TW201513266A - Wafer, method for forming a test structure and method for forming a semiconductor structure - Google Patents

Wafer, method for forming a test structure and method for forming a semiconductor structure Download PDF

Info

Publication number
TW201513266A
TW201513266A TW103110612A TW103110612A TW201513266A TW 201513266 A TW201513266 A TW 201513266A TW 103110612 A TW103110612 A TW 103110612A TW 103110612 A TW103110612 A TW 103110612A TW 201513266 A TW201513266 A TW 201513266A
Authority
TW
Taiwan
Prior art keywords
test
forming
wafer
pad
pads
Prior art date
Application number
TW103110612A
Other languages
Chinese (zh)
Other versions
TWI520266B (en
Inventor
Clement Hsingjen Wann
Ling-Yen Yeh
Chi-Yuan Shih
Wei-Chun Tsai
Original Assignee
Taiwan Semiconductor Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg Co Ltd filed Critical Taiwan Semiconductor Mfg Co Ltd
Publication of TW201513266A publication Critical patent/TW201513266A/en
Application granted granted Critical
Publication of TWI520266B publication Critical patent/TWI520266B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/32Additional lead-in metallisation on a device or substrate, e.g. additional pads or pad portions, lines in the scribe line, sacrificed conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0886Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps

Abstract

A method for forming a semiconductor structure is disclosed, comprising: forming a semiconductor device on a wafer having a substrate; and forming a test key on the substrate and in a scribe line of the wafer, comprising: forming a plurality of shallow trench isolation structures (STIs) on a substrate of a wafer and in a scribe line of the wafer; and forming a plurality of test pads from a semiconductor material, the plurality of test pads formed on the substrate and separated by at least one of the plurality of STIs, at least a first test pad of the plurality of test pads having physical characteristics related to a portion of the semiconductor device.

Description

晶圓,形成測試結構之方法及半導體結構之製作方法 Wafer, method of forming test structure and method of fabricating semiconductor structure

本發明係有關於一種半導體裝置及其製造方法,特別有關於一種具有測試單元之半導體裝置及其製造方法。 The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a semiconductor device having a test cell and a method of fabricating the same.

半導體裝置廣泛的用於各電子裝置的應用,例如個人電腦、手機、數位相機和其他的電子設備。半導體裝置一般藉由下列步驟製作:沉積絕緣層或介電層、導電層和半導體層之材料於一半導體基底上,且使用微影技術圖案化各種材料層,以形成電路構件和單元。 Semiconductor devices are widely used in applications of various electronic devices, such as personal computers, cell phones, digital cameras, and other electronic devices. A semiconductor device is generally fabricated by depositing a material of an insulating or dielectric layer, a conductive layer, and a semiconductor layer on a semiconductor substrate, and patterning various layers of material using lithography techniques to form circuit components and cells.

半導體工業藉由縮小最小的圖樣尺寸持續的改進各種電子構件(例如電晶體、二極體、電容器等)的積集度,使得更多的構件可整合於特定區域。隨著晶粒尺寸的微縮和構件數量的增加,例如電晶體之單一構件的可靠度變的更關鍵。例如,晶圓在其上形成層和結構之前和之間可進行空白測試(blanket test)。 The semiconductor industry continues to improve the integration of various electronic components (such as transistors, diodes, capacitors, etc.) by reducing the minimum pattern size, allowing more components to be integrated into specific areas. As the grain size shrinks and the number of components increases, the reliability of a single component such as a transistor becomes more critical. For example, a wafer test can be performed before and between the formation of layers and structures thereon.

本發明提供一種半導體結構之製作方法,包括:形成一半導體裝置於一晶圓上,其中晶圓具有一基底;及形成一測試鍵於晶圓之基底上和切割線中,包括:形成複數個淺溝槽 隔離結構於晶圓之基底上和切割線中;形成複數個包括半導體材料之測試墊,上述測試墊形成於基底上,且以上述淺溝槽隔離結構之至少一者分隔,上述測試墊之至少一第一測試墊具有與半導體裝置之一部分相關的物理特性。 The present invention provides a method of fabricating a semiconductor structure, comprising: forming a semiconductor device on a wafer, wherein the wafer has a substrate; and forming a test key on the substrate of the wafer and the cutting line, comprising: forming a plurality of Shallow trench Separating the structure on the substrate of the wafer and in the dicing line; forming a plurality of test pads including a semiconductor material, the test pads being formed on the substrate and separated by at least one of the shallow trench isolation structures, at least one of the test pads A first test pad has physical properties associated with a portion of the semiconductor device.

本發明提供一種形成測試結構之方法,包括:形成複數個淺溝槽隔離結構於一晶圓之基底上和晶圓之切割線中;形成一測試鍵於晶圓之基底上和晶圓之切割線中,形成測試鍵包括:形成至少一測試鍵群組,具有複數個測試鍵系列,各測試鍵系列具有複數個由一半導體材料形成之測試墊,在至少一測試鍵群組中,各測試鍵系列具有一第一物理特性,與其他測試鍵系列之第一物理特性不同。 The present invention provides a method of forming a test structure, comprising: forming a plurality of shallow trench isolation structures on a substrate of a wafer and a dicing line of the wafer; forming a test key on the substrate of the wafer and cutting the wafer In the line, forming the test key comprises: forming at least one test key group, having a plurality of test key series, each test key series having a plurality of test pads formed of a semiconductor material, in at least one test key group, each test The key series has a first physical characteristic that is different from the first physical characteristic of the other test key series.

本發明提供一種晶圓,包括:至少一切割道,定義於晶圓之一基底上,至少一切割道將晶粒區分隔;及至少一測試鍵系列於至少一切割道中,至少一測試鍵系列包括:複數個測試墊,各測試墊與另一測試墊間以淺溝槽隔離結構分隔;其中各至少一測試鍵系列中之各測試墊具有至少一鰭,至少一測試鍵系列中的各測試墊具有不同數量的鰭。 The present invention provides a wafer comprising: at least one dicing street defined on one of the substrates of the wafer, at least one scribe line separating the die regions; and at least one test key series in at least one scribe line, at least one test key series The method includes: a plurality of test pads, each test pad is separated from another test pad by a shallow trench isolation structure; wherein each test pad in each of the at least one test key series has at least one fin, and at least one test in the test key series The mat has a different number of fins.

100‧‧‧晶圓 100‧‧‧ wafer

102‧‧‧晶粒 102‧‧‧ grain

104‧‧‧測試鍵 104‧‧‧Test key

106‧‧‧切割線 106‧‧‧ cutting line

108‧‧‧測試鍵系列 108‧‧‧Test key series

110‧‧‧測試墊 110‧‧‧Test pad

110a-110n‧‧‧測試墊 110a-110n‧‧‧ test pad

112‧‧‧鰭 112‧‧‧Fins

202a-202b‧‧‧測試鍵群組 202a-202b‧‧‧Test Key Group

204a-204d‧‧‧測試鍵系列 204a-204d‧‧‧ test key series

300‧‧‧獨一測試鍵 300‧‧‧ unique test button

302a-302d‧‧‧測試墊 302a-302d‧‧‧ test pad

402‧‧‧基底 402‧‧‧Base

404‧‧‧淺溝槽隔離 404‧‧‧Shallow trench isolation

406‧‧‧墊部分 406‧‧‧Material section

408‧‧‧基底表面 408‧‧‧Base surface

410‧‧‧測試墊區 410‧‧‧Test pad area

412‧‧‧磊晶 412‧‧‧ Epitaxial

414‧‧‧磊晶層頂部表面 414‧‧‧ top surface of the epitaxial layer

416‧‧‧罩幕 416‧‧‧ mask

418‧‧‧阻抗物 418‧‧‧impedance

420‧‧‧佈植 420‧‧‧planting

422‧‧‧摻雜測試墊 422‧‧‧Doped test pad

424‧‧‧未摻雜的測試墊 424‧‧‧Undoped test pads

502‧‧‧磊晶成長測試墊 502‧‧‧ epitaxial growth test pad

504‧‧‧第二磊晶測試墊 504‧‧‧Second epitaxial test pad

602‧‧‧磊晶測試墊 602‧‧‧ epitaxial test pad

604‧‧‧摻雜測試墊 604‧‧‧Doped test pad

700‧‧‧方法 700‧‧‧ method

702、720、724、726、728、740、742、744、746、760、762、764‧‧‧步驟 702, 720, 724, 726, 728, 740, 742, 744, 746, 760, 762, 764 ‧ ‧ steps

800‧‧‧系統 800‧‧‧ system

802‧‧‧電腦 802‧‧‧ computer

804‧‧‧探針控制器 804‧‧‧ Probe Controller

806‧‧‧探針 806‧‧‧ probe

808‧‧‧資料接收器 808‧‧‧ data receiver

第1A圖至第1C圖顯示一實施例測試墊的配置。 Figures 1A through 1C show the configuration of an embodiment test pad.

