TW201511003A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TW201511003A
TW201511003A TW103112854A TW103112854A TW201511003A TW 201511003 A TW201511003 A TW 201511003A TW 103112854 A TW103112854 A TW 103112854A TW 103112854 A TW103112854 A TW 103112854A TW 201511003 A TW201511003 A TW 201511003A
Authority
TW
Taiwan
Prior art keywords
voltage
data
circuit
power supply
regulator circuit
Prior art date
Application number
TW103112854A
Other languages
Chinese (zh)
Inventor
Kenji Mae
Akiyoshi Seko
Original Assignee
Ps4 Luxco Sarl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ps4 Luxco Sarl filed Critical Ps4 Luxco Sarl
Publication of TW201511003A publication Critical patent/TW201511003A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0038Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0061Timing circuits or methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)

Abstract

The present invention stably supplies a current to each memory cell in a semiconductor device in which writes to a plurality of memory cells are performed simultaneously, even when the number of bits to which first data is written is not uniform. The semiconductor device is provided with a plurality of memory cells, a plurality of write registers for retaining a plurality of write data to be written to the plurality of memory cells, a ratio determination circuit for determining a ratio of first data to second data in the plurality of write data retained in the plurality of write registers, and a voltage regulator circuit for generating a first power source voltage used in writing the first data and a second power source voltage used in writing the second data. The voltage regulator circuit controls the electrical current supply capacity of the first power source voltage and/or the second power source voltage on the basis of output from the ratio determination circuit.

Description

半導體裝置 Semiconductor device (對於關連申請之記載) (for the record of related applications)

本發明係依據日本國專利申請:日本特願2013-081408號(2013年4月9日申請)之優先權主張之構成,同申請之全記載內容係作為根據引用而放入至本書加以記載者。 The present invention is based on the constitutional claim of Japanese Patent Application No. 2013-081408 (filed on Apr. 9, 2013), the entire contents of which are incorporated herein by reference. .

本發明係有關半導體裝置。特別是,本發明係有關供給寫入電流至記憶體單元之電源電路。 The present invention relates to a semiconductor device. In particular, the present invention relates to a power supply circuit that supplies a write current to a memory cell.

在記憶體系統之內部電源產生電路中,提案有:具備電流供給量不同之2以上之電路,經由模式設定(例如,主動模式與等待模式),切換該電路之方式。如根據如此之內部電源產生電路,由因應動作模式而進行電流供給者,可謀求消耗電力之降低。 In the internal power supply circuit of the memory system, a circuit having two or more circuits having different current supply amounts and switching the circuit via mode setting (for example, active mode and standby mode) is proposed. According to such an internal power source generating circuit, when the current is supplied in response to the operation mode, the power consumption can be reduced.

專利文獻1係揭示具備主動時用之電流供給能力大的電路(VDLACT),和等待時用之電流供給能力小的電路(VDLSTY)之內部電源產生電路(參照專利文 獻1之圖1)。 Patent Document 1 discloses an internal power supply circuit including a circuit (VDLACT) having a large current supply capability for active use and a circuit (VDLSTY) having a small current supply capability for waiting (refer to Patent Document) Figure 1).

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

[專利文獻1]日本特開2008-159145號公報 [Patent Document 1] Japanese Patent Laid-Open Publication No. 2008-159145

以下的分析係從本發明之觀點所得到。 The following analysis was obtained from the viewpoint of the present invention.

在同時供給電流至複數之記憶體單元而進行寫入之記憶體系統中,寫入資料之邏輯值「1」(第1資料=High位元,以下相同),邏輯值「0」(第2資料=Low位元,以下相同)之比率係並非一定之故,在同時寫入邏輯值「1」,「0」任一時,寫入的位元數係未成為一定。因此,加以供給至各記憶體單元之電流值則有未成為一定的問題。作為結果,有著在寫入後之記憶體單元之狀態,產生有不均,無法得到寫入邊際之可能性。 In a memory system that simultaneously supplies current to a plurality of memory cells and writes, the logical value of the data is written as "1" (first data = High bit, the same applies hereinafter), and the logical value is "0" (2nd) The ratio of the data = Low bit, the same below) is not constant. When the logical value "1" or "0" is simultaneously written, the number of bits written is not constant. Therefore, there is a problem that the current value supplied to each memory cell does not become constant. As a result, there is a possibility that the state of the memory cell after writing is uneven, and the margin of writing cannot be obtained.

記載於專利文獻1之內部電源產生電路係未進行因應寫入之位元數的電流供給量之控制,而上述之問題係未被解決。 The internal power source generating circuit described in Patent Document 1 does not control the amount of current supplied in accordance with the number of bits to be written, and the above problems are not solved.

於是,在供給電流至記憶體單元而進行寫入之記憶體系統中,在同時寫入之位元數並非一定之情況,亦可對於各記憶體單元安定進行電流供給之內部電源產生電路之實現則被期待。 Therefore, in the memory system in which the current is supplied to the memory cell and written, the number of bits to be simultaneously written is not constant, and the internal power supply circuit for supplying current to each memory cell can be realized. It is expected.

經由本發明之第1視點的半導體裝置係具備:複數之記憶體單元,和保持各寫入至前述複數之記憶體單元的複數之寫入資料的複數之寫入暫存器,和判定在保持於前述複數之寫入暫存器之前述複數之寫入資料之第1資料及第2資料的比率之比率判定電路,和產生在前述第1資料的寫入時使用之第1電源電壓,及在第2資料的寫入時使用之第2電源電壓之電壓穩壓器電路。在此,前述電壓穩壓器電路係依據前述比率判定電路之輸出,控制前述第1電源電壓及前述第2電源電壓之中至少一方的電流供給能力。 The semiconductor device according to the first aspect of the present invention includes: a plurality of memory cells, and a plurality of write registers that hold a plurality of write data written to the plurality of memory cells, and the determination is maintained a ratio determining circuit for ratios of the first data and the second data of the plurality of written data of the plurality of write registers of the plurality of write registers, and a first power supply voltage used for writing the first data, and A voltage regulator circuit of the second power supply voltage used for writing the second data. Here, the voltage regulator circuit controls a current supply capability of at least one of the first power supply voltage and the second power supply voltage in accordance with an output of the ratio determination circuit.

如根據本發明之半導體裝置,即使同時寫入之位元數並非一定之情況,亦可提供可貢獻於安定進行電流供給至各記憶體單元情況之半導體裝置者。 According to the semiconductor device of the present invention, even if the number of bits to be simultaneously written is not constant, a semiconductor device which can contribute to the case where the current is supplied to each memory cell by stabilization can be provided.

1a~1j、2a~2j、3a~3j‧‧‧源極線驅動器(SDRV) 1a~1j, 2a~2j, 3a~3j‧‧‧Source Line Driver (SDRV)

4、5、6‧‧‧共通源極線(SL) 4, 5, 6‧‧‧ Common source line (SL)

7a~7d、8a~8d、9a~9d‧‧‧記憶單元陣列 7a~7d, 8a~8d, 9a~9d‧‧‧ memory cell array

10‧‧‧半導體裝置 10‧‧‧Semiconductor device

11、13、15‧‧‧主字元線驅動器(MWD) 11, 13, ‧ ‧ main character line driver (MWD)

12‧‧‧記憶體單元陣列 12‧‧‧Memory Cell Array

14‧‧‧位址輸入電路 14‧‧‧ address input circuit

16‧‧‧位址閂鎖電路 16‧‧‧ address latch circuit

18‧‧‧指令輸入電路 18‧‧‧Command input circuit

20‧‧‧指令解碼電路 20‧‧‧ instruction decoding circuit

21a~21d、23a~23d、25a~25d‧‧‧副字元線驅動器(SWD) 21a~21d, 23a~23d, 25a~25d‧‧‧Sub-character line driver (SWD)

24‧‧‧列控制電路 24‧‧‧ column control circuit

26‧‧‧行控制電路 26‧‧‧ line control circuit

28‧‧‧資料暫存器 28‧‧‧data register

30‧‧‧輸出入電路 30‧‧‧Output and input circuit

32‧‧‧內部電源產生電路 32‧‧‧Internal power generation circuit

32a、132a‧‧‧內部電源產生電路A 32a, 132a‧‧‧Internal power generation circuit A

32b‧‧‧內部電源產生電路B 32b‧‧‧Internal power generation circuit B

34‧‧‧時脈輸入電路 34‧‧‧clock input circuit

38‧‧‧時序產生器 38‧‧‧ Timing generator

41a~h‧‧‧寫入放大器(WAMP) 41a~h‧‧‧Write Amplifier (WAMP)

51a~h‧‧‧Y開關(YSW) 51a~h‧‧‧Y switch (YSW)

52‧‧‧位元單元之Y開關(YSW) 52‧‧‧Y-switch of position unit (YSW)

60‧‧‧位元線選擇開關 60‧‧‧ bit line selection switch

61‧‧‧位元線共通源極線連接開關 61‧‧‧ bit line common source line connection switch

62、64、91、98、160、183a‧‧‧反相器電路 62, 64, 91, 98, 160, 183a‧‧‧ inverter circuits

71、72‧‧‧阻抗變化型記憶體單元 71, 72‧‧‧ Impedance-varying memory unit

81、82‧‧‧阻抗變化型元件 81, 82‧‧‧ Impedance variable components

93、94、171a~c、P1‧‧‧PMOS電晶體 93, 94, 171a~c, P1‧‧‧ PMOS transistors

95、96、97、102、181a、182a、N1~3、Na0~1023、Nb0~1023、Nc0~1023‧‧‧NMOS電晶體 95, 96, 97, 102, 181a, 182a, N1~3, Na0~1023, Nb0~1023, Nc0~1023‧‧‧ NMOS transistors

104、105‧‧‧單元電晶體 104, 105‧‧‧ unit transistor

141‧‧‧比率檢測部 141‧‧‧ Ratio Detection Department

142‧‧‧比率比較部 142‧‧‧ Ratio Comparison Department

150‧‧‧寫入暫存器 150‧‧‧Write to scratchpad

152‧‧‧比率判定電路 152‧‧‧Rate determination circuit

154、254‧‧‧電壓穩壓器電路 154, 254‧‧ ‧ voltage regulator circuit

156a~c、170a~c、180a‧‧‧比較器 156a~c, 170a~c, 180a‧‧‧ comparator

158‧‧‧延遲電路 158‧‧‧Delay circuit

162‧‧‧AND電路 162‧‧‧AND circuit

164‧‧‧電容器 164‧‧‧ capacitor

166L‧‧‧VSETGEN_L(VSET之穩壓器電路(大電流用)) 166L‧‧‧VSETGEN_L (VSET voltage regulator circuit (for high current))

166M‧‧‧VSETGEN_M(VSET之穩壓器電路(中電流用)) 166M‧‧‧VSETGEN_M (VSET voltage regulator circuit (for medium current))

166S、266S‧‧‧VSETGEN_S(VSET之穩壓器電路(小電流用)) 166S, 266S‧‧‧VSETGEN_S (VSET voltage regulator circuit (for small current))

168L‧‧‧VRESETGEN_L(VRESET之穩壓器電路(大電流用)) 168L‧‧‧VRESETGEN_L (VRESET regulator circuit (for high current))

168M‧‧‧VRESETGEN_M(VRESET之穩壓器電路(中電流用)) 168M‧‧‧VRESETGEN_M (VRESET regulator circuit (for current))

168S‧‧‧VRESETGEN_S(VRESET之穩壓器電路(小電流用)) 168S‧‧‧VRESETGEN_S (VRESET regulator circuit (for small current))

172a~c‧‧‧PMOS電晶體(輸出電晶體) 172a~c‧‧‧PMOS transistor (output transistor)

190a‧‧‧抽出電路 190a‧‧‧Extracted circuit

200‧‧‧比率檢測用配線(內部配線) 200‧‧‧ Ratio detection wiring (internal wiring)

263‧‧‧NAND電路 263‧‧‧NAND circuit

MWL‧‧‧主字元線 MWL‧‧‧ main character line

WL‧‧‧(副)字元線 WL‧‧‧(sub)word line

BL‧‧‧位元線 BL‧‧‧ bit line

IO_0~IO_7‧‧‧IO線 IO_0~IO_7‧‧‧IO line

Y1‧‧‧上位列選擇信號 Y1‧‧‧Upper column selection signal

Y2‧‧‧下位列選擇信號 Y2‧‧‧ lower column selection signal

FX‧‧‧行選擇信號 FX‧‧‧ line selection signal

SET0‧‧‧設定信號 SET0‧‧‧ setting signal

RESET0‧‧‧重置信號 RESET0‧‧‧Reset signal

NS、Nout‧‧‧節點 NS, Nout‧‧‧ nodes

ARSELREF‧‧‧比率檢測用配線的電位 Potential of ARSELREF‧‧‧ ratio detection wiring

APREB、DEC‧‧‧控制信號 APREB, DEC‧‧‧ control signals

VINTREF‧‧‧(定電流源之)偏壓電壓 VINTREF‧‧‧ (constant current source) bias voltage

VCREF1、VCREF2‧‧‧基準電位 VCREF1, VCREF2‧‧‧ reference potential

VSETREF、VRESETREF‧‧‧基準電壓 VSETREF, VRESETREF‧‧‧ reference voltage

圖1係顯示有關第1實施形態之半導體裝置之全體構成的方塊圖。 Fig. 1 is a block diagram showing the overall configuration of a semiconductor device according to a first embodiment.

圖2係顯示有關第1實施形態之半導體裝置之記憶體單元陣列的方塊圖。 Fig. 2 is a block diagram showing a memory cell array of the semiconductor device of the first embodiment.

圖3係顯示有關第1實施形態之半導體裝置之記憶體單元陣列的方塊圖。 Fig. 3 is a block diagram showing a memory cell array of the semiconductor device of the first embodiment.

圖4係有關第1實施形態之半導體裝置之記憶體單元,位元單位之Y開關,寫入放大器,源極線驅動器作為電路圖。 4 is a circuit diagram of a memory cell of a semiconductor device according to the first embodiment, a Y-switch of a bit unit, a write amplifier, and a source line driver.

圖5係顯示有關第1實施形態之半導體裝置之內部電源產生電路A的電路圖。 Fig. 5 is a circuit diagram showing an internal power supply circuit A of the semiconductor device according to the first embodiment.

圖6係顯示圖5之第1電源電壓之穩壓器電路的電路圖。 Fig. 6 is a circuit diagram showing a regulator circuit of the first power supply voltage of Fig. 5.

圖7係顯示有關第1實施形態之變形例1的半導體裝置之第1電源電壓之穩壓器電路的電路圖。 FIG. 7 is a circuit diagram showing a regulator circuit of a first power supply voltage of the semiconductor device according to the first modification of the first embodiment.

圖8係顯示有關第1實施形態之半導體裝置之動作的時間圖。 Fig. 8 is a timing chart showing the operation of the semiconductor device of the first embodiment.

圖9係為了說明有關第1實施形態之半導體裝置之比率檢測部之動作的圖。 FIG. 9 is a view for explaining the operation of the ratio detecting unit of the semiconductor device according to the first embodiment.

圖10係顯示有關第2實施形態之半導體裝置之內部電源產生電路A的電路圖。 Fig. 10 is a circuit diagram showing an internal power supply circuit A of the semiconductor device of the second embodiment.

圖11係顯示有關第2實施形態之半導體裝置之動作的時間圖。 Fig. 11 is a timing chart showing the operation of the semiconductor device of the second embodiment.

首先,對於一實施形態的概要加以說明。然而,在實施形態之概要的說明中所附記之圖面參照符號係主要為了幫助理解的例示,並非意圖限定於圖示之形態情 況者。 First, an outline of an embodiment will be described. However, in the description of the general description of the embodiments, the reference numerals are mainly for the purpose of facilitating understanding, and are not intended to be limited to the illustrated form. Condition.

在一實施形態之半導體裝置10係如圖1所示,具備產生第1電源電壓(圖5之電壓VSET)及第2電源電壓(圖5之電壓VRESET)之內部電源產生電路A(32a)的半導體裝置。在此,半導體裝置10之內部電源產生電路A(32a)係如圖5所示,具備:複數之記憶體單元,和保持各寫入至複數之記憶體單元的複數之寫入資料的複數之寫入暫存器150,和判定在保持於複數之寫入暫存器150之複數之寫入資料之第1資料(例如High位元),及第2資料(例如,Low位元)的比率之比率判定電路152,和產生在第1資料的寫入時使用之第1電源電壓(電壓VSET),及在第2資料的寫入時使用之第2電源電壓(電壓VRESET)之電壓穩壓器電路154。在此,該電壓穩壓器電路154係依據比率判定電路152之輸出,在控制第1電源電壓(電壓VSET)及第2電源電壓(電壓VRESET)之中至少一方的電流供給能力(圖5之內部電源產生電路A(32a)中,控制第1電源電壓及第2電源電壓之雙方的電流供給能力。另外,如圖10之內部電源產生電路A(132a),亦可僅控制任一方之電源電壓(圖11之情況係第1電源電壓)之電流供給能力的構成)。 As shown in FIG. 1, the semiconductor device 10 of the embodiment includes an internal power supply circuit A (32a) that generates a first power supply voltage (voltage VSET in FIG. 5) and a second power supply voltage (voltage VRESET in FIG. 5). Semiconductor device. Here, the internal power source generating circuit A (32a) of the semiconductor device 10 is provided with a plurality of memory cells and a plurality of write data holding a plurality of memory cells written to the plurality of memory cells as shown in FIG. Writing to the register 150, and determining the ratio of the first data (for example, High bit) and the second data (for example, Low bit) of the plurality of written data held in the plurality of write registers 150 The ratio determination circuit 152 and the first power supply voltage (voltage VSET) used for writing the first data and the second power supply voltage (voltage VRESET) used for writing the second data are voltage-stabilized. Circuit 154. Here, the voltage regulator circuit 154 controls the current supply capability of at least one of the first power supply voltage (voltage VSET) and the second power supply voltage (voltage VRESET) in accordance with the output of the ratio determination circuit 152 (FIG. 5). In the internal power generating circuit A (32a), the current supply capability of both the first power supply voltage and the second power supply voltage is controlled. Further, as shown in the internal power supply generating circuit A (132a) of FIG. 10, only one of the power supplies may be controlled. The voltage (the configuration of the current supply voltage in the case of FIG. 11 is the first power supply voltage).

