TW201504598A - Method for self-calibrating a rotary encoder - Google Patents

Method for self-calibrating a rotary encoder Download PDF

Info

Publication number
TW201504598A
TW201504598A TW103117466A TW103117466A TW201504598A TW 201504598 A TW201504598 A TW 201504598A TW 103117466 A TW103117466 A TW 103117466A TW 103117466 A TW103117466 A TW 103117466A TW 201504598 A TW201504598 A TW 201504598A
Authority
TW
Taiwan
Prior art keywords
self
scale
frequency
encoder
distortion parameters
Prior art date
Application number
TW103117466A
Other languages
Chinese (zh)
Other versions
TWI564548B (en
Inventor
Amit Agrawal
Jay Thornton
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/899,025 external-priority patent/US9423281B2/en
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of TW201504598A publication Critical patent/TW201504598A/en
Application granted granted Critical
Publication of TWI564548B publication Critical patent/TWI564548B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/001Calibrating encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

A method for self-calibrating a rotary encoder including a single read-head and a circular scale, comprises the steps of: acquiring calibration samples by the read-head for rotational angles of the circular scale; and estimating spatial frequency and spatial distortion parameters of the encoder from the calibration samples for self-calibrating the rotary encoder.

Description

旋轉編碼器的自校正方法 Self-correcting method for rotary encoder

本發明係有關於測量裝置,特別是有關於用於測量絕對旋轉角的絕對旋轉編碼器。 The present invention relates to measuring devices, and more particularly to absolute rotary encoders for measuring absolute rotational angles.

準確估計線性位置及旋轉角度為產業自動化及類似應用系統中的重要任務。諸如數值控制(CNC)機器、鑽頭、機械手臂或雷射切割機和組裝線皆需要精確的測量值。反饋控制常用於精密測量。 Accurate estimation of linear position and rotation angle is an important task in industrial automation and similar applications. Accurate measurements are required for applications such as numerical control (CNC) machines, drill bits, robotic arms or laser cutting machines and assembly lines. Feedback control is often used for precision measurements.

典型編碼器包括刻度尺(scale)及讀出頭(read-head)。光學編碼器常用來測量絕對或相對線性位置或旋轉角度。相對編碼器係在刻度尺週期內測量相對位置或角度,以及需要計數所遍歷的刻度尺週期數以確定絕對位置或角度。絕對編碼器不需要記憶體或電力以儲存當前位置或角度,並且在任何時候都可得到這些數據,尤其是在起動時。 A typical encoder includes a scale and a read-head. Optical encoders are commonly used to measure absolute or relative linear position or angle of rotation. The relative encoder measures the relative position or angle over the scale period and counts the number of scale cycles traversed to determine the absolute position or angle. Absolute encoders do not require memory or power to store the current position or angle, and are available at all times, especially at startup.

光學編碼器可為線性或旋轉型。線性編碼器可測量位置,而旋轉編碼器可測量角度。習知的絕對旋轉編碼器通常使用多條軌道以及應用基於正餘弦的內插法 以實現高解析度。 The optical encoder can be linear or rotary. A linear encoder measures the position and a rotary encoder measures the angle. Conventional absolute rotary encoders typically use multiple tracks and apply sine-based cosine interpolation To achieve high resolution.

使用單一刻度尺及單一CCD/CMOS感測器的單一軌道絕對線性編碼器係描述於本專利申請案。該編碼器不使用習知基於正餘弦的內插法。反而,該編碼器在掃描線中偵測邊緣或零交叉點(zero-crossing),以及擬合模型至該等邊緣位置以得到高解析度之絕對位置資訊。該編碼器係用線性讀出頭擷取線性刻度尺的一維影像。 A single track absolute linear encoder using a single scale and a single CCD/CMOS sensor is described in this patent application. The encoder does not use conventional sine-based cosine interpolation. Instead, the encoder detects edges or zero-crossing in the scan line and fits the model to the edge positions to obtain high resolution absolute position information. The encoder uses a linear read head to capture a one-dimensional image of a linear scale.

精確的機械加工及製造設備需要高準確度的旋轉編碼器。不過,旋轉編碼器可能在製造期間引進數種誤差。這些誤差包括刻度尺樣式(scale pattern)的誤差,安裝刻度尺於轉軸上的誤差,讀出頭對齊誤差,以及電路雜訊誤差。 Precise machining and manufacturing equipment requires highly accurate rotary encoders. However, rotary encoders may introduce several types of errors during manufacturing. These errors include the error of the scale pattern, the error of the scale on the spindle, the head alignment error, and the circuit noise error.

對於旋轉編碼器,刻度尺線的間隔係因刻度尺的圓形本質而改變。另一誤差來源是當轉盤上的刻度尺配置於轉軸上時所誘發的偏心。此外,平面外運動(搖擺(wobble)),以及安裝未對準也可能導致讀出頭與刻度尺之間距離的變異(variation)。這些因素影響旋轉編碼器的整體準確度。該編碼器可修正製造變異、刻度尺樣式的誤差、安裝刻度尺於轉軸上的誤差、讀出頭對齊誤差、以及電路雜訊誤差。在操作期間,溫度變異及機械振動可能導致進一步的失真,進一步減少準確度。 For rotary encoders, the spacing of the scale lines changes due to the circular nature of the scale. Another source of error is the eccentricity induced when the scale on the turntable is placed on the shaft. In addition, out-of-plane motion (wobble), as well as mounting misalignment, can also result in variations in the distance between the read head and the scale. These factors affect the overall accuracy of the rotary encoder. The encoder corrects manufacturing variations, scale pattern errors, mounting scale errors on the spindle, read head alignment errors, and circuit noise errors. Temperature variability and mechanical vibration can cause further distortion during operation, further reducing accuracy.

由於比較靠近光源,感測器中心接收比側邊多的光線。這造成漸暈(vignetting),在此所擷取的一維影像係在中心比較亮而在側邊比較暗。漸暈導致偵得零交 叉點(邊緣)時有誤差,因而減少整體準確度。 Because of the proximity to the light source, the center of the sensor receives more light than the side. This causes vignetting, where the one-dimensional image captured is brighter at the center and darker at the side. Vignetting leads to zero crossing There is an error in the cross point (edge), thus reducing the overall accuracy.

