TW201500722A - Ultrasonic flow meter and ultrasonic flow measuring - Google Patents

Ultrasonic flow meter and ultrasonic flow measuring Download PDF

Info

Publication number
TW201500722A
TW201500722A TW102121715A TW102121715A TW201500722A TW 201500722 A TW201500722 A TW 201500722A TW 102121715 A TW102121715 A TW 102121715A TW 102121715 A TW102121715 A TW 102121715A TW 201500722 A TW201500722 A TW 201500722A
Authority
TW
Taiwan
Prior art keywords
trigger
zero
signal
ultrasonic
crossing
Prior art date
Application number
TW102121715A
Other languages
Chinese (zh)
Other versions
TWI500908B (en
Inventor
Bo-Yin Chu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW102121715A priority Critical patent/TWI500908B/en
Priority to CN201310308284.6A priority patent/CN104236646B/en
Publication of TW201500722A publication Critical patent/TW201500722A/en
Application granted granted Critical
Publication of TWI500908B publication Critical patent/TWI500908B/en

Links

Abstract

An ultrasonic flow meter and an ultrasonic flow measuring method are disclosed. The ultrasonic flow meter comprises a zero-cross detection circuit and an operation processing circuit. The zero-cross detection circuit comprises a digital-to-analog converter (DAC), a pre-trigger comparator, a zero-cross comparator, and a AND gate. The DAC generates a multi-step trigger signal. The pre-trigger comparator compares an ultrasonic wave with the multi-step trigger signal to output a first comparing signal. The zero-cross comparator compares an ultrasonic wave with a reference level to output a second comparing signal. The AND gate performs a AND operation according to the first comparing signal and a second comparing signal to output a zero-cross digital signal. The operation processing circuit calculates an ultrasonic flow according to the zero-cross digital signal.

Description

超音波流量計及超音波流量測量方法 Ultrasonic flowmeter and ultrasonic flow measurement method

本發明是有關於一種超音波流量計及超音波流量測量方法。 The invention relates to an ultrasonic flowmeter and a method for measuring ultrasonic flow.

超音波流量計系列可安裝於管路表面,不需要切除管路即可測量管路中的流量,或安裝於管路上直接測量流量。超音波流量計主要用來測量清潔均勻的液體流量,在石油、化工、冶金、電力、自來水公司和工業用水及江河水、回收水領域,得到廣泛應用,此外超音波流量計可以測量雜質含量不高的均勻流體,如污水等介質的流量,管內中如果有氣泡或體積較大固體物則無法測量。 The ultrasonic flowmeter series can be installed on the surface of the pipeline to measure the flow in the pipeline without removing the pipeline, or to measure the flow directly on the pipeline. Ultrasonic flowmeter is mainly used to measure the flow of clean and uniform liquid. It is widely used in petroleum, chemical, metallurgy, electric power, water supply and industrial water, river water and recycled water. In addition, ultrasonic flowmeter can measure impurity content. A high uniform fluid, such as the flow rate of a medium such as sewage, cannot be measured if there are bubbles or large solids in the tube.

傳統時差式超音波流量計需要單獨使用一組峰值偵測電路來判定超音波回波的強度,再將超音波回波的強度提供給增益控制電路作波形放大回授控制。接著利用超音波回波的第一波,以零點交越偵測電路來判定超音波飛行時間。然而,傳統時差式超音波流量計因為只偵測第一波零點交越,所以容易因為流體中的氣泡、雜質等干擾影響量測精度。 The traditional time difference ultrasonic flowmeter needs to use a set of peak detection circuits to determine the intensity of the ultrasonic echo, and then provide the intensity of the ultrasonic echo to the gain control circuit for waveform amplification feedback control. Then, using the first wave of the ultrasonic echo, the zero-crossing detection circuit is used to determine the ultrasonic flight time. However, since the conventional time difference type ultrasonic flowmeter detects only the first wave zero crossing, it is easy to affect the measurement accuracy due to interference of bubbles, impurities, and the like in the fluid.

本發明係有關於一種超音波流量計及超音波流量測量方法。 The invention relates to an ultrasonic flowmeter and a method for measuring ultrasonic flow.

根據本發明,提出一種超音波流量計。超音波流量計包括零點偵測電路及運算處理電路。零點偵測電路包括數位類比轉換器、預觸發比較器、零點交越比較器及及閘(AND gate)。數位類比轉換器產生一多階段觸發訊號。預觸發比較器比較超音波回波與多階段觸發訊號以輸出第一比較訊號。零點交越比較器比較超音波回波與參考位準以輸出第二比較訊號。及閘將第一比較訊號與第二比較訊號進行一交集運算以輸出一零交越(Zero-cross)數位訊號。運算處理電路根據零交越數位訊號計算超音波流量。 According to the present invention, an ultrasonic flowmeter is proposed. The ultrasonic flowmeter includes a zero point detecting circuit and an arithmetic processing circuit. The zero detection circuit includes a digital analog converter, a pre-trigger comparator, a zero-crossing comparator, and an AND gate. The digital analog converter produces a multi-stage trigger signal. The pre-trigger comparator compares the ultrasonic echo with the multi-stage trigger signal to output a first comparison signal. The zero crossing comparator compares the ultrasonic echo with the reference level to output a second comparison signal. The gate performs an intersection operation between the first comparison signal and the second comparison signal to output a zero-cross digital signal. The arithmetic processing circuit calculates the ultrasonic flow based on the zero-crossing digital signal.

