TW201508948A - Flip-chip light emitting diode structure - Google Patents

Flip-chip light emitting diode structure Download PDF

Info

Publication number
TW201508948A
TW201508948A TW102131096A TW102131096A TW201508948A TW 201508948 A TW201508948 A TW 201508948A TW 102131096 A TW102131096 A TW 102131096A TW 102131096 A TW102131096 A TW 102131096A TW 201508948 A TW201508948 A TW 201508948A
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor
type
light emitting
metal layer
Prior art date
Application number
TW102131096A
Other languages
Chinese (zh)
Other versions
TWI528590B (en
Inventor
Long-Jian Chen
qing-he Tian
Min-Xue Jiang
Original Assignee
Long-Jian Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Long-Jian Chen filed Critical Long-Jian Chen
Priority to TW102131096A priority Critical patent/TWI528590B/en
Publication of TW201508948A publication Critical patent/TW201508948A/en
Application granted granted Critical
Publication of TWI528590B publication Critical patent/TWI528590B/en

Links

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention provides a flip-chip light emitting diode structure, which comprises a semiconductor substrate, a buffer layer, an N-type semiconductor layer, a light emitting layer, a P-type semiconductor layer, a reflection electrode layer, an N-type ohmic contact electrode, and a P-type ohmic contact electrode which are sequentially stacked from bottom to top. The reflection electrode layer comprises a first metal layer, a second metal layer, and a graphene layer which are sequentially stacked from bottom to top, wherein the graphene layer comprises a plurality of layers of graphene. With the first metal layer, the second metal layer and the graphene layer, the present invention may achieve high reflection and thermal stability, and overcome the matching between semiconductor and conducting elements, so that the flip-chip light emitting diode structure may achieve excellent heat dissipating effect and thus improve the issue of semiconductor sapphire substrate with poor heat dissipation; moreover, utilizing both the first metal layer and the second metal layer as reflective electron layer to enhance the light output efficiency of light emitting diode.

Description

覆晶發光二極體結構 Flip chip light emitting diode structure

本發明涉及一種發光二極體結構,尤其是包含第一金屬層、第二金屬層及石墨烯層堆疊的反射電極層,由於第一金屬層、第二金屬層中的奈米金屬粒子易於高溫熱處理後團聚成球狀,石墨烯層具有良好的熱穩定性,可針對不連續的團聚所造成之接觸電阻不穩定現象來加以改善,以降低銀在熱退火中產生的不良效應並增加其熱穩定性效果。 The invention relates to a light emitting diode structure, in particular to a reflective electrode layer comprising a first metal layer, a second metal layer and a graphene layer stack, wherein the nano metal particles in the first metal layer and the second metal layer are prone to high temperature After heat treatment, it agglomerates into a spherical shape. The graphene layer has good thermal stability and can be improved for the instability of contact resistance caused by discontinuous agglomeration to reduce the adverse effects of silver in thermal annealing and increase its heat. Stability effect.

固態發光二極體(Light Emitting Diode,LED),具有節能、驅動電壓低、啟動時間短、無熱輻射等優點,其應用領域包括室內外照明、交通號誌燈、手機背光模組、汽車霧燈及剎車燈等多項產品。而發光二極體中,又以氮化鎵相關材料,為最熱門的光電元件材料,III族氮化物半導體材料由於具備直接能隙、強硬的物理剛性、熱穩定性也很高,近年來已被廣泛應用於藍綠光發光二極體、藍光雷射以及耐高溫元件的開發上。而以現今的固態照明產業如雨後春筍般的發展,目前仍以氮化鎵發光二極體最具代表性。 Light Emitting Diode (LED), which has the advantages of energy saving, low driving voltage, short starting time, no heat radiation, etc. Its application fields include indoor and outdoor lighting, traffic lights, mobile phone backlight modules, and automobile fog. A variety of products such as lights and brake lights. Among the light-emitting diodes, gallium nitride-related materials are the most popular photovoltaic element materials. The III-nitride semiconductor materials have high direct energy gap, strong physical rigidity and high thermal stability. It is widely used in the development of blue-green light-emitting diodes, blue lasers and high-temperature components. With the development of today's solid-state lighting industry, the GaN LED is still the most representative.

