TW201506929A - Semiconductor storage device - Google Patents

Semiconductor storage device Download PDF

Info

Publication number
TW201506929A
TW201506929A TW103105842A TW103105842A TW201506929A TW 201506929 A TW201506929 A TW 201506929A TW 103105842 A TW103105842 A TW 103105842A TW 103105842 A TW103105842 A TW 103105842A TW 201506929 A TW201506929 A TW 201506929A
Authority
TW
Taiwan
Prior art keywords
transistor
circuit
memory device
semiconductor memory
signal
Prior art date
Application number
TW103105842A
Other languages
Chinese (zh)
Inventor
Takeshi Ohgami
Original Assignee
Ps4 Luxco Sarl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ps4 Luxco Sarl filed Critical Ps4 Luxco Sarl
Publication of TW201506929A publication Critical patent/TW201506929A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4094Bit-line management or control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4091Sense or sense/refresh amplifiers, or associated sense circuitry, e.g. for coupled bit-line precharging, equalising or isolating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/50Peripheral circuit region structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Abstract

The purpose of the present invention is to reduce chip area. The present invention is provided with a bit line pair, sense amplifier circuits which are connected between the bit line pair and which are configured with 2 CMOS inverter circuits for which input and output are mutually connected, an equalizer circuit connected between the bit line pair, and a drive transistor which drives a drive line of the sense amplifier circuits; wherein one transistor configuring the CMOS inverter circuits, a transistor group configuring the equalizer circuit, and the drive transistor are of a first conductivity type and have the same first threshold.

Description

半導體記憶裝置 Semiconductor memory device (關於關連申請案之記載) (about the record of the related application)

本發明,係為基於日本專利申請:特願2013-033288號(2013年2月22日申請)而主張優先權者,該申請案之全部記載內容係藉由引用而被導入本說明書中。 The present invention claims priority to Japanese Patent Application No. 2013-033288 (filed on Feb. 22, 2013), the entire content of which is incorporated herein by reference.

本發明,係有關於半導體記憶裝置,特別是有關於具備感測放大器之半導體記憶裝置。 The present invention relates to a semiconductor memory device, and more particularly to a semiconductor memory device including a sense amplifier.

在以SDRAM(Synchronous Dynamic Random Access Memory)為代表的半導體記憶裝置中,於感測放大器或其之周邊電路處,為了動作之高速化,係使用有將臨限值設定為較低之電晶體。 In a semiconductor memory device typified by a SDRAM (Synchronous Dynamic Random Access Memory), a transistor having a lower threshold value is used for speeding up the operation of the sense amplifier or its peripheral circuits.

例如,在專利文獻1中,係揭示有一種半導體記憶體,其係將預充電用電晶體之臨限值,設定為較記憶體胞電晶體以及周邊電晶體之臨限值更低,以縮短對於位元線之預充電時間,而成為能夠進行高速動作。又,亦揭示有:將感測放大電晶體之臨限值設定為較記憶體胞電 晶體以及周邊電晶體之臨限值更低,以縮短感測時間,而成為能夠進行高速動作。 For example, Patent Document 1 discloses a semiconductor memory device in which the threshold value of the precharged transistor is set to be lower than the threshold value of the memory cell and the peripheral transistor to shorten For the pre-charging time of the bit line, high-speed operation is possible. Moreover, it is also revealed that the threshold value of the sensing amplifying transistor is set to be larger than the memory cell. The lower limit of the crystal and the peripheral transistor is lower, so that the sensing time can be shortened and the high-speed operation can be performed.

進而,在專利文獻2中,係揭示有一種半導體記憶體裝置,其特徵為:就算是半導體記憶體裝置之低電壓化有所進展,亦能夠藉由在感測放大驅動電晶體、感測放大部預充電電晶體處使用低臨限值之電晶體,並將該些以負電壓來作驅動,來提高各電晶體之驅動能力,而成為能夠將感測放大器之放大以及位元線、感測放大部之預充電動作高速化,並且亦能夠降低非活性化時之次臨限漏洩(subthreshold leak)。 Further, Patent Document 2 discloses a semiconductor memory device characterized in that even if the voltage reduction of the semiconductor memory device progresses, the transistor can be driven by the sense amplification, and the sense amplification can be performed. A pre-charged transistor uses a low-threshold transistor, and these are driven by a negative voltage to improve the driving ability of each transistor, thereby enabling the amplification of the sense amplifier and the bit line and sense. The pre-charging operation of the measuring and amplifying portion is speeded up, and the subthreshold leak at the time of inactivation can also be reduced.

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

[專利文獻1]日本特開平10-178161號公報 [Patent Document 1] Japanese Patent Laid-Open No. Hei 10-178161

[專利文獻2]日本特開2000-293986號公報 [Patent Document 2] Japanese Patent Laid-Open Publication No. 2000-293986

以下之分析,係為由本案發明所進行者。 The following analysis is performed by the invention of the present invention.

另外,在先端製程的開發中,記憶體胞區域之尺寸係會起因於微細化而有著縮小的傾向。相對於此,在感測放大部或副字元線驅動器等之周邊部處的微細化,相較於記憶體胞相對上係較無進展,此區域之尺寸的縮小係成為新的課題。特別是,在感測放大部處,此一傾向係 為顯著,今後,在更進一步達成微細化的同時,亦期望對於在感測放大部處之晶片面積的增大作抑制。 In addition, in the development of the tip process, the size of the memory cell region tends to be reduced due to miniaturization. On the other hand, the miniaturization at the peripheral portion of the sense amplifier or the sub-line driver or the like is less advanced than the memory cell, and the reduction in the size of this region is a new problem. In particular, at the sense amplifier, this tendency is In order to remarkably, in the future, while further miniaturization is achieved, it is also desired to suppress an increase in the area of the wafer at the sense amplifier portion.

本發明之其中1個觀點(側面)的半導體記憶裝置,係具備有:位元線對;和感測放大電路,係由被連接於位元線對之間並將輸入輸出相互作連接之2個的CMOS反向電路所構成;和均衡電路,係被連接於位元線對之間;和驅動電晶體,係驅動感測放大電路之驅動線,構成CMOS反向電路之其中一方的電晶體和構成均衡電路之電晶體群以及驅動電晶體,係身為第1導電型並具有相同之第1臨限值。 A semiconductor memory device of one aspect (side) of the present invention is provided with: a bit line pair; and a sense amplifying circuit which is connected between the bit line pairs and connects the input and output to each other 2 a CMOS inverter circuit; and an equalization circuit connected between the bit line pairs; and a driving transistor that drives the driving line of the sensing amplifying circuit to form a transistor of one of the CMOS inverting circuits The transistor group and the driving transistor that constitute the equalization circuit are first conductivity type and have the same first threshold value.

若依據本發明,則係能夠將晶片面積作削減。 According to the present invention, the area of the wafer can be reduced.

