A TW 201514541A
Authority
TW
Taiwan
Prior art keywords
optical system
imaging optical
concave mirror
disposed
imaging
Prior art date
Application number
TW103132184A
Other languages
Chinese (zh)
Inventor
柘植陽介
小野拓郎
大村泰弘
湯淺吉晴
長谷川啓佑
Original Assignee
尼康股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尼康股份有限公司 filed Critical 尼康股份有限公司
Publication of TW201514541A publication Critical patent/TW201514541A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0825Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a flexible sheet or membrane, e.g. for varying the focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • G03F7/70266Adaptive optics, e.g. deformable optical elements for wavefront control, e.g. for aberration adjustment or correction

Abstract

A purpose of the invention is to provide a projection optical system, which can adjust wavefront aberration generated due to, for example, light illumination. The projection optical system forms an image of a first surface on a second surface. The projection optical system includes: a first imaging optical unit disposed in an optical path between the first surface and the second surface, and including a first concave reflective mirror having a transformative reflective surface; and a second imaging optical unit disposed in an optical path between the first imaging optical unit and the second surface, and including a second concave reflective mirror having a transformative reflective surface.

Description

投影光學系統、投影光學系統的調整方法、曝光裝置、曝光方法以及元件製造方法 Projection optical system, adjustment method of projection optical system, exposure apparatus, exposure method, and component manufacturing method

本發明是有關於一種投影光學系統、投影光學系統的調整方法、曝光裝置、曝光方法以及元件(device)製造方法。 The present invention relates to a projection optical system, an adjustment method of a projection optical system, an exposure apparatus, an exposure method, and a device manufacturing method.

在用於製造半導體器件等元件的光微影(photolithography)步驟中,使用曝光裝置,該曝光裝置將遮罩(mask)(網線(reticle))的圖案(pattern)經由投影光學系統,而投影曝光至感光性基板(塗佈有光阻劑(photo resist)的晶圓(wafer)等)上。曝光裝置中,隨著遮罩圖案的微細化的推進,對投影光學系統所要求的解析力(解析度)日益提高。為了滿足對投影光學系統的解析力的要求,必須縮短照明光(曝光用光)的波長λ,並且加大投影光學系統的像側數值孔徑NA。 In a photolithography step for manufacturing an element such as a semiconductor device, an exposure device is used which projects a pattern of a mask (reticle) via a projection optical system Exposure to a photosensitive substrate (wafer coated with a photo resist, etc.). In the exposure apparatus, as the mask pattern is advanced, the resolution (resolution) required for the projection optical system is increasing. In order to satisfy the requirements for the resolution of the projection optical system, it is necessary to shorten the wavelength λ of the illumination light (exposure light) and increase the image side numerical aperture NA of the projection optical system.

因此,已知有液浸技術,即,藉由向投影光學系統與感光性基板之間的光路中填滿折射率高的液體之類的介質,從而實 現像側數值孔徑的增大。一般而言,在像側數值孔徑大的投影光學系統中,並不限定於液浸系統,即使在乾燥系統中,考慮到使珀茲伐(Petzval)條件成立以獲得像的平坦性的觀點,理想的亦是採用反射折射光學系統。以往,提出有各種適合於曝光裝置的投影光學系統的反射折射光學系統(例如參照專利文獻1)。 Therefore, there is known a liquid immersion technique in which a medium having a high refractive index is filled into an optical path between a projection optical system and a photosensitive substrate. The numerical aperture of the image side is increased. In general, in a projection optical system having a large numerical aperture on the image side, it is not limited to a liquid immersion system, and even in a drying system, in consideration of the fact that the Petzval condition is established to obtain flatness of an image, It is also desirable to use a catadioptric optical system. Conventionally, various types of catadioptric optical systems suitable for a projection optical system of an exposure apparatus have been proposed (for example, see Patent Document 1).

現有技術文獻 Prior art literature

專利文獻 Patent literature

[專利文獻1]美國專利第7,301,605號 [Patent Document 1] U.S. Patent No. 7,301,605

搭載於曝光裝置中的投影光學系統中,在曝光時,受到通過光學系統的光的照射能量(energy)的影響,光學特性會發生變動。具體而言,因光照射而導致透鏡(lens)的光學面發生變化,或者透鏡的折射率分佈發生變化。而且,因由光照射造成的鏡筒的變形等而導致透鏡的間隔發生變化,或者因光照射導致環境的密度分佈(折射率分佈)發生變化。光學特性的變動會使投影光學系統的波前像差(wavefront aberration)發生惡化,甚而使投影光學系統的解析力等成像性能下降。 In the projection optical system mounted in the exposure apparatus, the optical characteristics are affected by the irradiation energy of the light passing through the optical system during exposure. Specifically, the optical surface of the lens changes due to light irradiation, or the refractive index distribution of the lens changes. Further, the interval of the lens changes due to deformation of the lens barrel due to light irradiation or the like, or the density distribution (refractive index distribution) of the environment changes due to light irradiation. The variation in optical characteristics deteriorates the wavefront aberration of the projection optical system, and even the imaging performance such as the resolution of the projection optical system is degraded.

本發明是有鑒於所述問題而完成,其目的在於提供一種例如成像性能高的投影光學系統。而且,本發明的目的在於提供一種曝光裝置,可使用成像性能高的投影光學系統,將微細圖案高精度地投影曝光至感光性基板上。 The present invention has been made in view of the above problems, and an object thereof is to provide a projection optical system having, for example, high imaging performance. Further, an object of the present invention is to provide an exposure apparatus capable of projecting and exposing a fine pattern onto a photosensitive substrate with high precision using a projection optical system having high imaging performance.

為了解決所述問題,第1形態中,提供一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學部分,配置在所述第1面與所述第2面之間的光路中,包含第1凹面反射鏡,形成所述第1面的中間像;以及第2成像光學部分,配置在所述第1成像光學單元(unit)與所述第2面之間的光路中,包含第2凹面反射鏡,形成所述中間像的像,且所述第1凹面反射鏡以及所述第2凹面反射鏡中的至少一者具有可變形的反射面。第2形態中,提供一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學單元,配置在所述第1面與所述第2面之間的光路中,且包含具有可變形的反射面的第1凹面反射鏡;以及第2成像光學單元,配置在所述第1成像光學單元與所述第2面之間的光路中,且包含具有可變形的反射面的第2凹面反射鏡。 In order to solve the above-described problems, in a first aspect, a projection optical system is provided, wherein an image of a first surface is formed on a second surface, and the first imaging optical portion is disposed on the first surface and the first surface The optical path between the second surfaces includes a first concave mirror to form an intermediate image of the first surface, and a second imaging optical portion disposed in the first imaging optical unit and the first The optical path between the two faces includes a second concave mirror to form an image of the intermediate image, and at least one of the first concave mirror and the second concave mirror has a deformable reflective surface . According to a second aspect, a projection optical system is provided, wherein the image of the first surface is formed on the second surface, and the first imaging optical unit is disposed between the first surface and the second surface And a first concave mirror including a deformable reflecting surface; and a second imaging optical unit disposed in the optical path between the first imaging optical unit and the second surface, and including The second concave mirror of the deformable reflecting surface.

第3形態中,提供一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學單元,配置在所述第1面與所述第2面之間的光路中,包含第1凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係;以及第2成像光學單元,配置在所述第1成像光學單元與所述第2 面之間的光路中,包含第2凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係,所述第1凹面反射鏡配置於所述第1成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第1光瞳位置至所述第1面側,所述第2凹面反射鏡配置於所述第2成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第2光瞳位置至所述第2面側。 According to a third aspect, a projection optical system is provided, wherein the image of the first surface is formed on the second surface, and the first imaging optical unit is disposed between the first surface and the second surface The optical path includes a first concave mirror, and mutually different surfaces are optically conjugated; and the second imaging optical unit is disposed in the first imaging optical unit and the second The optical path between the surfaces includes a second concave mirror, and the mutually different surfaces are optically conjugated, and the first concave mirror is disposed in the optical path of the first imaging optical unit. The position of the first surface is optically in a first pupil position of the Fourier transform relationship to the first surface side, and the second concave mirror is disposed in the optical path of the second imaging optical unit and the The position of the first surface is optically in the second pupil position of the Fourier transform relationship to the second surface side.

第4形態中,提供一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學單元,配置在所述第1面與所述第2面之間的光路中,包含第1凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係;以及第2成像光學單元,配置在所述第1成像光學單元與所述第2面之間的光路中,包含第2凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係,所述第1凹面反射鏡配置於所述第1成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第1光瞳位置至所述第2面側,所述第2凹面反射鏡配置於所述第2成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第2光瞳位置至所述第1面側。 According to a fourth aspect, a projection optical system is provided, wherein the image of the first surface is formed on the second surface, and the first imaging optical unit is disposed between the first surface and the second surface The optical path includes a first concave mirror, and mutually different surfaces are optically conjugated; and the second imaging optical unit is disposed between the first imaging optical unit and the second surface The optical path between the second concave mirror includes a second concave mirror, and the mutually different surfaces are optically conjugated, and the first concave mirror is disposed in the optical path of the first imaging optical unit and The position of the first surface is optically in the first pupil position of the Fourier transform relationship to the second surface side, and the second concave mirror is disposed in the optical path of the second imaging optical unit and the first surface The position of the surface is optically in the second pupil position of the Fourier transform relationship to the first surface side.

第5形態中,提供一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學單元,配置在所述第1面與所述第2面之間的光路中,包含第1凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係;以及第2成像光學單元,配置在所述第1成像光學單元與所述第2面之間的光路中,包含第2凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係,所述第1凹面反射鏡配置於所述第1成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第1光瞳位置,所述第2凹面反射鏡配置於所述第2成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第2光瞳位置至所述第1面側或所述第2面側。 According to a fifth aspect, a projection optical system is provided, wherein the image of the first surface is formed on the second surface, and the first imaging optical unit is disposed between the first surface and the second surface The optical path includes a first concave mirror, and mutually different surfaces are optically conjugated; and the second imaging optical unit is disposed between the first imaging optical unit and the second surface The optical path between the second concave mirror includes a second concave mirror, and the mutually different surfaces are optically conjugated, and the first concave mirror is disposed in the optical path of the first imaging optical unit and The position of the first surface is optically in the first pupil position of the Fourier transform relationship, and the second concave mirror is disposed in the optical path of the second imaging optical unit and is optically positioned at the position of the first surface The second pupil position of the Fourier transform relationship is on the first surface side or the second surface side.

第6形態中,提供一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學單元,配置在所述第1面與所述第2面之間的光路中,包含第1凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係;第2成像光學單元,配置在所述第1成像光學單元與所述第2面之間的光路中,包含第2凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係, 所述第1凹面反射鏡配置於所述第1成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第1光瞳位置至所述第1面側或所述第2面側,所述第2凹面反射鏡配置於所述第2成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第2光瞳位置。 According to a sixth aspect, a projection optical system is provided, wherein the image of the first surface is formed on the second surface, and the first imaging optical unit is disposed between the first surface and the second surface The optical path includes a first concave mirror, and mutually different surfaces are optically conjugated; the second imaging optical unit is disposed between the first imaging optical unit and the second surface The optical path includes a second concave mirror, and the mutually different surfaces are optically conjugated. The first concave mirror is disposed in a first pupil position of the optical path of the first imaging optical unit that is optically Fourier-transformed to a position of the first surface to the first surface side or the On the second surface side, the second concave mirror is disposed at a second pupil position in which the position of the first surface is optically Fourier-transformed in the optical path of the second imaging optical unit.

第7形態中,提供一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學單元,配置在所述第1面與所述第2面之間的光路中,包含第1凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係;第2成像光學單元,配置在所述第1成像光學單元與所述第2面之間的光路中,包含第2凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係,所述第1凹面反射鏡配置於所述第1成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第1光瞳位置,所述第2凹面反射鏡配置於所述第2成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第2光瞳位置。 According to a seventh aspect, a projection optical system is provided, wherein the image of the first surface is formed on the second surface, and the first imaging optical unit is disposed between the first surface and the second surface The optical path includes a first concave mirror, and mutually different surfaces are optically conjugated; the second imaging optical unit is disposed between the first imaging optical unit and the second surface The optical path includes a second concave mirror, and the mutually different surfaces are optically conjugated, and the first concave mirror is disposed in the optical path of the first imaging optical unit and the first The position of one surface is optically in the first pupil position of the Fourier transform relationship, and the position of the second concave mirror disposed in the optical path of the second imaging optical unit and the position of the first surface is optically Fourier The second pupil position of the transformation relationship.

第8形態中,提供一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括: 第1成像光學系統,配置在所述第1面與所述第2面之間的光路中,形成所述第1面的第1中間像;第2成像光學系統,配置在所述第1成像光學系統與所述第2面之間的光路中,包含第1凹面反射鏡,形成所述第1中間像的像即第2中間像;第3成像光學系統,配置在所述第2成像光學系統與所述第2面之間的光路中,包含第2凹面反射鏡,形成所述第2中間像的像即第3中間像;以及第4成像光學系統,配置在所述第3成像光學系統與所述第2面之間的光路中,在第2面上形成所述第3中間像的像,所述第2成像光學系統包括配置在所述第1中間像與所述第1凹面反射鏡之間的光路中的多個正透鏡,所述第3成像光學系統包括配置在所述第2中間像與所述第2凹面反射鏡之間的光路中的多個正透鏡。 According to an eighth aspect, a projection optical system is provided, wherein the image of the first surface is formed on the second surface, and the method includes the following: The first imaging optical system is configured such that a first intermediate image of the first surface is formed in an optical path between the first surface and the second surface, and a second imaging optical system is disposed in the first imaging The optical path between the optical system and the second surface includes a first concave mirror to form a second intermediate image which is an image of the first intermediate image, and a third imaging optical system is disposed in the second imaging optical The optical path between the system and the second surface includes a second concave mirror, a third intermediate image that forms an image of the second intermediate image, and a fourth imaging optical system that is disposed in the third imaging optical An image of the third intermediate image is formed on the second surface of the optical path between the system and the second surface, and the second imaging optical system includes the first intermediate image and the first concave surface A plurality of positive lenses in the optical path between the mirrors, the third imaging optical system including a plurality of positive lenses disposed in an optical path between the second intermediate image and the second concave mirror.

第9形態中,提供一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學系統,配置在所述第1面與所述第2面之間的光路中,形成所述第1面的第1中間像;第2成像光學系統,配置在所述第1成像光學系統與所述第2面之間的光路中,包含第1凹面反射鏡,形成所述第1中間像的像即第2中間像;第3成像光學系統,配置在所述第2成像光學系統與所述第2 面之間的光路中,包含第2凹面反射鏡,形成所述第2中間像的像即第3中間像;以及第4成像光學系統,配置在所述第3成像光學系統與所述第2面之間的光路中,在第2面上形成所述第3中間像的像,所述第4成像光學系統包括正透鏡,所述正透鏡配置在最靠所述第3中間像側且使凸面朝向所述第2面側。 According to a ninth aspect, a projection optical system is provided, wherein the image of the first surface is formed on the second surface, and the first imaging optical system is disposed between the first surface and the second surface The first intermediate image of the first surface is formed in the optical path, and the second imaging optical system includes a first concave mirror disposed in the optical path between the first imaging optical system and the second surface. a second intermediate image that forms an image of the first intermediate image; and a third imaging optical system that is disposed in the second imaging optical system and the second image The optical path between the surfaces includes a second concave mirror to form a third intermediate image which is an image of the second intermediate image, and a fourth imaging optical system that is disposed in the third imaging optical system and the second In the optical path between the surfaces, the image of the third intermediate image is formed on the second surface, and the fourth imaging optical system includes a positive lens disposed on the side closest to the third intermediate image and The convex surface faces the second surface side.

第10形態中,提供一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學系統,配置在所述第1面與所述第2面之間的光路中,形成所述第1面的第1中間像;第2成像光學系統,配置在所述第1成像光學系統與所述第2面之間的光路中,包含第1凹面反射鏡,形成所述第1中間像的像即第2中間像;第3成像光學系統,配置在所述第2成像光學系統與所述第2面之間的光路中,包含第2凹面反射鏡,形成所述第2中間像的像即第3中間像;以及第4成像光學系統,配置在所述第3成像光學系統與所述第2面之間的光路中,在第2面上形成所述第3中間像的像,所述第2成像光學系統包括正彎月透鏡,所述正彎月透鏡配置在最靠所述第1中間像側,且使凸面朝向所述第1中間像側。 According to a tenth aspect, a projection optical system is provided, wherein the image of the first surface is formed on the second surface, and the first imaging optical system is disposed between the first surface and the second surface The first intermediate image of the first surface is formed in the optical path, and the second imaging optical system includes a first concave mirror disposed in the optical path between the first imaging optical system and the second surface. a second intermediate image that forms an image of the first intermediate image, and a third imaging optical system that is disposed between the optical path between the second imaging optical system and the second surface, and includes a second concave mirror. The third intermediate image which is the image of the second intermediate image, and the fourth imaging optical system are disposed in the optical path between the third imaging optical system and the second surface, and the second surface is formed on the second surface In the image of the third intermediate image, the second imaging optical system includes a positive meniscus lens, and the positive meniscus lens is disposed on the side closest to the first intermediate image and has a convex surface facing the first intermediate image side.

第11形態中,提供一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括: 第1成像光學系統,配置在所述第1面與所述第2面之間的光路中,形成所述第1面的第1中間像;第2成像光學系統,配置在所述第1成像光學系統與所述第2面之間的光路中,包含第1凹面反射鏡,形成所述第1中間像的像即第2中間像;第3成像光學系統,配置在所述第2成像光學系統與所述第2面之間的光路中,包含第2凹面反射鏡,形成所述第2中間像的像即第3中間像;以及第4成像光學系統,配置在所述第3成像光學系統與所述第2面之間的光路中,在第2面上形成所述第3中間像的像,所述第2成像光學系統包括透鏡,所述透鏡配置在最靠所述第1中間像側,並且鄰接於所述第1凹面反射鏡而配置。 According to an eleventh aspect, a projection optical system is provided, wherein the image of the first surface is formed on the second surface, and is characterized by comprising: The first imaging optical system is configured such that a first intermediate image of the first surface is formed in an optical path between the first surface and the second surface, and a second imaging optical system is disposed in the first imaging The optical path between the optical system and the second surface includes a first concave mirror to form a second intermediate image which is an image of the first intermediate image, and a third imaging optical system is disposed in the second imaging optical The optical path between the system and the second surface includes a second concave mirror, a third intermediate image that forms an image of the second intermediate image, and a fourth imaging optical system that is disposed in the third imaging optical In the optical path between the system and the second surface, an image of the third intermediate image is formed on the second surface, the second imaging optical system includes a lens, and the lens is disposed in the first middle The image side is disposed adjacent to the first concave mirror.

第12形態中,提供一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學系統,配置在所述第1面與所述第2面之間的光路中,形成所述第1面的第1中間像;第2成像光學系統,配置在所述第1成像光學系統與所述第2面之間的光路中,包含第1凹面反射鏡,形成所述第1中間像的像即第2中間像;第3成像光學系統,配置在所述第2成像光學系統與所述第2面之間的光路中,包含第2凹面反射鏡,形成所述第2中間像的像即第3中間像;以及 第4成像光學系統,配置在所述第3成像光學系統與所述第2面之間的光路中,在第2面上形成所述第3中間像的像,所述第2成像光學系統包括正彎月透鏡,所述正彎月透鏡配置在最靠所述第1中間像側,且使凸面朝向所述第1中間像側。 According to a twelfth aspect, a projection optical system is provided, wherein the image of the first surface is formed on the second surface, and the first imaging optical system is disposed between the first surface and the second surface The first intermediate image of the first surface is formed in the optical path, and the second imaging optical system includes a first concave mirror disposed in the optical path between the first imaging optical system and the second surface. a second intermediate image that forms an image of the first intermediate image, and a third imaging optical system that is disposed between the optical path between the second imaging optical system and the second surface, and includes a second concave mirror. a third intermediate image that is an image of the second intermediate image; The fourth imaging optical system is disposed in an optical path between the third imaging optical system and the second surface, and forms an image of the third intermediate image on the second surface, wherein the second imaging optical system includes In the positive meniscus lens, the positive meniscus lens is disposed on the side closest to the first intermediate image, and the convex surface faces the first intermediate image side.

第13形態中,提供一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學系統,配置在所述第1面與所述第2面之間的光路中,形成所述第1面的第1中間像;第2成像光學系統,配置在所述第1成像光學系統與所述第2面之間的光路中,包含第1凹面反射鏡,形成所述第1中間像的像即第2中間像;第3成像光學系統,配置在所述第2成像光學系統與所述第2面之間的光路中,包含第2凹面反射鏡,形成所述第2中間像的像即第3中間像;以及第4成像光學系統,配置在所述第3成像光學系統與所述第2面之間的光路中,在第2面上形成所述第3中間像的像,所述第2成像光學系統包括透鏡,所述透鏡配置在最靠所述第1中間像側,並且鄰接於所述第1凹面反射鏡而配置。 According to a thirteenth aspect, a projection optical system is provided, wherein the image of the first surface is formed on the second surface, and the first imaging optical system is disposed between the first surface and the second surface The first intermediate image of the first surface is formed in the optical path, and the second imaging optical system includes a first concave mirror disposed in the optical path between the first imaging optical system and the second surface. a second intermediate image that forms an image of the first intermediate image, and a third imaging optical system that is disposed between the optical path between the second imaging optical system and the second surface, and includes a second concave mirror. The third intermediate image which is the image of the second intermediate image, and the fourth imaging optical system are disposed in the optical path between the third imaging optical system and the second surface, and the second surface is formed on the second surface In the image of the third intermediate image, the second imaging optical system includes a lens disposed on the side closest to the first intermediate image and disposed adjacent to the first concave mirror.

第14形態中,提供一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學系統,配置在所述第1面與所述第2面之間的光路中,形成所述第1面的第1中間像; 第2成像光學系統,配置在所述第1成像光學系統與所述第2面之間的光路中,包含第1凹面反射鏡,形成所述第1中間像的像即第2中間像;第3成像光學系統,配置在所述第2成像光學系統與所述第2面之間的光路中,包含第2凹面反射鏡,形成所述第2中間像的像即第3中間像;第4成像光學系統,配置在所述第3成像光學系統與所述第2面之間的光路中,在第2面上形成所述第3中間像的像;第1偏向鏡,配置在所述第1成像光學系統與所述第2成像光學系統之間的光路中;以及第2偏向鏡,配置在所述第3成像光學系統與所述第4成像光學系統之間。 According to a fourteenth aspect, a projection optical system is provided, wherein the image of the first surface is formed on the second surface, and the first imaging optical system is disposed between the first surface and the second surface Forming a first intermediate image of the first surface in the optical path; The second imaging optical system includes a first concave mirror disposed in an optical path between the first imaging optical system and the second surface, and forms a second intermediate image which is an image of the first intermediate image; The imaging optical system includes an optical path between the second imaging optical system and the second surface, and includes a second concave mirror, and forms a third intermediate image which is an image of the second intermediate image; The imaging optical system is disposed in an optical path between the third imaging optical system and the second surface, and forms an image of the third intermediate image on the second surface; and the first deflecting mirror is disposed in the first 1 in an optical path between the imaging optical system and the second imaging optical system; and a second deflecting mirror disposed between the third imaging optical system and the fourth imaging optical system.

第15形態中,提供一種調整方法,為第1形態至第7形態中任一形態的投影光學系統的調整方法,所述調整方法的特徵在於包括如下步驟:對於所述第1凹面反射鏡的反射面以及所述第2凹面反射鏡的反射面,賦予依據彼此相同的函數顯示的變形,藉此來調整所述投影光學系統的波前像差。 According to a fifteenth aspect, the adjustment method of the projection optical system according to any one of the first aspect to the seventh aspect, wherein the adjustment method includes the step of: for the first concave mirror The reflection surface and the reflection surface of the second concave mirror are provided with distortions displayed by the same function, thereby adjusting the wavefront aberration of the projection optical system.

第16形態中,提供一種曝光裝置,其特徵在於包括:如第1形態至第14形態中任一形態的投影光學系統,用於基於來自設置於所述第1面上的規定圖案的光,將所述規定圖案投影至設置於所述第2面的基板上。 According to a sixteenth aspect, there is provided an exposure apparatus according to any one of the first aspect to the fourteenth aspect, wherein the projection optical system is based on light from a predetermined pattern provided on the first surface. The predetermined pattern is projected onto a substrate provided on the second surface.

第17形態中,提供一種曝光方法,其特徵在於包括如 下步驟:將來自設置於所述第1面上的規定圖案的光導向投影光學系統,以將所述規定圖案投影至設置於所述第2面的基板上;以及使用第15形態的調整方法來調整所述投影光學系統。 In a seventeenth aspect, there is provided an exposure method characterized by comprising a step of: guiding the light from the predetermined pattern provided on the first surface to the projection optical system to project the predetermined pattern onto the substrate provided on the second surface; and using the adjustment method of the fifteenth aspect To adjust the projection optical system.

第18形態中,提供一種元件製造方法,其特徵在於包括如下步驟:使用第16形態的曝光裝置或第17形態的曝光方法,將所述規定圖案曝光至所述基板;對轉印有所述規定圖案的所述基板進行顯影,以在所述基板的表面形成與所述規定圖案對應的形狀的遮罩層;以及經由所述遮罩層來對所述基板的表面進行加工。 According to a thirteenth aspect, a method of manufacturing a device, comprising: exposing the predetermined pattern to the substrate using an exposure apparatus of a sixteenth aspect or an exposure method of a seventeenth aspect; The substrate of the predetermined pattern is developed to form a mask layer having a shape corresponding to the predetermined pattern on a surface of the substrate; and the surface of the substrate is processed via the mask layer.