數個先前技術之方法需要多個額外讀出頭以抵消偏心所致的誤差。例如,參考美國專利第6,215,119號及美國專利第7,143,518號。Masuda等人在J.Robotics and Mechatronics,5(5),448-452,1993的“High accuracy calibration system for angular encoders”中描述一種均分平均(EDA)法。然而,使用多個讀出頭以減少偏心誤差的旋轉編碼器係增加系統的成本以及使系統設計大而笨重。 Several prior art methods require multiple additional read heads to counteract errors due to eccentricity. For example, reference is made to U.S. Patent No. 6,215,119 and U.S. Patent No. 7,143,518. An equal mean (EDA) method is described by Masuda et al. in "High accuracy calibration system for angular encoders" by J. Robotics and Mechatronics, 5(5), 448-452, 1993. However, rotary encoders that use multiple read heads to reduce eccentricity errors add cost to the system and make the system design large and cumbersome.

習知方法也要求旋轉部件之精確運動以用於自校正。例如,美國專利第5,138,564號揭示一種使編碼器低速移動及高速校正的方法。美國專利第6,598,196號驅動在預定軌跡上的伺服系統使得編碼器誤差在伺服反饋迴路外的頻率發生。此類要求係增加校正的力氣及時間。 Conventional methods also require precise movement of the rotating components for self-correction. For example, U.S. Patent No. 5,138,564 discloses a method of making the encoder move at a low speed and at a high speed. U.S. Patent No. 6,598,196 drives a servo system on a predetermined trajectory such that encoder errors occur at frequencies outside of the servo feedback loop. Such requirements increase the strength and time of correction.

美國專利第7,825,367號描述一種自校正旋轉編碼器,在此係將角差定為一傅立葉級數。基於正餘弦內插的旋轉編碼器的校正可按照美國專利第8,250,901號所述。對應至旋轉角度之正弦及餘弦的電壓資料係擬合至橢圓。藉由把橢圓轉換成圓來得到線性校正參數。 U.S. Patent No. 7,825,367 describes a self-correcting rotary encoder in which the angular difference is defined as a Fourier series. The correction of the rotary encoder based on sine and cosine interpolation can be as described in U.S. Patent No. 8,250,901. The voltage data corresponding to the sine and cosine of the rotation angle is fitted to the ellipse. Linear correction parameters are obtained by converting the ellipse into a circle.

美國專利第7,825,367號描述一種能夠自校正的旋轉編碼器。該旋轉編碼器包括有角度碼(angle code)、光源及可讀取角度碼之線性感測器(CCD)的轉盤。處理單元擷取預定角度的讀取值f(θ)。讀取值f(θ+□)與f(θ)在線性感測器之讀取範圍內的差額為g(θ,□)。該差額係定為一傅立葉級數。在此,在一位置的旋轉角度θ係藉由 分析CCD影像而得到。自校正係基於求出在兩個不同位置的旋轉角度,以及分析差額以用於自校正。 A rotary encoder capable of self-correction is described in U.S. Patent No. 7,825,367. The rotary encoder includes a turntable having an angle code, a light source, and a line sensor (CCD) that can read the angle code. The processing unit retrieves the read value f(θ) of the predetermined angle. The difference between the read values f(θ+□) and f(θ) in the reading range of the line sensor is g(θ, □). The difference is determined as a Fourier series. Here, the rotation angle θ at a position is Obtained by analyzing the CCD image. The self-calibration is based on finding the angle of rotation at two different locations and analyzing the difference for self-correction.

本發明具體實施例提供一種自校正,單一軌道,單一讀出頭的絕對旋轉編碼器。該編碼器擷取一整圈(360°)或整圈之一部份的測量值。因此,該編碼器補償在製造期間所引進以及隨後在使用時由於環境或機械條件改變而引進的任何誤差或失真。該編碼器也可補償由照明變異所致的漸暈。 DETAILED DESCRIPTION OF THE INVENTION A self-correcting, single track, single read head absolute rotary encoder is provided. The encoder takes a full circle (360°) or a measurement of one part of the full circle. Thus, the encoder compensates for any errors or distortions introduced during manufacturing and subsequently introduced during use due to changes in environmental or mechanical conditions. The encoder can also compensate for vignetting caused by illumination variations.

本發明之具體實施例不需要多個讀出頭以抵消偏心誤差。這可大幅減少編碼器的成本及複雜度。此外,本發明之具體實施例不需要馬達以多種速度或預定校正軌跡運動。此外,本發明也可修正其他安裝誤差,例如間隙變化與軸桿搖擺。 Embodiments of the invention do not require multiple read heads to counteract eccentricity errors. This can greatly reduce the cost and complexity of the encoder. Moreover, embodiments of the present invention do not require the motor to move at multiple speeds or predetermined correction trajectories. In addition, the present invention can also correct other mounting errors, such as gap changes and shaft swings.

100‧‧‧圓形刻度尺 100‧‧‧round scale

101‧‧‧交替光反射 101‧‧‧Alternating light reflection

102‧‧‧不反射 102‧‧‧Do not reflect

103‧‧‧迪布恩序列 103‧‧ Dibun sequence

110‧‧‧讀出頭 110‧‧‧Read head

111‧‧‧感測器 111‧‧‧Sensor

112‧‧‧(LED)光源 112‧‧‧(LED) light source

114‧‧‧感測器線性陣列 114‧‧‧Sensor linear array

115‧‧‧數位訊號處理器 115‧‧‧Digital Signal Processor

116‧‧‧旋轉中心點 116‧‧‧Rotation center point

120‧‧‧高解析度相位P 120‧‧‧High resolution phase P

130‧‧‧轉盤 130‧‧‧ Turntable

150‧‧‧校正樣本 150‧‧‧ Calibration sample

151‧‧‧測試樣本 151‧‧‧ test sample

160‧‧‧估計 160‧‧‧ Estimate

161‧‧‧頻率F和失真參數α及β 161‧‧‧Frequency F and distortion parameters α and β

170‧‧‧模型化 170‧‧‧Modeling

171‧‧‧參數函數 171‧‧‧Parameter function

190‧‧‧確定 190‧‧‧determined

195‧‧‧相位 195‧‧‧ phase

200‧‧‧示例 200‧‧‧Example

300‧‧‧頻率變異 300‧‧‧frequency variation

301‧‧‧高頻變異 301‧‧‧ High frequency variation

302‧‧‧低頻變異 302‧‧‧Low frequency variation

400‧‧‧α(θ) 400‧‧‧α(θ)