如根據上述之構成,在對於複數之記憶體單元,同時地(以相同時間)供給電流而進行寫入之記憶體系統中,因作成判定第1資料及第2資料的比率,呈控制 依據該比率,寫入時所供給之電源電壓的電流供給能力之故,即使寫入位元數並非一定之情況,成為亦可對於各記憶體單元而言安定進行電流供給者。 According to the configuration described above, in the memory system in which the plurality of memory cells are simultaneously and (in the same time) supplied with the current and written, the ratio of the first data and the second data is determined to be controlled. According to this ratio, the current supply capability of the power supply voltage supplied at the time of writing is such that even if the number of write bits is not constant, the current supply can be stably performed for each memory cell.

上述電壓穩壓器電路154係如圖5所示,對於第1電源電壓(電壓VSET)及第2電源電壓(電壓VRESET)而言,具備電流供給能力之不同的2以上之穩壓器電路(對於電壓VSET而言,VSETGEN_L、VSETGEN_M、VSETGEN_S;對於電壓VRESET而言,VRESETGEN_L、VRESETGEN_M、VRESETGEN_S),依據比率判定電路152之輸出(S1,S2,S3),作為呈2以上之穩壓器電路之中,選擇使用之穩壓器電路亦可。 As shown in FIG. 5, the voltage regulator circuit 154 includes two or more voltage regulator circuits having different current supply capacities for the first power supply voltage (voltage VSET) and the second power supply voltage (voltage VRESET) ( For the voltage VSET, VSETGEN_L, VSETGEN_M, VSETGEN_S; for the voltage VRESET, VRESETGEN_L, VRESETGEN_M, VRESETGEN_S), according to the output of the ratio determination circuit 152 (S1, S2, S3), as a regulator circuit of 2 or more In the choice, the regulator circuit can be used.

另外,如圖10所示之電壓穩壓器電路254,對於第1電源電壓(電壓VSET)及第2電源電壓(電壓VRESET)之一方而言,具備電流供給能力之不同的2以上之穩壓器電路(在圖11中,對於電壓VSET而言,VSETGEN_L、VSETGEN_M、VSETGEN_S),依據比率判定電路152之輸出(S1,S2,S3),作為呈2以上之穩壓器電路之中,選擇使用之穩壓器電路亦可。 Further, the voltage regulator circuit 254 shown in FIG. 10 has two or more voltage regulators having different current supply capacities for one of the first power supply voltage (voltage VSET) and the second power supply voltage (voltage VRESET). The circuit (in FIG. 11, for the voltage VSET, VSETGEN_L, VSETGEN_M, VSETGEN_S), according to the output (S1, S2, S3) of the ratio determination circuit 152, is selected as the regulator circuit of 2 or more. The regulator circuit can also be used.

上述2以上之穩壓器電路之輸出電晶體(圖6之各穩壓器電路VSETGEN_S、VSETGEN_M、VSETGEN_L之輸出電晶體係各172a~c)之電流驅動能力則相互不同為佳。 The current driving capabilities of the output transistors of the above two or more regulator circuits (the output transistor systems 172a to c of the voltage regulator circuits VSETGEN_S, VSETGEN_M, and VSETGEN_L of FIG. 6) are preferably different from each other.

上述比率判定電路152係如圖5所示,具備:內部配線(比率檢測用配線)200,和經由複數之寫 入暫存器150所保持之複數的寫入資料,而各加以控制導通/非導通之複數的第1開關元件(NMOS電晶體Na0~1023),複數之第1開關元件的一端係各與內部配線(比率檢測用配線)200加以連接。並且,內部配線(比率檢測用配線)200係作為呈以特定之電位VDD加以預充電,經由藉由複數之第1開關元件之中,導通狀態之第1開關元件而將預充電的電荷進行放電時之內部配線(比率檢測用配線)200之電位(圖9之ARSELREF),而判定上述比率亦可。 As shown in FIG. 5, the ratio determination circuit 152 includes internal wiring (ratio for detecting ratio) 200, and writes by plural Each of the plurality of write elements held by the register 150 is controlled to be turned on/off by a plurality of first switching elements (NMOS transistors Na0 to 1023), and one end of the plurality of first switching elements is internally and internally Wiring (ratio for detecting ratio) 200 is connected. Further, the internal wiring (ratio detecting wiring) 200 is precharged at a specific potential VDD, and the precharged electric charge is discharged through the first switching element in the on state by the plurality of first switching elements. The potential of the internal wiring (ratio detecting wiring) 200 (ARSELREF in FIG. 9) is determined, and the above ratio may be determined.

在上述比率判定電路152中,如圖5所示,對於各複數之第1開關元件(NMOS電晶體Na0~1023)而言,作為呈串聯地加以連接定電流源(NMOS電晶體Nc0~1023)亦可。 In the ratio determination circuit 152, as shown in FIG. 5, for each of the plurality of first switching elements (NMOS transistors Na0 to 1023), a constant current source (NMOS transistors Nc0 to 1023) is connected in series. Also.

上述比率判定電路152係如圖5所示,更具備比較2個輸入端子之電位的1以上之比較器(156a~c),作為呈對於各比較器之一方的輸入端子,加以連接有比率檢測用配線200,對於各比較器之另一方的輸入端子,加以供給有1以上之基準電位(VCREF1、VCREF2等)之任一,依據各比較器(156a~c)之輸出,輸出比率檢測用配線200之電位(圖10之ARSELREF)與1以上之基準電位(VCREF1、VCREF2等)之大小關係亦可。 As shown in FIG. 5, the ratio determination circuit 152 further includes comparators (156a to c) that compare one or more potentials of two input terminals, and has a ratio detection as an input terminal for one of the comparators. The wiring 200 is supplied with one or more reference potentials (VCREF1, VCREF2, etc.) to the other input terminal of each of the comparators, and outputs a ratio detecting wiring in accordance with the output of each of the comparators (156a to c). The magnitude of 200 (ARSELREF in FIG. 10) may be related to the magnitude of the reference potential (VCREF1, VCREF2, etc.) of 1 or more.

上述比率判定電路152係如圖5所示,更具備延遲電路158,作為呈從結束預充電之時間至經由延遲 電路158所產生之延遲時間後(在圖9之τ的經過後),進行經由比較器(156a~c)之比較亦可。 As shown in FIG. 5, the ratio determination circuit 152 further includes a delay circuit 158 as a period from the end of precharge to the delay. After the delay time generated by the circuit 158 (after the τ of FIG. 9), comparison by the comparators (156a-c) may be performed.

上述電壓穩壓器電路154係如圖5所示,作為呈因應比率判定電路152所輸出之大小關係(例如,比率檢測用配線200之電位,和基準電位VCREF1、VCREF2之大小關係),對於2以上之穩壓器電路(對於電壓VSET而言,圖5之VSETGEN_L、VSETGEN_M、VSETGEN_S;對於電壓VRESET而言,圖5之VRESETGEN_L、VRESETGEN_M、VRESETGEN_S)之中,選擇使用之穩壓器電路亦可。 As shown in FIG. 5, the voltage regulator circuit 154 is a magnitude relationship (for example, the magnitude of the potential of the ratio detecting wiring 200 and the reference potentials VCREF1 and VCREF2) which is outputted by the response ratio determining circuit 152. The above regulator circuit (for the voltage VSET, VSETGEN_L, VSETGEN_M, VSETGEN_S of FIG. 5; for the voltage VRESET, VRESETGEN_L, VRESETGEN_M, VRESETGEN_S of FIG. 5), the regulator circuit to be used may be selected.

如圖10所示之電壓穩壓器電路254,具備對於第1電源電壓(電壓VSET)而言之電流供給能力的不同之2以上之穩壓器電路(VSETGEN_S、VSETGEN_M、VSETGEN_L),和對於第2電源電壓(電壓VRESET)而言之僅1個穩壓器電路(VRESETGEN_L),作為呈對於對應於各第1及第2資料的複數之記憶體單元,供給第2電源電壓(電壓VRESET)而進行第2資料之寫入之後,對於對應於第1資料之記憶體單元,供給第1電源電壓(電壓VSET)而進行第1資料的寫入亦可。 The voltage regulator circuit 254 shown in FIG. 10 includes two or more voltage regulator circuits (VSETGEN_S, VSETGEN_M, and VSETGEN_L) having different current supply capacities for the first power supply voltage (voltage VSET), and In the case of the power supply voltage (voltage VRESET), only one regulator circuit (VRESETGEN_L) supplies the second power supply voltage (voltage VRESET) as a memory unit corresponding to each of the first and second data. After the writing of the second data is performed, the first power supply voltage (voltage VSET) may be supplied to the memory unit corresponding to the first data to write the first data.

另外,與圖10相反地,電壓穩壓器電路,具備對於第2電源電壓(電壓VRESET)而言之電流供給能力的不同之2以上之穩壓器電路,和對於第1電源電壓(電壓VSET)而言之僅1個穩壓器電路,作為呈對於對應於各第1及第2資料的複數之記憶體單元,供給第1電 源電壓(電壓VSET)而進行第1資料之寫入之後,對於對應於第2資料之記憶體單元,供給第2電源電壓(電壓VRESET)而進行第2資料的寫入亦可。 Further, contrary to FIG. 10, the voltage regulator circuit includes a regulator circuit of 2 or more different in current supply capability for the second power supply voltage (voltage VRESET), and a first power supply voltage (voltage VSET) In the case of only one voltage regulator circuit, the first power is supplied to the memory unit corresponding to each of the first and second data. After the first data is written by the source voltage (voltage VSET), the second power supply voltage (voltage VRESET) may be supplied to the memory unit corresponding to the second data to write the second data.

上述記憶體單元係對亦可具有對應於各第1及第2資料,在相互不同阻抗狀態(例如,寫入第1資料之情況,低阻抗狀態;寫入第2資料之情況,高阻抗狀態)所寫入之阻抗變化型元件(圖4之81,82等)者。 The memory cell pair may have different impedance states corresponding to the first and second data (for example, when the first data is written, the low impedance state; when the second data is written, the high impedance state) ) The impedance change type element (81, 82, etc. in Fig. 4) is written.

以下,對於本申請揭示之各實施形態,參照圖面加以詳細說明。 Hereinafter, each embodiment disclosed in the present application will be described in detail with reference to the drawings.

[第1實施形態] [First Embodiment] (第1實施形態之構成) (Configuration of the first embodiment)

對於第1實施形態之構成,參照圖1的同時加以說明。圖1係有關第1實施形態之半導體裝置10全體的方塊圖。 The configuration of the first embodiment will be described with reference to Fig. 1 . Fig. 1 is a block diagram showing the entire semiconductor device 10 of the first embodiment.

在圖1中,記憶體單元陣列12係具備配置成二次元的複數之阻抗變化型記憶體單元(圖4之71,72等)。各阻抗變化型記憶體單元係以阻抗變化型元件(ReRAM;Resistive Random Access Memory)(圖4之81,82等)與單元電晶體(圖4之104,105等)加以構成。在此,阻抗變化型元件(ReRAM)係例如,具有下部電極與金屬氧化物與上部電極之層積構造,而經由於下部電極與上部電極之間,施加電性應力之時而阻抗特性產生變化之記憶元件。各阻抗變化型元件係記憶高阻抗狀態與 低阻抗狀態之任一的阻抗狀態,作為非揮發性記憶元件而發揮機能。另外,單元電晶體(圖4之104,105等)係從電流控制的觀點,NMOS電晶體則為最佳,例如亦可適用雙極性電晶體等。半導體裝置10係選擇在記憶體單元陣列12之中存取之阻抗變化型記憶體單元,進行使高阻抗狀態變化成低阻抗狀態之SET寫入,使低阻抗狀態變化成高阻抗狀態之RESET寫入,阻抗狀態之讀出的動作。在此,在本說明書中,將低阻抗狀態做為「1」,而將高阻抗狀態作為「0」。即,SET寫入係讀出「1」之動作,而RESET寫入係讀出「0」之動作。 In FIG. 1, the memory cell array 12 includes a plurality of impedance-variable memory cells (71, 72, and the like in FIG. 4) arranged in a quadratic element. Each of the impedance change type memory cells is constituted by a Resistive Random Access Memory (ReRAM) (81, 82, etc. in FIG. 4) and a cell transistor (104, 105, etc. in FIG. 4). Here, the impedance change type element (ReRAM) has, for example, a laminated structure of a lower electrode and a metal oxide and an upper electrode, and changes in impedance characteristics when an electrical stress is applied between the lower electrode and the upper electrode. Memory element. Each impedance-changing component is a memory high-impedance state and The impedance state of either of the low impedance states functions as a non-volatile memory element. Further, the unit cell (104, 105, etc. in Fig. 4) is preferably an NMOS transistor from the viewpoint of current control, and for example, a bipolar transistor or the like can also be applied. The semiconductor device 10 selects an impedance change type memory cell accessed in the memory cell array 12, performs SET writing to change the high impedance state to a low impedance state, and changes the low impedance state to a high impedance state RESET write. In, the action of reading the impedance state. Here, in the present specification, the low impedance state is set to "1", and the high impedance state is set to "0". That is, the SET write system reads "1" and the RESET write reads "0."

在圖1中,記憶體單元陣列12以外的單元係對於記憶體單元陣列12而言,控制上述之動作。 In FIG. 1, cells other than the memory cell array 12 control the above-described operations for the memory cell array 12.

首先,位址輸入電路14係輸入存取之阻抗變化型記憶體單元的位址ADD。接著,位址閂鎖電路16係閂鎖所輸入之位址ADD,分離成行位址ADD_row,和列位址ADD_column,各供給至行控制電路26,列控制電路24。 First, the address input circuit 14 inputs the address ADD of the access impedance change memory unit. Next, the address latch circuit 16 latches the input address ADD, separates it into a row address ADD_row, and a column address ADD_column, and supplies them to the row control circuit 26 and the column control circuit 24.

在此,行控制電路26係具有未圖示之行解碼器,從行位址ADD_row解碼行選擇信號。經由上述行選擇信號所選擇之(副)字元線(之後,稱作「選擇(副)字元線」)則成為活性。在此,列控制電路24係具有未圖示之列解碼器,從列位址ADD_column解碼列選擇信號。經由上述列選擇信號所選擇之(副)字元線(之後,稱作「選擇位元線」)則成為活性。 Here, the row control circuit 26 has a row decoder (not shown), and decodes the row selection signal from the row address ADD_row. The (sub)word line selected by the above-described row selection signal (hereinafter referred to as "selection (sub)word line") becomes active. Here, the column control circuit 24 has a column decoder (not shown), and decodes the column selection signal from the column address ADD_column. The (sub)word line (hereinafter referred to as "selection bit line") selected via the above column selection signal becomes active.

記憶體單元陣列12內之複數之阻抗變化型記憶體單元係二次元地加以配置於複數之(副)字元線與複數之位元線之交點,此等之中,選擇加以連接於選擇(副)字元線與選擇位元線雙方之阻抗變化型記憶體單元,而加以存取。具體而言,例如,圖4之BL0為選擇位元線,圖4之(副)字元線WL為選擇(副)字元線的情況,單元電晶體104係為開啟狀態,於共通源極線4與選擇位元線BL0之間,施加電壓,由流動電流至阻抗變化型記憶體單元71之阻抗變化型元件81者,進行寫入動作。 The plurality of impedance-changing memory cells in the memory cell array 12 are arranged in a quadratic manner at an intersection of a complex (sub)word line and a complex bit line, among which, the selection is connected to the selection ( The sub-word line and the impedance-changing memory unit of both sides of the bit line are selected and accessed. Specifically, for example, BL0 of FIG. 4 is a select bit line, and (sub)word line WL of FIG. 4 is a case of selecting (sub)word line, and cell transistor 104 is turned on, at a common source. A voltage is applied between the line 4 and the selected bit line BL0, and a current is supplied to the impedance change element 81 of the impedance varying memory unit 71 to perform a write operation.

時脈輸入電路34係接受從外部加以供給至半導體裝置10之相補的外部時脈信號CK,/CK,生成內部時脈ICLK,供給至時序產生器38。時序產生器38係將內部時脈ICLK為依據,在半導體裝置10內生成必要之各種時脈信號,再供給至各部。然而,在本說明書中,信號名之/係顯示Low位準為活性的信號者。 The clock input circuit 34 receives the external clock signal CK, /CK supplied from the outside to the complement of the semiconductor device 10, generates an internal clock ICLK, and supplies it to the timing generator 38. The timing generator 38 generates various necessary clock signals in the semiconductor device 10 based on the internal clock ICLK, and supplies them to the respective units. However, in the present specification, the signal name is a signal indicating that the Low level is active.

資料輸出入端子DQ係與輸出入電路30加以連接,當加以輸入寫入資料至資料輸出入端子DQ時,寫入資料則放入至輸出入電路30。另外,輸出入電路30係與資料暫存器28加以連接,將所放入之寫入資料,暫時保存於資料暫存器28。之後,將保存於資料暫存器28之寫入資料,以特定之時間而輸出至記憶體單元陣列12內部之IO線(圖3之IO_0-7等)。並且,各IO線的信號係加以供給至寫入放大器(WAMP:圖3之41a~h等)。 The data input/output terminal DQ is connected to the input/output circuit 30, and when input data is input to the data input/output terminal DQ, the write data is placed in the input/output circuit 30. Further, the input/output circuit 30 is connected to the data register 28, and the written data is temporarily stored in the data register 28. Thereafter, the write data stored in the data register 28 is output to the IO line inside the memory cell array 12 (IO_0-7 of FIG. 3, etc.) at a specific time. Further, the signals of the respective IO lines are supplied to the write amplifier (WAMP: 41a to h of FIG. 3, etc.).

接著,指令輸入電路18係作為控制信號,而輸入行位址選通信號/RAS,列位址選通信號/CAS,寫入啟動信號/WE等。指令解碼電路20係解碼此等之信號/RAS,/CAS,/WE等,將對於解碼之指令的執行必要之控制信號,輸出至半導體裝置10內之各部。 Next, the command input circuit 18 serves as a control signal, and inputs a row address strobe signal /RAS, a column address strobe signal /CAS, a write enable signal /WE, and the like. The command decoding circuit 20 decodes the signals /RAS, /CAS, /WE, etc., and outputs control signals necessary for the execution of the decoded instructions to the respective units in the semiconductor device 10.

接著,內部電源產生電路32係如圖1所示,由內部電源產生電路A(32a)及內部電源產生電路B(32b)所成之2個單元而加以構成。在此,內部電源產生電路B(32b)係輸入從外部所供給之電源VDD,VSS,生成在半導體裝置10內之各部必要之電壓VPP,VRERD,VPERI等,而供給至各部。 Next, the internal power generating circuit 32 is constituted by two units of the internal power generating circuit A (32a) and the internal power generating circuit B (32b) as shown in FIG. Here, the internal power source generating circuit B (32b) receives the power supplies VDD and VSS supplied from the outside, and generates voltages VPP, VERRRD, VPERI, and the like necessary for each unit in the semiconductor device 10, and supplies them to the respective units.

另一方面,內部電源產生電路A(32a)係輸入從外部所供給之電源VDD,VSS,生成電壓VSET(第1電源電壓)及電壓VRESET(第2電源電壓),而供給至記憶體單元陣列12。在此,電壓VSET係加以供給至寫入放大器(圖3之41a~h等),在SET寫入時所使用。另外,電壓VRESET係加以供給至源極線驅動器(圖2之1a~j,2a~j,3a~j等),在RESET寫入時所使用。在內部電源產生電路A(32a)中,依據從資料暫存器28所供給之1024位元Data_0-1023,控制電壓VSET及電壓VRESET之電流供給能力(詳細係後述之)。 On the other hand, the internal power generation circuit A (32a) inputs the power supply VDD and VSS supplied from the outside, generates a voltage VSET (first power supply voltage), and generates a voltage VRESET (second power supply voltage), and supplies it to the memory cell array. 12. Here, the voltage VSET is supplied to the write amplifier (41a to h of FIG. 3, etc.) and used for SET writing. Further, the voltage VRESET is supplied to the source line driver (1a to j, 2a to j, 3a to j, etc. in Fig. 2), and is used for RESET writing. In the internal power generating circuit A (32a), the current supply capability of the voltage VSET and the voltage VRESET is controlled in accordance with the 1024-bit Data_0-1023 supplied from the data register 28 (details will be described later).

接著,參照圖2,對於記憶體單元陣列12之構成,更詳細地加以說明。如圖2所示,記憶體單元陣列12係包含複數之記憶體單元墊片(7a~7d、8a~8d、 9a~9d)而加以構成。此等記憶體單元墊片係加以配置成二次元,在圖2中,係例示以4行M列之記憶體單元墊片而加以構成記憶體單元陣列12之情況。但,記憶體單元墊片的配置係不限定於此等,而可進行任意之配置。 Next, the configuration of the memory cell array 12 will be described in more detail with reference to FIG. As shown in FIG. 2, the memory cell array 12 includes a plurality of memory cell pads (7a-7d, 8a-8d, 9a~9d) and constructed. These memory cell pads are arranged in a two-dimensional element. In FIG. 2, a case where the memory cell array 12 is formed by four memory rows of memory cell pads is exemplified. However, the arrangement of the memory cell pads is not limited to this, and any configuration can be performed.

如圖2所示,4行M列之記憶體單元墊片係分為列單位之範圍,對於各自範圍,源極線則加以共通化。具體而言,對於第0列之記憶體單元墊片係加以配設有共通源極線4,對於第1列之記憶體單元墊片係加以配設有共通源極線5,對於第M-1列之記憶體單元墊片係加以配設有共通源極線6。 As shown in FIG. 2, the memory cell pads of the four rows and M columns are divided into column units, and the source lines are common to the respective ranges. Specifically, a common source line 4 is disposed for the memory cell pad of the 0th column, and a common source line 5 is disposed for the memory cell pad of the first column, for the M-th The memory cell pads of one column are provided with a common source line 6.

在同圖上中,呈在列單位之範圍內,源極線則加以配置5條於行方向,於列方向加以配置2條地加以顯示,但共通源極線(4,5,6)係實際上,例如,以共通的擴散層,或1層固態的配線所構成。 In the same figure, in the range of column units, the source lines are arranged in five rows, and two columns are arranged in the column direction, but the common source lines (4, 5, 6) are Actually, for example, it is composed of a common diffusion layer or a solid layer of wiring.

另外,對於各記憶體單元墊片之兩側,係加以配置有Y開關群(YSW群),及寫入放大器群(WAMP群)。 Further, a Y switch group (YSW group) and a write amplifier group (WAMP group) are disposed on both sides of each memory cell pad.

另外,字元線係成為經由主字元線與副字元線之階層構造,而主字元線驅動器(MWD)係於各列加以配置1個,而副字元線驅動器(SWD)係加以配置於各記憶體單元墊片。在此階層構造中,加以直接連接於阻抗變化型記憶體單元者係副字元線。 In addition, the word line system is structured by a hierarchical structure of the main word line and the sub word line, and the main word line driver (MWD) is arranged in each column, and the sub word line driver (SWD) is applied. Configured in each memory unit gasket. In this hierarchical structure, the sub-word line is directly connected to the impedance-changing type memory unit.

另外,對於各記憶體單元墊片而言,至少配置1個以上之源極線驅動器,但從安定之電流供給的觀 點,期望為如圖2所示,在第1實施形態中,於各記憶體單元墊片之副字元線驅動器SWD(21a~21d,23a~23d,25a~25d)之兩側,配置源極線驅動器(1a~1j,2a~2j,3a~3j)。但,並不限定於此,源極線驅動器係可進行任意之配置。 In addition, at least one source line driver is provided for each memory cell pad, but the view of the current supply from stability is provided. It is desirable that, as shown in Fig. 2, in the first embodiment, the source is disposed on both sides of the sub-line driver SWD (21a to 21d, 23a to 23d, 25a to 25d) of each memory cell pad. Polar line driver (1a~1j, 2a~2j, 3a~3j). However, the present invention is not limited thereto, and the source line driver can be configured arbitrarily.

接著,參照圖3,對於關連於1個之記憶體單元墊片7a,即,0行0列之記憶體單元墊片之部分(圖2之一點虛線內),更詳細地說明其構成。在圖3中,記憶體單元墊片7a係具有加以配置成二次元之阻抗變化型記憶體單元。行位址ADD_row係9位元,而9位元之中的6位元則使用於選擇主字元線之1個時。另外,剩餘之3位元則使用於選擇行選擇信號FX_0-7之1個時,而加以供給至副字元線驅動器21a。 Next, referring to Fig. 3, the configuration of the memory cell pad 7a, i.e., the memory cell pad of 0 rows and 0 columns, which is related to one memory cell pad 7a (indicated by a dotted line in Fig. 2), will be described in more detail. In FIG. 3, the memory cell pad 7a has an impedance change type memory cell which is arranged in a quadratic element. The row address ADD_row is 9 bits, and the 6 bits of the 9 bits are used when one of the main character lines is selected. Further, the remaining three bits are used to select one of the row selection signals FX_0-7, and are supplied to the sub-word line driver 21a.

另一方面,列位址ADD_column亦為9位元,但對於分離為各3位元之ADD_column_h、ADD_column_m、ADD_column_l而言,各進行解碼。在此,ADD_column_h係上位側3位元,而ADD_column_l係下位側3位元。另外,ADD_column_m係剩餘之中間的3位元。並且,將解碼ADD_column_h之8條的列選擇信號作為Y1_0-7、而將解碼ADD_column_m之8條的列選擇信號作為Y2_0-7,將解碼ADD_column_l之8條的列選擇信號作為Y3_0-7。 On the other hand, the column address ADD_column is also 9 bits, but each of ADD_column_h, ADD_column_m, and ADD_column_l separated into 3 bits is decoded. Here, ADD_column_h is the upper side 3 bits, and ADD_column_l is the lower side 3 bits. In addition, ADD_column_m is the remaining three bits in the middle. Further, eight column selection signals of ADD_column_h are decoded as Y1_0-7, and eight column selection signals of ADD_column_m are decoded as Y2_0-7, and eight column selection signals of ADD_column_1 are decoded as Y3_0-7.

位置於經由上述之行選擇信號FX_0-7之選擇(副)字元線,和經由上述之列選擇信號Y1_0-7、Y2_0- 7、Y3_0-7之選擇位元線之交點的阻抗變化型記憶體單元則加以存取。 Positioned on the selected (sub)word line via the above-described row select signal FX_0-7, and via the above-described column select signals Y1_0-7, Y2_0- 7. The impedance change memory unit at the intersection of the selected bit lines of Y3_0-7 is accessed.

另外,配置於圖2之記憶體單元墊片7a之兩側的2個寫入放大器群(WAMP群)係如圖3所示,一方則包含有4個寫入放大器(41a、41c、41e、41g),而另一方則包含有4個寫入放大器(41b、41d、41f、41h)。 Further, two write amplifier groups (WAMP groups) disposed on both sides of the memory cell pad 7a of FIG. 2 are as shown in FIG. 3, and one of them includes four write amplifiers (41a, 41c, 41e, 41g), while the other contains 4 write amplifiers (41b, 41d, 41f, 41h).

另外,配置於圖2之記憶體單元墊片7a之兩側的2個的Y開關群(YSW群)係在圖3中,一方之Y開關群係包含有4個Y開關(51a、51c、51e、51g),而另一方之Y開關群係包含有4個Y開關(51b、51d、51f、51h)。 Further, two Y-switch groups (YSW groups) disposed on both sides of the memory cell pad 7a of FIG. 2 are shown in FIG. 3, and one Y-switch group includes four Y switches (51a, 51c, 51e, 51g), and the other Y switch group includes four Y switches (51b, 51d, 51f, 51h).

另外,鄰接於圖2之記憶體單元墊片7a而加以配置之4個源極線驅動器(1a、1b、1c、1d)之中,在圖3中,係顯示源極線驅動器1c,1d(源極線驅動器1a,1b係對於圖3係未圖示,但實際上係鄰接於記憶體單元墊片7a而加以連接)。 Further, among the four source line drivers (1a, 1b, 1c, 1d) disposed adjacent to the memory cell pad 7a of Fig. 2, in Fig. 3, the source line drivers 1c, 1d are shown ( The source line drivers 1a, 1b are not shown in Fig. 3, but are actually connected adjacent to the memory cell pads 7a).

對於控制共通源極線4之電位的源極線驅動器(1c,1d),係從未圖示之控制電路,作為控制信號,加以供給有設定信號SET0,重置信號RESET0。另一方面,對於控制選擇位元線之電位的寫入放大器(41a~41h),亦從該控制電路,作為控制信號,加以供給有設定信號SET0,重置信號RESET0。 The source line driver (1c, 1d) that controls the potential of the common source line 4 is supplied with a setting signal SET0 and a reset signal RESET0 as a control signal from a control circuit (not shown). On the other hand, the write amplifiers (41a to 41h) for controlling the potential of the selected bit line are supplied with the setting signal SET0 and the reset signal RESET0 as control signals from the control circuit.

另外,在圖3中,加以配線有8條之IO線(IO_0-7)。8條之IO線(IO_0-7)係從外部輸出入端子 DQ,保持對應於藉由輸出入電路30,及資料暫存器28所輸入之8位元的寫入資料之各位元的信號。並且,8位元之寫入則結束,從外部輸出入端子DQ加以輸入接下來之8位元的寫入資料時,8條之IO線(IO_0-7)之信號係被加以更新。 In addition, in FIG. 3, eight IO lines (IO_0-7) are wired. Eight IO lines (IO_0-7) are externally input and output terminals DQ holds a signal corresponding to each bit of the write data of the 8-bit input by the input/output circuit 30 and the data register 28. Further, the 8-bit write is completed, and when the external DQ is input and output to the next 8-bit write data, the signals of the eight IO lines (IO_0-7) are updated.

接著,對於列選擇信號Y1,Y2,Y3,和選擇位元線之關係,加以詳細說明。512條之位元線BL_0-511係分割為64條之位元線所成之8個組群。第1組群係BL_0-63、第2組群係BL_64-127、第3組群係BL_128-191、第4組群係BL_192-255、第5組群係BL_256-319、第6組群係BL_320-383、第7組群係BL_384-447、第8組群係BL_448-511。 Next, the relationship between the column selection signals Y1, Y2, Y3, and the selected bit line will be described in detail. The 512-bit line BL_0-511 is divided into 8 groups of 64 bit lines. Group 1 group BL_0-63, group 2 group BL_64-127, group 3 group BL_128-191, group 4 group BL_192-255, group 5 group BL_256-319, group 6 group BL_320-383, group 7 group BL_384-447, group 8 group BL_448-511.

上述第1~第8組群之中,選擇哪個組群係經由列選擇信號Y1_0-7而加以決定。如圖3所示,對於加以連接於第1組群之位元線BL_0-63之8個Y開關(51a~51h)而言,加以供給有列選擇信號Y1_0。經由此,列選擇信號Y1_0為活性之情況,加以選擇第1組群之位元線BL_0-63。同樣地,對於列選擇信號Y1_1、Y1_2、…、Y1_7而言,各加以選擇第2組群,第3組群、…、第8組群之位元線。 Among the above-described first to eighth group groups, which group is selected is determined by the column selection signal Y1_0-7. As shown in FIG. 3, the column selection signal Y1_0 is supplied to the eight Y switches (51a to 51h) connected to the bit lines BL_0-63 of the first group. Thus, the column selection signal Y1_0 is active, and the bit line BL_0-63 of the first group is selected. Similarly, for the column selection signals Y1_1, Y1_2, ..., Y1_7, the bit lines of the second group group, the third group group, ..., the eighth group group are selected.

接著,在各組群內,8個Y開關之中,選擇哪個Y開關係經由列選擇信號Y3_0-7而加以決定。例如,如圖3所示,第1組群之情況,對於8個Y開關51a~51h而言,各供給列選擇信號Y3_0~Y3_7,選擇列選 擇信號Y3_0-7之中,加以連接於成為活性之配線的Y開關。 Next, among the eight Y switches in the respective groups, which Y-open relationship is selected is determined by the column selection signal Y3_0-7. For example, as shown in FIG. 3, in the case of the first group, for each of the eight Y switches 51a to 51h, each of the supply column selection signals Y3_0 to Y3_7 is selected. Among the selection signals Y3_0-7, a Y switch that is connected to the active wiring is connected.

另外,如圖3所示,偶數號的位元線,和奇數號的位元線係交互地分配於兩側之Y開關而加以配線。各Y開關係與8條之位元線加以連接。具體而言,Y開關51a係與位元線BL0、BL2、...、BL14加以連接。Y開關51b係與位元線BL1、BL3、…、BL15加以連接。Y開關51c係與位元線BL16、BL18、…、BL30加以連接。Y開關51d係與位元線BL17、BL19、…、BL31加以連接。Y開關51e係與位元線BL32、BL34、…、BL46加以連接。Y開關51f係與位元線BL33、BL35、…、BL47加以連接。Y開關51g係與位元線BL48、BL50、…、BL62加以連接。Y開關51h係與位元線BL49、BL51、…、BL63加以連接。 Further, as shown in FIG. 3, the even-numbered bit lines and the odd-numbered bit lines are alternately distributed to the Y switches on both sides for wiring. Each Y open relationship is connected to eight bit lines. Specifically, the Y switch 51a is connected to the bit lines BL0, BL2, ..., BL14. The Y switch 51b is connected to the bit lines BL1, BL3, ..., BL15. The Y switch 51c is connected to the bit lines BL16, BL18, ..., BL30. The Y switch 51d is connected to the bit lines BL17, BL19, ..., BL31. The Y switch 51e is connected to the bit lines BL32, BL34, ..., BL46. The Y switch 51f is connected to the bit lines BL33, BL35, ..., BL47. The Y switch 51g is connected to the bit lines BL48, BL50, ..., BL62. The Y switch 51h is connected to the bit lines BL49, BL51, ..., BL63.