1‧‧‧照明光學系統 1‧‧‧Lighting optical system

9‧‧‧Z載台 9‧‧‧Z stage

10‧‧‧XY載台 10‧‧‧XY stage

11‧‧‧底座 11‧‧‧Base

12m、12w‧‧‧移動鏡 12m, 12w‧‧‧ moving mirror

13m‧‧‧遮罩雷射干涉計 13m‧‧‧mask laser interferometer

13w‧‧‧晶圓雷射干涉計 13w‧‧‧Watt laser interferometer

14‧‧‧主控制系統 14‧‧‧Main control system

15‧‧‧晶圓載台驅動系統 15‧‧‧ Wafer Stage Drive System

21‧‧‧供排水機構 21‧‧‧Water supply and drainage mechanism

A‧‧‧距離 A‧‧‧ distance

AC‧‧‧致動器 AC‧‧‧ actuator

ACa‧‧‧作用點 ACa‧‧‧ points of action

AD‧‧‧主動變形部 AD‧‧‧Active deformation department

AS‧‧‧孔徑光闌 AS‧‧‧ aperture diaphragm

AX‧‧‧光軸 AX‧‧‧ optical axis

CM1、CM2‧‧‧凹面反射鏡 CM1, CM2‧‧‧ concave mirror

CM1a、CM2a‧‧‧反射面 CM1a, CM2a‧‧‧ reflective surface

ER‧‧‧有效成像區域 ER‧‧‧effective imaging area

ERa‧‧‧中心位置 ERa‧‧‧ central location

ERb‧‧‧第1周邊位置 ERb‧‧‧1st surrounding location

ERc‧‧‧第2周邊位置 ERc‧‧‧2nd surrounding location

FR‧‧‧有效視野區域 FR‧‧‧effective field of view

FRa‧‧‧中心點 FRa‧‧‧ Center Point

FRb‧‧‧最大物高的點 FRb‧‧‧The highest point of interest

FM1、FM2‧‧‧平面反射鏡 FM1, FM2‧‧‧ plane mirror

G1、G2‧‧‧指標 G1, G2‧‧‧ indicators

IF‧‧‧像場 IF‧‧‧like field

IL‧‧‧曝光用光(曝光光束) IL‧‧‧Exposure light (exposure beam)

IM‧‧‧像面 IM‧‧‧face

K1、K2、K3、K4‧‧‧成像光學單元 K1, K2, K3, K4‧‧‧ imaging optical unit

L11~L114、L21~L23、L31~L33、L41~L413、L415‧‧‧透鏡 L11~L114, L21~L23, L31~L33, L41~L413, L415‧‧ lens

L414、L416‧‧‧平凸透鏡 L414, L416‧‧‧ Plano-convex lens

Lb‧‧‧邊界透鏡 Lb‧‧‧ boundary lens

Lm‧‧‧液體 Lm‧‧‧Liquid

LX、LY‧‧‧尺寸 LX, LY‧‧ size

M‧‧‧遮罩 M‧‧‧ mask

MD1、MD2‧‧‧修正機構 MD1, MD2‧‧‧ Correction Mechanism

MST‧‧‧遮罩載台 MST‧‧‧mask stage

OB‧‧‧物體面 OB‧‧‧ object surface

P1‧‧‧平行平面板 P1‧‧‧ parallel flat panel

PL‧‧‧投影光學系統 PL‧‧‧Projection Optical System

PG‧‧‧圓 PG‧‧‧ round

PP‧‧‧光瞳位置 PP‧‧‧Light position

PSa、PSb‧‧‧局部點 PSa, PSb‧‧‧ local points

Ra‧‧‧靜止曝光區域的偏軸量 Ra‧‧‧ Axial amount of still exposure area

Rb‧‧‧晶圓上的像圈的半徑 Rb‧‧‧ radius of the image circle on the wafer

RCa、RCb‧‧‧長方形 RCa, RCb‧‧‧ rectangle

RCac、RCbc‧‧‧長方形的中心位置 Center position of RCac, RCbc‧‧‧ rectangle

Re‧‧‧半徑 Re‧‧‧ Radius

S40~S48、S50~S56‧‧‧步驟 S40~S48, S50~S56‧‧‧ steps

W‧‧‧晶圓 W‧‧‧ wafer

WH‧‧‧晶圓固持器 WH‧‧‧Wafer Holder

Z05、Z10、Z12、Z17、Z26、Z28‧‧‧像差成分 Z05, Z10, Z12, Z17, Z26, Z28‧‧‧ aberration components

X、Y、Z‧‧‧方向 X, Y, Z‧‧ Direction

圖1是概略表示本發明的實施形態的投影光學系統的結構的圖。 Fig. 1 is a view schematically showing a configuration of a projection optical system according to an embodiment of the present invention.

圖2是概略表示投影光學系統的像面上的有效成像區域的圖。 Fig. 2 is a view schematically showing an effective imaging area on the image plane of the projection optical system.

圖3是概略表示投影光學系統的物體面上的有效視野區域的圖。 3 is a view schematically showing an effective field of view area on an object surface of a projection optical system.

圖4是概略表示具備設置在凹面反射鏡背面側的多個致動器(actuator)的主動變形部的圖。 4 is a view schematically showing an active deformation portion including a plurality of actuators provided on the back side of the concave mirror.

圖5是概略表示多個致動器的作用點的分佈的圖。 Fig. 5 is a view schematically showing a distribution of points of action of a plurality of actuators.

圖6是對表示光學面與光瞳位置的位置關係的指標G的定義 進行說明的圖。 Figure 6 is a definition of an index G indicating the positional relationship between the optical surface and the pupil position. A diagram for explanation.

圖7是對本實施形態的投影光學系統中的波前像差的調整進行說明的第1圖。 Fig. 7 is a first view for explaining adjustment of wavefront aberration in the projection optical system of the embodiment.

圖8是對本實施形態的投影光學系統中的波前像差的調整進行說明的第2圖。 FIG. 8 is a second view for explaining adjustment of wavefront aberration in the projection optical system of the embodiment.

圖9是表示賦予依據函數FZ17的變形時的指標G的適當範圍的圖。 FIG. 9 is a view showing an appropriate range of the index G when the deformation according to the function FZ 17 is given.

圖10是表示賦予依據函數FZ28的變形時的指標G的適當範圍的圖。 FIG. 10 is a view showing an appropriate range of the index G when the deformation according to the function FZ 28 is given.

圖11是概略表示本實施形態的曝光裝置的結構的圖。 Fig. 11 is a view schematically showing the configuration of an exposure apparatus of the embodiment.

圖12是示意性地表示本實施形態的各實施例中的邊界透鏡與晶圓之間的結構的圖。 Fig. 12 is a view schematically showing a configuration between a boundary lens and a wafer in each embodiment of the embodiment.

圖13是表示本實施形態的第1實施例的投影光學系統的透鏡結構的圖。 Fig. 13 is a view showing a lens configuration of a projection optical system according to a first embodiment of the embodiment.

圖14(a)表示在第1實施例中對第1凹面反射鏡CM1賦予依據函數FZ17的變形時產生的像差成分,圖14(b)表示在第1實施例中對第2凹面反射鏡CM2賦予與第1凹面反射鏡CM1相同的變形時產生的像差成分。 Fig. 14 (a) shows the aberration component generated when the first concave mirror CM1 is deformed according to the function FZ 17 in the first embodiment, and Fig. 14 (b) shows the second concave reflection in the first embodiment. The mirror CM2 gives an aberration component which is generated when the first concave mirror CM1 is deformed in the same manner.

圖15(a)表示在第1實施例中主要使0次像差成分產生的情況,圖15(b)表示在第1實施例中主要使1次像差成分產生的情況。 Fig. 15 (a) shows a case where the 0th-order aberration component is mainly generated in the first embodiment, and Fig. 15 (b) shows a case where the primary aberration component is mainly generated in the first embodiment.

圖16是表示本實施形態的第2實施例的投影光學系統的透鏡 結構的圖。 Figure 16 is a view showing a lens of a projection optical system according to a second embodiment of the present embodiment. A diagram of the structure.

圖17是表示本實施形態的第3實施例的投影光學系統的透鏡結構的圖。 Fig. 17 is a view showing a lens configuration of a projection optical system according to a third embodiment of the embodiment.

圖18是表示本實施形態的第4實施例的投影光學系統的透鏡結構的圖。 Fig. 18 is a view showing a lens configuration of a projection optical system according to a fourth embodiment of the embodiment.

圖19是表示半導體元件的製造步驟的流程圖。 Fig. 19 is a flow chart showing a manufacturing procedure of a semiconductor element.

圖20是表示液晶顯示器件等液晶元件的製造步驟的流程圖。 Fig. 20 is a flow chart showing a manufacturing procedure of a liquid crystal element such as a liquid crystal display device.

以下,基於附圖來說明實施形態。圖1是概略表示本發明的實施形態的投影光學系統的結構的圖。本實施形態中,作為搭載於曝光裝置中的投影光學系統的一例,設想圖1所示的包含4個成像光學單元K1、K2、K3、K4的4次成像型的反射折射光學系統PL。圖1中,沿著作為感光性基板的晶圓W的轉印面(曝光面)的法線方向來設定Z軸,沿於晶圓W的轉印面內與圖1的紙面平行的方向設定Y軸,沿於晶圓W的轉印面內與圖1的紙面垂直的方向設定X軸。 Hereinafter, embodiments will be described based on the drawings. Fig. 1 is a view schematically showing a configuration of a projection optical system according to an embodiment of the present invention. In the present embodiment, as an example of a projection optical system mounted in an exposure apparatus, a four-time imaging type catadioptric optical system PL including four imaging optical units K1, K2, K3, and K4 shown in FIG. 1 is assumed. In FIG. 1, the Z axis is set along the normal direction of the transfer surface (exposure surface) of the wafer W on which the photosensitive substrate is written, and the Y axis is set in the direction parallel to the paper surface of FIG. 1 in the transfer surface of the wafer W. The X-axis is set along the direction perpendicular to the paper surface of FIG. 1 in the transfer surface of the wafer W.

本實施形態的投影光學系統PL在適用於曝光裝置時,依照自設置遮罩M的圖案面的物體面(第1面)OB朝向設置晶圓W的曝光面的像面(第2面)IM的光的入射順序,而具備:作為折射光學系統的第1成像光學單元K1;作為偏向鏡的第1平面反射鏡FM1,使光路彎折;作為反射折射光學系統的第2成像光學單元K2,包含第1凹面反射鏡CM1;作為反射折射光學系統的 第3成像光學單元K3,包含第2凹面反射鏡CM2;作為偏向鏡的第2平面反射鏡FM2,使光路彎折;以及作為折射光學系統的第4成像光學單元K4。本實施形態的各實施例中,第1平面反射鏡FM1與第2平面反射鏡FM2形成為一體的光學構件。再者,亦可將第1平面反射鏡FM1與第2平面反射鏡FM2設為獨立的光學構件。本實施形態中,成像光學單元可採用在成像面上形成規定面的像的成像光學系統。而且,本實施形態中,成像光學單元可採用將互不相同的規定面彼此設為光學共軛的關係的成像光學系統。而且,本實施形態中,可將第1成像光學單元K1以及第2成像光學單元K2視為形成物體面(第1面)OB的中間像的第1成像光學部分,可將第3成像光學單元K3以及第4成像光學單元K4視為在像面(第2面)上形成中間像的像的第2成像光學部分。 When applied to an exposure apparatus, the projection optical system PL of the present embodiment faces the image plane (second surface) of the exposure surface on which the wafer W is placed in accordance with the object surface (first surface) OB from which the pattern surface of the mask M is provided. The incident order of the light includes: a first imaging optical unit K1 as a refractive optical system; a first planar mirror FM1 as a deflecting mirror; the optical path is bent; and the second imaging optical unit K2 as a catadioptric optical system Including a first concave mirror CM1; as a catadioptric optical system The third imaging optical unit K3 includes a second concave mirror CM2, a second planar mirror FM2 as a deflection mirror, and an optical path, and a fourth imaging optical unit K4 as a refractive optical system. In each of the embodiments of the present embodiment, the first plane mirror FM1 and the second plane mirror FM2 are integrally formed as an optical member. Further, the first plane mirror FM1 and the second plane mirror FM2 may be independent optical members. In the present embodiment, the imaging optical unit may employ an imaging optical system that forms an image of a predetermined surface on the imaging surface. Further, in the present embodiment, the imaging optical unit may employ an imaging optical system in which the predetermined surfaces different from each other are optically conjugated. Further, in the present embodiment, the first imaging optical unit K1 and the second imaging optical unit K2 can be regarded as the first imaging optical portion that forms the intermediate image of the object plane (first surface) OB, and the third imaging optical unit can be used. K3 and the fourth imaging optical unit K4 are regarded as a second imaging optical portion that forms an image of the intermediate image on the image plane (second surface).

此時,如圖2所示,投影光學系統PL的像面IM上的有效成像區域ER成為遠離投影光學系統PL的光軸AX的區域。具體而言,有效成像區域ER是:在以光軸AX為中心的半徑Rb的像場(image field)IF內,自光軸AX沿著Y方向相距距離Ra的矩形狀的區域,即沿著X方向具有長邊(尺寸LX)且沿著Y方向具有短邊(尺寸LY)的長方形狀的區域。因此,如圖3所示,投影光學系統PL的物體面OB上的有效視野區域FR成為自投影光學系統PL的光軸AX朝Y方向離開的矩形狀的區域。再者,有效成像區域ER亦可設為投影光學系統PL的像面IM中被引導有來自物體面OB的光的區域且像差實質上得以修正的區域。而且, 有效成像區域ER亦可為投影光學系統PL的像面IM中被引導有來自物體面OB的光的區域。 At this time, as shown in FIG. 2, the effective imaging region ER on the image plane IM of the projection optical system PL becomes a region away from the optical axis AX of the projection optical system PL. Specifically, the effective imaging region ER is a rectangular region in which the distance Ra is along the Y direction from the optical axis AX in an image field IF having a radius Rb centered on the optical axis AX, that is, along the A rectangular region having a long side (dimension LX) in the X direction and a short side (size LY) along the Y direction. Therefore, as shown in FIG. 3, the effective view region FR on the object plane OB of the projection optical system PL is a rectangular region that is separated from the optical axis AX of the projection optical system PL in the Y direction. Further, the effective imaging region ER may be a region in which the region of the image plane IM of the projection optical system PL is guided with light from the object plane OB and the aberration is substantially corrected. and, The effective imaging area ER may also be an area in which the image plane IM of the projection optical system PL is guided with light from the object plane OB.

本實施形態中,第1凹面反射鏡CM1的反射面以及第2凹面反射鏡CM2的反射面是可變形地構成,第1主動變形部使第1凹面反射鏡CM1的反射面主動變形,第2主動變形部使第2凹面反射鏡CM2的反射面主動變形。作為一例,如圖4所示,可使用具備設置在凹面反射鏡CM1(CM2)背面側的多個致動器AC的主動變形部AD。多個致動器AC例如圖5所示,以它們的作用點ACa呈放射狀分佈的方式而配置。而且,亦可將多個致動器AC以它們的作用點ACa呈二維矩陣(matrix)狀分佈的方式而配置。 In the present embodiment, the reflecting surface of the first concave reflecting mirror CM1 and the reflecting surface of the second concave reflecting mirror CM2 are deformably configured, and the first active deforming portion actively deforms the reflecting surface of the first concave reflecting mirror CM1. The active deformation portion actively deforms the reflection surface of the second concave reflecting mirror CM2. As an example, as shown in FIG. 4, an active deformation portion AD including a plurality of actuators AC provided on the back side of the concave mirror CM1 (CM2) can be used. For example, as shown in FIG. 5, the plurality of actuators AC are arranged such that their acting points ACa are radially distributed. Further, the plurality of actuators AC may be arranged such that their acting points ACa are distributed in a two-dimensional matrix.

主動變形部AD藉由多個致動器AC自背面側推拉凹面反射鏡CM1(CM2)的反射面CM1a(CM2a),從而使反射面CM1a(CM2a)變形為所需的面形狀。對於主動變形部AD的具體結構以及作用,可參照美國專利第6,842,277號公報。對於主動變形部AD中的多個致動器AC的作用點ACa的配置,可參照美國專利第6,842,277號公報。而且,作為主動變形部,亦可使用美國專利第5,115,351號、美國專利第6,398,373號、美國專利第6,411,426號、美國專利第6,803,994號、美國專利第6,880,942號或美國專利公開第2010/0033704A1號等中揭示的變形機構。而且,凹面反射鏡CM1(CM2)的至少一者的反射面CM1a(CM2a)亦可為可變形。 The active deformation portion AD pushes the reflection surface CM1a (CM2a) of the concave mirror CM1 (CM2) from the back side by a plurality of actuators AC, thereby deforming the reflection surface CM1a (CM2a) into a desired surface shape. For the specific structure and function of the active deformation portion AD, reference is made to U.S. Patent No. 6,842,277. For the arrangement of the action points ACa of the plurality of actuators AC in the active deformation portion AD, reference is made to U.S. Patent No. 6,842,277. Further, as the active deformation portion, U.S. Patent No. 5,115,351, U.S. Patent No. 6,398,373, U.S. Patent No. 6,411,426, U.S. Patent No. 6,803,994, U.S. Patent No. 6,880,942, or U.S. Patent Publication No. 2010/0033704 A1, etc. Revealing the deformation mechanism. Further, the reflecting surface CM1a (CM2a) of at least one of the concave reflecting mirrors CM1 (CM2) may be deformable.

本實施形態的第1實施例中,如後所述,第1凹面反射鏡CM1相對於第2成像光學單元K2的光路中與物體面OB的位 置在光學上處於傅立葉變換關係的第1光瞳位置,而配置於像面IM側。而且,第2凹面反射鏡CM2相對於第3成像光學單元K3的光路中與物體面OB的位置在光學上存在傅立葉變換關係的第2光瞳位置,而配置於物體面OB側。 In the first embodiment of the present embodiment, as will be described later, the position of the first concave mirror CM1 with respect to the object plane OB in the optical path of the second imaging optical unit K2 is described. It is placed at the first pupil position optically in the Fourier transform relationship, and is placed on the image plane IM side. Further, the second concave reflecting mirror CM2 is optically placed at the second pupil position of the Fourier-transformed relationship with respect to the position of the object plane OB in the optical path of the third imaging optical unit K3, and is disposed on the object plane OB side.

第2實施例中,第1凹面反射鏡CM1相對於第1光瞳位置而配置於物體面OB側,第2凹面反射鏡CM2相對於第2光瞳位置而配置於像面IM側。第3實施例中,第1凹面反射鏡CM1相對於第1光瞳位置而配置於像面IM側,第2凹面反射鏡CM2配置在與第2光瞳位置大致一致的位置。第4實施例中,第1凹面反射鏡CM1配置在與第1光瞳位置大致一致的位置,第2凹面反射鏡CM2配置在與第2光瞳位置大致一致的位置。 In the second embodiment, the first concave reflecting mirror CM1 is disposed on the object plane OB side with respect to the first pupil position, and the second concave reflecting mirror CM2 is disposed on the image plane IM side with respect to the second pupil position. In the third embodiment, the first concave reflecting mirror CM1 is disposed on the image plane IM side with respect to the first pupil position, and the second concave reflecting mirror CM2 is disposed at a position substantially coincident with the second pupil position. In the fourth embodiment, the first concave reflecting mirror CM1 is disposed at a position substantially coincident with the position of the first aperture, and the second concave reflecting mirror CM2 is disposed at a position substantially coincident with the position of the second aperture.

再者,本實施形態以及實施例中,光瞳位置可設為與物體面OB的位置或像面IM的位置在光學上處於傅立葉變換關係的位置。 Further, in the present embodiment and the embodiment, the pupil position can be set to a position that is optically Fourier-transformed with respect to the position of the object plane OB or the position of the image plane IM.

而且,本實施形態以及實施例中,光瞳位置可設為與可視為投影光學系統的反射折射光學系統PL的入射光瞳光學共軛的位置、以及與反射折射光學系統PL的射出光瞳光學共軛的位置中的至少一個位置。 Further, in the present embodiment and the embodiment, the pupil position can be set to a position optically conjugate with an entrance pupil of the catadioptric optical system PL which can be regarded as a projection optical system, and an exit pupil optical with the catadioptric optical system PL. At least one of the conjugated positions.

本實施形態中,對表示任意光學面(例如凹面反射鏡CM1、CM2的反射面CM1a、CM2a)與最靠近該任意光學面的光瞳位置的位置關係的指標G進行定義。具體而言,指標G由下述式(a)來定義。 In the present embodiment, an index G indicating the positional relationship between the arbitrary optical surfaces (for example, the reflecting surfaces CM1a and CM2a of the concave reflecting mirrors CM1 and CM2) and the pupil position closest to the arbitrary optical surface is defined. Specifically, the index G is defined by the following formula (a).

G=A/Re (a) G=A/Re (a)

式(a)中,Re如圖6所示,是圓PG的半徑,該圓PG是與來自物體面OB上的有效視野區域FR內的各點的光束到達任意光學面時在該任意光學面中所佔的局部點(partial spot)的集合外切的圓。此處,所謂局部點,是指:以與最大數值孔徑對應的孔徑角而自有效視野區域FR內的各點射出的光束到達任意光學面時,在該任意光學面中所佔的區域。 In the formula (a), as shown in FIG. 6, Re is the radius of the circle PG which is at the arbitrary optical surface when the light beam from each point in the effective field of view region FR on the object plane OB reaches an arbitrary optical surface. A collection of circumscribed circles of local spots. Here, the local point refers to a region occupied by the arbitrary optical surface when the light beam emitted from each point in the effective field of view region FR reaches the arbitrary optical surface at an aperture angle corresponding to the maximum numerical aperture.

A如圖6所示,是指如下所述的距離,即,與來自有效視野區域FR的中心點FRa(參照圖3)的光束到達任意光學面時在該任意光學面中所佔的局部點PSa外切的四邊形且在與有效視野區域FR的一邊對應的方向上具有一邊的長方形RCa的中心位置RCac、和與來自有效視野區域FR內的最大物高的點FRb(參照圖3)的光束到達任意光學面時在該任意光學面中所佔的局部點PSb外切的四邊形且在與有效視野區域FR的一邊對應的方向上具有一邊的長方形RCb的中心位置RCbc在任意光學面上的距離。再者,有效視野區域FR的中心點FRa可設為該有效視野區域FR的重心。 A is a distance as described below, that is, a local point occupied by the light beam from the center point FRa (refer to FIG. 3) from the effective field of view area FR when it reaches an arbitrary optical surface. A PSa circumscribed quadrangular shape having a center position RCac of a rectangular RCA on one side in a direction corresponding to one side of the effective view region FR, and a light beam FRb (refer to FIG. 3) from a maximum object height in the effective view region FR The distance from the center point PSb occluded in the arbitrary optical surface to the arbitrary optical surface and the center position RCbc of the rectangular RCb having one side in the direction corresponding to one side of the effective view region FR on any optical surface . Further, the center point FRa of the effective view region FR can be set as the center of gravity of the effective view region FR.

因此,若與第1凹面反射鏡CM1的反射面CM1a相關的指標G1,即表示反射面CM1a與第2成像光學單元K2的光路中的第1光瞳位置的位置關係的指標G1為0,則反射面CM1a位 於第1光瞳位置,隨著指標G1變大,反射面CM1a距第1光瞳位置的距離變大。同樣地,與第2凹面反射鏡CM2的反射面CM2a相關的指標G2,即表示反射面CM2a與第3成像光學單元K3的光路中的第2光瞳位置的位置關係的指標G2為0,則反射面CM2a位於第2光瞳位置,隨著指標G2變大,反射面CM2a距第2光瞳位置的距離變大。 Therefore, when the index G1 relating to the reflection surface CM1a of the first concave mirror CM1, that is, the index G1 indicating the positional relationship of the first pupil position in the optical path of the reflection surface CM1a and the second imaging optical unit K2 is 0, Reflective surface CM1a bit At the first pupil position, as the index G1 becomes larger, the distance of the reflecting surface CM1a from the first pupil position becomes larger. Similarly, the index G2 related to the reflection surface CM2a of the second concave mirror CM2, that is, the index G2 indicating the positional relationship between the reflection surface CM2a and the second aperture position in the optical path of the third imaging optical unit K3 is 0. The reflecting surface CM2a is located at the second pupil position, and as the index G2 becomes larger, the distance of the reflecting surface CM2a from the second pupil position becomes larger.

接下來,參照圖7,對本實施形態的投影光學系統PL中的波前像差的調整進行說明。圖7所示的成像光學系統是將本實施形態的投影光學系統模仿(模型(model)化)為簡單的成像光學系統者。以下,為了便於說明,對圖7的經模型化的成像光學系統中的波前像差的調整進行說明。 Next, the adjustment of the wavefront aberration in the projection optical system PL of the present embodiment will be described with reference to Fig. 7 . The imaging optical system shown in Fig. 7 is a model in which the projection optical system of the present embodiment is modeled (modeled) into a simple imaging optical system. Hereinafter, the adjustment of the wavefront aberration in the modeled imaging optical system of FIG. 7 will be described for convenience of explanation.