1‧‧‧半導體記憶裝置 1‧‧‧Semiconductor memory device

10‧‧‧控制邏輯 10‧‧‧Control logic

20‧‧‧行解碼器&時序訊號產生電路 20‧‧‧ row decoder & timing signal generation circuit

30‧‧‧列解碼器&時序訊號產生電路 30‧‧‧ Column Decoder & Timing Signal Generation Circuit

40‧‧‧記憶體胞陣列 40‧‧‧ memory cell array

50‧‧‧感測放大器 50‧‧‧Sense Amplifier

60‧‧‧放大&緩衝部 60‧‧‧Amplification & Buffer Department

70‧‧‧資料輸入輸出部 70‧‧‧Data input and output department

BLEQ‧‧‧均衡電路 BLEQ‧‧‧ equalization circuit

BUF1、BUF2‧‧‧緩衝電路 BUF1, BUF2‧‧‧ buffer circuit

DEC1、DEC2‧‧‧解碼電路 DEC1, DEC2‧‧‧ decoding circuit

LS1、LS2‧‧‧準位橫移電路 LS1, LS2‧‧‧ level traversing circuit

MN1~MN8‧‧‧NMOS電晶體 MN1~MN8‧‧‧NMOS transistor

MP1~MP3‧‧‧PMOS電晶體 MP1~MP3‧‧‧ PMOS transistor

N-Well‧‧‧N井區域 N-Well‧‧‧N well area

P-Well‧‧‧P井區域 P-Well‧‧‧P well area

SA1、SA2‧‧‧電晶體對 SA1, SA2‧‧‧ transistor pairs

YS‧‧‧Y開關電路 YS‧‧‧Y switch circuit

[圖1]對於第1實施例之半導體記憶裝置的構成作展示之區塊圖。 Fig. 1 is a block diagram showing the configuration of a semiconductor memory device of a first embodiment.

[圖2]係為第1實施例之感測放大部的電路圖。 Fig. 2 is a circuit diagram of a sense amplifying portion of the first embodiment.

[圖3]係為對於第1實施例之感測放大部的佈局作模式性展示之圖。 Fig. 3 is a view schematically showing the layout of the sense amplifying portion of the first embodiment.

[圖4]係為對於第2實施例之感測放大部的驅動電路之構成作展示的區塊圖。 Fig. 4 is a block diagram showing the configuration of a drive circuit of the sense amplifier unit of the second embodiment.

[圖5]係為對於截止漏電流(OFF LEAKAGE CURRENT)之發生作說明之圖。 [Fig. 5] is a diagram for explaining the occurrence of an OFF LEAKAGE CURRENT.

以下,針對本案之揭示的其中一種實施形態作概略說明。另外,在以下之概略說明中所附加的圖面元件符號,係僅為用以幫助理解之例示,而並不代表將本發明限定於圖示之態樣。 Hereinafter, one embodiment of the disclosure of the present invention will be briefly described. In addition, the symbols of the drawings that are added to the following detailed description are merely illustrative for the purpose of understanding, and are not intended to limit the invention.

其中1個實施形態之半導體記憶裝置,係具備有:位元線對(圖2之BL3T、BL3B);和感測放大電路(對應於圖2之SA1、SA2),係由被連接於位元線對之間並將輸入輸出相互作連接之2個的CMOS(Complementary Metal Oxide Semiconductor)反向電路所構成;和均衡電路(圖2之BLEQ),係被連接於位元線對之間;和驅動電晶體(圖2之MN6),係驅動感測放大電路之驅動線,構成CMOS反向電路之其中一方的電晶體(圖2之MN1、MN2)和構成均衡電路之電晶體群(圖2之MN3~MN5)以及驅動電晶體,係身為第1導電型並具有相同之第1臨限值。 The semiconductor memory device of one embodiment includes: a bit line pair (BL3T, BL3B in FIG. 2); and a sense amplifier circuit (corresponding to SA1 and SA2 in FIG. 2) connected to the bit element. a two-phase CMOS (Complementary Metal Oxide Semiconductor) inverter circuit that connects the input and output to each other; and an equalization circuit (BLEQ of FIG. 2) is connected between the bit line pairs; The driving transistor (MN6 of FIG. 2) drives the driving line of the sensing amplifying circuit, constitutes a transistor of one of the CMOS inverting circuits (MN1, MN2 of FIG. 2), and a transistor group constituting the equalizing circuit (FIG. 2) MN3~MN5) and the driving transistor are first conductivity type and have the same first threshold.

在半導體記憶裝置中,構成CMOS反向電路之其中一方的電晶體和構成均衡電路之電晶體群以及驅動電晶體,係亦可被配設在1個的第2導電型之井區域(圖 3之P-Well)內。 In the semiconductor memory device, the transistor constituting one of the CMOS inverting circuits and the transistor group and the driving transistor constituting the equalizing circuit may be disposed in one well region of the second conductivity type (Fig. Within 3 P-Well).

在半導體記憶裝置中,係亦可構成為:1個的第2導電型之井區域,係沿著1個方向,而以1個的均衡電路、1個的感測放大電路中之2個的其中一方之電晶體、驅動電晶體、在其他的感測放大電路中之2個的其中一方之電晶體、其他的均衡電路之順序,來將此些以在此些之間並不設置元件分離區域的方式而包含之。另外,為了設置臨限值為相異之電晶體,係需要與各個電晶體相對應的通道摻雜或者是LDD(Lightly Doped Drain),為了對應此,而需要將用以導入電晶體之雜質的植入區域作分離之分離餘裕,於此之所謂的元件分離區域,乃是指此分離餘裕。故而,於此之所謂元件分離區域,係與由被埋入有絕緣膜之STI(Shallow Trench Isolation)等的場域分離所致之分離區域相異。 In the semiconductor memory device, one of the second conductivity type well regions may be formed in one direction, and one of the equalization circuits and one of the ones of the sense amplifier circuits. The order of one of the transistor, the driving transistor, the transistor in one of the other sensing amplifier circuits, and the other equalizing circuit is used to separate the components. The way the area is included. In addition, in order to set a transistor whose threshold value is different, a channel doping corresponding to each transistor is required or an LDD (Lightly Doped Drain) is required. To cope with this, it is necessary to introduce impurities for introducing the transistor. The separation area of the implanted region is separated, and the so-called element separation region herein refers to the separation margin. Therefore, the element isolation region here is different from the separation region due to separation of a field region such as an STI (Shallow Trench Isolation) in which an insulating film is buried.

在半導體記憶裝置中,所謂一個方向,係亦可為位元線對之配置方向。 In a semiconductor memory device, the so-called one direction can also be the direction in which the bit line pairs are arranged.

在半導體記憶裝置中,係亦可構成為:當將第1臨限值設為Vt1,並將把輸入輸出線對對於位元線對作連接控制之電晶體(圖2之MN7、MN8)的臨限值設為Vt2,且將構成行系控制電路之電晶體的臨限值設為Vt3的情況時,係以滿足Vt1<Vt2<Vt3的方式來構成。 In the semiconductor memory device, the first threshold value is set to Vt1, and the input/output line pair is connected to the transistor for controlling the bit line pair (MN7, MN8 of FIG. 2). When the threshold value is Vt2 and the threshold value of the transistor constituting the lanthan control circuit is Vt3, it is configured to satisfy Vt1 < Vt2 < Vt3.

在半導體記憶裝置中,係亦可構成為:驅動電晶體,係驅動在1個的感測放大電路以及其他的感測放大電路處而為共通之驅動線。 In the semiconductor memory device, the driving transistor may be configured to be driven by a single sensing amplifier circuit and other sensing amplifier circuits to be a common driving line.

在半導體記憶裝置中,係亦可構成為:係具備有產生以較驅動電晶體之源極的電位而更低之電位作為基準的第1驅動訊號之第1準位橫移電路(圖4之LS1),驅動電晶體之閘極,係藉由第1驅動訊號而被驅動。 In the semiconductor memory device, the first level traversing circuit for generating the first driving signal based on the potential lower than the potential of the source of the driving transistor may be provided (FIG. 4) LS1), the gate of the driving transistor, is driven by the first driving signal.

在半導體記憶裝置中,係亦可構成為:係具備有產生以較驅動電晶體之源極的電位而更低之電位作為基準的第2驅動訊號之第2準位橫移電路(圖4之LS2),構成均衡電路之電晶體群之各別的閘極,係藉由第2驅動訊號而被驅動。 The semiconductor memory device may be configured to include a second level traverse circuit for generating a second driving signal having a lower potential than a potential of a source of the driving transistor (FIG. 4) LS2), the respective gates of the transistor group constituting the equalization circuit are driven by the second driving signal.