參閱第一圖,習用技術發光二極體結構的剖面示意圖。如第一圖所示,發光二極體結構100包含一藍寶石基板110、一緩衝層120、一N型半導體層130、一發光層140、一P型半導體層150、一N型歐姆接觸電極160以及一P型歐姆接觸電極170。 Referring to the first figure, a schematic cross-sectional view of a conventional light-emitting diode structure. As shown in the first figure, the LED structure 100 includes a sapphire substrate 110, a buffer layer 120, an N-type semiconductor layer 130, a light-emitting layer 140, a P-type semiconductor layer 150, and an N-type ohmic contact electrode 160. And a P-type ohmic contact electrode 170.

緩衝層120形成在藍寶石基板110之上,為本質(intrinsic)三-五族半導體,或P型三-五族半導體,N型半導體層130 形成在緩衝層120上,為N型三-五族半導體,例如N型GaN,包含一底座區131以及一突起區133,突起區133凸起於該底座區131;發光層140形成在N型半導體層130的突起區133上,為一多層量子井結構,P型半導體層150形成在發光層140上,為一P型三-五族半導體,例如P型GaN。 The buffer layer 120 is formed on the sapphire substrate 110 as an intrinsic tri-five semiconductor, or a P-type tri-five semiconductor, and an N-type semiconductor layer 130. Formed on the buffer layer 120, an N-type three-five semiconductor, such as N-type GaN, includes a base region 131 and a protrusion region 133, the protrusion region 133 is protruded from the base region 131; the light-emitting layer 140 is formed in the N-type On the protrusion region 133 of the semiconductor layer 130, a multi-layer quantum well structure is formed. The P-type semiconductor layer 150 is formed on the light-emitting layer 140 as a P-type tri-five semiconductor, such as P-type GaN.

N型歐姆接觸電極160形成在N型半導體層130的底座區131上,包含鈦(Ti)、鋁(Al)的至少其中之一,P型歐姆接觸電極170形成在P型半導體層150上,包含金(Au)、鎳(Ni)的至少其中之一。 The N-type ohmic contact electrode 160 is formed on the base region 131 of the N-type semiconductor layer 130, and includes at least one of titanium (Ti) and aluminum (Al), and the P-type ohmic contact electrode 170 is formed on the P-type semiconductor layer 150. Containing at least one of gold (Au) and nickel (Ni).

習用發光二極體結構通常是以打線方式連接將N型歐姆接觸電極160及P型歐姆接觸電極170,之後在以封裝膠將發光二極體結構密閉,在於通電後的熱有難以逸散,而導致元件溫度過高的問題。 The conventional light-emitting diode structure usually connects the N-type ohmic contact electrode 160 and the P-type ohmic contact electrode 170 in a wire bonding manner, and then the light-emitting diode structure is sealed by the encapsulant, and the heat after being energized is difficult to escape. The problem is that the temperature of the component is too high.

石墨烯是目前研究中具有良好的導電、導熱,並同時具有熱穩定及化學穩定的材料,但是直接將石墨烯用以取代N型歐姆接觸電極160或P型歐姆接觸電極170,卻因為材料的接面特性而導致電阻太高,而整體的效能並不好。 Graphene is a material with good electrical and thermal conductivity and heat stability and chemical stability at the same time, but directly replaces N-type ohmic contact electrode 160 or P-type ohmic contact electrode 170 with graphene, but because of the material The junction characteristics cause the resistance to be too high, and the overall performance is not good.

另外,習知技術之傳統覆晶式元件的製作上,研製具有高熱穩定性及高反射率之歐姆接觸電極,對於提升發光元件仍舊是非常重要的課題。而一般應用於覆晶式元件的反射電極金屬多以鋁(Al)或銀(Ag)為主,此兩種金屬之功函數與P型氮化鎵相比差距頗大,不僅無法在氮化鎵表面形成好的歐姆接觸電極更甚會造成反射電極的劣質化,致使發光二極體之光取出效率降低與壽命減短。 In addition, in the fabrication of conventional flip-chip devices of the prior art, the development of ohmic contact electrodes having high thermal stability and high reflectivity is still an important issue for improving light-emitting elements. The reflective electrode metal generally used in flip-chip components is mainly aluminum (Al) or silver (Ag). The work function of these two metals is quite different from that of P-type gallium nitride, which is not only impossible to nitride. The formation of a good ohmic contact electrode on the surface of the gallium further causes the deterioration of the reflective electrode, resulting in a decrease in light extraction efficiency and a shortened lifetime of the light-emitting diode.

