TW201506549A - Light source device and exposure device - Google Patents

Light source device and exposure device Download PDF

Info

Publication number
TW201506549A
TW201506549A TW103112964A TW103112964A TW201506549A TW 201506549 A TW201506549 A TW 201506549A TW 103112964 A TW103112964 A TW 103112964A TW 103112964 A TW103112964 A TW 103112964A TW 201506549 A TW201506549 A TW 201506549A
Authority
TW
Taiwan
Prior art keywords
light
light source
array
wavelength
dichroic mirror
Prior art date
Application number
TW103112964A
Other languages
Chinese (zh)
Other versions
TWI600975B (en
Inventor
Junichi Tamaki
Original Assignee
Orc Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Mfg Co Ltd filed Critical Orc Mfg Co Ltd
Publication of TW201506549A publication Critical patent/TW201506549A/en
Application granted granted Critical
Publication of TWI600975B publication Critical patent/TWI600975B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/7005Production of exposure light, i.e. light sources by multiple sources, e.g. light-emitting diodes [LED] or light source arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70158Diffractive optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70175Lamphouse reflector arrangements or collector mirrors, i.e. collecting light from solid angle upstream of the light source

Abstract

Disclosed is a light source device of an exposure device capable of saving space, featuring small optic loss in combining light beam with a light beam combination element, no necessity for upsizing the light beam combination element, and capable of substituting for a light tube based light source of a conventional exposure device. The light source device comprises: first, second, and third array light sources that are formed by arranging a plurality of light source elements having first, second, and third wavelength characteristics; first, second, and third lens arrays that are formed by arranging collimation lenses corresponding to the light source elements of the first, second, and third array light sources; a first light beam combination element that combines parallel light having the first wavelength characteristic formed by the first lens array and parallel light having the second wavelength characteristic formed by the second lens array to form a first combined light beam; a second light beam combination element that combines the first combined light beam of first light beam combination element and parallel light having the third wavelength characteristic formed by the third lens array to form a second combined light beam; and a condenser lens that condenses the second combined light beam of the second light beam combination element on a light quantity homogenization element.

Description

光源裝置及曝光裝置 Light source device and exposure device

本發明係有關於曝光裝置的光源裝置,且特別有關於使用波長特性不同的複數陣列光源的光源裝置及曝光裝置。 The present invention relates to a light source device for an exposure device, and particularly to a light source device and an exposure device using a plurality of array light sources having different wavelength characteristics.

過去,曝光裝置的光源中會使用燈管。具體來說,例如在印刷基板的配線圖樣形成或防銲膜形成中,根據要使用的感光材料的感度特性,使用強烈發出436nm(g線)、405nm(h線)、365nm(i線)的光譜線的水銀燈於光源中。對此,近年來,因應光源的長壽命化或省電力化的要求,持續開發使用LED替代水銀燈管於光源中的光源裝置。LED比起水銀燈管有壽命長的優點,但另一方面,1個LED輸出的光量比水銀燈管少,且相對於水銀燈管輸出包含g線、h線、i線的廣帶域的光,LED輸出特定狹窄帶域的波長的光,因此不能直接使用於需要廣帶域的曝光裝置用的光源中。 In the past, a light tube was used in the light source of the exposure device. Specifically, for example, in the wiring pattern formation of the printed substrate or the formation of the solder resist film, depending on the sensitivity characteristics of the photosensitive material to be used, a strong emission of 436 nm (g line), 405 nm (h line), and 365 nm (i line) is used. The mercury lamp of the spectral line is in the light source. In response to this, in recent years, in response to the demand for long life of the light source or power saving, the light source device using the LED instead of the mercury lamp in the light source has been continuously developed. LED has the advantage of longer life than mercury lamp, but on the other hand, one LED outputs less light than a mercury lamp, and outputs a wide-band light including a g-line, an h-line, and an i-line with respect to a mercury lamp, LED Light of a wavelength of a specific narrow band is output, and thus cannot be directly used in a light source for an exposure device requiring a wide band.

因此,使用由多數的LED組成的LED陣列光源來獲得相當於水銀燈管的光量,以及使用波長特性不同的複數的LED陣列光源來獲得配合感光材料的感度特性的複數波長的光這樣的方案被提出。專利文獻1中,在波長特性不同的複數的LED陣列光源上,重疊了形成各LED元件的發光部的影像的 透鏡陣列,將相同透鏡陣列的集光光束以分色鏡重疊後,形成發光部影像的合成影像,成像於積分器(光量均一化元件)的入射面。 Therefore, a scheme of obtaining a light amount corresponding to a mercury lamp tube using an LED array light source composed of a plurality of LEDs, and using a plurality of LED array light sources having different wavelength characteristics to obtain a plurality of wavelengths of light in accordance with sensitivity characteristics of the photosensitive material is proposed. . In Patent Document 1, an image of a light-emitting portion in which each LED element is formed is superimposed on a plurality of LED array light sources having different wavelength characteristics. In the lens array, the collected light beams of the same lens array are superimposed on the dichroic mirror to form a composite image of the light-emitting portion image, and are imaged on the incident surface of the integrator (light quantity uniformizing element).

專利文獻2的投影曝光裝置(步進機)使用一種光源裝置,此光源裝置使用分色鏡合成從波長特性不同的複數LED陣列光源所發出的光,並成像於積分器的入射面。在此專利文獻2中,從LED陣列光源的各LED元件發出的光做為發散光入射分色鏡。 The projection exposure apparatus (stepper) of Patent Document 2 uses a light source device that synthesizes light emitted from a plurality of LED array light sources having different wavelength characteristics using a dichroic mirror and images the incident surface of the integrator. In Patent Document 2, light emitted from each LED element of the LED array light source is incident on the dichroic mirror as divergent light.

[先行技術文獻] [Advanced technical literature]

專利文獻1:日本特開2012-63390號公報 Patent Document 1: Japanese Laid-Open Patent Publication No. 2012-63390

專利文獻2:日本特開2004-335949號公報 Patent Document 2: Japanese Laid-Open Patent Publication No. 2004-335949

分色鏡一般來說根據光的入射角度的不同,切換於光的反射與透射的截止波長會平移。當透射的光與反射的光的波長差小時,會因為此截止波長的平移而造成光的利用效率降低。在專利文獻1中,LED陣列的影像在積分器的入口成像,而LED陣列周邊部的光在積分器入口被遮擋而產生光量損失。另外,如專利文獻1將LED陣列的共軛面設置於光路中的光學系統的話,透鏡等的光學要素增多,結果就會需要許多空間用來設置光源裝置。 The dichroic mirror generally shifts in accordance with the angle of incidence of the light, and the cutoff wavelength of the reflection and transmission of the light is shifted. When the wavelength difference between the transmitted light and the reflected light is small, the utilization efficiency of light is lowered due to the translation of the cutoff wavelength. In Patent Document 1, an image of an LED array is imaged at an entrance of an integrator, and light at a peripheral portion of the LED array is blocked at an integrator entrance to cause a loss of light amount. Further, in Patent Document 1, when the conjugate surface of the LED array is provided in the optical system in the optical path, optical elements such as lenses are increased, and as a result, a lot of space is required for arranging the light source device.