第2圖顯示一實施例測試鍵之上視圖。 Figure 2 shows a top view of an embodiment test key.

第3圖顯示一實施例單一測試鍵的上視圖。 Figure 3 shows a top view of a single test key of an embodiment.

第4A圖至第4H圖顯示一實施例形成選擇性摻雜測試墊中間階段的剖面圖。 4A through 4H are cross-sectional views showing an intermediate stage of forming a selective doping test pad in an embodiment.

第5A圖至第5J圖顯示一實施例形成具有不同磊晶條件之測試墊中間階段的剖面圖。 5A through 5J are cross-sectional views showing an intermediate stage of forming a test pad having different epitaxial conditions in an embodiment.

第6A圖至第6D圖顯示一實施例形成選擇性摻雜測試墊製程之中間階段的剖面圖。 6A through 6D are cross-sectional views showing an intermediate stage of forming a selective doping test pad process in an embodiment.

第7圖為一流程圖,顯示一實施例形成和使用測試鍵於一基底上之方法。 Figure 7 is a flow chart showing an embodiment of a method of forming and using test keys on a substrate.

第8圖為一方塊圖,顯示任何實施例用來測試具有測試鍵之晶圓的系統。 Figure 8 is a block diagram showing any embodiment of a system for testing wafers with test keys.

以下對提出的實施方案的製造和使用進行了詳細的討論。然而,應當理解,本公開提供了可在各種特定背景下實現的許多適用的概念。所討論的具體實施例僅是說明性的具體方法來製造和使用所描述的晶粒級測試鍵的系統和方法,並且不限制本公開的範圍。 The manufacture and use of the proposed embodiments are discussed in detail below. However, it should be understood that the present disclosure provides many applicable concepts that can be implemented in various specific contexts. The specific embodiments discussed are merely illustrative of specific methods for making and using the described grain level test keys, and do not limit the scope of the present disclosure.

實施例將於一個特定的下文中描述,即製備和使用測試鍵,例如,在積體電路製造後對晶粒或晶圓進行測試和切割。然而,本發明其他實施例亦可應用至基板,結構或裝置或任何類型的積體電路器件或組件的組合。 Embodiments will be described in a specific hereinafter by preparing and using test keys, for example, testing and cutting a die or wafer after fabrication of the integrated circuit. However, other embodiments of the invention are also applicable to substrates, structures or devices or any type of integrated circuit device or combination of components.

本發明的實施例參考第1A圖至第7圖,對實施例的變化進行探討。在各個圖式和本發明的示範性實施例中,相同的標號用於指定相同的裝置。此外,附圖是說明性的,其不是按比例繪製,且並不進行限制本發明。需要注意的是,為了簡化,不是所有的單元符號被包含在每個後續的圖。更確切地說,與各圖的描述最為相關的單元符號係包括在各圖中。 Embodiments of the present invention discuss variations of the embodiments with reference to FIGS. 1A through 7. In the various figures and exemplary embodiments of the invention, the same reference numerals are used to designate the same. In addition, the drawings are illustrative, and are not intended to limit the invention. It should be noted that for the sake of simplicity, not all unit symbols are included in each subsequent figure. Rather, the unit symbols most relevant to the description of the various figures are included in the figures.

在此所描述的實施例係關於形成和測試晶圓級測試鍵(wafer-level test key),其測試墊之物理特性係與半導體裝置(形成於晶圓之晶粒上)之物理特性相關。在一實施例中,測試墊使用形成半導體裝置之相同製程形成,其可進行測試和檢測製程而不會污染或干擾製作裝置。測試墊亦可形成於晶圓之切割道中,所以測試墊可在進行切割時移除。設置測試墊於製作之晶圓上,取代使用犧牲晶圓進行測試,以減少晶圓和晶圓間的變動,而此變動可能不會被測試晶圓察知。具有一或多個測試墊之測試鍵亦可測試例如應變鬆弛(strain relaxation)、摻雜物活化和去活化或類似之物理特性。 The embodiments described herein relate to the formation and testing of wafer-level test keys whose physical properties are related to the physical characteristics of the semiconductor device (formed on the die of the wafer). In one embodiment, the test pads are formed using the same process of forming a semiconductor device that can be tested and tested without contaminating or interfering with the fabrication device. The test pad can also be formed in the scribe line of the wafer, so the test pad can be removed while the cut is being made. The test pads are placed on the fabricated wafer instead of using sacrificial wafers to reduce wafer-to-wafer variations that may not be detected by the test wafer. Test keys having one or more test pads can also test for example strain relaxation, dopant activation and deactivation or similar physical properties.

第1A圖是一上視圖,顯示一具有複數個晶粒之晶圓100,而晶粒102包括測試鍵104。晶粒102設置於晶圓100上,晶粒102以切割線106或切割道分隔。雖然為清楚,圖式中僅顯示數個晶粒102,晶圓或工件上可包括任何數量的晶粒。晶粒102在晶圓100上以切割線106分隔,以提供切割(包括機械切割、雷射切割其他切割系統)的空間,使得切割晶粒102成單一晶粒102時不會切到或損傷晶粒102。測試鍵104具有一或多個測試墊110,且設於切割線106中,所以測試鍵104可在晶圓100進行切割時移除。設置測試鍵104於切割線106中可使得測試鍵104設置於晶圓100上,而不會佔用晶粒102的空間。 1A is a top view showing a wafer 100 having a plurality of dies, and the die 102 includes test keys 104. The die 102 is disposed on the wafer 100 and the die 102 is separated by a cut line 106 or a scribe line. Although only a few of the dies 102 are shown in the drawings for clarity, any number of dies may be included on the wafer or workpiece. The dies 102 are separated on the wafer 100 by a dicing line 106 to provide space for dicing (including mechanical dicing, laser dicing of other dicing systems) such that the dicing of the dies 102 into a single dies 102 does not cleave or damage the dies. Granule 102. The test key 104 has one or more test pads 110 and is disposed in the cutting line 106 so that the test keys 104 can be removed while the wafer 100 is being cut. Setting the test key 104 in the dicing line 106 allows the test key 104 to be placed on the wafer 100 without occupying the space of the die 102.

第1B圖顯示一實施例中測試鍵104。測試鍵104具有一或多個測試鍵系列(series)108,而各測試鍵系列108具有一系列的測試墊110a~110n,該些測試墊110a~110n共有至少一特徵。例如,第一測試鍵系列108之測試墊110a~110n可具有第一 磊晶特性,第二測試鍵系列108之測試墊110a~110n可具有第二磊晶特性。在另一範例中,第一測試鍵系列108之測試墊110a~110n可具有類似的第一摻雜輪廓,第二測試鍵系列108之測試墊110a~110n可具有類似的第二摻雜輪廓。 Figure 1B shows the test button 104 in one embodiment. The test button 104 has one or more test key series 108, and each test key series 108 has a series of test pads 110a-110n that share at least one feature. For example, the test pads 110a-110n of the first test key series 108 may have a first The epitaxial property, the test pads 110a-110n of the second test key series 108 may have a second epitaxial property. In another example, the test pads 110a-110n of the first test key series 108 can have similar first doping profiles, and the test pads 110a-110n of the second test key series 108 can have similar second doping profiles.

測試墊墊110a~110n係形成為晶圓100之部分基底,或形成於晶圓100中。此外,測試墊110a~110n可以為製作晶粒之積體電路結構的部分製程形成。使用相同的製程形成測試墊110a~110n和晶粒102之結構會導致測試墊110a~110n之物理特性類似於晶粒102結構之物理特性。因此,測試墊110a~110n可用來在製程中測試晶圓100之特性。例如,測試墊110可形成於矽基底中,其摻雜輪廓與晶粒102中電晶體之源極或汲極相同。在另一範例中,測試墊110具有一或多個磊晶區、鰭或類似的結構,其與晶粒102中之一或多個圖樣或結構相關。 The test pads 110a-110n are formed as part of the substrate of the wafer 100 or formed in the wafer 100. In addition, the test pads 110a-110n may be formed in a partial process for fabricating the integrated circuit structure of the die. Forming the test pads 110a-110n and the die 102 using the same process results in physical properties of the test pads 110a-110n similar to those of the die 102 structure. Therefore, test pads 110a-110n can be used to test the characteristics of wafer 100 during the process. For example, test pad 110 can be formed in a germanium substrate with a doping profile that is the same as the source or drain of the transistor in die 102. In another example, test pad 110 has one or more epitaxial regions, fins, or the like that are associated with one or more patterns or structures in die 102.