根據本發明,提出一種超音波流量測量方法。超音波流量測量方法包括:產生多階段觸發訊號;藉由預觸發比較器比較超音波回波與該多階段觸發訊號以輸出第一比較訊號;藉由零點交越比較器比較超音波回波與參考位準以輸出第二比較訊號;將第一比較訊號與第二比較訊號進行一交集運算以輸出一零交越(Zero-cross)數位訊號;以及根據零交越數位訊號計算超音波流量。 According to the present invention, a method of measuring ultrasonic flow is proposed. The ultrasonic flow measurement method comprises: generating a multi-stage trigger signal; comparing the ultrasonic echo with the multi-stage trigger signal to output a first comparison signal by a pre-trigger comparator; comparing the ultrasonic echo with a zero-crossing comparator The reference level is used to output a second comparison signal; the first comparison signal is subjected to an intersection operation with the second comparison signal to output a zero-cross digital signal; and the ultrasonic flow is calculated according to the zero-crossing digital signal.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

1‧‧‧超音波流量計 1‧‧‧Supersonic flowmeter

11a、11b‧‧‧超音波探頭 11a, 11b‧‧‧ ultrasonic probe

12a、12b‧‧‧驅動器 12a, 12b‧‧‧ drive

13a、13b‧‧‧開關 13a, 13b‧‧‧ switch

14‧‧‧帶通濾波器 14‧‧‧Bandpass filter

15‧‧‧可變增益放大器 15‧‧‧Variable Gain Amplifier

16‧‧‧零點偵測電路 16‧‧‧ Zero detection circuit

17‧‧‧運算處理電路 17‧‧‧Operation processing circuit

18‧‧‧時間測量電路 18‧‧‧Time measuring circuit

19‧‧‧無線通訊模組 19‧‧‧Wireless communication module

161‧‧‧數位類比轉換器 161‧‧‧Digital Analog Converter

162‧‧‧預觸發比較器 162‧‧‧Pre-trigger comparator

163‧‧‧零點交越比較器 163‧‧‧ Zero crossing comparator

164‧‧‧及閘 164‧‧‧ and gate

165‧‧‧反及閘 165‧‧‧Anti-gate

PTL(1)~PTL(M)‧‧‧預觸發位準 PTL(1)~PTL(M)‧‧‧Pre-trigger level

MS‧‧‧多階段觸發訊號 MS‧‧‧Multi-stage trigger signal

Rx‧‧‧超音波回波 Rx‧‧‧Supersonic echo

Rst‧‧‧重置訊號 Rst‧‧‧Reset signal

C1‧‧‧第一比較訊號 C1‧‧‧ first comparison signal

C2‧‧‧第二比較訊號 C2‧‧‧ second comparison signal

Ny‧‧‧雜訊 Ny‧‧‧ noise

L‧‧‧閂鎖訊號 L‧‧‧Latch signal

ZCD‧‧‧零交越數位訊號 ZCD‧‧‧ zero crossover digital signal

ZC(1)‧‧‧預觸發數位脈衝 ZC (1)‧‧‧ pre-trigger digital pulse

ZC(2)‧‧‧零交越數位脈衝 ZC(2)‧‧‧zero crossover digital pulse

SP‧‧‧起始脈衝 SP‧‧‧ starting pulse

第1圖繪示係為一種超音波流量計之實施例電路方塊示意圖。 FIG. 1 is a block diagram showing an embodiment of an ultrasonic flowmeter.

第2圖繪示係為零點偵測電路之示意圖。 Figure 2 is a schematic diagram of a zero point detection circuit.

第3圖繪示係為超音波回波、第一比較訊號、第二比較訊號、零交越數位訊號之時序圖。 Figure 3 is a timing diagram of the ultrasonic echo, the first comparison signal, the second comparison signal, and the zero-crossing digital signal.

第4圖繪示係為多階段觸發訊號與超音波回波之示意圖。 Figure 4 is a schematic diagram showing the multi-stage trigger signal and the ultrasonic echo.

第5圖繪示係為未經濾波演算之零交越時間陣列之數值分佈圖。 Figure 5 depicts a numerical distribution of the zero-crossing time array for the unfiltered calculus.

第6圖繪示係為經濾波演算之濾波後資料之數值分佈圖。 Figure 6 is a diagram showing the numerical distribution of filtered data after filtering calculation.