500‧‧‧變異 500‧‧‧variation

600‧‧‧四次多項式 600‧‧‧fourth polynomial

700‧‧‧測量值 700‧‧‧ measurements

800‧‧‧縮放因子 800‧‧‧Scale factor

900‧‧‧偏移因子 900‧‧‧ offset factor

F‧‧‧頻率 F‧‧‧frequency

α、β‧‧‧失真參數 α, β‧‧‧ distortion parameters

P‧‧‧相位 P‧‧‧ phase

第1A圖係根據本發明具體實施例之旋轉編碼器示意圖;第1B圖係根據本發明具體實施例之扇區的圓形刻度尺示意圖;第1C圖係根據本發明具體實施例之圓形刻度尺與線性讀出頭之示意圖;第1D圖係根據本發明具體實施例用於校正第1A圖之編碼器的方塊圖; 第2圖係根據本發明具體實施例之空間頻率F(θ)與旋轉角度的曲線圖;第3圖係根據本發明具體實施例之由雜訊所致之空間頻率變異的曲線圖;第4圖係根據本發明具體實施例之空間失真參數α(θ)變異與旋轉角度的曲線圖;第5圖係根據本發明具體實施例之空間失真參數β(θ)變異與旋轉角度的曲線圖;第6圖係根據本發明具體實施例之擬合至α(θ)之四次多項式的曲線圖;第7圖係用一維感測器得到之掃描線並描繪漸暈的曲線圖;第8圖係根據本發明具體實施例之縮放因子的曲線圖;第9圖係根據本發明具體實施例之偏移因子的曲線圖;以及第10圖係根據本發明具體實施例在修正漸暈之後的修正感測值曲線圖。 1A is a schematic diagram of a rotary encoder according to an embodiment of the present invention; FIG. 1B is a schematic diagram of a circular scale of a sector according to an embodiment of the present invention; and FIG. 1C is a circular scale according to an embodiment of the present invention; Schematic diagram of a ruler and a linear read head; FIG. 1D is a block diagram of an encoder for correcting FIG. 1A according to an embodiment of the present invention; 2 is a graph of spatial frequency F(θ) and rotation angle according to an embodiment of the present invention; FIG. 3 is a graph of spatial frequency variation caused by noise according to an embodiment of the present invention; The figure is a graph of spatial distortion parameter α(θ) variation and rotation angle according to a specific embodiment of the present invention; and FIG. 5 is a graph of spatial distortion parameter β(θ) variation and rotation angle according to an embodiment of the present invention; Figure 6 is a graph of a fourth-order polynomial fitted to α(θ) according to an embodiment of the present invention; Figure 7 is a plot of a scan line obtained by a one-dimensional sensor and depicting vignetting; Figure is a graph of scaling factors in accordance with an embodiment of the present invention; Figure 9 is a graph of an offset factor in accordance with an embodiment of the present invention; and Figure 10 is a diagram of a vignetting correction according to an embodiment of the present invention Correct the sensory value graph.

本發明具體實施例提供一種單一軌道型絕對旋轉編碼器。讀出頭可為線性電荷耦合裝置(CCD)或互補金屬氧化物半導體(CMOS)以擷取旋轉圓形刻度尺的一維影像。該一維影像包括線性像素陣列。該刻度尺包括根據迪布恩序列(de Bruijn sequence)來配置的反射及不反射 區域。該迪布恩序列很合適,因為此樣式本身本實上為圓形。 A specific embodiment of the present invention provides a single track type absolute rotary encoder. The read head can be a linear charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) to capture a one-dimensional image of a rotating circular scale. The one-dimensional image includes a linear pixel array. The scale includes reflections and non-reflections configured according to the de Bruijn sequence region. The Dibun sequence is suitable because the style itself is actually circular.

絕對圓形刻度尺 Absolute circular scale

第1圖顯示根據本發明之一具體實施例之絕對編碼器的圓形刻度尺100之一小部份。該刻度尺的細節係描述於美國專利申請案第13/100092號。該刻度尺係用來確定高解析度相位P 120。 Figure 1 shows a small portion of a circular scale 100 of an absolute encoder in accordance with an embodiment of the present invention. The details of the scale are described in U.S. Patent Application Serial No. 13/100,092. This scale is used to determine the high resolution phase P 120.

該刻度尺可包含交替之光反射101及不反射102標記或位元。該等標記也可在透明與不透明之間交替,這取決於光源對於讀出頭的相對位置。每個標記有B微米寬,其係刻度尺解析度。每個標記的寬度B為半間距(half-pitch)。在一具體實施例中,B等於20微米。由於標記的尺寸相對較小,於附圖中所示的示範標記未按照比例繪製。 The scale can include alternating light reflections 101 and non-reflection 102 marks or bits. The markers can also alternate between transparent and opaque depending on the relative position of the light source to the read head. Each mark has a B micron width which is the scale resolution. The width B of each mark is half-pitch. In a specific embodiment, B is equal to 20 microns. Since the dimensions of the indicia are relatively small, the exemplary indicia shown in the figures are not drawn to scale.

讀出頭110係裝設在與刻度尺有某一距離處並與其平行。該讀出頭包括感測器111、(LED)光源112、以及視需要的透鏡。該感測器可為由N個感測器組成的偵測器陣列,例如,N可等於512。該陣列可為互補金屬氧化物半導體(CMOS)或電荷耦合裝置(CCD)。該讀出頭也可與連接至感測器的數位訊號處理器115及記憶體關連。應瞭解,可使用其他類型的處理器。 The read head 110 is mounted at a distance from and parallel to the scale. The read head includes a sensor 111, a (LED) light source 112, and an optional lens. The sensor can be an array of detectors consisting of N sensors, for example, N can be equal to 512. The array can be a complementary metal oxide semiconductor (CMOS) or a charge coupled device (CCD). The read head can also be associated with a digital signal processor 115 and memory connected to the sensor. It should be appreciated that other types of processors can be used.

在轉盤130或軸桿上可配置示範刻度尺100上的標記或位元。唯一的要求是該標記係針對特定代碼或非週期性序列而依順序配置週期。 Marks or bits on the exemplary scale 100 can be configured on the turntable 130 or the shaft. The only requirement is that the tag be configured sequentially for a particular code or non-periodic sequence.