因此,需要一種改良式的發光二極體結構來達到良好的熱穩定性及散熱效果。 Therefore, an improved light emitting diode structure is needed to achieve good thermal stability and heat dissipation.

本發明的主要目的在於提供一種覆晶發光二極體結構,該 覆晶發光二極體結構包含由下而上依序堆疊的半導體基板、緩衝層、N型半導體層、發光層、P型半導體層,以及反射電極層,還有形成在N型半導體層上的N型歐姆接觸電極,以及形成在P型半導體層上的P型歐姆接觸電極。 The main object of the present invention is to provide a flip chip light emitting diode structure, The flip chip light emitting diode structure includes a semiconductor substrate, a buffer layer, an N-type semiconductor layer, a light emitting layer, a P-type semiconductor layer, and a reflective electrode layer which are sequentially stacked from bottom to top, and is formed on the N-type semiconductor layer. An N-type ohmic contact electrode, and a P-type ohmic contact electrode formed on the P-type semiconductor layer.

反射電極層,包含由下到上依序推疊的第一金屬層、第二金屬層,以及石墨烯層,用以達到反射、散熱,及歐姆接觸匹配的效果,該第一金屬層、第二金屬層以及石墨烯層的厚範圍為10~250nm,第一金屬層為銀、第二金屬層為鎳,而石墨烯層包含複數層石墨烯。 a reflective electrode layer comprising a first metal layer, a second metal layer, and a graphene layer sequentially pushed from bottom to top for achieving reflection, heat dissipation, and ohmic contact matching effects, the first metal layer, The thickness of the two metal layers and the graphene layer is 10 to 250 nm, the first metal layer is silver, the second metal layer is nickel, and the graphene layer contains a plurality of layers of graphene.

本發明的特點在於利用第一金屬層、第二金屬層,以及石墨烯層所形成的反射電極層,藉由石墨烯層熱穩定的特性來控制熱退火時第一金屬層、第二金屬層中的團聚效應,且藉由其良好的導熱效果來增進覆晶發光二極體的散熱效果,同時藉由銀、鎳及石墨烯的堆疊,可以克服半導體與導電元件之間的匹配效果,同時達到低電阻、高反射性的效果,且電阻值及反射率,可以藉由退火來調整,從而增加了發光二極體的出光效率與元件可靠度。 The invention is characterized in that the first metal layer, the second metal layer, and the reflective electrode layer formed by the graphene layer are used to control the first metal layer and the second metal layer during thermal annealing by the heat stable property of the graphene layer. The agglomeration effect, and the good heat conduction effect to enhance the heat dissipation effect of the flip-chip light-emitting diode, while the stacking of silver, nickel and graphene can overcome the matching effect between the semiconductor and the conductive element, The effect of low resistance and high reflectivity is achieved, and the resistance value and the reflectance can be adjusted by annealing, thereby increasing the light extraction efficiency and component reliability of the light emitting diode.