請參照第1圖,第1圖繪示係為一種超音波流量計之實施例電路方塊示意圖。超音波流量計1包括超音波探頭11a、超音波探頭11b、驅動器12a、驅動器12b、開關13a、開關13b、帶通濾波器14、可變增益放大器15、零點偵測電路16、運算處理電路17、時間測量電路18及無線通訊模組19。驅動器12a用以驅動超音波探頭11a,而驅動器12b用以驅動超音波探頭11b。超音波探頭11a及超音波探頭11b係交替地發射超音波與接收超音波回波。 Please refer to FIG. 1 . FIG. 1 is a block diagram showing an embodiment of an ultrasonic flowmeter. The ultrasonic flowmeter 1 includes an ultrasonic probe 11a, an ultrasonic probe 11b, a driver 12a, a driver 12b, a switch 13a, a switch 13b, a band pass filter 14, a variable gain amplifier 15, a zero point detecting circuit 16, and an arithmetic processing circuit 17. The time measuring circuit 18 and the wireless communication module 19. The driver 12a is for driving the ultrasonic probe 11a, and the driver 12b is for driving the ultrasonic probe 11b. The ultrasonic probe 11a and the ultrasonic probe 11b alternately emit ultrasonic waves and receive ultrasonic echoes.

當開關13a導通時,開關13b對應地截止。相反地,當開關13a截止時,開關13b對應地導通。帶通濾波器14用以將超音波頻率範圍以外的雜訊濾除。可變增益放大器15根據回授訊號調整所收到的超音波回波後輸出至零點偵測電路16。時間測 量電路18計算一逾時時間。無線通訊模組19用以收發無線訊號。運算處理電路17例如是微控制器,而無線通訊模組19例如是ZigBee模組。 When the switch 13a is turned on, the switch 13b is correspondingly turned off. Conversely, when the switch 13a is turned off, the switch 13b is turned on correspondingly. The bandpass filter 14 is used to filter out noise outside the ultrasonic frequency range. The variable gain amplifier 15 adjusts the received ultrasonic echo according to the feedback signal and outputs it to the zero point detecting circuit 16. Time measurement The quantity circuit 18 calculates a timeout period. The wireless communication module 19 is configured to send and receive wireless signals. The arithmetic processing circuit 17 is, for example, a microcontroller, and the wireless communication module 19 is, for example, a ZigBee module.

請同時參照第1圖、第2圖及第3圖,第2圖繪示係為零點偵測電路之示意圖,第3圖繪示係為超音波回波、第一比較訊號、第二比較訊號、零交越數位訊號之時序圖。零點偵測電路16包括數位類比轉換器161、預觸發比較器162、零點交越比較器163、及閘(AND gate)164及反及閘(NAND gate)165。運算處理電路17控制數位類比轉換器161產生多階段觸發訊號MS。預觸發比較器162比較超音波回波與Rx與多階段觸發訊號MS以輸出第一比較訊號C1。零點交越比較器163比較超音波回波Rx與一參考位準以輸出第二比較訊號C2。參考位準例如是接地位準。及閘164將第一比較訊號C1與第二比較訊號C2進行一交集運算以輸出零交越數位訊號ZCD。零交越數位訊號ZCD包括相鄰之預觸發數位脈衝ZC(1)及零交越數位脈衝ZC(2),預觸發數位脈衝ZC(1)係最先產生,零交越數位脈衝ZC(2)係最接近預觸發數位脈衝ZC(1)。反及閘165將第一比較訊號C1及運算處理電路17輸出之重置訊號Rst進行一反交集運算以產生一閂鎖訊號L,閂鎖訊號L控制預觸發比較器162之閂鎖狀態。運算處理電路17根據零交越數位訊號ZCD計算超音波流量。由於及閘164所輸出之零交越數位訊號ZCD係為將第一比較訊號C1與第二比較訊號C2交集而得,因此能避免受雜訊Ny影響而錯誤的判斷。 Please refer to FIG. 1 , FIG. 2 and FIG. 3 at the same time. FIG. 2 is a schematic diagram of a zero-point detection circuit, and FIG. 3 is a diagram showing an ultrasonic echo, a first comparison signal, and a second comparison signal. Timing diagram of the zero-crossing digital signal. The zero point detection circuit 16 includes a digital analog converter 161, a pre-trigger comparator 162, a zero-crossing comparator 163, an AND gate 164, and a NAND gate 165. The arithmetic processing circuit 17 controls the digital analog converter 161 to generate a multi-stage trigger signal MS. The pre-trigger comparator 162 compares the ultrasonic echo with the Rx and the multi-stage trigger signal MS to output the first comparison signal C1. The zero-crossing comparator 163 compares the ultrasonic echo Rx with a reference level to output a second comparison signal C2. The reference level is, for example, the ground level. The gate 164 performs an intersection operation between the first comparison signal C1 and the second comparison signal C2 to output a zero-crossing digital signal ZCD. The zero-crossing digital signal ZCD includes an adjacent pre-trigger digital pulse ZC(1) and a zero-crossing digital pulse ZC(2), and the pre-trigger digital pulse ZC(1) is first generated, and the zero-crossing digital pulse ZC(2) ) is closest to the pre-trigger digital pulse ZC(1). The reverse gate 165 performs a reverse intersection operation on the first comparison signal C1 and the reset signal Rst output from the arithmetic processing circuit 17 to generate a latch signal L, and the latch signal L controls the latch state of the pre-trigger comparator 162. The arithmetic processing circuit 17 calculates the ultrasonic flow rate based on the zero-crossing digital signal ZCD. Since the zero-crossing digital signal ZCD outputted by the gate 164 is obtained by intersecting the first comparison signal C1 and the second comparison signal C2, it is possible to avoid erroneous judgment due to the influence of the noise Ny.