如第1B圖與第1C圖所示,該等標記在刻度尺130上係配置為圓中的扇區(sector)。讀出頭111包括由感測器114組成的線性陣列。在此,該讀出頭正切地定中心在相對於旋轉中心點116的偏距115處。因此,應注意,在線性讀出頭兩端附近的感測器像素可觀察到比在讀出頭中心附近之感測器還寬的扇區部份。這導致一維感測器的訊號失真。 As shown in FIGS. 1B and 1C, the marks are arranged on the scale 130 as sectors in a circle. Read head 111 includes a linear array of sensors 114. Here, the read head is tangentially centered at an offset 115 relative to the center point of rotation 116. Therefore, it should be noted that the sensor pixels near the ends of the linear read head can observe a sector portion that is wider than the sensor near the center of the read head. This causes the signal of the one-dimensional sensor to be distorted.

校正 Correction

該DSP係執行如第1D圖所示之編碼器的校正。該校正可在編碼器操作期間週期性或連續地離線進行。 The DSP performs the correction of the encoder as shown in Fig. 1D. This correction can be performed offline or continuously during the operation of the encoder.

在校正期間,針對360度整圈或一部份之旋轉,係藉由讀出頭111擷取用於圓形刻度尺101之旋轉角度的校正樣本150。該部份之旋轉可用於當刻度尺圓形振盪而不是經歷整圈時。應注意,也可擷取用於多個旋轉的校正樣本。 During the correction, for a 360 degree full turn or a portion of the rotation, the calibration sample 150 for the rotation angle of the circular scale 101 is captured by the read head 111. This part of the rotation can be used when the scale oscillates circularly instead of going through a full circle. It should be noted that calibration samples for multiple rotations can also be retrieved.

由該等校正樣本,係可估計160出頻率F和失真參數α及β 161。頻率F和失真參數α及β可直接存入記憶體,例如,作為查找表,並且係足以準確地確定編碼器在操作期間的相位。如果查找快速或查找時間及使用之記憶體比評估參數函數少的話,該查找表則可能是有利的。 From these corrected samples, 160 frequencies F and distortion parameters α and β 161 can be estimated. The frequency F and distortion parameters α and β can be stored directly in the memory, for example, as a lookup table, and are sufficient to accurately determine the phase of the encoder during operation. This lookup table may be advantageous if the lookup fast or lookup time and memory used are less than the evaluation parameter function.

為了便利,吾等係用參數函數171模型化170頻率F和失真參數α及β的變異,以及儲存變異於記憶體中以供編碼器在線上即時操作期間使用。 For convenience, we modeled the variation of the frequency F and the distortion parameters α and β with the parameter function 171, and stored variations in the memory for use during immediate operation of the encoder on-line.

即時操作 Immediate operation

在即時操作期間,由測試樣本151以及頻率F和失真參數α及β的模型化變異,可確定190該編碼器的相位195。應瞭解,從在操作期間存入記憶體而作為查找表的原始參數可得到該等變異。應瞭解,在編碼器的即時操作期間也可擷取該等參數。 During immediate operation, the phase 195 of the encoder can be determined 190 by the test sample 151 and the modeled variations of the frequency F and the distortion parameters α and β. It will be appreciated that such variations can be obtained from the raw parameters of the lookup table when stored in memory during operation. It should be appreciated that these parameters can also be retrieved during immediate operation of the encoder.

在此,係詳細地描述編碼器結構及校正的細節。 Here, the details of the encoder structure and correction are described in detail.

迪布恩序列 Dibun sequence

為了在刻度尺上實現100%的資訊密度,係使用位元序列。每個子序列具有有限長度並且是獨一的,例如,迪布恩序列103。每個獨一的序列係對應至近似相位角。本發明的目標是自校正該編碼器藉此得到精細或精確的角度。 In order to achieve 100% information density on the scale, a sequence of bits is used. Each subsequence has a finite length and is unique, for example, the Dibun sequence 103. Each unique sequence corresponds to an approximate phase angle. The object of the invention is to self-correct the encoder thereby obtaining a fine or precise angle.

N階的k元迪布恩序列B(k,n)係由給定字母(角度數目)組成的循環序列並且大小為k,因此字母長度n的每個可能子序列顯現為正好一次地由連續字元組成的序列。如果每個B(k,n)係具有長度kn,則有(k!k(n-1))/kn個不同之迪布恩序列B(k,n)。當該序列的前或後被截斷時,所得序列也有n值一樣的獨一性。應注意,可使用帶有不重覆子序列的任何非週期性序列。 The N-th order k-element Dibun sequence B(k,n) is a cyclic sequence consisting of a given letter (the number of angles) and is of size k, so each possible sub-sequence of the letter length n appears to be exactly one time by successive A sequence of characters. If each B(k,n) has a length k n , then there are (k! k(n-1) )/k n different Dibun sequences B(k,n). When the sequence is truncated before or after, the resulting sequence also has the same uniqueness of n values. It should be noted that any non-periodic sequence with a non-repetitive subsequence can be used.

為了能夠解碼,該偵測器陣列需要至少由n個位元組成的視域(FOV)。以半間距B=20微米以及使用16階迪布恩序列而言,刻度尺上需要16x20=320微米的FOV。在一具體實施例中,該視域係經設計有1至2毫米以具有 所欲之準確度。 In order to be able to decode, the detector array requires a field of view (FOV) consisting of at least n bits. With a half-pitch B = 20 microns and a 16-order Dibun sequence, a FOV of 16x20 = 320 microns is required on the scale. In a specific embodiment, the field of view is designed to have 1 to 2 mm to have The accuracy of the desire.

以奈奎斯特取樣法(Nyquist sampling)而言,該序列的每個位元,亦即,刻度尺的每個半間距,係映射至線性偵測器陣列的至少兩個像素。這需要至少16 x 2=32個像素,這遠低於習知感測器的像素數。而為了處理光學像差,例如散焦模糊(defocus blur)或衍射,係可增加每個半間距的像素數。 In the case of Nyquist sampling, each bit of the sequence, i.e., each half-pitch of the scale, is mapped to at least two pixels of the linear detector array. This requires at least 16 x 2 = 32 pixels, which is much lower than the number of pixels of a conventional sensor. To handle optical aberrations, such as defocus blur or diffraction, the number of pixels per half-pitch can be increased.