接著,在各Y開關內,選擇哪個位元線係經由供給至各Y開關之列選擇信號Y2_0-7而加以決定。例如,在Y開關51a中,依據列選擇信號Y2_0-7,而加以選擇位元線BL0、BL2、…、BL14之任一。具體而言,Y2_0為活性之情況,加以選擇位元線BL0,而Y2_1為活性之情況,加以選擇位元線BL2,Y2_7為活性之情況,加以選擇位元線BL14。 Next, in each of the Y switches, which bit line is selected is determined by the column selection signal Y2_0-7 supplied to each Y switch. For example, in the Y switch 51a, any one of the bit lines BL0, BL2, ..., BL14 is selected in accordance with the column selection signal Y2_0-7. Specifically, when Y2_0 is active, bit line BL0 is selected, and Y2_1 is active. When bit line BL2 is selected and Y2_7 is active, bit line BL14 is selected.

如以上說明,依據列選擇信號Y1、Y2、Y3,1個之位元線則作為選擇位元線而加以選擇。但在圖3中,亦可將複數之位元線作為選擇位元線者。例如,將列 選擇信號Y3_0-7,全部設定為High位準(活性)時,可從各組群內之8個Y開關,將各1條之位元線作為選擇位元線者。由如此作為者,可同時地存取8個之阻抗變化型記憶體單元者。 As described above, according to the column selection signals Y1, Y2, and Y3, one bit line is selected as the selection bit line. However, in FIG. 3, a plurality of bit lines may also be used as the selection bit line. For example, will column When the selection signal Y3_0-7 is set to the High level (active), one bit line of each group can be used as the selection bit line from the eight Y switches in each group. By doing so, it is possible to simultaneously access eight impedance-change memory cells.

另外,如圖3所示,對於各Y開關(51a~51h等)而言,因各設置寫入放大器(41a~41h等)之故,確保有對於複數之選擇位元線而言,同時進行電壓供給之能力。 Further, as shown in FIG. 3, for each of the Y switches (51a to 51h, etc.), since the write amplifiers (41a to 41h, etc.) are provided, it is ensured that the plurality of selected bit lines are simultaneously performed. The ability to supply voltage.

接著,參照圖4,對於源極線驅動器1c,位元單位之Y開關52,寫入放大器41a之構成,更詳細地加以說明。圖4係詳細地顯示在圖3中虛線框之範圍的方塊圖。但在圖4中,係含於Y開關51a之8個位元單位之Y開關之中,僅顯示1個位元單位之Y開關52。另外,顯示有於位元單位之Y開關52,藉由位元線BL_0,加以連接有阻抗變化型記憶體單元71之情況。 Next, with reference to Fig. 4, the configuration of the Y-switch 52 of the source line driver 1c and the write amplifier 41a will be described in more detail. Figure 4 is a block diagram showing in detail the extent of the dashed box in Figure 3. However, in Fig. 4, among the Y switches included in the eight bit units of the Y switch 51a, only the Y switch 52 of one bit unit is displayed. Further, the Y switch 52 in the bit unit is displayed, and the impedance change type memory unit 71 is connected by the bit line BL_0.

在圖4中,源極線驅動器1c係包含PMOS電晶體93,和NMOS電晶體102,和反相器電路91而加以構成。PMOS電晶體93,和NMOS電晶體102係串聯地加以連接於電壓源VRESET與接地之間。具體而言,PMOS電晶體93之源極則與電壓源VRESET加以連接,PMOS電晶體93之汲極與NMOS電晶體102之汲極係同時加以連接於節點NS,而NMOS電晶體102之源極係與接地加以連接。另外,PMOS電晶體93之閘極係藉由反相器電路91,而與重置信號RESET0的配線加以連接。另 外,NMOS電晶體102之閘極係與重置信號SET0的配線加以連接。並且,節點NS係與共通源極線4加以連接。 In FIG. 4, the source line driver 1c includes a PMOS transistor 93, an NMOS transistor 102, and an inverter circuit 91. A PMOS transistor 93 and an NMOS transistor 102 are connected in series between the voltage source VRESET and ground. Specifically, the source of the PMOS transistor 93 is connected to the voltage source VRESET, and the drain of the PMOS transistor 93 and the drain of the NMOS transistor 102 are simultaneously connected to the node NS, and the source of the NMOS transistor 102 Connect to ground. Further, the gate of the PMOS transistor 93 is connected to the wiring of the reset signal RESET0 by the inverter circuit 91. another Further, the gate of the NMOS transistor 102 is connected to the wiring of the reset signal SET0. Further, the node NS is connected to the common source line 4.

接著,詳細地說明位元單位之Y開關52的構成。位元單位之Y開關52係由位元線選擇開關60,和位元線共通源極線連接開關61,和反相器電路62,64,和NAND電路263加以構成。在此,位元線選擇開關60,和位元線共通源極線連接開關61係均經由PMOS電晶體與NMOS電晶體而加以構成之傳輸閘極電路。位元線選擇開關60係控制寫入放大器41a之輸出,和位元線BL0之導通/非導通之開關。另一方面,位元線共通源極線連接開關61,係控制共通源極線4與位元線BL0之導通/非導通之開關。 Next, the configuration of the Y switch 52 in the bit unit will be described in detail. The bit switch Y switch 52 is constituted by a bit line selection switch 60, a bit line common source line connection switch 61, and inverter circuits 62, 64, and a NAND circuit 263. Here, the bit line selection switch 60 and the bit line common source line connection switch 61 are transmission gate circuits each configured via a PMOS transistor and an NMOS transistor. The bit line selection switch 60 controls the output of the write amplifier 41a and the on/off switch of the bit line BL0. On the other hand, the bit line common source line connection switch 61 is a switch that controls the conduction/non-conduction of the common source line 4 and the bit line BL0.

位元線選擇開關60,和位元線共通源極線連接開關61係均經由反相器電路64之輸出的控制信號C1,相補地加以控制。具體而言,控制信號C1為High位準時,位元線選擇開關60係成為導通狀態,而位元線共通源極線連接開關61係成為非導通狀態。其結果,位元線BL0係與寫入放大器41a導通。另一方面,控制信號C1為Low位準時,位元線選擇開關60係成為非導通狀態,而位元線共通源極線連接開關61係成為導通狀態。其結果,位元線BL0係與共通源極線4導通。 The bit line selection switch 60 and the bit line common source line connection switch 61 are complementarily controlled via the control signal C1 output from the inverter circuit 64. Specifically, when the control signal C1 is at the High level, the bit line selection switch 60 is turned on, and the bit line common source line connection switch 61 is in a non-conduction state. As a result, the bit line BL0 is turned on to the write amplifier 41a. On the other hand, when the control signal C1 is at the Low level, the bit line selection switch 60 is in a non-conduction state, and the bit line common source line connection switch 61 is in an on state. As a result, the bit line BL0 is electrically connected to the common source line 4.

接著,對於關連於控制信號C1之生成的部份之構成加以說明。對於NAND電路263之3個輸入端子,係加以輸入列選擇信號Y1_0、Y2_0、Y3_0。對於列選擇 信號Y1_0=Y2_0=Y3_0=1之情況,成為控制信號C1=1,位元線BL0係與寫入放大器41a導通,而成為選擇位元線。另外,對於上述以外之情況,成為控制信號C1=0,位元線BL0係未成為選擇位元線,而與共通源極線4側導通。 Next, the configuration of the portion related to the generation of the control signal C1 will be described. For the three input terminals of the NAND circuit 263, input column selection signals Y1_0, Y2_0, and Y3_0 are input. For column selection When the signal Y1_0=Y2_0=Y3_0=1, the control signal C1=1, and the bit line BL0 is turned on by the write amplifier 41a to become the selected bit line. Further, in the case other than the above, the control signal C1=0, and the bit line BL0 is not turned into the selected bit line, but is turned on toward the common source line 4 side.

然而,在圖4中,對於位元單位之Y開關52已做過說明,但其他之位元單位之Y開關的構成係與位元單位之Y開關52相同,僅各加以供給Y1_i、Y2_j、Y3_k(i、j、k=0~7)之組合的列選擇信號的點不同。 However, in FIG. 4, the Y switch 52 for the bit unit has been described, but the Y switch of the other bit unit has the same configuration as the Y switch 52 of the bit unit, and only supplies Y1_i, Y2_j, The points of the column selection signals of the combination of Y3_k (i, j, k = 0 to 7) are different.

接著,對於圖4之寫入放大器(WAMP)41a之構成加以說明。寫入放大器(WAMP)41a係在SET寫入時及RESET寫入時,藉由位元單位之Y開關(52等),供給寫入電流至阻抗變化型元件(81,82等)。然而,含於在圖3之半導體裝置10之各寫入放大器(WAMP)的構成,係與圖5所示之寫入放大器(WAMP)41a之構成相同。圖5所示,寫入放大器41a係包含PMOS電晶體94,NMOS電晶體95~97,及反相器電路98而加以構成。於電壓源VSET與接地之間,PMOS電晶體94,及NMOS電晶體95~97係串聯地加以連接。PMOS電晶體94及NMOS電晶體96之閘極,係藉由反相器電路98而與IO_0之配線加以連接。另外,NMOS電晶體95之閘極係與設定信號SET0的配線加以連接。另外,NMOS電晶體97之閘極係與重置信號RESET0的配線加以連接。 Next, the configuration of the write amplifier (WAMP) 41a of Fig. 4 will be described. The write amplifier (WAMP) 41a supplies a write current to the impedance change type element (81, 82, etc.) by a Y switch (52 or the like) in a bit unit at the time of SET writing and RESET writing. However, the configuration of each write amplifier (WAMP) included in the semiconductor device 10 of FIG. 3 is the same as that of the write amplifier (WAMP) 41a shown in FIG. As shown in FIG. 5, the write amplifier 41a includes a PMOS transistor 94, NMOS transistors 95 to 97, and an inverter circuit 98. Between the voltage source VSET and the ground, the PMOS transistor 94 and the NMOS transistors 95-97 are connected in series. The gates of the PMOS transistor 94 and the NMOS transistor 96 are connected to the wiring of IO_0 by the inverter circuit 98. Further, the gate of the NMOS transistor 95 is connected to the wiring of the setting signal SET0. Further, the gate of the NMOS transistor 97 is connected to the wiring of the reset signal RESET0.

經由上述之構成,在寫入放大器41a中,IO_0為High位準,且設定信號SET0為High位準時,PMOS電晶體94及NMOS電晶體95則成為開啟,而NMOS電晶體96,97則成為關閉。經由此,供給有電壓VSET至OUT_0的配線。另一方面,IO_0為Low位準,且重置信號RESET0為High位準時,PMOS電晶體94及NMOS電晶體95則成為關閉,而NMOS電晶體96,97則成為開啟。經由此,OUT_0的配線係與接地導通。另外,對於上述以外之情況,係電壓源VSET與節點Nout之間,及節點Nout與接地之間係均成為非導通,未有流動有電流之路徑之故,電流係未流動於阻抗變化型元件(圖4之81,82等)。 According to the above configuration, in the write amplifier 41a, when IO_0 is the High level, and the setting signal SET0 is at the High level, the PMOS transistor 94 and the NMOS transistor 95 are turned on, and the NMOS transistors 96, 97 are turned off. . Thereby, the wiring having the voltages VSET to OUT_0 is supplied. On the other hand, when IO_0 is the Low level and the reset signal RESET0 is the High level, the PMOS transistor 94 and the NMOS transistor 95 are turned off, and the NMOS transistors 96, 97 are turned on. As a result, the wiring of OUT_0 is electrically connected to the ground. In addition, in the case other than the above, the voltage source VSET and the node Nout, and the node Nout and the ground are both non-conductive, and there is no current flowing path, and the current does not flow to the impedance variable element. (81, 82, etc. in Figure 4).

如圖4所示,寫入放大器41a之節點Nout係藉由OUT_0之配線,而與位元單位之Y開關52加以連接。對於SET寫入時,寫入放大器41a藉由OUT_0的配線,施加電壓VSET至阻抗變化型記憶體單元71之一端(圖4的A),供給寫入電流至阻抗變化型元件81。另外,對於SET寫入時,源極線驅動器1c之節點NS係與接地導通。經由此,從圖4的A,流動有電流至B的方向,進行SET寫入。另一方面,對於RESET寫入時,源極線驅動器1c,係施加電壓VRESET至阻抗變化型記憶體單元71之另一端(圖4的B),供給寫入電流至阻抗變化型元件81。經由此,從圖4的B,流動有電流至A的方向,寫入放大器41a係藉由OUT_0的配線,將其電 流引導至接地。經由此而進行RESET寫入。 As shown in FIG. 4, the node Nout of the write amplifier 41a is connected to the Y switch 52 of the bit unit by the wiring of OUT_0. At the time of SET writing, the write amplifier 41a applies a voltage VSET to one end of the impedance change type memory unit 71 (A of FIG. 4) by the wiring of OUT_0, and supplies a write current to the impedance change type element 81. Further, for SET writing, the node NS of the source line driver 1c is electrically connected to the ground. Thereby, from A of FIG. 4, a current flows to the direction of B, and SET writing is performed. On the other hand, in the case of RESET writing, the source line driver 1c applies a voltage VRESET to the other end of the impedance change type memory unit 71 (B of FIG. 4), and supplies a write current to the impedance varying element 81. Thereby, from the direction B of FIG. 4, the current flows to the direction of A, and the write amplifier 41a is electrically connected by the wiring of OUT_0. The flow is directed to ground. The RESET write is performed by this.

接著,參照圖5之同時,對於內部電源產生電路A(32a)之構成加以說明。圖5係顯示有關第1實施形態之半導體裝置10之內部電源產生電路A(32a)的電路圖。如圖5所示,內部電源產生電路A(32a)係經由複數之寫入暫存器150,比率判定電路152,及電壓穩壓器電路154而加以構成。 Next, the configuration of the internal power generating circuit A (32a) will be described with reference to Fig. 5 . Fig. 5 is a circuit diagram showing an internal power supply circuit A (32a) of the semiconductor device 10 of the first embodiment. As shown in FIG. 5, the internal power generating circuit A (32a) is configured by a plurality of write registers 150, a ratio determining circuit 152, and a voltage regulator circuit 154.

如圖1所示,資料暫存器28係一時保存複數之寫入資料的暫存器。資料暫存器28係將一時保存之複數的寫入資料之中,寫入至記憶體單元陣列12之1024位元之寫入資料Data_0-1023,傳送至內部電源產生電路32。內部電源產生電路A(32a)之各寫入暫存器150係保持所傳送之1024位元之寫入資料Data_0-1023。然而,在本實施形態中,想定同時地進行1024位元之寫入者,但並不限定於此,而可同時地將寫入位元數作為任意數者。因應該位元數,如設定信號Data之位元寬度,及寫入暫存器150之數量為佳。 As shown in FIG. 1, the data register 28 is a register for temporarily storing a plurality of written data. The data register 28 is written into the 1024-bit write data Data_0-1023 of the memory cell array 12 from the plurality of write data temporarily stored, and transmitted to the internal power supply circuit 32. Each of the write registers 150 of the internal power generating circuit A (32a) holds the transferred data of 1024 bits, Data_0-1023. However, in the present embodiment, it is assumed that the 1024-bit writer is simultaneously performed. However, the present invention is not limited thereto, and the number of write bits can be simultaneously set to an arbitrary number. Preferably, the number of bits, such as the bit width of the set signal Data, and the number of write registers 150 are preferred.

如圖5所示,對應於各寫入暫存器150之資料,加以輸出電壓至1024條之EIO配線(EIO<0>~<1023>)。對於EIO配線,寫入暫存器150為High位元(資料「1」)之情況,加以輸出High位準的電壓,而寫入暫存器150為Low位元(資料「0」)之情況,加以輸出Low位準的電壓。 As shown in FIG. 5, corresponding to the data of each write register 150, an output voltage is applied to 1024 EIO lines (EIO<0>~<1023>). For the EIO wiring, when the write register 150 is a High bit (data "1"), the voltage of the High level is output, and the write register 150 is a Low bit (data "0"). , to output the voltage of the Low level.

接著,對於比率判定電路152加以說明。比 率判定電路152,係具有判定在複數之寫入暫存器150之High位元的比率之機能。然而,在圖5中,雖判定High位準之比率,但呈判定Low位準之比率地加以構成者亦可。 Next, the ratio determination circuit 152 will be described. ratio The rate decision circuit 152 has a function of determining the ratio of the High bits of the plurality of write registers 150. However, in FIG. 5, although the ratio of the High level is determined, it may be configured to determine the ratio of the Low level.

如圖5所示,比率判定電路152係經由比率檢測部141與比率比較部142而加以構成。比率檢測部141係包含比率檢測用配線200,NMOS電晶體(第1開關元件)Na0~1023、NMOS電晶體Nb0~1023、NMOS電晶體Nc0~1023、PMOS電晶體P1、電容器164而加以構成。在此,3個之NMOS電晶體(Nai、Nbi、Nci、i=0~1023)係各串聯地加以連接於比率檢測用配線200與接地之間。另外,NMOS電晶體Nai(i=0~1023)之閘極係與各對應之EIO<i>(i=0~1023)之配線加以連接。另外,對於NMOS電晶體Nbi(i=0~1023)的閘極,係加以供給控制信號DEC。另外,對於NMOS電晶體Nci(i=0~1023)的閘極,係加以供給有偏壓電壓VINTREF,而NMOS電晶體Nci(i=0~1023)係作為定電流源而動作。 As shown in FIG. 5, the ratio determination circuit 152 is configured by the ratio detecting unit 141 and the ratio comparing unit 142. The ratio detecting unit 141 includes a ratio detecting wiring 200, NMOS transistors (first switching elements) Na0 to 1023, NMOS transistors Nb0 to 1023, NMOS transistors Nc0 to 1023, PMOS transistors P1, and 164. Here, three NMOS transistors (Nai, Nbi, Nci, i = 0 to 1023) are connected in series between the ratio detecting wiring 200 and the ground. Further, the gate of the NMOS transistor Nai (i = 0 to 1023) is connected to the wiring of each corresponding EIO <i> (i = 0 to 1023). Further, a supply control signal DEC is supplied to the gate of the NMOS transistor Nbi (i = 0 to 1023). Further, a bias voltage VINTREF is supplied to the gate of the NMOS transistor Nci (i = 0 to 1023), and the NMOS transistor Nci (i = 0 to 1023) operates as a constant current source.

另外,PMOS電晶體P1係加以連接於電源VDD(例如,1.5V程度)與比率檢測用配線200之間,而對於PMOS電晶體P1之閘極係施加有控制信號APREB。 Further, the PMOS transistor P1 is connected between the power supply VDD (for example, about 1.5 V) and the ratio detecting wiring 200, and the gate signal of the PMOS transistor P1 is applied with the control signal APREB.

接著,參照圖9之同時,對於比率檢測部141之動作加以說明。首先,將控制信號APREB作為Low位 準,開啟PMOS電晶體P1,以電位VDD而預充電比率檢測用配線200與電容器164。經由此,如圖9所示,比率檢測用配線200之電位係上升至電位VDD為止。 Next, the operation of the ratio detecting unit 141 will be described with reference to Fig. 9 . First, the control signal APREB is used as the Low bit. The PMOS transistor P1 is turned on, and the ratio detecting wiring 200 and the capacitor 164 are precharged at the potential VDD. As a result, as shown in FIG. 9, the potential of the ratio detecting wiring 200 rises to the potential VDD.

接著,將控制信號APREB返回成High位準而結束預充電期間之同時,將控制信號DEC作為High位準。經由此,NMOS電晶體Nbi(i=0~1023)係開啟。另外,NMOS電晶體Nai(i=0~1023)之中,EIO<i>(i=0~1023)之電壓則對應於High位準之NMOS電晶體則開啟。經由此,EIO<i>(i=0~1023)之電壓則對應於High位準之3個NMOS電晶體Nai、Nbi、Nci係導通,加以形成有流動有電流之路徑。 Next, the control signal APREB is returned to the High level to end the precharge period, and the control signal DEC is set to the High level. Thereby, the NMOS transistor Nbi (i = 0 to 1023) is turned on. Further, among the NMOS transistors Nai (i = 0 to 1023), the voltage of EIO < i > (i = 0 to 1023) is turned on in response to the NMOS transistor of the High level. As a result, the voltage of EIO<i>(i=0~1023) is turned on in accordance with the three NMOS transistors Nai, Nbi, and Nci of the High level, and a path through which a current flows is formed.

藉由上述電流之流動路徑,預充電之電荷則加以放電。在此,複數之寫入暫存器150之High位元之比率越大,在NMOS電晶體Nai(i=0~1023)之中開啟的數量則增加,而電流之流動路徑則增加之故,放電的速度則變快。另一方面,複數之寫入暫存器150之High位元之比率為小之情況,在NMOS電晶體Nai(i=0~1023)之中開啟的數量為少,而電流之流動路徑為少之故,放電的速度則變慢。對於圖10,係顯示對於3通道之High位元之比率而言,放電時之ARSELREF(比率檢測用配線200的電位)之波形。 The precharged charge is discharged by the flow path of the current. Here, the greater the ratio of the high bits of the plurality of write registers 150, the number of turns on in the NMOS transistor Nai (i = 0 to 1023) increases, and the flow path of the current increases. The speed of discharge is faster. On the other hand, the ratio of the high bit of the plurality of write registers 150 is small, and the number of turns on in the NMOS transistor Nai (i = 0 to 1023) is small, and the flow path of the current is small. Therefore, the speed of discharge becomes slower. With respect to Fig. 10, the waveform of ARSELREF (the potential of the ratio detecting wiring 200) at the time of discharge is shown for the ratio of the High bit of three channels.

NMOS電晶體Nci(i=0~1023)係作為定電流源而動作,使放電時所流動之電流安定。 The NMOS transistor Nci (i = 0 to 1023) operates as a constant current source, and stabilizes the current flowing during discharge.

另外,控制信號DEC係在延遲電路158所輸 出之特定時間τ後,返回至Low位準,放電之動作則結束。如圖9所示,High位元之比率為小之情況,約中的情況,大的情況,特定時間τ後之ARSELREF的電位係各成為V1、V2、V3。 In addition, the control signal DEC is input by the delay circuit 158. After a certain time τ, return to the Low level and the discharge action ends. As shown in FIG. 9, the ratio of the High bit is small, and in the case of a large one, the potential of the ARSELREF after the specific time τ becomes V1, V2, and V3.

如以上,在比率判定電路152之比率檢測部141中,如在圖9所說明地,因應於複數之寫入暫存器150之High位元的比率,輸出比率檢測用配線200之電位(圖9之V1、V2、V3等)。 As described above, in the ratio detecting unit 141 of the ratio determining circuit 152, as described with reference to FIG. 9, the potential of the ratio detecting wiring 200 is output in accordance with the ratio of the high bit of the plurality of write registers 150 (Fig. 9 of V1, V2, V3, etc.).

接著,返回至圖5,對於比率判定電路152之比率比較部142而加以說明。比率比較部142係具有輸出比率檢測部141所輸出之放電後的比率檢測用配線200之電位,和基準電位之大小關係的機能。在此,作為比較之基準電位係亦可為複數,而在圖5中,將比率檢測用配線200之電位,與2個基準電壓VCREF1(例如,0.75V程度),VCREF2(例如,1.2V程度)做比較。 Next, returning to FIG. 5, the ratio comparison unit 142 of the ratio determination circuit 152 will be described. The ratio comparing unit 142 has a function of the magnitude of the potential of the ratio detecting wiring 200 after the discharge by the output ratio detecting unit 141 and the magnitude of the reference potential. Here, the reference potential system for comparison may be plural, and in FIG. 5, the potential of the ratio detecting wiring 200 is equal to two reference voltages VCREF1 (for example, about 0.75 V), and VCREF2 (for example, 1.2 V). )comparing.

在圖5中,比率比較部142係包含比較器156a、156b、156c、反相器電路160,AND電路162而加以構成。比較器156a之非反轉輸入端子係與比率檢測用配線200加以連接。對於比較器156a之反轉輸入端子,係加以供給有基準電位VCREF2。經由此,比較器156a之輸出S1係ARSELREF≧VCREF2時,成為High位準,除此以外時,成為Low位準。 In FIG. 5, the ratio comparison unit 142 includes comparators 156a, 156b, and 156c, an inverter circuit 160, and an AND circuit 162. The non-inverting input terminal of the comparator 156a is connected to the ratio detecting wiring 200. The reference input potential VCREF2 is supplied to the inverting input terminal of the comparator 156a. As a result, when the output S1 of the comparator 156a is ARSELREF ≧ VCREF2, it becomes a High level, and when it is other than the other, it becomes a Low level.

比較器156b之非反轉輸入端子係與比率檢測用配線200加以連接。另外,對於比較器156b之反轉輸 入端子,係加以供給有基準電位VCREF1。經由此,比較器156b之輸出係ARSELREF≧VCREF1時,成為High位準,除此以外時,成為Low位準。另外,對於AND電路162之一方的輸入端子係藉由反相器電路160,加以供給有比較器156a之輸出S1,而AND電路162之另一方的輸入端子係與比較器156b之輸出端子加以連接。經由此,AND電路162之輸出S2係VCREF1≦ARSELREF<VCREF2時,成為High位準,除此以外時,成為Low位準。 The non-inverting input terminal of the comparator 156b is connected to the ratio detecting wiring 200. In addition, for the inversion of the comparator 156b The input terminal is supplied with a reference potential VCREF1. As a result, when the output of the comparator 156b is ARSELREF ≧ VCREF1, it becomes a High level, and otherwise, it becomes a Low level. Further, the input terminal of one of the AND circuits 162 is supplied with the output S1 of the comparator 156a via the inverter circuit 160, and the other input terminal of the AND circuit 162 is connected to the output terminal of the comparator 156b. . As a result, when the output S2 of the AND circuit 162 is VCREF1 ≦ ARSELREF < VCREF2, it becomes the High level, and otherwise becomes the Low level.

比較器156c之反轉輸入端子係與比率檢測用配線200加以連接。另外,對於比較器之非反轉輸入端子,係加以供給有基準電位VCREF1。經由此,比較器156c之輸出S3係ARSELREF<VCREF1時,成為High位準,除此以外時,成為Low位準。然而,取代設置比較器156c而將比較器156b之反轉輸出連接於S3。 The inverting input terminal of the comparator 156c is connected to the ratio detecting wiring 200. Further, a reference potential VCREF1 is supplied to the non-inverting input terminal of the comparator. As a result, when the output S3 of the comparator 156c is ARSELREF<VCREF1, it becomes the High level, and when it is other than the other, it becomes the Low level. However, instead of setting the comparator 156c, the inverted output of the comparator 156b is connected to S3.

當集結以上時,比率比較部142係將電荷放電後之ARSELREF(比率檢測用配線200之電位)和基準電位VCREF1、VCREF2的大小關係,如以下地進行輸出。即,輸出S1,S2,S3係各為ARSELREF≧VCREF2時、VCREF1≦ARSELREF<VCREF2時、ARSELREF<VCREF1時,輸出High位準,而除此以外時係輸出Low位準。然而,在上述之大小關係中,對於≧與>之間,及≦與<之間,係實質上未有差,加以判定為哪個亦可。 When the concentration is equal to or greater than the above, the ratio comparing unit 142 outputs the magnitude relationship between the ARSELREF (the potential of the ratio detecting wiring 200) and the reference potentials VCREF1 and VCREF2 after the electric charge is discharged. That is, when the outputs S1, S2, and S3 are each of ARSELREF ≧ VCREF2, VCREF1 ≦ ARSELREF < VCREF2, and ARSELREF < VCREF1, the High level is output, and otherwise, the Low level is output. However, in the above-described magnitude relationship, there is substantially no difference between ≧ and >, and ≦ and <, and it is determined whether or not it is.

接著,對於電壓穩壓器電路154加以說明。 電壓穩壓器電路154係具有產生在SET寫入時所使用之電壓VSET(第1電源電壓),在RESET寫入時所使用至電壓VRESET(第2電源電壓),供給至記憶體單元陣列12之寫入放大器(圖3之41a~h等)及源極線驅動器(圖3之1c等)之機能。 Next, the voltage regulator circuit 154 will be described. The voltage regulator circuit 154 has a voltage VSET (first power supply voltage) used for SET writing, and a voltage VRESET (second power supply voltage) for RESET writing, which is supplied to the memory cell array 12. Write the functions of the amplifier (41a~h in Figure 3) and the source line driver (1c in Figure 3, etc.).

如圖5所示,電壓穩壓器電路154係具備:產生電壓VSET之3個之穩壓器電路的VSETGEN_S(166S)、VSETGEN_M(166M)、VSETGEN_L(166L)。在此,3個之穩壓器電路的電流供給能力係依大順序地為VSETGEN_L(166L)、VSETGEN_M(166M)、VSETGEN_S(166S)。即,VSETGEN_L(166L)、VSETGEN_M(166M)、VSETGEN_S(166S)係各為大電流用,中電流用,小電流用之穩壓器電路。 As shown in FIG. 5, the voltage regulator circuit 154 includes VSETGEN_S (166S), VSETGEN_M (166M), and VSETGEN_L (166L) which generate three voltage regulator circuits of the voltage VSET. Here, the current supply capacities of the three voltage regulator circuits are VSETGEN_L (166L), VSETGEN_M (166M), and VSETGEN_S (166S) in order of magnitude. That is, VSETGEN_L (166L), VSETGEN_M (166M), and VSETGEN_S (166S) are voltage regulator circuits for high current, medium current, and small current.

另外,電壓穩壓器電路154係具備:產生電壓VRESET之3個之穩壓器電路的VRESETGEN_S(168S)、VRESETGEN_M(168M)、VRESETGEN_L(168L)。在此,3個之穩壓器電路的電流供給能力係依大順序地為VRESETGEN_L(168L)、VRESETGEN_M(168M)、VRESETGEN_S(168S)。即,VRESETGEN_L(168L)、VRESETGEN_M(168M)、VRESETGEN_S(168S)係各為大電流用,中電流用,小電流用之穩壓器電路。 Further, the voltage regulator circuit 154 includes VRESETGEN_S (168S), VRESETGEN_M (168M), and VRESETGEN_L (168L) which generate three voltage regulator circuits of the voltage VRESET. Here, the current supply capacities of the three voltage regulator circuits are VRESETGEN_L (168L), VRESETGEN_M (168M), and VRESETGEN_S (168S) in order of magnitude. That is, VRESETGEN_L (168L), VRESETGEN_M (168M), and VRESETGEN_S (168S) are voltage regulator circuits for high current, medium current, and small current.

如圖5所示,對於穩壓器電路VSETGEN_S(166S;小電流用)及VRESETGEN_L(168L;大電流用)係加以輸入有信號S1。經由此,對於在複數之寫入 暫存器150之High位元的比率為低,而信號S1成為High位準之情況,係加以選擇電壓VSET之電流供給能力為小之穩壓器電路VSETGEN_S(166S;小電流用)、及電壓VRESET之電流供給能力為大之穩壓器電路VRESETGEN_L(168L;大電流用)。 As shown in FIG. 5, a signal S1 is input to the regulator circuit VSETGEN_S (166S; for small current) and VRESETGEN_L (168L; for large current). Through this, for writing in the plural The ratio of the High bit of the register 150 is low, and the signal S1 becomes the High level, and the voltage supply circuit with the selected voltage VSET is small, the voltage regulator circuit VSETGEN_S (166S; for small current), and the voltage The current supply capability of VRESET is a large regulator circuit VRESETGEN_L (168L; for large current).

另外,對於穩壓器電路VSETGEN_M(166M;中電流用)及VRESETGEN_M(168M;中電流用),係加以輸入有信號S2。經由此,對於在複數之寫入暫存器150之High位元的比率為中位,而信號S2成為High位準之情況,係加以選擇電壓VSET之電流供給能力為中間之穩壓器電路VSETGEN_M(166M;中電流用)、及電壓VRESET之電流供給能力為中間之穩壓器電路VRESETGEN_M(168M;中電流用)。 Further, a signal S2 is input to the regulator circuit VSETGEN_M (166M; medium current) and VRESETGEN_M (168M; medium current). Thus, for the case where the ratio of the High bit of the plurality of write registers 150 is the middle level and the signal S2 becomes the High level, the current supply capability of the selection voltage VSET is the intermediate voltage regulator circuit VSETGEN_M The current supply capability of (166M; medium current) and voltage VRESET is intermediate voltage regulator circuit VRESETGEN_M (168M; medium current).

另外,對於穩壓器電路VSETGEN_L(166L;大電流用)及VRESETGEN_S(168S;小電流用),係加以輸入有信號S3。經由此,對於在複數之寫入暫存器150之High位元的比率為高,而信號S3成為High位準之情況,係加以選擇電壓VSET之電流供給能力為大之穩壓器電路VSETGEN_L(166L;大電流用)及電壓VRESET之電流供給能力為小之穩壓器電路VRESETGEN_S(168S;小電流用)。 In addition, a signal S3 is input to the regulator circuit VSETGEN_L (166L; for large current) and VRESETGEN_S (168S; for small current). Thus, for the case where the ratio of the High bit of the plurality of write registers 150 is high and the signal S3 becomes the High level, the voltage supply circuit VSETGEN_L having the current supply capability of the selection voltage VSET is large ( 166L; for high current) and voltage VRESET current supply capacity is small regulator circuit VRESETGEN_S (168S; for small current).

對於電壓VSET用之穩壓器電路(166S、166M、166L),係加以輸入有成為基準電壓之電壓VSETREF。對於電壓VRESET用之穩壓器電路(168S、 168M、168L)係加以輸入有成為基準電壓之電壓VSETREF。 The voltage regulator circuit (166S, 166M, and 166L) for voltage VSET is supplied with a voltage VSETREF which becomes a reference voltage. Voltage regulator circuit for voltage VRESET (168S, 168M and 168L) are input with a voltage VSETREF which becomes a reference voltage.

另外,對於從比率比較部142所供給之S1、S2、S3的配線,係各於與接地之間,加以連接有NMOS電晶體N1、N2、N3。對於此等NMOS電晶體之閘極,係各加以供給有控制信號/APREB。經由此,於圖9所示之預充電期間,將S1、S2、S3之配線則加以下拉成Low位準,將含於電壓穩壓器電路154之6個穩壓器電路,均保持為非動作狀態。 Further, the wirings of S1, S2, and S3 supplied from the ratio comparing unit 142 are connected to the ground, and the NMOS transistors N1, N2, and N3 are connected. The gates of these NMOS transistors are each supplied with a control signal /APREB. Thus, during the precharge period shown in FIG. 9, the wirings of S1, S2, and S3 are pulled down to the Low level, and the six voltage regulator circuits included in the voltage regulator circuit 154 are kept non- Action state.