專利文獻2中,分色鏡的面積隨著光源發出的光的展開而增大,光源裝置必須要有許多空間。再者,專利文獻1及專利文獻2中,從各LED陣列光源到最初的聚光透鏡的入射 位置為止的光路長都必須相等,因此合成的LED陣列的數目越增加,光路長就會有變得越長的傾向,因而需要更多的空間。因此,在這些光學系統中,存在著比現有的曝光裝置的燈管光源更大型化且無法與現有的曝光裝置的光源交換的問題。 In Patent Document 2, the area of the dichroic mirror increases as the light emitted from the light source expands, and the light source device must have a lot of space. Further, in Patent Document 1 and Patent Document 2, incidence from each of the LED array light sources to the first condensing lens Since the optical path lengths at the positions must be equal, the more the number of combined LED arrays increases, the longer the optical path length tends to be, and thus more space is required. Therefore, in these optical systems, there is a problem that the size of the lamp light source of the conventional exposure apparatus is larger and it is impossible to exchange with the light source of the conventional exposure apparatus.

本發明的目的是提供一種省空間的曝光裝置的光源裝置,能夠減少分色鏡(光束合成元件)在光束合成時的光損失,不需要使分色鏡大型化,並且可替代現有的曝光裝置的燈管光源。 An object of the present invention is to provide a light source device for a space-saving exposure apparatus, which can reduce light loss of a dichroic mirror (beam combining element) at the time of beam combining, does not require an enlargement of a dichroic mirror, and can replace an existing exposure apparatus. Lamp source.

本發明的完成是著眼於將發出不同波長光的複數LED陣列光源(陣列光源)的光束轉換成平行光束再入射分色鏡(光束合成元件)的話,就能夠獲得光損失少且不需要長的光路長的小型光源裝置。 The present invention is accomplished by converting a light beam of a plurality of LED array light sources (array light sources) emitting light of different wavelengths into a parallel light beam and then incident on a dichroic mirror (beam combining element), thereby achieving low light loss and no need for long A small light source device with a long optical path.

本發明的光源裝置,包括:第1陣列光源,由放射出第1波長特性的光的複數個光源元件排列而成;第1透鏡陣列,由對應該各光源元件並將該第1波長特性的光分別轉為平行光的準直透鏡排列而成;第2陣列光源,由放射出與該第1波長特性不同的第2波長特性的光的複數個光源元件排列而成;第2透鏡陣列,由對應該各光源元件並將該第2波長特性的光分別轉為平行光的準直透鏡排列而成;第3陣列光源,由放射出與該第1、第2波長特性不同的第3波長特性的光的複數個光源元件排列而成;第3透鏡陣列,由對應該各光源元件並將該第3波長特性的光分別轉為平行光的準直透鏡排列而成;第1光學合成元件,以共用主光軸的方式合成該第1透鏡陣列所形成的該第1波長特 性的平行光以及該第2透鏡陣列所形成的該第2波長特性的平行光,成為第1合成光束;第2光學合成元件,以共用主光軸的方式合成該第1合成光束以及該第3透鏡陣列所形成的該第3波長特性的平行光,形成第2合成光束;以及聚光透鏡,將該第2光學合成元件集光後入射於光量均一化元件。 A light source device according to the present invention includes: a first array light source in which a plurality of light source elements that emit light of a first wavelength characteristic are arranged; and a first lens array that corresponds to each light source element and has the first wavelength characteristic The second array light source is formed by arranging a plurality of light source elements that emit light of a second wavelength characteristic different from the first wavelength characteristic; and the second lens array; a third collimating lens that reflects each of the light source elements and converts the light of the second wavelength characteristic into parallel light; and the third array light source emits a third wavelength different from the first and second wavelength characteristics a plurality of light source elements of characteristic light are arranged; the third lens array is formed by arranging collimating lenses corresponding to the respective light source elements and converting the light of the third wavelength characteristic into parallel light; the first optical composite element Synthesizing the first wavelength ray formed by the first lens array by sharing a main optical axis The parallel light of the second parallel light and the second wavelength characteristic formed by the second lens array are the first combined light beams, and the second optical composite element combines the first combined light beam and the first optical common axis. The parallel light of the third wavelength characteristic formed by the lens array forms a second combined beam, and a collecting lens that collects the second optical combining element and then enters the light amount uniformizing element.

第1光學合成元件與第2光學合成元件實際上分別是由第1與第2分色鏡構成。而第1與第2分色鏡中的至少一者配置成從第1至第3陣列光源入射該分色鏡的光束的入射角小於45°。 The first optical combining element and the second optical combining element are actually constituted by the first and second dichroic mirrors, respectively. At least one of the first and second dichroic mirrors is arranged such that an incident angle of a light beam incident on the dichroic mirror from the first to third array light sources is less than 45°.

更具體來說,可將第1分色鏡配置成從第1陣列光源入射的光束的入射角為45°,將第2分色鏡配置成從第3陣列光源入射的光束的入射角小於45°。 More specifically, the first dichroic mirror may be arranged such that the incident angle of the light beam incident from the first array light source is 45°, and the second dichroic mirror is arranged such that the incident angle of the light beam incident from the third array light source is less than 45 °.

第1陣列光源與第2陣列光源的波長特性中一者是最長波長,另一者是最短波長,第3陣列光源的波長特性是最長波長與最短波長之間的中間波長為佳。 One of the wavelength characteristics of the first array light source and the second array light source is the longest wavelength, and the other is the shortest wavelength, and the wavelength characteristic of the third array light source is preferably the intermediate wavelength between the longest wavelength and the shortest wavelength.

入射於光量均一化元件的入射面的光束的能量分佈為中心部高周邊部低的連續變化。 The energy distribution of the light beam incident on the incident surface of the light amount equalizing element is a continuous change with a low peripheral portion of the center portion.

陣列光源的多數的光源元件配置成格子狀或交錯狀為佳。 It is preferable that most of the light source elements of the array light source are arranged in a lattice shape or a staggered shape.

本發明的另一態樣是使用以上的光源裝置的曝光裝置。 Another aspect of the invention is an exposure apparatus using the above light source device.