由於刻度尺為圓形,反射及不反射區域的角度係為相等,以及在使用線性感測器時不等距,如第1C圖所示。由於使用該圓形刻度尺,反射/不反射區域的寬度係在感測器的兩端增加。因此,空間頻率F在感測器上不是常數。 Since the scale is circular, the angles of the reflective and non-reflective areas are equal, and are not equidistant when using the line sensor, as shown in Figure 1C. Due to the use of the circular scale, the width of the reflective/non-reflective regions increases at both ends of the sensor. Therefore, the spatial frequency F is not constant on the sensor.

令z(i)為所偵得之零交叉點(邊緣位置),P為相位角,以及F為頻率。令k(i)為兩個連續零交叉點z(i)以及z(i+1)之間的位元個數。如果吾等定義: 則旋轉編碼器的第i個零交叉點可寫成c(i)的三次模型:z(i)=P+Fc(i)+αc(i)2+βc(i)3, 其中該三次模型的參數包括相位P、空間頻率F和空間失真參數α及β。此模型係考慮到由圓盤130上之刻度尺線的不均勻間隔所引起的誤差。使用N個零交叉點, 可得到N個方程式。例如,如果有N個零交叉點z(1)、…、z(20),則相對應之c(1)、…、c(20)為已知。這些方程式係用未知數P、F、α及β描述線性系統。該線性系統經求解後可得到P、F、α及β的值。 Let z(i) be the zero crossing point (edge position) detected, P be the phase angle, and F be the frequency. Let k(i) be the number of bits between two consecutive zero crossings z(i) and z(i+1). If we define: Then the i-th zero-crossing point of the rotary encoder can be written as a cubic model of c(i): z ( i )= P + Fc ( i ) + αc ( i ) 2 + βc ( i ) 3 , where the cubic model The parameters include phase P, spatial frequency F, and spatial distortion parameters α and β. This model takes into account errors caused by uneven spacing of the scale lines on the disk 130. Using N zero crossing points, N equations can be obtained. For example, if there are N zero crossing points z(1), ..., z(20), the corresponding c(1), ..., c(20) are known. These equations describe linear systems with unknowns P, F, α, and β. The linear system is solved to obtain values of P, F, α, and β.

旋轉角θ係利用方程式θ=P/F *360/K+近似位置(Coarse_Position)所求得,在此K為刻度尺的粗細級度(gradation)數目,以及近似位置為只基於影像之基礎代碼子序列的相位角。例如,K可為1024。 The rotation angle θ is obtained by using the equation θ=P/F *360/K+ approximate position (Coarse_Position), where K is the number of gradations of the scale, and the approximate position is based on the image-based code. The phase angle of the sequence. For example, K can be 1024.

自校正 Self-correction

所估計之參數F、α及β 161係用實際旋轉角度θ表達成F(θ)、α(θ)及β(θ)。該等具體實施例係考慮到這三個參數F(θ)、α(θ)、β(θ)的變異。由於有成像雜訊,這些參數係具有小變異(正常變異)。 The estimated parameters F, α, and β 161 are expressed as F(θ), α(θ), and β(θ) by the actual rotation angle θ. These particular embodiments take into account variations in the three parameters F(θ), α(θ), β(θ). These parameters have small variations (normal variations) due to imaging noise.

在沒有安裝的任何機械誤差以及任何偏心誤差時,該等參數的變異應為在θ由0變到360度時之一整圈或其一部份的正常變異。不過,由於偏心、搖擺、或間隙變化(讀出頭與刻度尺的距離),空間參數F(θ)、α(θ)、β(θ)係顯示大過可歸因於雜訊的變異。 In the absence of any mechanical errors and any eccentricity errors installed, the variation of these parameters shall be a normal variation of one full circle or a portion thereof when θ is changed from 0 to 360 degrees. However, due to eccentricity, sway, or gap variation (distance between the read head and the scale), the spatial parameters F(θ), α(θ), β(θ) show greater variation than attributable to noise.

第2圖圖示所估計之F(θ)與一整圈之旋轉角度的示例200。 Figure 2 illustrates an example 200 of the estimated F(θ) versus a full turn rotation angle.

第3圖更詳細地圖示頻率變異300。高頻變異301係由雜訊所引起。低頻變異302則係由偏心搖擺及間隙變化所引起。本發明的目標是修正這些變異。 Figure 3 illustrates the frequency variation 300 in more detail. The high frequency variation 301 is caused by noise. The low frequency variation 302 is caused by eccentric sway and gap changes. The goal of the invention is to amend these variations.

在該自校正程序之過程中,這些變異係利 用參數函數而模型化。有刻度尺的軸桿係旋轉一整圈(360°)或一部份(小於360°),以及編碼器刻度尺係在數個位置取樣。例如,刻度尺可以每次2度之方式轉動,以及將對應至角度的感測器影像存入記憶體。所有這些角度的頻率及失真參數的估計值係與估計編碼器相位P一起儲存。 In the course of this self-correction procedure, these variations are beneficial Modeled with a parameter function. The scaled shaft rotates one full turn (360°) or one part (less than 360°), and the encoder scale is sampled at several positions. For example, the scale can be rotated 2 degrees each time, and the sensor image corresponding to the angle is stored in the memory. The estimates of the frequency and distortion parameters for all of these angles are stored along with the estimated encoder phase P.

曲線擬合(Curve Fitting) Curve Fitting

適當之參數函數或樣條係用於以最小平方擬合法(least squares fitting)模型化頻率及失真參數的變異。 Appropriate parametric functions or splines are used to model variations in frequency and distortion parameters using least squares fitting.

第4圖係圖示α(θ)400的變異,其可用旋轉角度θ的四次多項式模型模型化:α(θ)=t 1+t 2 θ+t 3 θ 2+t 4 θ 3+t 5 θ 4,在此,t1、t2、t3、t4及t5為模型參數。該等模型參數係利用所估計之α(θ)的最小平方擬合法來估計。第5圖係圖示β(θ)的變異500。應注意,這三個參數的模型次數及形式不必一樣。例如,頻率F(θ)可用樣條基函數模型化,以及α(θ)與β(θ)可用多項式函數模型化。第6圖係圖示所估計之α(θ),其係擬合至整圈之四次多項式600。在曲線擬合後,模型參數係存入DSP 115的記憶體。 Figure 4 is a graph showing the variation of α(θ) 400, which can be modeled by a fourth-order polynomial model of the rotation angle θ: α ( θ ) = t 1 + t 2 θ + t 3 θ 2 + t 4 θ 3 + t 5 θ 4 , where t 1 , t 2 , t 3 , t 4 and t 5 are model parameters. These model parameters are estimated using the least squares fit of the estimated α(θ). Figure 5 is a graph showing the variation 500 of β(θ). It should be noted that the number and form of the models of these three parameters need not be the same. For example, the frequency F(θ) can be modeled using a spline basis function, and α(θ) and β(θ) can be modeled using polynomial functions. Figure 6 is a graphical representation of the estimated α(θ), which is fitted to the fourth degree polynomial 600 of the full circle. After the curve is fitted, the model parameters are stored in the memory of the DSP 115.