若依據上述一般之半導體記憶裝置,則係將構成CMOS反向電路之其中一方的電晶體和構成均衡電路之電晶體群以及驅動電晶體,在1個的井區域內而並不設置元件分離區域地來形成之。故而,係可省略元件分離區域,而能夠將關連於感測放大部之晶片的面積作削減。 According to the above general semiconductor memory device, the transistor constituting one of the CMOS inverter circuits and the transistor group constituting the equalization circuit and the driving transistor are disposed in one well region without providing the component isolation region. The ground is formed. Therefore, the area of the wafer to be connected to the sense amplifying portion can be reduced by omitting the element isolation region.

以下,參考圖面,針對實施例詳細作說明。 Hereinafter, the embodiment will be described in detail with reference to the drawings.

[實施例1] [Example 1]

圖1,係為對於第1實施例之半導體記憶裝置的構成作展示之區塊圖。在圖1中,半導體記憶裝置1,係由控制邏輯10、和行解碼器&時序訊號產生電路20、和列解碼器&時序訊號產生電路30、和記憶體胞陣列40、和感測放大器50、和放大&緩衝部60、以及資料輸入輸出部70,而構成之。 Fig. 1 is a block diagram showing the configuration of the semiconductor memory device of the first embodiment. In FIG. 1, a semiconductor memory device 1 is composed of a control logic 10, a row decoder & timing signal generating circuit 20, a column decoder & timing signal generating circuit 30, a memory cell array 40, and a sense amplifier 50. And the amplification & buffer unit 60 and the data input/output unit 70 are configured.

控制邏輯10,係接收從外部所供給而來之指令,並產生各種的內部訊號(控制邏輯10,係相當於上述之控制電路)。具體而言,控制邏輯10,若是從外部而被供給有啟動指令,則係產生內部啟動指令訊號IACT,若是從外部而被供給有讀取指令,則係產生內部讀取指令訊號IRD,若是從外部而被供給有寫入指令,則係產生內部寫入指令訊號IWRT。 The control logic 10 receives the commands supplied from the outside and generates various internal signals (the control logic 10 is equivalent to the above-described control circuit). Specifically, if the control logic 10 is supplied with a start command from the outside, an internal start command signal IACT is generated, and if a read command is supplied from the outside, an internal read command signal IRD is generated, and if When a write command is supplied externally, an internal write command signal IWRT is generated.

內部啟動指令訊號IACT,係保持活性準位之HIGH準位,直到被供給有預充電指令為止。 The internal start command signal IACT maintains the HIGH level of the active level until a precharge command is supplied.

控制邏輯10,當從外部而被供給有寫入指令的情況時,係產生在tCCDmin期間中作為活性準位而成為HIGH準位的時序訊號TCCDT。於此,所謂tCCDmin期間,係為將當反覆(連續)進行讀取動作或寫入動作的情況時,從接收到寫入指令或者是讀取指令起直到成為能夠接收下一個的寫入指令或者是讀取指令為止的時間,作為下限的期間。tCCDmin期間,係可藉由時脈循環數來作表現。 The control logic 10 generates a timing signal TCCDT that becomes a HIGH level as an active level during the tCCDmin period when a write command is supplied from the outside. Here, in the case of the tCCDmin period, when the read operation or the write operation is repeated (continuously), the read command or the read command is received until the next write command or It is the time until the instruction is read, and it is the period of the lower limit. During tCCDmin, it can be expressed by the number of clock cycles.

控制邏輯10,係於其內部,包含有接收從外部所供給而來之時脈訊號CK並對於時脈訊號CK作計數而產生時序訊號TCCDT之TCCDT產生電路。內部啟動指令訊號IACT,係被輸出至行解碼器&時序訊號產生電路20處。內部讀取指令訊號IRD、內部寫入指令訊號IWRT以及時序訊號TCCDT,係被輸出至列解碼器&時序訊號產生電路30處。 The control logic 10 is internally provided with a TCCDT generating circuit that receives the clock signal CK supplied from the outside and counts the clock signal CK to generate the timing signal TCCDT. The internal start command signal IACT is output to the row decoder & timing signal generating circuit 20. The internal read command signal IRD, the internal write command signal IWRT, and the timing signal TCCDT are output to the column decoder & timing signal generating circuit 30.

行解碼器&時序訊號產生電路20,係因應於內部啟動指令訊號IACT而將位址訊號ADD作為行位址來接收之。行解碼器&時序訊號產生電路20,係因應於內部啟動指令訊號IACT和行位址,而輸出各種行系之控制訊號。具體而言,係對於記憶體胞陣列40輸出字元線選擇訊號WLS,並對於感測放大器50輸出開關控制訊號S1、感測放大器活性化訊號CSP以及CSN。 The row decoder & timing signal generating circuit 20 receives the address signal ADD as a row address in response to the internal enable command signal IACT. The row decoder & timing signal generating circuit 20 outputs control signals of various line systems in response to the internal start command signal IACT and the row address. Specifically, the word line selection signal WLS is output to the memory cell array 40, and the switching control signal S1, the sense amplifier activation signal CSP, and the CSN are output to the sense amplifier 50.

又,行解碼器&時序訊號產生電路20,係包含有複數之局部輸入輸出均衡訊號產生電路LIOEQSC1~LIOEQSCk(k為正整數,以下亦同)。複數之局部輸入輸出均衡訊號產生電路LIOEQSC1~LIOEQSCk,係分別產生均衡訊號EQ1~EQk和局部輸入輸出線均衡訊號LEQ2B1~LEQ2Bk。複數之局部輸入輸出均衡訊號產生電路LIOEQSC1~LIOEQSCk中的藉由行位址而被作了選擇之1個的局部輸入輸出均衡訊號產生電路LIOEQSCi(i為1以上k以下之正整數,以下亦同),係在第1期間中,將均衡訊號EQi設為非活性準位,並將局部輸入輸出線均衡訊號LEQ2Bi設為能夠因應於叢發旗標訊號BSTFLGT和輸入輸出均衡控制訊號IOEQB來作控制的狀態。另一方面,並未藉由行位址而被作選擇的剩餘之複數之局部輸入輸出均衡訊號產生電路,係將均衡訊號EQ維持為活性準位,並將局部輸入輸出線均衡訊號LEQ2B維持為非活性準位。均衡訊號EQ1~EQk以及局部輸入輸出線均衡訊號LEQ2B1~LEQ2Bk,係被輸出至感測放大器 50處。 Further, the row decoder & timing signal generating circuit 20 includes a plurality of local input/output equalization signal generating circuits LIOEQSC1 to LIOEQSCk (k is a positive integer, the same applies hereinafter). The plurality of local input and output equalization signal generating circuits LIOEQSC1~LIOEQSCk respectively generate equalization signals EQ1~EQk and local input/output line equalization signals LEQ2B1~LEQ2Bk. A partial input/output equalization signal generating circuit LIOEQSCi selected by a row address in a plurality of local input/output equalization signal generating circuits LIOEQSC1 to LIOEQSCk (i is a positive integer of 1 or more and k or less, the same applies hereinafter In the first period, the equalization signal EQi is set to an inactive level, and the local input/output line equalization signal LEQ2Bi is set to be controlled according to the burst signal BSTFLGT and the input/output equalization control signal IOEQB. status. On the other hand, the remaining complex digital partial input/output equalization signal generating circuit which is not selected by the row address maintains the equalization signal EQ at the active level and maintains the local input/output line equalization signal LEQ2B as Inactive level. The equalization signals EQ1~EQk and the local input/output line equalization signals LEQ2B1~LEQ2Bk are output to the sense amplifier 50 places.