進一步來說,運算處理電路17選擇零交越數位脈衝ZC(2)做為計算飛行時間TOF的結束脈衝。運算處理電路17根據零交越數位脈衝ZC(2)計算飛行時間TOF,飛行時間TOF為起始脈衝SP與零交越數位脈衝ZC(2)的時間差。運算處理電路17再根據二組超音波探頭交替之飛行時間TOF差值計算超音波流量。 Further, the arithmetic processing circuit 17 selects the zero-crossing digital pulse ZC(2) as the end pulse for calculating the time-of-flight TOF. The arithmetic processing circuit 17 calculates the time-of-flight TOF based on the zero-crossing digital pulse ZC(2), which is the time difference between the start pulse SP and the zero-crossing digital pulse ZC(2). The arithmetic processing circuit 17 then calculates the ultrasonic flow rate based on the difference in flight time TOF of the two sets of ultrasonic probes.

請同時參照第1圖、第3圖及第4圖,第4圖繪示係為多階段觸發訊號與超音波回波之示意圖。多階段觸發訊號MS包括預觸發位準PTL(1)~PTL(M),且M係大於1之正整數。預觸發位準PTL(1)~PTL(M)係依序產生,且預觸發位準PTL(1)~PTL(M)係依序遞增。舉例來說,預觸發位準PTL(1)~PTL(M)係依序遞增15mV。當預觸發位準PTL(M)等於3000mV時,則M等200。 Please refer to FIG. 1 , FIG. 3 and FIG. 4 at the same time. FIG. 4 is a schematic diagram showing a multi-stage trigger signal and an ultrasonic echo. The multi-stage trigger signal MS includes pre-trigger levels PTL(1)~PTL(M), and M is a positive integer greater than one. The pre-trigger levels PTL(1)~PTL(M) are generated sequentially, and the pre-trigger levels PTL(1)~PTL(M) are sequentially increased. For example, the pre-trigger level PTL(1)~PTL(M) is sequentially incremented by 15mV. When the pre-trigger level PTL (M) is equal to 3000 mV, then M is equal to 200.

運算處理電路17根據零交越數位訊號ZCD產生數個分別對應於預觸發位準PTL(1)~PTL(M)之零交越時間陣列。運算處理電路17先將所有零交越時間陣列進行一濾波運算,以產生一濾波後資料,運算處理電路17再根據濾波後資料計算超音波流量。前述濾波運算例如為一中位值平均濾波運算。中位值平均濾波運算係先取樣N筆資料後存入陣列,再將陣列做大小排序。之後取中位數,接著將中位數二側資料與中位數相減。跟著,判斷相減後的結果是否小於容許誤差值。當相減後的結果小於容許誤差值時則停止。接著紀錄陣列二端的位址A及B,再將陣列x(A)至x(B)的值做平均計算,所得到的值即為濾波後資料。 The arithmetic processing circuit 17 generates a plurality of zero-crossing time arrays corresponding to the pre-trigger levels PTL(1) to PTL(M) according to the zero-crossing digital signal ZCD. The arithmetic processing circuit 17 first performs a filtering operation on all the zero-crossing time arrays to generate a filtered data, and the arithmetic processing circuit 17 calculates the ultrasonic flow based on the filtered data. The aforementioned filtering operation is, for example, a median value average filtering operation. The median average filtering operation first samples the N data and stores it in the array, and then sorts the array. The median is then taken, followed by subtracting the median two-sided data from the median. Then, it is judged whether the result of the subtraction is smaller than the allowable error value. When the result of the subtraction is less than the allowable error value, it stops. Then record the addresses A and B at the two ends of the array, and then average the values of the arrays x(A) to x(B), and the obtained values are the filtered data.