操作 operating

在編碼器操作期間,最後一個編碼器位置可用來確定當前位置的頻率及空間失真參數的數值。這些數值係用來確定相位P。可替換地,可用迭代方式隨著相位確定頻率及失真參數。這可用於起動時,因為在此情況中最後一個編碼器相位係未知或無效。如上述,可得到當前旋轉角度、 頻率及失真參數的第一個估計值。利用所估計的旋轉角度θ,可用各自的模型重新確定當前位置的參數F、α及β。然後,該等參數的新數值係用來重新確定相位P。 During encoder operation, the last encoder position can be used to determine the frequency and spatial distortion parameters of the current position. These values are used to determine the phase P. Alternatively, the frequency and distortion parameters can be determined with the phase in an iterative manner. This can be used at startup because the last encoder phase is unknown or invalid in this case. As described above, the current rotation angle can be obtained, The first estimate of the frequency and distortion parameters. Using the estimated rotation angle θ, the parameters F, α and β of the current position can be re-determined with the respective models. The new values for these parameters are then used to re-determine the phase P.

在發給Nakamura的美國專利第7,825,367號中,自校正係基於在兩個不同位置的旋轉角度,以及分析用於自校正的差額並用其來校正。Nakamura沒有描述空間頻率及失真參數。根據本發明的編碼器並不是基於如同Nakamura所揭示的實際旋轉角度,而是基於用於模型化在特定旋轉角度之零交叉點時所使用的基礎頻率及失真參數。 In U.S. Patent No. 7,825,367 issued to Nakamura, the self-calibration is based on the angle of rotation at two different locations, and the difference for self-correction is analyzed and corrected. Nakamura does not describe spatial frequency and distortion parameters. The encoder according to the invention is not based on the actual angle of rotation as revealed by Nakamura, but based on the fundamental frequency and distortion parameters used to model the zero crossings at a particular angle of rotation.

漸暈修正 Vignetting correction

如第7圖所示,在刻度尺旋轉期間也可藉由擷取測量值700完成漸暈修正。 As shown in Fig. 7, the vignetting correction can also be accomplished by taking the measured value 700 during the scale rotation.

如第8圖所示,對於感測器的每個像素p,最大像素值m1(p)為縮放因子(scaling factor)800,以及如第9圖所示,最小像素值m2(p)為偏移因子(offset factor)900。這些因子係用於如下的漸暈修正。 As shown in FIG. 8, for each pixel p of the sensor, the maximum pixel value m 1 (p) is a scaling factor 800, and as shown in FIG. 9, the minimum pixel value m 2 (p) It is an offset factor of 900. These factors are used for vignetting correction as follows.

如第10圖所示,係用下式修改1000每個位置的感測值i(p):i(p)←255*(i(p)-m2(p))/(m1(p)-m2(p)) As shown in Fig. 10, the sensed value i(p) of each position of 1000 is modified by the following formula: i(p)←255*(i(p)-m 2 (p))/(m 1 (p )-m 2 (p))

此修改確保在編碼器旋轉時,每個像素的最小強度被設定成零以及每個像素的最大強度被設定成255。如此可去除漸暈效應。 This modification ensures that the minimum intensity of each pixel is set to zero and the maximum intensity of each pixel is set to 255 as the encoder rotates. This removes the vignetting effect.

如本技藝所習知,完成自校正及漸暈修正 之方法的步驟可在連接至記憶體及輸入/輸出介面的DSP或類似微處理器中進行。 Self-correction and vignetting correction as known in the art The steps of the method can be performed in a DSP or similar microprocessor connected to the memory and input/output interface.

100‧‧‧圓形刻度尺 100‧‧‧round scale

101‧‧‧交替光反射 101‧‧‧Alternating light reflection

102‧‧‧不反射 102‧‧‧Do not reflect

103‧‧‧迪布恩序列 103‧‧ Dibun sequence

110‧‧‧讀出頭 110‧‧‧Read head

111‧‧‧感測器 111‧‧‧Sensor

112‧‧‧(LED)光源 112‧‧‧(LED) light source

115‧‧‧數位訊號處理器 115‧‧‧Digital Signal Processor

120‧‧‧高解析度相位P 120‧‧‧High resolution phase P

130‧‧‧轉盤 130‧‧‧ Turntable

Claims (20)