第1C圖是一示意圖,顯示一實施例之測試鍵系列108。測試鍵系列108具有一串列的不同測試墊110a~110d。例如,測試墊110a~110d可為不同尺寸的鰭112。例如,測試墊110a可具有鰭或或有特定物理特性之測試表面的全部(或大體上全部)表面。在此範例中,第一測試墊110a之測試表面可以為單一大尺寸之鰭。第二測試墊110b可具有相對窄的鰭112,而第三測試墊110c可具有較少,較寬的鰭112,第四測試墊110d可具有更少,更寬的鰭112。鰭112之寬度和長度可以為數奈米至數微米。在一實施例中,鰭112之寬度和長度為約2nm至約3μm之間,而鰭112之長度至少為鰭112之寬度的兩倍。在一實施例中,鰭112具有與晶粒102之結構相關的物理特性,可對形成晶 粒結構之製程進行測試,而不會干擾或污染晶粒結構。 Figure 1C is a schematic diagram showing a test key series 108 of an embodiment. The test key series 108 has a series of different test pads 110a-110d. For example, test pads 110a-110d can be fins 112 of different sizes. For example, test pad 110a can have fins or all (or substantially all) surfaces of test surfaces having specific physical properties. In this example, the test surface of the first test pad 110a can be a single large size fin. The second test pad 110b can have relatively narrow fins 112, while the third test pad 110c can have fewer, wider fins 112, and the fourth test pad 110d can have fewer, wider fins 112. The width and length of the fins 112 can range from a few nanometers to a few microns. In one embodiment, the fins 112 have a width and length between about 2 nm and about 3 [mu]m, while the fins 112 have a length that is at least twice the width of the fins 112. In one embodiment, the fins 112 have physical properties associated with the structure of the die 102 that can form a crystal The process of the granular structure is tested without disturbing or contaminating the grain structure.

在一單一測試鍵系列,第二、第三和第四測試墊110b~110d之鰭112具有類似或等同於第一測試墊110a之一或多個物理特性。例如,測試墊110a~110d可具有使用磊晶成長製程形成之包括矽鍺的鰭112。此外,測試表面或鰭112可有由一材料或製程形成,而賦予該材料上之預定應變。在此範例中,測試表面或鰭112可由磊晶成長SiGe於一矽基底上方形成,製作出一應變矽鍺區。測試墊110a~110n的鰭112因此包括與基底不同的半導體化合物,且測試墊110a~110n可全部具有類似的物理特性。在另一範例中,砷化鎵或其他半導體層可磊晶成長於矽或其他基底(晶格常數與鰭112之應變不匹配)上方。由於不同尺寸鰭112的應變,不同的鰭112的佈局反映出鰭材料中不同的電子或電洞移動率。 In a single test key series, the fins 112 of the second, third, and fourth test pads 110b-110d have one or more physical characteristics similar or identical to the first test pad 110a. For example, test pads 110a-110d can have fins 112 including germanium formed using an epitaxial growth process. In addition, the test surface or fin 112 can be formed from a material or process to impart a predetermined strain on the material. In this example, the test surface or fins 112 may be formed by epitaxially grown SiGe over a single substrate to create a strained region. The fins 112 of the test pads 110a-110n thus comprise a different semiconductor compound than the substrate, and the test pads 110a-110n may all have similar physical properties. In another example, gallium arsenide or other semiconductor layers can be epitaxially grown over germanium or other substrates (the lattice constant does not match the strain of the fins 112). Due to the strain of fins 112 of different sizes, the layout of the different fins 112 reflects the different electron or hole mobility in the fin material.

測試墊110a~110n的尺寸為允許進行接觸型態測試或非接觸破壞、或破壞測試的大小,接觸型態測試例如4點探針(4-point probe,4PP)、展阻量測分析(Spreading Resistance Profiling,SRP),破壞測試例如二次離子質譜儀(Secondary ion mass spectrometer,SIMS)。在一實施例中,測試墊的寬度至少為約50μm,長度至少為約50μm。測試墊110的深度小於約100nm,且在一實施例中,測試墊110的深度約10nm至90nm之間。測試墊110亦受限於切割線的寬度,測試墊110在至少一尺寸窄於切割線106,使得測試墊110可在晶粒切割製程移除。放置測試鍵104於切割線106中,使得在晶圓製程中可進行接觸型態或非壞性測試,而不會甘擾最終的積體電路。例如,一4PP 測試可使用金屬探針,於測試墊110上留下金屬污染,且將測試鍵104放置於切割線106中係將污染限制於切割線106區域。類似的,使用SIMS測試在製作樣品時會對表面造成結晶損壞。將測試鍵104設置於切割線106中可防止測試鍵104造成的損壞,而不會影響晶粒102的最終裝置。 The test pads 110a-110n are sized to allow for contact type testing or non-contact damage, or damage testing. Contact type testing such as 4-point probe (4PP), spread resistance measurement (Spreading) Resistance Profiling (SRP), damage testing such as Secondary ion mass spectrometer (SIMS). In one embodiment, the test pad has a width of at least about 50 [mu]m and a length of at least about 50 [mu]m. The depth of the test pad 110 is less than about 100 nm, and in one embodiment, the depth of the test pad 110 is between about 10 nm and 90 nm. The test pad 110 is also limited by the width of the cutting line, and the test pad 110 is narrower than the cutting line 106 in at least one dimension such that the test pad 110 can be removed during the die cutting process. The test key 104 is placed in the dicing line 106 so that contact type or non-defective testing can be performed during the wafer process without disturbing the final integrated circuit. For example, a 4PP The test may use a metal probe to leave metal contamination on the test pad 110, and placing the test key 104 in the cutting line 106 limits contamination to the area of the cutting line 106. Similarly, SIMS testing can cause crystal damage to the surface when making samples. Setting the test key 104 in the cutting line 106 prevents damage caused by the test key 104 without affecting the final device of the die 102.

第2圖顯示一實施例測試鍵104之上視圖,其中測試鍵104具有測試鍵群組202a、202b。測試鍵104可具有一或多個測試鍵群組202a、202b,各測試鍵群組202a、202b具有一或多個測試鍵系列204a~204d。各測試鍵系列204a可具有一或多個測試墊110a~110d。不同的測試鍵群組202a、202b,不同的測試鍵系列204a~204d和不同的測試墊110a~110d可用來定義不同的物理特性變數,例如磊晶層型態、應變、摻雜型態或濃度、鰭尺寸或其他有用的特性。在一實施例中,第一測試鍵群組202a之第一測試墊110a~110d具有第一磊晶層型態,第二測試鍵群組202b之測試墊110a~110d具有第二磊晶層型態。 Figure 2 shows a top view of an embodiment test key 104 with test key 104 having test key groups 202a, 202b. Test key 104 may have one or more test key groups 202a, 202b, each test key group 202a, 202b having one or more test key series 204a-204d. Each test key series 204a can have one or more test pads 110a-110d. Different test key groups 202a, 202b, different test key series 204a-204d and different test pads 110a-110d can be used to define different physical property variables, such as epitaxial layer type, strain, doping type or concentration , fin size or other useful characteristics. In one embodiment, the first test pads 110a-110d of the first test key group 202a have a first epitaxial layer type, and the test pads 110a-110d of the second test key group 202b have a second epitaxial layer type. state.

此外,各個不同的測試鍵系列204a~204d的測試墊110a~110d具有不同的摻雜輪廓。例如,第一測試鍵系列204a不具有摻雜或佈植,且第二、第三和第四測試鍵系列204b、204c、204d具有不同的摻雜濃度。測試鍵系列204a~204d中的測試墊110a~110d具有各種的鰭112配置,第一測試墊具有單一鰭,第二、第三和第四測試墊110b、110c、110d具有各種寬度的鰭112。在一些實施例中,測試墊110a~110d具有至少一鰭112,其中各測試墊110a~110d具有不同數量的鰭112。在一實施例中,鰭112的尺寸設計為,使得4PP探針可接觸多個鰭以進 行測試,且對測試結果進行調整,以在使用探針的同時,對測試墊110a~110d中的多個鰭112進行測試。 In addition, the test pads 110a-110d of the various test key series 204a-204d have different doping profiles. For example, the first test key series 204a does not have doping or implantation, and the second, third, and fourth test key series 204b, 204c, 204d have different doping concentrations. The test pads 110a-110d in the test key series 204a-204d have various fin 112 configurations, the first test pad has a single fin, and the second, third, and fourth test pads 110b, 110c, 110d have fins 112 of various widths. In some embodiments, test pads 110a-110d have at least one fin 112, wherein each test pad 110a-110d has a different number of fins 112. In an embodiment, the fins 112 are sized such that the 4PP probe can contact a plurality of fins to advance The test is performed and the test results are adjusted to test the plurality of fins 112 in the test pads 110a-110d while the probes are being used.