除此之外,運算處理電路17還能根據預觸發數位脈衝ZC(1)計算超音波回波Rx之最大震幅,並將最大震幅做為可變增益放大器15之回授訊號。預觸發位準PTL(1)~PTL(M)包括相鄰之預觸發位準PTL(M-1)及預觸發位準PTL(M),且預觸發位準PTL(M)大於預觸發位準PTL(M-1)。當多階段觸發訊號MS等於預觸發位準PTL(M-1)時,運算處理電路17於逾時時間內接收預觸發數位脈衝ZC(1)。相對地,當多階段觸發訊號MS等於預觸發位準PTL(M)時,運算處理電路17於逾時時間內無法接收預觸發數位脈衝ZC(1)。運算處理電路17選擇預觸發位準PTL(M-1)做為最大震幅。 In addition, the arithmetic processing circuit 17 can also calculate the maximum amplitude of the ultrasonic echo Rx based on the pre-trigger digital pulse ZC(1), and use the maximum amplitude as the feedback signal of the variable gain amplifier 15. The pre-trigger level PTL(1)~PTL(M) includes the adjacent pre-trigger level PTL(M-1) and the pre-trigger level PTL(M), and the pre-trigger level PTL(M) is greater than the pre-trigger bit. Quasi PTL (M-1). When the multi-stage trigger signal MS is equal to the pre-trigger level PTL (M-1), the arithmetic processing circuit 17 receives the pre-trigger digital pulse ZC(1) within the timeout period. In contrast, when the multi-stage trigger signal MS is equal to the pre-trigger level PTL (M), the arithmetic processing circuit 17 cannot receive the pre-trigger digital pulse ZC (1) within the timeout period. The arithmetic processing circuit 17 selects the pre-trigger level PTL (M-1) as the maximum amplitude.

請同時參照第5圖及第6圖,第5圖繪示係為未經濾波演算之零交越時間陣列之數值分佈圖,第6圖繪示係為經濾波演算之濾波後資料之數值分佈圖。舉例來說,使用三英吋PVC管材,流體為靜止自來水且取樣資料為828筆。由第5圖可看出未經濾波演算前的標準差平均為61ns。相對地,由第6圖可看出經濾波演算後的標準差平均為0.24ns,明顯地降低數值跳動的幅度。 Please refer to Fig. 5 and Fig. 6 at the same time. Figure 5 shows the numerical distribution of the zero-crossing time array which is the unfiltered calculus, and Fig. 6 shows the numerical distribution of the filtered data after the filtering calculus. Figure. For example, using three inches of PVC tubing, the fluid is static tap water and the sampled data is 828. It can be seen from Fig. 5 that the standard deviation before the unfiltered calculation is 61 ns on average. In contrast, it can be seen from Fig. 6 that the standard deviation after filtering calculation is 0.24 ns on average, which significantly reduces the amplitude of the numerical jitter.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

16‧‧‧零點偵測電路 16‧‧‧ Zero detection circuit

161‧‧‧數位類比轉換器 161‧‧‧Digital Analog Converter

162‧‧‧預觸發比較器 162‧‧‧Pre-trigger comparator

163‧‧‧零點交越比較器 163‧‧‧ Zero crossing comparator

164‧‧‧及閘 164‧‧‧ and gate

165‧‧‧反及閘 165‧‧‧Anti-gate

MS‧‧‧多階段觸發訊號 MS‧‧‧Multi-stage trigger signal

Rx‧‧‧超音波回波 Rx‧‧‧Supersonic echo

Rst‧‧‧重置訊號 Rst‧‧‧Reset signal

C1‧‧‧第一比較訊號 C1‧‧‧ first comparison signal

C2‧‧‧第二比較訊號 C2‧‧‧ second comparison signal

L‧‧‧閂鎖訊號 L‧‧‧Latch signal

ZCD‧‧‧零交越數位訊號 ZCD‧‧‧ zero crossover digital signal

Claims (20)

一種超音波流量計,包括:一零點偵測電路,包括:一數位類比轉換器,用以產生一多階段觸發訊號;一預觸發比較器,用以比較一超音波回波與該多階段觸發訊號以輸出一第一比較訊號;一零點交越比較器,用以比較該超音波回波與一參考位準以輸出一第二比較訊號;及一及閘(AND gate),用以將該第一比較訊號與該第二比較訊號進行一交集運算以輸出一零交越(Zero-cross)數位訊號;以及一運算處理電路,用以根據該零交越數位訊號計算一超音波流量。 An ultrasonic flowmeter includes: a zero-point detection circuit comprising: a digital analog converter for generating a multi-stage trigger signal; and a pre-trigger comparator for comparing an ultrasonic echo with the multi-stage Triggering a signal to output a first comparison signal; a zero-crossing comparator for comparing the ultrasonic echo with a reference level to output a second comparison signal; and an AND gate for Performing an intersection operation between the first comparison signal and the second comparison signal to output a zero-cross digital signal; and an operation processing circuit for calculating an ultrasonic flow according to the zero-crossing digital signal . 如申請專利範圍第1項所述之超音波流量計,其中該零點偵測電路更包括一反及閘(NAND gate),用以將該第一比較訊號及一重置訊號進行一反交集運算以產生一閂鎖訊號,該閂鎖訊號控制該預觸發比較器之閂鎖狀態。 The ultrasonic flowmeter of claim 1, wherein the zero detection circuit further comprises a NAND gate for performing an inverse intersection operation on the first comparison signal and a reset signal. To generate a latch signal, the latch signal controls the latch state of the pre-trigger comparator. 如申請專利範圍第1項所述之超音波流量計,其中該多階段觸發訊號包括複數個預觸發位準,該些預觸發位準係依序產生,且該些預觸發位準係依序遞增,該零交越數位訊號包括相鄰之一預觸發數位脈衝及一零交越數位脈衝,該預觸發數位脈衝係最先產生,該零交越數位脈衝係最接近該預觸發數位脈衝。 The ultrasonic flowmeter of claim 1, wherein the multi-stage trigger signal comprises a plurality of pre-trigger levels, the pre-trigger levels are sequentially generated, and the pre-trigger levels are sequentially Incrementally, the zero-crossing digital signal includes an adjacent one of a pre-trigger digital pulse and a zero-crossing digital pulse. The pre-trigger digital pulse is generated first, and the zero-crossing digital pulse is closest to the pre-trigger digital pulse. 如申請專利範圍第3項所述之超音波流量計,其中該運算處理電路根據該零交越數位脈衝計算一飛行時間,該運算處理電路根據二組超音波探頭交替之飛行時間差值計算該超音波流量。 The ultrasonic flowmeter of claim 3, wherein the arithmetic processing circuit calculates a flight time based on the zero-crossing digital pulse, the arithmetic processing circuit calculates the flight time difference according to the alternating flight time values of the two sets of ultrasonic probes Ultrasonic flow. 如申請專利範圍第3項所述之超音波流量計,其中該運算處理電路根據該預觸發數位脈衝計算該超音波回波之一最大震幅。 The ultrasonic flowmeter of claim 3, wherein the arithmetic processing circuit calculates one of the maximum amplitudes of the ultrasonic echo according to the pre-trigger digital pulse. 如申請專利範圍第5項所述之超音波流量計,更包括:一可變增益放大器,該運算處理電路將該最大震幅做為該可變增益放大器之回授訊號。 The ultrasonic flowmeter of claim 5, further comprising: a variable gain amplifier, wherein the operation processing circuit uses the maximum amplitude as a feedback signal of the variable gain amplifier. 如申請專利範圍第5項所述之超音波流量計,更包括:一時間測量電路,用以計算一逾時時間,該些預觸發位準包括相鄰之一第一預觸發位準及一第二預觸發位準,且該第二預觸發位準大於該第一預觸發位準,當該多階段觸發訊號等於該第一預觸發位準時,該運算處理電路於該逾時時間內接收該預觸發數位脈衝,當該多階段觸發訊號等於該第二預觸發位準時,該運算處理電路於該逾時時間內無法接收該預觸發數位脈衝,該運算處理電路選擇該第一預觸發位準做為該最大震幅。 The ultrasonic flowmeter of claim 5, further comprising: a time measuring circuit for calculating a timeout period, wherein the pre-trigger levels include one of the first pre-trigger levels and one a second pre-trigger level, wherein the second pre-trigger level is greater than the first pre-trigger level, and when the multi-stage trigger signal is equal to the first pre-trigger level, the operation processing circuit receives the timeout period The pre-trigger digital pulse, when the multi-stage trigger signal is equal to the second pre-trigger level, the operation processing circuit cannot receive the pre-trigger digit pulse within the timeout period, and the operation processing circuit selects the first pre-trigger bit It is the maximum amplitude. 如申請專利範圍第3項所述之超音波流量計,其中該運算處理電路根據該零交越數位訊號產生複數個零交越時間陣列,該些零交越時間陣列分別對應於該些預觸發位準。 The ultrasonic flowmeter of claim 3, wherein the arithmetic processing circuit generates a plurality of zero-crossing time arrays according to the zero-crossing digital signal, wherein the zero-crossing time arrays respectively correspond to the pre-triggering Level. 如申請專利範圍第8項所述之超音波流量計,其中該運算處理電路將該些零交越時間陣列進行一濾波運算,以產生一濾波 後資料,該運算處理電路根據該濾波後資料計算該超音波流量。 The ultrasonic flowmeter of claim 8, wherein the arithmetic processing circuit performs a filtering operation on the zero-crossing time array to generate a filter. After the data, the operation processing circuit calculates the ultrasonic flow rate based on the filtered data. 如申請專利範圍第8項所述之超音波流量計,其中該濾波運算係為一中位值平均濾波運算。 The ultrasonic flowmeter of claim 8, wherein the filtering operation is a median average filtering operation. 一種超音波流量測量方法,包括:產生一多階段觸發訊號;藉由一預觸發比較器比較一超音波回波與該多階段觸發訊號以輸出一第一比較訊號;藉由一零點交越比較器比較該超音波回波與一參考位準以輸出一第二比較訊號;將該第一比較訊號與該第二比較訊號進行一交集運算以輸出一零交越(Zero-cross)數位訊號;以及根據該零交越數位訊號計算一超音波流量。 An ultrasonic flow measurement method includes: generating a multi-stage trigger signal; comparing a supersonic echo with the multi-stage trigger signal to output a first comparison signal by a pre-trigger comparator; and crossing a zero point Comparing the ultrasonic echo with a reference level to output a second comparison signal; performing an intersection operation between the first comparison signal and the second comparison signal to output a zero-cross digital signal And calculating an ultrasonic flow based on the zero-crossing digital signal. 如申請專利範圍第11項所述之超音波流量測量方法,更包括:將該第一比較訊號及一重置訊號進行一反交集運算以產生一閂鎖訊號,該閂鎖訊號控制該預觸發比較器之閂鎖狀態。 The ultrasonic flow measurement method of claim 11, further comprising: performing a reverse intersection operation on the first comparison signal and a reset signal to generate a latch signal, wherein the latch signal controls the pre-trigger The latch state of the comparator. 如申請專利範圍第11項所述之超音波流量測量方法,其中該多階段觸發訊號包括複數個預觸發位準,該些預觸發位準係依序產生,且該些預觸發位準係依序遞增,該零交越數位訊號包括相鄰之一預觸發數位脈衝及一零交越數位脈衝,該預觸發數位脈衝係最先產生,該零交越數位脈衝係最接近該預觸發數位脈衝。 The ultrasonic flow measurement method of claim 11, wherein the multi-stage trigger signal comprises a plurality of pre-trigger levels, the pre-trigger levels are sequentially generated, and the pre-trigger levels are In sequence increment, the zero-crossing digital signal includes an adjacent one of a pre-trigger digital pulse and a zero-crossing digital pulse, the pre-trigger digital pulse being generated first, and the zero-crossing digital pulse is closest to the pre-trigger digital pulse . 如申請專利範圍第13項所述之超音波流量測量方法,其中該計算步驟包括:根據該零交越數位脈衝計算一飛行時間;以及根據二組超音波探頭交替之飛行時間差值計算該超音波流量。 The method for measuring ultrasonic wave flow according to claim 13, wherein the calculating step comprises: calculating a flight time according to the zero-crossing digital pulse; and calculating the super time according to the difference of flight time between the two sets of ultrasonic probes Sound wave flow. 如申請專利範圍第13項所述之超音波流量測量方法,更包括:根據該預觸發數位脈衝計算該超音波回波之一最大震幅。 The ultrasonic flow measurement method of claim 13, further comprising: calculating a maximum amplitude of the ultrasonic echo according to the pre-trigger digital pulse. 如申請專利範圍第15項所述之超音波流量測量方法,更包括:將該最大震幅做為一可變增益放大器之回授訊號。 The method for measuring ultrasonic flow as described in claim 15 further includes: using the maximum amplitude as a feedback signal of a variable gain amplifier. 如申請專利範圍第15項所述之超音波流量測量方法,更包括:計算一逾時時間,該些預觸發位準包括相鄰之一第一預觸發位準及一第二預觸發位準,且該第二預觸發位準大於該第一預觸發位準;其中,當該多階段觸發訊號等於該第一預觸發位準時,於該逾時時間內接收該預觸發數位脈衝;其中,當該多階段觸發訊號等於該第二預觸發位準時,於該逾時時間內無法接收該預觸發數位脈衝,選擇該第一預觸發位準做為該最大震幅。 The method for measuring the ultrasonic flow according to claim 15, further comprising: calculating a timeout period, wherein the pre-trigger levels include one of the first pre-trigger levels and a second pre-trigger level. And the second pre-trigger level is greater than the first pre-trigger level; wherein, when the multi-stage trigger signal is equal to the first pre-trigger level, the pre-trigger digit pulse is received during the timeout period; When the multi-stage trigger signal is equal to the second pre-trigger level, the pre-trigger digit pulse cannot be received within the timeout period, and the first pre-trigger level is selected as the maximum amplitude. 如申請專利範圍第13項所述之超音波流量測量方法,更 包括:根據該零交越數位訊號產生複數個零交越時間陣列,該些零交越時間陣列分別對應於該些預觸發位準。 For example, the ultrasonic flow measurement method described in claim 13 The method includes: generating a plurality of zero-crossing time arrays according to the zero-crossing digital signal, wherein the zero-crossing time arrays respectively correspond to the pre-trigger levels. 如申請專利範圍第18項所述之超音波流量測量方法,其中該計算步驟係將該些零交越時間陣列進行一濾波運算,以產生一濾波後資料,再根據該濾波後資料計算該超音波流量。 The method for measuring ultrasonic wave flow according to claim 18, wherein the calculating step performs a filtering operation on the zero-crossing time array to generate a filtered data, and then calculating the super based on the filtered data. Sound wave flow. 如申請專利範圍第18項所述之超音波流量測量方法,其中該濾波運算係為一中位值平均濾波運算。 The ultrasonic flow measurement method according to claim 18, wherein the filtering operation is a median value average filtering operation.
TW102121715A 2013-06-19 2013-06-19 Ultrasonic flow meter and ultrasonic flow measuring TWI500908B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW102121715A TWI500908B (en) 2013-06-19 2013-06-19 Ultrasonic flow meter and ultrasonic flow measuring
CN201310308284.6A CN104236646B (en) 2013-06-19 2013-07-22 Ultrasonic flowmeter and ultrasonic flow measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102121715A TWI500908B (en) 2013-06-19 2013-06-19 Ultrasonic flow meter and ultrasonic flow measuring