一種旋轉編碼器的自校正方法,該旋轉編碼器包括單一讀出頭及圓形刻度尺,該自校正方法係包含下列步驟:用該讀出頭擷取該圓形刻度尺之旋轉角度的校正樣本;以及由該等校正樣本估計該編碼器的空間頻率及空間失真參數,以用於自校正該旋轉編碼器。 A self-correcting method for a rotary encoder, the rotary encoder comprising a single read head and a circular scale, the self-correcting method comprising the steps of: using the read head to capture a corrected sample of the rotation angle of the circular scale; And estimating, by the corrected samples, the spatial frequency and spatial distortion parameters of the encoder for self-correcting the rotary encoder. 如申請專利範圍第1項所述之自校正方法,其更包括:擷取該刻度尺的測試樣本;用該等頻率及失真參數確定該編碼器的相位。 The self-calibration method of claim 1, further comprising: taking a test sample of the scale; determining the phase of the encoder with the frequency and distortion parameters. 如申請專利範圍第1項所述之自校正方法,其更包括:用參數函數模型化該頻率及該等失真參數的變異;擷取該刻度尺的測試樣本;以及用經模型化之該等頻率及失真參數確定該編碼器的相位。 The self-correcting method of claim 1, further comprising: modeling the frequency and the variation of the distortion parameters by using a parameter function; taking a test sample of the scale; and using the modeled The frequency and distortion parameters determine the phase of the encoder. 如申請專利範圍第1項所述之自校正方法,其中該刻度尺上的標記係配置為扇區,而該讀出頭係正切地定中心在相對於該刻度尺之旋轉中心點的偏距處。 The self-calibration method of claim 1, wherein the mark on the scale is configured as a sector, and the read head is tangentially centered at a deviation from a center of rotation of the scale . 如申請專利範圍第1項所述之自校正方法,其中係針對360度或更小的旋轉角度得到該讀出頭資料。 The self-correcting method of claim 1, wherein the read head data is obtained for a rotation angle of 360 degrees or less. 如申請專利範圍第1項所述之自校正方法,其中該參數函數為樣條(spline)。 The self-correcting method of claim 1, wherein the parameter function is a spline. 如申請專利範圍第1項所述之自校正方法,其中該參數函數使用最小平方擬合法(least squares fitting)。 The self-correcting method of claim 1, wherein the parameter function uses a least squares fitting. 如申請專利範圍第4項所述之自校正方法,其中該參數函數為該旋轉角度的四次多項式。 The self-correcting method of claim 4, wherein the parameter function is a fourth-order polynomial of the rotation angle. 如申請專利範圍第1項所述之自校正方法,其更包括:儲存該等頻率及失真參數於記憶體中作為查找表。 The self-correction method of claim 1, further comprising: storing the frequency and distortion parameters in a memory as a lookup table. 如申請專利範圍第1項所述之自校正方法,其中該等頻率及失真參數係修正該圓形刻度尺的偏心。 The self-calibration method of claim 1, wherein the frequency and distortion parameters correct the eccentricity of the circular scale. 如申請專利範圍第1項所述之自校正方法,其中該等頻率及失真參數係修正該圓形刻度尺的搖擺。 The self-calibration method of claim 1, wherein the frequency and distortion parameters correct the sway of the circular scale. 如申請專利範圍第1項所述之自校正方法,其中該等頻率及失真參數係修正該讀出頭與該圓形刻度尺之間的距離變化。 The self-calibration method of claim 1, wherein the frequency and distortion parameters correct a change in distance between the read head and the circular scale. 如申請專利範圍第1項所述之自校正方法,其中該等頻率及失真參數係修正該編碼器在操作期間的溫度或機械振動。 The self-calibration method of claim 1, wherein the frequency and distortion parameters correct temperature or mechanical vibration of the encoder during operation. 如申請專利範圍第1項所述之自校正方法,其中係在該編碼器的即時操作期間擷取該等頻率及失真參數。 The self-correcting method of claim 1, wherein the frequency and distortion parameters are captured during immediate operation of the encoder. 如申請專利範圍第1項所述之自校正方法,其中該讀出頭包括線性像素陣列,而該自校正方法更包括:測量該等像素的強度以得到作為縮放因子的最大強度,以及作為偏移因子的最小強度。 The self-correction method of claim 1, wherein the read head comprises a linear pixel array, and the self-correction method further comprises: measuring the intensity of the pixels to obtain a maximum intensity as a scaling factor, and as an offset The minimum strength of the factor. 如申請專利範圍第15項所述之自校正方法,其中係用該等縮放及偏移因子修改該等像素強度。 The self-correcting method of claim 15, wherein the pixel intensity is modified by the scaling and offset factors. 如申請專利範圍第15項所述之自校正方法,其中係依據下式修改該等像素強度i(p): i(p)←255*(i(p)-m2(p))/(m1(p)-m2(p))其中m1(p)為該最大強度以及m2(p)為該最小強度。 The self-correction method according to claim 15, wherein the pixel intensity i(p) is modified according to the following formula: i(p)←255*(i(p)-m 2 (p))/( m 1 (p)-m 2 (p)) wherein m 1 (p) is the maximum intensity and m 2 (p) is the minimum intensity. 如申請專利範圍第1項所述之自校正方法,其中該刻度尺的形式為迪布恩序列(de Bruijn sequence)。 The self-correcting method of claim 1, wherein the scale is in the form of a de Bruijn sequence. 如申請專利範圍第7項所述之自校正方法,其中該空間頻率參數為F(θ),以及該等空間失真參數為α與β,且其中,四次多項式為:α(θ)=t 1+t 2 θ+t 3 θ 2+t 4 θ 3+t 5 θ 4,在此,t1、t2、t3、t4及t5係為用該最小平方擬合法所估計的該四次多項式的參數。 The self-correction method according to claim 7, wherein the spatial frequency parameter is F(θ), and the spatial distortion parameters are α and β, and wherein the fourth-order polynomial is: α ( θ )= t 1 + t 2 θ + t 3 θ 2 + t 4 θ 3 + t 5 θ 4 , where t 1 , t 2 , t 3 , t 4 and t 5 are the ones estimated by the least squares fit method The parameters of the fourth degree polynomial. 如申請專利範圍第19項所述之自校正方法,其更包括:測量在該刻度尺上兩個連續零交叉點之間的c個位元;以及將該等零交叉點模型化成為:z(i)=P+Fc(i)+αc(i)2+βc(i)3,其中P為相位值,F為該空間頻率,以及α與β為該等空間失真參數。 The self-correcting method of claim 19, further comprising: measuring c bits between two consecutive zero-crossing points on the scale; and modeling the zero-crossing points into: z ( i )= P + Fc ( i )+ αc ( i ) 2 + βc ( i ) 3 , where P is the phase value, F is the spatial frequency, and α and β are the spatial distortion parameters.
TW103117466A 2013-05-21 2014-05-19 Method for self-calibrating a rotary encoder TWI564548B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/899,025 US9423281B2 (en) 2012-02-07 2013-05-21 Self-calibrating single track absolute rotary encoder
PCT/JP2014/062543 WO2014188894A1 (en) 2013-05-21 2014-05-02 Method for self-calibrating a rotary encoder

Publications (2)

Publication Number Publication Date
TW201504598A true TW201504598A (en) 2015-02-01
TWI564548B TWI564548B (en) 2017-01-01

Family

ID=50771543

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103117466A TWI564548B (en) 2013-05-21 2014-05-19 Method for self-calibrating a rotary encoder

Country Status (6)

Country Link
JP (1) JP6143885B2 (en)
KR (1) KR101829521B1 (en)
CN (1) CN105229424B (en)
DE (1) DE112014002505T5 (en)
TW (1) TWI564548B (en)
WO (1) WO2014188894A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9970789B2 (en) 2015-10-23 2018-05-15 Industrial Technology Research Institute Automatic angle-measured apparatus and method using the same
CN110573839A (en) * 2017-03-20 2019-12-13 Tt电子有限公司 Method and apparatus for configurable photodetector array patterning for optical encoders
US10886932B2 (en) 2018-09-11 2021-01-05 Tt Electronics Plc Method and apparatus for alignment adjustment of encoder systems
TWI722886B (en) * 2020-04-30 2021-03-21 國立陽明交通大學 Rotary code disk and method for designing the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10359444B2 (en) * 2015-04-30 2019-07-23 Perkinelmer Health Sciences, Inc. Autosamplers, autoloaders and systems and devices using them
WO2017043249A1 (en) * 2015-09-10 2017-03-16 Mitsubishi Electric Corporation Method and apparatus for determining position on scale
US9605981B1 (en) * 2015-09-22 2017-03-28 Mitsubishi Electric Corporation Absolute encoder
DE102016101965A1 (en) * 2016-02-04 2017-08-10 Fraba B.V. Method for calibrating a rotary encoder and rotary encoder for determining a corrected angular position
DE102016115624A1 (en) * 2016-08-23 2018-03-01 Fraba B.V. Method for calibrating a rotary encoder and rotary encoder
JP2019158848A (en) * 2018-03-16 2019-09-19 富士電機株式会社 Absolute location information detection device, and absolute location information detection device control method
TWI716246B (en) 2019-12-31 2021-01-11 財團法人工業技術研究院 Optical encoder
KR102388381B1 (en) * 2020-06-18 2022-04-20 주식회사 져스텍 Method and apparatus for linear position detection using De Bruijn sequence as scale ID
TWI777686B (en) * 2021-07-23 2022-09-11 禾一電子科技有限公司 Electronic rotary encoder

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138564A (en) 1990-07-31 1992-08-11 Xerox Corporation Automatic encoder calibration
JP3724518B2 (en) * 1996-07-15 2005-12-07 株式会社ニコン Absolute encoder
US6215119B1 (en) 1999-01-19 2001-04-10 Xerox Corporation Dual sensor encoder to counter eccentricity errors
JP4290281B2 (en) * 1999-06-10 2009-07-01 株式会社ハーモニック・ドライブ・システムズ Absolute sensor
US6598196B1 (en) 2000-02-29 2003-07-22 Agilent Technologies, Inc. Technique for correcting errors in position encoders
JP3826207B2 (en) 2004-08-31 2006-09-27 独立行政法人産業技術総合研究所 Angle detector with self-calibration function
GB0508325D0 (en) * 2005-04-26 2005-06-01 Renishaw Plc Rotary encoders
JP2007010608A (en) * 2005-07-04 2007-01-18 Shin Ei Tech:Kk Rotating angle error analysis system of gear mechanism
JP4824415B2 (en) 2006-01-27 2011-11-30 株式会社 ソキア・トプコン Rotary encoder
JP4862496B2 (en) * 2006-05-30 2012-01-25 日本精工株式会社 Resolver digital converter, rotation angle position detection device, and rotation machine control device
DE102006059491B3 (en) * 2006-12-14 2008-04-17 Bundesrepublik Deutschland, vertr.d.d. Bundesministerium für Wirtschaft und Technologie, d.vertr.d.d. Präsidenten der Physikalisch-Technischen Bundesanstalt Pitch circle calibrating method for industrial application, involves determining pitch variation-differences for pitch interval, and transforming transformation-coefficients of pitch variations from frequency space into local space
JP5085440B2 (en) * 2008-06-17 2012-11-28 株式会社 ソキア・トプコン Rotary encoder and angle correction method for rotary encoder
US8250901B2 (en) 2009-09-22 2012-08-28 GM Global Technology Operations LLC System and method for calibrating a rotary absolute position sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9970789B2 (en) 2015-10-23 2018-05-15 Industrial Technology Research Institute Automatic angle-measured apparatus and method using the same
CN110573839A (en) * 2017-03-20 2019-12-13 Tt电子有限公司 Method and apparatus for configurable photodetector array patterning for optical encoders
US10886932B2 (en) 2018-09-11 2021-01-05 Tt Electronics Plc Method and apparatus for alignment adjustment of encoder systems
TWI743561B (en) * 2018-09-11 2021-10-21 美商Tt電子公司 Method and apparatus for alignment adjustment of encoder systems
TWI722886B (en) * 2020-04-30 2021-03-21 國立陽明交通大學 Rotary code disk and method for designing the same

Also Published As

Publication number Publication date
KR101829521B1 (en) 2018-02-14
CN105229424A (en) 2016-01-06
TWI564548B (en) 2017-01-01
CN105229424B (en) 2017-05-24
DE112014002505T5 (en) 2016-04-28
KR20160011659A (en) 2016-02-01
WO2014188894A1 (en) 2014-11-27
JP6143885B2 (en) 2017-06-07
JP2016520794A (en) 2016-07-14

Similar Documents

Publication Publication Date Title
TWI564548B (en) Method for self-calibrating a rotary encoder
US9423281B2 (en) Self-calibrating single track absolute rotary encoder
TWI519766B (en) Method and apparatus for determining position
KR102502508B1 (en) Correction table generating apparatus, encoder, and correction table generating method
JP6154401B2 (en) High resolution absolute encoder
JP4667186B2 (en) Rotational accuracy measurement method
CN107532930B (en) Method for determining subdivision errors
AU2006336718A1 (en) Rotary encoder
JP2008129018A (en) Device for measuring position
EP3167248B1 (en) Process and device for adjusting rotary encoder
JP2018132356A (en) Rotary encoder
Dalboni et al. Absolute two-tracked optical rotary encoders based on vernier method
WO2018092416A1 (en) Rotary encoder signal processing device and rotary encoder signal processing method
TWI714072B (en) Angle detector
JP5162739B2 (en) Encoder signal processing method, encoder device, and servo motor
RU2604116C1 (en) Method for automatic reading from pointer-deflecting instruments
JP2004317262A (en) Measuring device
JPH08247739A (en) Instrument and method for measuring pattern of rotary encoder
TW201937192A (en) Method and device for detecting positional change amount due to movement of moving body
JP2009002903A (en) Method of compensating laser encoder parameters
JP2005257562A (en) Method and device for calibrating displacement