列解碼器&時序訊號產生電路30,當被供給有內部讀取指令訊號IRD的情況時,係因應於內部讀取指令訊號IRD而將位址訊號ADD作為列位址來接收之。進而,列解碼器&時序訊號產生電路30,係因應於內部讀取指令訊號IRD和列位址,而輸出各種列系之控制訊號。具體而言,係對於感測放大器50輸出Y開關選擇訊號YS,並對於放大&緩衝部60輸出讀取致能訊號RE以及主放大器連接訊號TGB。 The column decoder & timing signal generating circuit 30, when supplied with the internal read command signal IRD, receives the address signal ADD as a column address in response to the internal read command signal IRD. Further, the column decoder & timing signal generating circuit 30 outputs control signals of various columns in response to the internal read command signal IRD and the column address. Specifically, the Y-switch selection signal YS is outputted to the sense amplifier 50, and the read enable signal RE and the main amplifier connection signal TGB are output to the amplification & buffer unit 60.

又,列解碼器&時序訊號產生電路30,係因應於內部讀取指令訊號IRD,而將主放大器均衡訊號MAEQB以及輸入輸出均衡控制訊號IOEQB,分別在第2期間以及第3期間,從活性準位之LOW準位來設為非活性準位之HIGH準位。另一方面,叢發旗標訊號BSTFLGT以及寫入致能訊號WE,係均被維持於非活性準位。主放大器均衡訊號MAEQB以及寫入致能訊號WE,係被輸出至放大&緩衝部60處,輸入輸出均衡控制訊號IOEQB以及叢發旗標訊號BSTFLGT,係被輸出至行解碼器&時序訊號產生電路20以及放大&緩衝部60處。 Further, the column decoder & timing signal generating circuit 30 selects the main amplifier equalization signal MAEQB and the input/output equalization control signal IOEQB in response to the internal read command signal IRD, respectively, in the second period and the third period, respectively. The LOW level of the bit is set to the HIGH level of the inactive level. On the other hand, the burst signal BSTFLGT and the write enable signal WE are maintained at an inactive level. The main amplifier equalization signal MAEQB and the write enable signal WE are output to the amplification & buffering unit 60, and the input/output equalization control signal IOEQB and the burst signal signal BSTFLGT are output to the row decoder & timing signal generating circuit. 20 and the enlargement & buffer portion 60.

列解碼器&時序訊號產生電路30,當被供給有內部寫入指令訊號IWRT以及時序訊號TCCDT的情況時,係因應於內部寫入指令訊號IWRT而將位址訊號ADD作為列位址來接收之。 The column decoder & timing signal generating circuit 30, when supplied with the internal write command signal IWRT and the timing signal TCCDT, receives the address signal ADD as a column address in response to the internal write command signal IWRT. .

列解碼器&時序訊號產生電路30,係因應於 內部寫入指令訊號IWRT、時序訊號TCCDT以及列位址,而輸出各種列系之控制訊號。具體而言,係因應於內部寫入指令訊號IWRT和列位址,而輸出Y開關選擇訊號YS、寫入致能訊號WE。 Column decoder & timing signal generation circuit 30, in response to The internal write command signal IWRT, the timing signal TCCDT, and the column address are output, and the control signals of various columns are output. Specifically, the Y switch selection signal YS and the write enable signal WE are output in response to the internal write command signal IWRT and the column address.

又,係因應於時序訊號TCCDT,而輸出叢發旗標訊號BSTFLGT。具體而言,係藉由將時序訊號TCCDT作第4期間之延遲,而產生叢發旗標訊號BSTFLGT。 In addition, the burst signal flag BSTFLGT is output in response to the timing signal TCCDT. Specifically, the burst signal signal BSTFLGT is generated by delaying the timing signal TCCDT for the fourth period.

又,列解碼器&時序訊號產生電路30,係因應於內部寫入指令訊號IWRT,而將輸入輸出均衡控制訊號IOEQB,在第5期間中,從活性準位之LOW準位來設為非活性準位之HIGH準位。另一方面,讀取致能訊號RE和主放大器連接訊號TGB,係均維持於非活性準位,主放大器均衡訊號MAEQB係維持為活性準位。 Further, the column decoder & timing signal generating circuit 30 sets the input/output equalization control signal IOEQB in response to the internal write command signal IWRT, and in the fifth period, is inactive from the LOW level of the active level. The HIGH position of the position. On the other hand, the read enable signal RE and the main amplifier connection signal TGB are maintained at an inactive level, and the main amplifier equalization signal MAEQB is maintained at an active level.

在記憶體胞陣列40處,係包含有複數之字元線WL和複數之位元線BL,以及被設置在各個字元線WL和位元線BL之交點處的複數之記憶體胞MC。 At the memory cell array 40, a plurality of word lines WL and a plurality of bit lines BL are included, and a plurality of memory cells MC disposed at intersections of the respective word lines WL and bit lines BL.

在感測放大器50中,係包含有複數之感測放大部。關於感測放大器50之詳細內容,係於後再述。 In the sense amplifier 50, a plurality of sense amplification sections are included. The details of the sense amplifier 50 will be described later.

在放大&緩衝部60中,係包含有複數之主輸入輸出線均衡電路MIOEQ(主輸入輸出線均衡電路,係相當於上述之第1均衡電路)、和複數之主放大器MA、和複數之寫入緩衝電路WB、以及主輸入輸出均衡訊號產生電路MIOEQSC。 The amplification & buffer unit 60 includes a plurality of main input/output line equalization circuits MIOEQ (main input/output line equalization circuit, which corresponds to the above-described first equalization circuit), and a plurality of main amplifiers MA, and a plurality of writes. The buffer circuit WB and the main input/output equalization signal generating circuit MIOEQSC.

資料輸入輸出部70,當從外部而被供給有寫入指令的情況時、亦即是當進行寫入動作時,係將被供給至資料端子DQ處之寫入資料,經由讀寫匯流排RWBUS來供給至放大&緩衝部60處。當從外部而被供給有讀取指令的情況時、亦即是當進行讀取動作時,係將從放大&緩衝部60而經由讀寫匯流排RWBUS所供給之讀取資料,供給至資料端子DQ處。 When the data input/output unit 70 is supplied with a write command from the outside, that is, when the write operation is performed, the write data supplied to the data terminal DQ is read and written via the read/write bus RWBUS. It is supplied to the amplification & buffer section 60. When a read command is supplied from the outside, that is, when the read operation is performed, the read data supplied from the enlargement & buffer unit 60 via the read/write bus bar RWBUS is supplied to the data terminal. DQ.

接著,針對在感測放大器50中所包含之複數的感測放大部作說明。 Next, a description will be given of a plurality of sense amplification sections included in the sense amplifier 50.

圖2,係為感測放大部之電路圖。在圖2中,係展示有由4組之同一構成之基本電路所成的感測放大部。亦即是,感測放大部,係由電晶體對SA1、SA2,和均衡電路BLEQ,以及Y開關電路YS所構成,並分別以圖2之中央作為中心而對稱地配置有4組。進而,感測放大部,係具備有驅動被共通地與4個的電晶體對SA1作連接之驅動線CSN的NMOS電晶體MN6,和驅動被共通地與2個的電晶體對SA2作連接之驅動線CSP的PMOS電晶體MP3。另外,在驅動線CSN、CSP處,係分別被賦予有在圖1中所作了說明的附加有相同元件符號之感測放大器活性化訊號CSN、CSP。 Figure 2 is a circuit diagram of the sense amplifier. In Fig. 2, a sense amplifying portion formed by a basic circuit of the same configuration of four groups is shown. In other words, the sense amplifying portion is composed of the transistor pairs SA1 and SA2, the equalization circuit BLEQ, and the Y switch circuit YS, and four groups are symmetrically arranged with the center of FIG. 2 as the center. Further, the sense amplifier unit is provided with an NMOS transistor MN6 that drives a drive line CSN that is commonly connected to the four transistor pairs SA1, and the drive is commonly connected to the two transistor pairs SA2. The PMOS transistor MP3 of the drive line CSP. Further, at the drive lines CSN and CSP, the sense amplifier activation signals CSN and CSP to which the same component symbols are added, which are described in FIG. 1, are respectively provided.