圖7所示的經模型化的成像光學系統是將物體面OB與像面IM設為光學共軛的1次成像型的折射光學系統,在該光瞳位置PP的物體面OB側配置有光學面的修正機構MD1,在光瞳位置PP的像面IM側配置有光學面的修正機構MD2。修正機構MD1、MD2的作用對應於本實施形態的投影光學系統PL中對反射面CM1a、CM2a賦予變形時的凹面反射鏡CM1、CM2的作用。換言之,修正機構MD1、MD2具有對通過各光學面的光束給予所給的波前像差成分的作用。 The modeled imaging optical system shown in FIG. 7 is a primary imaging type refractive optical system in which the object plane OB and the image plane IM are optically conjugated, and optical is disposed on the object plane OB side of the pupil position PP. The surface correction mechanism MD1 has an optical surface correction mechanism MD2 disposed on the image surface IM side of the pupil position PP. The action of the correction mechanisms MD1 and MD2 corresponds to the action of the concave mirrors CM1 and CM2 when the reflection surfaces CM1a and CM2a are deformed in the projection optical system PL of the present embodiment. In other words, the correction mechanisms MD1, MD2 have the effect of giving the given wavefront aberration components to the light beams passing through the respective optical surfaces.

本實施形態中,對於第1凹面反射鏡CM1的反射面CM1a以及第2凹面反射鏡CM2的反射面CM2a,賦予依據彼此相同的函數顯示的變形。以下,作為一例,考慮賦予依據使用極 座標系的冊尼克(Zernike)多項式中的第17項所涉及的函數FZ17:ρ4cos4θ的變形的情況。此處,ρ是將反射面CM1a、CM2a的圓形狀的有效反射區域的半徑標準化為1時的標準化半徑,θ為極座標的向徑角。 In the present embodiment, the reflection surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2 are deformed in accordance with the same function. Hereinafter, as an example, a case will be considered in which a deformation of the function FZ 17 : ρ 4 cos4θ according to the 17th item in the Zernike polynomial using the polar coordinate system is given. Here, ρ is a normalized radius when the radius of the effective reflection region of the circular shape of the reflection surfaces CM1a and CM2a is normalized to 1, and θ is the radial angle of the polar coordinate.

首先,對其中一個修正機構MD1的作用進行考察。修正機構MD1的作用對應於對反射面CM1a賦予依據函數FZ17的變形時的凹面反射鏡CM1的作用。此時,作為與有效成像區域ER的中心位置ERa(參照圖2)相關的波前像差,產生依據函數FZ17而顯示的4次旋轉對稱的像差成分Z17。這可根據下述情況而容易理解,即,到達有效成像區域ER的中心位置ERa的光束通過修正機構MD1時,通過以光軸為中心的區域。 First, the role of one of the correction mechanisms MD1 is examined. Correcting effect corresponding to the action mechanism MD1 concave mirror CM1 when the reflecting surface according to function FZ deformation imparted CM1a 17. At this time, as the wavefront aberration associated with the center position ERa (see FIG. 2) of the effective imaging region ER, the fourth-order rotationally symmetric aberration component Z17 displayed in accordance with the function FZ 17 is generated. This can be easily understood by the fact that the light beam reaching the center position ERa of the effective imaging region ER passes through the correction mechanism MD1 and passes through the region centered on the optical axis.

藉由修正機構MD1的作用,作為與自有效成像區域ER的中心位置ERa沿著+X方向的第1周邊位置ERb(參照圖2)相關的波前像差,如圖8所示,產生依據函數FZ17而顯示的4次旋轉對稱的像差成分Z17、及依據第10項所涉及的函數FZ10:ρ3cos3θ而顯示的3次旋轉對稱的像差成分Z10(+)。這是因為,到達有效成像區域ER的第1周邊位置ERb的光束在通過修正機構MD1時,通過自光軸朝-X方向偏心的區域。 By the action of the correction mechanism MD1, the wavefront aberration associated with the first peripheral position ERb (see FIG. 2) in the +X direction from the center position ERa of the effective imaging region ER is as shown in FIG. The fourth-order rotationally symmetric aberration component Z17 displayed by the function FZ 17 and the third-order rotationally symmetric aberration component Z10(+) displayed in accordance with the function FZ 10 : ρ 3 cos3θ according to the tenth term. This is because the light beam that has reached the first peripheral position ERb of the effective imaging region ER passes through the correction mechanism MD1 and passes through a region that is eccentric from the optical axis in the -X direction.

藉由修正機構MD1的作用,作為與自有效成像區域ER的中心位置ERa沿著-X方向的第2周邊位置ERc(參照圖2)相關的波前像差,如圖8所示,產生依據函數FZ17而顯示的4次旋轉對稱的像差成分Z17、及依據第10項所涉及的函數FZ10而顯示 的3次旋轉對稱的像差成分Z10(-)。這是因為,到達有效成像區域ER的第2周邊位置ERc的光束在通過修正機構MD1時,通過自光軸朝+X方向偏心的區域。 By the action of the correction mechanism MD1, the wavefront aberration associated with the second peripheral position ERc (see FIG. 2) in the -X direction from the center position ERa of the effective imaging region ER is as shown in FIG. The fourth-order rotationally symmetric aberration component Z17 displayed by the function FZ 17 and the three-time rotationally symmetric aberration component Z10(-) displayed in accordance with the function FZ 10 of the tenth term. This is because the light beam that has reached the second peripheral position ERc of the effective imaging region ER passes through the correction mechanism MD1 and passes through a region that is eccentric from the optical axis toward the +X direction.

此處,表示像差成分Z17的函數FZ17的係數的符號並不依存於有效成像區域ER中的X方向位置而為相同,該係數的大小並不依存於有效成像區域ER中的X方向位置而為大致固定。另一方面,表示像差成分Z10的函數FZ10的係數的符號在第1周邊位置ERb與第2周邊位置ERc處相反,該係數的大小並不依存於有效成像區域ER中的X方向位置而為大致固定。 Here, the sign indicating the coefficient of the function FZ 17 of the aberration component Z17 is not the same depending on the position in the X direction in the effective imaging region ER, and the magnitude of the coefficient does not depend on the position in the X direction in the effective imaging region ER. And it is roughly fixed. On the other hand, the sign indicating the coefficient of the function FZ 10 of the aberration component Z10 is opposite to the first peripheral position ERb and the second peripheral position ERc, and the magnitude of the coefficient does not depend on the position in the X direction in the effective imaging region ER. It is roughly fixed.

為了理解一對修正機構MD1與修正機構MD2的協同作用,作為最簡單的示例,假設圖7所示的成像光學系統關於光瞳位置PP而對稱地構成,且修正機構MD1與修正機構MD2關於光瞳位置PP而對稱地配置。進而,假設修正機構MD1、MD2的作用對應於對具有彼此相同的面形狀的反射面CM1a、CM2a以彼此相同的量來賦予依據函數FZ17的變形時的凹面反射鏡CM1、CM2的作用。 In order to understand the synergy between the pair of correction mechanism MD1 and the correction mechanism MD2, as the simplest example, it is assumed that the imaging optical system shown in FIG. 7 is symmetrically configured with respect to the pupil position PP, and the correction mechanism MD1 and the correction mechanism MD2 are related to light. The 瞳 position PP is symmetrically arranged. Further, assume the role of correcting mechanism MD1, MD2 corresponding to the reflecting surface having the same surface shape CM1a each other, cm2a same amount to impart to each other at the concave mirror CM1 function FZ 17 according to the modification, the action of CM2.

此時,如上所述,作為對於通過有效成像區域ER的中心位置ERa並沿X方向延伸的直線上的各點而由修正機構MD1的作用所產生的波前像差,產生依據函數FZ17而顯示的4次旋轉對稱的像差成分Z17、及依據函數FZ10而顯示的3次旋轉對稱的像差成分Z10(1)。同樣地,作為對於通過有效成像區域ER的中心位置ERa並沿X方向延伸的直線上的各點而由修正機構MD2 的作用所產生的波前像差,產生依據函數FZ17而顯示的4次旋轉對稱的像差成分Z17、及依據函數FZ10而顯示的3次旋轉對稱的像差成分Z10(2)。 At this time, as described above, as the wave front aberration for each point on the straight line passing through the effective center position of the imaging region ER ERa and extending in the X direction generated by the action of correcting means MD1 is generated based on the function FZ 17 4 show rotational symmetry aberration component of Z17, and three rotationally symmetric aberration component based on the display function FZ 10 and Z10 (1). Similarly, as the wave front aberration for each point on the straight line passing through the effective center position of the imaging region ER ERa and extending in the X direction generated by the action of the correcting means MD2, generating four basis functions displayed by FZ 17 rotationally symmetrical aberration component Z17, and three rotationally symmetric aberration component based on the displayed function FZ 10 Z10 (2).

當修正機構MD1與修正機構MD2關於光瞳位置PP而對稱地配置,且修正機構MD1、MD2的作用對應於被賦予有彼此相同量的變形時的凹面反射鏡CM1、CM2的作用時,表示像差成分Z17的函數FZ17的係數的符號以及大小在修正機構MD1與修正機構MD2中彼此相同,表示像差成分Z10的函數FZ10的係數的符號以及大小在修正機構MD1與修正機構MD2中反轉。表示像差成分Z10的函數FZ10的係數的符號以及大小在修正機構MD1與修正機構MD2中反轉,可根據如下情況而容易理解,即,到達有效成像區域ER的1點的光束通過修正機構MD1的區域與通過修正機構MD2的區域關於光軸而彼此朝相反側偏心。 When the correction mechanism MD1 and the correction mechanism MD2 are symmetrically arranged with respect to the pupil position PP, and the actions of the correction mechanisms MD1, MD2 correspond to the action of the concave mirrors CM1, CM2 when the same amount of deformation is given to each other, the image is represented. The sign and size of the coefficients of the function FZ 17 of the difference component Z17 are the same in the correction mechanism MD1 and the correction mechanism MD2, and the sign and magnitude of the coefficient of the function FZ 10 indicating the aberration component Z10 are reversed in the correction mechanism MD1 and the correction mechanism MD2. turn. The sign and the size of the coefficient representing the function FZ 10 of the aberration component Z10 are inverted in the correction mechanism MD1 and the correction mechanism MD2, and can be easily understood by the fact that the light beam passing through the correction target is passed at one point of the effective imaging region ER. The area of the MD1 and the area passing through the correction mechanism MD2 are eccentric toward each other with respect to the optical axis.

因此,當修正機構MD1與修正機構MD2關於光瞳位置PP而對稱地配置,且修正機構MD1、MD2的作用對應於賦予有符號以及大小相同的變形時的凹面反射鏡CM1、CM2的作用時,藉由修正機構MD1與修正機構MD2的協同作用,像差成分Z10被抵消,僅產生經倍化的像差成分Z17作為波前像差。換言之,藉由修正機構MD1與修正機構MD2的協同作用,可產生對於像面IM上的有效成像區域ER內的沿著X方向的各點為一樣的像差成分即0次像差成分,甚而可調整波前像差的0次像差成分。 Therefore, when the correction mechanism MD1 and the correction mechanism MD2 are symmetrically arranged with respect to the pupil position PP, and the actions of the correction mechanisms MD1, MD2 correspond to the action of the concave mirrors CM1, CM2 when the signed and the same size are applied, By the synergistic action of the correction mechanism MD1 and the correction mechanism MD2, the aberration component Z10 is cancelled, and only the multiplied aberration component Z17 is generated as the wavefront aberration. In other words, by the synergistic action of the correction mechanism MD1 and the correction mechanism MD2, it is possible to generate the aberration component which is the same as the aberration component in the X-direction in the effective imaging region ER on the image plane IM, even The 0th-order aberration component of the wavefront aberration can be adjusted.

另一方面,當修正機構MD1與修正機構MD2關於光瞳 位置PP而對稱地配置,且修正機構MD1、MD2的作用對應於賦予有符號不同且大小相同的變形時的凹面反射鏡CM1、CM2的作用時,藉由修正機構MD1與修正機構MD2的協同作用,像差成分Z17被抵消,僅產生經倍化的像差成分Z17作為波前像差。其原因在於,若所賦予的變形的符號反轉,則像差成分Z17以及像差成分Z10亦會反轉。換言之,藉由修正機構MD1與修正機構MD2的協同作用,可產生對於有效成像區域ER內的沿著X方向的各點為線性變化的像差成分即1次像差成分,甚而可調整波前像差的1次像差成分。 On the other hand, when the correction mechanism MD1 and the correction mechanism MD2 are about the pupil The position PP is symmetrically arranged, and the action of the correction mechanisms MD1, MD2 corresponds to the action of the concave mirrors CM1, CM2 when the signs are different and the same size is deformed, and the synergy between the correction mechanism MD1 and the correction mechanism MD2 The aberration component Z17 is cancelled, and only the multiplied aberration component Z17 is generated as the wavefront aberration. This is because if the sign of the distortion to be applied is reversed, the aberration component Z17 and the aberration component Z10 are also inverted. In other words, by the synergistic action of the correction mechanism MD1 and the correction mechanism MD2, it is possible to generate an aberration component which is a linear component which changes linearly in each point along the X direction in the effective imaging region ER, and can even adjust the wavefront. The aberration component of the aberration.

這意味著:即使修正機構MD1與修正機構MD2並非關於光瞳位置PP而對稱地配置,但只要夾著光瞳位置PP而配置,則只要適當設定表達對修正機構MD1以及修正機構MD2賦予的變形的函數FZ17的係數的符號以及大小(或者只要使函數FZ17的係數的符號以及大小發生變化),便可對於有效成像區域ER內的沿著X方向的各點獨立地產生0次像差成分以及1次像差成分,甚而可獨立地調整波前像差的0次像差成分以及1次像差成分。 This means that even if the correction mechanism MD1 and the correction mechanism MD2 are arranged symmetrically with respect to the pupil position PP, if they are arranged with the pupil position PP interposed therebetween, the deformations given to the correction mechanism MD1 and the correction mechanism MD2 are appropriately set and expressed. The sign and size of the coefficients of the function FZ 17 (or as long as the sign and size of the coefficients of the function FZ 17 are changed), 0 aberrations can be independently generated for each point along the X direction in the effective imaging region ER. The component and the first-order aberration component can adjust the 0th-order aberration component and the 1st-order aberration component of the wavefront aberration independently.

而且,當修正機構MD1自光瞳位置PP偏離所需距離而配置且修正機構MD2配置於光瞳位置PP的位置時,藉由修正機構MD1的作用而產生像差成分Z17與像差成分Z10,藉由修正機構MD2的作用而僅產生像差成分Z17。這意味著:當其中一個修正機構自光瞳位置PP偏離所需距離而配置且另一個修正機構配置於光瞳位置PP的位置或其附近時,適當設定表達對修正機構 MD1以及修正機構MD2賦予的變形的函數FZ17的係數的符號以及大小(或者使該函數FZ17的係數的符號以及大小發生變化),可對於有效成像區域ER內的沿著X方向的各點在一定程度上獨立地產生0次像差成分以及1次像差成分,甚而可在一定程度上獨立地調整波前像差的0次像差成分以及1次像差成分。 Further, when the correction mechanism MD1 is disposed away from the aperture position PP by a required distance and the correction mechanism MD2 is disposed at the position of the pupil position PP, the aberration component Z17 and the aberration component Z10 are generated by the action of the correction mechanism MD1. Only the aberration component Z17 is generated by the action of the correction mechanism MD2. This means that when one of the correction mechanisms is disposed from the aperture position PP by a desired distance and the other correction mechanism is disposed at or near the position of the pupil position PP, the appropriate setting expression is given to the correction mechanism MD1 and the correction mechanism MD2. The sign and size of the coefficients of the deformed function FZ 17 (or the sign and size of the coefficients of the function FZ 17 ) may be independent to some extent for points along the X direction within the effective imaging region ER. The 0th-order aberration component and the 1st-order aberration component are generated, and the 0th-order aberration component and the 1st-order aberration component of the wavefront aberration can be adjusted independently to some extent.

而且,當修正機構MD1以及修正機構MD2均配置於光瞳位置PP的位置或其附近時,藉由修正機構MD1的作用而僅產生像差成分Z17,藉由修正機構MD2的作用而僅產生像差成分Z17。這意味著:當兩個修正機構均配置於光瞳位置PP的位置或其附近時,適當設定表達對修正機構MD1以及修正機構MD2賦予的變形的函數FZ17的係數的符號以及大小(或者使該函數FZ17的係數的符號以及大小發生變化),可對於有效成像區域ER內的沿著X方向的各點僅產生所需量的0次像差成分,甚而可僅調整波前像差的0次像差成分。 Further, when both the correction mechanism MD1 and the correction mechanism MD2 are disposed at or near the position of the pupil position PP, only the aberration component Z17 is generated by the action of the correction mechanism MD1, and only the image is generated by the action of the correction mechanism MD2. The difference component is Z17. This means that when both correction mechanisms are disposed at or near the position of the pupil position PP, the sign and size of the coefficient expressing the function FZ 17 given to the correction mechanism MD1 and the correction mechanism MD2 are appropriately set (or The sign and the size of the coefficient of the function FZ 17 are changed), and only a desired amount of the 0th-order aberration component can be generated for each point along the X direction in the effective imaging region ER, and even the wavefront aberration can be adjusted only. 0th aberration component.

基於以上的考察,本實施形態的第1實施例以及第2實施例中,以與第1凹面反射鏡CM1的反射面CM1a相關的指標G1以及與第2凹面反射鏡CM2的反射面CM2a相關的指標G2滿足下述的條件式(1)以及條件式(2)的方式,將第1凹面反射鏡CM1配置於第2成像光學單元K2的光路中的光瞳位置(第1光瞳位置)至像面IM側(或物體面OB側)的位置,將第2凹面反射鏡CM2配置於第3成像光學單元K3的光路中的光瞳位置(第2光瞳位置)至物體面OB側(或)像面IM側的位置。 Based on the above investigation, in the first embodiment and the second embodiment of the present embodiment, the index G1 related to the reflection surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2 are associated with each other. The index G2 satisfies the following conditional expressions (1) and (2), and the first concave mirror CM1 is disposed at the pupil position (first aperture position) in the optical path of the second imaging optical unit K2 to The second concave mirror CM2 is disposed at the pupil position (second aperture position) in the optical path of the third imaging optical unit K3 to the object plane OB side (or the position of the image plane IM side (or the object plane OB side) (or ) The position of the image side IM side.

0.02<G1<0.07 (1) 0.02<G1<0.07 (1)

0.02<G2<0.07 (2) 0.02<G2<0.07 (2)

該結構中,與在圖7中將修正機構MD1與修正機構MD2夾著光瞳位置PP而配置的情況同樣地,藉由適當設定表達對第1凹面反射鏡CM1的反射面CM1a以及第2凹面反射鏡CM2的反射面CM2a賦予的變形的函數FZ17的係數的符號以及大小(或者使該函數FZ17的係數的符號以及大小發生變化),可對於有效成像區域ER內的沿著X方向的各點獨立地產生0次像差成分以及1次像差成分,甚而可獨立地調整投影光學系統PL的波前像差的0次像差成分以及1次像差成分。 In the same configuration as in the case where the correction mechanism MD1 and the correction mechanism MD2 are disposed with the pupil position PP in FIG. 7, the reflection surface CM1a and the second concave surface of the first concave mirror CM1 are appropriately set and expressed. The sign and size of the coefficient of the function FZ 17 of the deformation imparted by the reflecting surface CM2a of the mirror CM2 (or the sign and size of the coefficient of the function FZ 17 ) may be along the X direction in the effective imaging region ER. Each of the points independently generates the 0th-order aberration component and the 1st-order aberration component, and the 0th-order aberration component and the 1st-order aberration component of the wavefront aberration of the projection optical system PL can be adjusted independently.

若低於條件式(1)、條件式(2)的下限值,則凹面反射鏡CM1、CM2會過於接近光瞳位置,像差成分Z10的產生變小,甚而導致投影光學系統PL的波前像差的1次像差成分的調整變得困難。若超過條件式(1)、條件式(2)的上限值,則凹面反射鏡CM1、CM2會過於遠離光瞳位置,不僅像差成分Z17的產生變小,而且會造成無法控制的多餘像差成分的產生變大。為了更良好地發揮實施形態的效果,可將條件式(1)以及條件式(2)的下限值設定為0.03。而且,為了更良好地發揮實施形態的效果,可將條件式(1)以及條件式(2)的上限值設定為0.05。 When the lower limit value of the conditional expression (1) or the conditional expression (2) is exceeded, the concave mirrors CM1 and CM2 are too close to the pupil position, and the generation of the aberration component Z10 becomes small, and the wave of the projection optical system PL is caused. The adjustment of the first-order aberration component of the pre-aberration becomes difficult. When the upper limit value of the conditional expression (1) or the conditional expression (2) is exceeded, the concave mirrors CM1 and CM2 are too far away from the pupil position, and not only the generation of the aberration component Z17 is small but also an uncontrollable unnecessary image is caused. The generation of the difference component becomes large. In order to exhibit the effect of the embodiment more satisfactorily, the lower limit value of the conditional expression (1) and the conditional expression (2) can be set to 0.03. Further, in order to more effectively exhibit the effect of the embodiment, the upper limit value of the conditional expression (1) and the conditional expression (2) can be set to 0.05.

具體而言,當對第1凹面反射鏡CM1的反射面CM1a (或第2凹面反射鏡CM2的反射面CM2a)賦予依據函數FZ17的變形時,若著眼於與有效成像區域ER內的周邊位置ERb、ERc(參照圖2)相關的波前像差,則對應於與反射面CM1a相關的指標G1(或與反射面CM2a相關的指標G2)的變化,而如圖9所示般產生像差成分Z05、Z10、Z17。圖9中,橫軸表示指標G1(G2)的值,縱軸表示各像差成分的產生量(將像差成分Z17的最大值標準化為1時的經標準化的像差產生量)。 Specifically, when the deformation surface CM1a of the first concave reflecting mirror CM1 (or the reflecting surface CM2a of the second concave reflecting mirror CM2) is given a deformation according to the function FZ 17 , attention is paid to the peripheral position in the effective imaging region ER. The wavefront aberration associated with ERb and ERc (refer to FIG. 2) corresponds to the change of the index G1 (or the index G2 related to the reflection surface CM2a) associated with the reflection surface CM1a, and the aberration is generated as shown in FIG. Composition Z05, Z10, Z17. In FIG. 9, the horizontal axis represents the value of the index G1 (G2), and the vertical axis represents the amount of generation of each aberration component (the normalized amount of aberration generation when the maximum value of the aberration component Z17 is normalized to 1).

像差成分Z05是依據第5項所涉及的函數FZ5:ρ2cos2θ而顯示的2次旋轉對稱的像差成分,且是無法控制的多餘像差成分即未意圖產生的像差成分。參照圖9可知:當指標G1(G2)的值達到0.07以上時,多餘像差成分Z05的產生變大。而且可知:當指標G1(G2)的值達到0.02以下時,無法足夠大地產生波前像差的1次像差成分的調整所需的像差成分Z10。 The aberration component Z05 is a second-order rotationally symmetric aberration component displayed in accordance with the function FZ 5 : ρ 2 cos2θ according to the fifth term, and is an unintended aberration component that is uncontrollable. Referring to Fig. 9, when the value of the index G1 (G2) reaches 0.07 or more, the generation of the unnecessary aberration component Z05 becomes large. Further, it is understood that when the value of the index G1 (G2) is 0.02 or less, the aberration component Z10 required for the adjustment of the first-order aberration component of the wavefront aberration cannot be sufficiently generated.

圖9中,對賦予依據第17項所涉及的函數FZ17的變形的情況進行了說明。然而,在賦予依據其他適當的函數、例如第28項所涉及的函數FZ28:(6ρ6-5ρ4)cos4θ的變形的情況下,如圖10所示,對於指標G1(G2)的適當範圍亦可謂之相同。即,圖10表示下述情況:當對第1凹面反射鏡CM1的反射面CM1a(或第2凹面反射鏡CM2的反射面CM2a)賦予依據函數FZ28的變形時,對應於指標G1(G2)的變化,分別產生與有效成像區域ER內的周邊位置ERb、ERc相關的波前像差的像差成分Z10、Z12、Z17、Z26、Z28。圖10中,橫軸表示指標G1(G2)的值,縱軸 表示各像差成分的產生量(將像差成分Z28的最大值標準化為1時的經標準化的像差產生量)。 In Fig. 9, the case where the deformation of the function FZ 17 according to the seventeenth item is given has been described. However, in the case of giving a deformation according to another suitable function, for example, the function FZ 28 :(6ρ 6 -5ρ 4 )cos4θ related to the 28th item, as shown in FIG. 10, the appropriate range for the index G1 (G2) It can be said to be the same. In other words, FIG. 10 shows a case where the deformation surface CM1a of the first concave reflecting mirror CM1 (or the reflecting surface CM2a of the second concave reflecting mirror CM2) is deformed according to the function FZ 28 , corresponding to the index G1 (G2). The change produces aberration components Z10, Z12, Z17, Z26, and Z28 of the wavefront aberration associated with the peripheral positions ERb, ERc in the effective imaging region ER, respectively. In FIG. 10, the horizontal axis represents the value of the index G1 (G2), and the vertical axis represents the amount of generation of each aberration component (the normalized amount of aberration generation when the maximum value of the aberration component Z28 is normalized to 1).

像差成分Z12是依據第12項所涉及的函數FZ12:(4ρ2-3)ρ2cos2θ而顯示的2次旋轉對稱的像差成分。像差成分Z26是依據第26項所涉及的函數FZ26:ρ5cos5θ而顯示的5次旋轉對稱的像差成分。像差成分Z28是依據第28項所涉及的函數FZ28而顯示的4次旋轉對稱的像差成分。參照圖10可知:當指標G1(G2)的值達到0.07以上時,無法控制的多餘像差成分Z10以及多餘像差成分Z12的產生變大。而且可知:當指標G1(G2)的值達到0.02以下時,無法足夠大地產生波前像差的1次像差成分的調整所需的像差成分Z17以及像差成分Z26。 The aberration component Z12 is a second-order rotationally symmetric aberration component displayed in accordance with the function FZ 12 :(4ρ 2 -3)ρ 2 cos2θ according to the twelfth term. The aberration component Z26 is a fifth-order rotationally symmetric aberration component displayed in accordance with the function FZ 26 : ρ 5 cos5θ according to the twenty-sixth item. The aberration component Z28 is a fourth-order rotationally symmetric aberration component displayed in accordance with the function FZ 28 of the twenty-eighthth aspect. Referring to Fig. 10, when the value of the index G1 (G2) reaches 0.07 or more, the generation of the unnecessary aberration component Z10 and the unnecessary aberration component Z12 which are uncontrollable becomes large. In addition, when the value of the index G1 (G2) is 0.02 or less, the aberration component Z17 and the aberration component Z26 required for the adjustment of the primary aberration component of the wavefront aberration cannot be sufficiently generated.

本實施形態的第3實施例中,以與第1凹面反射鏡CM1的反射面CM1a相關的指標G1以及與第2凹面反射鏡CM2的反射面CM2a相關的指標G2滿足下述的條件式(1)以及條件式(3)的方式,將第1凹面反射鏡CM1配置於第1光瞳位置至像面IM側的位置,將第2凹面反射鏡CM2配置於與第2光瞳位置大致一致的位置。 In the third embodiment of the present embodiment, the index G1 related to the reflection surface CM1a of the first concave mirror CM1 and the index G2 related to the reflection surface CM2a of the second concave mirror CM2 satisfy the following conditional expression (1). In the conditional expression (3), the first concave reflecting mirror CM1 is disposed at a position from the first pupil position to the image plane IM side, and the second concave reflecting mirror CM2 is disposed substantially in line with the second pupil position. position.

0.02<G1<0.07 (1) 0.02<G1<0.07 (1)

0<G2<0.02 (3) 0<G2<0.02 (3)

該結構中,與在圖7中將其中一個修正機構自光瞳位置 PP偏離所需距離而配置且將另一個修正機構配置於光瞳位置PP的位置或其附近的情況同樣地,藉由適當設定表達對第1凹面反射鏡CM1的反射面CM1a以及第2凹面反射鏡CM2的反射面CM2a賦予的變形的函數FZ17的係數的符號以及大小(或者使該函數FZ17的係數的符號以及大小發生變化),從而可對於有效成像區域ER內的沿著X方向的各點在一定程度上獨立地產生0次像差成分以及1次像差成分,甚而可在一定程度上獨立地調整投影光學系統PL的波前像差的0次像差成分以及1次像差成分。 In this configuration, similarly to the case where one of the correction mechanisms is disposed at a desired distance from the aperture position PP in FIG. 7 and the other correction mechanism is disposed at or near the position of the pupil position PP, The sign and the size of the coefficient expressing the function FZ 17 which is the deformation of the reflection surface CM1a of the first concave mirror CM1 and the reflection surface CM2a of the second concave mirror CM2 (or the symbol and size of the coefficient of the function FZ 17 are set) A change occurs, so that the 0th-order aberration component and the 1st-order aberration component can be independently generated to some extent in the X-direction in the effective imaging region ER, and the projection optics can be adjusted independently to some extent. The 0th-order aberration component and the first-order aberration component of the wavefront aberration of the system PL.

再者,第3實施例中,將第1凹面反射鏡CM1配置於第1光瞳位置至像面IM側的位置,但將第1凹面反射鏡CM1配置於第1光瞳位置至物體面OB側亦可獲得與第3實施例同樣的效果。而且,雖省略詳細說明,但亦可以與第1凹面反射鏡CM1的反射面CM1a相關的指標G1以及與第2凹面反射鏡CM2的反射面CM2a相關的指標G2滿足下述條件式(4)以及條件式(2)的方式,將第1凹面反射鏡CM1配置於與第1光瞳位置大致一致的位置,將第2凹面反射鏡CM2配置於第2光瞳位置至像面IM側(或物體面OB側)的位置。此時,亦可獲得與第3實施例同樣的效果。 In the third embodiment, the first concave reflecting mirror CM1 is disposed at the position from the first pupil position to the image plane IM side, but the first concave reflecting mirror CM1 is disposed at the first pupil position to the object plane OB. The same effect as in the third embodiment can also be obtained on the side. In addition, although the detailed description is omitted, the index G1 related to the reflection surface CM1a of the first concave mirror CM1 and the index G2 related to the reflection surface CM2a of the second concave mirror CM2 may satisfy the following conditional expression (4) and In the conditional expression (2), the first concave reflecting mirror CM1 is disposed at a position substantially coincident with the first pupil position, and the second concave reflecting mirror CM2 is disposed at the second pupil position to the image plane IM side (or an object) The position of the face OB side). At this time, the same effects as those of the third embodiment can be obtained.

0<G1<0.02 (4) 0<G1<0.02 (4)

0.02<G2<0.07 (2) 0.02<G2<0.07 (2)

本實施形態的第4實施例中,以與第1凹面反射鏡CM1的反射面CM1a相關的指標G1以及與第2凹面反射鏡CM2的反射面CM2a相關的指標G2滿足下述條件式(4)以及條件式(3)的方式,將第1凹面反射鏡CM1配置於與第1光瞳位置大致一致的位置,將第2凹面反射鏡CM2配置於與第2光瞳位置大致一致的位置。 In the fourth embodiment of the present embodiment, the index G1 related to the reflection surface CM1a of the first concave reflecting mirror CM1 and the index G2 related to the reflecting surface CM2a of the second concave reflecting mirror CM2 satisfy the following conditional expression (4). In the conditional expression (3), the first concave reflecting mirror CM1 is disposed at a position substantially coincident with the position of the first aperture, and the second concave reflecting mirror CM2 is disposed at a position substantially coincident with the position of the second aperture.

0<G1<0.02 (4) 0<G1<0.02 (4)

0<G2<0.02 (3) 0<G2<0.02 (3)

該結構中,與在圖7中將兩個修正機構均配置於光瞳位置PP的位置或其附近的情況同樣地,藉由適當設定表達對第1凹面反射鏡CM1的反射面CM1a以及第2凹面反射鏡CM2的反射面CM2a賦予的變形的函數FZ17的係數的符號以及大小(或者使該函數FZ17的係數的符號以及大小發生變化),從而可對於有效成像區域ER內的沿著X方向的各點僅產生所需量的0次像差成分,甚而可僅調整投影光學系統PL的波前像差的0次像差成分。 In this configuration, similarly to the case where both of the correction mechanisms are disposed at or near the position of the pupil position PP in FIG. 7, the reflection surface CM1a and the second surface of the first concave mirror CM1 are appropriately set and expressed. The sign and size of the coefficient of the function FZ 17 of the deformation imparted by the reflecting surface CM2a of the concave mirror CM2 (or the sign and size of the coefficient of the function FZ 17 ), so that it can be along the X in the effective imaging region ER Each point in the direction produces only the required amount of the 0th-order aberration component, and it is possible to adjust only the 0th-order aberration component of the wavefront aberration of the projection optical system PL.

本實施形態的各實施例中,包含多個光學器件的部分光學系統的光焦度Pw(單位:mm-1)滿足下述的條件式(5),所述多個光學器件配置於第4成像光學單元K4的光路中與像面IM的位置在光學上處於傅立葉變換關係的光瞳位置(配置有孔徑光闌AS的位置)與像面IM之間。再者,在計算部分光學系統的光焦 度Pw時,在光瞳位置存在於光學器件內部的情況,則假設該光學器件包含在部分光學系統中。 In each of the embodiments of the present embodiment, the power Pw (unit: mm -1 ) of the partial optical system including the plurality of optical devices satisfies the following conditional expression (5), and the plurality of optical devices are disposed in the fourth The position of the image optical unit K4 in the optical path of the imaging optical unit K4 is optically in a Fourier-transform relationship (position where the aperture stop AS is disposed) and the image plane IM. Further, in the case where the optical power Pw of the partial optical system is calculated and the optical pupil position exists inside the optical device, it is assumed that the optical device is included in a part of the optical system.

Pw≧0.0100 (5) Pw≧0.0100 (5)

若低於條件式(5)的下限值,則確保所需的像側數值孔徑所需要的透鏡直徑會變得過大,導致投影光學系統PL在徑向上大型化。為了更良好地發揮實施形態的效果,可將條件式(5)的下限值設定為0.011。 If the lower limit value of the conditional expression (5) is exceeded, the lens diameter required to ensure the required image side numerical aperture becomes excessive, and the projection optical system PL is enlarged in the radial direction. In order to exhibit the effect of the embodiment more satisfactorily, the lower limit value of the conditional expression (5) can be set to 0.011.

而且,本實施形態的各實施例中,滿足下述的條件式(6)。條件式(6)中,Rb是像面IM上的有效成像區域ER的最大像高(參照圖2),Rm是第4成像光學單元K4內的最大透鏡有效半徑。 Further, in each of the embodiments of the present embodiment, the following conditional expression (6) is satisfied. In the conditional expression (6), Rb is the maximum image height of the effective imaging region ER on the image plane IM (refer to FIG. 2), and Rm is the maximum lens effective radius in the fourth imaging optical unit K4.

Rm/Rb≧9.0 (6) Rm/Rb≧9.0 (6)

若低於條件式(6)的下限值,則透鏡的光焦度負擔會變得過大,投影光學系統PL的設計變得困難。為了更良好地發揮實施形態的效果,可將條件式(6)的下限值設定為10.0。 When the value is below the lower limit of the conditional expression (6), the power loss of the lens becomes excessive, and the design of the projection optical system PL becomes difficult. In order to exhibit the effect of the embodiment more satisfactorily, the lower limit value of the conditional expression (6) can be set to 10.0.

圖11是概略表示本實施形態的曝光裝置的結構的圖。圖11中,亦與圖1的情況同樣地,沿著作為感光性基板的晶圓W的轉印面(曝光面)的法線方向來設定Z軸,沿於晶圓W的轉印 面內與圖11的紙面平行的方向設定Y軸,沿於晶圓W的轉印面內與圖11的紙面垂直的方向設定X軸。 Fig. 11 is a view schematically showing the configuration of an exposure apparatus of the embodiment. In the same manner as in the case of FIG. 1, the Z axis is set along the normal direction of the transfer surface (exposure surface) of the wafer W on which the photosensitive substrate is applied, and the transfer along the wafer W is also performed in FIG. The Y-axis is set in the plane parallel to the paper surface of FIG. 11, and the X-axis is set along the direction perpendicular to the paper surface of FIG. 11 in the transfer surface of the wafer W.

本實施形態的曝光裝置如圖11所示,例如具備包含光學積分器(optical integrator)(均化器(homogenizer))、視野光闌、聚光透鏡(condenser lens)等的照明光學系統1。自作為曝光用光源的ArF準分子雷射器(excimer laser)光源射出的包含波長193nm的紫外脈波(pulse)光的曝光用光(曝光光束)IL通過照明光學系統1對遮罩(網線)M進行照明。在遮罩M上,形成有欲轉印的圖案,在整個圖案區域中,沿著X方向具有長邊且沿著Y方向具有短邊的矩形狀(狹縫(slit)狀)的圖案區域受到照明。 As shown in FIG. 11, the exposure apparatus of the present embodiment includes, for example, an illumination optical system 1 including an optical integrator (homogenizer), a field stop, a condenser lens, and the like. An exposure light (exposure beam) IL containing ultraviolet pulse light having a wavelength of 193 nm emitted from an ArF excimer laser light source as an exposure light source passes through the illumination optical system 1 to the mask (network cable) ) M for illumination. In the mask M, a pattern to be transferred is formed, and a rectangular (slit) pattern region having a long side in the X direction and a short side in the Y direction is received in the entire pattern region. illumination.

通過遮罩M後的光經由液浸型且反射折射型的投影光學系統PL,在塗佈有光阻劑的晶圓(感光性基板)W上的曝光區域以規定的投影倍率形成遮罩圖案。即,以與遮罩M上的矩形狀的照明區域光學對應的方式,在晶圓W上,在沿著X方向具有長邊且沿著Y方向具有短邊的矩形狀的靜止曝光區域(實效曝光區域;有效成像區域)形成圖案像。 The light after the mask M is formed into a mask pattern at a predetermined projection magnification on the exposed region on the photoresist (photosensitive substrate) W by the liquid immersion type and the catadioptric projection optical system PL. . That is, a rectangular still exposure region having a long side along the X direction and a short side along the Y direction on the wafer W so as to optically correspond to the rectangular illumination region on the mask M (effective) The exposed area; the effective imaging area) forms a pattern image.

遮罩M在遮罩載台(stage)MST上,與XY平面平行地受到保持,在遮罩載台MST中,裝入有使遮罩M沿X方向、Y方向及旋轉方向微動的機構。遮罩載台MST藉由使用設置於遮罩載台MST上的移動鏡12m的遮罩雷射干涉計13m,來即時(real time)地計測且控制X方向、Y方向以及旋轉方向的位置。晶圓W經由晶圓固持器(wafer holder)WH而與XY平面平行地固定 於Z載台9上。 The mask M is held in parallel with the XY plane on the mask stage MST, and a mechanism for slightly moving the mask M in the X direction, the Y direction, and the rotation direction is incorporated in the mask stage MST. The mask stage MST measures and controls the positions in the X direction, the Y direction, and the rotation direction in real time by using the mask laser interferometer 13m of the moving mirror 12m provided on the mask stage MST. The wafer W is fixed in parallel with the XY plane via a wafer holder WH On the Z stage 9.

而且,Z載台9被固定在沿著與投影光學系統PL的像面實質上平行的XY平面而移動的XY載台10上,以控制晶圓W的聚焦(focus)位置(Z方向的位置)以及傾斜角。Z載台9藉由使用設置於Z載台9上的移動鏡12w的晶圓雷射干涉計13w,來即時地計測且控制X方向、Y方向以及旋轉方向的位置。而且,XY載台10被載置於底座(base)11上,以控制晶圓W的X方向、Y方向以及旋轉方向。 Further, the Z stage 9 is fixed to the XY stage 10 that moves along the XY plane substantially parallel to the image plane of the projection optical system PL to control the focus position of the wafer W (the position in the Z direction) ) and the tilt angle. The Z stage 9 instantaneously measures and controls the positions in the X direction, the Y direction, and the rotational direction by using the wafer laser interferometer 13w of the moving mirror 12w provided on the Z stage 9. Further, the XY stage 10 is placed on a base 11 to control the X direction, the Y direction, and the rotation direction of the wafer W.

另一方面,本實施形態的曝光裝置中所設的主控制系統14基於由遮罩雷射干涉計13m計測出的計測值,來進行遮罩M的X方向、Y方向以及旋轉方向的位置調整。即,主控制系統14對裝入遮罩載台MST中的機構發送控制信號,使遮罩載台MST微動,藉此來進行遮罩M的位置調整。而且,主控制系統14藉由自動聚焦(auto focus)方式以及自動調平(auto leveling)方式來進行晶圓W的聚焦位置(Z方向的位置)以及傾斜角的調整,以將晶圓W上的表面對準投影光學系統PL的像面。 On the other hand, the main control system 14 provided in the exposure apparatus of the present embodiment performs position adjustment of the mask M in the X direction, the Y direction, and the rotation direction based on the measurement value measured by the mask laser interferometer 13m. . That is, the main control system 14 transmits a control signal to the mechanism incorporated in the mask stage MST, and the mask stage MST is slightly moved, thereby adjusting the position of the mask M. Moreover, the main control system 14 performs the focus position (position in the Z direction) and the tilt angle of the wafer W by an auto focus method and an auto leveling method to apply the wafer W. The surface is aligned with the image plane of the projection optical system PL.

即,主控制系統14對晶圓載台驅動系統15發送控制信號,藉由晶圓載台驅動系統15來驅動Z載台9,藉此來進行晶圓W的聚焦位置以及傾斜角的調整。進而,主控制系統14基於由晶圓雷射干涉計13w所計測出的計測值來進行晶圓W的X方向、Y方向以及旋轉方向的位置調整。即,主控制系統14對晶圓載台驅動系統15發送控制信號,藉由晶圓載台驅動系統15來驅動XY 載台10,從而進行晶圓W的X方向、Y方向以及旋轉方向的位置調整。 That is, the main control system 14 transmits a control signal to the wafer stage driving system 15, and the Z stage 9 is driven by the wafer stage driving system 15, whereby the focus position and the tilt angle of the wafer W are adjusted. Further, the main control system 14 adjusts the position of the wafer W in the X direction, the Y direction, and the rotation direction based on the measured value measured by the wafer laser interferometer 13w. That is, the main control system 14 sends a control signal to the wafer stage drive system 15 to drive the XY by the wafer stage drive system 15. The stage 10 adjusts the position of the wafer W in the X direction, the Y direction, and the rotation direction.

在曝光時,主控制系統14對被裝入遮罩載台MST中的機構發送控制信號,並且對晶圓載台驅動系統15發送控制信號,以與投影光學系統PL的投影倍率相應的速度比來驅動遮罩載台MST以及XY載台10,且將遮罩M的圖案像投影曝光至晶圓W上的規定的投射(shot)區域內。隨後,主控制系統14對晶圓載台驅動系統15發送控制信號,藉由晶圓載台驅動系統15來驅動XY載台10,從而使晶圓W上的其他投射區域步進移動至曝光位置。 At the time of exposure, the main control system 14 transmits a control signal to the mechanism incorporated in the mask stage MST, and transmits a control signal to the wafer stage driving system 15 at a speed ratio corresponding to the projection magnification of the projection optical system PL. The mask stage MST and the XY stage 10 are driven, and the pattern image of the mask M is projected and exposed onto a predetermined shot area on the wafer W. Subsequently, the main control system 14 sends a control signal to the wafer stage drive system 15 to drive the XY stage 10 by the wafer stage drive system 15 to step move the other projection areas on the wafer W to the exposure position.

如此,重複藉由步進掃描(step and scan)方式而將遮罩M的圖案像掃描曝光至晶圓W上的動作。即,本實施形態中,一邊使用晶圓載台驅動系統15以及晶圓雷射干涉計13w等而進行遮罩M以及晶圓W的位置控制,一邊沿著矩形狀的靜止曝光區域以及靜止照明區域的短邊方向即Y方向來使遮罩載台MST與XY載台10、甚而使遮罩M與晶圓W同步移動(掃描),藉此,在晶圓W上,對具有與靜止曝光區域的長邊LX相等的寬度且具有與晶圓W的掃描量(移動量)相應的長度的區域掃描曝光出遮罩圖案。 In this manner, the operation of scanning and exposing the pattern image of the mask M onto the wafer W by a step and scan method is repeated. In other words, in the present embodiment, the position control of the mask M and the wafer W is performed while using the wafer stage drive system 15 and the wafer laser interferometer 13w, and the rectangular still exposure area and the stationary illumination area are along the rectangular shape. The short side direction, that is, the Y direction, causes the mask stage MST and the XY stage 10, and even the mask M and the wafer W to be synchronously moved (scanned), whereby the pair has a static exposure area on the wafer W. The area in which the long side LX is equal in width and has a length corresponding to the scanning amount (movement amount) of the wafer W is scanned and exposed to the mask pattern.

圖12是示意性地表示本實施形態的各實施例中的邊界透鏡與晶圓之間的結構的圖。本實施形態中,如圖12所示,邊界透鏡Lb與晶圓W之間的光路被相對於曝光用光而具有大於1.5 的折射率的液體Lm所填滿。邊界透鏡Lb是凸面朝向遮罩M側且平面朝向晶圓W側的正透鏡。本實施形態中,如圖11所示,使用供排水機構21來使液體Lm在邊界透鏡Lb與晶圓W之間的光路中循環。 Fig. 12 is a view schematically showing a configuration between a boundary lens and a wafer in each embodiment of the embodiment. In the present embodiment, as shown in FIG. 12, the optical path between the boundary lens Lb and the wafer W is greater than 1.5 with respect to the exposure light. The refractive index of the liquid Lm is filled. The boundary lens Lb is a positive lens whose convex surface faces the mask M side and whose plane faces the wafer W side. In the present embodiment, as shown in FIG. 11, the water supply and drainage mechanism 21 is used to circulate the liquid Lm in the optical path between the boundary lens Lb and the wafer W.

在相對於投影光學系統PL而使晶圓W相對移動且進行掃描曝光的步進掃描方式的曝光裝置中,為了自掃描曝光開始直至結束為止持續向投影光學系統PL的邊界透鏡Lb與晶圓W之間的光路中填滿液體Lm,例如可使用美國專利申請案公開第2007/242247號說明書等中揭示的技術或日本專利特開平10-303114號公報或美國專利第6,191,429號公報中揭示的技術等。美國專利申請案公開第2007/242247號說明書所揭示的技術中,自液體供給裝置經由供給管以及排出噴嘴(nozzle),以填滿邊界透鏡Lb與晶圓W之間的光路的方式來供給被調整為規定溫度的液體,並藉由液體供給裝置,經由回收管以及流入噴嘴而自晶圓W上回收液體。 In the step-and-scan type exposure apparatus that relatively moves the wafer W with respect to the projection optical system PL and performs scanning exposure, the boundary lens Lb and the wafer W that continue to the projection optical system PL are continued from the start to the end of the scanning exposure. The optical path between the inks is filled with the liquid Lm, for example, the technique disclosed in the specification of the U.S. Patent Application Publication No. 2007/242247, or the technique disclosed in Japanese Patent Laid-Open No. Hei 10-303114 or U.S. Patent No. 6,191,429. Wait. In the technique disclosed in the specification of the U.S. Patent Application Publication No. 2007/242247, the liquid supply device supplies the optical path between the boundary lens Lb and the wafer W via the supply pipe and the nozzle (nozzle). The liquid is adjusted to a predetermined temperature, and the liquid is recovered from the wafer W via the recovery pipe and the inflow nozzle by the liquid supply device.

另一方面,日本專利特開平10-303114號公報或美國專利第6,191,429號公報所揭示的技術中,以可收容液體的方式將晶圓固持器平台(table)構成為容器狀,在其內底部的中央(液體中)藉由真空吸附來定位保持晶圓W。而且構成為,投影光學系統PL的鏡筒前端部到達液體中,甚而邊界透鏡Lb的晶圓側的光學面到達液體中。如此,藉由使作為浸液的液體以微小流量而循環,從而可藉由防腐、防黴等效果來防止液體的變質。而且,可 防止因曝光用光的熱吸收造成的像差變動。再者,此處引用美國專利申請案公開第2007/242247號、美國專利第6,191,429號公報以及日本專利特開平10-303114號公報來作為參照。 On the other hand, in the technique disclosed in Japanese Laid-Open Patent Publication No. Hei 10-303114 or U.S. Patent No. 6,191,429, the wafer holder table is formed into a container shape so as to accommodate a liquid, and the bottom portion thereof is formed therein. The center (in the liquid) is positioned to hold the wafer W by vacuum adsorption. Further, the lens barrel front end portion of the projection optical system PL reaches the liquid, and even the optical surface on the wafer side of the boundary lens Lb reaches the liquid. In this way, by circulating the liquid as the immersion liquid at a minute flow rate, it is possible to prevent deterioration of the liquid by effects such as corrosion prevention and mildew resistance. And can Prevent aberration fluctuation caused by heat absorption of exposure light. Further, reference is made to U.S. Patent Application Publication No. 2007/242,247, U.S. Patent No. 6,191,429, and Japanese Patent Application No. Hei No. 10-303114.

本實施形態的各實施例中,對於非球面,當將垂直於光軸的方向的高度設為y,將自非球面的頂點處的切平面直至高度y處的非球面上的位置為止的沿著光軸的距離(弛垂(sag)量)設為z,將頂點曲率半徑設為r,將圓錐係數設為κ,將n次的非球面係數設為Cn時,所述非球面以如下的數式(a)來表示。後述的表(1)~表(4)中,對於形成為非球面形狀的透鏡面,在面編號的右側標註符號*。 In each of the embodiments of the present embodiment, the height of the aspherical surface in the direction perpendicular to the optical axis is y, and the edge from the tangent plane at the vertex of the aspheric surface to the position on the aspheric surface at the height y The distance (sag amount) of the optical axis is set to z, the radius of curvature of the vertex is set to r, the conic coefficient is set to κ, and when the aspherical coefficient of n times is C n , the aspheric surface is It is represented by the following formula (a). In the tables (1) to (4) to be described later, the symbol surface formed on the right side of the surface number is attached to the lens surface formed in an aspherical shape.

z=(y2/r)/[1+{1-(1+κ).y2/r2}1/2]+C4.y4+C6.y6+C8.y8+C10.y10+C12.y12+C14.y14+C16.y16+C18.y18+C20.y20 (a) z=(y 2 /r)/[1+{1-(1+κ). y 2 /r 2 } 1/2 ]+C 4 . y 4 +C 6 . y 6 +C 8 . y 8 +C 10 . y 10 +C 12 . y 12 +C 14 . y 14 +C 16 . y 16 +C 18 . y 18 +C 20 . y 20 (a)

各實施例的投影光學系統PL中,來自遮罩M的光經由第1成像光學系統K1,在第1平面反射鏡FM1附近的偏離光軸的位置形成遮罩圖案的第1中間像。來自第1中間像的光經由第2成像光學系統K2,在偏離光軸的位置形成遮罩圖案的第2中間像。來自第2中間像的光經由第3成像光學系統K3,在第2平面反射鏡FM2附近的偏離光軸的位置形成遮罩圖案的第3中間像。來自第3中間像的光經由第4成像光學系統K4,在偏離光軸的位置,在晶圓W上形成遮罩圖案的最終像。再者,各實施例中,可將形成遮罩圖案的中間像的位置稱作與物體面或像面光學共軛的 共軛位置。各實施例中,第1平面反射鏡M1與第2平面反射鏡M2是一體地構成為1個光學構件。各實施例中,第1成像光學系統K1的光軸與第4成像光學系統K4的光軸彼此平行,且以第1平面反射鏡M1與第2平面反射鏡M2在Y方向上的間隔的量而偏心。此處,作為使來自第1成像光學系統K1的光偏向而朝向第2成像光學系統K2的第1偏向鏡的第1平面反射鏡具有沿著第1平面的第1平面反射面,作為使來自第3成像光學系統K3的光偏向而朝向第4成像光學系統K4的第2偏向鏡的第2平面反射鏡具有沿著第2平面的第2平面反射面。該些第1平面以及第2平面彼此平行。並且,第1成像光學系統K1的光軸與第2成像光學系統K2的光軸在第1平面上交叉,第3成像光學系統K3的光軸與第4成像光學系統K4的光軸在第2平面上交叉。第2成像光學系統K2的光軸與第3成像光學系統K3的光軸彼此共軸。換言之,第2成像光學系統K2與第3成像光學系統K3具有共同的光軸。而且,各實施例中,投影光學系統PL是在物體側以及像側這兩側大致遠心(telecentric)地構成。 In the projection optical system PL of each of the embodiments, the light from the mask M forms a first intermediate image of the mask pattern at a position deviated from the optical axis in the vicinity of the first plane mirror FM1 via the first imaging optical system K1. The light from the first intermediate image forms a second intermediate image of the mask pattern at a position deviated from the optical axis via the second imaging optical system K2. The light from the second intermediate image forms a third intermediate image of the mask pattern at a position deviating from the optical axis in the vicinity of the second plane mirror FM2 via the third imaging optical system K3. The light from the third intermediate image forms a final image of the mask pattern on the wafer W at a position deviated from the optical axis via the fourth imaging optical system K4. Furthermore, in each of the embodiments, the position of the intermediate image forming the mask pattern may be referred to as optically conjugate with the object plane or the image plane. Conjugate position. In each of the embodiments, the first plane mirror M1 and the second plane mirror M2 are integrally formed as one optical member. In each of the embodiments, the optical axis of the first imaging optical system K1 and the optical axis of the fourth imaging optical system K4 are parallel to each other, and the amount of the first planar mirror M1 and the second planar mirror M2 are spaced apart in the Y direction. And eccentric. Here, the first plane mirror which is the first deflecting mirror that deflects the light from the first imaging optical system K1 and faces the second imaging optical system K2 has the first plane reflecting surface along the first plane, and The second planar mirror that is deflected toward the second deflecting mirror of the fourth imaging optical system K4 by the light of the third imaging optical system K3 has a second planar reflecting surface along the second plane. The first plane and the second plane are parallel to each other. Further, the optical axis of the first imaging optical system K1 and the optical axis of the second imaging optical system K2 intersect on the first plane, and the optical axis of the third imaging optical system K3 and the optical axis of the fourth imaging optical system K4 are second. Cross on the plane. The optical axis of the second imaging optical system K2 and the optical axis of the third imaging optical system K3 are coaxial with each other. In other words, the second imaging optical system K2 and the third imaging optical system K3 have a common optical axis. Further, in each of the embodiments, the projection optical system PL is configured to be substantially telecentric on both the object side and the image side.

[第1實施例] [First Embodiment]

圖13是表示本實施形態的第1實施例的投影光學系統的透鏡結構的圖。第1實施例的投影光學系統PL中,第1成像光學系統K1自遮罩側起,依序包含平行平面板P1以及11個透鏡L11~L111。在第1成像光學系統K1的透鏡L15與透鏡L16之間的光路中,配置有孔徑光闌AS1(未圖示)。第2成像光學系統K2沿 著光的行進往路,自光的入射側起,依序包含3個透鏡L21~L23以及使凹面朝向光的入射側的凹面反射鏡CM1。 Fig. 13 is a view showing a lens configuration of a projection optical system according to a first embodiment of the embodiment. In the projection optical system PL of the first embodiment, the first imaging optical system K1 includes the parallel plane plate P1 and the eleven lenses L11 to L111 in this order from the mask side. An aperture stop AS1 (not shown) is disposed in the optical path between the lens L15 and the lens L16 of the first imaging optical system K1. 2nd imaging optical system K2 along The traveling path of the light, from the incident side of the light, sequentially includes three lenses L21 to L23 and a concave mirror CM1 that faces the incident side of the light toward the light.

第3成像光學系統K3自光的入射側起,依序包含3個透鏡L31~L33以及使凹面朝向光的入射側的凹面反射鏡CM2。第4成像光學系統K4自光的入射側起,依序包含13個透鏡L41~L413以及使平面朝向晶圓側的平凸透鏡L414(邊界透鏡Lb)。第4成像光學系統K4中,在透鏡L410與透鏡L411之間的光路中,配置有孔徑光闌AS。再者,第1成像光學系統K1至第3成像光學系統K3中,可將與配置有孔徑光闌AS的位置光學共軛的位置稱作各成像光學系統的光瞳位置。 The third imaging optical system K3 sequentially includes three lenses L31 to L33 and a concave mirror CM2 that faces the incident side of the light from the incident side of the light. The fourth imaging optical system K4 sequentially includes 13 lenses L41 to L413 and a plano-convex lens L414 (boundary lens Lb) that faces the wafer side from the incident side of the light. In the fourth imaging optical system K4, an aperture stop AS is disposed in the optical path between the lens L410 and the lens L411. Further, in the first to third imaging optical systems K1 to K3, a position that is optically conjugate with the position at which the aperture stop AS is disposed can be referred to as a pupil position of each imaging optical system.

各實施例中,在邊界透鏡Lb與晶圓W之間的光路,填滿有相對於使用光(曝光用光)即ArF準分子雷射光(中心波長λ=193.306nm)而具有1.435876的折射率的液體(例如水)Lm。包含平行平面板P1以及邊界透鏡Lb的所有透光構件,是由相對於使用光的中心波長而具有1.5603261的折射率的光學材料(例如石英玻璃(SiO2))所形成。 In each of the embodiments, the optical path between the boundary lens Lb and the wafer W is filled with the refractive index of 1.435876 with respect to the use light (exposure light), that is, ArF excimer laser light (center wavelength λ = 193.306 nm). Liquid (eg water) Lm. All of the light transmissive members including the parallel flat plate P1 and the boundary lens Lb are formed of an optical material (for example, quartz glass (SiO 2 )) having a refractive index of 1.5603261 with respect to the center wavelength of the used light.

下述表(1)中揭示了第1實施例的投影光學系統PL的參數的值。表(1)的主要參數的欄中,λ表示曝光用光的中心波長,β表示投影倍率(整個系統的成像倍率)的大小(絕對值),NA表示像側(晶圓側)數值孔徑,Rb表示晶圓W上的像圈(image circle)IF的半徑、即像面IM上的有效成像區域ER的最大像高,Ra表示靜止曝光區域ER的偏軸量,LX表示靜止曝光區域ER的 沿著X方向的尺寸(長邊的尺寸),LY表示靜止曝光區域ER的沿著Y方向的尺寸(短邊的尺寸)。 The values of the parameters of the projection optical system PL of the first embodiment are disclosed in the following Table (1). In the column of the main parameters of Table (1), λ represents the center wavelength of the light for exposure, β represents the magnitude (absolute value) of the projection magnification (the imaging magnification of the entire system), and NA represents the numerical aperture of the image side (wafer side). Rb represents the radius of the image circle IF on the wafer W, that is, the maximum image height of the effective imaging area ER on the image plane IM, Ra represents the off-axis amount of the still exposure area ER, and LX represents the static exposure area ER. The size along the X direction (the size of the long side), LY indicates the size (the size of the short side) of the still exposure region ER along the Y direction.

而且,表(1)的光學構件參數的欄中,面編號表示沿著光線自物體面(第1面)即遮罩面朝向像面(第2面)即晶圓面行進的路徑的、自遮罩側算起的面的順序,r表示各面的曲率半徑(在非球面的情況下為頂點曲率半徑:mm),d表示各面的軸上間隔即面間隔(mm),n表示相對於中心波長的折射率。面間隔d的符號每當光被反射時發生變化。即,對於面間隔d的符號而言,在自第1平面反射鏡FM1朝向第1凹面反射鏡CM1的光路中以及自第2凹面反射鏡CM2朝向第2平面反射鏡FM2的光路中為負,在其他光路中為正。 Further, in the column of the optical member parameters of Table (1), the surface number indicates the path along which the light travels from the object surface (first surface), that is, the mask surface toward the image surface (second surface), that is, the wafer surface. The order of the faces counted on the mask side, r represents the radius of curvature of each face (in the case of an aspherical surface, the radius of curvature of the vertex: mm), and d represents the on-axis spacing of each face, that is, the face spacing (mm), and n indicates the relative The refractive index at the center wavelength. The sign of the face spacing d changes each time the light is reflected. In other words, the sign of the plane spacing d is negative in the optical path from the first plane mirror FM1 toward the first concave mirror CM1 and in the optical path from the second concave mirror CM2 toward the second plane mirror FM2. It is positive in other light paths.

第1成像光學系統K1中,朝向遮罩側(光的入射側)將凸面的曲率半徑設為正,朝向遮罩側將凹面的曲率半徑設為負。第2成像光學系統K2中,沿著光的行進往路朝向光的入射側將凸面的曲率半徑設為負,朝向光的入射側將凹面的曲率半徑設為正。第3成像光學系統K3中,沿著光的行進往路朝向光的入射側將凹面的曲率半徑設為負,朝向光的入射側將凸面的曲率半徑設為正。第4成像光學系統K4中,朝向光的入射側將凸面的曲率半徑設為正,朝向光的入射側將凹面的曲率半徑設為負。再者,表(1)中的記述在後文的表(2)、表(3)以及表(4)中亦同樣。 In the first imaging optical system K1, the radius of curvature of the convex surface is set to be positive toward the mask side (incident side of light), and the radius of curvature of the concave surface is made negative toward the mask side. In the second imaging optical system K2, the radius of curvature of the convex surface is set to be negative along the incident side of the light toward the light, and the radius of curvature of the concave surface is set to be positive toward the incident side of the light. In the third imaging optical system K3, the radius of curvature of the concave surface is set to be negative along the incident side of the light toward the light, and the radius of curvature of the convex surface is set to be positive toward the incident side of the light. In the fourth imaging optical system K4, the radius of curvature of the convex surface is set to be positive toward the incident side of the light, and the radius of curvature of the concave surface is made negative toward the incident side of the light. In addition, the description in Table (1) is also the same in Table (2), Table (3), and Table (4) which will be described later.

表(1)(主要參數) Table (1) (main parameters)

圖14(a)表示在第1實施例中對第1凹面反射鏡CM1的反射面CM1a賦予依據函數FZ17的變形時產生的像差成分Z17以及像差成分Z10。圖14(b)表示在第1實施例中對第2凹面反射鏡CM2的反射面CM2a賦予與第1凹面反射鏡CM1相同的變形時產生的像差成分Z17以及像差成分Z10。 (a) of FIG. 14 shows an aberration component Z17 and an aberration component Z10 which are generated when the reflection surface CM1a of the first concave reflecting mirror CM1 is deformed according to the function FZ 17 in the first embodiment. (b) of FIG. 14 shows an aberration component Z17 and an aberration component Z10 which are generated when the reflection surface CM2a of the second concave reflecting mirror CM2 is deformed in the same manner as the first concave reflecting mirror CM1 in the first embodiment.

圖15(a)表示如下情況,即,在第1實施例中,藉由第1凹面反射鏡CM1與第2凹面反射鏡CM2的協同作用,即,藉由適當設定表達對第1凹面反射鏡CM1的反射面CM1a以及第2凹面反射鏡CM2的反射面CM2a賦予的變形的函數FZ17的係數的符號以及大小,從而主要使0次像差成分(Z17)產生。圖15(b)表示如下情況,即,在第1實施例中,藉由第1凹面反射鏡CM1與第2凹面反射鏡CM2的協同作用,主要使1次像差成分(Z10)產生。 Fig. 15 (a) shows a case in which, in the first embodiment, the first concave mirror CM1 and the second concave mirror CM2 cooperate, that is, by appropriately setting the expression to the first concave mirror The sign and the size of the coefficient of the function FZ 17 of the deformation of the reflection surface CM1a of the CM1 and the reflection surface CM2a of the second concave mirror CM2 mainly cause the 0th-order aberration component (Z17) to be generated. (b) of FIG. 15 shows a case where the first-order aberration component (Z10) is mainly generated by the synergistic action of the first concave mirror CM1 and the second concave mirror CM2 in the first embodiment.

該第1實施例的投影光學系統具備:第1成像光學單元,配置在第1面與第2面之間的光路中,包含第1凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係;以及第2成像光學單元,配置在第1成像光學單元與第2面之間的光路中,包含第2凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係,第1凹面反射鏡配置於第1成像光學單元的光路中與第1面的位置在光學上處於傅立葉變換關係的第1光瞳位置至第2面側,第2凹面反射鏡配置於第2成像光學單元的光路中與第1面的位置在光學上處於傅立葉變換關係的第2光瞳位置至第1面側,因此可達成良好的成像性能。 The projection optical system according to the first embodiment includes a first imaging optical unit, and includes an optical path between the first surface and the second surface, and includes a first concave mirror and optical surfaces different from each other. And a second conjugate optical unit, wherein the second imaging optical unit is disposed in the optical path between the first imaging optical unit and the second surface, and includes a second concave mirror, and mutually different surfaces are optically conjugated In the relationship between the optical path of the first imaging optical unit and the optical path of the first imaging optical unit, the position of the first surface is optically Fourier-converted from the first pupil position to the second surface side, and the second concave mirror is disposed on the first surface. (2) The position of the optical path of the imaging optical unit and the position of the first surface are optically in the Fourth order position of the Fourier transform relationship to the first surface side, so that excellent imaging performance can be achieved.

圖14(a)、圖14(b)以及圖15(a)、圖15(b)中,橫軸表示沿著將有效成像區域ER的位置ERa、ERb、ERc(參照圖2)予以連結的直線的X方向位置,縱軸為像差成分的冊尼克係數(單位:曝光用光的中心波長λ)。即,圖14(a)、圖14(b) 以及圖15(a)、圖15(b)中,著眼於與有效成像區域ER中沿著Y=5.3mm(=Ra+LY/2)的中段區域的X方向位置相關的波前像差的各像差成分。 In FIGS. 14(a) and 14(b) and FIGS. 15(a) and 15(b), the horizontal axis indicates the positions ERa, ERb, and ERc (see FIG. 2) connecting the effective imaging regions ER. The position of the straight line in the X direction, and the vertical axis is the Nikon coefficient of the aberration component (unit: center wavelength λ of the light for exposure). That is, Figure 14 (a), Figure 14 (b) And FIGS. 15(a) and 15(b), focusing on the wavefront aberration associated with the position in the X direction of the middle region along Y=5.3 mm (=Ra+LY/2) in the effective imaging region ER. Various aberration components.

[第2實施例] [Second Embodiment]

圖16是表示本實施形態的第2實施例的投影光學系統的透鏡結構的圖。第2實施例的投影光學系統PL中,第1成像光學系統K1自遮罩側起,依序包含平行平面板P1以及12個透鏡L11~L112。第2成像光學系統K2沿著光的行進往路而自光的入射側起,依序包含2個透鏡L21及透鏡L22、以及使凹面朝向光的入射側的凹面反射鏡CM1。 Fig. 16 is a view showing a lens configuration of a projection optical system according to a second embodiment of the embodiment. In the projection optical system PL of the second embodiment, the first imaging optical system K1 includes the parallel plane plate P1 and the twelve lenses L11 to L112 in this order from the mask side. The second imaging optical system K2 includes, in order from the incident side of the light, the two lenses L21 and L22, and the concave mirror CM1 that faces the incident side of the light toward the light.

第3成像光學系統K3自光的入射側起,依序包含2個透鏡L31及透鏡L32、以及使凹面朝向光的入射側的凹面反射鏡CM2。第4成像光學系統K4自光的入射側起,依序包含13個透鏡L41~L413以及使平面朝向晶圓側的平凸透鏡L414(邊界透鏡Lb)。第4成像光學系統K4中,在透鏡L410與透鏡L411之間的光路中,配置有孔徑光闌AS。下述的表(2)中,揭示了第2實施例的投影光學系統PL的參數的值。 The third imaging optical system K3 includes, in order from the incident side of the light, two lenses L31 and L32, and a concave mirror CM2 that faces the incident side of the light toward the light. The fourth imaging optical system K4 sequentially includes 13 lenses L41 to L413 and a plano-convex lens L414 (boundary lens Lb) that faces the wafer side from the incident side of the light. In the fourth imaging optical system K4, an aperture stop AS is disposed in the optical path between the lens L410 and the lens L411. The value of the parameter of the projection optical system PL of the second embodiment is disclosed in the following Table (2).

該第2實施例的投影光學系統具備:第1成像光學單元,配置在第1面與第2面之間的光路中,包含第1凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係;以及第2成像光學單元,配置在第1成像光學單元與第2面之間的光路中,包含第2凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係,第1凹面反射鏡配置於第1成像光學單元的光路中與第1面的位置在光學上處於傅立葉變換關係的第1光瞳位置至第1面側,第2凹面反射鏡配置於第2成像光學單元的光路中與第1面的位置在光 學上處於傅立葉變換關係的第2光瞳位置至第2面側,因此可達成良好的成像性能。 The projection optical system according to the second embodiment includes a first imaging optical unit, and includes an optical path between the first surface and the second surface, and includes a first concave mirror and optical surfaces different from each other. And a second conjugate optical unit, wherein the second imaging optical unit is disposed in the optical path between the first imaging optical unit and the second surface, and includes a second concave mirror, and mutually different surfaces are optically conjugated In the first optical path of the first imaging optical unit, the first concave mirror is disposed in the first pupil position in which the position of the first surface is optically Fourier-transformed to the first surface side, and the second concave mirror is disposed on the first surface. 2 The optical path of the imaging optical unit and the position of the first surface are in the light Since the second pupil position in the Fourier transform relationship is learned to the second surface side, good imaging performance can be achieved.

[第3實施例] [Third embodiment]

圖17是表示本實施形態的第3實施例的投影光學系統的透鏡結構的圖。第3實施例的投影光學系統PL中,第1成像光學系統K1自遮罩側起,依序包含平行平面板P1以及14個透鏡L11~L114。第2成像光學系統K2沿著光的行進往路自光的入射側起,依序包含1個透鏡L21以及使凹面朝向光的入射側的凹面反射鏡CM1。 Fig. 17 is a view showing a lens configuration of a projection optical system according to a third embodiment of the embodiment. In the projection optical system PL of the third embodiment, the first imaging optical system K1 includes the parallel plane plate P1 and the 14 lenses L11 to L114 in this order from the mask side. The second imaging optical system K2 sequentially includes one lens L21 and a concave mirror CM1 that faces the incident side of the light along the incident side of the light from the incident side of the light.

第3成像光學系統K3自光的入射側起,依序包含3個透鏡L31~L33以及使凹面朝向光的入射側的凹面反射鏡CM2。第4成像光學系統K4自光的入射側起,依序包含15個透鏡L41~L415以及使平面朝向晶圓側的平凸透鏡L416(邊界透鏡Lb)。第4成像光學系統K4中,在透鏡L412與透鏡L413之間的光路中,配置有孔徑光闌AS。下述的表(3)中,揭示了第3實施例的投影光學系統PL的參數的值。 The third imaging optical system K3 sequentially includes three lenses L31 to L33 and a concave mirror CM2 that faces the incident side of the light from the incident side of the light. The fourth imaging optical system K4 includes, in order from the incident side of the light, 15 lenses L41 to L415 and a plano-convex lens L416 (boundary lens Lb) which faces the wafer side. In the fourth imaging optical system K4, an aperture stop AS is disposed in the optical path between the lens L412 and the lens L413. The value of the parameter of the projection optical system PL of the third embodiment is disclosed in the following Table (3).

該第3實施例的投影光學系統具備:第1成像光學單元,配置在第1面與第2面之間的光路中,包含第1凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係;以及第2成像光學單元,配置在第1成像光學單元與第2面之間的光路中,包含第2 凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係,第1凹面反射鏡配置於第1成像光學單元的光路中與第1面的位置在光學上處於傅立葉變換關係的第1光瞳位置至第1面側或第2面側,第2凹面反射鏡配置於第2成像光學單元的光路中與第1面的位置在光學上處於傅立葉變換關係的第2光瞳位置,因此可達成良好的成像性能。 The projection optical system according to the third embodiment includes a first imaging optical unit, and includes an optical path between the first surface and the second surface, and includes a first concave mirror and optical surfaces different from each other. a conjugate relationship; and a second imaging optical unit disposed in the optical path between the first imaging optical unit and the second surface, including the second In the concave mirror, the surfaces different from each other are optically conjugated, and the first concave mirror is disposed in the optical path of the first imaging optical unit and optically in a Fourier transform relationship with the position of the first surface. The first concave mirror is disposed on the first surface side or the second surface side, and the second concave mirror is disposed at a second pupil position in which the position of the first surface is optically Fourier-transformed in the optical path of the second imaging optical unit. Therefore, good imaging performance can be achieved.

[第4實施例] [Fourth embodiment]

圖18是表示本實施形態的第4實施例的投影光學系統的透鏡結構的圖。第4實施例的投影光學系統PL中,第1成像光學系統K1自遮罩側起,依序包含平行平面板P1以及10個透鏡L11~L110。第2成像光學系統K2沿著光的行進往路自光的入射側起,依序包含2個透鏡L21及透鏡L22以及使凹面朝向光的入射側的凹面反射鏡CM1。 Fig. 18 is a view showing a lens configuration of a projection optical system according to a fourth embodiment of the embodiment. In the projection optical system PL of the fourth embodiment, the first imaging optical system K1 includes the parallel plane plate P1 and the ten lenses L11 to L110 in this order from the mask side. The second imaging optical system K2 sequentially includes two lenses L21 and L22 along the incident side of the light from the incident side of the light, and a concave mirror CM1 that faces the incident side of the light toward the light.

第3成像光學系統K3自光的入射側起,依序包含2個透鏡L31及透鏡L32以及使凹面朝向光的入射側的凹面反射鏡CM2。第4成像光學系統K4自光的入射側起,依序包含12個透鏡L41~L412以及使平面朝向晶圓側的平凸透鏡L413(邊界透鏡Lb)。第4成像光學系統K4中,在透鏡L410與透鏡L411之間的光路中,配置有孔徑光闌AS。下述的表(4)中揭示了第4實施例的投影光學系統PL的參數的值。 The third imaging optical system K3 includes two lenses L31 and L32 in this order from the incident side of the light, and a concave mirror CM2 that faces the incident side of the light toward the light. The fourth imaging optical system K4 sequentially includes twelve lenses L41 to L412 and a plano-convex lens L413 (boundary lens Lb) that faces the wafer side from the incident side of the light. In the fourth imaging optical system K4, an aperture stop AS is disposed in the optical path between the lens L410 and the lens L411. The value of the parameter of the projection optical system PL of the fourth embodiment is disclosed in the following Table (4).

表(4)(主要參數) Table (4) (main parameters)

該第4實施例的投影光學系統具備:第1成像光學單元,配置在第1面與第2面之間的光路中,包含第1凹面反射鏡, 且將互不相同的面彼此設為光學共軛的關係;以及第2成像光學單元,配置在第1成像光學單元與第2面之間的光路中,包含第2凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係,第1凹面反射鏡配置於第1成像光學單元的光路中與第1面的位置在光學上處於傅立葉變換關係的第1光瞳位置,第2凹面反射鏡配置於第2成像光學單元的光路中與第1面的位置在光學上處於傅立葉變換關係的第2光瞳位置至第1面側或第2面側,因此可達成良好的成像性能。 The projection optical system according to the fourth embodiment includes a first imaging optical unit that includes a first concave mirror disposed in an optical path between the first surface and the second surface. And the mutually different surfaces are optically conjugated; and the second imaging optical unit is disposed in the optical path between the first imaging optical unit and the second surface, and includes a second concave mirror and is mutually The different surfaces are optically conjugated, and the first concave mirror is disposed at the first pupil position in which the position of the first surface is optically Fourier-transformed in the optical path of the first imaging optical unit, and the second The concave mirror is disposed in the optical path of the second imaging optical unit and is optically Fourier-converted from the second pupil position to the first surface side or the second surface side in the optical path of the second imaging optical unit, so that good imaging performance can be achieved. .

各實施例的投影光學系統PL中,滿足了所需的條件式,因此,藉由適當設定表達對第1凹面反射鏡CM1的反射面CM1a以及第2凹面反射鏡CM2的反射面CM2a賦予的變形的函數FZ17的係數的符號以及大小(或者使該函數FZ17的係數的符號以及大小發生變化),可調整投影光學系統PL的波前像差的0次像差成分以及1次像差成分中的至少一者。一般而言,並不限定於特定的函數FZ17,藉由對第1凹面反射鏡CM1的反射面CM1a以及第2凹面反射鏡CM2的反射面CM2a賦予依據彼此相同的函數顯示的變形,可調整投影光學系統PL的波前像差。 In the projection optical system PL of the embodiment, the required conditional expression is satisfied. Therefore, the deformation imparted to the reflection surface CM1a of the first concave mirror CM1 and the reflection surface CM2a of the second concave mirror CM2 is appropriately set. 17 FZ function coefficients and the size of the symbols (or FZ the function coefficients and the size of the symbol 17 is changed), adjust the projection optical system PL wave front aberration of the aberration component and the zero-order aberration component 1 At least one of them. In general, it is not limited to the specific function FZ 17 , and the deformation of the reflection surface CM1a of the first concave mirror CM1 and the reflection surface CM2a of the second concave mirror CM2 can be adjusted by the same function. Wavefront aberration of the projection optical system PL.

所述的實施形態以及實施例中,對於第1凹面反射鏡CM1的反射面CM1a以及第2凹面反射鏡CM2的反射面CM2a,賦予以冊尼克多項式表達的變形,但表示所賦予的變形的函數並不限定於冊尼克多項式,例如亦可為冪級數等多項式。而且,所述的實施形態以及實施例中,使第1凹面反射鏡CM1的反射面CM1a以 及第2凹面反射鏡CM2的反射面CM2a這兩者均變形,但藉由調整相對於其中一個反射面形狀的另一個反射面形狀,可調整投影光學系統PL的波前像差,因此只要第1凹面反射鏡CM1的反射面CM1a以及第2凹面反射鏡CM2的反射面CM2a中的至少一者可變形即可。 In the above-described embodiment and the embodiment, the reflection surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2 are deformed by the Nicholas polynomial, but the function of the deformation is expressed. It is not limited to the Nicho polynomial, and may be a polynomial such as a power series. Further, in the above-described embodiments and examples, the reflecting surface CM1a of the first concave reflecting mirror CM1 is made And both of the reflection surface CM2a of the second concave mirror CM2 are deformed, but by adjusting the shape of the other reflection surface with respect to the shape of one of the reflection surfaces, the wavefront aberration of the projection optical system PL can be adjusted, so At least one of the reflection surface CM1a of the concave mirror CM1 and the reflection surface CM2a of the second concave mirror CM2 may be deformable.

即,本實施形態的投影光學系統PL中,例如可主動(active)調整因光照射而產生的波前像差。其結果,本實施形態的曝光裝置中,使用可主動調整波前像差的投影光學系統PL,可將遮罩M的微細圖案高精度地投影曝光至晶圓W,甚而可製造良好的元件。 In other words, in the projection optical system PL of the present embodiment, for example, wavefront aberration caused by light irradiation can be actively adjusted. As a result, in the exposure apparatus of the present embodiment, the projection optical system PL capable of actively adjusting the wavefront aberration can be used, and the fine pattern of the mask M can be projected onto the wafer W with high precision, and a good device can be manufactured.

再者,所述的各實施例中,投影光學系統PL構成為包含4個成像光學單元K1、K2、K3、K4的4次成像型的光學系統。然而,並不限定於此,對於具備包含第1凹面反射鏡的第1成像光學單元與包含第2凹面反射鏡的第2成像光學單元的投影光學系統,例如美國專利第4,812,028號公報、美國專利第5,668,673號公報、美國專利第7,030,965號公報等中揭示的投影光學系統,可適用本發明。 Further, in each of the above-described embodiments, the projection optical system PL is configured as a four-stage imaging optical system including four imaging optical units K1, K2, K3, and K4. However, the present invention is not limited thereto, and a projection optical system including a first imaging optical unit including a first concave mirror and a second imaging optical unit including a second concave mirror, for example, US Pat. No. 4,812,028, US Patent The present invention can be applied to a projection optical system disclosed in Japanese Patent No. 7, 306, 673, and the like.

而且,所述的各實施例中,有效成像區域ER以及有效視野區域FR被設定為偏離投影光學系統PL的光軸AX的矩形狀的區域。然而,並不限定於此,對於有效成像區域及有效視野區域與投影光學系統的光軸的位置關係、以及有效成像區域及有效視野區域的形狀,可為各種形態。例如有效成像區域ER以及有效 視野區域FR亦可設為圓弧狀或平行四邊形狀、梯形狀、六邊形狀等多邊形狀。 Further, in each of the above-described embodiments, the effective imaging region ER and the effective visual field region FR are set to be rectangular regions that are offset from the optical axis AX of the projection optical system PL. However, the present invention is not limited thereto, and the positional relationship between the effective imaging region and the effective visual field region and the optical axis of the projection optical system, and the shapes of the effective imaging region and the effective visual field region may be various forms. For example, the effective imaging area ER and effective The field of view FR may be a polygonal shape such as an arc shape or a parallelogram shape, a trapezoidal shape, or a hexagonal shape.

所述的各實施例中,第1成像光學系統K1的光軸或第4成像光學系統K4的光軸與第2成像光學系統K2及第3成像光學系統K3的光軸彼此正交,但並不限定於該配置。例如,亦可使第2成像光學系統K2及第3成像光學系統K3的光軸相對於Y軸而傾斜規定角度。 In each of the above embodiments, the optical axis of the first imaging optical system K1 or the optical axis of the fourth imaging optical system K4 and the optical axes of the second imaging optical system K2 and the third imaging optical system K3 are orthogonal to each other, but Not limited to this configuration. For example, the optical axes of the second imaging optical system K2 and the third imaging optical system K3 may be inclined by a predetermined angle with respect to the Y axis.

而且,所述的各實施例中,使第1凹面反射鏡CM1的反射面CM1a以及第2凹面反射鏡CM2的反射面CM2a發生變形,以控制投影光學系統的像差,但除此以外,亦可設置對構成投影光學系統的透光構件給予所需的溫度分佈的像差控制機構。作為此種對透光構件給予所需的溫度分佈的像差控制機構,可參照美國專利第6,198,579號公報或美國專利第6,781,668號公報、美國專利第7,817,249號公報、美國專利公開第2008/123066號公報。而且,亦可設置如下所述的像差控制機構,該像差控制機構對構成投影光學系統的光學構件的位置、姿勢進行變更,以控制投影光學系統的像差。 Further, in each of the above-described embodiments, the reflecting surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2 are deformed to control the aberration of the projection optical system, but An aberration control mechanism that imparts a desired temperature distribution to the light transmitting members constituting the projection optical system may be provided. As such an aberration control mechanism for imparting a desired temperature distribution to the light-transmitting member, reference is made to U.S. Patent No. 6,198,579 or U.S. Patent No. 6,781,668, U.S. Patent No. 7,817,249, U.S. Patent Publication No. 2008/123066 Bulletin. Further, an aberration control mechanism that changes the position and posture of the optical member constituting the projection optical system to control the aberration of the projection optical system may be provided.

所述的實施形態中,可取代遮罩而使用可變圖案形成裝置,該可變圖案形成裝置基於規定的電子資料來形成規定圖案。再者,作為可變圖案形成裝置,例如可使用空間光調變器件,該空間光調變器件包含基於規定的電子資料而受到驅動的多個反射器件。使用空間光調變器件的曝光裝置例如在美國專利公開第 2007/0296936號公報中有所揭示。而且,除了如上所述的非發光型的反射型空間光調變器以外,亦可使用透過型空間光調變器,還可使用自發光型的影像顯示器件。 In the above-described embodiment, a variable pattern forming device that forms a predetermined pattern based on predetermined electronic data may be used instead of the mask. Further, as the variable pattern forming device, for example, a spatial light modulation device including a plurality of reflecting devices driven based on predetermined electronic data may be used. An exposure apparatus using a spatial light modulation device, for example, in US Patent Publication No. It is disclosed in the publication No. 2007/0296936. Further, in addition to the non-light-emitting reflective spatial light modulator described above, a transmissive spatial light modulator may be used, and a self-luminous type image display device may also be used.

所述的實施形態的曝光裝置是藉由如下方式而製造,即,將包含本申請案的申請專利範圍中列舉的各構成要素的各種子系統,以保持規定的機械精度、電氣精度、光學精度的方式予以組裝。為了確保所述各種精度,在該組裝前後,對各種光學系統進行用於達成光學精度的調整,對各種機械系統進行用於達成機械精度的調整,對各種電氣系統進行用於達成電氣精度的調整。由各種子系統組裝成曝光裝置的組裝步驟包含各種子系統相互的機械連接、電氣電路的配線連接、氣壓迴路的配管連接等。當然,在由該各種子系統組裝成曝光裝置的組裝步驟之前,還有各子系統各自的組裝步驟。各種子系統組裝成曝光裝置的組裝步驟結束之後,進行綜合調整,從而確保整個曝光裝置的各種精度。再者,曝光裝置的製造亦可在溫度以及清潔度等受到管理的無塵室(clean room)中進行。 The exposure apparatus according to the above-described embodiment is manufactured by using various subsystems including the respective constituent elements listed in the scope of the patent application of the present application to maintain predetermined mechanical precision, electrical precision, and optical precision. The way to assemble. In order to ensure the various precisions, various optical systems are used to adjust the optical precision before and after the assembly, and various mechanical systems are used to achieve mechanical precision adjustment, and various electrical systems are used to achieve electrical precision adjustment. . The assembly steps of assembling the various exposure systems into various types of subsystems include mechanical connection of various subsystems, wiring connection of electrical circuits, piping connection of pneumatic circuits, and the like. Of course, prior to the assembly steps of assembling the various subsystems into an exposure apparatus, there are also individual assembly steps for each subsystem. After the assembly steps of the various subsystems assembled into the exposure apparatus are completed, comprehensive adjustment is performed to ensure various precisions of the entire exposure apparatus. Furthermore, the manufacture of the exposure apparatus can also be carried out in a clean room in which temperature and cleanliness are managed.

接下來,對使用所述實施形態的曝光裝置的元件製造方法進行說明。圖19是表示半導體元件的製造步驟的流程圖。如圖19所示,在半導體元件的製造步驟中,將金屬膜蒸鍍至成為半導體元件的基板的晶圓W(步驟S40),將作為感光性材料的光阻劑塗佈於該蒸鍍的金屬膜上(步驟S42)。繼而,使用所述實施形態的曝光裝置,將形成於遮罩(網線)M上的圖案轉印至晶圓W上 的各投射區域(步驟S44:曝光步驟),對該轉印已結束的晶圓W進行顯影,即,對轉印有圖案的光阻劑進行顯影(步驟S46:顯影步驟)。 Next, a method of manufacturing an element using the exposure apparatus of the above embodiment will be described. Fig. 19 is a flow chart showing a manufacturing procedure of a semiconductor element. As shown in FIG. 19, in the manufacturing process of a semiconductor element, a metal film is vapor-deposited to the wafer W which becomes a board|substrate of a semiconductor element (step S40), and the photoresist which is a photosensitive material is apply|coated on this vapor- On the metal film (step S42). Then, using the exposure apparatus of the embodiment, the pattern formed on the mask (mesh) M is transferred onto the wafer W. Each of the projection regions (step S44: exposure step) develops the wafer W whose transfer has been completed, that is, develops the photoresist to which the pattern has been transferred (step S46: development step).

隨後,將藉由步驟S46而在晶圓W的表面生成的光阻劑圖案作為遮罩,對晶圓W的表面進行蝕刻(etching)等加工(步驟S48:加工步驟)。此處,所謂光阻劑圖案,是指生成有凹凸的光阻劑層,且其凹部貫穿光阻劑層者,所述凹凸的形狀對應於藉由所述實施形態的曝光裝置所轉印的圖案。步驟S48中,經由該光阻劑圖案來對晶圓W的表面進行加工。在步驟S48中所進行的加工中,例如包含晶圓W的表面的蝕刻或金屬膜等的成膜中的至少一者。再者,步驟S44中,所述實施形態的曝光裝置將塗佈有光阻劑的晶圓W作為感光性基板來進行圖案的轉印。 Subsequently, the photoresist pattern generated on the surface of the wafer W in step S46 is used as a mask, and the surface of the wafer W is subjected to etching or the like (step S48: processing step). Here, the photoresist pattern refers to a photoresist layer in which irregularities are formed, and a concave portion penetrates the photoresist layer, and the shape of the unevenness corresponds to that transferred by the exposure device of the embodiment. pattern. In step S48, the surface of the wafer W is processed via the photoresist pattern. In the processing performed in step S48, for example, at least one of etching of the surface of the wafer W or film formation of a metal film or the like is included. Furthermore, in step S44, the exposure apparatus of the above embodiment transfers the pattern by using the wafer W coated with the photoresist as a photosensitive substrate.

圖20是表示液晶顯示元件等液晶元件的製造步驟的流程圖。如圖20所示,在液晶元件的製造步驟中,依序進行圖案形成步驟(步驟S50)、彩色濾光片(color filter)形成步驟(步驟S52)、組件(cell)組裝步驟(步驟S54)以及模組(module)組裝步驟(步驟S56)。在步驟S50的圖案形成步驟中,在作為板(plate)P的塗佈有光阻劑的玻璃基板上,使用所述實施形態的曝光裝置來形成電路圖案以及電極圖案等規定的圖案。該圖案形成步驟中包含:曝光步驟,使用所述實施形態的曝光裝置來將圖案轉印至光阻劑層;顯影步驟,對轉印有圖案的板P進行顯影,即,對玻璃基板上的光阻劑層進行顯影,生成與圖案對應的形狀的光 阻劑層;以及加工步驟,經由該經顯影的光阻劑層來對玻璃基板的表面進行加工。 FIG. 20 is a flowchart showing a manufacturing procedure of a liquid crystal element such as a liquid crystal display element. As shown in FIG. 20, in the manufacturing step of the liquid crystal element, the pattern forming step (step S50), the color filter forming step (step S52), and the cell assembly step (step S54) are sequentially performed. And a module assembly step (step S56). In the pattern forming step of step S50, a predetermined pattern such as a circuit pattern and an electrode pattern is formed on the glass substrate coated with the photoresist as the plate P by using the exposure apparatus of the above-described embodiment. The pattern forming step includes: an exposing step of transferring the pattern to the photoresist layer using the exposure apparatus of the embodiment; and a developing step of developing the pattern-transferred sheet P, that is, on the glass substrate The photoresist layer is developed to generate light of a shape corresponding to the pattern a resist layer; and a processing step of processing the surface of the glass substrate via the developed photoresist layer.

在步驟S52的彩色濾光片形成步驟中,形成彩色濾光片,該彩色濾光片呈矩陣(matrix)狀地排列有與紅(Red,R)、綠(Green,G)、藍(Blue,B)相對應的3個點的多個組,或沿著水平掃描方向排列有R、G、B的3根條狀濾光片的多個組。在步驟S54的組件組裝步驟中,使用藉由步驟S50而形成有規定圖案的玻璃基板、與藉由步驟S52而形成的彩色濾光片來組裝液晶面板(panel)(液晶組件)。具體而言,例如將液晶注入至玻璃基板與彩色濾光片之間,藉此來形成液晶面板。在步驟S56的模組組裝步驟中,對藉由步驟S54而組裝的液晶面板安裝進行該液晶面板的顯示動作的電氣電路及背光源(back light)等各種零件。 In the color filter forming step of step S52, a color filter is formed which is arranged in a matrix shape with red (Red, R), green (Green), blue (Blue). , B) a plurality of groups corresponding to three points, or a plurality of groups of three strip filters of R, G, and B arranged in the horizontal scanning direction. In the component assembly step of step S54, a liquid crystal panel (liquid crystal module) is assembled using a glass substrate having a predetermined pattern formed in step S50 and a color filter formed in step S52. Specifically, for example, a liquid crystal panel is formed by injecting liquid crystal between a glass substrate and a color filter. In the module assembly step of step S56, various components such as an electric circuit and a backlight that perform display operation of the liquid crystal panel are attached to the liquid crystal panel assembled in step S54.

而且,本發明並不限定於適用於半導體元件製造用的曝光裝置,例如亦可廣泛適用於形成在方型玻璃板上的液晶顯示元件、或者電漿顯示器(plasma display)等顯示裝置用的曝光裝置、或用於製造攝影器件(電荷耦合元件(Charge Coupled Device,CCD)等)、微機械(micromachine)、薄膜磁頭(thin film magnetic head)、及去氧核糖核酸(Deoxyribonucleic Acid,DNA)晶片(chip)等各種元件的曝光裝置。進而,本發明亦可適用於如下的曝光步驟(曝光裝置),該曝光步驟(曝光裝置)是使用光微影步驟來製造形成有各種元件的遮罩圖案的遮罩(光罩(photo mask)、網線等)時的曝光步驟(曝光裝置)。 Further, the present invention is not limited to an exposure apparatus suitable for manufacturing a semiconductor element, and can be widely applied, for example, to an exposure for a liquid crystal display element formed on a square glass plate or a display device such as a plasma display. Device, or for manufacturing a photographic device (Charge Coupled Device (CCD), etc.), a micromachine, a thin film magnetic head, and a Deoxyribonucleic Acid (DNA) wafer ( An exposure device for various components such as chip). Further, the present invention is also applicable to an exposure step (exposure device) which is a mask (photo mask) in which a mask pattern of various elements is formed using a photolithography step. Exposure step (exposure device) when, network cable, etc.).

再者,所述的實施形態中,使用有ArF準分子雷射光源,但並不限定於此,可使用其他適當的光源,例如供給波長248nm的雷射光的KrF準分子雷射光源、供給波長157nm的雷射光的F2雷射光源、供給波長146nm的雷射光的Kr2雷射光源、供給波長126nm的雷射光的Ar2雷射光源等。而且,亦可使用發出g線(波長436nm)、i線(波長365nm)等明線的超高壓水銀燈(lamp)等連續波(Continuous Wave,CW)光源。而且,亦可使用YAG雷射器的高諧波產生裝置等。除此以外,例如亦可如美國專利第7,023,610號說明書所揭示般,作為真空紫外光,使用如下所述的高諧波,即,將自DFB半導體雷射或纖維雷射器(fiber laser)振盪產生的紅外區或可視區的單一波長雷射光以例如摻雜(dope)有鉺(或鉺與鐿這兩者)的光纖放大器(fiber amplifier)予以放大,並使用非線性光學結晶來波長轉換為紫外光。 Further, in the above-described embodiment, an ArF excimer laser light source is used. However, the present invention is not limited thereto, and other suitable light sources such as a KrF excimer laser light source for supplying laser light having a wavelength of 248 nm and a supply wavelength can be used. An F 2 laser light source of 157 nm laser light, a Kr 2 laser light source that supplies laser light having a wavelength of 146 nm, an Ar 2 laser light source that supplies laser light having a wavelength of 126 nm, and the like. Further, a continuous wave (CW) light source such as an ultrahigh pressure mercury lamp that emits a bright line such as a g line (wavelength 436 nm) or an i line (wavelength 365 nm) may be used. Further, a high harmonic generating device of a YAG laser or the like can also be used. In addition to this, for example, as disclosed in the specification of U.S. Patent No. 7,023,610, as a vacuum ultraviolet light, a high harmonic as described below, that is, a laser beam from a DFB semiconductor or a fiber laser is used. The resulting single-field laser light in the infrared or visible region is amplified by, for example, a fiber amplifier doped with germanium (or both germanium and germanium) and converted to a wavelength using nonlinear optical crystallization. Ultraviolet light.

而且,所述的實施形態中,將本發明適用於掃描型的曝光裝置,但並不限定於此,亦可將本發明適用於在使遮罩及晶圓(感光性基板)靜止的狀態下對投影光學系統進行投影曝光的統一曝光型的曝光裝置。 Further, in the above-described embodiment, the present invention is applied to a scanning type exposure apparatus. However, the present invention is not limited thereto, and the present invention may be applied to a state in which a mask and a wafer (photosensitive substrate) are stationary. A uniform exposure type exposure apparatus that performs projection exposure on a projection optical system.

而且,所述的實施形態中,將本發明適用於搭載於曝光裝置中的液浸型的投影光學系統。然而,並不限定於液浸系,同樣亦可將本發明適用於乾燥型的投影光學系統。一般而言,可將本發明適用於在第2面上形成第1面的像的成像光學系統。 Further, in the above-described embodiment, the present invention is applied to a liquid immersion type projection optical system mounted in an exposure apparatus. However, the present invention is not limited to the liquid immersion system, and the present invention can also be applied to a dry type projection optical system. In general, the present invention can be applied to an imaging optical system in which an image of a first surface is formed on a second surface.

AS‧‧‧孔徑光闌 AS‧‧‧ aperture diaphragm

CM1、CM2‧‧‧凹面反射鏡 CM1, CM2‧‧‧ concave mirror

FM1、FM2‧‧‧平面反射鏡 FM1, FM2‧‧‧ plane mirror

IM‧‧‧像面 IM‧‧‧face

K1、K2、K3、K4‧‧‧成像光學單元 K1, K2, K3, K4‧‧‧ imaging optical unit

M‧‧‧遮罩 M‧‧‧ mask

OB‧‧‧物體面 OB‧‧‧ object surface

PL‧‧‧投影光學系統 PL‧‧‧Projection Optical System

W‧‧‧晶圓 W‧‧‧ wafer

X、Y、Z‧‧‧方向 X, Y, Z‧‧ Direction

Claims (65)

一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學部分,配置在所述第1面與所述第2面之間的光路中,包含第1凹面反射鏡,形成所述第1面的中間像;以及第2成像光學部分,配置在所述第1成像光學單元與所述第2面之間的光路中,包含第2凹面反射鏡,形成所述中間像的像,且所述第1凹面反射鏡以及所述第2凹面反射鏡中的至少一者具有可變形的反射面。 A projection optical system including an image on a first surface on a second surface, wherein the first imaging optical portion includes an optical path disposed between the first surface and the second surface a concave mirror that forms an intermediate image of the first surface; and a second imaging optical portion that includes a second concave mirror disposed in an optical path between the first imaging optical unit and the second surface. An image of the intermediate image is formed, and at least one of the first concave mirror and the second concave mirror has a deformable reflective surface. 如申請專利範圍第1項所述的投影光學系統,其中所述第1凹面反射鏡以及所述第2凹面反射鏡分別具有可變形的反射面。 The projection optical system according to claim 1, wherein the first concave mirror and the second concave mirror each have a deformable reflecting surface. 如申請專利範圍第1項或第2項所述的投影光學系統,其中所述第1成像光學部分包括第1成像光學單元,所述第1成像光學單元包含所述第1凹面反射鏡且將互不相同的面彼此設為光學共軛的關係,所述第2成像光學部分包括第2成像光學單元,所述第2成像光學單元包含所述第2反射鏡,且將互不相同的面彼此設為光學共軛的關係。 The projection optical system according to claim 1 or 2, wherein the first imaging optical portion includes a first imaging optical unit, and the first imaging optical unit includes the first concave mirror and The mutually different surfaces are optically conjugated, and the second imaging optical portion includes a second imaging optical unit, and the second imaging optical unit includes the second mirror and faces different from each other They are set to be optically conjugated to each other. 一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學單元,配置在所述第1面與所述第2面之間的光路中,且包含具有可變形的反射面的第1凹面反射鏡;以及第2成像光學單元,配置在所述第1成像光學單元與所述第2面之間的光路中,且包含具有可變形的反射面的第2凹面反射鏡。 A projection optical system including an image on a first surface on a second surface, comprising: a first imaging optical unit disposed in an optical path between the first surface and the second surface, and including a first concave mirror having a deformable reflecting surface; and a second imaging optical unit disposed in the optical path between the first imaging optical unit and the second surface and including a deformable reflecting surface The second concave mirror. 如申請專利範圍第3項或第4項所述的投影光學系統,其中所述投影光學系統是包含4個成像光學單元的4次成像型的光學系統。 The projection optical system according to claim 3, wherein the projection optical system is a four-stage imaging type optical system including four imaging optical units. 如申請專利範圍第3項至第5項中任一項所述的投影光學系統,更包括:前側折射成像光學單元,配置在所述第1面與所述第1成像光學單元之間的光路中;以及後側折射成像光學單元,配置在所述第2成像光學單元與所述第2面之間的光路中。 The projection optical system according to any one of claims 3 to 5, further comprising: a front side refractive imaging optical unit, an optical path disposed between the first surface and the first imaging optical unit And a rear side refractive imaging optical unit disposed in the optical path between the second imaging optical unit and the second surface. 如申請專利範圍第3項至第6項中任一項所述的投影光學系統,其中所述第2面上的有效成像區域是遠離所述投影光學系統的光軸的區域。 The projection optical system according to any one of claims 3 to 6, wherein the effective imaging area on the second surface is a region away from an optical axis of the projection optical system. 如申請專利範圍第3項至第7項中任一項所述的投影光學系統,其中所述第1凹面反射鏡配置於所述第1成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第1光瞳位 置至所述第1面側或所述第2面側,所述第2凹面反射鏡配置於所述第2成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第2光瞳位置至所述第2面側或所述第1面側。 The projection optical system according to any one of the preceding claims, wherein the first concave mirror is disposed in a position of the optical path of the first imaging optical unit and the first surface The first pupil position optically in the Fourier transform relationship Positioned on the first surface side or the second surface side, the second concave mirror is disposed in the optical path of the second imaging optical unit and optically has a Fourier transform relationship with the position of the first surface The second aperture position is on the second surface side or the first surface side. 如申請專利範圍第8項所述的投影光學系統,其中所述第1凹面反射鏡配置於所述第1光瞳位置至所述第1面側,所述第2凹面反射鏡配置於所述第2光瞳位置至所述第2面側。 The projection optical system according to claim 8, wherein the first concave mirror is disposed at the first pupil position to the first surface side, and the second concave mirror is disposed at the The second aperture position is on the second surface side. 如申請專利範圍第8項所述的投影光學系統,其中所述第1凹面反射鏡配置於所述第1光瞳位置至所述第2面側,所述第2凹面反射鏡配置於所述第2光瞳位置至所述第1面側。 The projection optical system according to claim 8, wherein the first concave mirror is disposed at the first pupil position to the second surface side, and the second concave mirror is disposed in the The second aperture position is on the first surface side. 如申請專利範圍第8項至第10項中任一項所述的投影光學系統,其中將與來自所述第1面上的有效視野區域內的各點的光束在任意光學面中所佔的局部點的集合外切的圓的半徑設為Re,且將與來自所述有效視野區域的中心點的光束在所述任意光學面中所佔的局部點外切的四邊形且在與所述有效視野區域的一邊對應的方向上具有一邊的長方形的中心位置、和與來自所述有效視野區域內的最大物高的點的光束在所述任意光學面中所佔的局部點外切的四邊形且在與所述有效視野區域的一邊對應的方向上具有一邊的長方形的中心位置在所述任意光學面上的距離設為A,而表示最靠近所述任意光學面的光瞳位置與所述任意光學面的位置關係的指標G是由G=A/Re來定義時, 與所述第1凹面反射鏡的與反射面相關的指標G1以及與所述第2凹面反射鏡的與反射面相關的指標G2滿足如下條件:0.02<G1<0.07,0.02<G2<0.07。 The projection optical system according to any one of claims 8 to 10, wherein the light beam from each point in the effective field of view of the first surface is occupied by an arbitrary optical surface The radius of the set of circumscribed circles of the local points is set to Re, and the quadrilateral which is circumscribed by the local point occupied by the light beam from the center point of the effective field of view area in the arbitrary optical plane is effective a central position of a rectangle having one side in a direction corresponding to one side of the field of view region, and a quadrilateral shape circumscribed by a local point occupied by a light beam from a point of the maximum object height in the effective view region and The distance between the center position of the rectangle having one side in the direction corresponding to one side of the effective field of view area on the arbitrary optical surface is A, and the position of the pupil closest to the arbitrary optical surface and the arbitrary When the index G of the positional relationship of the optical surface is defined by G=A/Re, The index G1 relating to the reflecting surface of the first concave mirror and the index G2 relating to the reflecting surface of the second concave mirror satisfy the following conditions: 0.02 < G1 < 0.07, 0.02 < G2 < 0.07. 如申請專利範圍第3項至第7項中任一項所述的投影光學系統,其中所述第1凹面反射鏡配置於所述第1成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第1光瞳位置,所述第2凹面反射鏡配置於所述第2成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第2光瞳位置至所述第1面側或所述第2面側。 The projection optical system according to any one of the preceding claims, wherein the first concave mirror is disposed in a position of the optical path of the first imaging optical unit and the first surface a first pupil position optically in a Fourier transform relationship, wherein the second concave mirror is disposed in an optical path of the second imaging optical unit and optically in a Fourier transform relationship with a position of the first surface The pupil position is on the first surface side or the second surface side. 如申請專利範圍第12項所述的投影光學系統,其中將與來自所述第1面上的有效視野區域內的各點的光束在任意光學面中所佔的局部點的集合外切的圓的半徑設為Re,且將與來自所述有效視野區域的中心點的光束在所述任意光學面中所佔的局部點外切的四邊形且在與所述有效視野區域的一邊對應的方向上具有一邊的長方形的中心位置、和與來自所述有效視野區域內的最大物高的點的光束在所述任意光學面中所佔的局部點外切的四邊形且在與所述有效視野區域的一邊對應的方向上具有一邊的長方形的中心位置在所述任意光學面上的距離設為A,而表示 最靠近所述任意光學面的光瞳位置與所述任意光學面的位置關係的指標G是由G=A/Re來定義時,與所述第1凹面反射鏡的反射面相關的指標G1以及與所述第2凹面反射鏡的反射面相關的指標G2滿足如下條件:0<G1<0.02,0.02<G2<0.07。 The projection optical system according to claim 12, wherein a circle circumscribed with a set of local points occupied by light beams from respective points in the effective field of view of the first surface in an arbitrary optical surface is obtained. The radius is set to Re, and a beam that is circumscribed at a local point occupied by the light beam from the center point of the effective field of view in the arbitrary optical surface and in a direction corresponding to one side of the effective field of view area a central position of a rectangle having one side, and a quadrilateral circumscribed by a local point occupied by a light beam from a point of maximum object height within the effective field of view area, and in a region with the effective field of view The distance between the center position of the rectangle having one side in the corresponding direction on the arbitrary optical surface is set to A, and The index G of the positional relationship between the pupil position closest to the arbitrary optical surface and the arbitrary optical surface is defined by G=A/Re, and the index G1 related to the reflection surface of the first concave mirror and The index G2 related to the reflection surface of the second concave mirror satisfies the following conditions: 0 < G1 < 0.02, 0.02 < G2 < 0.07. 如申請專利範圍第3項至第7項中任一項所述的投影光學系統,其中所述第1凹面反射鏡配置於所述第1成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第1光瞳位置至所述第1面側或所述第2面側,所述第2凹面反射鏡配置於所述第2成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第2光瞳位置。 The projection optical system according to any one of the preceding claims, wherein the first concave mirror is disposed in a position of the optical path of the first imaging optical unit and the first surface a first concave mirror that is optically in a Fourier transform relationship to the first surface side or the second surface side, wherein the second concave mirror is disposed in an optical path of the second imaging optical unit The position of the first surface is optically at the second pupil position of the Fourier transform relationship. 如申請專利範圍第14項所述的投影光學系統,其中將與來自所述第1面上的有效視野區域內的各點的光束在任意光學面中所佔的局部點的集合外切的圓的半徑設為Re,且將與來自所述有效視野區域的中心點的光束在所述任意光學面中所佔的局部點外切的四邊形且在與所述有效視野區域的一邊對應的方向上具有一邊的長方形的中心位置、和與來自所述有效視野區域內的最大物高的點的光束在所述任意光學面中所佔的局部點外切 的四邊形且在與所述有效視野區域的一邊對應的方向上具有一邊的長方形的中心位置在所述任意光學面上的距離設為A,而表示最靠近所述任意光學面的光瞳位置與所述任意光學面的位置關係的指標G是由G=A/Re來定義時,與所述第1凹面反射鏡的反射面相關的指標G1以及與所述第2凹面反射鏡的反射面相關的指標G2滿足如下條件:0.02<G1<0.07 0<G2<0.02。 The projection optical system according to claim 14, wherein a circle circumscribed with a set of local points occupied by light beams from respective points in the effective field of view of the first surface in an arbitrary optical surface is obtained. The radius is set to Re, and a beam that is circumscribed at a local point occupied by the light beam from the center point of the effective field of view in the arbitrary optical surface and in a direction corresponding to one side of the effective field of view area The central position of the rectangle having one side and the local point of the light beam occupying the point of the largest object from the effective field of view in the arbitrary optical plane The distance between the center position of the rectangle having one side in the direction corresponding to one side of the effective field of view area on the arbitrary optical surface is A, and the position of the pupil closest to the arbitrary optical surface is When the index G of the positional relationship of the arbitrary optical surface is defined by G=A/Re, the index G1 related to the reflection surface of the first concave mirror and the reflection surface of the second concave mirror are related. The index G2 satisfies the following condition: 0.02 < G1 < 0.07 0 < G2 < 0.02. 如申請專利範圍第3項至第7項中任一項所述的投影光學系統,其中所述第1凹面反射鏡配置於所述第1成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第1光瞳位置,所述第2凹面反射鏡配置於所述第2成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第2光瞳位置。 The projection optical system according to any one of the preceding claims, wherein the first concave mirror is disposed in a position of the optical path of the first imaging optical unit and the first surface a first pupil position optically in a Fourier transform relationship, wherein the second concave mirror is disposed in an optical path of the second imaging optical unit and optically in a Fourier transform relationship with a position of the first surface 2 light position. 如申請專利範圍第16項所述的投影光學系統,其中將與來自所述第1面上的有效視野區域內的各點的光束在任意光學面中所佔的局部點的集合外切的圓的半徑設為Re,且將與來自所述有效視野區域的中心點的光束在所述任意光學面中所佔的局部點外切的四邊形且在與所述有效視野區域的一邊對應的方 向上具有一邊的長方形的中心位置、和與來自所述有效視野區域內的最大物高的點的光束在所述任意光學面中所佔的局部點外切的四邊形且在與所述有效視野區域的一邊對應的方向上具有一邊的長方形的中心位置在所述任意光學面上的距離設為A,而表示最靠近所述任意光學面的光瞳位置與所述任意光學面的位置關係的指標G是由G=A/Re來定義時,與所述第1凹面反射鏡的反射面相關的指標G1以及與所述第2凹面反射鏡的反射面相關的指標G2滿足如下條件:0<G1<0.02 0<G2<0.02。 The projection optical system according to claim 16, wherein a circle circumscribed from a set of local points occupied by light beams from respective points in the effective field of view of the first surface in an arbitrary optical surface is obtained. The radius is set to Re, and a square circumscribed by a local point occupied by the light beam from the center point of the effective field of view in the arbitrary optical surface and a side corresponding to one side of the effective field of view area a central portion of the rectangle having one side upward, and a quadrilateral circumscribed by the local point occupied by the light beam from the point of the maximum object height in the effective field of view region, and in the effective view region The distance between the center position of the rectangle having one side in the direction corresponding to one side on the arbitrary optical surface is A, and the index indicating the positional relationship between the pupil position closest to the arbitrary optical surface and the arbitrary optical surface When G is defined by G=A/Re, the index G1 related to the reflection surface of the first concave mirror and the index G2 related to the reflection surface of the second concave mirror satisfy the following condition: 0<G1 <0.02 0<G2<0.02. 如申請專利範圍第6項至第17項中任一項所述的投影光學系統,其中包含多個光學器件的部分光學系統的光焦度為0.0100(mm-1)以上,所述多個光學器件配置於所述後側折射成像光學單元的光路中的與所述第2面的位置在光學上處於傅立葉變換關係的第4光瞳位置與所述第2面之間,在所述第4光瞳位置存在於光學器件內部的情況下,所述光學器件包含在所述部分光學系統中。 The projection optical system according to any one of claims 6 to 17, wherein a partial optical system including a plurality of optical devices has a power of 0.0100 (mm -1 ) or more, the plurality of opticals The device is disposed between the fourth pupil position in the Fourier-transformed relationship between the position of the second surface and the second surface in the optical path of the rear-side refractive imaging optical unit, and is in the fourth In the case where the pupil position exists inside the optical device, the optical device is included in the partial optical system. 如申請專利範圍第6項至第18項中任一項所述的投影光學系統,其中將所述第2面上的有效成像區域的最大像高設為Rb,且將所述後側折射成像光學單元內的最大透鏡有效半徑設為Rm時,滿 足如下條件:Rm/Rb≧9.0。 The projection optical system according to any one of claims 6 to 18, wherein a maximum image height of the effective imaging region on the second surface is set to Rb, and the rear side refraction is imaged When the maximum lens effective radius in the optical unit is set to Rm, full The following conditions are sufficient: Rm/Rb ≧ 9.0. 如申請專利範圍第8項至第19項中任一項所述的投影光學系統,其中所述第1面上的有效視野區域為矩形狀。 The projection optical system according to any one of claims 8 to 19, wherein the effective field of view area on the first surface is rectangular. 如申請專利範圍第2項至第20項中任一項所述的投影光學系統,更包括:第1主動變形部,使所述第1凹面反射鏡的所述反射面主動變形;以及第2主動變形部,使所述第2凹面反射鏡的所述反射面主動變形。 The projection optical system according to any one of claims 2 to 20, further comprising: a first active deformation portion that actively deforms the reflection surface of the first concave mirror; and a second The active deformation portion actively deforms the reflection surface of the second concave mirror. 如申請專利範圍第21項所述的投影光學系統,其中所述第1主動變形部以及所述第2主動變形部對於所述第1凹面反射鏡的反射面以及所述第2凹面反射鏡的反射面,賦予依據彼此相同的函數顯示的變形,藉此來調整所述投影光學系統的波前像差。 The projection optical system according to claim 21, wherein the first active deformation portion and the second active deformation portion are opposite to a reflection surface of the first concave mirror and the second concave mirror The reflecting surface is given a deformation displayed according to the same function as each other, thereby adjusting the wavefront aberration of the projection optical system. 如申請專利範圍第22項所述的投影光學系統,其中所述第1主動變形部以及所述第2主動變形部調整對於所述第2面上的有效成像區域內的沿著規定方向的各點為一樣的0次像差成分、以及對於沿著所述規定方向的各點為線性變化的1次像差成分中的至少一者。 The projection optical system according to claim 22, wherein the first active deformation portion and the second active deformation portion adjust each of the effective imaging regions on the second surface along a predetermined direction The point is the same 0th-order aberration component and at least one of the first-order aberration components that linearly change for each point along the predetermined direction. 一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括: 第1成像光學單元,配置在所述第1面與所述第2面之間的光路中,包含第1凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係;以及第2成像光學單元,配置在所述第1成像光學單元與所述第2面之間的光路中,包含第2凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係,所述第1凹面反射鏡配置於所述第1成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第1光瞳位置至所述第1面側,所述第2凹面反射鏡配置於所述第2成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第2光瞳位置至所述第2面側。 A projection optical system for forming an image of a first surface on a second surface, comprising: The first imaging optical unit includes a first concave mirror disposed in an optical path between the first surface and the second surface, and mutually different surfaces are optically conjugated; The imaging optical unit includes an optical path between the first imaging optical unit and the second surface, and includes a second concave mirror, and mutually different surfaces are optically conjugated. The first concave mirror is disposed in a first pupil position in which the position of the first surface is optically Fourier-transformed in the optical path of the first imaging optical unit to the first surface side, and the first surface The concave mirror is disposed on the second pupil side of the optical path of the second imaging optical unit that is optically Fourier-transformed to the position of the first surface to the second surface side. 一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學單元,配置在所述第1面與所述第2面之間的光路中,包含第1凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係;以及第2成像光學單元,配置在所述第1成像光學單元與所述第2面之間的光路中,包含第2凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係,所述第1凹面反射鏡配置於所述第1成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第1光瞳位 置至所述第2面側,所述第2凹面反射鏡配置於所述第2成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第2光瞳位置至所述第1面側。 A projection optical system comprising: a first imaging optical unit disposed on an optical path between the first surface and the second surface, wherein the image of the first surface is formed on the second surface a concave mirror having optically conjugated surfaces different from each other; and a second imaging optical unit disposed in an optical path between the first imaging optical unit and the second surface The second concave mirror has an optically conjugate relationship between mutually different surfaces, and the first concave mirror is disposed in the optical path of the first imaging optical unit at a position on the first surface Optically in the first optical position of the Fourier transform relationship Positioned on the second surface side, the second concave mirror is disposed in a second pupil position in which the position of the first surface is optically Fourier-transformed in the optical path of the second imaging optical unit The first surface side. 如申請專利範圍第24項或第25項所述的投影光學系統,其中將與來自所述第1面上的有效視野區域內的各點的光束在任意光學面中所佔的局部點的集合外切的圓的半徑設為Re,且將與來自所述有效視野區域的中心點的光束在所述任意光學面中所佔的局部點外切的四邊形且在與所述有效視野區域的一邊對應的方向上具有一邊的長方形的中心位置、和與來自所述有效視野區域內的最大物高的點的光束在所述任意光學面中所佔的局部點外切的四邊形且在與所述有效視野區域的一邊對應的方向上具有一邊的長方形的中心位置在所述任意光學面上的距離設為A,而表示最靠近所述任意光學面的光瞳位置與所述任意光學面的位置關係的指標G是由G=A/Re來定義時,與所述第1凹面反射鏡的反射面相關的指標G1以及與所述第2凹面反射鏡的反射面相關的指標G2滿足如下條件:0.02<G1<0.07,0.02<G2<0.07。 The projection optical system according to claim 24 or claim 25, wherein the collection of local points occupied by the light beams from the respective points in the effective field of view of the first surface in an arbitrary optical plane The radius of the circumscribed circle is set to Re, and the light beam from the center point of the effective field of view area is circumscribed by the local point occupied by the arbitrary optical surface and on one side of the effective field of view a central position of a rectangle having one side in a corresponding direction, and a quadrilateral circumscribed by a local point occupied by a light beam from a point of the maximum object height in the effective field of view area, and in the The distance between the center position of the rectangle having one side in the direction corresponding to one side of the effective field of view area on the arbitrary optical surface is A, and the position of the pupil closest to the arbitrary optical surface and the position of the arbitrary optical surface When the index G of the relationship is defined by G=A/Re, the index G1 related to the reflection surface of the first concave mirror and the index G2 related to the reflection surface of the second concave mirror satisfy the following conditions: 0 .02<G1<0.07, 0.02<G2<0.07. 一種投影光學系統,將第1面的像形成在第2面上,其特 徵在於包括:第1成像光學單元,配置在所述第1面與所述第2面之間的光路中,包含第1凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係;以及第2成像光學單元,配置在所述第1成像光學單元與所述第2面之間的光路中,包含第2凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係,所述第1凹面反射鏡配置於所述第1成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第1光瞳位置,所述第2凹面反射鏡配置於所述第2成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第2光瞳位置至所述第1面側或所述第2面側。 A projection optical system in which an image of a first surface is formed on a second surface The first imaging optical unit includes a first concave mirror and an optically conjugated surface that is disposed between the first surface and the second surface. And a second imaging optical unit, wherein the optical path between the first imaging optical unit and the second surface includes a second concave mirror, and mutually different surfaces are optically conjugated In the relationship between the first concave mirror and the optical path of the first imaging optical unit, the position of the first surface is optically Fourier-converted, and the second concave reflection The mirror is disposed in a second pupil position in which the position of the first surface is optically Fourier-transformed in the optical path of the second imaging optical unit to the first surface side or the second surface side. 如申請專利範圍第27項所述的投影光學系統,其中將與來自所述第1面上的有效視野區域內的各點的光束在任意光學面中所佔的局部點的集合外切的圓的半徑設為Re,且將與來自所述有效視野區域的中心點的光束在所述任意光學面中所佔的局部點外切的四邊形且在與所述有效視野區域的一邊對應的方向上具有一邊的長方形的中心位置、和與來自所述有效視野區域內的最大物高的點的光束在所述任意光學面中所佔的局部點外切的四邊形且在與所述有效視野區域的一邊對應的方向上具有一邊的長方形的中心位置在所述任意光學面上的距離設為A,而表示 最靠近所述任意光學面的光瞳位置與所述任意光學面的位置關係的指標G是由G=A/Re來定義時,與所述第1凹面反射鏡的反射面相關的指標G1以及與所述第2凹面反射鏡的反射面相關的指標G2滿足如下條件:0<G1<0.02,0.02<G2<0.07。 The projection optical system according to claim 27, wherein a circle circumscribed with a set of local points occupied by light beams from respective points in the effective field of view of the first surface in an arbitrary optical surface is used. The radius is set to Re, and a beam that is circumscribed at a local point occupied by the light beam from the center point of the effective field of view in the arbitrary optical surface and in a direction corresponding to one side of the effective field of view area a central position of a rectangle having one side, and a quadrilateral circumscribed by a local point occupied by a light beam from a point of maximum object height within the effective field of view area, and in a region with the effective field of view The distance between the center position of the rectangle having one side in the corresponding direction on the arbitrary optical surface is set to A, and The index G of the positional relationship between the pupil position closest to the arbitrary optical surface and the arbitrary optical surface is defined by G=A/Re, and the index G1 related to the reflection surface of the first concave mirror and The index G2 related to the reflection surface of the second concave mirror satisfies the following conditions: 0 < G1 < 0.02, 0.02 < G2 < 0.07. 一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學單元,配置在所述第1面與所述第2面之間的光路中,包含第1凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係;第2成像光學單元,配置在所述第1成像光學單元與所述第2面之間的光路中,包含第2凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係,所述第1凹面反射鏡配置於所述第1成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第1光瞳位置至所述第1面側或所述第2面側,所述第2凹面反射鏡配置於所述第2成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第2光瞳位置。 A projection optical system comprising: a first imaging optical unit disposed on an optical path between the first surface and the second surface, wherein the image of the first surface is formed on the second surface a concave mirror having optically conjugated surfaces different from each other; and a second imaging optical unit disposed in the optical path between the first imaging optical unit and the second surface, including a concave mirror having optically conjugated surfaces that are different from each other, wherein the first concave mirror is disposed in an optical path of the first imaging optical unit and is optically positioned at a position on the first surface The first pupil position in the Fourier transform relationship is on the first surface side or the second surface side, and the second concave mirror is disposed in the optical path of the second imaging optical unit and the first The position of the face is optically in the second pupil position of the Fourier transform relationship. 如申請專利範圍第29項所述的投影光學系統,其中 將與來自所述第1面上的有效視野區域內的各點的光束在任意光學面中所佔的局部點的集合外切的圓的半徑設為Re,且將與來自所述有效視野區域的中心點的光束在所述任意光學面中所佔的局部點外切的四邊形且在與所述有效視野區域的一邊對應的方向上具有一邊的長方形的中心位置、和與來自所述有效視野區域內的最大物高的點的光束在所述任意光學面中所佔的局部點外切的四邊形且在與所述有效視野區域的一邊對應的方向上具有一邊的長方形的中心位置在所述任意光學面上的距離設為A,而表示最靠近所述任意光學面的光瞳位置與所述任意光學面的位置關係的指標G是由G=A/Re來定義時,與所述第1凹面反射鏡的反射面相關的指標G1以及與所述第2凹面反射鏡的反射面相關的指標G2滿足如下條件:0.02<G1<0.07,0<G2<0.02。 The projection optical system of claim 29, wherein Setting a radius of a circle circumscribed by a set of local points occupied by light beams from respective points in the effective field of view on the first surface on an arbitrary optical surface as Re, and from the effective field of view a center point of the light beam at a local point occupied by the arbitrary optical surface, and a central position of the rectangle having one side in a direction corresponding to one side of the effective view area, and from the effective field of view a light beam at a point of the maximum object height in the region is a circumscribed quadrilateral at a local point occupied by the arbitrary optical surface, and a central position of a rectangle having one side in a direction corresponding to one side of the effective view region is The distance on the arbitrary optical surface is A, and the index G indicating the positional relationship between the pupil position closest to the arbitrary optical surface and the arbitrary optical surface is defined by G=A/Re, and the The index G1 related to the reflection surface of the concave mirror and the index G2 relating to the reflection surface of the second concave mirror satisfy the following conditions: 0.02 < G1 < 0.07, 0 < G2 < 0.02. 一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學單元,配置在所述第1面與所述第2面之間的光路中,包含第1凹面反射鏡,且將互不相同的面彼此設為光學共軛的關係;第2成像光學單元,配置在所述第1成像光學單元與所述第2面之間的光路中,包含第2凹面反射鏡,且將互不相同的面彼此 設為光學共軛的關係,所述第1凹面反射鏡配置於所述第1成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第1光瞳位置,所述第2凹面反射鏡配置於所述第2成像光學單元的光路中與所述第1面的位置在光學上處於傅立葉變換關係的第2光瞳位置。 A projection optical system comprising: a first imaging optical unit disposed on an optical path between the first surface and the second surface, wherein the image of the first surface is formed on the second surface a concave mirror having optically conjugated surfaces different from each other; and a second imaging optical unit disposed in the optical path between the first imaging optical unit and the second surface, including 2 concave mirrors, and different faces from each other In the optical conjugate relationship, the first concave mirror is disposed at a first pupil position in which the position of the first surface is optically Fourier-transformed in the optical path of the first imaging optical unit. The second concave mirror is disposed at a second pupil position in which the position of the first surface is optically Fourier-transformed in the optical path of the second imaging optical unit. 如申請專利範圍第31項所述的投影光學系統,其中將與來自所述第1面上的有效視野區域內的各點的光束在任意光學面中所佔的局部點的集合外切的圓的半徑設為Re,且將與來自所述有效視野區域的中心點的光束在所述任意光學面中所佔的局部點外切的四邊形且在與所述有效視野區域的一邊對應的方向上具有一邊的長方形的中心位置、和與來自所述有效視野區域內的最大物高的點的光束在所述任意光學面中所佔的局部點外切的四邊形且在與所述有效視野區域的一邊對應的方向上具有一邊的長方形的中心位置在所述任意光學面上的距離設為A,而表示最靠近所述任意光學面的光瞳位置與所述任意光學面的位置關係的指標G是由G=A/Re來定義時,與所述第1凹面反射鏡的反射面相關的指標G1以及與所述第2凹面反射鏡的反射面相關的指標G2滿足如下條件:0<G1<0.02,0<G2<0.02。 The projection optical system according to claim 31, wherein a circle circumscribed with a set of local points occupied by light beams from respective points in the effective field of view of the first surface in an arbitrary optical surface is used. The radius is set to Re, and a beam that is circumscribed at a local point occupied by the light beam from the center point of the effective field of view in the arbitrary optical surface and in a direction corresponding to one side of the effective field of view area a central position of a rectangle having one side, and a quadrilateral circumscribed by a local point occupied by a light beam from a point of maximum object height within the effective field of view area, and in a region with the effective field of view The distance between the center position of the rectangle having one side in the corresponding direction on the arbitrary optical surface is A, and the index G indicating the positional relationship between the pupil position closest to the arbitrary optical surface and the arbitrary optical surface When G=A/Re is defined, the index G1 related to the reflection surface of the first concave mirror and the index G2 related to the reflection surface of the second concave mirror satisfy the following condition: 0<G1< 0.02, 0<G2<0.02. 如申請專利範圍第24項至第32項中任一項所述的投影光學系統,更包括:前側折射成像光學單元,配置在所述第1面與所述第1成像光學單元之間的光路中;以及後側折射成像光學單元,配置在所述第2成像光學單元與所述第2面之間的光路中。 The projection optical system according to any one of claims 24 to 32, further comprising: a front side refractive imaging optical unit, an optical path disposed between the first surface and the first imaging optical unit And a rear side refractive imaging optical unit disposed in the optical path between the second imaging optical unit and the second surface. 如申請專利範圍第33項所述的投影光學系統,其中包含多個光學器件的部分光學系統的光焦度為0.0100(mm-1)以上,所述多個光學器件配置於所述後側折射成像光學單元的光路中與所述第2面的位置在光學上處於傅立葉變換關係的第4光瞳位置與所述第2面之間,在所述第4光瞳位置存在於光學器件內部的情況下,所述光學器件包含在所述部分光學系統中。 The projection optical system according to claim 33, wherein a partial optical system including a plurality of optical devices has a power of 0.0100 (mm -1 ) or more, and the plurality of optical devices are disposed on the rear side of the refractive system. The position of the second surface of the optical path of the imaging optical unit is optically in a Fourier-transformed relationship between the fourth pupil position and the second surface, and is present in the optical device at the fourth pupil position. In the case, the optical device is included in the partial optical system. 如申請專利範圍第33項或第34項所述的投影光學系統,其中當將所述第2面上的有效成像區域的最大像高設為Rb,將所述後側折射成像光學單元內的最大透鏡有效半徑設為Rm時,滿足如下條件:Rm/Rb≧9.0。 The projection optical system according to claim 33, wherein the maximum image height of the effective imaging region on the second surface is set to Rb, and the rear side is refracted in the imaging optical unit. When the maximum lens effective radius is set to Rm, the following condition is satisfied: Rm/Rb ≧ 9.0. 如申請專利範圍第24項至第35項中任一項所述的投影光學系統,其中所述第2面上的有效成像區域為遠離所述投影光學系統的光軸的區域。 The projection optical system according to any one of claims 24 to 35, wherein the effective imaging region on the second surface is a region away from an optical axis of the projection optical system. 如申請專利範圍第24項至第36項中任一項所述的投影光學系統,其中所述第1面上的有效視野區域為矩形狀。 The projection optical system according to any one of claims 24 to 36, wherein the effective field of view area on the first surface is rectangular. 一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學系統,配置在所述第1面與所述第2面之間的光路中,形成所述第1面的第1中間像;第2成像光學系統,配置在所述第1成像光學系統與所述第2面之間的光路中,包含第1凹面反射鏡,形成所述第1中間像的像即第2中間像;第3成像光學系統,配置在所述第2成像光學系統與所述第2面之間的光路中,包含第2凹面反射鏡,形成所述第2中間像的像即第3中間像;以及第4成像光學系統,配置在所述第3成像光學系統與所述第2面之間的光路中,在第2面上形成所述第3中間像的像,所述第2成像光學系統包括配置在所述第1中間像與所述第1凹面反射鏡之間的光路中的多個正透鏡,所述第3成像光學系統包括配置在所述第2中間像與所述第2凹面反射鏡之間的光路中的多個正透鏡。 A projection optical system in which an image of a first surface is formed on a second surface, comprising: a first imaging optical system disposed in an optical path between the first surface and the second surface; a first intermediate image of the first surface; and a second imaging optical system, wherein the optical path between the first imaging optical system and the second surface includes a first concave mirror, and the first intermediate mirror is formed The second intermediate image of the image; the third imaging optical system is disposed in the optical path between the second imaging optical system and the second surface, and includes a second concave mirror to form the second intermediate image The third intermediate image, and the fourth imaging optical system, disposed in the optical path between the third imaging optical system and the second surface, forms an image of the third intermediate image on the second surface The second imaging optical system includes a plurality of positive lenses disposed in an optical path between the first intermediate image and the first concave mirror, and the third imaging optical system includes the second imaging optical system a plurality of positive lenses in the optical path between the intermediate image and the second concave mirror. 如申請專利範圍第38項所述的投影光學系統,其中所述第3成像光學系統的所述多個正透鏡包括正彎月透鏡,所述正彎月透鏡配置在最靠所述第2中間像側且使凹面朝向所述第2中間像。 The projection optical system according to claim 38, wherein the plurality of positive lenses of the third imaging optical system comprise a positive meniscus lens, and the positive meniscus lens is disposed at the middle of the second The image side faces the concave surface toward the second intermediate image. 如申請專利範圍第38項或第39項所述的投影光學系統,其中所述第4成像光學系統包括正透鏡,所述正透鏡配置在最靠所述第3中間像側且使凸面朝向所述第2面側。 The projection optical system according to claim 38, wherein the fourth imaging optical system includes a positive lens disposed on a side closest to the third intermediate image and having a convex surface facing The second side is described. 如申請專利範圍第40項所述的投影光學系統,其中所述第4成像光學系統包括正透鏡,所述正透鏡鄰接於所述第4成像光學系統的所述正透鏡的所述第2面側而配置,且使凸面朝向所述第3中間像側。 The projection optical system according to claim 40, wherein the fourth imaging optical system includes a positive lens adjacent to the second surface of the positive lens of the fourth imaging optical system It is disposed on the side and has a convex surface facing the third intermediate image side. 如申請專利範圍第41項所述的投影光學系統,其中所述第4成像光學系統包括負透鏡,所述負透鏡鄰接於使凸面朝向所述第3中間像側的所述正透鏡的所述第2面側而配置,且使凹面朝向所述第3中間像側。 The projection optical system according to claim 41, wherein the fourth imaging optical system includes a negative lens adjacent to the positive lens that has a convex surface toward the third intermediate image side. The second surface side is disposed, and the concave surface faces the third intermediate image side. 如申請專利範圍第41項所述的投影光學系統,其中所述第4成像光學系統包括多個負透鏡,所述多個負透鏡鄰接於使凸面朝向所述第3中間像側的所述正透鏡的所述第2面側而配置,且使凹面朝向所述第3中間像側。 The projection optical system according to claim 41, wherein the fourth imaging optical system includes a plurality of negative lenses adjacent to the positive side facing the third intermediate image side The second surface side of the lens is disposed, and the concave surface faces the third intermediate image side. 一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學系統,配置在所述第1面與所述第2面之間的光路中,形成所述第1面的第1中間像;第2成像光學系統,配置在所述第1成像光學系統與所述第2面之間的光路中,包含第1凹面反射鏡,形成所述第1中間像的像即第2中間像; 第3成像光學系統,配置在所述第2成像光學系統與所述第2面之間的光路中,包含第2凹面反射鏡,形成所述第2中間像的像即第3中間像;以及第4成像光學系統,配置在所述第3成像光學系統與所述第2面之間的光路中,在第2面上形成所述第3中間像的像,所述第4成像光學系統包括正透鏡,所述正透鏡配置在最靠所述第3中間像側且使凸面朝向所述第2面側。 A projection optical system in which an image of a first surface is formed on a second surface, comprising: a first imaging optical system disposed in an optical path between the first surface and the second surface; a first intermediate image of the first surface; and a second imaging optical system, wherein the optical path between the first imaging optical system and the second surface includes a first concave mirror, and the first intermediate mirror is formed The image of the image is the second intermediate image; The third imaging optical system includes a second concave mirror that is disposed between the second imaging optical system and the second surface, and forms a third intermediate image that is an image of the second intermediate image; In the fourth imaging optical system, an image of the third intermediate image is formed on the second surface of the optical path between the third imaging optical system and the second surface, and the fourth imaging optical system includes In the positive lens, the positive lens is disposed on the side closest to the third intermediate image and has a convex surface facing the second surface side. 如申請專利範圍第44項所述的投影光學系統,其中所述第4成像光學系統包括正透鏡,所述正透鏡鄰接於所述第4成像光學系統的所述正透鏡的所述第2面側而配置,且使凸面朝向所述第3中間像側。 The projection optical system according to claim 44, wherein the fourth imaging optical system includes a positive lens adjacent to the second surface of the positive lens of the fourth imaging optical system It is disposed on the side and has a convex surface facing the third intermediate image side. 如申請專利範圍第45項所述的投影光學系統,其中所述第4成像光學系統包括負透鏡,所述負透鏡鄰接於使凸面朝向所述第3中間像側的所述正透鏡的所述第2面側而配置,且使凹面朝向所述第3中間像側。 The projection optical system according to claim 45, wherein the fourth imaging optical system includes a negative lens adjacent to the positive lens that has a convex surface toward the third intermediate image side. The second surface side is disposed, and the concave surface faces the third intermediate image side. 如申請專利範圍第45項所述的投影光學系統,其中所述第4成像光學系統包括多個負透鏡,所述多個負透鏡鄰接於使凸面朝向所述第3中間像側的所述正透鏡的所述第2面側而配置,且使凹面朝向所述第3中間像側。 The projection optical system according to claim 45, wherein the fourth imaging optical system includes a plurality of negative lenses adjacent to the positive side facing the third intermediate image side The second surface side of the lens is disposed, and the concave surface faces the third intermediate image side. 一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學系統,配置在所述第1面與所述第2面之間的 光路中,形成所述第1面的第1中間像;第2成像光學系統,配置在所述第1成像光學系統與所述第2面之間的光路中,包含第1凹面反射鏡,形成所述第1中間像的像即第2中間像;第3成像光學系統,配置在所述第2成像光學系統與所述第2面之間的光路中,包含第2凹面反射鏡,形成所述第2中間像的像即第3中間像;以及第4成像光學系統,配置在所述第3成像光學系統與所述第2面之間的光路中,在第2面上形成所述第3中間像的像,所述第2成像光學系統包括正彎月透鏡,所述正彎月透鏡配置在最靠所述第1中間像側,且使凸面朝向所述第1中間像側。 A projection optical system including an image on a first surface on a second surface, comprising: a first imaging optical system disposed between the first surface and the second surface The first intermediate image of the first surface is formed in the optical path, and the second imaging optical system is disposed in the optical path between the first imaging optical system and the second surface, and includes a first concave mirror. The second intermediate image, which is the image of the first intermediate image, and the third imaging optical system, which is disposed in the optical path between the second imaging optical system and the second surface, includes a second concave mirror, and is formed by the second concave mirror. a third intermediate image which is an image of the second intermediate image; and a fourth imaging optical system that is disposed on the optical path between the third imaging optical system and the second surface, and forms the second surface In the image of the intermediate image, the second imaging optical system includes a positive meniscus lens, and the positive meniscus lens is disposed on the side closest to the first intermediate image and has a convex surface facing the first intermediate image side. 如申請專利範圍第48項所述的投影光學系統,其中所述第2成像光學系統包括負彎月透鏡,所述負彎月透鏡配置在使凸面朝向所述第1中間像側的所述正彎月透鏡與所述第1凹面反射鏡之間,且使凹面朝向使凸面朝向所述第1中間像側的所述正彎月透鏡側。 The projection optical system according to claim 48, wherein the second imaging optical system includes a negative meniscus lens, and the negative meniscus lens is disposed such that the convex surface faces the first intermediate image side Between the meniscus lens and the first concave mirror, the concave surface is oriented such that the convex surface faces the positive meniscus lens side on the first intermediate image side. 如申請專利範圍第49項所述的投影光學系統,其中所述第1凹面反射鏡與所述負彎月透鏡是鄰接地配置。 The projection optical system according to claim 49, wherein the first concave mirror and the negative meniscus lens are disposed adjacent to each other. 如申請專利範圍第50項所述的投影光學系統,其中所述負彎月透鏡與所述正彎月透鏡是鄰接地配置。 The projection optical system according to claim 50, wherein the negative meniscus lens and the positive meniscus lens are disposed adjacent to each other. 一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括: 第1成像光學系統,配置在所述第1面與所述第2面之間的光路中,形成所述第1面的第1中間像;第2成像光學系統,配置在所述第1成像光學系統與所述第2面之間的光路中,包含第1凹面反射鏡,形成所述第1中間像的像即第2中間像;第3成像光學系統,配置在所述第2成像光學系統與所述第2面之間的光路中,包含第2凹面反射鏡,形成所述第2中間像的像即第3中間像;以及第4成像光學系統,配置在所述第3成像光學系統與所述第2面之間的光路中,在第2面上形成所述第3中間像的像,所述第2成像光學系統包括透鏡,所述透鏡配置在最靠所述第1中間像側,並且鄰接於所述第1凹面反射鏡而配置。 A projection optical system for forming an image of a first surface on a second surface, comprising: The first imaging optical system is configured such that a first intermediate image of the first surface is formed in an optical path between the first surface and the second surface, and a second imaging optical system is disposed in the first imaging The optical path between the optical system and the second surface includes a first concave mirror to form a second intermediate image which is an image of the first intermediate image, and a third imaging optical system is disposed in the second imaging optical The optical path between the system and the second surface includes a second concave mirror, a third intermediate image that forms an image of the second intermediate image, and a fourth imaging optical system that is disposed in the third imaging optical In the optical path between the system and the second surface, an image of the third intermediate image is formed on the second surface, the second imaging optical system includes a lens, and the lens is disposed in the first middle The image side is disposed adjacent to the first concave mirror. 一種投影光學系統,將第1面的像形成在第2面上,其特徵在於包括:第1成像光學系統,配置在所述第1面與所述第2面之間的光路中,形成所述第1面的第1中間像;第2成像光學系統,配置在所述第1成像光學系統與所述第2面之間的光路中,包含第1凹面反射鏡,形成所述第1中間像的像即第2中間像;第3成像光學系統,配置在所述第2成像光學系統與所述第2面之間的光路中,包含第2凹面反射鏡,形成所述第2中間像的像即第3中間像; 第4成像光學系統,配置在所述第3成像光學系統與所述第2面之間的光路中,在第2面上形成所述第3中間像的像;第1偏向鏡,配置在所述第1成像光學系統與所述第2成像光學系統之間的光路中;以及第2偏向鏡,配置在所述第3成像光學系統與所述第4成像光學系統之間。 A projection optical system in which an image of a first surface is formed on a second surface, comprising: a first imaging optical system disposed in an optical path between the first surface and the second surface; a first intermediate image of the first surface; and a second imaging optical system, wherein the optical path between the first imaging optical system and the second surface includes a first concave mirror, and the first intermediate mirror is formed The second intermediate image of the image; the third imaging optical system is disposed in the optical path between the second imaging optical system and the second surface, and includes a second concave mirror to form the second intermediate image The image of the third intermediate image; The fourth imaging optical system is disposed in an optical path between the third imaging optical system and the second surface, and forms an image of the third intermediate image on the second surface; the first deflecting mirror is disposed in the optical path The optical path between the first imaging optical system and the second imaging optical system; and the second deflecting mirror are disposed between the third imaging optical system and the fourth imaging optical system. 如申請專利範圍第53項所述的投影光學系統,其中所述第2成像光學系統與所述第3成像光學系統彼此共軸。 The projection optical system according to claim 53, wherein the second imaging optical system and the third imaging optical system are coaxial with each other. 如申請專利範圍第53項或第54項所述的投影光學系統,其中所述第1成像光學系統的光軸與所述第4成像光學系統的光軸彼此平行。 The projection optical system according to claim 53, wherein the optical axis of the first imaging optical system and the optical axis of the fourth imaging optical system are parallel to each other. 如申請專利範圍第53項至第55項中任一項所述的投影光學系統,其中所述第1偏向鏡具有沿著第1平面的第1平面反射面,所述第2偏向鏡具有沿著第2平面的第2平面反射面,所述第1平面以及第2平面彼此平行。 The projection optical system according to any one of claims 53 to 55, wherein the first deflecting mirror has a first planar reflecting surface along a first plane, and the second deflecting mirror has an edge The second planar reflecting surface of the second plane, the first plane and the second plane being parallel to each other. 如申請專利範圍第53項至第56項中任一項所述的投影光學系統,其中所述第1偏向鏡具有沿著第1平面的第1平面反射面,所述第2偏向鏡具有沿著第2平面的第2平面反射面,所述第1成像光學系統的光軸與所述第2成像光學系統的光軸在所述第1平面上交叉, 所述第3成像光學系統的光軸與所述第4成像光學系統的光軸在所述第2平面上交叉。 The projection optical system according to any one of claims 53 to 56, wherein the first deflecting mirror has a first planar reflecting surface along a first plane, and the second deflecting mirror has an edge a second planar reflecting surface of the second plane, wherein an optical axis of the first imaging optical system intersects with an optical axis of the second imaging optical system on the first plane The optical axis of the third imaging optical system intersects with the optical axis of the fourth imaging optical system on the second plane. 一種調整方法,為申請專利範圍第2項至第21項中任一項所述的投影光學系統的調整方法,其特徵在於包括如下步驟:對於所述第1凹面反射鏡的反射面以及所述第2凹面反射鏡的反射面,賦予依據彼此相同的函數顯示的變形,藉此來調整所述投影光學系統的波前像差。 The method of adjusting the projection optical system according to any one of the preceding claims, comprising the step of: reflecting a reflecting surface of the first concave mirror and the The reflection surface of the second concave mirror is given a deformation displayed by the same function, thereby adjusting the wavefront aberration of the projection optical system. 如申請專利範圍第58項所述的調整方法,其中調整所述波前像差的步驟包括如下步驟:調整對於所述第2面上的有效成像區域內的沿著規定方向的各點為一樣的0次像差成分、以及對於沿著所述規定方向的各點為線性變化的1次像差成分中的至少一者。 The adjustment method of claim 58, wherein the step of adjusting the wavefront aberration comprises the step of adjusting the points along the predetermined direction in the effective imaging region on the second surface At least one of the zero-order aberration component and the first-order aberration component that changes linearly with respect to each point along the predetermined direction. 一種調整方法,為將第1面的像形成在第2面上的投影光學系統的調整方法,其特徵在於包括如下步驟:使第1成像光學單元的中的第1凹面反射鏡變形,所述第1成像光學單元配置在所述第1面與所述第2面之間的光路中;以及使第2成像光學單元的中的第2凹面反射鏡變形,所述第2成像光學單元配置在所述第1成像光學單元與所述第2面之間的光路中,且對於所述第1凹面反射鏡的反射面以及所述第2凹面反射鏡的反射面,賦予依據彼此相同的函數顯示的變形,藉此來調整所 述投影光學系統的波前像差。 An adjustment method for adjusting a projection optical system in which an image of a first surface is formed on a second surface, comprising the step of deforming a first concave mirror of the first imaging optical unit, The first imaging optical unit is disposed in an optical path between the first surface and the second surface; and deforms a second concave mirror in the second imaging optical unit, wherein the second imaging optical unit is disposed In the optical path between the first imaging optical unit and the second surface, the reflection surface of the first concave mirror and the reflection surface of the second concave mirror are provided with the same function display. Deformation, thereby adjusting the place The wavefront aberration of the projection optical system. 如申請專利範圍第60項所述的調整方法,其中調整對於所述第2面上的有效成像區域內的沿著規定方向的各點為一樣的0次像差成分、以及對於沿著所述規定方向的各點為線性變化的1次像差成分中的至少一者,以調整所述波前像差。 The adjustment method according to claim 60, wherein the zero-order aberration component that is the same for each point along the predetermined direction in the effective imaging region on the second surface is adjusted, and Each point in the predetermined direction is at least one of linear aberration components that are linearly changed to adjust the wavefront aberration. 一種曝光裝置,其特徵在於包括:如申請專利範圍第1項至第57項中任一項所述的投影光學系統,用於基於來自設置於所述第1面上的規定圖案的光,將所述規定圖案投影至設置於所述第2面的基板上。 An exposure apparatus according to any one of claims 1 to 57, which is based on light from a predetermined pattern provided on the first surface, The predetermined pattern is projected onto a substrate provided on the second surface. 一種曝光方法,其特徵在於包括如下步驟:將來自設置於所述第1面上的規定圖案的光導向投影光學系統,以將所述規定圖案投影至設置於所述第2面的基板上;以及使用如申請專利範圍第58項至第61項中任一項所述的調整方法來調整所述投影光學系統。 An exposure method comprising the steps of: directing light from a predetermined pattern disposed on the first surface to a projection optical system to project the predetermined pattern onto a substrate disposed on the second surface; And adjusting the projection optical system using an adjustment method as described in any one of claims 58 to 61. 一種元件製造方法,其特徵在於包括如下步驟:使用如申請專利範圍第62項所述的曝光裝置,將所述規定圖案曝光至所述基板;對轉印有所述規定圖案的所述基板進行顯影,以在所述基板的表面形成與所述規定圖案對應的形狀的遮罩層;以及經由所述遮罩層來對所述基板的表面進行加工。 A method of manufacturing a device, comprising the steps of: exposing the predetermined pattern to the substrate using an exposure apparatus according to claim 62; performing the substrate on which the predetermined pattern is transferred Developing a mask layer having a shape corresponding to the predetermined pattern on a surface of the substrate; and processing a surface of the substrate via the mask layer. 一種元件製造方法,其特徵在於包括如下步驟:使用如申請專利範圍第63項所述的曝光方法,將所述規定圖 案曝光至所述基板;對轉印有所述規定圖案的所述基板進行顯影,以在所述基板的表面形成與所述規定圖案對應的形狀的遮罩層;以及經由所述遮罩層來對所述基板的表面進行加工。 A method of manufacturing a component, comprising the steps of: using the exposure method according to claim 63 of the patent application, the specification chart Exposing the substrate to the substrate; developing the substrate on which the predetermined pattern is transferred to form a mask layer having a shape corresponding to the predetermined pattern on a surface of the substrate; and passing through the mask layer The surface of the substrate is processed.
TW103132184A 2013-09-19 2014-09-18 Projection optical system, adjusting method thereof, exposing device and method, and device manufacturing method TW201514541A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013194129 2013-09-19

Publications (1)

Publication Number Publication Date
TW201514541A true TW201514541A (en) 2015-04-16

Family

ID=52688982

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103132184A TW201514541A (en) 2013-09-19 2014-09-18 Projection optical system, adjusting method thereof, exposing device and method, and device manufacturing method

Country Status (2)

Country Link
TW (1) TW201514541A (en)
WO (1) WO2015041335A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3616600B1 (en) * 2017-04-28 2022-06-22 Nikon Corporation Ophthalmological device
JP7332415B2 (en) 2019-10-01 2023-08-23 キヤノン株式会社 Projection optical system, scanning exposure apparatus and article manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004317534A (en) * 2003-04-11 2004-11-11 Nikon Corp Catadioptric image-formation optical system, exposure device, and exposure method
JP2005107362A (en) * 2003-10-01 2005-04-21 Canon Inc Projection optical system, aligner and manufacturing method of device
JP2007508591A (en) * 2003-10-17 2007-04-05 カール・ツァイス・エスエムティー・アーゲー Catadioptric projection objective
JP2007005558A (en) * 2005-06-23 2007-01-11 Canon Inc Catadioptric projection optical system and exposure device having it
EP1746463A2 (en) * 2005-07-01 2007-01-24 Carl Zeiss SMT AG Method for correcting a lithographic projection objective and projection objective of such a kind
JP5462625B2 (en) * 2006-08-14 2014-04-02 カール・ツァイス・エスエムティー・ゲーエムベーハー Catadioptric projection objective with pupil mirror, projection exposure apparatus and method
US7929114B2 (en) * 2007-01-17 2011-04-19 Carl Zeiss Smt Gmbh Projection optics for microlithography
DE102011080437A1 (en) * 2010-09-30 2012-04-05 Carl Zeiss Smt Gmbh Imaging optical system for microlithography

Also Published As

Publication number Publication date
WO2015041335A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
JP4324957B2 (en) Illumination optical apparatus, exposure apparatus, and exposure method
TWI445999B (en) Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
JP5464288B2 (en) Spatial light modulator inspection apparatus and inspection method
WO2009125511A1 (en) Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
JP2008085328A (en) Liquid immersion objective optical system, exposure apparatus, device manufacturing method, and border optical element
WO2011074319A1 (en) Deformable mirror, illumination optical system, exposure device, and method for producing device
TW201514541A (en) Projection optical system, adjusting method thereof, exposing device and method, and device manufacturing method
JPWO2009078224A1 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2004031808A (en) Projection optical system of aligner, aligner equipped with the same, and method for exposure using the aligner
JP2014146660A (en) Illumination optical device, exposure device, and method of manufacturing device
US10459343B2 (en) Illumination device
US20130278910A1 (en) Projection optical assembly, projection optical assembly adjustment method, exposure device, exposure method, and device manufacturing method
JP2007287885A (en) Illuminating optical apparatus, aligner, and method of manufacturing device
JP2004093953A (en) Manufacturing method of projection optical system, aligner and microdevice
JP4957278B2 (en) Illumination apparatus, exposure apparatus, exposure apparatus adjustment method, and device manufacturing method
WO2013115208A1 (en) Transmission optical system, illumination optical system, exposure device, and device manufacturing method
JP2014146718A (en) Illumination optical device, exposure device, and method of manufacturing device
JP2014157890A (en) Illumination optical device, exposure device, and method of manufacturing device
JP5682799B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2004029458A (en) Projection optical system and stepper
JP2017102275A (en) Projection optical system, adjustment method of projection optical system, exposure apparatus, exposure method, and method for manufacturing device
JP2017102274A (en) Projection optical system, projection method, adjustment method of projection optical system, exposure apparatus, exposure method, and method for manufacturing device
JP2013098208A (en) Illumination optical system, exposure device, device manufacturing method, and illumination method
JP2009117672A (en) Illumination optical system, exposure apparatus, and device manufacturing method