1‧‧‧覆晶發光二極體結構 1‧‧‧Flip-chip light-emitting diode structure

100‧‧‧發光二極體結構 100‧‧‧Lighting diode structure

110‧‧‧藍寶石基板 110‧‧‧Sapphire substrate

120‧‧‧緩衝層 120‧‧‧buffer layer

130‧‧‧N型半導體層 130‧‧‧N type semiconductor layer

131‧‧‧底座區 131‧‧‧Base area

133‧‧‧突起區 133‧‧‧ raised area

140‧‧‧發光層 140‧‧‧Lighting layer

150‧‧‧P型半導體層 150‧‧‧P type semiconductor layer

160‧‧‧N型歐姆接觸電極 160‧‧‧N type ohmic contact electrode

170‧‧‧P型歐姆接觸電極 170‧‧‧P type ohmic contact electrode

210‧‧‧半導體基板 210‧‧‧Semiconductor substrate

220‧‧‧緩衝層 220‧‧‧buffer layer

230‧‧‧N型半導體層 230‧‧‧N type semiconductor layer

231‧‧‧底座區 231‧‧‧Base area

233‧‧‧突起區 233‧‧‧ protruding area

240‧‧‧發光層 240‧‧‧Lighting layer

250‧‧‧P型半導體層 250‧‧‧P type semiconductor layer

260‧‧‧反射電極層 260‧‧‧Reflective electrode layer

261‧‧‧第一金屬層 261‧‧‧First metal layer

263‧‧‧第二金屬層 263‧‧‧Second metal layer

265‧‧‧石墨烯層 265‧‧‧graphene layer

270‧‧‧N型歐姆接觸電極 270‧‧‧N type ohmic contact electrode

280‧‧‧P型歐姆接觸電極 280‧‧‧P type ohmic contact electrode

第一圖為習用技術發光二極體結構的剖面示意圖。 The first figure is a schematic cross-sectional view of a conventional light-emitting diode structure.

第二圖為本發明覆晶發光二極體結構的剖面示意圖。 The second figure is a schematic cross-sectional view of the structure of the flip-chip light emitting diode of the present invention.

以下配合圖式及元件符號對本發明之實施方式做更詳細的說明,俾使熟習該項技藝者在研讀本說明書後能據以實施。 The embodiments of the present invention will be described in more detail below with reference to the drawings and the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;

參閱第二圖,本發明覆晶發光二極體結構的剖面示意圖。如第二圖所示,本發明覆晶發光二極體結構1包含一半導體基板210、一緩衝層220、一N型半導體層230、一發光層240、一P型半導體層250、一反射電極層260、一N型歐姆接觸電極270以及一P型歐姆接觸電極280。 Referring to the second figure, a schematic cross-sectional view of a flip-chip LED structure of the present invention is shown. As shown in the second figure, the flip-chip diode structure 1 of the present invention comprises a semiconductor substrate 210, a buffer layer 220, an N-type semiconductor layer 230, a light-emitting layer 240, a P-type semiconductor layer 250, and a reflective electrode. A layer 260, an N-type ohmic contact electrode 270, and a P-type ohmic contact electrode 280.

半導體基板210為藍寶石基板,緩衝層220形成在半導體 基板210之上,為本質(intrinsic)三-五族半導體,或P型三-五族半導體,例如砷化鎵(GaN)、砷化鋁鎵(AlGaN)、砷化銦鎵(InGaN)等;N型半導體層230形成在緩衝層220上,為N型三-五族半導體,例如N型GaN,包含一底座區231以及一突起區233,突起區233凸起於該底座區231;發光層240形成在N型半導體層230的突起區233上,為一多層量子井結構,例如InGaN/GaN的多層堆疊結構,P型半導體層250形成在發光層240上,為一P型三-五族半導體,例如P型GaN。 The semiconductor substrate 210 is a sapphire substrate, and the buffer layer 220 is formed on the semiconductor Above the substrate 210, an intrinsic tri-five semiconductor, or a P-type tri-five semiconductor, such as gallium arsenide (GaN), aluminum gallium arsenide (AlGaN), indium gallium arsenide (InGaN), or the like; The N-type semiconductor layer 230 is formed on the buffer layer 220, and is an N-type three-five semiconductor, such as N-type GaN, and includes a base region 231 and a protrusion region 233. The protrusion region 233 is protruded from the base region 231; 240 is formed on the protrusion region 233 of the N-type semiconductor layer 230, and is a multilayer quantum well structure, such as a multilayer stack structure of InGaN/GaN. The P-type semiconductor layer 250 is formed on the light-emitting layer 240, which is a P-type three-five. Group semiconductors, such as P-type GaN.

反射電極層260形成在P型半導體層250上,包含由下到上依序推疊的一第一金屬層261、一第二金屬層263,以及一石墨烯層265,第一金屬層261為銀、第二金屬層263為鎳,石墨烯層265包含複數層石墨烯,該第一金屬層261、第二金屬層263以及石墨烯層265的厚度為10~250nm。 The reflective electrode layer 260 is formed on the P-type semiconductor layer 250, and includes a first metal layer 261, a second metal layer 263, and a graphene layer 265, which are sequentially pushed from bottom to top, and the first metal layer 261 is The silver and second metal layer 263 are nickel, and the graphene layer 265 includes a plurality of layers of graphene. The first metal layer 261, the second metal layer 263, and the graphene layer 265 have a thickness of 10 to 250 nm.