另外,圖1之位元線BL,係作為圖2之位元線對BLkT、BLkB(k=0~3)來作展示。又,圖1之輸入輸出線MIO,係被作階層化並作為圖2之局部輸入輸出線對LIOkT、LIOkB(k=0~3)來作展示。圖1之均衡 訊號EQ1~EQk的其中一者,係被賦予至圖2之驅動線ABLEQT處。圖1之Y開關選擇訊號YS,係相當於圖2之Y開關選擇訊號AYST。 In addition, the bit line BL of FIG. 1 is shown as the bit line pair BLkT and BLkB (k=0 to 3) of FIG. Further, the input/output line MIO of Fig. 1 is hierarchically shown as a partial input/output line pair LIOkT, LIOkB (k = 0 to 3) of Fig. 2 . Balance of Figure 1 One of the signals EQ1 to EQk is assigned to the drive line ABLEQT of FIG. The Y switch selection signal YS of FIG. 1 is equivalent to the Y switch selection signal AYST of FIG.

以下,僅針對上述之4組中的1組,來附加元件符號並作說明。關於其他組,由於電路構成係為相同,僅有成為連接目標之位元線對、局部輸入輸出線對等的元件符號為有所相異,因此係省略其說明。另外,於以下說明中,係將電晶體對SA1、SA2單純地總稱為感測放大器或者是感測放大電路。亦即是,於此之所謂感測放大器或感測放大電路,係為在前述之感測放大器50中而被包含有多數個者。 Hereinafter, the component symbol will be added to only one of the above four groups and will be described. Regarding the other groups, since the circuit configuration is the same, only the component symbols of the bit line pair, the local input/output line pair, and the like which are the connection targets are different, and therefore the description thereof will be omitted. In addition, in the following description, the transistor pairs SA1 and SA2 are collectively referred to simply as a sense amplifier or a sense amplifier circuit. That is, the so-called sense amplifier or sense amplifier circuit here is included in the sense amplifier 50 described above and includes a plurality of them.

電晶體對SA1,係具備有將汲極和閘極相互作交叉連接之NMOS電晶體MN1、MN2。電晶體對SA2,係具備有將汲極和閘極相互作交叉連接之PMOS電晶體MP1、MP2。NMOS電晶體MN1之汲極和PMOS電晶體MP1之汲極,係共通地被與位元線BL3B相連接。NMOS電晶體MN2之汲極和PMOS電晶體MP2之汲極,係共通地被與位元線BL3T相連接。位元線BL3T,係與位元線BL3B成為位元線對。NMOS電晶體MN1、MN2之源極,係共通地被與驅動線CSN作連接。PMOS電晶體MP1、MP2之源極,係共通地被與驅動線CSP作連接。 The transistor pair SA1 is provided with NMOS transistors MN1, MN2 having a drain and a gate connected to each other. The transistor pair SA2 is provided with PMOS transistors MP1 and MP2 for mutually connecting the drain and the gate. The drain of the NMOS transistor MN1 and the drain of the PMOS transistor MP1 are commonly connected to the bit line BL3B. The drain of the NMOS transistor MN2 and the drain of the PMOS transistor MP2 are commonly connected to the bit line BL3T. The bit line BL3T is a bit line pair with the bit line BL3B. The sources of the NMOS transistors MN1, MN2 are commonly connected to the drive line CSN. The sources of the PMOS transistors MP1, MP2 are commonly connected to the drive line CSP.

在此種構成之感測放大器(電晶體對SA1、SA2)中,係藉由NMOS電晶體MN1和PMOS電晶體MP1而構成CMOS反向電路,並藉由NMOS電晶體MN2 和PMOS電晶體MP2而構成CMOS反向電路。感測放大器,係作為藉由將輸入輸出相互作連接之上述2個的CMOS反向電路所構成的放大器而起作用。 In the thus constructed sense amplifier (transistor pair SA1, SA2), a CMOS reverse circuit is formed by the NMOS transistor MN1 and the PMOS transistor MP1, and the NMOS transistor MN2 is used. And a PMOS transistor MP2 constitutes a CMOS inverter circuit. The sense amplifier functions as an amplifier composed of the above two CMOS inverter circuits that connect input and output to each other.

均衡電路BLEQ,係具備有NMOS電晶體MN3~MN5。NMOS電晶體MN3,係被連接於位元線對(BL3T、BL3B)之間。NMOS電晶體MN4,係被連接於位元線對BL3B和電源VBLP之間。NMOS電晶體MN5,係被連接於位元線對BL3T和電源VBLP之間。NMOS電晶體MN3~MN5之閘極,係共通地被與驅動線ABLEQT作連接。 The equalization circuit BLEQ is provided with NMOS transistors MN3 to MN5. The NMOS transistor MN3 is connected between the bit line pairs (BL3T, BL3B). The NMOS transistor MN4 is connected between the bit line pair BL3B and the power source VBLP. The NMOS transistor MN5 is connected between the bit line pair BL3T and the power source VBLP. The gates of the NMOS transistors MN3 to MN5 are commonly connected to the drive line ABLEQT.

當驅動線ABLEQT成為H準位的情況時,NMOS電晶體MN3~MN5係全部成為ON,位元線BL3T、BL3B係被預充電至電源VBLP之電位。 When the drive line ABLEQT is at the H level, all of the NMOS transistors MN3 to MN5 are turned ON, and the bit lines BL3T and BL3B are precharged to the potential of the power source VBLP.

NMOS電晶體MN6,係將汲極與驅動線CSN作連接,並將源極與電源VSS作連接,且在閘極處接收使感測放大器活性化之驅動訊號ASANT。 The NMOS transistor MN6 connects the drain to the driving line CSN, and connects the source to the power source VSS, and receives a driving signal ASANT for activating the sense amplifier at the gate.

PMOS電晶體MP3,係將汲極與驅動線CSP作連接,並將源極與電源VARY作連接,且在閘極處接收使感測放大器活性化之驅動訊號ASAPB。 The PMOS transistor MP3 connects the drain electrode to the driving line CSP, and connects the source to the power source VARY, and receives a driving signal ASAPB for activating the sensing amplifier at the gate.

當驅動訊號ASANT成為H準位,驅動訊號ASAPB成為L準位的情況時,NMOS電晶體MN6以及PMOS電晶體MP3係成為ON,感測放大器係被活性化。 When the drive signal ASANT is at the H level and the drive signal ASAPB is at the L level, the NMOS transistor MN6 and the PMOS transistor MP3 are turned ON, and the sense amplifier is activated.

Y開關電路YS,係具備有NMOS電晶體MN7、MN8。NMOS電晶體MN7,係被連接於位元線 BL2T和局部輸入輸出線LIO2T之間。NMOS電晶體MN8,係被連接於位元線BL3T和局部輸入輸出線LIO3T之間。在NMOS電晶體MN7、MN8之閘極處,係被共通地賦予有Y開關選擇訊號AYST。 The Y switch circuit YS is provided with NMOS transistors MN7 and MN8. NMOS transistor MN7, is connected to the bit line Between BL2T and local input and output line LIO2T. The NMOS transistor MN8 is connected between the bit line BL3T and the local input/output line LIO3T. At the gates of the NMOS transistors MN7 and MN8, the Y switch selection signal AYST is commonly applied.

當Y開關選擇訊號AYST為H準位的情況時,位元線BL2T和局部輸入輸出線LIO2T之間以及位元線BL3T和局部輸入輸出線LIO3T之間係分別被短路,位元線對和局部輸入輸出線對係被設為連接狀態。 When the Y switch selects the signal AYST to the H level, the bit line BL2T and the local input and output line LIO2T and the bit line BL3T and the local input and output line LIO3T are respectively short-circuited, bit line pair and local. The input and output line pairs are set to the connected state.

在上述一般之構成的感測放大部中,藉由圓A所包圍的1組為由NMOS電晶體MN1~MN5所成的4組,和被與此些之4組共通地連接之NMOS電晶體MN6,係構成為具備有相同之臨限值Vt1。於此,構成Y開關電路YS之NMOS電晶體MN7、MN8的臨限值,係設為Vt2。進而,係將在並未圖示之行系控制電路、列系控制電路、控制邏輯電路、資料輸入輸出電路、緩衝器等之周邊電路處的NMOS電晶體之臨限值,設為Vt3。於此情況,係以滿足Vt1<Vt2<Vt3的方式來構成各個電晶體。 In the above-described general configuration of the amplifying and amplifying portion, one group surrounded by the circle A is four groups of NMOS transistors MN1 to MN5, and an NMOS transistor which is commonly connected to the four groups. MN6 is configured to have the same threshold value Vt1. Here, the threshold value of the NMOS transistors MN7 and MN8 constituting the Y switch circuit YS is Vt2. Further, the threshold value of the NMOS transistor at the peripheral circuits such as the line control circuit, the column control circuit, the control logic circuit, the data input/output circuit, and the buffer (not shown) is Vt3. In this case, each transistor is configured to satisfy Vt1 < Vt2 < Vt3.

於此,藉由圓A所包圍的NMOS電晶體MN1~MN5之4組,和被與此些之4組共通地連接之NMOS電晶體MN6,由於係具備有相同之臨限值Vt1,因此係能夠在1個的P井區域內而並不設置元件分離區域地來形成之。 Here, the four groups of the NMOS transistors MN1 to MN5 surrounded by the circle A and the NMOS transistor MN6 connected in common with the four groups have the same threshold value Vt1. It can be formed in one P well region without providing an element separation region.

接著,針對感測放大部之晶片上的佈局作說 明。圖3,係為對於感測放大部的佈局作模式性展示之圖。在圖3中,係與藉由圖2所說明者相同地,將4組之具有同一構成的基本構成之各組,以圖3之中央作為中心地來作對稱性配置。更具體而言,被與圖2中所示之位元線BL3T、BL3B作連接的NMOS電晶體MN1~MN5,係藉由設置在圖3之右側之列處的電晶體來構成之。另外,被與圖2中所示之位元線BL1T、BL1B作連接的被設置在與NMOS電晶體MN1~MN5相對稱之位置處的NMOS電晶體,係藉由設置在圖3之左方之列處的電晶體來構成之。又,NMOS電晶體MN6,係為了將驅動能力提高,而設為2個的電晶體之並聯連接。 Next, speaking on the layout on the wafer of the sense amplifier Bright. Figure 3 is a diagram showing a schematic representation of the layout of the sense amplifier. In Fig. 3, the groups of the basic configurations having the same configuration of the four groups are arranged symmetrically with the center of Fig. 3 as the center, as explained in Fig. 2 . More specifically, the NMOS transistors MN1 to MN5 connected to the bit lines BL3T and BL3B shown in FIG. 2 are constituted by transistors arranged at the right side of FIG. Further, an NMOS transistor which is provided at a position symmetrical to the NMOS transistors MN1 to MN5 connected to the bit lines BL1T and BL1B shown in FIG. 2 is provided on the left side of FIG. The transistor at the column is formed. Further, the NMOS transistor MN6 is connected in parallel to two transistors in order to improve the driving ability.

NMOS電晶體MN1~MN5之4組,和被與此些之4組共通地連接之NMOS電晶體MN6,係如同上述一般,在1個的P井區域P-Well內而並不設置元件分離區域地來形成之。又,PMOS電晶體MP1~MP3,係被設置在配置於P井區域之上下處的N井區域N-Well內。另外,NMOS電晶體MN7、MN8,係被設置在未圖示之其他的P井區域內。 The four groups of the NMOS transistors MN1 to MN5 and the NMOS transistor MN6 connected in common with the four groups are as described above, and are not provided with the element isolation region in one P well region P-Well. The ground is formed. Further, the PMOS transistors MP1 to MP3 are disposed in the N-well region N-Well disposed above the P-well region. Further, the NMOS transistors MN7 and MN8 are provided in other P well regions (not shown).

若依據上述一般之構成的感測放大部,則NMOS電晶體MN1~MN5之4組,和被與此些之4組共通地連接之NMOS電晶體MN6,係在1個的P井區域內而並不設置元件分離區域地來形成之。故而,係可省略元件分離區域,而能夠將關連於感測放大部之晶片的面積作削減。 According to the above-described general configuration of the sense amplifier, four groups of the NMOS transistors MN1 to MN5 and the NMOS transistor MN6 connected in common with the four groups are in one P-well region. It is formed without providing a component separation region. Therefore, the area of the wafer to be connected to the sense amplifying portion can be reduced by omitting the element isolation region.

[實施例2] [Embodiment 2]

圖4,係為對於第2實施例之感測放大部的驅動電路之構成作展示的區塊圖。於圖4中,半導體記憶裝置,係除了在第1實施例中所作了說明的NMOS電晶體MN1~MN6以外,亦具備有解碼電路DEC1、DEC2,準位橫移電路LS1、LS2,緩衝電路BUF1、BUF2。另外,解碼電路DEC1、DEC2,準位橫移電路LS1、LS2,緩衝電路BUF1、BUF2,係亦可構成為被內藏於圖1之行解碼器&時序訊號產生電路20中。 Fig. 4 is a block diagram showing the configuration of a drive circuit of the sense amplifying portion of the second embodiment. In FIG. 4, the semiconductor memory device is provided with decoding circuits DEC1, DEC2, level traverse circuits LS1, LS2, and buffer circuit BUF1 in addition to the NMOS transistors MN1 to MN6 described in the first embodiment. , BUF2. Further, the decoding circuits DEC1, DEC2, the level traverse circuits LS1, LS2, and the buffer circuits BUF1, BUF2 may be configured to be embedded in the row decoder & timing signal generating circuit 20 of FIG.

解碼電路DEC1,係將位址訊號ADD和控制訊號CNTL解碼,並輸出至準位橫移電路LS1處。準位橫移電路LS1,係將解碼電路DEC1之輸出訊號中的L準位從電源VSS之電位而轉換為較電源VSS之電位更低的電位Vneg,並輸出至緩衝電路BUF1處。緩衝電路BUF1之輸出,係作為附加有與圖2中所作了說明的驅動訊號ASNT相同之元件符號的驅動線ASANT,而被與NMOS電晶體MN6之閘極作連接。 The decoding circuit DEC1 decodes the address signal ADD and the control signal CNTL and outputs it to the level traverse circuit LS1. The level traverse circuit LS1 converts the L level in the output signal of the decoding circuit DEC1 from the potential of the power source VSS to a potential Vneg lower than the potential of the power source VSS, and outputs it to the buffer circuit BUF1. The output of the buffer circuit BUF1 is connected to the gate of the NMOS transistor MN6 as a drive line ASANT to which the same component symbol as that of the drive signal ASNT illustrated in FIG. 2 is added.

解碼電路DEC2,係將位址訊號ADD和控制訊號CNTL解碼,並輸出至準位橫移電路LS2處。準位橫移電路LS2,係將解碼電路DEC2之輸出訊號中的L準位從電源VSS之電位而轉換為較電源VSS之電位更低的電位Vneg,並輸出至緩衝電路BUF2處。緩衝電路BUF2之輸出,係作為驅動線ABLEQT而被與NMOS電晶體MN3 ~MN5之閘極作連接。 The decoding circuit DEC2 decodes the address signal ADD and the control signal CNTL and outputs it to the level traverse circuit LS2. The level traverse circuit LS2 converts the L level in the output signal of the decoding circuit DEC2 from the potential of the power source VSS to a potential Vneg lower than the potential of the power source VSS, and outputs it to the buffer circuit BUF2. The output of the buffer circuit BUF2 is used as the driving line ABLEQT and the NMOS transistor MN3 The gate of ~MN5 is connected.

在上述一般之構成中,對於驅動線ASANT之電位為VSS、NMOS電晶體MN6係為OFF、NMOS電晶體MN3~MN5係成為ON的待機狀態作考慮。於此情況,由於NMOS電晶體MN6之臨限值Vt1係為小,因此,如同圖5(A)中所示一般,係經由OFF狀態之NMOS電晶體MN6而從驅動線CSN來朝向電源VSS流動off leak電流Io1。 In the above-described general configuration, it is considered that the potential of the drive line ASANT is VSS, the NMOS transistor MN6 is OFF, and the NMOS transistors MN3 to MN5 are turned ON. In this case, since the threshold value Vt1 of the NMOS transistor MN6 is small, as shown in FIG. 5(A), the NMOS transistor MN6 in the OFF state flows from the driving line CSN toward the power source VSS. Off leak current Io1.

又,對於驅動線ABLEQT之電位為VSS、NMOS電晶體MN3~MN5係為OFF、NMOS電晶體MN6係成為ON的啟動待機狀態作考慮。又,假設位元線BLT之電位(VARY)相較於位元線BLB之電位(VSS)係為高。於此情況,由於NMOS電晶體MN3~MN5之臨限值Vt1係為小,因此,如同圖5(B)中所示一般,係經由OFF狀態之NMOS電晶體MN3而從位元線BLT來朝向位元線BLB流動off leak電流Io2。又,係經由OFF狀態之NMOS電晶體MN5而從位元線BLT來朝向VBLP流動off leak電流Io3。進而,係經由OFF狀態之NMOS電晶體MN4而從VBLP來朝向位元線BLB流動off leak電流Io4。 Further, it is considered that the potential of the drive line ABLEQT is VSS, the NMOS transistors MN3 to MN5 are turned off, and the NMOS transistor MN6 is turned ON. Further, it is assumed that the potential (VARY) of the bit line BLT is higher than the potential (VSS) of the bit line BLB. In this case, since the threshold value Vt1 of the NMOS transistors MN3 to MN5 is small, as shown in FIG. 5(B), the NMOS transistor MN3 in the OFF state is oriented from the bit line BLT. The bit line BLB flows offoff leak current Io2. Further, the off leak current Io3 flows from the bit line BLT toward the VBLP via the NMOS transistor MN5 in the OFF state. Further, the off leak current Io4 flows from the VBLP toward the bit line BLB via the NMOS transistor MN4 in the OFF state.

相對於此,在圖4所示之電路中,驅動線ASANT、驅動線ABLEQT,當L準位的情況時係以較電源VSS之電位更低的電位Vneg而被驅動,NMOS電晶體MN3~MN6係分別被作深度的偏壓。故而,上述之off leak電流Io1~Io4係變為極小,晶片之消耗電流係減少。 On the other hand, in the circuit shown in FIG. 4, the driving line ASANT and the driving line ABLEQT are driven at a potential Vneg lower than the potential of the power source VSS when the L level is used, and the NMOS transistors MN3 to MN6 are driven. They are each biased to depth. Therefore, the above off The leak current Io1~Io4 is extremely small, and the current consumption of the chip is reduced.

另外,上述之專利文獻等的各揭示內容,係藉由引用而被導入至本說明書中。係可在本發明之全部之揭示內容(亦包含申請專利範圍)的範圍內,進而基於本發明之基本性的技術思想,來進行實施形態乃至於實施例之變更、調整。又,在本發明之全部揭示內容的範圍內,係可進行對於各種之揭示要素(包含各請求項之各要素、各實施例之各要素、各圖面之各要素等)的多樣性之組合乃至於選擇。亦即是,當然的,本發明,係包含有當業者能夠依據在申請專利範圍中所包含之全部揭示內容以及技術性思想所進行的各種變形、修正。特別是,關於在本說明書中所記載之數值範圍,就算是並不另外作記載,亦應將被包含於該範圍內之任意的數值乃至於較小的範圍視為在本說明書中作了具體性記載者。 The disclosures of the above-mentioned patent documents and the like are incorporated herein by reference. Modifications and adjustments of the embodiments and the embodiments may be made within the scope of the disclosure of the invention (including the scope of the claims) and the basic technical idea of the invention. Further, within the scope of the entire disclosure of the present invention, a combination of various elements (including each element of each request item, each element of each embodiment, each element of each drawing, etc.) can be performed. Even choose. In other words, the present invention includes various modifications and corrections that can be made by the practitioner in accordance with the entire disclosure and technical idea contained in the scope of the patent application. In particular, the numerical ranges recited in the specification are to be construed as being Sexual record.

1‧‧‧半導體記憶裝置 1‧‧‧Semiconductor memory device

10‧‧‧控制邏輯 10‧‧‧Control logic

20‧‧‧行解碼器&時序訊號產生電路 20‧‧‧ row decoder & timing signal generation circuit

30‧‧‧列解碼器&時序訊號產生電路 30‧‧‧ Column Decoder & Timing Signal Generation Circuit

40‧‧‧記憶體胞陣列 40‧‧‧ memory cell array

50‧‧‧感測放大器 50‧‧‧Sense Amplifier

60‧‧‧放大&緩衝部 60‧‧‧Amplification & Buffer Department

70‧‧‧資料輸入輸出部 70‧‧‧Data input and output department

ADD‧‧‧位址訊號 ADD‧‧‧ address signal

CK‧‧‧時脈訊號 CK‧‧‧ clock signal

IACT‧‧‧內部啟動指令訊號 IACT‧‧‧ internal start command signal

TCCDT‧‧‧時序訊號 TCCDT‧‧‧ timing signal

IWRT‧‧‧內部寫入指令訊號 IWRT‧‧‧Internal write command signal

IRD‧‧‧內部讀取指令訊號 IRD‧‧‧ internal read command signal

BSTFLGT‧‧‧叢發旗標訊號 BSTFLGT‧‧‧Congfa flag signal

IOEQB‧‧‧輸入輸出均衡控制訊號 IOEQB‧‧‧Input and output equalization control signals

WLS‧‧‧字元線選擇訊號 WLS‧‧‧ character line selection signal

S1‧‧‧開關控制訊號 S1‧‧‧ switch control signal

EQ1~Eqk‧‧‧均衡訊號 EQ1~Eqk‧‧‧Equilibrium signal

CSP‧‧‧感測放大器活性化訊號 CSP‧‧‧Sense Amplifier Activation Signal

CSN‧‧‧感測放大器活性化訊號 CSN‧‧‧Sense Amplifier Activation Signal

WE‧‧‧寫入致能訊號 WE‧‧‧Write enable signal

RE‧‧‧讀取致能訊號 RE‧‧‧Read enable signal

TGB‧‧‧主放大器連接訊號 TGB‧‧‧ main amplifier connection signal

MAEQB‧‧‧主放大器均衡訊號 MAEQB‧‧‧Main Amplifier Equalization Signal

WL‧‧‧字元線 WL‧‧‧ character line

BL‧‧‧位元線 BL‧‧‧ bit line

MC‧‧‧記憶體胞 MC‧‧‧ memory cell

MIO‧‧‧輸入輸出線 MIO‧‧‧Input and output lines

RWBUS‧‧‧讀寫匯流排 RWBUS‧‧‧reading bus

DQ0~n‧‧‧資料端子 DQ0~n‧‧‧ data terminal

YS‧‧‧Y開關選擇訊號 YS‧‧‧Y switch selection signal

Claims (8)

一種半導體記憶裝置,其特徵為,具備有:位元線對;和感測放大電路,係由被連接於前述位元線對之間並將輸入輸出相互作連接之2個的CMOS反向電路所構成;和均衡電路,係被連接於前述位元線對之間;和驅動電晶體,係驅動前述感測放大電路之1個的驅動線,構成前述CMOS反向電路之其中一方的電晶體和構成前述均衡電路之電晶體群以及前述驅動電晶體,係身為第1導電型並具有相同之第1臨限值。 A semiconductor memory device characterized by comprising: a bit line pair; and a sensing amplifying circuit comprising two CMOS inverting circuits connected between the bit line pairs and connecting the input and output to each other And an equalization circuit connected between the pair of bit lines; and a driving transistor that drives one of the driving lines of the sensing amplifier circuit to form a transistor of one of the CMOS inverting circuits And the transistor group constituting the equalization circuit and the driving transistor are first conductivity type and have the same first threshold value. 如申請專利範圍第1項所記載之半導體記憶裝置,其中,構成前述CMOS反向電路之其中一方的電晶體和構成前述均衡電路之電晶體群以及前述驅動電晶體,係被配設在1個的第2導電型之井區域中。 The semiconductor memory device according to the first aspect of the invention, wherein the transistor constituting one of the CMOS inverter circuits and the transistor group constituting the equalization circuit and the driving transistor are disposed in one In the well area of the second conductivity type. 如申請專利範圍第2項所記載之半導體記憶裝置,其中,前述1個的第2導電型之井區域,係沿著1個方向,而以1個的前述均衡電路、1個的前述感測放大電路中之2個的前述其中一方之電晶體、前述驅動電晶體、在其他的前述感測放大電路中之2個的前述其中一方之電晶體、其他的前述均衡電路之順序,來將此些以在此些之間並不設置元件分離區域的方式而包含之。 The semiconductor memory device according to the second aspect of the invention, wherein the one of the second conductivity type well regions has one of the equalization circuits and one of the sensing electrodes in one direction. a sequence of one of the two of the amplifier circuits, the drive transistor, and one of the other of the other sense amplifier circuits, and the other equalization circuit These are included in such a manner that no element separation region is provided between them. 如申請專利範圍第3項所記載之半導體記憶裝 置,其中,前述1個方向,係為前述位元線對之配置方向。 Such as the semiconductor memory device described in item 3 of the patent application scope The first direction is the direction in which the bit line pairs are arranged. 如申請專利範圍第1項所記載之半導體記憶裝置,其中,當將前述第1臨限值設為Vt1,並將把輸入輸出線對對於前述位元線對作連接控制之電晶體的臨限值設為Vt2,且將構成行系控制電路之電晶體的臨限值設為Vt3的情況時,係以滿足Vt1<Vt2<Vt3的方式來構成。 The semiconductor memory device according to the first aspect of the invention, wherein the first threshold value is Vt1, and the input/output line pair is connected to the transistor for controlling the pair of bit lines. When the value is Vt2 and the threshold value of the transistor constituting the lanthan control circuit is Vt3, it is configured to satisfy Vt1 < Vt2 < Vt3. 如申請專利範圍第3項所記載之半導體記憶裝置,其中,前述驅動電晶體,係驅動在前述1個的感測放大電路以及其他的感測放大電路處而為共通之驅動線。 The semiconductor memory device according to claim 3, wherein the driving transistor is driven by a common driving line in the one of the sensing amplifier circuit and the other sensing amplifying circuit. 如申請專利範圍第1、2、3、6項中之任一項所記載之半導體記憶裝置,其中,係具備有產生以較前述驅動電晶體之源極的電位而更低之電位作為基準的第1驅動訊號之第1準位橫移電路,前述驅動電晶體之閘極,係藉由前述第1驅動訊號而被驅動。 The semiconductor memory device according to any one of claims 1, 2, 3, and 6, wherein the semiconductor memory device is provided with a potential lower than a potential of a source of the driving transistor. The first level traverse circuit of the first driving signal, wherein the gate of the driving transistor is driven by the first driving signal. 如申請專利範圍第1、2、3、6項中之任一項所記載之半導體記憶裝置,其中,係具備有產生以較前述驅動電晶體之源極的電位而更低之電位作為基準的第2驅動訊號之第2準位橫移電路,構成前述均衡電路之電晶體群的各別之閘極,係藉由前述第2驅動訊號而被驅動。 The semiconductor memory device according to any one of claims 1, 2, 3, and 6, wherein the semiconductor memory device is provided with a potential lower than a potential of a source of the driving transistor. The second level traverse circuit of the second driving signal, the respective gates of the transistor group constituting the equalizing circuit are driven by the second driving signal.
TW103105842A 2013-02-22 2014-02-21 Semiconductor storage device TW201506929A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013033288 2013-02-22

Publications (1)

Publication Number Publication Date
TW201506929A true TW201506929A (en) 2015-02-16

Family

ID=51391357

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103105842A TW201506929A (en) 2013-02-22 2014-02-21 Semiconductor storage device

Country Status (2)

Country Link
TW (1) TW201506929A (en)
WO (1) WO2014129576A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077628A (en) * 1998-06-19 2000-03-14 Toshiba Corp Semiconductor memory device
JP5486172B2 (en) * 2008-08-07 2014-05-07 ルネサスエレクトロニクス株式会社 Semiconductor memory device
JP2011096327A (en) * 2009-10-30 2011-05-12 Elpida Memory Inc Semiconductor device

Also Published As

Publication number Publication date
WO2014129576A1 (en) 2014-08-28

Similar Documents

Publication Publication Date Title
KR100843710B1 (en) Semiconductor memory device comprising transistor of vertical channel structure
US7738306B2 (en) Method to improve the write speed for memory products
US9111593B2 (en) Differential sense amplifier without dedicated precharge transistors
US9135964B2 (en) Differential sense amplifier without switch transistors
US8953399B2 (en) Differential sense amplifier without dedicated pass-gate transistors
JP2005293759A (en) Semiconductor memory apparatus
KR20190029278A (en) Voltage controlling circuit including assist circuit and memory device
JP2011018420A (en) Semiconductor memory device and control method for word line potential
JP2010061703A (en) Semiconductor memory
JP4357249B2 (en) Semiconductor memory device
US10770462B2 (en) Circuit and layout for single gate type precharge circuit for data lines in memory device
JPWO2013084385A1 (en) Semiconductor memory device
JP2016126811A (en) Semiconductor memory device and method for driving the same
JP4250143B2 (en) Semiconductor memory device
JP2008140529A (en) Semiconductor memory device
JP5306125B2 (en) Semiconductor memory device
US20150310909A1 (en) Optimization of circuit layout area of a memory device
KR100769492B1 (en) Semiconductor integrated circuit
TWI681391B (en) Data line control circuit and associated data line control method
KR100831678B1 (en) Sense amplifier of semiconductor device
TW201506929A (en) Semiconductor storage device
KR20080045018A (en) Semiconductor memory device and operation method of the same
US9607669B2 (en) Semiconductor memory device including precharge circuit
JP2001229671A (en) Semiconductor memory
JP4338045B2 (en) Semiconductor integrated circuit