接著,參照圖6之同時,對於電壓VSET用之穩壓器電路之構成加以說明。圖6(A)、(B)、(C)係各為VSETGEN_S(166S;小電流用)、VSETGEN_M(166M;中電流用)、VSETGEN_L(166L;大電流用)之電路圖。 Next, the configuration of the voltage regulator circuit for the voltage VSET will be described with reference to FIG. 6(A), (B), and (C) are circuit diagrams of VSETGEN_S (166S; for small current), VSETGEN_M (166M; for medium current), and VSETGEN_L (166L for large current).

在圖6(A)中,VSETGEN_S(166S)係經由比較器170a,PMOS電晶體171a、172a而加以構成。對於比較器170a之反轉輸入端子,係加以供給有基準電位VSETREF。另外,對於比較器170a之非反轉輸入端子,係加以反饋輸入有VSETGEN_S(166S)之輸出VSET。PMOS電晶體(輸出電晶體)172a之汲極係與輸出電壓VSET之配線加以連接。另外,對於PMOS電晶體172a之源極,係加以供給有電壓VPP。另外,PMOS電晶體172a之閘極係與比較器170a之輸出端子加以連接。經由上述之構成,對於輸出電壓VSET<VSETREF之情況,PMOS 電晶體172a係開啟,經由電壓源VPP則藉由PMOS電晶體172a而將輸出電壓VSET之配線進行充電之時,輸出電壓VSET則呈與基準電壓VSETREF一致地加以控制。 In FIG. 6(A), VSETGEN_S (166S) is configured via a comparator 170a and PMOS transistors 171a and 172a. The reference input potential VSETREF is supplied to the inverting input terminal of the comparator 170a. Further, for the non-inverting input terminal of the comparator 170a, the output VSET of VSETGEN_S (166S) is fed back. The drain of the PMOS transistor (output transistor) 172a is connected to the wiring of the output voltage VSET. Further, a voltage VPP is supplied to the source of the PMOS transistor 172a. Further, the gate of the PMOS transistor 172a is connected to the output terminal of the comparator 170a. Through the above configuration, for the case of the output voltage VSET < VSETREF, the PMOS The transistor 172a is turned on, and when the wiring of the output voltage VSET is charged by the PMOS transistor 172a via the voltage source VPP, the output voltage VSET is controlled in accordance with the reference voltage VSETREF.

另外,PMOS電晶體171a之汲極係與比較器170a之輸出端子,及PMOS電晶體172a之閘極加以連接。另外,對於PMOS電晶體171a之源極,係加以供給有電壓VPP。另外,對於PMOS電晶體171a之閘極,係加以供給有信號S1。經由此,對於S1為Low位準(非選擇)之情況,係開啟PMOS電晶體171a,將PMOS電晶體172a之閘極上拉成High位準。經由此,PMOS電晶體(輸出電晶體)172a係關閉,將穩壓器電路VSETGEN_S(166S)保持為非動作狀態。更且,對於信號S1係加以供給於比較器170a,而S1為Low位準(非選擇)之情況,係使比較器170a停止,削減比較器本身所流動之電流。 Further, the drain of the PMOS transistor 171a is connected to the output terminal of the comparator 170a and the gate of the PMOS transistor 172a. Further, a voltage VPP is supplied to the source of the PMOS transistor 171a. Further, a signal S1 is supplied to the gate of the PMOS transistor 171a. Thus, for the case where S1 is a Low level (not selected), the PMOS transistor 171a is turned on, and the gate of the PMOS transistor 172a is pulled up to a High level. Thereby, the PMOS transistor (output transistor) 172a is turned off, and the regulator circuit VSETGEN_S (166S) is kept in a non-operating state. Further, when the signal S1 is supplied to the comparator 170a and S1 is at the Low level (not selected), the comparator 170a is stopped, and the current flowing through the comparator itself is reduced.

接著,圖6(B),(C)之VSETGEN_M(166M)、VSETGEN_L(166L),係為與上述之圖6(A)之VSETGEN_S(166S)同樣之構成之故,重複之說明係省略。但,3個之穩壓器電路之輸出電晶體172a、172b、172c的電流驅動能力係依小順序地成為172a、172b、172c。一般而言,電晶體之電流驅動能力係可經由閘極寬度、通道長度、臨界值電壓等而改變者。當增加閘極寬度、縮短通道長度、降低臨界值電壓時,電流驅動能力係增加,相反地當縮減閘極寬度,加長通道長度,提高 臨界值電壓時,電流驅動能力係減少。隨之,使用閘極寬度,通道長度,臨界值電壓之中之1以上的要因,輸出電晶體172a、172b、172c之電流驅動能力則作為呈成為上述的順序。 6(B) and (C), VSETGEN_M (166M) and VSETGEN_L (166L) are the same as the VSETGEN_S (166S) of FIG. 6(A) described above, and the description thereof will be omitted. However, the current drive capacities of the output transistors 172a, 172b, and 172c of the three regulator circuits are 172a, 172b, and 172c in a small order. In general, the current drive capability of a transistor can vary via gate width, channel length, threshold voltage, and the like. When increasing the gate width, shortening the channel length, and lowering the threshold voltage, the current drive capability is increased. Conversely, when the gate width is reduced, the channel length is increased, and the channel length is increased. At the threshold voltage, the current drive capability is reduced. Accordingly, the current drive capability of the output transistors 172a, 172b, and 172c in the above-described order is used as a factor of one or more of the gate width, the channel length, and the threshold voltage.

然而,電壓VRESET用之穩壓器電路的構成係雖未圖示,但與圖6之電壓VSET用之穩壓器電路的構成同樣。但在電壓VRESET用之穩壓器電路中,作為基準電位而輸入電壓VRESETREF。 However, the configuration of the voltage regulator circuit for the voltage VRESET is not shown, but is the same as the configuration of the voltage regulator circuit for the voltage VSET of FIG. However, in the regulator circuit for voltage VRESET, the voltage VRESETREF is input as the reference potential.

(第1實施形態之動作) (Operation of the first embodiment)

接著,對於第1實施形態之動作,參照圖8的同時加以說明。在以下的動作說明中,為了將說明作為簡單,想定同時進行寫入之寫入資料的數為8之情況。此情況,圖5之寫入暫存器150的數係為8,從各寫入暫存器150所輸出之EIO配線係EIO<i>、i=0~7之8條。另外,寫入8個之寫入資料的阻抗變化型記憶體單元,係作為圖3所示之記憶體單元墊片內。並且,8位元之寫入資料係想定(11010111)之情況。此情況,在複數之寫入暫存器150之High位元的比率係0.75。另外,8位元之寫入資料(11010111)係在內部的IO線中,從左側依序,作為與IO_0、IO_1、…、IO_6、IO_7之信號對應。另外,將上述8位元資料,列選擇信號Y3_0-7全作為活性,經由上位之列選擇信號Y1,Y2而選擇8個阻抗變化型記憶體單元,寫入各位元之資料。 Next, the operation of the first embodiment will be described with reference to Fig. 8 . In the following description of the operation, in order to simplify the description, it is assumed that the number of written data to be simultaneously written is 8. In this case, the number of write registers 150 in FIG. 5 is 8, and eight EIO wiring systems EIO<i> and i=0 to 7 are output from each write register 150. Further, an impedance change type memory cell in which eight write data are written is used as a memory cell spacer shown in FIG. In addition, the 8-bit data is written (11010111). In this case, the ratio of the High bits in the plurality of write registers 150 is 0.75. In addition, the 8-bit write data (11010111) is in the internal IO line, and sequentially corresponds to the signals of IO_0, IO_1, ..., IO_6, and IO_7 from the left side. Further, the above 8-bit data and the column selection signal Y3_0-7 are all active, and eight impedance-change memory cells are selected via the upper column selection signals Y1 and Y2, and the data of each bit element is written.

圖8係顯示有關第1實施形態之半導體裝置10之動作的時間圖。圖8係從上依序,各顯示指令(COM),重置信號RESET0、列選擇信號Y1、Y2、列選擇信號Y3、IO線之信號IO_0-7、設定信號SET0、寫入資料(Write data)。 Fig. 8 is a timing chart showing the operation of the semiconductor device 10 of the first embodiment. 8 is a sequential display, each display command (COM), reset signal RESET0, column select signal Y1, Y2, column select signal Y3, IO line signal IO_0-7, set signal SET0, write data (Write data ).

說明在圖8之時間t1~t6之各動作。首先,加以發行未圖示之活性指令,進行(副)字元線的選擇,接著,在時刻t1的時間,如圖8所示,加以發行PROG指令。在此,PROG指令係將寫入資料寫入至記憶體單元之指令。 The operations at times t1 to t6 in Fig. 8 will be described. First, an activity command (not shown) is issued to select a (sub)word line, and then, at time t1, as shown in Fig. 8, a PROG command is issued. Here, the PROG instruction is an instruction to write data to the memory unit.

在時間t1~t2之初期狀態的期間中,列選擇信號Y1、Y2、Y3係均為未選擇之狀態,為Low位準。因此,圖4之控制信號C1係在所有的單元中為Low位準,各位元單位之Y開關的位元線共通源極線連接開關係作為導通,而所有的位元線BL_0-511係與共通源極線4導通。另外,在初期狀態中,重置信號RESET0,及設定信號SET0係為Low位準。另外,共通源極線4,及所有的位元線BL_0-511之電位係保持Low位準。 In the initial state of time t1 to t2, the column selection signals Y1, Y2, and Y3 are all unselected, and are Low levels. Therefore, the control signal C1 of FIG. 4 is a Low level in all the cells, and the bit line common source line connection relationship of the Y switch of each bit unit is turned on, and all the bit lines BL_0-511 are connected. The common source line 4 is turned on. Further, in the initial state, the reset signal RESET0 and the set signal SET0 are in the Low level. In addition, the potential of the common source line 4 and all of the bit lines BL_0-511 maintains the Low level.

接著,時間t2~t3係在圖9所說明之內部電源產生電路32a之比率檢測部141之動作期間。在該動作期間中,進行比率檢測用配線200之充電及放電。然而,如圖8所示,在時間t2中,加以設定有寫入資料(Write data),對於複數之寫入暫存器150,係保持有寫入資料(11010111)。另外,對於IO線(IO_0-7),亦加以輸 出有對應於寫入資料之信號。 Next, the time t2 to t3 is the operation period of the ratio detecting unit 141 of the internal power source generating circuit 32a described with reference to Fig. 9 . During this operation period, charging and discharging of the ratio detecting wiring 200 are performed. However, as shown in FIG. 8, at time t2, write data is set, and for a plurality of write registers 150, write data is held (11010111). In addition, for the IO line (IO_0-7), also lose There is a signal corresponding to the written data.

在上述之寫入資料的例中,在複數之寫入暫存器150之High位元的比率係0.75。在圖5之比率判定電路152之比率檢測部141中,比率檢測用配線200則在預充電之後高速地加以放電,ARSELREF(比率檢測用配線200之電位)係在放電之後下降至低的電壓。因此,在比率比較部142中,S3則成為High位準,而在電壓穩壓器電路154中,加以選擇有穩壓器電路VSETGEN_L(166L;大電流用)、及VRESETGEN_S(168S;小電流用)。其結果,加以輸出電流供給能力高之電壓VSET,及電流供給能力低之電壓VRESET。 In the above example of writing data, the ratio of the High bits in the plurality of write registers 150 is 0.75. In the ratio detecting unit 141 of the ratio determining circuit 152 of FIG. 5, the ratio detecting wiring 200 is discharged at a high speed after precharging, and ARSELREF (the potential of the ratio detecting wiring 200) is lowered to a low voltage after discharging. Therefore, in the ratio comparing unit 142, S3 is in the High level, and in the voltage regulator circuit 154, the voltage regulator circuit VSETGEN_L (166L; for large current) and VRESETGEN_S (168S; for small current) are selected. ). As a result, a voltage VSET having a high output current supply capability and a voltage VRESET having a low current supply capability are provided.

接著,在時間t3,開始RESET寫入。各設定列選擇信號Y1,Y2,將列選擇信號Y3_0-7,全部作為High位準(活性),將8個位元線作為選擇位元線。另外,將重置信號RESET0作為High位準。經由此,源極線驅動器(圖4之1c等)之節點NS係成為電位VRESET,供給電位VRESET至共通源極線4。 Next, at time t3, RESET writing is started. Each of the column selection signals Y1, Y2 sets the column selection signal Y3_0-7, all of which are High levels (active), and eight bit lines are used as the selection bit lines. In addition, the reset signal RESET0 is taken as the High level. Thereby, the node NS of the source line driver (1c of FIG. 4, etc.) becomes the potential VRESET, and the potential VRESET is supplied to the common source line 4.

另外,在經由列選擇信號Y1、Y2、Y3所選擇之8個位元單位之Y開關電路(圖4之52等)中,控制信號C1則成為High位準,位元線選擇開關60則導通,8個選擇位元線係與寫入放大器(41a~41h)導通。另外,在寫入放大器(41a~41h)中,重置信號RESET0則為High位準之故,對應於IO線之中,為Low位準之IO_2及IO_4之寫入放大器的節點Nout則與接地導通, 成為電位0。 Further, in the Y-switch circuit (52 of FIG. 4, etc.) selected by the column selection signals Y1, Y2, and Y3, the control signal C1 becomes the High level, and the bit line selection switch 60 is turned on. The eight selected bit lines are turned on with the write amplifiers (41a to 41h). In addition, in the write amplifiers (41a to 41h), the reset signal RESET0 is the High level, corresponding to the IO line, the node Nout of the write amplifiers of the IO_2 and IO_4 of the Low level is grounded. Turn on, Becomes potential 0.

經由以上,在時間t3~t4之期間中,對應於IO_2及IO_4之選擇位元線係成為電位0,而共通源極線4係成為電位VRESET。並且,對應於選擇副字元線WL之單元電晶體則導通,在對應於IO_2及IO_4之2個阻抗變化型記憶體單元中,從共通源極線4至選擇位元線的方向,藉由阻抗變化型元件而流動有電流。此時,因選擇電流供給能力低之穩壓器電路VRESETGEN_S(168S)之故,即使對於Low位元的比率為低(High位元的比率為高),對於少數之阻抗變化型記憶體單元而言進行RESET寫入之情況,亦成為可未成為過電流,而從源極線驅動器(圖4之1c等)對於阻抗變化型元件而言,供給適當之電流者。 As described above, during the period from time t3 to time t4, the selected bit line corresponding to IO_2 and IO_4 becomes the potential 0, and the common source line 4 becomes the potential VRESET. And, the cell transistor corresponding to the selected sub-character line WL is turned on, and in the two impedance-varying memory cells corresponding to IO_2 and IO_4, from the common source line 4 to the direction of the selected bit line, by An impedance-changing element flows with a current. At this time, since the voltage regulator circuit VRESETGEN_S (168S) having a low current supply capability is selected, even if the ratio to the Low bit is low (the ratio of the high bit is high), for a small number of impedance-varying memory cells. In the case of performing RESET writing, it is also possible to supply an appropriate current from the source line driver (1c of FIG. 4, etc.) to the impedance varying element.

接著,所選擇之2個阻抗變化型元件則變化為高阻抗狀態之後,在時間t4,將遷移至RESET寫入時之重置信號RESET0、列選擇信號Y3_0-7,返回至原來的Low位準。然而,所有的位元線BL_0-511亦作為電位0。 Then, after the selected two impedance change type elements are changed to the high impedance state, at time t4, the reset signal RESET0 and the column selection signal Y3_0-7 which are transferred to the RESET write are returned to the original Low level. . However, all of the bit lines BL_0-511 also serve as the potential 0.

接著,在時間t5,開始SET寫入。8個IO線的信號IO_0-7係保持與RESET寫入時相同,對應於資料圖案(11010111)之信號的電壓。並且,經由將設定信號SET0遷移成High位準之時,源極線驅動器(圖4之1c等)之節點NS係成為電位0,供給電位0至共通源極線4。 Next, at time t5, SET writing is started. The signal IO_0-7 of the eight IO lines remains the same as the voltage of the signal of the data pattern (11010111) as in the case of RESET writing. Further, when the setting signal SET0 is shifted to the High level, the node NS of the source line driver (1c of FIG. 4, etc.) becomes the potential 0, and the potential 0 is supplied to the common source line 4.

另外,在寫入放大器(41a~41h)中,SET0為High位準之故,對應於IO線之中,為High位準之IO_0、IO_1、IO_3、IO_5、IO_6、IO_7之寫入放大器之節點Nout則與電壓源VSET導通,而成為電位VSET。 In addition, in the write amplifiers (41a~41h), SET0 is the High level, corresponding to the IO0, IO_1, IO_3, IO_5, IO_6, IO_7 write amplifier nodes of the High level among the IO lines. Nout is turned on with the voltage source VSET and becomes the potential VSET.

經由以上,在時間t5~t6之期間中,對應於IO_0、IO_1、IO_3、IO_5、IO_6、IO_7之選擇位元線係成為電位VSET,而共通源極線4係成為電位0。並且,對應於選擇副字元線WL之單元電晶體則導通,在對應於IO_0、IO_1、IO_3、IO_5、IO_6、IO_7之6個阻抗變化型記憶體單元中,從共通源極線4至選擇位元線的方向,藉由阻抗變化型元件而流動有電流。此時,因選擇電流供給能力高之穩壓器電路VSETGEN_L(166L)之故,即使為High位元之比率為高,對於多數之記憶體單元而言進行SET寫入之情況,亦成為未成為電流供給不足,而從寫入放大器(圖4之41a等)對於阻抗變化型元件而言,供給適當之電流者。 As described above, during the period from time t5 to time t6, the selected bit line corresponding to IO_0, IO_1, IO_3, IO_5, IO_6, and IO_7 becomes the potential VSET, and the common source line 4 becomes the potential 0. And, the cell transistor corresponding to the selected sub-character line WL is turned on, and is selected from the common source line 4 in the six impedance-varying memory cells corresponding to IO_0, IO_1, IO_3, IO_5, IO_6, and IO_7. In the direction of the bit line, a current flows through the impedance varying element. At this time, since the voltage regulator circuit VSETGEN_L (166L) having a high current supply capability is selected, even if the ratio of the High bit is high, the SET writing is performed for a plurality of memory cells. The current supply is insufficient, and a suitable current is supplied from the write amplifier (41a of FIG. 4, etc.) to the impedance change type element.

在時間t6中,將在SET寫入時所遷移之信號,返回至原來,作為與初期狀態t1相同狀態。 At time t6, the signal that was migrated at the time of SET writing is returned to the original state, and is in the same state as the initial state t1.

然而,在上述的例中,對於8位元之寫入資料為(11010111),High位元之比率成為0.75情況而加以例示過,但8位元之寫入資料之High位元之比率係並非一定。例如,亦有各種如(00010000),High位元之比率為低之情況,而亦有如(11001010),High位元之比率為中間之情況。在本實施形態之內部電源產生電路A (32a)中,即使為寫入位元數並非一定之情況,亦成為可因應High位元之比率,將RESET寫入時之電壓VRESET的電流供給量及SET寫入時之電壓VSET的電流供給量,設定成適當者。 However, in the above example, the case where the 8-bit write data is (11010111) and the High bit ratio becomes 0.75 is exemplified, but the ratio of the 8-bit high-order bit of the written data is not for sure. For example, there are various cases such as (00010000), where the ratio of High bits is low, and there is also the case where (11001010), the ratio of High bits is intermediate. Internal power generation circuit A in this embodiment In (32a), even if the number of write bits is not constant, the current supply amount of the voltage VRESET at the time of RESET writing and the current supply of the voltage VSET at the time of SET writing can be made in accordance with the ratio of the High bit. The amount is set to be appropriate.

如以上說明,如根據有關第1實施形態之半導體裝置10,可得到以下所示之效果。 As described above, according to the semiconductor device 10 of the first embodiment, the effects described below can be obtained.

首先,即使在複數之寫入資料中,寫入位元數並非一定之情況,亦成為可因應於在該寫入資料的High位元之比率(或Low位元之比率),選擇最佳之電流供給能力之穩壓器者。經由此,可得到成為可對於各記憶體單元而言安定進行電流供給之效果。其結果,成為可抑制寫入後之記憶體單元的阻抗狀態之不均,確保充分之寫入邊際者。 First of all, even in the case of a plurality of written data, the number of write bits is not constant, and it is possible to select the best according to the ratio (or the ratio of Low bits) in the High bit of the written data. The regulator of the current supply capability. As a result, it is possible to obtain an effect of providing a stable current supply to each memory cell. As a result, it is possible to suppress unevenness in the impedance state of the memory cell after writing, and to secure a sufficient write margin.

另外,對於寫入位元數少之情況,由選擇電流供給能力低之穩壓器者,可得到削減多餘之消耗電力的效果。 Further, in the case where the number of write bits is small, it is possible to obtain an effect of reducing unnecessary power consumption by a regulator having a low current supply capability.

另外,內部電源產生電路A之比率檢測部141係如圖5所示,可經由PMOS電晶體P1,和電容器164,和每1個寫入暫存器有3個之NMOS電晶體而構成,可以小的晶片面積而安裝者。 Further, as shown in FIG. 5, the ratio detecting unit 141 of the internal power generating circuit A can be configured via the PMOS transistor P1, the capacitor 164, and three NMOS transistors for each write register. Small wafer area and installer.

然而,在圖8中,對於將8個寫入資料,同時寫入至圖3之記憶體單元墊片內之阻抗變化型記憶體單元之情況而顯示,但並不限定於此。一般而言,以n個寫入暫存器150而構成之情況(n係任意之自然數,例如, 圖5係顯示n=1024之情況),可適用於對於遍佈於記憶體單元陣列12內之複數的記憶體單元墊片所配置之n個阻抗變化型記憶體單元而言,同時寫入之情況者。 However, in FIG. 8, although eight write data are simultaneously written to the impedance change type memory cell in the memory cell pad of FIG. 3, it is not limited to this. In general, n is written to the register 150 (n is an arbitrary natural number, for example, Fig. 5 shows a case where n = 1024), and can be applied to the case where n impedance-change type memory cells are arranged for a plurality of memory cell pads which are distributed in the memory cell array 12. By.

然而,在圖5之電壓穩壓器電路中,準備3個電流供給能力不同之穩壓器電路而進行切換,但並不限定於此。例如,作為呈準備2個電流供給能力不同之穩壓器電路,而進行切換亦可。或者,作為呈準備4個以上電流供給能力不同之穩壓器電路,而更細地設定電流供給能力差而進行進行切換亦可。 However, in the voltage regulator circuit of FIG. 5, three voltage regulator circuits having different current supply capacities are prepared and switched, but the present invention is not limited thereto. For example, switching may be performed as a regulator circuit that prepares two current supply capacities. Alternatively, it is also possible to switch between the four or more voltage regulator circuits having different current supply capacities and to set the current supply capability to be finer.

另外,在圖5中,作為呈對應於比率比較部142之輸出S1、S2、S3,而各選擇1個穩壓器電路,但並不限定於此。例如,作為呈因應比率比較部142之輸出,組合2以上之穩壓器電路而進行選擇亦可。經由此,成為可更細地設定電流供給能力者。 In addition, in FIG. 5, one regulator circuit is selected as the outputs S1, S2, and S3 corresponding to the ratio comparison unit 142, but the present invention is not limited thereto. For example, as the output of the response ratio comparison unit 142, a regulator circuit of two or more may be combined and selected. As a result, the current supply capability can be set more finely.

(第1實施形態之變形例1) (Modification 1 of the first embodiment)

接著,參照圖7同時,對於第1實施形態之變形例1而加以說明。圖7係顯示有關第1實施形態之變形例1的半導體裝置之電壓VSET之穩壓器電路(266S;小電流用)的電路圖。將圖7與圖6(A)做比較時,可了解到,在圖7之穩壓器電路(266S;小電流用)中,重新追加抽出電路190a。抽出電路190a係在進行使輸出電壓VSET作為與基準電壓VSETREF一致之控制時,對於成為VSET>VSETREF之情況,將輸出電壓VSET之配線做 成與接地導通狀態,使輸出電壓VSET之配線的電荷放電至接地,使輸出電壓VSET降低,而為了輸出電壓VSET則呈與基準電壓VSETREF為一致地進行控制之電路。 Next, a modification 1 of the first embodiment will be described with reference to Fig. 7 . Fig. 7 is a circuit diagram showing a voltage regulator circuit (266S; for a small current) of a voltage VSET of the semiconductor device according to the first modification of the first embodiment. When comparing FIG. 7 with FIG. 6(A), it can be understood that the extraction circuit 190a is newly added to the regulator circuit (266S; for small current) of FIG. When the extraction circuit 190a performs the control for making the output voltage VSET match the reference voltage VSETREF, the wiring of the output voltage VSET is made for the case of VSET>VSETREF. In the grounded state, the electric charge of the wiring of the output voltage VSET is discharged to the ground to lower the output voltage VSET, and the output voltage VSET is controlled in accordance with the reference voltage VSETREF.

在圖7中,抽出電路190a係經由比較器180a,NMOS電晶體(181a、182a),反相器電路183而加以構成。對於比較器180a之反轉輸入端子,係加以供給有基準電位VSETREF。另外,對於比較器180a之非反轉輸入端子,係加以反饋輸入有VSETGEN_S(266S)之輸出電壓VSET。NMOS電晶體181a之汲極係與輸出電壓VSET之配線加以連接。另外,NMOS電晶體181a之源極係與接地加以連接。另外,NMOS電晶體181a之閘極係與比較器180a之輸出端子加以連接。經由上述之構成,對於輸出電壓VSET>VSETREF之情況,NMOS電晶體181a係開啟,輸出電壓VSET之配線的電荷則經由藉由NMOS電晶體181a而進行放電之時,輸出電壓VSET則呈與基準電位VSETREF為一致地進行控制。 In FIG. 7, the extraction circuit 190a is configured via a comparator 180a, an NMOS transistor (181a, 182a), and an inverter circuit 183. The reference input potential VSETREF is supplied to the inverting input terminal of the comparator 180a. Further, for the non-inverting input terminal of the comparator 180a, the output voltage VSET of VSETGEN_S (266S) is fed back. The drain of the NMOS transistor 181a is connected to the wiring of the output voltage VSET. Further, the source of the NMOS transistor 181a is connected to the ground. Further, the gate of the NMOS transistor 181a is connected to the output terminal of the comparator 180a. According to the above configuration, when the output voltage VSET>VSETREF, the NMOS transistor 181a is turned on, and the electric charge of the wiring of the output voltage VSET is discharged by the NMOS transistor 181a, the output voltage VSET is at the reference potential. VSETREF is controlled consistently.

另外,NMOS電晶體182a之汲極係與比較器180a之輸出端子,及NMOS電晶體181a之閘極加以連接。另外,NMOS電晶體182a之源極係與接地加以連接。另外,對於NMOS電晶體182a之閘極,係藉由反相器電路183a而加以供給有信號S1。經由此,對於S1為Low位準(非選擇)之情況,係開啟NMOS電晶體182a,將NMOS電晶體181a之閘極下拉成Low位準。經由此,NMOS電晶體181a係關閉,將穩壓器電路 VSETGEN_S(166S)保持為非動作狀態。 Further, the drain of the NMOS transistor 182a is connected to the output terminal of the comparator 180a and the gate of the NMOS transistor 181a. Further, the source of the NMOS transistor 182a is connected to the ground. Further, the gate of the NMOS transistor 182a is supplied with the signal S1 via the inverter circuit 183a. Thus, for the case where S1 is a Low level (not selected), the NMOS transistor 182a is turned on, and the gate of the NMOS transistor 181a is pulled down to the Low level. Thereby, the NMOS transistor 181a is turned off, and the regulator circuit is VSETGEN_S (166S) remains in the inactive state.

如此,由追加抽出電路190a者,對於輸出電壓VSET>VSETREF之情況,成為可使輸出電壓VSET,高速且高精確度地作為一致於基準電壓VSETREF者。 As described above, in the case where the output voltage VSET>VSETREF is applied, the output voltage VSET can be made high-speed and high-accuracy as the reference voltage VSETREF.

然而,在圖7中,僅對於電壓VSET之小電流用之穩壓器電路,顯示追加抽出電路190a的例,但對於其他5個之穩壓器電路(圖5之166M、166L、168S、168M、168L),亦由同樣地追加抽出電路者,同樣地可將各穩壓器電路之控制做成高速且高精確度。 However, in FIG. 7, an example of the additional extraction circuit 190a is shown only for the voltage regulator circuit for the small current of the voltage VSET, but for the other five voltage regulator circuits (FIG. 5, 166M, 166L, 168S, 168M) In addition, 168L) is similarly added to the circuit, and the control of each regulator circuit can be made high speed and high precision.

如以上說明,如根據第1實施形態之變形例1,加上於第1實施形態之效果,又可得到可高速且高精確度地進行在各穩壓器電路之電壓控制的效果。經由此,成為可更使對於記憶體單元之寫入動作安定化者。 As described above, according to the first modification of the first embodiment, the effect of the first embodiment can be obtained, and the effect of voltage control in each regulator circuit can be performed at high speed and with high precision. As a result, it is possible to stabilize the writing operation for the memory unit.

(第2實施形態) (Second embodiment)

接著,對於第2實施形態,參照圖10,圖11的同時加以說明。圖10係顯示有關第2實施形態之半導體裝置之內部電源產生電路A(132a)的電路圖。將圖10與圖5(第1實施形態)做比較時,可了解到,在圖10之內部電源產生電路A(132a)中,在電壓穩壓器電路254中,使用於RESET寫入之電壓VRESET之電流供給能力,未作為可變控制,而僅經由穩壓器電路VRESETGEN_L(168L;大電流用),使電壓VRESET產生。除此以外的點係與第1實施形態同樣之故,附上相同之參照符號而重 複說明係省略之。 Next, the second embodiment will be described with reference to Figs. 10 and 11 . Fig. 10 is a circuit diagram showing an internal power supply circuit A (132a) of the semiconductor device of the second embodiment. When comparing FIG. 10 with FIG. 5 (the first embodiment), it can be understood that in the internal power supply generating circuit A (132a) of FIG. 10, in the voltage regulator circuit 254, the voltage for RESET writing is used. The current supply capability of VRESET is not variably controlled, but is generated only by the regulator circuit VRESETGEN_L (168L; for large current). The other points are the same as in the first embodiment, and the same reference numerals are attached. The explanation is omitted.

如此,僅經由VRESETGEN_L(168L;大電流用),使電壓VRESET之電流供給能力產生之情況,係對於執行圖11所示之寫入序列之情況為最佳。即,無關於寫入資料,而於對應於所有的位元之阻抗變化型元件,進行RESET寫入之後,於寫入資料之中之對應於High位元之阻抗變化型元件,進行SET寫入之情況。 As described above, the case where the current supply capability of the voltage VRESET is generated only via VRESETGEN_L (168L; for large current) is optimal for executing the write sequence shown in FIG. That is, regardless of the write data, after the RESET write is performed on the impedance change type element corresponding to all the bits, the SET write is performed on the impedance change type element corresponding to the High bit among the write data. The situation.

接著,參照圖11,對於有關第2實施形態之半導體裝置之動作加以說明之同時,對於圖10的構成則在圖11之寫入序列而成為最佳之理由加以說明。在第2實施形態中,與圖8(第1實施形態)同樣地,想定同時寫入8個寫入資料(11010111)之情況。 Next, the operation of the semiconductor device according to the second embodiment will be described with reference to Fig. 11. The reason why the configuration of Fig. 10 is optimized in the write sequence of Fig. 11 will be described. In the second embodiment, similarly to FIG. 8 (the first embodiment), it is assumed that eight write data (11010111) are simultaneously written.

首先,在圖11中,至時間t12為止係與圖8之至時間t2為止為相同之故,而省略說明。接著,在時間t12~t13中,對於對應於寫入資料之8個阻抗變化型記憶體單元而言,未經由寫入資料而進行(00000000)之RESET寫入。此情況,IO線的信號IO_i(i=0~7),複數之寫入暫存器150係加以設定成(00000000)。 First, in FIG. 11, the time t12 is the same as that from FIG. 8 to the time t2, and the description thereof is omitted. Next, at time t12 to t13, RESET writing of (00000000) is performed without writing data by the eight impedance change type memory cells corresponding to the write data. In this case, the signal IO_i (i = 0 to 7) of the IO line, and the plurality of write registers 150 are set to (00000000).

此情況,在複數之寫入暫存器150的High位元的比率係經常為0,因對於經常為最大數(此情況係8個)之記憶體單元而言,進行RESET寫入之故,電壓穩壓器電路254係如輸出電流供給能力高之電壓VRESET為佳。因此,在第2實施形態中,作為電壓VRESET用之穩壓器電路,僅設置VRESETGEN_L(168L;大電流用), 作為呈經常輸出電流供給能力高之電壓VRESET。隨之,可取消第1實施形態之電壓VRESET用之穩壓器電路(168M、168S),而可縮小電路規模者。 In this case, the ratio of the High bit in the plurality of write registers 150 is often 0, because the RESET write is performed for the memory unit which is often the maximum number (eight in this case). The voltage regulator circuit 254 is preferably a voltage VRESET having a high output current supply capability. Therefore, in the second embodiment, as the voltage regulator circuit for the voltage VRESET, only VRESETGEN_L (168L; for large current) is provided. As a voltage VRESET having a high output current supply capability. Accordingly, the voltage regulator circuit (168M, 168S) for the voltage VRESET of the first embodiment can be eliminated, and the circuit scale can be reduced.

另外,由使用圖11之寫入序列者,可得到以下的優點。如圖2所示,對於將源極線作為共通化而構成共通源極線(4~6)之情況,係當頻繁地改變共通源極線(4~6)之電位時,有著產生有峰值電流之問題。為了處理此問題,如圖11所示,一次進行RESET寫入時,未頻繁地改變共通源極線(4~6)之電位而完成,而抑制了峰值電流之產生。 In addition, the following advantages can be obtained by using the write sequence of FIG. As shown in FIG. 2, in the case where the source lines are shared to form a common source line (4 to 6), when the potential of the common source line (4 to 6) is frequently changed, there is a peak. The problem of current. In order to deal with this problem, as shown in FIG. 11, when the RESET writing is performed once, the potential of the common source line (4 to 6) is not frequently changed, and the generation of the peak current is suppressed.

接著,當時間t12~t13之RESET寫入結束時,在時間t13中,將在RESET寫入而使其遷移之重置信號RESET0、及列選擇信號Y3,返回至原來。 Next, when the RESET write of time t12 to t13 is completed, at time t13, the reset signal RESET0 and the column selection signal Y3 which are written and transferred by RESET are returned to the original state.

接著,時間t14~t15係與圖8(第1實施形態)之時間t2~t3同樣的期間。在此期間中,進行比率檢測用配線200之充電及放電。此期間的動作之說明係與第1實施形態重複之故而省略之。 Next, the time t14 to t15 is the same period as the time t2 to t3 of Fig. 8 (first embodiment). During this period, charging and discharging of the ratio detecting wiring 200 are performed. The description of the operation in this period is omitted by repeating the first embodiment.

接著,在時間t15~t16中,開始SET寫入。此期間的動作係與圖8(第1實施形態)之時間t5~t6同樣之故,而省略說明之。 Next, at time t15 to t16, SET writing is started. The operation in this period is the same as the time t5 to t6 in Fig. 8 (first embodiment), and the description thereof is omitted.

最後,在時間t16中,將在SET寫入時所遷移之信號,返回至原來,作為與初期狀態t11相同狀態。 Finally, at time t16, the signal that was migrated at the time of SET writing is returned to the original state, which is the same state as the initial state t11.

如以上說明,在第2實施形態中,加上於第1實施形態之效果,可得到縮小電壓穩壓器電路之電路規模 的效果。特別是,在圖11所示,無關於寫入資料,而對於對應於所有的位元之阻抗變化型元件,進行RESET寫入之後,對於寫入資料之中之對應於High位元的阻抗變化型元件,進行SET寫入之寫入序列之情況,係第2實施形態之電壓穩壓器電路254為最佳。 As described above, in the second embodiment, the effect of the first embodiment is obtained, and the circuit scale of the reduced voltage regulator circuit can be obtained. Effect. In particular, as shown in FIG. 11, the impedance change corresponding to the High bit in the write data after the RESET write is performed regardless of the write data, and for the impedance change type element corresponding to all the bits. The voltage regulator circuit 254 of the second embodiment is preferably the case where the type of the device is written in the SET write sequence.

然而,第2實施形態係可如以下地進行變形者。即,亦可作為呈電壓穩壓器電路之中,僅由電流供給能力高之穩壓器電路而構成SET寫入時之電壓VSET,而將RESET寫入時之電壓VRESET的電流供給能力作為可變控制。如此之電壓穩壓器電路係取代於圖11之寫入序列,無關於寫入資料,而對於對應於全位元之阻抗變化型元件,進行SET寫入之後,對於寫入資料之中之對應於Low位元之阻抗變化型元件,進行RESET寫入之寫入序列而言為最佳。 However, the second embodiment can be modified as follows. In other words, in the voltage regulator circuit, the voltage VSET at the time of SET writing can be formed only by the voltage regulator circuit having a high current supply capability, and the current supply capability of the voltage VRESET at the time of RESET writing can be used. Variable control. Such a voltage regulator circuit is replaced by the write sequence of FIG. 11, regardless of the write data, and for the impedance change type element corresponding to the full bit, after the SET write, the correspondence to the write data It is preferable to perform the RESET write sequence for the impedance change type element of the Low bit.

[產業上之利用可能性] [Industry use possibility]

本申請揭示係可適用供給電流至記憶體單元,進行寫入方式之記憶體系統全般。特別是對於寫入位元數非一定之記憶體系統,可最佳地使用者。 The present application discloses that a memory system in which a current is supplied to a memory cell and a write mode is applied is generally applicable. Especially for a memory system in which the number of written bits is not constant, it is optimal for the user.

然而,在本發明之全揭示(包含申請專利範圍及圖面)之框架內,又依據其基本的技術思想,可做實施形態之變更.調整。另外,在本發明之全揭示之框架內,可做種種之揭示要素(包含各申請項之各要素,各實施形態之各要素,各圖面之各要素等)之多樣的組合乃至 選擇。即,本發明係當然包含:含有申請專利範圍及圖面之全揭示,如該業者,可隨著技術思想而構成之各種變形,修正者。特別是,對於記憶於本說明書之數值範圍,係含於該範圍內之任意的數值乃至小範圍,則在另外未記載之情況,亦應加以解釋為具體地加以記載者。 However, within the framework of the full disclosure of the present invention (including the scope and drawings of the patent application), according to the basic technical idea, the embodiment may be changed. Adjustment. In addition, within the framework of the entire disclosure of the present invention, various combinations of the disclosed elements (including each element of each application, each element of each embodiment, each element of each drawing, etc.) can be made. select. That is, the present invention naturally includes the full disclosure of the scope of the patent application and the drawings, and various modifications and corrections that can be made with the technical idea of the company. In particular, any numerical value or even a small range that is included in the range of the specification is to be construed as being specifically described.

32a‧‧‧內部電源產生電路A 32a‧‧‧Internal power generation circuit A

141‧‧‧比率檢測部 141‧‧‧ Ratio Detection Department

142‧‧‧比率比較部 142‧‧‧ Ratio Comparison Department

150‧‧‧寫入暫存器 150‧‧‧Write to scratchpad

152‧‧‧比率判定電路 152‧‧‧Rate determination circuit

154‧‧‧電壓穩壓器電路 154‧‧‧Voltage regulator circuit

156a、156b、156c‧‧‧比較器 156a, 156b, 156c‧‧‧ comparator

158‧‧‧延遲電路 158‧‧‧Delay circuit

160‧‧‧反相器電路 160‧‧‧Inverter circuit

162‧‧‧AND電路 162‧‧‧AND circuit

164‧‧‧電容器 164‧‧‧ capacitor

166S‧‧‧VSETGEN_S(VSET之穩壓器電路(小電流用)) 166S‧‧‧VSETGEN_S (VSET regulator circuit (for small current))

166L‧‧‧VSETGEN_L(VSET之穩壓器電路(大電流用)) 166L‧‧‧VSETGEN_L (VSET voltage regulator circuit (for high current))

168S‧‧‧VRESETGEN_S(VRESET之穩壓器電路(小電流用)) 168S‧‧‧VRESETGEN_S (VRESET regulator circuit (for small current))

168L‧‧‧VRESETGEN_L(VRESET之穩壓器電路(大電流用)) 168L‧‧‧VRESETGEN_L (VRESET regulator circuit (for high current))

166M‧‧‧VSETGEN_M(VSET之穩壓器電路(中電流用)) 166M‧‧‧VSETGEN_M (VSET voltage regulator circuit (for medium current))

168M‧‧‧VRESETGEN_M(VRESET之穩壓器電路(中電流用)) 168M‧‧‧VRESETGEN_M (VRESET regulator circuit (for current))

200‧‧‧比率檢測用配線(內部配線) 200‧‧‧ Ratio detection wiring (internal wiring)

VDD‧‧‧電位 VDD‧‧‧ potential

APREB‧‧‧控制信號 APREB‧‧‧ control signal

DEC‧‧‧供給控制信號 DEC‧‧‧ supply control signal

VINTREF‧‧‧偏壓電壓 VINTREF‧‧‧ bias voltage

EIO<0>~<1023>‧‧‧配線 EIO<0>~<1023>‧‧‧ wiring

Na0~Na1023、Nb0~Nb1023、Nc0~Nc1023‧‧‧NMOS電晶體 Na0~Na1023, Nb0~Nb1023, Nc0~Nc1023‧‧‧ NMOS transistor

VCREF1、VCREF2‧‧‧基準電位 VCREF1, VCREF2‧‧‧ reference potential

S1、S2、S3‧‧‧輸出 S1, S2, S3‧‧‧ output

N1、N2、N3‧‧‧NMOS電晶體 N1, N2, N3‧‧‧ NMOS transistors

/APREB‧‧‧控制信號 /APREB‧‧‧Control signal

VSET、VSETREF、VRESET、VRESETREF‧‧‧電壓 VSET, VSETREF, VRESET, VRESETREF‧‧‧ voltage

P1‧‧‧PMOS電晶體 P1‧‧‧ PMOS transistor

Claims (11)

一種半導體裝置,其特徵為具備:複數之記憶體單元,和保持各寫入於前述複數之記憶體單元之複數的寫入資料之複數之寫入暫存器,和判定保持於前述複數之寫入暫存器之前述複數之寫入資料的第1資料及第2資料之比率的比率判定電路,和產生在前述第1資料之寫入時所使用之第1電源電壓,及在第2資料之寫入時所使用之第2電源電壓的電壓穩壓器電路,前述電壓穩壓器電路係依據前述比率判定電路之輸出,控制前述第1電源電壓及前述第2電源電壓之中至少一方的電流供給能力者。 A semiconductor device comprising: a plurality of memory cells; and a write register holding a plurality of write data written in a plurality of memory cells of said plurality of memory cells, and determining to remain in said plurality of writes a ratio determination circuit for ratios of the first data and the second data of the plurality of written data of the temporary register, and a first power supply voltage used for writing the first data, and the second data The voltage regulator circuit of the second power supply voltage used for writing, the voltage regulator circuit controlling at least one of the first power supply voltage and the second power supply voltage based on an output of the ratio determination circuit Current supply capability. 如申請專利範圍第1項記載之半導體裝置,其中,前述電壓穩壓器電路係具備:對於前述第1電源電壓及前述第2電源電壓之中之至少一方而言,電流供給能力不同之2以上之穩壓器電路,依據前述比率判定電路之輸出,在前述2以上之穩壓器電路之中,選擇所使用之前述穩壓器電路者。 The semiconductor device according to claim 1, wherein the voltage regulator circuit includes at least one of a current supply capability different from at least one of the first power supply voltage and the second power supply voltage. The regulator circuit selects the regulator circuit to be used among the two or more voltage regulator circuits in accordance with the output of the ratio determination circuit. 如申請專利範圍第2項記載之半導體裝置,其中,前述2以上之穩壓器電路的輸出電晶體之電流驅動能力則相互不同者。 The semiconductor device according to claim 2, wherein the current driving capability of the output transistors of the two or more voltage regulator circuits is different from each other. 如申請專利範圍第2項或第3項記載之半導體裝 置,其中,前述比率判定電路係具備:內部配線,和經由前述複數之寫入暫存器所保持之前述複數之寫入資料而各加以控制導通/非導通之複數的第1開關元件,前述複數之第1開關元件的一端係各與前述內部配線加以連接,前述內部配線係以特定的電位加以預充電,藉由將前述加以預充電之電荷,經由前述複數之第1開關元件之中,導通狀態之前述第1開關元件而進行放電時之前述內部配線之電位,來判定前述比率者。 Such as the semiconductor package described in the second or third paragraph of the patent application The ratio determination circuit includes: an internal wiring; and a first switching element that controls the conduction/non-conduction of each of the plurality of write data held by the plurality of write registers; One end of each of the plurality of first switching elements is connected to the internal wiring, and the internal wiring is precharged at a specific potential, and the precharged electric charge is passed through the plurality of first switching elements. The potential of the internal wiring at the time of discharge is performed in the first switching element in the on state, and the ratio is determined. 如申請專利範圍第4項記載之半導體裝置,其中,在前述比率判定電路中,對於各前述複數之第1開關元件而言,串聯地加以連接有定電流電源者。 The semiconductor device according to claim 4, wherein in the ratio determination circuit, a constant current source is connected in series to each of the plurality of first switching elements. 如申請專利範圍第4項或第5項記載之半導體裝置,其中,前述比率判定電路係更具備:比較2個之輸入端子的電位的1以上之比較器,於各前述比較器之一方的輸入端子,加以連接有比率檢測用配線,於各前述比較器之另一方的輸入端子,加以供給有1以上之基準電位的任一,依據各前述比較器的輸出,輸出前述比率檢測用配線之電位與前述1以上之基準電位的大小關係者。 The semiconductor device according to claim 4, wherein the ratio determination circuit further includes: a comparator that compares potentials of two input terminals by one or more, and inputs to one of the comparators The terminal is connected to the ratio detecting wiring, and one of the reference potentials of one or more is supplied to the other input terminal of each of the comparators, and the potential of the ratio detecting wiring is output in accordance with the output of each of the comparators. It is related to the magnitude of the reference potential of 1 or more. 如申請專利範圍第6項記載之半導體裝置,其中,前述比率判定電路係更具備延遲電路,從結束前述預充電之時間至經由前述延遲電路所產生之延遲時間後,進行經由前述比較器之比較者。 The semiconductor device according to claim 6, wherein the ratio determination circuit further includes a delay circuit, and compares the time from the completion of the precharge to the delay time generated by the delay circuit, and then compares the comparators. By. 如申請專利範圍第6項或第7項記載之半導體裝置,其中,前述電壓穩壓器電路係因應前述比率判定電路所輸出之前述大小關係,前述2以上之穩壓器電路之中,選擇所使用之前述穩壓器電路者。 The semiconductor device according to claim 6 or 7, wherein the voltage regulator circuit selects the voltage regulator circuit according to the magnitude relationship output by the ratio determination circuit. The aforementioned regulator circuit is used. 如申請專利範圍第2項記載之半導體裝置,其中,前述電壓穩壓器電路係具備:對於前述第1電源電壓而言之前述電流供給能力不同之2以上的穩壓器電路,和對於前述第2電源電壓而言之僅1個之穩壓器電路,於對應於各前述第1及第2資料之前述複數的記憶體單元,供給前述第2電源電壓而進行前述第2資料之寫入之後,於對應於前述第1資料之記憶體單元,供給前述第1電源電壓而進行前述第1資料之寫入者。 The semiconductor device according to the second aspect of the invention, wherein the voltage regulator circuit includes: a regulator circuit having two or more different current supply capacities for the first power supply voltage; (2) only one of the power supply voltages, after the second power supply voltage is supplied to the memory unit corresponding to each of the first and second data, and the second data is written And writing the first data to the memory unit corresponding to the first data by supplying the first power supply voltage. 如申請專利範圍第2項記載之半導體裝置,其中,前述電壓穩壓器電路係具備:對於前述第2電源電壓而言之前述電流供給能力不同之2以上的穩壓器電路,和對於前述第1電源電壓而言之僅1個之穩壓器電路,於對應於各前述第1及第2資料之前述複數的記憶體 單元,供給前述第1電源電壓而進行前述第1資料之寫入之後,於對應於前述第2資料之記憶體單元,供給前述第2電源電壓而進行前述第2資料之寫入者。 The semiconductor device according to the second aspect of the invention, wherein the voltage regulator circuit includes: a regulator circuit having two or more different current supply capacities for the second power supply voltage; a voltage regulator circuit of only one power supply voltage, in the memory of the plural number corresponding to each of the first and second data The unit supplies the first power supply voltage and writes the first data, and supplies the second power supply voltage to the memory unit corresponding to the second data to perform the writing of the second data. 如申請專利範圍第1項至第10項之任一項記載之半導體裝置,其中,前述記憶體單元係各對應於前述第1及第2資料,具有於相互不同之阻抗狀態所寫入之阻抗變化型元件者。 The semiconductor device according to any one of claims 1 to 10, wherein the memory unit corresponds to the first and second materials, and has impedances written in mutually different impedance states. Variant components.
TW103112854A 2013-04-09 2014-04-08 Semiconductor device TW201511003A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013081408 2013-04-09

Publications (1)

Publication Number Publication Date
TW201511003A true TW201511003A (en) 2015-03-16

Family

ID=51689551

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103112854A TW201511003A (en) 2013-04-09 2014-04-08 Semiconductor device

Country Status (2)

Country Link
TW (1) TW201511003A (en)
WO (1) WO2014168144A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9514814B1 (en) * 2015-08-13 2016-12-06 Arm Ltd. Memory write driver, method and system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5106297B2 (en) * 2008-07-30 2012-12-26 株式会社東芝 Semiconductor memory device
JP5175769B2 (en) * 2009-02-25 2013-04-03 株式会社東芝 Semiconductor memory device

Also Published As

Publication number Publication date
WO2014168144A1 (en) 2014-10-16

Similar Documents

Publication Publication Date Title
US10943636B1 (en) Apparatuses and methods for analog row access tracking
JP5614150B2 (en) Resistance change memory device
JP5214566B2 (en) Resistance change memory device
TWI581370B (en) Memory array with power-efficient read architecture
JP5897337B2 (en) Resistive memory device, layout structure thereof and sensing circuit
JP2010182353A (en) Semiconductor memory device and reading method therefor
JP2010140526A (en) Semiconductor device
US9361976B2 (en) Sense amplifier including a single-transistor amplifier and level shifter and methods therefor
JP2011204302A (en) Semiconductor memory device
KR101024134B1 (en) Non volatile memory device and program method of the same
JP2013054800A (en) Semiconductor device and method of manufacturing semiconductor device
JP2008171525A (en) Semiconductor storage device
EP3518240B1 (en) Resistive non-volatile memory and a method for sensing a memory cell in a resistive non-volatile memory
US8982602B2 (en) Memory devices, circuits and, methods that apply different electrical conditions in access operations
JP2013191256A (en) Semiconductor device
US6535438B2 (en) Semiconductor memory device adopting redundancy system
JP2011054233A (en) Semiconductor memory device
JP2010015650A (en) Semiconductor storage device
KR20140047151A (en) Tile-level snapback detection through coupling capacitor in a cross point array
TW201511003A (en) Semiconductor device
KR20200045625A (en) Memory devices and system on chips including the same
KR20080047157A (en) Power supply circuit for sense amplifier of semiconductor memory device
JP2012221525A (en) Semiconductor device
US20180122461A1 (en) Resistive memory apparatus
JP2019067467A (en) Semiconductor memory device