第一金屬層261、一第二金屬層263,以及一石墨烯層265係以磁控濺鍍系統磊晶製備,再透過高溫熱處理形成,例如500℃,其中第一金屬層261的為結構來觀察,係以複數個奈米銀粒子所構成,第一金屬層261中的奈米銀粒子會因熱退火而聚成球狀,而可作為光反射層,藉此增加發光二極體的光取出效率;且由於石墨烯層265具有良好的熱穩定性,可針對銀奈米粒子因不連續的團聚所造成之接觸電阻不穩定現象來加以改善,以降低銀奈米粒子在熱退火中團聚的效應並增加其熱穩定性效果。 The first metal layer 261, a second metal layer 263, and a graphene layer 265 are epitaxially prepared by a magnetron sputtering system, and then formed by a high temperature heat treatment, for example, 500 ° C, wherein the first metal layer 261 is a structure. Observed, it is composed of a plurality of nano silver particles, and the nano silver particles in the first metal layer 261 are aggregated into a spherical shape by thermal annealing, and can be used as a light reflecting layer, thereby increasing the light of the light emitting diode. The extraction efficiency; and because the graphene layer 265 has good thermal stability, it can be improved for the instability of the contact resistance caused by the discontinuous agglomeration of the silver nanoparticles to reduce the agglomeration of the silver nanoparticles in the thermal annealing. The effect and increase its thermal stability effect.

N型歐姆接觸電極270形成在N型半導體層230的底座區231上,包含鈦(Ti)、鋁(Al)的至少其中之一,P型歐姆接觸電極280形成在反射電極層260上,包含金(Au)、銀(Ag)、鋁(Al)、鎳(Ni)、鉑(Pt)、鈀(Pd)的至少其中之一。 The N-type ohmic contact electrode 270 is formed on the base region 231 of the N-type semiconductor layer 230, and includes at least one of titanium (Ti) and aluminum (Al), and the P-type ohmic contact electrode 280 is formed on the reflective electrode layer 260, including At least one of gold (Au), silver (Ag), aluminum (Al), nickel (Ni), platinum (Pt), and palladium (Pd).

本發明的特點在於利用,由第一金屬層、第二金屬層,以 及石墨烯層所形成的反射電極層,藉由石墨烯層的熱穩定性質,可以在熱退火時控制第一金屬層及第二金屬層中奈米粒子的團聚效應,同時利用其良好的導熱效果,增進覆晶發光二極體的散熱效果,更利用第一金屬層、第二金屬層及石墨烯層的堆疊,克服半導體與導電元件之間的匹配效果,同時達到低電阻、高反射性的效果,且電阻值及反射率,可以藉由退火來調整,從而增加了發光二極體的出光效率及元件可靠性。 The invention is characterized in that the first metal layer and the second metal layer are utilized And the reflective electrode layer formed by the graphene layer, by the thermal stability property of the graphene layer, can control the agglomeration effect of the nano particles in the first metal layer and the second metal layer during thermal annealing, and utilize the good heat conduction thereof The effect is to improve the heat dissipation effect of the flip-chip light-emitting diode, and further utilize the stacking of the first metal layer, the second metal layer and the graphene layer to overcome the matching effect between the semiconductor and the conductive element, and at the same time achieve low resistance and high reflectivity. The effect, and the resistance value and the reflectance, can be adjusted by annealing, thereby increasing the light-emitting efficiency and component reliability of the light-emitting diode.

以上所述者僅為用以解釋本發明之較佳實施例,並非企圖據以對本發明做任何形式上之限制,是以,凡有在相同之創作精神下所作有關本發明之任何修飾或變更,皆仍應包括在本創作意圖保護之範疇。 The above is only a preferred embodiment for explaining the present invention, and is not intended to limit the present invention in any way, so that any modifications or alterations to the present invention made in the same spirit of creation are made. , should still be included in the scope of protection of this creative intent.