第3圖顯示一實施例獨一測試鍵300的上視圖。此獨一測試鍵300具有不同物理特性之測試墊302a~302d。在此獨一測試墊300中,可對測試墊302a~302d進行選擇,以複製晶粒102中結構的特定圖樣,例如鰭式場效電晶體(fin field effect transistor,FinFET)中的鰭或類似的結構。切割線106中的測試鍵300可在晶粒102中具有複製的圖樣,且針對測試鍵300的測試不會污染實際的晶粒102,且測試鍵300可在製程中提供晶圓100上裝置特性的精確測試資訊。例如,對於一具有FinFET之晶粒102,可於測試鍵300中製作出鰭112,而此鰭112的磊晶輪廓、尺寸或摻雜輪廓類似於實際的FinFET鰭。可在裝置製程各種階段對測試鍵300進行測試,以確定製程正確的進行,且測試不會干擾或污染FinFET。例如,P通道FinFET可具有一鰭,其長度可以為5μm且寬度可以為200nm,且可包括SiGe,經由選擇性磊晶製作,且後續以硼佈植進行摻雜。測試墊302a可具有FinFET裝置相同程序中製作和佈植之類似的鰭112,或可以分開的製程製作。此外,亦可形成其他的具有不同物理特性之測試墊302b~302d。例如,可製作出具有更高摻雜或更窄鰭112之測試墊302b~302d,以可測試各種類似的這些FinFET裝置,確定製程技術是否製作出可使用的特定結構。所製作出之測試鍵300之測試墊302a~302d將會和FinFET進行相同的製程。例如,佈植摻雜物以在FinFET中形成源極或汲極,此摻雜物會活化測試鍵300,使得測試時可確保退火或驅入(drive in)之熱製 程沒有因為熱製程導致通道摻雜物的去活化(deactivate)、擴散或其他失效。類似的,可於測試鍵300中測試應變、阻抗、載子移動率或類似的特性,以確保後續的裝置單元沒有導致FinFET失效。當如第3圖所示之測試鍵300對於單一目標FinFET具有重複或類似特性之測試墊302a~302d,測試鍵300可具有重複其他FinFET之額外的測試墊110,或可具有多個測試墊110,複製單一裝置或一型態的裝置,使用不同的測試墊進行測試或在製程不同階段之相同條件進行測試。 Figure 3 shows a top view of an embodiment unique test key 300. This unique test key 300 has test pads 302a-302d of different physical characteristics. In this unique test pad 300, the test pads 302a-302d can be selected to replicate a particular pattern of structures in the die 102, such as fins in a fin field effect transistor (FinFET) or the like. structure. The test key 300 in the dicing line 106 can have a replicated pattern in the die 102, and the test for the test key 300 does not contaminate the actual die 102, and the test key 300 can provide device characteristics on the wafer 100 during the process. Accurate test information. For example, for a die 102 having a FinFET, a fin 112 can be fabricated in the test key 300, and the epitaxial profile, size, or doping profile of the fin 112 is similar to an actual FinFET fin. The test key 300 can be tested at various stages of the device process to determine that the process is proceeding correctly and that the test does not interfere with or contaminate the FinFET. For example, a P-channel FinFET can have a fin that can be 5 μm in length and 200 nm in width, and can include SiGe, fabricated via selective epitaxy, and subsequently doped with boron implants. The test pad 302a can have fins 112 similar to those fabricated and implanted in the same procedure as the FinFET device, or can be fabricated in separate processes. In addition, other test pads 302b-302d having different physical properties may also be formed. For example, test pads 302b-302d having higher doping or narrower fins 112 can be fabricated to test various similar FinFET devices to determine if the process technology is producing a particular structure that can be used. The test pads 302a-302d of the test key 300 produced will be subjected to the same process as the FinFET. For example, implant dopants to form a source or drain in the FinFET that activates the test bond 300 so that annealing or drive in heat is ensured during testing The process does not deactivate, diffuse, or otherwise fail the channel dopant due to the thermal process. Similarly, strain, impedance, carrier mobility, or the like can be tested in test key 300 to ensure that subsequent device units do not cause FinFET failure. When test key 300 as shown in FIG. 3 has test pads 302a-302d having repeating or similar characteristics for a single target FinFET, test key 300 may have additional test pads 110 that repeat other FinFETs, or may have multiple test pads 110 , copying a single device or a type of device, testing with different test pads or testing under the same conditions at different stages of the process.

第4A圖至第4H圖顯示一實施例形成選擇性摻雜測試墊110中間階段的剖面圖。雖然圖式中描述製作測試墊110之系統和方法,在此的描述不限定於製作單一測試墊,且不限制於測試墊110之結構,例如單一或多個鰭112或其他結構。 4A through 4H are cross-sectional views showing an intermediate stage of forming a selective doping test pad 110 in an embodiment. Although the system and method of making test pad 110 are described in the drawings, the description herein is not limited to making a single test pad and is not limited to the structure of test pad 110, such as single or multiple fins 112 or other structures.

第4A圖顯示形成選擇性摻雜測試墊初始階段的剖面圖。首先,於一基底402中形成一或多個淺溝槽隔離結構404(shallow trench isolation,STI)。基底402可以是晶圓100之基底402、磊晶層或絕緣層上有半導體層(semiconductor on insulator)或類似的層。基底之墊部分406設置於STI 404間,基底402之主體部分位於STI 404和基底402之墊部分406下。在一實施例中,藉由遮蔽和蝕刻基底402形成STI 404,且之後於蝕刻的溝槽中填入絕緣材料,例如二氧化矽、碳化矽、玻璃、氮化矽或類似的材料。可藉由以下方法沉積STI 404材料,例如化學氣相沉積法、電漿輔助化學氣相沉積法、旋轉塗佈或類似的方法。對STI 404進行例如化學機械研磨之平坦化步驟,使STI之表面與基底表面408對齊。 Figure 4A shows a cross-sectional view of the initial stage of forming a selectively doped test pad. First, one or more shallow trench isolations (STIs) are formed in a substrate 402. Substrate 402 can be substrate 402 of wafer 100, an epitaxial layer, or a semiconductor on insulator or similar layer. The base pad portion 406 is disposed between the STIs 404 with the body portion of the substrate 402 under the STI 404 and the pad portion 406 of the substrate 402. In one embodiment, the STI 404 is formed by masking and etching the substrate 402, and then the etched trench is filled with an insulating material such as hafnium oxide, tantalum carbide, glass, tantalum nitride or the like. The STI 404 material can be deposited by, for example, chemical vapor deposition, plasma assisted chemical vapor deposition, spin coating, or the like. A planarization step, such as chemical mechanical polishing, is performed on the STI 404 to align the surface of the STI with the substrate surface 408.

第4B圖顯示形成測試墊區410之剖面圖。凹陷化或降低基底表面408使其低於STI之頂部表面。例如,選擇性蝕刻基底402或進行類似的製程以形成測試墊區410。在一實施例中,將基底402降低至一對應於想要的鰭高度之預定深度。例如,一測試鍵104之鰭112(請參照第1B-3圖)的高度可以為約10nm至約90nm之間,所以基底表面408低於STI 404之頂部表面約10nm至約90nm之間。 Figure 4B shows a cross-sectional view of the formation of test pad region 410. The substrate surface 408 is recessed or lowered to be below the top surface of the STI. For example, substrate 402 is selectively etched or a similar process is performed to form test pad region 410. In an embodiment, the substrate 402 is lowered to a predetermined depth corresponding to the desired fin height. For example, the height of the fins 112 of a test key 104 (see FIG. 1B-3) may be between about 10 nm and about 90 nm, so the substrate surface 408 is between about 10 nm and about 90 nm below the top surface of the STI 404.

第4C圖顯示形成磊晶層412之剖面圖。進行例如一磊晶成長技術,形成一磊晶層412於凹陷化的基底上方。磊晶層412具有一磊晶層頂部表面414,位於STI 404之頂部表面或其上。在一實施例中,磊晶層412是SiGe,但磊晶層412可包括任何適合的材料,包括但不限於矽、鍺碳化矽、砷化鎵或類似的材料。此外,雖然在此描述之磊晶層412是以磊晶製程形成,但磊晶層412也可利用任何適合的沉積或形成製程來形成。例如,基底402可以是一絕緣體,此時磊晶層412可以是以化學氣相沉積法或類似的技術沉積之矽。 Figure 4C shows a cross-sectional view of the formation of the epitaxial layer 412. An epitaxial growth technique is performed, for example, to form an epitaxial layer 412 over the recessed substrate. Epitaxial layer 412 has an epitaxial layer top surface 414 located on or above the top surface of STI 404. In one embodiment, the epitaxial layer 412 is SiGe, but the epitaxial layer 412 can comprise any suitable material including, but not limited to, tantalum, niobium carbide, gallium arsenide, or the like. Moreover, although the epitaxial layer 412 described herein is formed by an epitaxial process, the epitaxial layer 412 can also be formed using any suitable deposition or formation process. For example, the substrate 402 can be an insulator, and the epitaxial layer 412 can be deposited by chemical vapor deposition or the like.