本發明的光源裝置因為LED陣列光源(陣列光源)發出的光以平行光的狀態入射分色鏡(光束合成元件),因此 能夠抑制因為入射地點不同所造成的入射角度變化之損失,實現效率良好的光源裝置。再者,因為以平行光的狀態進行光束合成,所以分色鏡不會變大,且能夠將平行光部分的光路做成自由的長度,因此即使是合成3個以上的陣列光源的光學系統也能夠實現省空間的光源裝置。 In the light source device of the present invention, since the light emitted from the LED array light source (array light source) is incident on the dichroic mirror (beam combining element) in a state of parallel light, It is possible to suppress the loss of the incident angle due to the difference in the incident position, and to realize an efficient light source device. Further, since the beam combining is performed in the state of the parallel light, the dichroic mirror does not become large, and the optical path of the parallel light portion can be made free length. Therefore, even in the optical system in which three or more array light sources are combined, A light source device capable of realizing space saving.

10‧‧‧曝光裝置 10‧‧‧Exposure device

11‧‧‧光源裝置 11‧‧‧Light source device

12‧‧‧電源裝置 12‧‧‧Power supply unit

13‧‧‧照明光學系統 13‧‧‧Lighting optical system

13a‧‧‧柱狀積分器 13a‧‧‧column integrator

13b‧‧‧入射端面 13b‧‧‧Injected end face

14‧‧‧圖樣描繪手段 14‧‧‧ Drawing means

15‧‧‧曝光桌 15‧‧‧Exposure table

16‧‧‧控制裝置 16‧‧‧Control device

21‧‧‧第1 LED陣列光源 21‧‧‧1st LED array light source

22‧‧‧第2 LED陣列光源 22‧‧‧2nd LED array light source

23‧‧‧第3 LED陣列光源 23‧‧‧3rd LED array light source

24‧‧‧第4 LED陣列光源 24‧‧‧4th LED array light source

21a、22a、23a、24a‧‧‧LED元件 21a, 22a, 23a, 24a‧‧‧ LED components

21X、22X、23X、24X‧‧‧主光軸 21X, 22X, 23X, 24X‧‧‧ main optical axis

31、32、33、34‧‧‧透鏡陣列 31, 32, 33, 34‧‧‧ lens array

31a、32a、33a、34a‧‧‧準直透鏡 31a, 32a, 33a, 34a‧‧ ‧ collimating lens

41‧‧‧第1分色鏡 41‧‧‧1st dichroic mirror

42‧‧‧第2分色鏡 42‧‧‧2nd dichroic mirror

43‧‧‧聚光透鏡 43‧‧‧ Concentrating lens

44‧‧‧第3分色鏡 44‧‧‧3rd dichroic mirror

W‧‧‧基板 W‧‧‧Substrate

第1圖係顯示本發明包含光源裝置的曝光裝置的全體架構的方塊圖。 Fig. 1 is a block diagram showing the overall architecture of an exposure apparatus including a light source device of the present invention.

第2圖係顯示本發明的光源裝置的第一實施型態的光學架構圖。 Fig. 2 is a view showing an optical architecture of a first embodiment of the light source device of the present invention.

第3圖係顯示本發明的光源裝置的第二實施型態的光學架構圖。 Fig. 3 is a view showing an optical architecture of a second embodiment of the light source device of the present invention.

第4圖係顯示LED陣列光源的一實施型態的平面圖。 Figure 4 is a plan view showing an embodiment of an LED array light source.

第5圖係顯示LED陣列光源的另一實施型態的平面圖。 Figure 5 is a plan view showing another embodiment of an LED array light source.

第6圖係顯示入射照明光學系統的柱狀積分器的入射端面的光的光量分佈。 Fig. 6 is a view showing the light amount distribution of light of the incident end face of the rod integrator of the incident illumination optical system.

第7圖係顯示相對於分色鏡的入射角度與透過率(反射率)的特性。 Fig. 7 shows the characteristics of the incident angle and the transmittance (reflectance) with respect to the dichroic mirror.

第8圖係顯示相對於分色鏡的其他入射角度與透過率(反射率)的特性。 Fig. 8 shows the characteristics of other incident angles and transmittance (reflectance) with respect to the dichroic mirror.

第1圖顯示做為本發明對象的包含光源裝置11的曝光裝置10的全體。第1圖中,箭頭表示光,直線表示控制信 號的連接。被電源裝置12驅動的光源裝置11射出的光入射照明光學系統13,從照明光學系統13射出的光入射圖樣描繪手段14。圖樣描繪手段14將從照明光學系統13入射的光照射到載置於曝光桌15上的基板W。基板W塗布或沈積有感光材料。電源裝置12、圖樣描繪手段14及曝光桌15被控制裝置16所控制。 Fig. 1 shows the entirety of an exposure apparatus 10 including a light source device 11 which is the object of the present invention. In Figure 1, the arrows indicate light and the lines indicate control letters. The connection of the number. The light emitted from the light source device 11 driven by the power supply device 12 is incident on the illumination optical system 13, and the light emitted from the illumination optical system 13 is incident on the pattern drawing means 14. The pattern drawing means 14 irradiates light incident from the illumination optical system 13 to the substrate W placed on the exposure table 15. The substrate W is coated or deposited with a photosensitive material. The power supply device 12, the pattern drawing means 14, and the exposure table 15 are controlled by the control device 16.

更具體來說,照明光學系統13具備將柱狀積分器等的光學裝置11發出的光的面光量分佈進行均一化的積分器(光量均一化元件),並且形成適合圖樣描繪手段14的形狀的照明光。圖樣描繪手段14將從照明光學系統13入射的照明光轉換成用以在基板W上的感光材料形成圖樣的圖樣光。照明光學系統13可具備快門或光量調整手段等。 More specifically, the illumination optical system 13 includes an integrator (light amount uniformizing element) that uniformizes the surface light amount distribution of the light emitted from the optical device 11 such as a rod integrator, and forms a shape suitable for the pattern drawing means 14. Lighting light. The pattern drawing means 14 converts the illumination light incident from the illumination optical system 13 into pattern light for forming a pattern on the photosensitive material on the substrate W. The illumination optical system 13 can be provided with a shutter, a light amount adjustment means, and the like.

圖樣描繪手段14中能夠使用例如DMD等的光調變元件,或者是能夠使用光罩等的遮光手段。另外也可以更具備用來投影圖樣光至感光材料的投影光學系統。感光材料能夠接近或者是抵接光罩等的遮光手段。圖樣描繪手段14及伴隨圖樣描繪手段14而來的光學系統會因應曝光裝置10的用途而適當地設計。曝光桌15可因應需要而兼做基板對齊手段或基板搬送手段等。曝光桌15的形狀等會因應基板而做適當設計。 In the pattern drawing means 14, for example, a light modulation element such as DMD or the like, or a light shielding means such as a photomask can be used. In addition, a projection optical system for projecting the pattern light to the photosensitive material can be further provided. The photosensitive material can approach or be a light-shielding means for abutting a photomask or the like. The pattern drawing means 14 and the optical system accompanying the pattern drawing means 14 are appropriately designed in accordance with the use of the exposure apparatus 10. The exposure table 15 can also serve as a substrate alignment means, a substrate transfer means, and the like as needed. The shape of the exposure table 15 and the like are appropriately designed in accordance with the substrate.

本發明適用於例如以上所述的構造的曝光裝置10中的光源裝置11,第2圖顯示其第一實施型態。 The present invention is applicable to, for example, the light source device 11 in the exposure device 10 of the above-described configuration, and Fig. 2 shows the first embodiment thereof.

此實施型態的光源裝置11具有發出第1波長特性(365nm)的光的第1 LED陣列光源21、發出第2波長特性(405nm)的光的第2 LED陣列光源22、發出第3波長特性(385nm)的光的第3 LED陣列光源23。光源裝置11將這些不 同波長特性的光從上流開始依序合成。第1至第3 LED陣列光源21、22、23除了發出的波長外,構造皆相同,分別具備發出365nm的光的複數的LED元件21a、發出405nm的光的複數的LED元件22a、發出385nm的光的複數的LED元件23a。第2圖中,為了圖式的簡潔,僅畫出排列了3個的LED元件21a、22a、23a,但實際上這些LED元件21a、22a、23a是縱向及橫向排列多個於同一平面上。第4圖、第5圖就顯示了具體的平面配置的例子,第4圖的例子中,LED元件21a、22a、23a縱橫排列成格子狀(矩陣狀),第5圖的例子中則是縱橫排列成交錯狀。交錯狀排列是當各橫列的LED元件21a、22a、23a的排列間距為p時,在上與下列LED元件21a、22a、21c的間距會偏移p/2。這種交錯狀排列比起格子狀排列,能夠提高LED元件的密度而抑制照明光學系統所使用的光的損失。 The light source device 11 of this embodiment has a first LED array light source 21 that emits light having a first wavelength characteristic (365 nm), and a second LED array light source 22 that emits light having a second wavelength characteristic (405 nm), and emits a third wavelength characteristic. The third LED array light source 23 of light (385 nm). Light source device 11 will not these Light of the same wavelength characteristic is synthesized sequentially from the upstream. The first to third LED array light sources 21, 22, and 23 have the same structure except for the emitted wavelengths, and each of them has a plurality of LED elements 21a that emit light of 365 nm, a plurality of LED elements 22a that emit light of 405 nm, and emits 385 nm. A plurality of LED elements 23a of light. In the second drawing, only three LED elements 21a, 22a, and 23a are arranged for the sake of simplicity of the drawings. Actually, these LED elements 21a, 22a, and 23a are arranged in a plurality of planes in the vertical direction and the lateral direction. 4 and 5 show an example of a specific planar arrangement. In the example of Fig. 4, the LED elements 21a, 22a, and 23a are vertically and horizontally arranged in a lattice shape (matrix shape), and in the example of Fig. 5, the vertical and horizontal directions are Arranged in a staggered shape. The staggered arrangement is such that when the arrangement pitch of the LED elements 21a, 22a, 23a of the respective rows is p, the pitch of the upper and lower LED elements 21a, 22a, 21c is shifted by p/2. This staggered arrangement is arranged in a lattice shape, and the density of the LED elements can be increased to suppress the loss of light used in the illumination optical system.

第1至第3 LED陣列光源21、22、23上分別重疊配置著透鏡陣列31、32、33。透鏡陣列31、32、33分別具備複數的準直透鏡31a、32a、33a,對應各LED元件21a、22a、23a並且將各LED元件21a、22a、23a的發散光轉為平行光束。LED元件雖然嚴格地實行面發光,但因為發光面積相對於光學系統來說相當地小所以實質上可說是點光源,因此能夠使用準直透鏡將LED元件發出的光轉換為平行光束。在此所述的平行光束並不一定要是完全平行的光,只要實質上可視為平行光的程度的話也可帶有相對於光軸的夾角(例如2°以內)。準直透鏡31a、32a、33a的平面配置與LED元件21a、22a、23a的平面配置相同,第4圖、第5圖將兩者合併描繪。如已知技術,相對於LED元件 21a、22a、23a的發光部的光為發散光,準直透鏡31a、32a、33a以各LED元件21a、22a、23a為單位將發散光轉為平行光束。也就是說,被各準直透鏡31a、32a、33a轉為平行光束的LED元件21a、22a、23a的光軸互相平行且彼此獨立,並無共有關係。以下為了說明方便,將第1 LED光源21與透鏡陣列31、第2 LED光源22與透鏡陣列32、第3 LED光源23與透鏡陣列33所形成的平行光束群的中心的光軸定義為主光軸21X、22X、23X。 The lens arrays 31, 32, and 33 are superposed on the first to third LED array light sources 21, 22, and 23, respectively. Each of the lens arrays 31, 32, and 33 includes a plurality of collimator lenses 31a, 32a, and 33a, and converts the divergent lights of the respective LED elements 21a, 22a, and 23a into parallel beams in accordance with the respective LED elements 21a, 22a, and 23a. Although the LED element strictly performs surface light emission, since the light-emitting area is relatively small with respect to the optical system, it can be said that it is a point light source. Therefore, the light emitted from the LED element can be converted into a parallel light beam using a collimator lens. The parallel beams described herein do not necessarily have to be completely parallel, and may have an included angle (e.g., within 2°) with respect to the optical axis as long as they are substantially visible as parallel light. The planar arrangement of the collimator lenses 31a, 32a, and 33a is the same as the planar arrangement of the LED elements 21a, 22a, and 23a, and the fourth and fifth figures are combined and drawn. As known in the art, relative to LED components The light of the light-emitting portions of 21a, 22a, and 23a is divergent light, and the collimator lenses 31a, 32a, and 33a convert the divergent light into a parallel light beam in units of the respective LED elements 21a, 22a, and 23a. That is, the optical axes of the LED elements 21a, 22a, 23a which are converted into parallel beams by the respective collimator lenses 31a, 32a, 33a are parallel to each other and independent of each other, and have no mutual relationship. Hereinafter, for convenience of explanation, the optical axis of the center of the parallel beam group formed by the first LED light source 21, the lens array 31, the second LED light source 22, the lens array 32, the third LED light source 23, and the lens array 33 is defined as the main light. Axis 21X, 22X, 23X.

第1 LED陣列光源21的主光軸21X上依序配置第1分色鏡41、第2分色鏡42、及聚光透鏡43。照明光學系統13的柱狀積分器13a位於聚光透鏡43的集光位置。相對於第1分色鏡41的主光軸21X的入射角(主光軸21X與鏡面41的入射面的法線間的夾角)為α,相對於第2分色鏡42的主光軸21X的入射角(主光軸21X與鏡面42的入射面的法線間的夾角)為β。 The first dichroic mirror 41, the second dichroic mirror 42, and the collecting lens 43 are disposed on the main optical axis 21X of the first LED array light source 21 in this order. The column integrator 13a of the illumination optical system 13 is located at the light collecting position of the collecting lens 43. The incident angle with respect to the main optical axis 21X of the first dichroic mirror 41 (the angle between the main optical axis 21X and the normal to the incident surface of the mirror 41) is α, with respect to the main optical axis 21X of the second dichroic mirror 42. The incident angle (the angle between the main optical axis 21X and the normal to the incident surface of the mirror 42) is β.

第2 LED陣列光源22以入射第1分色鏡41的背面後反射的主光軸22X與主光軸21X一致的方式配置。第3 LED陣列光源23以入射第2分色鏡42的背面後反射的主光軸23X與主光軸21X(及主光軸22X)一致的方式配置。相對於第1分色鏡41的主光軸22X的入射角(主光軸22X與鏡面41的背面入射面的法線間的夾角)為γ,在此實施型態中α=γ=45°。相對於第2分色鏡42的主光軸23X的入射角(主光軸23X與鏡面42的背面入射面的法線間的夾角)為δ,在此實施型態中β=δ=25°(β=δ<45°)。 The second LED array light source 22 is disposed such that the main optical axis 22X reflected by the back surface of the first dichroic mirror 41 and reflected rearward matches the main optical axis 21X. The third LED array light source 23 is disposed such that the main optical axis 23X reflected rearward of the second dichroic mirror 42 and the main optical axis 21X (and the main optical axis 22X) coincide with each other. The incident angle with respect to the main optical axis 22X of the first dichroic mirror 41 (the angle between the main optical axis 22X and the normal line of the rear surface incident surface of the mirror surface 41) is γ, and in this embodiment, α = γ = 45°. . The incident angle with respect to the main optical axis 23X of the second dichroic mirror 42 (the angle between the main optical axis 23X and the normal to the back surface incident surface of the mirror 42) is δ, and in this embodiment, β = δ = 25°. (β = δ < 45 °).

第1分色鏡41具有使第1 LED陣列光源21的波長特性的光透過,使第2 LED陣列光源22的波長特性的光反射的特 性。第2分色鏡42具有使第1 LED陣列光源21及第2 LED陣列光源22的波長特性的光透過,使第3 LED陣列光源23的波長特性的光反射的特性。 The first dichroic mirror 41 has a characteristic of transmitting light having a wavelength characteristic of the first LED array light source 21 and reflecting light having a wavelength characteristic of the second LED array light source 22. Sex. The second dichroic mirror 42 has a characteristic of transmitting light having a wavelength characteristic of the first LED array light source 21 and the second LED array light source 22 and reflecting light of a wavelength characteristic of the third LED array light source 23 .

也就是說,第1分色鏡41、第2分色鏡42是為了獲得以上的透過反射特性,而考量設置角度α、β、γ、δ,做為多層膜被設計且製造出來。 In other words, the first dichroic mirror 41 and the second dichroic mirror 42 are designed and manufactured as a multilayer film in order to obtain the above-described transmission and reflection characteristics while considering the angles α, β, γ, and δ.

因此,第1分色鏡41、第2分色鏡42合成來自第1 LED陣列21與透鏡陣列31、第2 LED陣列22與透鏡陣列32、第3 LED陣列23與透鏡陣列33的平行光束群,被合成的光透過聚光透鏡43集光於照明光學系統13的柱狀積分器13a的入射端面13b。柱狀積分器13a是,將入射的光束的平面光量分佈均一化後射出的,一般已知的光量均一化元件。 Therefore, the first dichroic mirror 41 and the second dichroic mirror 42 combine parallel beam groups from the first LED array 21 and the lens array 31, the second LED array 22 and the lens array 32, the third LED array 23, and the lens array 33. The synthesized light is transmitted through the collecting lens 43 to the incident end surface 13b of the rod integrator 13a of the illumination optical system 13. The rod integrator 13a is a generally known light quantity uniformizing element that homogenizes the plane light quantity distribution of the incident light beam.

本實施型態中,入射第1分光鏡41的第1 LED陣列光源21的光束及第2 LED陣列光源22的光束、入射第2分光鏡42的第1 LED陣列光源21的光束、第2 LED陣列光源22的光束、及第3 LED陣列光源23的光束任一者皆為平行光束(群)。因此,光入射於第1分色鏡41、第2分色鏡42的任一部位的入射角是同樣的(入射角不會因為光的入射部位不同而有差異),並且透過分光鏡或者是被分光鏡所反射的光的比例是同樣的。因此,藉由適當地設計分色鏡的反射與透過的截止波長,能夠將在分色鏡的光損失抑制到最小。 In the present embodiment, the light beam of the first LED array light source 21 and the light flux of the second LED array light source 22 incident on the first dichroic mirror 41, the light beam of the first LED array light source 21 incident on the second dichroic mirror 42, and the second LED Any of the light beams of the array light source 22 and the light beams of the third LED array light source 23 are parallel light beams (groups). Therefore, the incident angle at which light is incident on any one of the first dichroic mirror 41 and the second dichroic mirror 42 is the same (the incident angle is not different depending on the incident portion of the light), and is transmitted through the beam splitter or The proportion of light reflected by the beam splitter is the same. Therefore, the light loss at the dichroic mirror can be minimized by appropriately designing the reflection of the dichroic mirror and the cutoff wavelength of the transmission.

本實施型態在上流側的第1分色鏡41合成最短波長(365nm)的第1 LED陣列光源21發出的光與最長波長(405nm)的第2 LED陣列光源22發出的光,接著在下流側的 第2分色鏡42合成中間波長(385nm)的第3 LED陣列光源23發出的光。第1 LED陣列光源21發射的波長與第2 LED陣列光源22發射的波長之間存在著極大的波長差,因此第1分色鏡41能夠取更大的切換透過與反射的截止波長的容限。因此,將入射第1分色鏡41的入射角α與γ取在能夠使鏡面面積最小的配置效率佳的45°。相對於此,在第2分色鏡42的透過波長與反射波長的波長差小。因此,入射角δ為45°的話第3 LED陣列光源23往第2分色鏡42入射的光一部分會透過而不會反射,效率不佳。因此,第2圖的實施型態中,將朝向第2分色鏡42的主光軸23X的入射角δ設定為25°,使切換透過與反射的截止波長的寬度變狹窄(使截止波長曲線的傾斜變急遽)。如此一來,因應合成光的波長的間隔來適當地設定分色鏡的角度,藉此來提高光源裝置的光利用效率。 In the present embodiment, the first dichroic mirror 41 on the upstream side synthesizes the light emitted from the first LED array light source 21 of the shortest wavelength (365 nm) and the light emitted from the second LED array light source 22 of the longest wavelength (405 nm), and then flows downward. Side The second dichroic mirror 42 synthesizes light emitted from the third LED array light source 23 having an intermediate wavelength (385 nm). There is a great difference in wavelength between the wavelength emitted by the first LED array light source 21 and the wavelength emitted by the second LED array source 22, so that the first dichroic mirror 41 can take a larger tolerance for switching the cutoff wavelength of transmission and reflection. . Therefore, the incident angles α and γ incident on the first dichroic mirror 41 are set to 45° which is excellent in the arrangement efficiency which can minimize the mirror surface area. On the other hand, the wavelength difference between the transmission wavelength of the second dichroic mirror 42 and the reflection wavelength is small. Therefore, when the incident angle δ is 45°, part of the light incident on the second dichroic mirror 42 by the third LED array light source 23 is transmitted without being reflected, and the efficiency is not good. Therefore, in the embodiment of Fig. 2, the incident angle δ toward the main optical axis 23X of the second dichroic mirror 42 is set to 25°, and the width of the cutoff wavelength for switching transmission and reflection is narrowed (the cutoff wavelength curve is made). The tilt becomes impatient). In this way, the angle of the dichroic mirror is appropriately set in accordance with the interval of the wavelength of the combined light, thereby improving the light use efficiency of the light source device.

第7圖、第8圖是顯示入射分色鏡的入射角θ、入射波長nm、及切換透過與反射的波長(透過率)的圖。分色鏡在45°的使用下,其截止波長如第7圖所示地具有約20nm的寬度。另一方面。在25°的使用下,其截止波長具有約10nm的寬度(第8圖)。因此,如第8圖所示,合成的光的波長的間隔窄時,會希望減少分色鏡的角度以在截止波長的寬度窄的狀態下使用。若入射分色鏡的光非平行光,入射角度會因位置而不同的情況下,如第7圖所示,截止波長的位置會平移。因此以分色鏡全體來看的話跟截止波長的寬度寬的結果是相同的。例如入射角度有9°的差距時,截止波長的寬度實質上擴大了約10nm,而成為30nm(第7圖)。 Fig. 7 and Fig. 8 are diagrams showing the incident angle θ of the incident dichroic mirror, the incident wavelength nm, and the wavelength (transmittance) for switching transmission and reflection. The dichroic mirror has a cutoff wavelength of about 20 nm as shown in Fig. 7 under the use of 45°. on the other hand. At a use of 25°, the cutoff wavelength has a width of about 10 nm (Fig. 8). Therefore, as shown in Fig. 8, when the interval of the wavelength of the synthesized light is narrow, it is desirable to reduce the angle of the dichroic mirror to be used in a state where the width of the cutoff wavelength is narrow. If the light incident on the dichroic mirror is non-parallel and the incident angle will vary depending on the position, as shown in Fig. 7, the position of the cutoff wavelength will shift. Therefore, as a whole of the dichroic mirror, the result is the same as the width of the cutoff wavelength. For example, when the incident angle has a difference of 9°, the width of the cutoff wavelength is substantially expanded by about 10 nm to become 30 nm (Fig. 7).

又在本實施型態中,第1至第3 LED陣列光源21、22、23的透鏡陣列31、32、33至聚光透鏡43之間為平行光,第1至第3 LED陣列光源21、22、23的共軛面並不存在。因此,第1至第3 LED陣列光源21、22、23至聚光透鏡43之間的光路長能夠是任意距離。也就是說,第1 LED陣列光源21至聚光透鏡43、第2 LED陣列光源22至聚光透鏡43、第3 LED陣列光源23至聚光透鏡43的光路長並沒有受限,因此光路設計的自由度高,能夠節省光源裝置的空間。 Further, in the present embodiment, the lens arrays 31, 32, 33 of the first to third LED array light sources 21, 22, and 23 are parallel to the condensing lens 43, and the first to third LED array light sources 21, The conjugate plane of 22, 23 does not exist. Therefore, the optical path length between the first to third LED array light sources 21, 22, 23 to the collecting lens 43 can be any distance. That is, the optical path lengths of the first LED array light source 21 to the condensing lens 43, the second LED array light source 22 to the condensing lens 43, and the third LED array source 23 to the condensing lens 43 are not limited, so the optical path design The high degree of freedom allows for space savings in the light source unit.

第6圖顯示往照明光學系統13的柱狀積分器13a的入射端面13b入射的光束的光量分佈。本實施型態中,LED元件至柱狀積分器的入射端面13b為止是形成科勒照明的關係。被聚光透鏡43集光於柱狀積分器13a的入射端面13b的光是來自全部LED元件的平行光,因此在柱狀積分器13a的入射端面13b上的光量分佈為一種中心的能量密度最高,越往周邊能量密度越低的連續的圖形,其形狀成為中心部高周邊部低的高斯分佈。因此,即使柱狀積分器13a的入射開口尺寸小,照明光學系統13也能汲取大量的光,能夠提高光的利用效率。 Fig. 6 shows the light amount distribution of the light beam incident on the incident end surface 13b of the rod integrator 13a of the illumination optical system 13. In the present embodiment, the relationship between the LED elements and the incident end surface 13b of the rod integrator is Kohler illumination. The light collected by the collecting lens 43 on the incident end surface 13b of the rod integrator 13a is parallel light from all the LED elements, and therefore the light amount distribution on the incident end surface 13b of the rod integrator 13a is the center having the highest energy density. The continuous pattern having a lower energy density toward the periphery has a Gaussian distribution with a low peripheral portion at the center portion. Therefore, even if the incident opening size of the rod integrator 13a is small, the illumination optical system 13 can extract a large amount of light, and the utilization efficiency of light can be improved.

第3圖是顯示一種4波長合成的實施型態,在第2圖的光源裝置11中,配置第3分色鏡44於第3 LED陣列光源23的主光軸23X上,並且將來自發出第2中間波長(400nm)的光的第4 LED陣列光源24與透鏡陣列34的平行光束群入射第3分色鏡44的背面入射面。第4 LED陣列光源24具備發射400nm的光的複數LED元件24a(參照第4、5圖),透鏡陣列34具備複數的準直透鏡34a,對應各LED元件24a並將各LED元件24a發出的發 散光轉為平行光束。第3分色鏡44具備使第3 LED陣列光源23發出的385nm的光透過,使第4 LED陣列光源24發出的400nm的光反射的特性。主光軸23X對於第3分色鏡44的入射角(主光軸23X與鏡面43的入射面的法線的夾角)為ε,主光軸24X對於第3分色鏡44的入射角(主光軸24X與鏡面44的背面入射面的法線的夾角)為η。 Fig. 3 is a view showing an embodiment of a four-wavelength synthesis. In the light source device 11 of Fig. 2, a third dichroic mirror 44 is disposed on the main optical axis 23X of the third LED array light source 23, and The parallel beam group of the fourth LED array light source 24 and the lens array 34 of the intermediate wavelength (400 nm) light is incident on the back surface incident surface of the third dichroic mirror 44. The fourth LED array light source 24 includes a plurality of LED elements 24a that emit light of 400 nm (see FIGS. 4 and 5). The lens array 34 includes a plurality of collimator lenses 34a, and the LED elements 24a are emitted corresponding to the LED elements 24a. The astigmatism turns into a parallel beam. The third dichroic mirror 44 has a characteristic of transmitting light of 385 nm emitted from the third LED array light source 23 and reflecting light of 400 nm emitted from the fourth LED array light source 24. The incident angle of the main optical axis 23X with respect to the third dichroic mirror 44 (the angle between the main optical axis 23X and the normal of the incident surface of the mirror surface 43) is ε, and the incident angle of the main optical axis 24X with respect to the third dichroic mirror 44 (main The angle between the optical axis 24X and the normal line of the back surface incident surface of the mirror surface 44 is η.

上述實施型態中,顯示了LED陣列光源21~24代表陣列光源,但也可以使用半導體雷射陣列光源、或者是將半導體雷射元件與光纖連接物束在一起的光纖陣列光源。另外雖以分色鏡41至43的例子表示光束合成元件,但也可以使用分色稜鏡等的光束合成元件。 In the above embodiment, it is shown that the LED array light sources 21 to 24 represent array light sources, but a semiconductor laser array light source or an optical fiber array light source that bundles the semiconductor laser elements with the optical fiber connectors may be used. Further, although the beam combining elements are shown as an example of the dichroic mirrors 41 to 43, a beam combining element such as a color separation pupil may be used.

11‧‧‧光源裝置 11‧‧‧Light source device

13‧‧‧照明光學系統 13‧‧‧Lighting optical system

13a‧‧‧柱狀積分器 13a‧‧‧column integrator

13b‧‧‧入射端面 13b‧‧‧Injected end face

21‧‧‧第1 LED陣列光源 21‧‧‧1st LED array light source

22‧‧‧第2 LED陣列光源 22‧‧‧2nd LED array light source

23‧‧‧第3 LED陣列光源 23‧‧‧3rd LED array light source

21a、22a、23a‧‧‧LED元件 21a, 22a, 23a‧‧‧ LED components

21X、22X、23X‧‧‧主光軸 21X, 22X, 23X‧‧‧ main optical axis

31、32、33‧‧‧透鏡陣列 31, 32, 33‧‧‧ lens array

31a、32a、33a‧‧‧準直透鏡 31a, 32a, 33a‧‧ ‧ collimating lens

41‧‧‧第1分色鏡 41‧‧‧1st dichroic mirror

42‧‧‧第2分色鏡 42‧‧‧2nd dichroic mirror

43‧‧‧聚光透鏡 43‧‧‧ Concentrating lens

Claims (5)

一種光源裝置,包括:第1陣列光源,由放射出第1波長特性的光的複數個光源元件排列而成;第1透鏡陣列,由對應該各光源元件並將該第1波長特性的光分別轉為平行光的準直透鏡排列而成;第2陣列光源,由放射出與該第1波長特性不同的第2波長特性的光的複數個光源元件排列而成;第2透鏡陣列,由對應該各光源元件並將該第2波長特性的光分別轉為平行光的準直透鏡排列而成;第3陣列光源,由放射出與該第1、第2波長特性不同的第3波長特性的光的複數個光源元件排列而成;第3透鏡陣列,由對應該各光源元件並將該第3波長特性的光分別轉為平行光的準直透鏡排列而成;第1光學合成元件,以共用主光軸的方式合成該第1透鏡陣列所形成的該第1波長特性的平行光以及該第2透鏡陣列所形成的該第2波長特性的平行光,成為第1合成光束;第2光學合成元件,以共用主光軸的方式合成該第1合成光束以及該第3透鏡陣列所形成的該第3波長特性的平行光,形成第2合成光束;以及聚光透鏡,將該第2光學合成元件集光後入射於光量均一化元件。 A light source device comprising: a first array light source in which a plurality of light source elements emitting light of a first wavelength characteristic are arranged; and a first lens array respectively corresponding to each light source element and having light of the first wavelength characteristic a collimating lens that is converted into parallel light is arranged; the second array light source is formed by a plurality of light source elements that emit light of a second wavelength characteristic different from the first wavelength characteristic; and the second lens array is paired Each of the light source elements is formed by arranging a collimating lens that converts the light of the second wavelength characteristic into parallel light, and the third array light source emits a third wavelength characteristic different from the first and second wavelength characteristics. a plurality of light source elements of light are arranged; the third lens array is formed by arranging collimating lenses corresponding to the respective light source elements and converting the light of the third wavelength characteristic into parallel light; the first optical combining element The parallel light of the first wavelength characteristic formed by the first lens array and the parallel light of the second wavelength characteristic formed by the second lens array are combined to form a first combined beam and a second optical Synthetic component, The first combined beam and the parallel light of the third wavelength characteristic formed by the third lens array are combined to form a second combined beam, and a collecting lens is formed to share the main optical axis, and the second optical combining element is assembled The light is incident on the light amount uniformizing element. 如申請專利範圍第1項所述之光源裝置,其中該第1光學合成元件與該第2光學合成元件分別是第1分色鏡與第2分色 鏡,該第1分色鏡與第2分色鏡中的至少一者配置成從該第1至第3陣列光源入射該分色鏡的光束的入射角小於45°。 The light source device according to claim 1, wherein the first optical combining element and the second optical combining element are a first dichroic mirror and a second color separation, respectively The mirror is configured such that at least one of the first dichroic mirror and the second dichroic mirror is disposed such that an incident angle of a light beam incident on the dichroic mirror from the first to third array light sources is less than 45°. 如申請專利範圍第2項所述之光源裝置,其中該第1分色鏡配置成從該第1陣列光源入射的光束的入射角為45°,該第2分色鏡配置成從該第3陣列光源入射的光束的入射角小於45°。 The light source device according to claim 2, wherein the first dichroic mirror is disposed such that an incident angle of a light beam incident from the first array light source is 45°, and the second dichroic mirror is disposed from the third The incident angle of the beam incident by the array source is less than 45°. 如申請專利範圍第1至3項任一項所述之光源裝置,其中該第1陣列光源與該第2陣列光源的波長特性中一者是最長波長,另一者是最短波長,該第3陣列光源的波長特性是該最長波長與該最短波長之間的中間波長。 The light source device according to any one of claims 1 to 3, wherein one of the wavelength characteristics of the first array light source and the second array light source is the longest wavelength, and the other is the shortest wavelength, the third The wavelength characteristic of the array source is the intermediate wavelength between the longest wavelength and the shortest wavelength. 一種曝光裝置,包括:如申請專利範圍第1至4項任一項所述之光源裝置。 An exposure apparatus comprising: the light source device according to any one of claims 1 to 4 of the patent application.
TW103112964A 2013-04-12 2014-04-09 Light source device and exposure device TWI600975B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083439A JP6199591B2 (en) 2013-04-12 2013-04-12 Light source apparatus and exposure apparatus

Publications (2)

Publication Number Publication Date
TW201506549A true TW201506549A (en) 2015-02-16
TWI600975B TWI600975B (en) 2017-10-01

Family

ID=51994135

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103112964A TWI600975B (en) 2013-04-12 2014-04-09 Light source device and exposure device

Country Status (3)

Country Link
JP (1) JP6199591B2 (en)
KR (1) KR102144597B1 (en)
TW (1) TWI600975B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106773549A (en) * 2017-01-21 2017-05-31 南京新趋势光电有限公司 A kind of high uniformity LED directional lights ultraviolet exposure machine light-source system
CN107621755A (en) * 2016-07-14 2018-01-23 苏斯微技术光刻有限公司 Light source arrangement and lithographic exposure systems for lithographic exposure systems
WO2021109393A1 (en) * 2019-12-05 2021-06-10 中山新诺科技股份有限公司 Digital exposure process and system for solder resist line integrated exposure
CN113643617A (en) * 2021-08-13 2021-11-12 重庆御光新材料股份有限公司 Transparent optical fiber display screen

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6471900B2 (en) * 2015-03-26 2019-02-20 ウシオ電機株式会社 Light source device, exposure device
JP6128348B2 (en) * 2015-03-26 2017-05-17 ウシオ電機株式会社 Light source device, exposure device
JP6529809B2 (en) * 2015-04-14 2019-06-12 株式会社サーマプレシジョン Light irradiation apparatus and exposure apparatus
US10520824B2 (en) 2016-03-03 2019-12-31 Asml Netherlands B.V. Wavelength combining of multiple source
JP6623847B2 (en) * 2016-03-07 2019-12-25 ウシオ電機株式会社 Light source device and exposure apparatus having the same
CN108121163B (en) * 2016-11-29 2019-10-25 上海微电子装备(集团)股份有限公司 A kind of light source exposure dose control system and control method
JP7025683B2 (en) * 2017-06-08 2022-02-25 ウシオ電機株式会社 Light source device
WO2019155886A1 (en) * 2018-02-08 2019-08-15 株式会社ブイ・テクノロジー Proximity exposure device, proximity exposure method, and light irradiation device for proximity exposure device
JP7060244B2 (en) * 2018-12-12 2022-04-26 フェニックス電機株式会社 A light source for an exposure device, an exposure device using the light source, and an exposure method for a resist.
JP7154603B2 (en) * 2019-11-13 2022-10-18 フェニックス電機株式会社 Light source for exposure equipment
WO2024038535A1 (en) * 2022-08-18 2024-02-22 株式会社ニコン Lighting unit, exposure device, and exposure method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3963107B2 (en) * 1998-06-05 2007-08-22 セイコーエプソン株式会社 Light source device and display device
JP2004335949A (en) 2002-11-29 2004-11-25 Nikon Corp Aligner and exposure method
JP4655103B2 (en) * 2008-04-14 2011-03-23 ソニー株式会社 GaN-based semiconductor light-emitting device, light-emitting device assembly, light-emitting device, driving method for GaN-based semiconductor light-emitting device, and image display device
JP5648372B2 (en) * 2010-08-25 2015-01-07 ウシオ電機株式会社 Light source device
JP2012049226A (en) * 2010-08-25 2012-03-08 Ushio Inc Light source device
JP5687013B2 (en) * 2010-09-14 2015-03-18 株式会社Screenホールディングス Exposure apparatus and light source apparatus
JP5895226B2 (en) * 2010-11-30 2016-03-30 パナソニックIpマネジメント株式会社 Light source device and projection display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107621755A (en) * 2016-07-14 2018-01-23 苏斯微技术光刻有限公司 Light source arrangement and lithographic exposure systems for lithographic exposure systems
TWI755407B (en) * 2016-07-14 2022-02-21 德商蘇士微科技印刷術股份有限公司 Light source arrangement for a photolithography exposure system and photolithography exposure system
CN106773549A (en) * 2017-01-21 2017-05-31 南京新趋势光电有限公司 A kind of high uniformity LED directional lights ultraviolet exposure machine light-source system
CN106773549B (en) * 2017-01-21 2024-02-27 南京新趋势光电有限公司 High-uniformity LED parallel light ultraviolet exposure machine light source system
WO2021109393A1 (en) * 2019-12-05 2021-06-10 中山新诺科技股份有限公司 Digital exposure process and system for solder resist line integrated exposure
CN113643617A (en) * 2021-08-13 2021-11-12 重庆御光新材料股份有限公司 Transparent optical fiber display screen
CN113643617B (en) * 2021-08-13 2023-02-28 重庆御光新材料股份有限公司 Transparent optical fiber display screen

Also Published As

Publication number Publication date
KR20140123421A (en) 2014-10-22
JP2014207300A (en) 2014-10-30
TWI600975B (en) 2017-10-01
JP6199591B2 (en) 2017-09-20
KR102144597B1 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
TWI600975B (en) Light source device and exposure device
JP4471903B2 (en) Illumination unit and image projection apparatus employing the same
JP4550721B2 (en) Illumination unit and image projection apparatus employing the same
JP6690217B2 (en) Light source device and projector
JP6082560B2 (en) Light source device and projection display device using the same
JP6413498B2 (en) Lighting device and projector
JP6349784B2 (en) Light source unit, illumination device, and image projection device
JP5954845B2 (en) Illumination optical system, method for improving color unevenness of illumination optical system, projector and projector system
JP2013015762A (en) Illumination optical system and image display apparatus
TWI570500B (en) A light source device, a lighting device, and a projector
TW574590B (en) Integrator type illumination optical system and projector having the same
KR20120048018A (en) Dual total internal reflection polarizing beamsplitter
WO2020137749A1 (en) Light source device and protection-type video display device
JP2017111287A (en) Projection device
JP2015132666A (en) Light source optical system, light source device, and projector device
CN112068392A (en) LCD projector with active color separation illumination
TWI489855B (en) Light source system for stereoscopic projection
JP4138743B2 (en) LCD projector
KR101444508B1 (en) Light source apparatus
JP2008070769A (en) Light source unit, illumination device and projector device
JP2006269415A (en) Lighting system
JP2010091846A (en) Projection display device
JP2016057644A (en) Illumination optical system and image display apparatus
TW200935193A (en) Lighting device, exposure device, exposure method and element production method
JP5515200B2 (en) Illumination optical system and projector apparatus