1‧‧‧覆晶發光二極體結構 1‧‧‧Flip-chip light-emitting diode structure

210‧‧‧半導體基板 210‧‧‧Semiconductor substrate

220‧‧‧緩衝層 220‧‧‧buffer layer

230‧‧‧N型半導體層 230‧‧‧N type semiconductor layer

231‧‧‧底座區 231‧‧‧Base area

233‧‧‧突起區 233‧‧‧ protruding area

240‧‧‧發光層 240‧‧‧Lighting layer

250‧‧‧P型半導體層 250‧‧‧P type semiconductor layer

260‧‧‧反射電極層 260‧‧‧Reflective electrode layer

261‧‧‧第一金屬層 261‧‧‧First metal layer

263‧‧‧第二金屬層 263‧‧‧Second metal layer

265‧‧‧石墨烯層 265‧‧‧graphene layer

270‧‧‧N型歐姆接觸電極 270‧‧‧N type ohmic contact electrode

280‧‧‧P型歐姆接觸電極 280‧‧‧P type ohmic contact electrode

Claims (7)

一種覆晶發光二極體結構,包含:一半導體基板;一緩衝層,形成在該半導體基板之上,為一本質三-五族半導體,或一P型三-五族半導體;一N型半導體層,形成在該緩衝層上,為一N型三-五族半導體,並包含一底座區以及一突起區,該突起區凸起於該底座區上;一發光層,形成在該N型半導體層的該突起區上,為一多層量子井結構;一P型半導體層,形成在該發光層上,為一P型三-五族半導體;一反射電極層,形成在該P型半導體層上,包含由下到上依序推疊的一第一金屬層、一第二金屬層,以及一石墨烯層,一N型歐姆接觸電極,形成在該N型半導體層的底座區上;以及一P型歐姆接觸電極,形成在該反射電極層上,其中該石墨烯層包含複數層石墨烯,且該第一金屬層、該第二金屬層以及石墨烯層的厚度為10~250nm。 A flip-chip light emitting diode structure comprising: a semiconductor substrate; a buffer layer formed on the semiconductor substrate as an intrinsic three-five semiconductor, or a P-type three-five semiconductor; an N-type semiconductor a layer formed on the buffer layer as an N-type three-five semiconductor, and comprising a base region and a protrusion region protruding from the base region; a light emitting layer formed on the N-type semiconductor The protrusion region of the layer is a multi-layer quantum well structure; a P-type semiconductor layer is formed on the light-emitting layer as a P-type tri-five semiconductor; and a reflective electrode layer is formed on the P-type semiconductor layer. a first metal layer, a second metal layer, and a graphene layer, and an N-type ohmic contact electrode formed on the base region of the N-type semiconductor layer; A P-type ohmic contact electrode is formed on the reflective electrode layer, wherein the graphene layer comprises a plurality of layers of graphene, and the first metal layer, the second metal layer and the graphene layer have a thickness of 10 to 250 nm. 如申請專利範圍第1項所述之覆晶發光二極體結構,其中該第一金屬層為銀、該第二金屬層為鎳。 The flip-chip light emitting diode structure of claim 1, wherein the first metal layer is silver and the second metal layer is nickel. 如申請專利範圍第1項所述之覆晶發光二極體結構,其中該半導體基板為藍寶石基板。 The flip-chip light emitting diode structure according to claim 1, wherein the semiconductor substrate is a sapphire substrate. 如申請專利範圍第1項所述之覆晶發光二極體結構,其中該本質三-五族半導體、P型三-五族半導體,以及該N型三-五族半導體所採用的三-五族半導體為砷化鎵(GaN)、砷化鋁鎵(AlGaN),以及砷化銦鎵(InGaN)的 其中之一。 The flip-chip light emitting diode structure according to claim 1, wherein the essential three-five semiconductor, the P-type three-five semiconductor, and the three-five of the N-type three-five semiconductor Group semiconductors are GaAs, AlGaN, and InGaN. one of them. 如申請專利範圍第1項所述之覆晶發光二極體結構,其中該N型歐姆接觸電極包含鈦(Ti)、鋁(Al)的至少其中之一,該P型歐姆接觸電極包含金(Au)、銀(Ag)、鋁(Al)、鎳(Ni)、鉑(Pt)、鈀(Pd)的至少其中之一。 The flip-chip light emitting diode structure according to claim 1, wherein the N-type ohmic contact electrode comprises at least one of titanium (Ti) and aluminum (Al), and the P-type ohmic contact electrode comprises gold ( At least one of Au), silver (Ag), aluminum (Al), nickel (Ni), platinum (Pt), and palladium (Pd). 依據申請專利範圍第2項所述之覆晶發光二極體結構,其中該第一金屬層、該第二金屬層,以及該石墨烯層係以磁控濺鍍系統製備磊晶製備,再以高溫500℃熱退火處理形成。 The flip-chip light emitting diode structure according to claim 2, wherein the first metal layer, the second metal layer, and the graphene layer are prepared by epitaxy using a magnetron sputtering system, and then It is formed by thermal annealing at a high temperature of 500 °C. 如申請專利範圍第1項所述之覆晶發光二極體結構,其中該發光層為InGaN/GaN的多層堆疊結構的多層量子井結構。 The flip-chip light emitting diode structure according to claim 1, wherein the light emitting layer is a multilayer quantum well structure of a multilayer stacked structure of InGaN/GaN.
TW102131096A 2013-08-29 2013-08-29 Flip - chip light - emitting diode structure TWI528590B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102131096A TWI528590B (en) 2013-08-29 2013-08-29 Flip - chip light - emitting diode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102131096A TWI528590B (en) 2013-08-29 2013-08-29 Flip - chip light - emitting diode structure