第4D圖顯示降低磊晶層412之剖面圖。平坦化或降低磊晶層412使得磊晶層之頂部表面與STI 404之頂部表面414略呈水平或對齊。 Figure 4D shows a cross-sectional view of the reduced epitaxial layer 412. The epitaxial layer 412 is planarized or lowered such that the top surface of the epitaxial layer is slightly horizontal or aligned with the top surface 414 of the STI 404.

第4E圖顯示遮蔽磊晶層412以進行佈植之剖面圖。形成一罩幕416於磊晶層412上方,且形成一阻抗物418於罩幕416上方。罩幕416可降低後續熱製程應變鬆弛和摻雜物往外擴散的量。在一實施例中,阻抗物418是進行上阻層、曝光和顯影而形成,但在其他實施例中可以為另外的罩幕圖案化結 構。阻抗物418可覆蓋一或多個測試墊區410,以避免佈植進行時污染其他測試墊區410。 Figure 4E shows a cross-sectional view of the masking epitaxial layer 412 for implantation. A mask 416 is formed over the epitaxial layer 412 and an impedance 418 is formed over the mask 416. The mask 416 reduces the amount of subsequent thermal process strain relaxation and dopant diffusion. In one embodiment, the impedance 418 is formed by performing an upper resist layer, exposure, and development, but in other embodiments may be an additional mask patterning junction. Structure. The impedance 418 can cover one or more test pad regions 410 to avoid contamination of other test pad regions 410 as the implant progresses.

第4F圖顯示佈植部分磊晶層412之剖面圖。可進行一佈植步驟420於部分的磊晶層412上以形成一摻雜測試墊422。例如,可佈植硼於測試墊422中,以產生P型摻雜。 Figure 4F shows a cross-sectional view of the implanted portion of the epitaxial layer 412. A implantation step 420 can be performed on portions of the epitaxial layer 412 to form a doped test pad 422. For example, boron can be implanted in test pad 422 to produce P-type doping.

第4G圖顯示移除阻抗物418之剖面圖。在一實施例中,當阻抗物418為光阻罩幕,可以例如灰化和清洗移除阻抗物418。在另一實施例阻抗物418是硬式罩幕之實施例中,可以蝕刻、研磨或其他適合的製程移除阻抗物418。當罩幕416位於佈植的測試墊422上方,佈植的測試墊422亦可進行熱活化、退火或其他的製程。 Figure 4G shows a cross-sectional view of the removed impedance 418. In an embodiment, when the impedance 418 is a photoresist mask, the impedance 418 can be removed, such as by ashing and cleaning. In another embodiment where the impedance 418 is a hard mask, the impedance 418 can be removed by etching, grinding, or other suitable process. When the mask 416 is positioned over the implanted test pad 422, the implanted test pad 422 can also be thermally activated, annealed, or otherwise.

第4H圖顯示移除罩幕416之剖面圖。使用研磨、化學機械研磨、蝕刻或其他適合的製程移除罩幕416。剩下的磊晶層412作為未摻雜的測試墊424,摻雜的測試墊422和未摻雜的測試墊424係以STI 404分隔。 Figure 4H shows a cross-sectional view of the removal mask 416. The mask 416 is removed using grinding, chemical mechanical polishing, etching, or other suitable process. The remaining epitaxial layer 412 acts as an undoped test pad 424, and the doped test pad 422 and the undoped test pad 424 are separated by an STI 404.

第5A圖至第5J圖顯示一實施例形成具有不同磊晶特性測試墊110中間階段的剖面圖。第5A圖顯示遮蔽一基底402以形成各種磊晶特性測試墊的剖面圖。首先,如同第5A圖所述,於一基底402中形成一或多個淺溝槽隔離結構404。形成一罩幕416於基底402上方,形成阻抗物418於罩幕416上方。罩幕416可作為後續磊晶成長定義一區域之硬式罩幕。蝕刻罩幕416以暴露一或多個測試墊區410。 5A through 5J are cross-sectional views showing an intermediate stage of forming a test pad 110 having different epitaxial characteristics in an embodiment. Figure 5A shows a cross-sectional view of a substrate 402 masked to form various epitaxial property test pads. First, one or more shallow trench isolation structures 404 are formed in a substrate 402 as described in FIG. 5A. A mask 416 is formed over the substrate 402 to form an impedance 418 over the mask 416. The mask 416 can serve as a hard mask for defining an area of subsequent epitaxial growth. The mask 416 is etched to expose one or more test pad regions 410.

第5B圖顯示移除阻抗物418之剖面圖。經由例如蝕刻圖案化罩幕416,且移除阻抗物418。可以例如灰化和清洗、 選擇性蝕刻、研磨或其他適合的製程移除阻抗物418。圖案化罩幕416,以覆蓋會形成測試墊110之至少一區域,以於選擇測試墊區410選擇性蝕刻和磊晶成長測試墊。 Figure 5B shows a cross-sectional view of the removed impedance 418. The mask 416 is patterned via, for example, etching and the impedance 418 is removed. Can be ashed and cleaned, for example, The resist 418 is removed by selective etching, grinding, or other suitable process. The mask 416 is patterned to cover at least one region where the test pad 110 is formed to selectively test the pad region 410 for selective etching and epitaxial growth of the test pad.

第5C圖顯示形成測試墊區410之剖面圖。降低或凹陷化基底之表面408,使其低於STI 404之頂部表面。如第4B圖所述的選擇性蝕刻或降低基底402,以產生測試墊區410。在圖式的實施例中係製作單一測試墊區410,且第二測試墊區係降低且於後續步驟填入一磊晶成長測試墊502(請參照例如第5D-5F圖)。此個別磊晶成長之測試墊使得使得不同的測試墊可形成有不同的磊晶特性。 Figure 5C shows a cross-sectional view of the formation of test pad region 410. The surface 408 of the substrate is lowered or recessed below the top surface of the STI 404. The substrate 402 is selectively etched or lowered as described in FIG. 4B to produce a test pad region 410. In the illustrated embodiment, a single test pad region 410 is fabricated and the second test pad region is lowered and an epitaxial growth test pad 502 is filled in a subsequent step (see, for example, Figures 5D-5F). This individual epitaxially grown test pad allows different test pads to be formed with different epitaxial properties.

第5D圖顯示於一單一測試墊區410形成一磊晶層502之剖面圖。雖然圖式中顯示磊晶層502位於單一測試墊區410中,可理解的是,可降低多個測試墊區410,且於單一步驟中將其填入磊晶層502。磊晶層502可以上述第4C圖描述的方式形成。在一實施例中,磊晶層是SiGe,然而磊晶層412可包括任何適合的材料,包括但不限於矽、鍺碳化矽、砷化鎵或類似的材料。 Figure 5D shows a cross-sectional view of an epitaxial layer 502 formed in a single test pad region 410. Although the graph shows that the epitaxial layer 502 is located in a single test pad region 410, it will be appreciated that the plurality of test pad regions 410 can be lowered and filled into the epitaxial layer 502 in a single step. The epitaxial layer 502 can be formed in the manner described in the above FIG. 4C. In one embodiment, the epitaxial layer is SiGe, however the epitaxial layer 412 can comprise any suitable material including, but not limited to, tantalum, niobium carbide, gallium arsenide or the like.

第5E圖顯示降低磊晶層412之剖面圖。以例如化學機械研磨或適合的製程,移除罩幕416,且平坦化磊晶測試墊502。形成之磊晶層的頂部表面大體上與STI 404之頂部表面對齊。 Figure 5E shows a cross-sectional view of the reduced epitaxial layer 412. The mask 416 is removed, for example, by chemical mechanical polishing or a suitable process, and the epitaxial test pad 502 is planarized. The top surface of the formed epitaxial layer is substantially aligned with the top surface of the STI 404.

第5F至第5I圖顯示形成分開之第二磊晶測試墊504的剖面圖。形成一罩幕416,且使用第5A至5B之方法圖案化第5F圖和第5G圖之罩幕416。如第5H圖所示,藉由降低基底形成 第二測試墊區410,且如第5I圖所示,於第二測試墊區410中成長第二磊晶測試墊504。在一實施例中,第二磊晶測試墊504與第一磊晶測試墊502具有不同的特性。 Figures 5F through 5I show cross-sectional views of forming a separate second epitaxial test pad 504. A mask 416 is formed, and the masks 416 of the 5F and 5G patterns are patterned using the methods of 5A to 5B. As shown in Figure 5H, by reducing substrate formation The second test pad region 410, and as shown in FIG. 5I, grows a second epitaxial test pad 504 in the second test pad region 410. In an embodiment, the second epitaxial test pad 504 has different characteristics than the first epitaxial test pad 502.

第5J圖顯示移除罩幕416和降低第二磊晶測試墊504之剖面圖。降低第二磊晶測試墊504使其頂部表面大體上與STI 404之頂部表面對齊。在一實施例中,進行化學機械研磨、研磨或其他適合的製程移除罩幕416,且降低第二磊晶測試墊504。所形成之結構為,第一磊晶測試墊502與第二磊晶測試墊504經由STI分隔,第一磊晶測試墊502和第二磊晶測試墊504有不同的成分、材料或其他特性。 Figure 5J shows a cross-sectional view of the removal mask 416 and the reduction of the second epitaxial test pad 504. The second epitaxial test pad 504 is lowered such that its top surface is substantially aligned with the top surface of the STI 404. In one embodiment, chemical mechanical polishing, grinding or other suitable process removal mask 416 is performed and the second epitaxial test pad 504 is lowered. The structure is formed such that the first epitaxial test pad 502 and the second epitaxial test pad 504 are separated by STI, and the first epitaxial test pad 502 and the second epitaxial test pad 504 have different compositions, materials or other characteristics.

第6A圖至第6D圖顯示一實施例以佈植掃描器佈植測試墊之中間階段的剖面圖。第6A圖顯示具有測試墊602之初始結構的剖面圖。磊晶測試墊602可設置於STI 404間,且在一實施例中,其可以上第5A-5J圖討論的程序製作。 6A through 6D are cross-sectional views showing an intermediate stage of implanting a test pad with an implant scanner in an embodiment. Figure 6A shows a cross-sectional view of the initial structure with test pad 602. Epitaxial test pads 602 can be disposed between STIs 404, and in one embodiment, can be fabricated using the procedures discussed in Figures 5A-5J.

第6B圖顯示以一佈植掃描器進行佈植420之剖面圖。首先,將一罩幕416設置於磊晶測試墊602上方。可使用一佈植器佈植420一或是更多的磊晶測試墊602,形成一摻雜測試墊604。如第6C圖所示,將佈植器602移至不同的磊晶測試墊602上方,且於額外的測試墊602上進行一佈植420。在一實施例中,佈植器可以不同的摻雜物佈植磊晶測試墊,將其摻雜至不同的濃度,或以不同的佈植參數產生具有不同摻雜輪廓的摻雜測試墊604。佈植器可佈植一或多個不同的晶粒102結構,形成摻雜測試墊604,其摻雜輪廓係與晶粒102結構的摻雜輪廓相關。 Figure 6B shows a cross-sectional view of the implant 420 with an implant scanner. First, a mask 416 is placed over the epitaxial test pad 602. One or more epitaxial test pads 602 can be implanted using an implanter to form a doped test pad 604. As shown in FIG. 6C, the implanter 602 is moved over a different epitaxial test pad 602 and a implant 420 is placed on the additional test pad 602. In an embodiment, the implanter can implant the epitaxial test pads with different dopants, doping them to different concentrations, or generate doping test pads 604 having different doping profiles with different implant parameters. . The implanter can implant one or more different die 102 structures to form a doped test pad 604 whose doping profile is related to the doping profile of the die 102 structure.

在此關於第4A圖至第6D圖的測試墊製作程序應了解為並非限制且並非單獨考量的。例如,關於第5A圖至第5J圖的測試墊110製作程序可用來形成具有不同磊晶特性之測試墊110,且之後,測試墊可以第4A圖至第4H圖所描述的遮蔽和佈植,或以第6A圖至第6D圖所描述之佈植掃描器進行摻雜。 The test pad fabrication procedures described herein with respect to Figures 4A through 6D should be understood to be non-limiting and not considered separately. For example, the test pad 110 fabrication procedure for Figures 5A through 5J can be used to form test pads 110 having different epitaxial characteristics, and thereafter, the test pads can be shaded and implanted as described in Figures 4A through 4H, Or doping with the implant scanner described in Figures 6A through 6D.

第7圖係為一流程圖,顯示一實施例形成和使用測試鍵於一基底上之方法700。在步驟702中,形成STI,且之後在步驟720中於STI間形成一或多個磊晶墊。在步驟724中,藉由於基底上方視需要的圖案化一罩幕形成磊晶墊,且後續於步驟724中凹陷化基底,形成測試墊區。在步驟726中於測試墊區中形成一磊晶層,且後續於步驟728中降低磊晶層。 Figure 7 is a flow diagram showing an embodiment of a method 700 of forming and using test keys on a substrate. In step 702, an STI is formed, and then one or more epitaxial pads are formed between the STIs in step 720. In step 724, a test pad region is formed by patterning a mask over the substrate to form an epitaxial pad as desired, and subsequently recessing the substrate in step 724. An epitaxial layer is formed in the test pad region in step 726, and the epitaxial layer is subsequently lowered in step 728.

於步驟740中佈植測試墊。在步驟742中藉由形成一罩幕佈植測試墊,且在步驟744中視需要的遮蔽和蝕刻罩幕。在步驟746中,以摻雜物佈植墊區,以形成測試墊。在步驟760中進行額外的晶圓製程。在一實施例中,此額外的製程例如為退火、摻雜物活化或其他的半導體裝置製作程序。可於步驟762中對測試墊進行接觸或非接觸型態的測試,以測得摻雜物活化、應變或使用其他的測試程序量測半導體區之特性。可依序進行步驟760中的額外晶圓製程步驟和步驟762中的額外墊測試步驟。晶圓可在步驟764中進行切割或分割。 The test pad is implanted in step 740. A test pad is implanted in step 742 by forming a mask, and in step 744, the mask is masked and etched as needed. In step 746, the pad regions are implanted with dopants to form a test pad. An additional wafer process is performed in step 760. In an embodiment, this additional process is, for example, annealing, dopant activation, or other semiconductor device fabrication process. The test pads can be tested for contact or non-contact type in step 762 to measure dopant activation, strain, or to measure characteristics of the semiconductor region using other test procedures. The additional wafer processing steps in step 760 and the additional pad testing steps in step 762 can be performed sequentially. The wafer can be cut or split in step 764.

第8圖係為一方塊圖,顯示任何實施例測試具有測試鍵之晶圓的系統800。一電腦802、處理器或其他控制器發佈信號至探針,使探針806移動至接觸晶圓100。電腦802可具有指令,控制特定的探針或探針組,以測試一具有特定佈局的晶 圓。探針控制器804亦可藉由移動探806或晶圓100,控制探針806與晶圓100的對位,使探針806接觸特定的測試鍵或測試墊。一資料接收器808可在探針接觸測試鍵後從探針讀取資料,且將資料傳送至電腦802。電腦可從資料接收器808接收讀取之資料,且可藉由從比對一特定的晶圓和預定或預期的資料組的資料,產生一或是多個報告。例如,從一晶圓的讀取可比對一組可接受的容忍範圍,且若讀取在可接受的容忍範圍外,產生一報告或警示。 Figure 8 is a block diagram showing any embodiment of a system 800 for testing wafers having test keys. A computer 802, processor or other controller issues a signal to the probe to move the probe 806 to contact the wafer 100. The computer 802 can have instructions to control a particular probe or set of probes to test a crystal having a particular layout circle. The probe controller 804 can also control the alignment of the probe 806 with the wafer 100 by moving the probe 806 or the wafer 100 to bring the probe 806 into contact with a particular test key or test pad. A data receiver 808 can read data from the probe after the probe contacts the test button and transmit the data to the computer 802. The computer can receive the read data from the data receiver 808 and can generate one or more reports by comparing the data from a particular wafer and a predetermined or expected data set. For example, reading from a wafer can be compared to a set of acceptable tolerances, and if the reading is outside the acceptable tolerance range, a report or alert is generated.

根據一實施例形成具有測試墊之晶圓使得對於半導體裝置或結構的測試不會污染或干擾晶粒操作或後續的製程。可形成多個具有不同物理特性(例如鰭結構)之測試墊於測試鍵系列中,或測試鍵系列中的測試墊可具有例如摻雜之不同物理特性。測試鍵群組可具有多個測試鍵系列,其中不同的測試鍵群組具有不同的物理特性,例如磊晶特性或層型態。 Forming a wafer with a test pad in accordance with an embodiment such that testing of the semiconductor device or structure does not contaminate or interfere with die operation or subsequent processing. A plurality of test pads having different physical properties (eg, fin structures) may be formed in the test key series, or the test pads in the test key series may have different physical properties such as doping. The test key group can have multiple test key series, wherein different test key groups have different physical characteristics, such as epitaxial characteristics or layer patterns.

一根據一實施例之方法包括形成一半導體裝置於一具有一基底之晶圓上,且形成測試鍵於該基底上和於該晶圓之切割線中,該測試鍵具有複數個測試墊,該些測試墊之至少一第一測試墊具有與部分半導體裝置相關之物理特性。於基底中形成至少一磊晶區,該些測試墊從該至少一磊晶區形成。此方法更包括於基底中形成至少一淺溝槽隔離結構。形成至少一測試墊於該些淺溝槽隔離結構之兩者間。形成該些測試墊之一第二測試墊於基底中,該第二測試墊具有至少一物理特性,不同於第一測試墊。第一測試墊具有第一磊晶特性,第二測試墊具有第二磊晶特性,與第一磊晶特性不同。第一測試墊和第二 測試墊包括一半導體化合物,該半導體化合物不同於該基底之半導體化合物。該第一測試墊具有第一摻雜特性,該第二測試墊具有第二摻雜特性,第二摻雜特性與第一摻雜特性不同。 A method according to an embodiment includes forming a semiconductor device on a wafer having a substrate and forming a test key on the substrate and in a dicing line of the wafer, the test key having a plurality of test pads, At least one of the first test pads of the test pads has physical properties associated with a portion of the semiconductor device. At least one epitaxial region is formed in the substrate, and the test pads are formed from the at least one epitaxial region. The method further includes forming at least one shallow trench isolation structure in the substrate. Forming at least one test pad between the shallow trench isolation structures. Forming a second test pad of the test pads in the substrate, the second test pad having at least one physical property different from the first test pad. The first test pad has a first epitaxial property, and the second test pad has a second epitaxial property that is different from the first epitaxial property. First test pad and second The test pad includes a semiconductor compound that is different from the semiconductor compound of the substrate. The first test pad has a first doping characteristic, the second test pad has a second doping characteristic, and the second doping characteristic is different from the first doping characteristic.

根據一實施例,形成一測試鍵包括形成複數個STI於晶圓之基底上和晶圓之切割線中,且形成測試鍵於晶圓之基底上和晶圓之切割線中。形成該測試鍵包括形成至少一測試鍵群組,具有複數個測試鍵系列,各測試鍵群組具有複數個測試墊,各測試鍵系列具有一第一物理特性,不同於該至少一第一測試鍵群組之其他測試鍵系列的第一物理特性。 According to an embodiment, forming a test key includes forming a plurality of STIs on a substrate of the wafer and a dicing line of the wafer, and forming a test key on the substrate of the wafer and the dicing line of the wafer. Forming the test key includes forming at least one test key group, having a plurality of test key series, each test key group having a plurality of test pads, each test key series having a first physical characteristic different from the at least one first test The first physical property of the other test key series of the key group.

根據一實施例,一晶圓包括至少一切割道,定義於該晶圓之基底上,該至少一切割道分隔晶粒區,且至少一測試鍵系列位於至少一切溝道中。該至少一測試鍵系列包括複數個測試墊,各測試墊與另一測試墊間以淺溝槽隔離結構相隔。各測試鍵系列中的各測試墊具有至少一鰭,測試鍵系列中的各測試墊具有不同數量的鰭。 In accordance with an embodiment, a wafer includes at least one scribe line defined on a substrate of the wafer, the at least one scribe lane separating the die regions, and the at least one test key series is located in at least all of the channels. The at least one test key series includes a plurality of test pads, and each test pad is separated from the other test pad by a shallow trench isolation structure. Each test pad in each test key series has at least one fin, and each test pad in the test key series has a different number of fins.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作更動、替代與潤飾。再者,本發明之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,任何所屬技術領域中具有通常知識者可從本發明揭示內容中理解現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以在此處所述實施例中實施大體相同功能或獲得大體相同結果皆可使用於本發明中。因此,本發明之保護範 圍應以較寬廣的範圍或意義來解讀。 Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can be modified, replaced and retouched without departing from the spirit and scope of the invention. . Further, the scope of the present invention is not limited to the processes, machines, manufacture, compositions, devices, methods and steps in the specific embodiments described in the specification, and any one of ordinary skill in the art may disclose the invention. The present disclosure understands the processes, machines, manufactures, compositions, devices, methods, and steps that are presently or in the future that can be used in the present invention as long as they can perform substantially the same function or obtain substantially the same results in the embodiments described herein. in. Therefore, the protection model of the present invention It should be interpreted in a broader context or meaning.

100‧‧‧晶圓 100‧‧‧ wafer

104‧‧‧測試鍵 104‧‧‧Test key

106‧‧‧切割線 106‧‧‧ cutting line

108‧‧‧測試鍵系列 108‧‧‧Test key series

110a-110n‧‧‧測試墊 110a-110n‧‧‧ test pad

Claims (15)

一種半導體結構之製作方法,包括:形成一半導體裝置於一晶圓上,其中該晶圓具有一基底;以及形成一測試鍵於該晶圓之基底上和切割線中,包括:形成複數個淺溝槽隔離結構於該晶圓之基底上和切割線中;以及形成複數個包括半導體材料之測試墊,該些測試墊形成於該基底上,且以該些淺溝槽隔離結構之至少一者分隔,該些測試墊之至少一第一測試墊具有與該半導體裝置之一部分相關的物理特性。 A method of fabricating a semiconductor structure, comprising: forming a semiconductor device on a wafer, wherein the wafer has a substrate; and forming a test key on the substrate of the wafer and the cutting line, comprising: forming a plurality of shallow a trench isolation structure on the substrate of the wafer and the dicing line; and forming a plurality of test pads including a semiconductor material, the test pads being formed on the substrate, and at least one of the shallow trench isolation structures Separating, at least one of the first test pads of the test pads has physical properties associated with a portion of the semiconductor device. 如申請專利範圍第1項所述之半導體結構之製作方法,其中形成該測試鍵包括形成至少一磊晶區於該基底中,該些測試墊由該至少一磊晶區形成,且形成該測試鍵更包括由一半導體材料形成該些測試墊,該半導體材料之晶格與該基底之材料不匹配。 The method of fabricating a semiconductor structure according to claim 1, wherein the forming the test key comprises forming at least one epitaxial region in the substrate, the test pads being formed by the at least one epitaxial region, and forming the test The bond further includes forming the test pads from a semiconductor material, the lattice of the semiconductor material not matching the material of the substrate. 如申請專利範圍第1項所述之半導體結構之製作方法,更包括形成該些測試墊之一第二測試墊,該第二測試墊之至少一物理特性與該第一測試墊不同。 The method of fabricating the semiconductor structure of claim 1, further comprising forming a second test pad of the test pads, the at least one physical property of the second test pad being different from the first test pad. 如申請專利範圍第3項所述之半導體結構之製作方法,其中該第一測試墊具有一第一磊晶特性,該第二測試墊具有一第二磊晶特性,該第一磊晶特性與該第二磊晶特性不同。 The method for fabricating a semiconductor structure according to claim 3, wherein the first test pad has a first epitaxial property, and the second test pad has a second epitaxial property, the first epitaxial property and The second epitaxial property is different. 如申請專利範圍第3項所述之半導體結構之製作方法,其中該第一測試墊和該第二測試墊由一半導體化合物形成,該 半導體化合物不同於該基底之半導體化合物。 The method for fabricating a semiconductor structure according to claim 3, wherein the first test pad and the second test pad are formed of a semiconductor compound, The semiconductor compound is different from the semiconductor compound of the substrate. 如申請專利範圍第3項所述之半導體結構之製作方法,其中該第一測試墊具有一第一摻雜特性,該第二測試墊具有一第二摻雜特性,該第一摻雜特性與該第二摻雜特性不同。 The method for fabricating a semiconductor structure according to claim 3, wherein the first test pad has a first doping characteristic, and the second test pad has a second doping characteristic, the first doping characteristic and The second doping characteristics are different. 一種形成測試結構之方法,包括:形成複數個淺溝槽隔離結構於一晶圓之基底上和該晶圓之切割線中;以及形成一測試鍵於該晶圓之基底上和該晶圓之切割線中,形成該測試鍵包括:形成至少一測試鍵群組,具有複數個測試鍵系列,各測試鍵系列具有複數個由一半導體材料形成之測試墊,在該至少一測試鍵群組中,各測試鍵系列具有一第一物理特性,與其他測試鍵系列之第一物理特性不同。 A method of forming a test structure, comprising: forming a plurality of shallow trench isolation structures on a substrate of a wafer and a dicing line of the wafer; and forming a test key on the substrate of the wafer and the wafer In the cutting line, forming the test key comprises: forming at least one test key group, having a plurality of test key series, each test key series having a plurality of test pads formed of a semiconductor material, in the at least one test key group Each test key series has a first physical characteristic that is different from the first physical characteristic of the other test key series. 如申請專利範圍第7項所述之形成測試結構之方法,其中該形成至少一測試鍵群組包括形成各測試墊於具有至少一鰭之各測試鍵系列中,在一測試鍵系列中之該些測試墊的各測試墊具有不同數量的鰭。 The method of forming a test structure according to claim 7, wherein the forming the at least one test key group comprises forming each test pad in each test key series having at least one fin, in a test key series Each test pad of some test pads has a different number of fins. 如申請專利範圍第7項所述之形成測試結構之方法,其中形成至少一測試鍵群組包括形成至少一鰭於各測試鍵系列中之各測試墊中,其中一測試鍵群組中之各測試墊具有相同的第一物理特性,其中形成至少一測試鍵群組包括形成一第一測試鍵群組和一第二測試鍵群組,該第一測試鍵群組具有一第一物理特性,與該第二測試鍵群組之第二物理特性不同。 The method of forming a test structure according to claim 7, wherein forming the at least one test key group comprises forming at least one fin in each test pad in each test key series, wherein each of the test key groups The test pad has the same first physical characteristic, wherein forming the at least one test key group includes forming a first test key group and a second test key group, the first test key group having a first physical characteristic, The second physical characteristic is different from the second test key group. 如申請專利範圍第9項所述之形成測試結構之方法,其中該第一物理特性是摻雜程度,該第二物理特性是磊晶特性,其中形成該第一測試鍵群組包括以一磊晶層形成各測試墊,且各測試墊間以一淺溝槽隔離結構分隔。 The method of forming a test structure according to claim 9, wherein the first physical property is a doping degree, and the second physical property is an epitaxial property, wherein forming the first test key group includes The crystal layer forms each test pad, and each test pad is separated by a shallow trench isolation structure. 一種晶圓,包括:至少一切割道,定義於該晶圓之一基底上,該至少一切割道將晶粒區分隔;以及至少一測試鍵系列於該至少一切割道中,該至少一測試鍵系列包括:複數個測試墊,該些測試墊之各測試墊與另一測試墊間以淺溝槽隔離結構分隔;其中各該至少一測試鍵系列中之各測試墊具有至少一鰭,一測試鍵系列中之該些測試墊的各測試墊具有不同數量的鰭。 A wafer comprising: at least one scribe line defined on a substrate of the wafer, the at least one scribe line separating the die regions; and at least one test key series in the at least one scribe line, the at least one test button The series includes: a plurality of test pads, each test pad of the test pads is separated from another test pad by a shallow trench isolation structure; wherein each test pad of each of the at least one test key series has at least one fin, a test Each test pad of the test pads in the key series has a different number of fins. 如申請專利範圍第11項所述之晶圓,其中各測試鍵系列中的各測試墊係從一化合物形成,該化合物不同於該基底之化合物。 The wafer of claim 11, wherein each test pad in each test key series is formed from a compound different from the compound of the substrate. 如申請專利範圍第11項所述之晶圓,更包括至少一半導體裝置,於一晶粒區中,各測試鍵系列之該些測試墊的一第一測試墊具有一物理特性,與該至少一半導體裝置之一結構相關。 The wafer of claim 11, further comprising at least one semiconductor device, wherein in a die region, a first test pad of the test pads of each test key series has a physical characteristic, and the at least One of the semiconductor devices is structurally related. 如申請專利範圍第11項所述之晶圓,其中該晶圓具有至少兩個測試鍵系列,該些測試鍵系列之一者的測試墊具有一摻雜輪廓,不同於至少一其他測試鍵系列之測試墊的摻雜 輪廓。 The wafer of claim 11, wherein the wafer has at least two test key series, and the test pads of one of the test key series have a doping profile different from at least one other test key series. Doping of test pads profile. 如申請專利範圍第11項所述之晶圓,其中該晶圓具有至少兩個測試鍵系列,該些測試鍵系列之一者的測試墊具有一磊晶特性,不同於至少一其他測試鍵系列之測試墊的磊晶特性。 The wafer of claim 11, wherein the wafer has at least two test key series, and one of the test key series has an epitaxial property different from at least one other test key series. The epitaxial properties of the test pads.
TW103110612A 2013-09-18 2014-03-21 Wafer, method for forming a test structure and method for forming a semiconductor structure TWI520266B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/030,857 US9431288B2 (en) 2013-09-18 2013-09-18 System and method for test key characterizing wafer processing state

Publications (2)

Publication Number Publication Date
TW201513266A true TW201513266A (en) 2015-04-01
TWI520266B TWI520266B (en) 2016-02-01

Family

ID=52667154

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103110612A TWI520266B (en) 2013-09-18 2014-03-21 Wafer, method for forming a test structure and method for forming a semiconductor structure

Country Status (2)

Country Link
US (3) US9431288B2 (en)
TW (1) TWI520266B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102184994B1 (en) * 2014-07-18 2020-12-01 삼성전자주식회사 Semiconductor device and method for fabricating the same
KR102600786B1 (en) * 2018-04-20 2023-11-10 삼성전자주식회사 Semiconductor device including test structure
KR20220033591A (en) * 2020-09-08 2022-03-17 삼성전자주식회사 Semiconductor device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050134857A1 (en) * 2003-12-22 2005-06-23 Chartered Semiconductor Manufacturing Ltd. Method to monitor silicide formation on product wafers
US7387950B1 (en) * 2006-12-17 2008-06-17 United Microelectronics Corp. Method for forming a metal structure
IL180482A0 (en) * 2007-01-01 2007-06-03 Jordan Valley Semiconductors Inspection of small features using x - ray fluorescence
US8680653B2 (en) * 2007-11-12 2014-03-25 Infineon Technologies Ag Wafer and a method of dicing a wafer
US20090174002A1 (en) * 2008-01-09 2009-07-09 International Business Machines Corporation Mosfet having a high stress in the channel region
JP5173525B2 (en) * 2008-03-28 2013-04-03 ルネサスエレクトロニクス株式会社 Semiconductor wafer, semiconductor chip, semiconductor device, and manufacturing method of semiconductor device
US7825678B2 (en) * 2008-08-22 2010-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Test pad design for reducing the effect of contact resistances
JP5697842B2 (en) * 2008-11-18 2015-04-08 ラピスセミコンダクタ株式会社 Manufacturing method of semiconductor device and SOQ substrate used therefor
US8017942B2 (en) * 2008-11-25 2011-09-13 Infineon Technologies Ag Semiconductor device and method
US7904273B2 (en) * 2009-02-16 2011-03-08 International Business Machines Corporation In-line depth measurement for thru silicon via
KR20120068845A (en) * 2009-09-20 2012-06-27 인터몰레큘러 인코퍼레이티드 Methods of building crystalline silicon solar cells for use in combinatorial screening
US8519390B2 (en) * 2011-07-25 2013-08-27 United Microelectronics Corp. Test pattern for measuring semiconductor alloys using X-ray Diffraction
US8692245B2 (en) * 2011-08-21 2014-04-08 Nanya Technology Corp. Crack stop structure and method for forming the same
US8648341B2 (en) * 2012-02-23 2014-02-11 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for testing pads on wafers
CN103311247B (en) * 2012-03-14 2016-07-13 中国科学院微电子研究所 Semiconductor device and manufacture method thereof

Also Published As

Publication number Publication date
US20190237370A1 (en) 2019-08-01
US9431288B2 (en) 2016-08-30
US10535573B2 (en) 2020-01-14
US20160372390A1 (en) 2016-12-22
TWI520266B (en) 2016-02-01
US10269666B2 (en) 2019-04-23
US20150076499A1 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
US8497171B1 (en) FinFET method and structure with embedded underlying anti-punch through layer
US11677028B2 (en) PMOS FinFET
KR20040096365A (en) Manufacturing method for semiconductor device
US7786025B1 (en) Activating dopants using multiple consecutive millisecond-range anneals
US10535573B2 (en) System and method for test key characterizing wafer processing state
US10707331B2 (en) FinFET device with a reduced width
US11189532B2 (en) Dual width finned semiconductor structure
KR101799664B1 (en) Test line letter for embedded non-volatile memory technology
US9613899B1 (en) Epitaxial semiconductor fuse for FinFET structure
US9905673B2 (en) Stress memorization and defect suppression techniques for NMOS transistor devices
US6737315B2 (en) Method of manufacturing semiconductor device including steps of forming both insulating film and epitaxial semiconductor on substrate
TWI639195B (en) Stress memorization techniques for transistor devices
JP2004356386A (en) Semiconductor device and its manufacturing method
US6589875B1 (en) Method of selectively processing wafer edge regions to increase wafer uniformity, and system for accomplishing same
CN113412536A (en) System and method for masking during high energy implants in the fabrication of wide bandgap semiconductor devices
TWI781529B (en) Trap-rich layer in a high-resistivity semiconductor layer
US11587927B2 (en) Crown bulk for FinFET device
US7838376B2 (en) Non-destructive inline epi pattern shift monitor using selective epi
US10950505B2 (en) Multiple finFET formation with epitaxy separation
JP2017151349A (en) Method for manufacturing semiconductor device
CN112582411A (en) Semiconductor device with a plurality of semiconductor chips
KR20100005782A (en) Trench formation method of semiconductor device