Publications (2)

Publication Number Publication Date
TW201500722A true TW201500722A (en) 2015-01-01
TWI500908B TWI500908B (en) 2015-09-21

Family

ID=52225179

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102121715A TWI500908B (en) 2013-06-19 2013-06-19 Ultrasonic flow meter and ultrasonic flow measuring

Country Status (2)

Country Link
CN (1) CN104236646B (en)
TW (1) TWI500908B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576126B (en) * 2016-02-03 2017-04-01 金宙科技有限公司 A device of liquid flow measurement
TWI692639B (en) * 2019-10-03 2020-05-01 佳世達科技股份有限公司 Ultrasonic probe

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6484131B2 (en) * 2015-06-30 2019-03-13 株式会社堀場エステック Flow measuring device
CN107131918B (en) * 2017-07-02 2023-09-12 中国计量大学 Echo signal processing method and circuit of low-power-consumption ultrasonic flowmeter
CN107478282B (en) * 2017-08-17 2020-09-01 西南科技大学 Ultrasonic flow detection signal processing method and device and time difference method ultrasonic detection system
CN110221202B (en) * 2019-07-17 2021-05-18 西安西电开关电气有限公司 Current curve processing method and device for working current of circuit breaker

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938054A (en) * 1989-05-03 1990-07-03 Gilbarco Inc. Ultrasonic linear meter sensor for positive displacement meter
NZ243293A (en) * 1991-06-25 1995-03-28 Commw Scient Ind Res Org Fluid flow meter: time of travel of acoustic wave packet through fluid
JP4020455B2 (en) * 1997-05-28 2007-12-12 愛知時計電機株式会社 Ultrasonic flow meter
JP2002365109A (en) * 2001-06-11 2002-12-18 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
TWI259900B (en) * 2001-10-02 2006-08-11 Matsushita Electric Ind Co Ltd Flow meter
JP3585476B2 (en) * 2002-03-15 2004-11-04 松下電器産業株式会社 Flow measurement device
JP4511257B2 (en) * 2004-06-21 2010-07-28 愛知時計電機株式会社 Ultrasonic flow meter
DE102006062552B4 (en) * 2006-12-29 2009-12-24 Bartels Mikrotechnik Gmbh Method and device for flow measurement
CN201795819U (en) * 2010-06-10 2011-04-13 宁波大学 Static drift rejection model of time difference method ultrasonic flowmeter
JP4875780B2 (en) * 2010-06-22 2012-02-15 株式会社泉技研 Ultrasonic flow measuring device and ultrasonic flow measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576126B (en) * 2016-02-03 2017-04-01 金宙科技有限公司 A device of liquid flow measurement
TWI692639B (en) * 2019-10-03 2020-05-01 佳世達科技股份有限公司 Ultrasonic probe

Also Published As

Publication number Publication date
CN104236646A (en) 2014-12-24
TWI500908B (en) 2015-09-21
CN104236646B (en) 2017-07-14

Similar Documents

Publication Publication Date Title
TWI500908B (en) Ultrasonic flow meter and ultrasonic flow measuring
CA2955165C (en) Improved signal travel time flow meter
EP3495783A1 (en) Ultrasonic transducers using adaptive multi-frequency hopping and coding
CN104330120A (en) Flow rate detection method for low-energy-consumption ultrasonic flow rate meter and system
TW201621340A (en) Partial discharge determining device and partial discharge determining method
CN109612541B (en) Mistake wave prevention signal processing circuit of gas ultrasonic flowmeter
CN104048164A (en) Mileage measuring device and method of in-pipeline detector
Chen et al. Robust precise time difference estimation based on digital zero-crossing detection algorithm
US20140303910A1 (en) Extended range adc flow meter
Shao et al. Frequency-variance based antistrong vibration interference method for vortex flow sensor
RU2353905C1 (en) Method for measurement of liquid mediums flow and ultrasonic flow metre
KR101764870B1 (en) Signal processing system for ultrasonic floemeter
JP2018138891A (en) Ultrasonic flowmeter
EP2751530B1 (en) An ultrasonic measurement device and a method for operating the same
JP4904099B2 (en) Pulse signal propagation time measurement device and ultrasonic flow measurement device
CN204165597U (en) For the echoed signal modulate circuit of flow quantity detecting system
RU118743U1 (en) ULTRASONIC FLOW METER
CN104242873B (en) A kind of ultrasonic echo duty cycle measurement circuit and its measuring method
RU68148U1 (en) ULTRASONIC FLOW METER
JP2008164329A (en) Ultrasound flowmeter
Bo et al. High-speed and precise measurement for ultrasonic liquid flow metering based on a single FPGA
TW201623924A (en) Paddlewheel flowmeter for detecting flow and detecting method thereof
US20190128715A1 (en) Flow meter
CN116338240B (en) Ultrasonic liquid flow velocity measurement method and device based on parabolic fitting
CN109724655A (en) A kind of Ultrasonic Wave Flowmeter signal processing system