Publications (2)

Publication Number Publication Date
TW201508948A true TW201508948A (en) 2015-03-01
TWI528590B TWI528590B (en) 2016-04-01

Family

ID=53186346

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102131096A TWI528590B (en) 2013-08-29 2013-08-29 Flip - chip light - emitting diode structure

Country Status (1)

Country Link
TW (1) TWI528590B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876530A (en) * 2017-01-12 2017-06-20 华灿光电(浙江)有限公司 A kind of epitaxial wafer of gallium nitride based light emitting diode and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876530A (en) * 2017-01-12 2017-06-20 华灿光电(浙江)有限公司 A kind of epitaxial wafer of gallium nitride based light emitting diode and preparation method thereof

Also Published As

Publication number Publication date
TWI528590B (en) 2016-04-01

Similar Documents

Publication Publication Date Title
US8835938B2 (en) Nitride semiconductor light-emitting element and method of manufacturing the same
US9577155B2 (en) Light emitting device
US20100019222A1 (en) Low-temperature led chip metal bonding layer
JP2003534668A (en) Luminescent diode chip having a GaN-based epitaxy continuous layer emitting radiation and method of manufacturing the same
TW200924239A (en) Light emitting diodes with a p-type surface bonded to a transparent submount to increase light extraction efficiency
JP2008227109A (en) GaN-BASED LED ELEMENT AND LIGHT-EMITTING DEVICE
JP2007103689A (en) Semiconductor light emitting device
US20130146920A1 (en) Ultraviolet light emitting device
KR20100120027A (en) Light emitting device and method for fabricating the same
KR20090015633A (en) Ohmic electrode and method for forming the same
US20210226095A1 (en) Light-emitting diode and manufacturing method thereof
US9349914B2 (en) Light emitting device and light emitting device package
WO2010050501A1 (en) Semiconductor light-emitting element, manufacturing method, and light-emitting device
US10636943B2 (en) Light emitting diode and light emitting diode package
CN110767788B (en) High junction temperature LED chip and manufacturing method thereof
TWI528590B (en) Flip - chip light - emitting diode structure
TWM436224U (en)
CN102751409B (en) A kind of vertical gallium nitride Light-emitting Diode And Its Making Method
Chen et al. Rapid thermal annealed InGaN/GaN flip-chip LEDs
US20150287881A1 (en) Light Emitting Diode Device
KR102075059B1 (en) Light emitting device and light emitting device package
Harle et al. Advanced technologies for high-efficiency GaInN LEDs for solid state lighting
KR101700792B1 (en) Light emitting device
TWI552378B (en) Light-emitting diode chip
CN204257692U (en) There is the upside-down mounting LED chip of double reflecting layers

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees