TW201444577A - 投予抗-gcc抗體-藥物共軛物及dna破壞劑來治療癌症 - Google Patents

投予抗-gcc抗體-藥物共軛物及dna破壞劑來治療癌症 Download PDF

Info

Publication number
TW201444577A
TW201444577A TW103106933A TW103106933A TW201444577A TW 201444577 A TW201444577 A TW 201444577A TW 103106933 A TW103106933 A TW 103106933A TW 103106933 A TW103106933 A TW 103106933A TW 201444577 A TW201444577 A TW 201444577A
Authority
TW
Taiwan
Prior art keywords
immunoconjugate
cancer
gcc
seq
agent
Prior art date
Application number
TW103106933A
Other languages
English (en)
Inventor
Ole Petter Veiby
Original Assignee
Millennium Pharm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Millennium Pharm Inc filed Critical Millennium Pharm Inc
Publication of TW201444577A publication Critical patent/TW201444577A/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/05Dipeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/68031Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being an auristatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/68033Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a maytansine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6863Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from stomach or intestines cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6871Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting an enzyme
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3046Stomach, Intestines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/77Internalization into the cell
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Inorganic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Biomedical Technology (AREA)

Abstract

本發明係關於用於治療胃腸癌之方法。特定而言,本發明提供用於藉由投予包含抗-GCC抗體分子之免疫共軛物與DNA破壞劑之組合來治療胃腸癌之方法。

Description

投予抗-GCC抗體-藥物共軛物及DNA破壞劑來治療癌症 序列表
本申請案含有已以ASCII格式以電子方式呈遞並以引用方式全文併入本文中之序列表。該ASCII拷貝於2014年2月20日創建,命名為M2051-7034WO_SL.txt,且大小為75,817個位元組。
相關申請案
本申請案主張於2013年2月28日申請之美國臨時申請案第61/770,802號及於2013年10月18日申請之美國臨時申請案第61/892,854號之權益;該等美國臨時申請案之整個內容以引用方式併入本文中。
本發明係關於腫瘤學領域並提供治療癌症(例如胃腸癌)之方法。更特定而言,本發明係關於治療癌症(例如胃腸癌)之方法,其係藉由投予經由可裂解連接體與單甲基奧裏斯他汀E(monomethyl auristatin E)共軛之抗-GCC抗體分子與DNA破壞劑之組合來實現。本發明亦提供包含經由可裂解連接體與單甲基奧裏斯他汀E共軛之抗-GCC抗體分子與DNA破壞劑之組合的醫藥組合物及套組。
胃腸癌包括結腸、直腸、胃、胰臟、食道、肛門、膽囊、肝及 膽管之腫瘤。結腸直腸癌、胃癌及胰臟癌為美國最常見之胃腸癌。每年超過275,000個人診斷有胃腸癌,且將近136,000個死於該等疾病。美國癌症學會(American Cancer Society)估計2009年胃腸癌佔所有新癌症診斷之19%且佔所有癌症死亡之24%以上。
已使用許多化學治療劑來治療患有胃腸癌之患者。然而,在結腸直腸癌、胃癌及胰臟癌之許多病例中產生抗藥性妨礙成功治療。大多數胃腸癌死亡係由化學療法抗性(「化學抗性」)細胞轉移擴散至肝及其他器官導致,且因此轉移仍為較差預後指標。抗藥性之兩種主要形式為內生性抗性(其中未預先治療之腫瘤細胞固有地對化學治療劑不敏感)及後天性抗性(其中經治療腫瘤細胞在藥物暴露後變得不敏感)。迄今為止,許多研究小組已研究各種抗藥性機制,以期克服化學療法中之此主要障礙。研究者已確定後天性抗藥性係多因性的,此乃因其涉及宿主因素及遺傳及後生變化以及許多分子事件。抗性自身可歸因於藥物累積降低、細胞內藥物分佈改變、藥物-標靶相互作用減少、去毒反應增加、細胞週期失調、受損DNA對增加及凋亡反應減少。
克服化學抗性仍為一種治療挑戰。
鳥苷酸環化酶C(GCC)係用於維持腸液、電解質體內恆定及細胞增生之跨膜細胞表面受體,例如參見Carrithers等人,Proc.Natl.Acad.Sci.USA 100:3018-3020(2003)。GCC係表現於內襯於小腸、大腸及直腸中之黏膜細胞處(Carrithers等人,Dis Colon Rectum 39:171-181(1996))。在腸上皮細胞之腫瘤性轉形後維持GCC表現,其中在所有原發性及轉移性結腸直腸腫瘤(Carrithers等人,Dis Colon Rectum 39:171-181(1996);Buc等人,Eur J Cancer 41:1618-1627(2005);Carrithers等人,Gastroenterology 107:1653-1661(1994))、大部分原發性及轉移性胃腫瘤及食道腫瘤以及原發性及轉移性胰臟癌之亞群中表 現。
GCC係用於由於其在大部分胃腸惡性腫瘤中解剖上區分之表面表現而發現新的靶向治療劑之有吸引力之標靶。美國公開專利申請案第US 2011/0110936號闡述已顯示在源自轉移性結腸直腸癌患者之原發性人類腫瘤移出物之小鼠異種移植物模型中具有單一藥劑活性的抗-GCC抗體-藥物共軛物(「ADC」;有時在本文中稱為「免疫共軛物」)。
現已發現具有經由可裂解連接體(例如蛋白酶可裂解連接體)與強效微管抑制劑單甲基奧裏斯他汀E(MMAE)共軛之抗-GCC抗體分子並與DNA破壞劑組合投予的免疫共軛物提供針對胃腸惡性腫瘤之協同活性。意外地,該等抗-GCC免疫共軛物使胃腸腫瘤對DNA破壞劑活性敏感,無論當單獨投予時腫瘤對該等免疫共軛物之敏感性如何。該組合療法以協同方式減少腫瘤體積,且亦在與任一藥劑單獨之活性相比出乎意料長之時期內防止腫瘤再生長,且為對作為單一藥劑之免疫共軛物活性具有抗性(無論該抗性是固有的還是後天性的)之腫瘤提供有吸引力之治療選擇。
在一態樣中,本發明係關於治療癌症(例如胃腸癌)之方法,其係藉由向需要該治療之個體投予包含經由蛋白酶可裂解連接體與強效微管抑制劑單甲基奧裏斯他汀E(MMAE)共軛之抗-GCC抗體分子的免疫共軛物與DNA破壞劑之組合來實現。免疫共軛物及DNA破壞劑中之每一者係以當組合使用該兩個藥劑時治療上有效之量投予。在某些實施例中,欲藉由本文所提供方法治療之癌症(例如胃腸癌)係對包含經由蛋白酶可裂解連接體與MMAE共軛之抗-GCC抗體分子之免疫共軛物之活性具有抗性或難治性者。
在本發明之一實施例中,與DNA破壞劑組合投予之免疫共軛物 具有下式 I-5
或其醫藥上可接受之鹽,其中:Ab係抗-GCC抗體分子,且m為1至8之整數。在本發明之實施例中,m為3至5之整數。在特定實施例中,m為約4。
在某些實施例中,式( I-5) 之免疫共軛物包含抗-GCC抗體分子,其包括:a)三個包含以下胺基酸序列之重鏈互補決定區(CDR):VH CDR1 GYYWS(SEQ ID NO:25);VH CDR2 EINHRGNTNDNPSLKS(SEQ ID NO:26);及VH CDR3 ERGYTYGNFDH(SEQ ID NO:27);及b)三個包含以下胺基酸序列之輕鏈CDR:VL CDR1 RASQSVSRNLA(SEQ ID NO:28);VL CDR2 GASTRAT(SEQ ID NO:29);及VL CDR3 QQYKTWPRT(SEQ ID NO:30)。
在一些實施例中,該抗-GCC抗體分子係含有包含SEQ ID NO:20之胺基酸序列之輕鏈可變區及包含SEQ ID NO:18之胺基酸序列之重鏈可變區的抗體分子。在一些實施例中,該抗-GCC抗體分子係含有包含SEQ ID NO:20之胺基酸序列之輕鏈可變區、輕鏈k恆定區或其片段、包含SEQ ID NO:18之胺基酸序列之重鏈可變區及重鏈IgG1或IgG2恆定區或其片段的抗體分子。
在一實施例中,該抗-GCC抗體分子係本文中所闡述之5F9抗體分子。
與式( I-5) 之免疫共軛物組合投予之DNA破壞劑可為拓撲異構酶I抑制劑、拓撲異構酶II抑制劑、烷化劑、類烷化劑、蒽環、DNA嵌入劑、DNA小溝烷化劑或抗代謝物藥劑。包括本發明免疫共軛物及DNA破壞劑之組合療法可對癌症具有治療協同效應,並減少與該等化學治療劑有關之副效應。
適用於本發明方法之拓撲異構酶I抑制劑之實例包括(但不限於)伊立替康(irinotecan)、托泊替康(topotecan)、喜樹鹼(camptothecin)、SN-38、片螺素D(lamellarin D)及其任何類似物、衍生物或代謝物。
適用於本發明方法之拓撲異構酶II抑制劑之實例包括(但不限於)依託泊苷(etoposide)、替尼泊苷(teniposide)、安吖啶(amsacrine)及米托蒽醌(mitoxantrone)及其任何類似物、衍生物或代謝物。
烷化劑係具有用烷基取代氫離子之能力之多官能化合物。烷化劑之實例包括(但不限於)雙氯乙胺(氮芥,例如苯丁酸氮芥(chlorambucil)、環磷醯胺、依弗醯胺(ifosfamide)、二氯甲基二乙胺(mechlorethamine)、美法蘭(melphalan)、尿嘧啶氮芥)、氮雜環丙烷(例如噻替哌)、烷基烷烴磺酸鹽(例如白消安(busulfan))、亞硝酸脲(例如卡莫司汀(carmustine)、洛莫司汀(lomustine)、鏈脲黴素(streptozocin)、司莫司汀(semustine)、烏拉莫司汀(uramustine))、非經典烷化劑(六甲蜜胺(altretamine)、達卡巴嗪(dacarbazine)及丙卡巴肼(procarbazine))及鉑化合物(卡鉑(carboplatin)及順鉑(cisplatin))。該等化合物與磷酸鹽、胺基、羥基、硫氫基、羧基及咪唑基團反應。在生理條件下,該等藥物電離並產生正離子,該正離子附接至易感核酸及蛋白質,從而導致細胞週期停滯及/或細胞死亡。適用於本發明方法之烷化劑之其他實例包括(但不限於)絲裂黴素C(mitomycin C)、二溴 甘露醇、四硝酸酯、米托唑胺(mitozolomide)、替莫唑胺(temozolomide)及其任何類似物、衍生物或代謝物。
適用於本發明方法之類烷化劑之實例包括(但不限於)鉑化合物,例如順鉑、卡鉑、奈達鉑(nedaplatin)、奧沙利鉑(oxaliplatin)、沙鉑(satraplatin)、三鉑(triplatin)及其任何類似物、衍生物或代謝物。
適用於本發明方法之蒽環之實例包括(但不限於)道諾黴素(daunorubicin)、多柔比星(doxorubicin)、表柔比星(epirubicin)、伊達比星(idarubicin)、戊柔比星(valrubicin)及其任何類似物、衍生物或代謝物。
適用於本發明方法之DNA嵌入劑及自由基發生劑之實例包括(但不限於)博來黴素(bleomycin)。
適用於本發明方法之DNA小溝烷化劑之實例包括(但不限於)多卡米星(duocarmycin)及其任何類似物或衍生物,例如於以下專利中闡述之彼等:美國專利第5,101,038號;第5,641,780號;第5,187,186號;第5,070,092號;第5,703,080號;第5,070,092號;第5,641,780號;第5,101,038號;第5,084,468號;第5,739,350號;第4,978,757號;第5,332,837號;第4,912,227號;第5,985,908號;第6,060,608號;第6,262,271號;第6,281,354號;第6,310,209號;第6,486,326號;及第6,548,530號;PCT公開案第WO 96/10405號;第WO 97/32850號;第WO 97/45411號;第WO 98/52925號;第WO 99/19298號;第WO 99/29642號;第WO 01/83482號;第WO 97/12862號;第WO 03/022806號;及第WO 04/101767號;及公開的歐洲申請案0 537 575 A1,其每一者之內容均以引用方式全文併入本文中;及吡咯并苯并二氮呯化合物(「PBD」),例如於以下專利中闡述之彼等:WO2000/012508、WO2011/130598、WO2011/130616、WO2005/085251、WO2010/043880、WO2012/003266、 WO2000/012506、WO2005/023814,其每一者之內容均以引用方式全文併入本文中。
抗代謝物藥劑係一組干擾對癌細胞之生理及增生至關重要之代謝過程的藥物。增生活躍之癌細胞要求連續合成大量核酸、蛋白質、脂質及其他至關重要之細胞成份。許多抗代謝物抑制嘌呤或嘧啶核苷之合成或抑制DNA複製之酶。一些抗代謝物亦干擾核糖核苷及RNA之合成及/或胺基酸代謝以及蛋白質合成。藉由干擾至關重要細胞成份之合成,抗代謝物可延遲或阻止癌細胞之生長。適用於本發明方法之抗代謝物藥劑之實例包括(但不限於)氟尿嘧啶(5-FU)、氟尿苷(5-FUdR)、胺甲喋呤、甲醯四氫葉酸、羥基脲、硫鳥嘌呤(6-TG)、巰嘌呤(6-MP)、阿糖胞苷、噴司他汀(pentostatin)、磷酸氟達拉濱(fludarabine phosphate)、克拉屈濱(cladribine,2-CDA)、天冬醯胺酶、吉西他濱(gemcitabine)、卡培他濱(capecitibine)、硫唑嘌呤、胞嘧啶胺甲喋呤、甲氧苄啶(trimethoprim)、乙胺嘧啶、培美曲塞(pemetrexed)及其任何類似物、衍生物或代謝物。
在一些實施例中,胃腸癌係表現GCC之胃腸癌。表現GCC之胃腸癌之實例包括(但不限於)原發性或轉移性結腸直腸癌、原發性或轉移性胃癌、原發性或轉移性胰臟癌及原發性或轉移性食道癌。在某些實施例中,胃腸癌對當以單一藥劑形式投予時之式 (I-5) 之免疫共軛物具有抗性。
在一特定實施例中,本發明係關於藉由向需要該治療之個體投予式( I-5) 之免疫共軛物與DNA破壞劑之組合來治療胃腸癌之方法,其中該抗-GCC抗體分子係本文中所闡述之抗-GCC抗體分子(例如5F9),且m為3至5之整數(例如4),其中該DNA破壞劑係拓撲異構酶I抑制劑,且其中免疫共軛物及拓撲異構酶I抑制劑中之每一者係以當組合使用該兩種藥劑時治療上有效之量投予。
在另一特定實施例中,本發明係關於藉由向需要該治療之個體投予式( I-5) 之免疫共軛物與拓撲異構酶I抑制劑之組合來治療胃腸癌之方法,其中該抗-GCC抗體分子係本文中所闡述之抗-GCC抗體分子(例如5F9),且m為3至5之整數(例如4),其中該拓撲異構酶I抑制劑係伊立替康,且其中免疫共軛物及伊立替康中之每一者係以當組合使用該兩種藥劑時治療上有效之量投予。
在又一特定實施例中,本發明係關於藉由向需要該治療之個體投予式( I-5) 之免疫共軛物與伊立替康之組合來治療原發性或轉移性結腸直腸癌之方法,其中該抗-GCC抗體分子係本文中所闡述之抗-GCC抗體分子(例如5F9),且m為3至5之整數(例如4),其中免疫共軛物及伊立替康中之每一者係以當組合使用該兩種藥劑時治療上有效之量投予。在特定實施例中,免疫共軛物及伊立替康係包含於共伴或依序投予之單獨調配物中。
在又一特定實施例中,本發明係關於藉由向需要該治療之個體投予式( I-5) 之免疫共軛物與類烷化劑之組合來治療胃腸癌之方法,其中該抗-GCC抗體分子係本文中所闡述之抗-GCC抗體分子(例如5F9),且m為3至5之整數(例如4),其中免疫共軛物及類烷化劑中之每一者係以當組合使用該兩種藥劑時治療上有效之量投予。例如,該類烷化劑係順鉑、卡鉑、奈達鉑、奧沙利鉑、沙鉑或三鉑。
在特定實施例中,本發明係關於藉由向需要該治療之個體投予式( I-5) 之免疫共軛物與順鉑或奧沙利鉑之組合來治療原發性或轉移性結腸直腸癌之方法,其中該抗-GCC抗體分子係本文中所闡述之抗-GCC抗體分子(例如5F9),且m為3至5之整數(例如4),其中免疫共軛物及順鉑或奧沙利鉑中之每一者係以當組合使用該兩種藥劑時治療上有效之量投予。在特定實施例中,免疫共軛物及順鉑或奧沙利鉑係包含於共伴或依序投予之單獨調配物中。
在再一實施例中,本發明係關於藉由向需要該治療之個體投予式( I-5) 之免疫共軛物與抗代謝物之組合來治療胃腸癌之方法,其中該抗-GCC抗體分子係本文中所闡述之抗-GCC抗體分子(例如5F9),且m為3至5之整數(例如4),其中免疫共軛物及抗代謝物中之每一者係以當組合使用該兩種藥劑時治療上有效之量投予。例如,該抗代謝物係氟尿嘧啶(5-FU)、氟尿苷(5-FUdR)、胺甲喋呤、甲醯四氫葉酸、羥基脲、硫鳥嘌呤(6-TG)、巰嘌呤(6-MP)、阿糖胞苷、噴司他汀、磷酸氟達拉濱、克拉屈濱(2-CDA)、天冬醯胺酶、吉西他濱、卡培他濱、硫唑嘌呤、胞嘧啶胺甲喋呤、甲氧苄啶、乙胺嘧啶或培美曲塞。
在一特定實施例中,本發明係關於藉由向需要該治療之個體投予式( I-5) 之免疫共軛物與5-氟尿嘧啶之組合來治療原發性或轉移性結腸直腸癌之方法,其中該抗-GCC抗體分子係本文中所闡述之抗-GCC抗體分子(例如5F9),且m為3至5之整數(例如4),其中免疫共軛物及5-氟尿嘧啶中之每一者係以當組合使用該兩種藥劑時治療上有效之量投予。在特定實施例中,免疫共軛物及5-氟尿嘧啶係包含於共伴或依序投予之單獨調配物中。
在另一特定實施例中,本發明係關於藉由向需要該治療之個體投予式( I-5) 之免疫共軛物與吉西他濱之組合來治療原發性或轉移性胰臟癌之方法,其中該抗-GCC抗體分子係本文中所闡述之抗-GCC抗體分子(例如5F9),且m為3至5之整數(例如4),其中免疫共軛物及吉西他濱中之每一者係以當組合使用該兩種藥劑時治療上有效之量投予。在特定實施例中,免疫共軛物及吉西他濱係包含於共伴或依序投予之單獨調配物中。
在本發明之實施例中,免疫共軛物之抗-GCC抗體分子係單株抗體或其抗原結合片段。在另一實施例中,免疫共軛物之抗-GCC抗體分子係IgG1或IgG2抗體。在再一實施例中,免疫共軛物之抗-GCC抗 體分子包含人類或人類源輕鏈及重鏈可變區框架。在特定實施例中,本發明之抗-GCC抗體分子係分離之單株IgG1抗體或抗原結合其片,其包含人類或人類源輕鏈及重鏈可變區框架。
在某些實施例中,係共伴投予免疫共軛物及DNA破壞劑。在其他某些實施例中,係依序投予免疫共軛物及DNA破壞劑。可以單獨調配物形式投予免疫共軛物及DNA破壞劑。另一選擇為,將免疫共軛物及DNA破壞劑共調配為治療上有效總量之每一藥劑之單一劑型。
在一實施例中,在某一時期內每三週一次投予免疫共軛物,與在(例如)相同時期內每週一次、每週兩次或每週三次投予之DNA破壞劑組合。
在一實施例中,在某一時期內每三週一次投予免疫共軛物,與在(例如)相同時期內每三週一次投予之DNA破壞劑組合。
在一實施例中,在某一時期內每三週一次投予免疫共軛物,與在(例如)相同時期內之每週期間3天給藥/4天停藥投予之DNA破壞劑組合。
在一實施例中,在某一時期內每三週一次投予免疫共軛物,與在(例如)相同時期內之每週期間2天給藥/5天停藥投予之DNA破壞劑組合。
在另一實施例中,在某一時期內每兩週一次投予免疫共軛物,與在(例如)相同時期內每週兩次或三次投予之DNA破壞劑組合。
在再一實施例中,在某一時期內每週一次投予免疫共軛物,與在(例如)相同時期內每週兩次投予之DNA破壞劑組合。
在又一實施例中,在某一時期內每週一次投予免疫共軛物,與在(例如)相同時期內每週之第1天及第3天投予之DNA破壞劑組合。
在再一實施例中,在某一時期內每週一次投予免疫共軛物,與在(例如)相同時期內每週三次投予之DNA破壞劑組合。
在另一實施例中,在某一時期內每週一次投予免疫共軛物,與在(例如)相同時期之第一週期間一次投予之DNA破壞劑組合。
在另一實施例中,在某一時期內每週一次投予免疫共軛物,與在(例如)相同時期之第一週及第二週期間每週一次投予之DNA破壞劑組合。
在一實施例中,在某一時期內每週一次投予免疫共軛物,與在(例如)相同時期內之每週期間3天給藥/4天停藥投予之DNA破壞劑組合。
在一實施例中,在某一時期內每週一次投予免疫共軛物,與在(例如)相同時期內之每週期間2天給藥/5天停藥投予之DNA破壞劑組合。
在一實施例中,在某一時期內每週一次投予免疫共軛物,與在(例如)相同時期內每三週一次投予之DNA破壞劑組合。
在再一實施例中,DNA破壞劑之給藥時間表與免疫共軛物之給藥時間表在每週之最後一天重疊。在其他實施例中,DNA破壞劑之給藥時間表與免疫共軛物之給藥時間表不重疊,以使得在一周中不同天投予每一藥劑。
在一態樣中,本發明係關於包含至少一種用於治療需要該治療之個體之癌症(例如胃腸癌)之藥品的套組。在一實施例中,該套組含有包含式 (I-5) 之免疫共軛物之藥品及關於投予該免疫共軛物與選自以下之DNA破壞劑之組合之說明書:拓撲異構酶I抑制劑、拓撲異構酶II抑制劑、烷化劑、類烷化劑、蒽環、DNA嵌入劑、DNA小溝烷化劑或抗代謝物。在一實施例中,該DNA破壞劑係本文中所闡述之DNA破壞劑。在某些實施例中,該套組含有包含式 (I-5) 之免疫共軛物之藥品及關於投予該免疫共軛物與拓撲異構酶I抑制劑之組合以治療胃腸癌之說明書。在特定實施例中,用於與該免疫共軛物組合投予之拓撲 異構酶I抑制劑係伊立替康。例如,該套組包括藥品包含式 (I-5) 之免疫共軛物,其中該抗-GCC抗體分子係本文中所闡述之抗-GCC抗體分子(例如5F9),且m為3至5之整數(例如4);及關於投予該免疫共軛物與伊立替康之組合以治療胃腸癌(例如結腸直腸癌)之說明書。在一些實施例中,該說明書包括本文中所闡述之劑量或給藥時間表。在一些實施例中,該套組進一步包括伊立替康。
在另一某實施例中,該套組含有包含式 (I-5) 之免疫共軛物之藥品及關於投予該免疫共軛物與類烷化劑之組合以治療胃腸癌之說明書。在特定實施例中,用於與該免疫共軛物組合投予之類烷化劑係順鉑或奧沙利鉑。例如,該套組包括藥品包含式 (I-5) 之免疫共軛物,其中該抗-GCC抗體分子係本文中所闡述之抗-GCC抗體分子(例如5F9),且m為3至5之整數(例如4);及關於投予該免疫共軛物與順鉑或奧沙利鉑之組合以治療胃腸癌(例如結腸直腸癌)之說明書。在一些實施例中,該說明書包括本文中所闡述之劑量或給藥時間表。在一些實施例中,該套組進一步包括順鉑或奧沙利鉑。
在又一某實施例中,該套組含有包含式 (I-5) 之免疫共軛物之藥品及關於投予該免疫共軛物與抗代謝物藥劑之組合以治療胃腸癌之說明書。在特定實施例中,用於與該免疫共軛物組合投予之抗代謝物係5-氟尿嘧啶。例如,該套組包括藥品包含式 (I-5) 之免疫共軛物,其中該抗-GCC抗體分子係本文中所闡述之抗-GCC抗體分子(例如5F9),且m為3至5之整數(例如4);及關於投予該免疫共軛物與5-氟尿嘧啶之組合以治療胃腸癌(例如結腸直腸癌)之說明書。在一些實施例中,該說明書包括本文中所闡述之劑量或給藥時間表。在一些實施例中,該套組進一步包括5-氟尿嘧啶。
在再一某實施例中,該套組含有包含式 (I-5) 之免疫共軛物之藥品及關於投予該免疫共軛物與抗代謝物藥劑之組合以治療胃腸癌之說明 書。在特定實施例中,用於與該免疫共軛物組合投予之抗代謝物係吉西他濱。例如,該套組包括藥品包含式 (I-5) 之免疫共軛物,其中該抗-GCC抗體分子係本文中所闡述之抗-GCC抗體分子(例如5F9),且m為3至5之整數(例如4);及關於投予該免疫共軛物與吉西他濱之組合以治療胰臟癌之說明書。在一些實施例中,該說明書包括本文中所闡述之劑量或給藥時間表。在一些實施例中,該套組進一步包括吉西他濱。
在一些態樣中,本發明提供治療結腸直腸癌之方法,其包含向需要該治療之患者投予式(I-5)之免疫共軛物:
或其醫藥上可接受之鹽,其中Ab係抗-GCC抗體分子,其包含a)三個包含以下胺基酸序列之重鏈互補決定區(CDR):VH CDR1 GYYWS(SEQ ID NO:25);VH CDR2 EINHRGNTNDNPSLKS(SEQ ID NO:26);及VH CDR3 ERGYTYGNFDH(SEQ ID NO:27);及b)三個包含以下胺基酸序列之輕鏈CDR:VL CDR1 RASQSVSRNLA(SEQ ID NO:28);VL CDR2 GASTRAT(SEQ ID NO:29);及VL CDR3 QQYKTWPRT(SEQ ID NO:30),例如5F9,且其中m為1至8之整數(例如3至5);與伊立替康之組合,其中免疫共軛物及伊立替康之量在組合使用時治療上有效(例如協同的)。結腸直腸癌可對單獨免疫共軛物具有強至中等或強敏感性,或可對單獨免疫共軛物具有抗性。結腸直腸癌可具有相對高、中等或較低之GCC抗原密度。
在一些態樣中,本發明提供治療結腸直腸癌之方法,其包含向需要該治療之患者投予式( I-5) 之免疫共軛物:
或其醫藥上可接受之鹽,其中Ab係抗-GCC抗體分子,其包含a)三個包含以下胺基酸序列之重鏈互補決定區(CDR):VH CDR1 GYYWS(SEQ ID NO:25);VH CDR2 EINHRGNTNDNPSLKS(SEQ ID NO:26);及VH CDR3 ERGYTYGNFDH(SEQ ID NO:27);及b)三個包含以下胺基酸序列之輕鏈CDR:VL CDR1 RASQSVSRNLA(SEQ ID NO:28);VL CDR2 GASTRAT(SEQ ID NO:29);及VL CDR3 QQYKTWPRT(SEQ ID NO:30),例如5F9,且其中m為1至8之整數(例如3至5);與順鉑之組合,其中免疫共軛物及順鉑之量在組合使用時治療上有效(例如累加的)。結腸直腸癌可對單獨免疫共軛物具有強敏感性。結腸直腸癌可具有相對高之GCC抗原密度。
在一些態樣中,本發明提供治療結腸直腸癌之方法,其包含向需要該治療之患者投予式( I-5) 之免疫共軛物:
或其醫藥上可接受之鹽,其中Ab係抗-GCC抗體分子,其包含a)三個包含以下胺基酸序列之重鏈互補決定區(CDR):VH CDR1 GYYWS(SEQ ID NO:25);VH CDR2 EINHRGNTNDNPSLKS(SEQ ID NO:26);及VH CDR3 ERGYTYGNFDH(SEQ ID NO:27);及b)三個包含以下胺基酸序列之輕鏈CDR:VL CDR1 RASQSVSRNLA (SEQ ID NO:28);VL CDR2 GASTRAT(SEQ ID NO:29);及VL CDR3 QQYKTWPRT(SEQ ID NO:30),例如5F9,且其中m為1至8之整數(例如3至5);與5-氟尿嘧啶之組合,其中免疫共軛物及5-氟尿嘧啶之量在組合使用時治療上有效(例如協同的)。結腸直腸癌可對單獨免疫共軛物具有強至中等敏感性。結腸直腸癌可具有較低GCC抗原密度。
在一些態樣中,本發明提供治療胰臟癌之方法,其包含向需要該治療之患者投予式( I-5) 之免疫共軛物:
或其醫藥上可接受之鹽,其中Ab係抗-GCC抗體分子,其包含a)三個包含以下胺基酸序列之重鏈互補決定區(CDR):VH CDR1 GYYWS(SEQ ID NO:25);VH CDR2 EINHRGNTNDNPSLKS(SEQ ID NO:26);及VH CDR3 ERGYTYGNFDH(SEQ ID NO:27);及b)三個包含以下胺基酸序列之輕鏈CDR:VL CDR1 RASQSVSRNLA(SEQ ID NO:28);VL CDR2 GASTRAT(SEQ ID NO:29);及VL CDR3 QQYKTWPRT(SEQ ID NO:30),例如5F9,且其中m為1至8之整數(例如3至5);與吉西他濱之組合,其中免疫共軛物及吉西他濱之量在組合使用時治療上有效(例如累加的)。結腸直腸癌可對單獨免疫共軛物具有敏感性。
本文所提及之所有出版物、專利申請案、專利及其它參考文獻均以引用方式全文併入本文中。
自以下說明、附圖及申請專利範圍,本文中所揭示之本發明優勢及特徵將變得顯而易見。此外,應理解本文中所闡述之各種實施例 之特徵並不彼此排斥,且可以各種組合及排列存在。
圖1繪示根據q14d時間表用5F9vc-MMAF、-DM1及-DM4治療之攜帶293-GCC 2號之SCID小鼠中之腫瘤生長。
圖2繪示用0.9% NaCl;40mg/kg之209抗體;或10mg/kg或40mg/kg之5F9抗體治療之小鼠在接種後第41天之肺重量。
圖3繪示用5F9抗體治療之攜帶CT26-hGCC腫瘤之小鼠之存活曲線。
圖4繪示測試GCC直系同源物之抗體交叉反應性之ELISA結合分析。
圖5A至5E係繪示於源自經GCC轉染之HEK293細胞之腫瘤異種移植物(圖5A)及源自mCRC患者樣品之原發性人類腫瘤異種移植物(圖5B至5E)中之寬範圍GCC表現的免疫組織化學載玻片。
圖6A至6E係繪示源自具有不同之GCC抗原密度值之mCRC患者樣品之不同腫瘤異種移植物模型中藉由具有經由蛋白酶可裂解連接體與強效微管抑制劑MMAE共軛之抗-GCC mAb之免疫共軛物誘導之活體內抗腫瘤活性的圖表。圖6A繪示具有中等至較高GCC表現量之原發性人類腫瘤異種移植物(PHTX-09c)中之活體內抗腫瘤活性;圖6B繪示具有中等GCC表現量之原發性人類腫瘤異種移植物(PHTX-17c)中之活體內抗腫瘤活性;圖6C及6D繪示在不同劑量之免疫共軛物及給藥時間表下亦具有中等GCC表現量之原發性人類腫瘤異種移植物(PHTX-11c)中之活體內抗腫瘤活性;圖6E繪示具有較低GCC表現之原發性人類腫瘤異種移植物(PHTX-21c)中之活體內抗腫瘤活性。
圖7A繪示PHTX-11c原發性人類mCRC腫瘤異種移植物模型中之GCC之免疫組織化學檢測;圖7B繪示PHTX-11c模型中之具有經由蛋白酶可裂解連接體與MMAE共軛之抗-GCC mAbz之免疫共軛物在投予 該免疫共軛物後第7天之免疫組織化學檢測。
圖8A係繪示用具有經由蛋白酶可裂解連接體與MMAE共軛之抗-GCC mAb之免疫共軛物及DNA破壞劑(CPT-11)(每一藥劑單獨及以組合形式)治療之PHTX-09c原發性人類mCRC腫瘤異種移植物模型中之平均體重變化百分比的圖表;圖8B係繪示PHTX-09c模型中藉由免疫共軛物及DNA破壞劑(CPT-11)(每一者單獨及以組合形式)誘導之抗腫瘤活性的圖表;圖8C係繪示在用免疫共軛物及DNA破壞劑(每一者單獨及以組合形式)治療後PHTX-09c模型中之腫瘤再生長的圖表。
圖9A係繪示用具有經由蛋白酶可裂解連接體與MMAE共軛之抗-GCC mAb之免疫共軛物及DNA破壞劑(CPT-11)(每一藥劑單獨及以組合形式)治療之PHTX-21c原發性人類mCRC腫瘤異種移植物模型中之平均體重變化百分比的圖表;圖9B係繪示PHTX-21c模型中藉由免疫共軛物及DNA破壞劑(CPT-11)(每一者單獨及以組合形式)誘導之抗腫瘤活性的圖表;圖9C係繪示在用免疫共軛物及DNA破壞劑(每一者單獨及以組合形式)治療後PHTX-21c模型中之腫瘤再生長的圖表。
圖10A係繪示用具有經由蛋白酶可裂解連接體與MMAE共軛之抗-GCC mAb之免疫共軛物及DNA破壞劑(CPT-11)(每一藥劑單獨及以組合形式)治療之PHTX-17c原發性人類mCRC腫瘤異種移植物模型中之平均體重變化百分比的圖表;圖10B係繪示PHTX-17c模型中藉由免疫共軛物及DNA破壞劑(CPT-11)(每一者單獨及以組合形式)誘導之抗腫瘤活性的圖表;圖10C係繪示在用免疫共軛物及DNA破壞劑(每一者單獨及以組合形式)治療後PHTX-17c模型中之腫瘤再生長的圖表。
圖11A係繪示用具有經由蛋白酶可裂解連接體與MMAE共軛之抗-GCC mAb之免疫共軛物及DNA破壞劑(CPT-11)(每一藥劑單獨及以組合形式)治療之PHTX-11c原發性人類mCRC腫瘤異種移植物模型中之平均體重變化百分比的圖表;圖11B係繪示PHTX-11c模型中藉由免疫 共軛物及DNA破壞劑(CPT-11)(每一者單獨及以組合形式)誘導之抗腫瘤活性的圖表;圖11C係繪示在用免疫共軛物及DNA破壞劑(每一者單獨及以組合形式)治療後PHTX-11c模型中之腫瘤再生長的圖表。
圖12A係用具有經由蛋白酶可裂解連接體與MMAE共軛之抗-GCC mAb之免疫共軛物及DNA破壞劑(順鉑)(每一藥劑單獨及以組合形式)治療之PHTX-09c原發性人類mCRC腫瘤異種移植物模型中之平均體重變化百分比的圖表繪示;圖12B係繪示PHTX-09c模型中藉由免疫共軛物及DNA破壞劑(順鉑)(每一者單獨及以組合形式)誘導之抗腫瘤活性的圖表;圖12C係繪示在用免疫共軛物及DNA破壞劑(順鉑)(每一者單獨及以組合形式)治療後PHTX-09c模型中之腫瘤再生長的圖表。
圖13A係繪示用具有經由蛋白酶可裂解連接體與MMAE共軛之抗-GCC mAb之免疫共軛物及DNA破壞劑(5-FU)(每一藥劑單獨及以組合形式)治療之PHTX-21c原發性人類mCRC腫瘤異種移植物模型中之平均體重變化百分比的圖表;圖13B係繪示PHTX-21c模型中藉由免疫共軛物及DNA破壞劑(5-FU)(每一者單獨及以組合形式)誘導之抗腫瘤活性的圖表;圖13C係繪示在用免疫共軛物及DNA破壞劑(5-FU)(每一者單獨及以組合形式)治療後PHTX-21c模型中之腫瘤再生長的圖表。
圖14係繪示各種胰臟腫瘤微陣列上針對GCC表現篩選之樣品間之合併/總計H評分分佈的圖表。
圖15A係繪示PHTX-249a原發性人類胰臟腫瘤異種移植物模型中藉由3.75mg/kg及7.5mg/kg之經由蛋白酶可裂解連接體與MMAE共軛之抗-GCC mAb誘導之抗腫瘤活性的圖表(該研究中包括用不含MMAE且非GCC靶向之ADC治療之對照群組。)。圖15B係繪示PHTX-215a原發性人類胰臟腫瘤異種移植物模型中藉由3.75mg/kg及7.5mg/kg之經由蛋白酶可裂解連接體與MMAE共軛之抗-GCC mAb誘導之抗腫瘤活 性的圖表(該研究中包括用不含MMAE且非GCC靶向之ADC治療之對照群組。)。
圖16A係繪示藉由經由蛋白酶可裂解連接體與MMAE共軛之抗-GCC mAb及吉西他濱(每一者單獨以單一藥劑形式及以組合形式)以不同濃度及給藥時間表誘導之抗腫瘤活性之比較的條形圖;圖16B係繪示PHTX-249a原發性人類胰臟腫瘤異種移植物模型中藉由經由蛋白酶可裂解連接體與MMAE共軛之抗-GCC mAb及吉西他濱(每一者單獨以單一藥劑形式及以組合形式)誘導之抗腫瘤活性的圖表;圖16C係繪示PHTX-215a原發性人類胰臟腫瘤異種移植物模型中藉由經由蛋白酶可裂解連接體與MMAE共軛之抗-GCC mAb及吉西他濱(每一者單獨以單一藥劑形式及以組合形式)誘導之抗腫瘤活性的圖表。
本發明提供用於治療癌症(例如胃腸癌)之新組合療法。特定而言,本發明提供治療罹患胃腸癌之患者之方法,其包含向該患者投予包括經由蛋白酶可裂解連接體與MMAE共軛之抗-GCC抗體分子與DNA破壞劑之組合的免疫共軛物,其中每一藥劑係以治療上有效總量使用。儘管該等免疫共軛物及DNA破壞劑各自可證明以單一藥劑形式在治療某些胃腸癌類型及一定數量之患者中有效,但已意外發現利用本發明抗-GCC免疫共軛物及DNA破壞劑之組合療法提供個別地利用任一藥劑未達成之益處。本發明亦提供包括本發明抗-GCC免疫共軛物及DNA破壞劑之醫藥組合物及套組。
如上文所闡述,化學抗性係胃腸癌治療中公認之問題。特定而言,由於結腸直腸癌對微管破壞劑之固有或後天性化學抗性,該等藥劑在治療結腸直腸癌方面之成功有限。MMAE係強效微管抑制劑。本發明者已發現,如其他微管破壞劑一樣,當MMAE以經設計以藉由靶向GCC來特異性靶向結腸直腸癌細胞之免疫共軛物形式使用時,某些 結腸直腸腫瘤類型似乎對MMAE之微管抑制活性具有抗性。意外地,本發明者已發現當以單一藥劑形式使用時具有少許活性至無活性之相同抗-GCC免疫共軛物使MMAE難治性結腸直腸腫瘤對DNA破壞劑活性敏感。本文中顯示,抗-GCC免疫共軛物及DNA破壞劑之組合與任一藥劑單獨在不同腫瘤異種移植物模型中之活性相比具有改良之抗腫瘤活性,儘管在不同模型中之GCC表現量類似,該等模型對呈單一藥劑形式免疫共軛物呈現不同之敏感性程度。
鳥苷酸環化酶C
鳥苷酸環化酶C(GCC)(亦稱為STAR、ST受體、GUC2C及GUCY2C)係用於維持腸液、電解質體內恆定及細胞增生之跨膜細胞表面受體(Carrithers等人,Proc Natl Acad Sci U S A 100:3018-3020(2003);Mann等人,Biochem Biophys Res Commun 239:463-466(1997);Pitari等人,Proc Natl Acad Sci U S A 100:2695-2699(2003));GenBank登錄號NM_004963,其每一者以引用方式併入本文中)。此功能係藉助結合鳥苷素來調介(Wiegand等人,FEBS Lett.311:150-154(1992))。GCC亦係耐熱性腸毒素(ST,例如具有NTFYCCELCCNPACAGCY(即SEQ ID NO:1)之胺基酸序列)之受體,耐熱性腸毒素係由大腸桿菌(E.coli)以及其他傳染性生物體產生之肽(Rao,M.C.Ciba Found.Symp.112:74-93(1985);Knoop F.C.及Owens,M.J.Pharmacol.Toxicol.Methods 28:67-72(1992))。ST與GCC之結合激活信號級聯,從而導致腸道疾病,例如腹瀉。
人類GCC之核苷酸序列(GenBank登錄號NM_004963): (SEQ ID No:2)
人類GCC之胺基酸序列(GenPept登錄號NP_004954): (SEQ ID No:3)
GCC蛋白質具有一些普遍接受之結構域,其每一者均向GCC分子提供可分離功能。GCC之各部分包括SEQ ID NO:3之胺基酸殘基1至約殘基23或殘基1至約殘基21之信號序列(用於將蛋白質引導至細胞表面)(經切除用於成熟,從而產生SEQ ID NO:3之約胺基酸殘基22或24至1073之功能性成熟蛋白)、SEQ ID NO:3之約胺基酸殘基24至約殘基420或約殘基54至約殘基384之用於配體(例如鳥苷素或ST)結合之細胞外結構域、SEQ ID NO:3之約胺基酸殘基431至約殘基454或約殘基436至約殘基452之跨膜結構域、SEQ ID NO:3之約胺基酸殘基489至約殘基749或約殘基508至約殘基745之經預測具有酪胺酸激酶活性之激酶同源結構域,及SEQ ID NO:3之約殘基750至約殘基1007或約殘基816至約殘基1002之鳥苷酸環化酶催化結構域。較佳地,抗-GCC抗體分子結合至GCC之細胞外結構域。
在一些實施例中,抗-GCC抗體分子可結合人類GCC。在一些實施例中,本發明抗-GCC抗體分子可抑制配體(例如鳥苷素或耐熱性腸毒素)結合至GCC。在其他實施例中,本發明抗-GCC抗體分子不抑制配體(例如鳥苷素或耐熱性腸毒素)結合至GCC。
定義及方法
除非另有定義,否則結合本發明使用之科學及技術術語具有熟習此項技術者通常理解之含義。通常,與本文中所闡述之細胞及組織培養、分子生物學、及蛋白質及寡核苷或多核苷酸化學及雜交連用之命名法及其相關技術係本技術領域中已知之彼等。GenBank或GenPept登錄號及有用核酸及肽序列可參見由國家生物技術資訊中心(National Center for Biotechnological Information,Bethesda MD)維持之網站。重組DNA、寡核苷酸合成及組織培養及轉形及轉染(例如電穿孔,脂轉染)使用標準技術。酶促反應及純化技術係根據製造商說明書來實施,或以本技術領域內習用方法來實施,或如本文所述來實施。通常根據本技術領域內已知之方法且如各種一般且更具體參考文獻中所闡述實施以上技術及程序,貫穿本說明書引用且論述該等參考文獻。例如,參見Sambrook等人,Molecular Cloning:A Laboratory Manual(第3版,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.(2000)),或一般參見Harlow,E.及Lane,D.(1988)Antibodies:A Laboratory Manual,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY。與本文中所闡述之分析化學、合成有機化學及醫學及藥物化學連用之命名法及其相關實驗室程序及技術為本技術領域內所已知。化學合成、化學分析、醫藥製備、調配及遞送及患者治療使用標準技術。此外,除非上下文另外需要,否則單數術語將包括複數形式且複數術語將包括單數。
本文所使用之術語「抗體分子」係指抗體、抗體肽或免疫球蛋白或前述中之任一者(例如抗體)之抗原結合片段。抗體分子包括單鏈抗體分子,例如scFv,例如參見Bird等人,(1988)Science 242:423-426;及Huston等人,(1988)Proc.Natl.Acad.Sci.USA 85:5879-5883);及單一結構域抗體分子,例如參見WO9404678。儘管不屬於術語「抗體分子」,但本發明亦包括「抗體類似物」、其他基於非抗體 分子蛋白質之骨架,例如使用CDR提供特異性抗原結合之融合蛋白及/或免疫共軛物。
「抗-GCC抗體分子」係指與GCC(例如人類GCC)相互作用或識別其、例如結合(例如特異性結合)至其之抗體分子(即抗體、抗體肽、免疫球蛋白或前述中任一者之抗原結合片段)。實例性抗-GCC抗體分子係總結於表1及2中。實例性抗-GCC抗體包含表1之抗體之胺基酸序列,且可在任何適宜細胞系(例如哺乳動物細胞系,例如人類細胞系、NSO細胞系或CHO細胞系)中製得。實例性抗-GCC抗體可包含表2中所列示之可變區。實例性抗-GCC抗體亦可包含表5中所列示之CDR。
本文所使用之術語「抗體」、「抗體肽」或「免疫球蛋白」係指單鏈、雙鏈及多鏈蛋白質及糖蛋白。術語抗體包括多株、單株、嵌合、CDR移植及人類或人類化抗體,其全部更詳細地論述於本文其他地方。該術語亦包括駱駝科(camelid)抗體(例如參見US2005/0037421)及奈米抗體(例如IgNAR(鯊魚抗體),例如參見WO03/014161)。術語「抗體」亦包括合成及經遺傳改造變體。
本文所使用之術語抗體之「抗體片段」或「抗原結合片段」係指(例如)Fab、Fab’、F(ab’)2及Fv片段、單鏈抗體、功能性重鏈抗體(奈米抗體)以及抗體之對至少一個期望表位具有特異性且與完整抗體競爭特異性結合之任何部分(例如具有足夠CDR序列且具有足夠框架序列以特異性結合至表位之片段)。例如抗原結合片段可競爭結合至結合衍生出該片段之抗體之表位。此及類似上下文中所使用之衍生並不暗示衍生之任何特定方法或過程,但可僅指序列類似性。抗原結合片段可藉由重組技術或藉由酶促或化學裂解完整抗體產生。術語抗原結合片段當用於具有輕鏈及重鏈之抗體之單鏈(例如重鏈)時意味著,該鏈之片段足以使得當與另一條鏈(例如輕鏈)之完整可變區配對時, 其結合將允許達利用整個重鏈及輕鏈可變區所見結合之至少25%、50%、75%、85%或90%。
本文所使用之術語「CDR之抗原結合群集」或「多個足以允許結合之CDR」(及類似語言)係指一條鏈(例如重鏈)之足夠CDR,其足以使得當置於框架中並與另一條鏈之完整可變區或另一條鏈之可變區之具有類似長度且具有相同數量之CDR之部分配對時,例如該輕鏈結合將允許達利用整個重鏈及輕鏈可變區所見結合之(例如)至少25%、50%、75%、85%或90%。
本文所使用之術語「人類抗體」包括具有衍生自人類生殖細胞系免疫球蛋白序列之序列之抗體,例如源自具有人類免疫球蛋白基因之轉基因小鼠(例如XENOMOUSETM經遺傳改造小鼠(Abgenix,Fremont,CA))之抗體、人類噬菌體展示文庫、人類骨髓瘤細胞或人類B細胞。
本文所使用之術語「人類化抗體」係指衍生自非人類抗體(例如齧齒動物(例如鼠類))且保留或實質上保留親代抗體之抗原結合性質但在人類中具有較少免疫原性之抗體。本文所使用之人類化意欲包括去免疫抗體。通常,人類化抗體包括非人類CDR及人類或人類源框架及恆定區。
本文所使用之術語「經修飾」抗體係指藉由重組方式製備、表現、產生或分離之抗體,例如使用轉染至宿主細胞中之重組表現載體表現之抗體、分離自重組、組合抗體文庫之抗體、分離自人類免疫球蛋白基因轉基因動物(例如小鼠、綿羊或山羊)之抗體或藉由涉及將人類免疫球蛋白基因序列剪接至其他DNA序列之任何其他方式來製備、表現、產生或分離之抗體。該等經修飾抗體包括人類化、CDR移植(例如具有來自第一抗體之CDR及來自不同來源(例如第二抗體或共有框架)之框架區之抗體)、嵌合、活體外生成(例如藉由噬菌體展示)之 抗體,且可視情況包括源自人類生殖細胞系免疫球蛋白序列或人類免疫球蛋白基因或已藉由涉及將人類免疫球蛋白基因序列剪接至替代免疫球蛋白序列之任何方式製備、表現、產生或分離之抗體的可變區或恆定區。在各實施例中,經修飾抗體分子包括具有相對於參照抗體之序列變化之抗體分子。
術語「單特異性抗體」係指對特定表位展示單一結合特異性及親和力之抗體或抗體製劑。此術語包括「單株抗體」或「單株抗體組合物」。
術語「雙特異性抗體」或「雙功能抗體」係指對兩個表位展示雙重結合特異性之抗體,其中每一結合位點不同且識別不同表位。
術語「非共軛抗體」及「裸抗體」可互換使用,以指未與非抗體部分(例如治療劑或標記)共軛之抗體分子。
術語「免疫共軛物」、「抗體共軛物」、「抗體藥物共軛物」及「ADC」可互換使用,且係指與非抗體部分(例如治療劑或標記)共軛之抗體分子。
術語「藥劑」在本文中用於表示自生物材料製得之化學化合物、化學化合物之混合物、生物大分子或萃取物。術語「治療劑」係指具有生物活性之藥劑。
術語「抗癌劑」或「化學治療劑」在本文中用於指具有抑制人類中贅瘤、特定而言惡性(癌性)病灶(例如癌瘤、肉瘤、淋巴瘤或白血病)發生或進展之功能性質之藥劑。抑制轉移或血管形成常為抗癌劑或化學治療劑之性質。化學治療劑可為細胞毒性劑或細胞抑制劑。術語「細胞抑制劑」係指抑制或阻抑細胞生長及/或細胞增殖之藥劑。
「細胞毒性劑」係指主要藉由直接干擾細胞功能來引起細胞死亡之化合物,包括(但不限於)烷化劑、腫瘤壞死因子抑制劑、嵌入劑、微管抑制劑、激酶抑制劑、蛋白酶體抑制劑及拓撲異構酶抑制 劑。本文所使用之「毒性酬載」係指當遞送至細胞時造成細胞死亡之足量細胞毒性劑。毒性酬載之遞送可藉由投予足量之包含本發明之抗體或抗原結合片段及細胞毒性劑之免疫共軛物來實現。毒性酬載之遞送亦可藉由投予足量之包含細胞毒性劑之免疫共軛物來實現,其中該免疫共軛物包含識別並結合本發明之抗體或抗原結合片段之二級抗體或其抗原結合片段。
本文所使用之片語「衍生自指定序列」或「對其具有特異性」之序列係指包含與(例如)指定序列之鄰接區域相應(即一致或互補)之具有大約至少6個核苷酸或至少2個胺基酸、至少約9個核苷酸或至少3個胺基酸、至少約10個至12個核苷酸或4個胺基酸或至少約15個至21個核苷酸或5個至7個胺基酸之鄰接序列之序列。在某些實施例中,該序列包含指定核苷酸或胺基酸序列之全部。該序列可如藉由本技術領域內已知之技術測定與特定序列所獨有之序列區域互補(在多核苷酸序列之情形下)或一致。可衍生出序列之區域包括(但不限於)編碼特異性表位之區域、編碼CDR之區域、編碼框架序列之區域、編碼恆定結構域區域之區域、編碼可變結構域區域之區域以及非轉譯及/或非轉錄區域。所衍生序列將不必物理上衍生自研究中所關注之序列,但可以任何方式生成,包括(但不限於)基於由衍生出多核苷酸之區域中之鹼基序列提供之資訊之化學合成、複製、反轉錄或轉錄。由此,其可代表原始多核苷酸之有義或反義定向。另外,與指定序列之區域相應之區域之組合可以本技術領域內已知方式修飾或組合以符合預期用途。例如,序列可包含兩個或更多個各包含指定序列之一部分之鄰接序列,且雜有與指定序列不一致但意欲代表源自指定序列之序列之區域。關於抗體分子,「自其衍生」包括與比較抗體功能上或結構上相關之抗體分子,例如「自其衍生」包括具有類似或實質上相同之序列或結構(例如具有相同或類似CDR、框架或可變區)之抗體分子。關於 抗體之「自其衍生」亦包括殘基,例如一或多個,例如2個、3個、4個、5個、6個或更多個殘基,其可鄰接或可不鄰接,但係根據比較序列之編碼方案或與其一般抗體結構之同源性或三維近似性(即在CDR或框架區內)定義或鑑別。術語「自其衍生」並不限於物理上自其衍生,但包括藉由任何方式(例如藉由使用來自比較抗體之序列資訊以設計另一抗體)生成。
本文所使用片語「由......編碼」係指編碼多肽序列之核酸序列,其中該多肽序列或其一部分含有來自由該核酸序列編碼之多肽之至少3個至5個胺基酸、至少8個至10個胺基酸或至少15個至20個胺基酸之胺基酸序列。
兩個序列之間之「同源性」之計算可如以下來實施。出於最佳比較目的,比對各序列(例如可在第一及第二胺基酸或核酸序列中之一或二者中引入間隔以達成最佳比對,且出於比較目的可忽視非同源序列)。參照序列之出於比較目的比對之長度為該參照序列長度之至少30%、40%或50%、至少60%或至少70%、80%、90%、95%、100%。然後比較相應胺基酸位置或核苷酸位置處之胺基酸殘基或核苷酸。當第一序列中佔據一位置之胺基酸殘基或核苷酸與第二序列中之相應位置相同時,則該等分子在該位置處一致(本文所使用胺基酸或核酸「一致性」等效於胺基酸或核酸「同源性」)。兩個序列之間之一致性百分比隨該等序列共享之一致位置數而變化,其中考慮為達成兩個序列最佳比對而需要引入之間隔數及各間隔長度。
兩個序列之間之序列比較及同源性百分比測定可使用數學演算法實現。兩個胺基酸序列之間之同源性百分比可使用本技術領域內所已知之任何方法測定。例如,Needleman及Wunsch,J.Mol.Biol.48:444-453(1970)之已納入GCG軟體包中之GAP程式中之演算法,其使用Blossum 62矩陣或PAM250矩陣及16、14、12、10、8、6或4之間 隔權重及1、2、3、4、5或6之長度權重。兩個核苷酸序列之間之同源性百分比亦可使用GCG軟體包(Accelerys,Inc.San Diego,CA)中之GAP程式並使用NWSgapdna.CMP矩陣及40、50、60、70或80之間隔權重及1、2、3、4、5或6之長度權重來測定。用於測定同源性之實例性參數集合係Blossum 62評分矩陣以及12之間隔罰分、4之間隔延伸罰分及5之框移間隔罰分。
本文所使用之術語「在嚴格條件下雜交」闡述用於雜交及洗滌之條件。實施雜交反應之指導可參見Current Protocols in Molecular Biology,John Wiley & Sons,N.Y.(1989),6.3.1-6.3.6。在該參考文獻中闡述水性及非水性方法且可使用任一方法。本文所提及之具體雜交條件係如以下:1)在約45℃下於6×氯化鈉/檸檬酸鈉(SSC)中之低嚴格雜交條件,接著至少在50℃下於0.2×SSC、0.1% SDS中洗滌兩次(對於低嚴格條件可將洗滌溫度增加至55℃);2)於6×SSC中在約45℃下之中等嚴格雜交條件,接著在60℃下於0.2×SSC、0.1% SDS中洗滌一或多次;3)在約45℃下於6×SSC中之高嚴格雜交條件,接著在65℃下於0.2×SSC、0.1% SDS中洗滌一或多次;及4)極高嚴格雜交條件為在65℃下之0.5M磷酸鈉、7% SDS,接著在0.2×SSC、1% SDS及65℃下洗滌一或多次。極高嚴格條件(4)常為較佳條件,且為除非另有說明否則應使用之條件。
應理解,本發明之抗體及其抗原結合片段可具有額外保守或非必需胺基酸取代,該等取代對多肽功能無實質影響。無論特定取代是否具有耐受性(即是否不會不利地影響期望生物性質(例如結合活性))可如Bowie,JU等人,Science 247:1306-1310(1990)或Padlan等人,FASEB J.9:133-139(1995)中所闡述來確定。「保守性胺基酸取代」係該胺基酸殘基經具有類似側鏈之胺基酸殘基置換者。具有類似側鏈之胺基酸殘基之家族已在本技術領域內經定義。該等家族包括具有以下 側鏈之胺基酸:鹼性側鏈(例如離胺酸、精胺酸、組胺酸)、酸性側鏈(例如天冬胺酸、麩胺酸)、不帶電極性側鏈(例如、天冬醯胺、麩醯胺酸、絲胺酸、蘇胺酸、酪胺酸、半胱胺酸)、非極性側鏈(例如甘胺酸、丙胺酸、纈胺酸、白胺酸、異白胺酸、脯胺酸、苯基丙胺酸、甲硫胺酸、色胺酸)、β-具支鏈側鏈(例如蘇胺酸、纈胺酸、異白胺酸)及芳香族側鏈(例如酪胺酸、苯基丙胺酸、色胺酸、組胺酸)。
「非必需」胺基酸殘基係可自結合劑(例如抗體)之野生型序列改變而不廢止或不實質上改變生物活性之殘基,而「必需」胺基酸殘基導致此一變化。在抗體中,必需胺基酸殘基可為特異性決定殘基(SDR)。
本文所使用之術語「分離」係指自其原始環境(例如,若其為天然材料,則為天然環境)去除之材料。例如,活動物中所存在之天然多核苷酸或多肽並非分離的,但自天然系統中之一些或所有共存材料分離之相同多核苷酸或DNA或多肽係分離的。該多核苷酸可為載體之一部分,及/或該多核苷酸或多肽可為包含含有該多核苷酸或多肽之經分離細胞或所培養細胞之組合物(例如混合物、溶液或懸浮液)之一部分,且因該載體或組合物並非其天然環境之一部分而仍為分離的。
本文所使用之術語「經純化產物」係指已自通常與產物聯結之細胞成份及/或自所關注樣品中可存在之其他細胞類型分離之產物製劑。
本文所使用之術語「表位」係指能夠特異性結合至抗體之蛋白質決定子。表位決定簇通常係由分子之化學活性表面基團(例如,胺基酸或糖側鏈)組成,且通常具有特定三維結構特性以及特定電荷特性。一些表位為線性表位,而其他表位為構象表位。線性表位為其中鄰接胺基酸一級序列包含所識別表位之表位。線性表位通常包括至少3個、且更通常至少5個、例如約8個至約10個鄰接胺基酸。構象表位 可由至少兩種情況造成,例如:a)僅以某些蛋白質構象暴露至抗體結合之線性序列,例如取決於配體結合或取決於藉由信號傳導分子之修飾(例如磷酸化);或b)來自蛋白質之一個以上部分或在多亞單元蛋白質中來自一個以上亞單元之結構特徵之組合,其中該等特徵在3維空間中緊密靠近足以參與結合。
本文所使用之「同種型」係指由重鏈恆定區基因編碼之抗體類別(例如IgM或IgG1)。
本文中所使用之術語「可檢測劑」、「標記」或「經標記」係用於指將可檢測標誌納於多肽或糖蛋白上。標記多肽及糖蛋白之各種方法為本技術領域內所已知,且可使用其。用於多肽之標記之實例包括(但不限於)以下:放射性同位素或放射性核素(例如銦(111In)、碘(131I或125I)、釔(90Y)、鑥(177Lu)、錒(225Ac)、鉍(212Bi或213Bi)、硫(35S)、碳(14C)、氚(3H)、銠(188Rh)、鍀(99mTc)、鐠、或磷(32P)或正電子發射型放射性核素、例如碳-11(11C)、鉀-40(40K)、氮-13(13N)、氧-15(15O)、氟-18(18F)及碘-121(121I))、螢光標記(例如FITC、玫瑰紅(rhodamine)、鑭系元素磷光體)、酶促標記(例如山葵過氧化酶、β-半乳糖苷酶、螢光素酶、鹼性磷酸酶)、化學發光生物素基(其可藉由經標記抗生物素蛋白檢測,例如含有鏈黴抗生物素部分及螢光標誌或可藉由光學或量熱方法檢測之酶促活性之分子)及由二級報告基因識別之預定多肽表位(例如白胺酸鏈對序列、針對二級抗體之結合位點、金屬結合結構域、表位標籤)。在一些實施例中,藉由各種長度之間隔臂附接標記以減少潛在空間位阻。
本文中所使用之「特異性結合」、「特異性地結合」或「結合特異性」對於抗-GCC抗體分子而言意指,該抗體分子結合至GCC(例如人類GCC蛋白質)以比其結合至非GCC蛋白質(例如BSA)高之親和力。通常,抗-GCC分子對非GCC蛋白質(例如BSA)之Kd將為其對GCC(例 如人類GCC蛋白質)之Kd之2倍以上、10倍以上、100倍以上、1,000倍以上、104倍以上、105倍以上或106倍以上。在Kd測定中,對GCC及非GCC蛋白質(例如BSA)之Kd應在相同條件下獲得。
本文所使用之術語「治療(treat或treatment)」係定義為向個體(例如患者)投予抗-GCC抗體分子或向來自個體之分離組織或細胞投予(例如藉由施加)並將其返回給該個體。抗-GCC抗體分子可單獨投予或與第二藥劑組合投予。治療可係治癒、癒合、緩和、緩解、改變、補救、改善、減輕、改良或影響病症、該病症之症狀或患該病症(例如癌症)之素質。儘管不希望受限於理論,但據信治療造成活體外或活體內抑制、摘除或殺傷細胞或以其他方式降低細胞(例如異常細胞)調介病症(例如本文中所闡述病症(例如癌症))之能力。
本文所使用之術語「個體」意欲包括哺乳動物、靈長類、人類及非人類動物。例如,個體可為患有癌症(例如胃腸源(例如結腸癌))、癌症(例如胃腸源(例如結腸癌))之症狀(例如人類患者或獸類患者)(其中至少一些細胞表現GCC)或具有癌症(例如胃腸源(例如結腸癌))之素質(其中至少一些細胞表現GCC)之患者。除非另有所述,否則本發明之術語「非人類動物」包括所有非人類脊椎動物,例如非人類哺乳動物及非哺乳動物,例如非人類靈長類、綿羊、狗、牛、雞、兩棲動物、爬行動物等。在一實施例中,個體不包括小鼠、大鼠、兔或山羊中之一或多者或全部。
如本文中所使用,抗-GCC抗體分子「有效」或「足以」治療病症之量或「治療上有效量」或「治療上足夠量」係指抗體分子在向個體單一或多個劑量投予後有效治療細胞(例如癌細胞(例如GCC表現腫瘤細胞))或延長治癒、緩和、緩解或改良患有本文中所闡述病症之個體超過在不存在該治療之情況下斯所預期者之量。本文中所使用之「抑制腫瘤或癌症之生長」係指減緩、中斷、遏製或終止其生長及/ 或轉移且不必指示腫瘤生長之總消除。
本文中所使用之「GCC」(亦稱為「STAR」、「GUC2C」、「GUCY2C」或「ST受體」蛋白質)係指哺乳動物GCC,較佳地人類GCC蛋白質。人類GCC係指SEQ ID NO:3中所顯示之蛋白質及其天然對偶基因蛋白質變體。SEQ ID NO:3中之對偶基因可由SEQ ID NO:2中所顯示之GCC核酸序列編碼。其他變體為本技術領域內所已知。例如參見登錄號Ensp0000261170、Ensembl數據庫、歐洲生物資訊研究所(European Bioinformatics Institute)及韋爾科姆基金會桑格研究所(Wellcome Trust Sanger Institute),其在殘基281處具有白胺酸;公開之美國專利申請案第US 20060035852號之SEQ ID NO:14;或GenBank登錄號AAB19934。通常,天然對偶基因變體具有與SEQ ID NO:3之GCC序列具有至少95%、97%或99%一致性之胺基酸序列。轉錄物編碼1073個胺基酸之蛋白質產物,且闡述於GenBank登錄號:NM_004963中。GCC蛋白質之特徵為跨膜細胞表面受體蛋白質,且據信在維持腸液、電解質體內恆定及細胞增生中起關鍵作用。
除非另有所述,否則術語「烷基」係指具有約1個至約20個碳原子(及其中之碳原子範圍及具體數量之所有組合及子組合)之飽和直鏈或具支鏈烴,其中約1個至約8個碳原子較佳。烷基之實例為甲基、乙基、正丙基、異丙基、正丁基、異丁基、第二丁基、第三丁基、正戊基、2-戊基、3-戊基、2-甲基-2-丁基、正己基、正庚基、正辛基、正壬基、正癸基、3-甲基-2-丁基、3-甲基-1-丁基、2-甲基-1-丁基、1-己基、2-己基、3-己基、2-甲基-2-戊基、3-甲基-2-戊基、4-甲基-2-戊基、3-甲基-3-戊基、2-甲基-3-戊基、2,3-二甲基-2-丁基及3,3-二甲基-2-丁基。
烷基(無論單獨還是作為另一基團之一部分)可稱為「經取代」。經取代烷基係經一或多個基團、較佳地1個至3個基團(及任何選自鹵 素之額外取代基)取代之烷基,該一或多個基團包括(但不限於)-鹵素、-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)、-芳基、-C(O)R’、-OC(O)R’、-C(O)OR’、-C(O)NH2、-C(O)NHR’、-C(O)N(R’)2、-NHC(O)R’、-SR’、-SO3R’、-S(O)2R’、-S(O)R’、-OH、=O、-N3、-NH2、-NH(R’)、-N(R’)2及-CN,其中每一R’係獨立地選自-H、-C1-C8烷基、-C2-C8烯基、-C2-C8炔基或-芳基,且其中該-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)、-芳基、-C1-C8烷基、-C2-C8烯基及-C2-C8炔基可視情況進一步經基團取代,該一或多個基團包括(但不限於)-C1-C8烷基、-C2-C8烯基、-C2-C8炔基、-鹵素、-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)、-芳基、-C(O)R”、-OC(O)R”、-C(O)OR”、-C(O)NH2、-C(O)NHR”、-C(O)N(R”)2、-NHC(O)R”、-SR”、-SO3R”、-S(O)2R”、-S(O)R”、-OH、-N3、-NH2、-NH(R”)、-N(R”)2及-CN,其中每一R”係獨立地選自-H、-C1-C8烷基、-C2-C8烯基、-C2-C8炔基或-芳基。
除非另有所述,否則術語「烯基」及「炔基」係指具有約2個至約20個碳原子(及其中之碳原子範圍及具體數量之所有組合及子組合)之直鏈及具支鏈碳鏈,其中約2個至約8個碳原子較佳。烯基鏈在鏈中具有至少一個雙鍵,且炔基鏈在鏈中具有至少一個三鍵。烯基之實例包括(但不限於)伸乙基或乙烯基、烯丙基、-1-丁烯基、-2-丁烯基、-異丁烯基、-1-戊烯基、-2-戊烯基、-3-甲基-1-丁烯基、-2-甲基-2-丁烯基及-2,3-二甲基-2-丁烯基。炔基之實例包括(但不限於)炔系、炔丙基、乙炔基、丙炔基、-1-丁炔基、-2-丁炔基、-1-戊炔基、-2-戊炔基及-3-甲基-1丁炔基。
如與烷基一樣,烯基及炔基可經代。「經取代」烯基或炔基係經一或多個基團、較佳地1個至3個基團(及任何選自鹵素之額外取代基)取代者,該一或多個基團包括(但不限於)-鹵素、-O-(C1-C8烷基)、- O-(C2-C8烯基)、-O-(C2-C8炔基)、-芳基、-C(O)R’、-OC(O)R’、-C(O)OR’、-C(O)NH2、-C(O)NHR’、-C(O)N(R’)2、-NHC(O)R’、-SR’、-SO3R’、-S(O)2R’、-S(O)R’、-OH、=O、-N3、-NH2、-NH(R’)、-N(R’)2及-CN,其中每一R’係獨立地選自-H、-C1-C8烷基、-C2-C8烯基、-C2-C8炔基或-芳基,且其中該-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)、-芳基、-C1-C8烷基、-C2-C8烯基及-C2-C8炔基可視情況進一步經一或多個取代基取代,該一或多個取代基包括(但不限於)-C1-C8烷基、-C2-C8烯基、-C2-C8炔基、-鹵素、-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2C8炔基)、-芳基、-C(O)R”、-OC(O)R”、-C(O)OR”、-C(O)NH2、-C(O)NHR”、-C(O)N(R”)2、-NHC(O)R”、-SR”、-SO3R”、-S(O)2R”、-S(O)R”、-OH、-N3、-NH2、-NH(R”)、-N(R”)2及-CN,其中每一R”係獨立地選自-H、-C1-C8烷基、-C2-C8烯基、-C2-C8炔基或-芳基。
除非另有所述,否則術語「伸烷基」係指如下飽和之具支鏈或直鏈烴基:具有約1個至約20個碳原子(及其中之碳原子範圍及具體數量之所有組合及子組合),其中約1個至約8個碳原子較佳,且具有兩個藉由自親代烷烴之相同或兩個不同碳原子去除兩個氫原子衍生之單價基團中心。典型伸烷基包括(但不限於)亞甲基、伸乙基、伸丙基、伸丁基、伸戊基、伸己基、伸庚基、伸辛基、伸壬基、伸癸基、1,4-伸環己基及諸如此類。伸烷基(無論單獨還是作為另一基團之一部分)可視情況經一或多個基團、較佳地1個至3個基團(及任何選自鹵素之額外取代基)取代,該一或多個基團包括(但不限於)-鹵素、-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)、-芳基、-C(O)R’、-OC(O)R’、-C(O)OR’、-C(O)NH2、-C(O)NHR’、-C(O)N(R’)2、-NHC(O)R’、-SR’、-SO3R’、-S(O)2R’、-S(O)R’、-OH、=O、-N3、-NH2、-NH(R’)、-N(R’)2及-CN,其中每一R’係獨立地選自-H、-C1-C8 烷基、-C2-C8烯基、-C2-C8炔基或-芳基,且其中該-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)、-芳基、-C1-C8烷基、-C2-C8烯基及-C2-C8炔基可視情況經一或多個取代基取代,該一或多個取代基包括(但不限於)-C1-C8烷基、-C2-C8烯基、-C2-C8炔基、-鹵素、-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)、-芳基、-C(O)R”、-OC(O)R”、-C(O)OR”、-C(O)NH2、-C(O)NHR”、-C(O)N(R”)2、-NHC(O)R”、-SR”、-SO3R”、-S(O)2R”、-S(O)R”、-OH、-N3、-NH2、-NH(R”)、-N(R”)2及-CN,其中每一R”係獨立地選自-H、-C1-C8烷基、-C2-C8烯基、-C2-C8炔基或-芳基。
除非另有所述,否則術語「伸烯基」係指含有至少一個碳-碳雙鍵之視情況經取代之伸烷基。例如,實例性伸烯基包括伸乙烯基(-CH=CH-)及伸丙烯基(-CH=CHCH2-)。
除非另有所述,否則術語「伸炔基」係指含有至少一個碳-碳三鍵之視情況經取代之伸烷基。例如,實例性伸炔基包括乙炔(-C≡C-)、炔丙基(-CH2C≡C-)及4-戊炔基(-CH2CH2CH2C≡CH-)。
除非另有所述,否則術語「芳基」係指藉由自親代芳香族環系統之單一碳原子去除一個氫原子衍生之具有6個至20個碳原子(及其中之碳原子範圍及具體數量之所有組合及子組合)之單價芳香族烴基。一些芳基在實例性結構中表示為「Ar」。典型芳基包括(但不限於)衍生自苯、經取代苯、苯基、萘、蒽、聯苯及諸如此類之基團。
芳基(無論單獨還是作為另一基團之一部分)可視情況經一或多個、較佳地1個至5個或甚至1個至2個基團取代,該一或多個基團包括(但不限於)-鹵素、-C1-C8烷基、-C2-C8烯基、-C2-C8炔基、-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)、-芳基、-C(O)R’、-OC(O)R’、-C(O)OR’、-C(O)NH2、-C(O)NHR’、-C(O)N(R’)2、-NHC(O)R’、-SR’、-SO3R’、-S(O)2R’、-S(O)R’、-OH、-NO2、-N3、- NH2、-NH(R’)、-N(R’)2及-CN,其中每一R’係獨立地選自-H、-C1-C8烷基、-C2-C8烯基、-C2-C8炔基或-芳基,且其中該-C1-C8烷基、-C2-C8烯基、-C2-C8炔基、O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)及-芳基可視情況經一或多個取代基取代,該一或多個取代基包括(但不限於)-C1-C8烷基、-C2-C8烯基、-C2-C8炔基、-鹵素、-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)、-芳基、-C(O)R”、-OC(O)R”、-C(O)OR”、-C(O)NH2、-C(O)NHR”、-C(O)N(R”)2、-NHC(O)R”、-SR”、-SO3R”、-S(O)2R”、-S(O)R”、-OH、-N3、-NH2、-NH(R”)、-N(R”)2及-CN,其中每一R”係獨立地選自-H、-C1-C8烷基、-C2-C8烯基、-C2-C8炔基或-芳基。
除非另有所述,否則術語「伸芳基」係指為二價(即藉由自親代芳香族環系統之同一或兩個不同碳原子去除兩個氫原子衍生)且可呈以下結構中所顯示之鄰位、間位或對位構形之視情況取代之芳基,其中苯基作為實例性芳基: 典型「-(C1-C8伸烷基)芳基」、「-(C2-C8伸烯基)芳基」及「-(C2-C8伸炔基)芳基」包括(但不限於)苄基、2-苯基乙-1-基、2-苯基乙烯-1-基、萘基甲基、2-萘基乙-1-基、2-萘基乙烯-1-基、萘并苄基、2-萘并苯基乙-1-基及諸如此類。
除非另有所述,否則術語「雜環」係指具有3個至14個環原子(亦稱為環成員)(及其中之碳原子及雜原子之範圍及具體數量之所有組合及子組合)之單環、雙環或多環環系統,其中至少一個環中之至少一個環原子係選自N、O、P或S之雜原子。雜環可具有1個至4個獨立地選自N、O、P或S之環雜原子。雜環中之一或多個N、C或S原子可經 氧化。單環雜環較佳具有3個至7個環成員(例如2個至6個碳原子及1個至3個獨立地選自N、O、P或S之雜原子),且雙環雜環較佳具有5個至10個環成員(例如4個至9個碳原子及1個至3個獨立地選自N、O、P或S之雜原子)。包括該雜原子之環可為芳香族環或非芳香族環。除非另有所述,否則雜環可在任何雜原子或碳原子處與其側基附接,從而得到穩定結構。
雜環基團(無論單獨還是作為另一基團之一部分)可視情況經一或多個基團、較佳地1個至2個基團取代,該一或多個基團包括(但不限於)-C1-C8烷基、-C2-C8烯基、-C2-C8炔基、-鹵素、-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)、-芳基、-C(O)R’、-OC(O)R’、-C(O)OR’、-C(O)NH2、-C(O)NHR’、-C(O)N(R’)2、-NHC(O)R’、-SR’、-SO3R’、-S(O)2R’、-S(O)R’、-OH、-N3、-NH2、-NH(R’)、-N(R’)2及-CN,其中每一R’係獨立地選自-H、-C1-C8烷基、-C2-C8烯基、-C2-C8炔基或-芳基,且其中該-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)、-C1-C8烷基、-C2-C8烯基、-C2-C8炔基及-芳基可視情況經一或多個取代基取代,該一或多個取代基包括(但不限於)-C1-C8烷基、-C2-C8烯基、-C2-C8炔基、-鹵素、-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)、-芳基、-C(O)R”、-OC(O)R”、-C(O)OR”、-C(O)NH2、-C(O)NHR”、-C(O)N(R”)2、-NHC(O)R”、-SR”、-SO3R”、-S(O)2R”、-S(O)R”、-OH、-N3、-NH2、-NH(R”)、-N(R”)2及-CN,其中每一R”係獨立地選自-H、-C1-C8烷基、-C2-C8烯基、-C2-C8炔基或芳基。
除非另有所述,否則術語「碳環」係指具有3個至14個環原子(及其中之碳原子範圍及具體數量之所有組合及子組合)之飽和或不飽和非芳香族單環、雙環或多環環系統,其中所有環原子均為碳原子。單環碳環較佳具有3個至6個環原子、仍更佳地5個或6個環原子。雙環碳 環較佳具有7個至12個例如排列為雙環[4,5]、[5,5]、[5,6]或[6,6]系統之環原子或9個或10個排列為雙環[5,6]或[6,6]系統之環原子。例如,術語「碳環」包括與芳基環稠合之單環碳環(例如與苯環稠合之單環碳環)。碳環較佳具有3個至8個碳環原子。
碳環基團(無論單獨還是作為另一基團之一部分)可視情況經(例如)一或多個基團、較佳地1個或2個基團(及任何選自鹵素之額外取代基)取代,該一或多個基團包括(但不限於)-鹵素、-C1-C8烷基、-C2-C8烯基、-C2-C8炔基、-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)、-芳基、-C(O)R’、-OC(O)R’、-C(O)OR’、-C(O)NH2、-C(O)NHR’、-C(O)N(R’)2、-NHC(O)R’、-SR’、-SO3R’、-S(O)2R’、-S(O)R’、-OH、=O、-N3、-NH2、-NH(R’)、-N(R’)2及-CN,其中每一R’係獨立地選自-H、-C1-C8烷基、-C2-C8烯基、-C2-C8炔基或-芳基,且其中該-C1-C8烷基、-C2-C8烯基、-C2-C8炔基、-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)及-芳基可視情況經一或多個取代基取代,該一或多個取代基包括(但不限於)-C1-C8烷基、-C2-C8烯基、-C2-C8炔基、-鹵素、-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)、-芳基、-C(O)R”、-OC(O)R”、-C(O)OR”、-C(O)NH2、-C(O)NHR”、-C(O)N(R”)2、-NHC(O)R”、-SR”、-SO3R”、-S(O)2R”、-S(O)R”、-OH、-N3、-NH2、-NH(R”)、-N(R”)2及-CN,其中每一R”係獨立地選自-H、-C1-C8烷基、-C2-C8烯基、-C2-C8炔基或-芳基。
單環碳環取代基之實例包括-環丙基、-環丁基、-環戊基、-1-環戊-1-烯基、-1-環戊-2-烯基、-1-環戊-3-烯基、環己基、-1-環己-1-烯基、-1-環己-2-烯基、-1-環己-3-烯基、-環庚基、-環辛基、-1,3-環己二烯基、-1,4-環己二烯基、-1,3-環庚二烯基、-1,3,5-環庚三烯基及-環辛二烯基。
「碳環基」(無論單獨使用還是作為另一基團之一部分使用)係 指如上文所定義為二價(即藉由自親代碳環系之同一或兩個不同碳原子去除兩個氫原子來衍生)之視情況經取代之碳環基團。
除非上下文另有所示,否則連字符(-)指定與側接分子之附接點。因此,術語「-(C1-C8伸烷基)芳基」或「-C1-C8伸烷基(芳基)」係指本文所定義之C1-C8伸烷基,其中伸烷基係在該伸烷基之任何碳原子處與側接分子附接,且鍵結至伸烷基之碳原子之氫原子中之一者係經本文所定義之芳基置換。
分子中特定位置處之任一取代基或變量的定義意欲獨立於其在該分子中其他處之定義。應理解,本發明化合物上之取代基及取代模式可由熟習此項技術者進行選擇,以提供化學上穩定且可容易藉由本技術領域內已知之技術以及本文中所闡述之彼等方法合成的化合物。
縮寫「AFP」係指二甲基纈胺酸-纈胺酸-多拉異白胺酸(dolaisoleuine)-多拉脯胺酸(dolaproine)-苯基丙胺酸-對苯二胺(參見下式(XVIII))。
縮寫「MMAE」係指單甲基奧裏斯他汀E(參見式(XIII))。
縮寫「AEB」係指藉由使奧裏斯他汀E與對乙醯基苯甲酸反應產生之酯(參見下式(XXII))。
縮寫「AEVB」係指藉由使奧裏斯他汀E與苯甲醯基戊酸反應產生之酯(參見下式(XXIII))。
縮寫「MMAF」係指單甲基奧裏斯他汀F(參見下式(XXI))。
抗體
在某些態樣中,本文中所闡述之方法、套組及組合物包括本文中所闡述之抗-GCC抗體分子,例如具有一或多個表1至6中所總結之特徵之抗-GCC抗體分子。
在較佳實施例中,抗-GCC抗體分子係抗體5F9,即包含表3中所提供之可變輕鏈及可變重鏈之胺基酸序列之抗體。抗體5F9可由融合 瘤5F9(PTA-8132)或另一適宜細胞系(例如哺乳動物細胞系,例如人類細胞系、NSO細胞系或CHO細胞系)產生。在其他較佳實施例中,抗-GCC抗體分子係衍生自抗體5F9。
在一實施例中,抗-GCC抗體分子將對GCC具有如(例如)藉由直接結合或競爭結合分析量測在本文中所闡述範圍內之親和力。在一實施例中,抗-GCC抗體分子具有小於1×10-6M、小於1×10-7M、小於1×10-8M、小於1×10-9M、小於1×10-10M、小於1×10-11M、小於1×10-12M或小於1×10-13M之Kd。在一實施例中,抗體分子係IgG或抗原結合其片段,且具有小於1×10-6M、小於1×10-7M、小於1×10-8M或小於1×10-9M之Kd。在一實施例中,抗-GCC抗體分子(例如5F9抗體或自其衍生之抗體)具有約80pM至約200pM、較佳地約100pM至約150pM或約120pM之Kd。在一實施例中,抗-GCC抗體分子(例如5F9抗體或自其衍生之抗體)具有約0.9至約1.25×105M-1s-1、較佳地約1.1×105M-1s-1k a 。在一實施例中,抗體分子係ScFv,且具有小於1×10-6M、小於1×10-7M、小於1×10-8M、小於1×10-9M、小於1×10-10M、小於1×10-11M、小於1×10-12M或小於1×10-13M之Kd
在一些實施例中,抗體分子係免疫共軛物之一部分,且例如免疫共軛物可在結合至GCC後造成細胞反應並內化以將藥劑遞送至其所結合之GCC表現細胞。
在一些實施例中,本發明之抗-GCC抗體分子可阻斷配體結合至GCC。
在一實施例中,抗-GCC抗體分子不能顯示與大鼠GCC及小鼠GCC中之一或兩者之實質交叉反應。
天然哺乳動物抗體結構單位係以四聚體為代表。每一四聚體包含兩個多肽鏈對,每一對具有一「輕鏈」(約25kDa)及一「重鏈」(約50kDa至70kDa)。每一鏈之胺基末端部分包括主要負責抗原識別 之具有約100個至110個或更多個胺基酸之可變區。每一鏈之羧基末端部分界定主要負責效應功能之恆定區。人類輕鏈可分類為κ及λ輕鏈。重鏈可分類為μ、δ、γ、α或ε,且將抗體之同種型分別定義為IgM、IgD、IgG、IgA及IgE。在輕鏈及重鏈內,可變區及恆定區係由約12個或更多個胺基酸之「J」區接合,其中重鏈亦包括約10個胺基酸之「D」區。通常參見Fundamental Immunology,Ch.7(Paul,W.編輯,第2版,Raven Press,N.Y.(1989))。每一輕鏈/重鏈對之可變區形成抗體結合位點。抗-GCC抗體分子之較佳同種型為IgG免疫球蛋白,其可分類為四種子類,即IgG1、IgG2、IgG3及IgG4,其具有不同γ重鏈。大部分治療抗體為IgG1類型之人類、嵌合或人類化抗體。在特定實施例中,抗-GCC抗體分子具有IgG1同種型。
每一輕鏈及重鏈對之可變區形成抗原結合位點。因此,完整IgG抗體具有兩個相同之結合位點。然而,雙功能或雙特異性抗體為人工雜合構築體,其具有兩個不同重鏈/輕鏈對,從而產生兩個不同結合位點。
該等鏈均呈現由三個超變區(亦稱為互補決定區或CDR)接合之相對保守框架區(FR)的相同通用結構。每一對之兩個鏈之CDR係藉由框架區進行比對,從而使能夠結合至特異性表位。輕鏈及重鏈二者自N末端至C末端包含結構域FR1、CDR1、FR2、CDR2、FR3、CDR3及FR4。胺基酸在各結構域中之分配係按照Kabat Sequences of Proteins of Immunological Interest(National Institutes of Health,Bethesda Md.(1987及1991))或Chothia及Lesk,J.Mol.Biol.196:901-917(1987);或Chothia等人,Nature 342:878-883(1989)之定義。如本文中所使用,CDR係針對每一重鏈(HCDR1、HCDR2、HCDR3)及輕鏈(LCDR1、LCDR2、LCDR3)來提及。
抗-GCC抗體分子可包含本文中所闡述抗體之重鏈及輕鏈中之一 或二者之所有CDR或CDR抗原結合子集。例如,抗-GCC抗體分子可包含胺基酸序列,包括表3及表5中所闡述之可變區及/或CDR。抗-GCC抗體分子之額外說明參見國際申請案WO2011/050242,其以引用方式全文併入本文中。
因此,在一實施例中,抗體分子包括以下中之一或兩者:(a)表5之一個、兩個、三個或抗原結合數量之輕鏈CDR(LCDR1、LCDR2及/或LCDR3)。在各實施例中,CDR可包含如下LCDR1至3中之一或多者或全部之胺基酸序列:LCDR1或經修飾LCDR1,其中1個至7個胺基酸係經保守取代;LCDR2或經修飾LCDR2,其中一或兩個胺基酸係經保守取代;或LCDR3或經修飾LCDR3,其中一或兩個胺基酸係經保守取代;及(b)表5之一個、兩個、三個或或抗原結合數量之重鏈CDR(HCDR1、HCDR2及/或HCDR3)。在各實施例中,CDR可包含如下HCDR1至3中之一或多者或全部之胺基酸序列:HCDR1或經修飾HCDR1,其中一或多個胺基酸係經保守取代;HCDR2或經修飾HCDR2,其中1個至4個胺基酸係經保守取代;或HCDR3或經修飾HCDR3,其中一或兩個胺基酸係經保守取代。
用於產生抗-GCC抗體之有用免疫原包括GCC(例如人類GCC)表現細胞(例如腫瘤細胞系,例如T84細胞或新鮮或冷凍結腸腫瘤細胞;表現GCC之重組細胞);GCC表現細胞之膜部分(例如結腸腫瘤細胞系,例如T84細胞或新鮮或冷凍結腸腫瘤細胞;表現GCC之重組細胞,例如表現全長GCC或其部分之HT-29-GCC 2號細胞,例如表現包含GCC細胞外結構域(例如SEQ ID NO:61)之部分之CHO GCC 27號細胞);經分離或經純化之GCC,例如人類GCC蛋白質(例如經生物化學分離之GCC,例如分離自胃腸腫瘤細胞或表現GCC或其變體之重組細胞)或其部分(例如GCC之細胞外結構域、GCC之激酶同源結構域或 GCC之鳥苷酸環化酶催化結構域,或與其部分相對應之肽,例如包含SEQ ID NO:3之至少約8個、10個、12個、14個、16個、20個、24個、28個或32個胺基酸殘基);或包含SEQ ID NO:16或包含其成熟部分且不含信號序列(即不含SEQ ID NO:16之胺基酸殘基1至約21或23)之免疫原,例如成熟TOK107-hIgG蛋白質,SEQ ID NO:62。
抗-GCC抗體分子之表位可存在於SEQ ID NO:3之殘基1至50之殘基或其結合本發明抗-GCC抗體分子之片段(例如其5F9結合片段)內或包括其。該等片段可包含SEQ ID NO:3之殘基1至25、5至30、10至35、15至40、20至45、25至50、5至45、10至40、15至35、20至30或33至50。在一些實施例中,抗-GCC抗體分子(例如5F9抗體)之表位係進一步包含GCC胺基酸序列中一或多個超過殘基50之額外胺基酸殘基(即選自SEQ ID NO:3之約殘基50至1073)之構象表位。
在另一實施例中,抗-GCC抗體分子之表位可存在於SEQ ID NO:5或SEQ ID NO:3之殘基271至300之殘基或其結合本發明抗-GCC抗體分子之片段內或包括其。該等片段可包含SEQ ID NO:3之殘基281至290或SEQ ID NO:3之殘基281至290(其中殘基281係白胺酸)或SEQ ID NO:3之殘基281至300或殘基271至290。在一些實施例中,抗-GCC抗體分子之表位係進一步包含GCC胺基酸序列中一或多個選自(例如)SEQ ID NO:3之約殘基1至270及/或約301至1073之額外胺基酸殘基(即非SEQ ID NO:5殘基)之構象表位。
在一實施例中,抗-GCC抗體分子具有一或多個以下性質:a)其與表1及2中所總結之上述抗-GCC抗體分子中之一者(例如5F9)競爭結合,例如結合至細胞表面GCC或經純化GCC;b)其與表1及2中所總結之上述抗-GCC抗體分子中之一者(例如5F9)結合至GCC上之相同或實質上相同之表位。在一實施例中,該抗體結合相同表位,如藉由一或多個肽陣列分析或藉由結合至細胞表面 或膜製劑上表現之截斷突變體、嵌合體或點突變體來測定,例如如本文中所闡述之彼等分析;c)其結合至與表1及2中所總結之上述抗-GCC抗體分子中之一者(例如5F9)之表位共同具有至少1個、2個、3個、4個、5個、8個、10個、15個或20個鄰接胺基酸殘基之表位;d)其結合人類GCC中由本發明抗-GCC抗體結合之區域,其中該區域(例如細胞外或細胞質區域)長度之為10個至15個、10個至20個、20個至30個或20個至40個殘基,且結合係藉由(例如)結合至截斷突變體來測定;在一實施例中,該抗-GCC抗體分子結合人類GCC之細胞外區域。在一實施例中,抗-GCC抗體分子可結合細胞外結構域之藉由SEQ ID NO:3之胺基酸殘基24至420界定之人類GCC部分。在一實施例中,抗-GCC抗體分子可結合SEQ ID NO:3之胺基酸殘基931至954處之鳥苷酸環化酶特徵位點;或e)其結合至本文中所闡述之參照表位。
在一實施例中,抗-GCC抗體分子結合ILVDLFNDQYFEDNVTAPDYMKNVLVLTLS(SEQ ID NO:5)之GCC序列。
在一實施例中,抗-GCC抗體分子結合FAHAFRNLTFEGYDGPVTLDDWGDV(SEQ ID NO:6)之GCC序列。
在一實施例中,該抗體分子結合構象表位。在其他實施例中,抗體分子結合線性表位。
抗-GCC抗體分子可為多株抗體、單株抗體、單特異性抗體、嵌合抗體(參見美國專利第6,020,153號)或人類或人類化抗體或其抗體片段或衍生物。前述中任一者之合成且經遺傳改造之變體(參見美國專利第6,331,415號)亦涵蓋於本發明中。單株抗體可藉由各種技術來產生,包括習用鼠類單株抗體方法,例如Kohler and Milstein,Nature 256:495(1975)之標準體細胞雜交技術。通常參見Harlow,E.及Lane,D.(1988)Antibodies:A Laboratory Manual,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY。關於產生抗-GCC抗體之額外細節提供於國際申請案WO2011/050242中,其以引用方式全文併入本文中。
在實施例中,對於治療應用,本發明抗體係人類或人類化抗體。人類或人類化抗體之優勢在於其潛在地降低或消除該抗體在宿主接受者中之免疫原性,從而容許增加生物可用度及降低不利免疫反應之可能性,從而潛在地使能夠進行多次抗體投予。
經修飾抗體包括人類化、嵌合或CDR移植抗體。關於產生人類或人類化抗-GCC抗體之細節提供於(例如)國際申請案WO2011/050242中,其以引用方式全文併入本文中。
在一些實施例中包括IgG2重鏈恆定區及κ輕鏈恆定區之人類5F9抗體可由融合瘤5F9(亦稱為融合瘤46.5F9.8.2,其於2007年1月10日代表Millennium Pharmaceuticals公司,40 Landsdowne Street,Cambridge,MA,02139,USA以登錄號PTA-8132保藏於美國菌種保存中心(American Type Culture Collection),10801 University Boulevard,Manassas,Virginia 20110,U.S.A.)來產生。(根據國際承認用於專利程序之微生物保藏布達佩斯條約(Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure)並滿足其要求進行保藏。)抗體5F9亦可由其他細胞系(例如哺乳動物細胞系,例如人類細胞系、NSO細胞系或CHO細胞系)(參見實例4)來產生。如本文中所闡述,融合瘤5F9產生IgG2 κ抗體。然而,IgG2區域可經(例如)IgG1區域置換以產生5F9 IgG1抗體。
人類恆定區基因之序列可參見Kabat等人,(1991)Sequences of Proteins of Immunological Interest,N.I.H.出版號91-3242。人類C區域 基因容易自已知純系獲得。同種型之選擇將由期望效應功能(例如補體結合或抗體依賴性細胞毒性之活性)指導。同種型可為1gG1、IgG2、IgG3或IgG4。在特定實施例中,本發明抗體分子為IgG1及IgG2。可使用人類輕鏈恆定區κ或λ中之任一者。然後藉由習用方法表現嵌合、人類化抗體。
在一些實施例中,本發明抗-GCC抗體分子可將抗體依賴性細胞毒性(ADCC)引入GCC表現細胞(例如腫瘤細胞)。具有IgG1及IgG3同種型之抗體由於其結合Fc受體之能力可用於引發抗體依賴性細胞毒性能力方面之效應功能。具有IgG2及IgG4同種型之抗體由於其結合Fc受體之能力較低可用於使ADCC反應最小化。在相關實施例中,可藉由(例如)經修飾真核細胞系之生長進行Fc區中之取代或抗體之糖基化組合物之變化,以增強Fc受體識別、結合及/或調介抗-GCC抗體結合之細胞之細胞毒性之能力(例如參見美國專利第7,317,091號、第5,624,821號及包括WO 00/42072、Shields,等人,J.Biol.Chem.276:6591-6604(2001)、Lazar等人,Proc.Natl.Acad.Sci.U.S.A.103:4005-4010(2006)、Satoh等人,Expert Opin Biol.Ther.6:1161-1173(2006)之出版物)。在某些實施例中,抗體或抗原結合片段(例如人類源之抗體,即人類抗體)可包括改變或調整功能(例如效應功能)之胺基酸取代或置換。例如,人類源之恆定區(例如γ1恆定區、γ2恆定區)可經設計以降低補體激活及/或Fc受體結合。(例如,參見美國專利第5,648,260號(Winter等人)、第5,624,821號(Winter等人)及第5,834,597號(Tso等人),其整個教示以引用方式併入本文中。)較佳地,人類源之恆定區之含有該等胺基酸取代或置換之胺基酸序列在人類源之未改變恆定區之胺基酸序列之全長上具有至少約95%一致性,更佳地在人類源之未改變恆定區之胺基酸序列之全長上具有至少約99%一致性。
人類化抗體可使用(例如CDR移植)方法來製得。生成該等人類化抗體之技術為本技術領域內所已知。通常,人類化抗體係藉由以下方式來產生:獲得結合至GCC之抗體之編碼可變重鏈及可變輕鏈序列之核酸序列,鑑別可變重鏈及可變輕鏈序列中之互補決定區或「CDR」,並將CDR核酸序列移植於人類框架核酸序列上。(例如,參見美國專利第4,816,567號及第5,225,539號)。可測定CDR及框架殘基之定位(參見Kabat,E.A.等人,(1991)Sequences of Proteins of Immunological Interest,第5版,U.S.Department of Health and Human Services,NIH出版號91-3242及Chothia,C.等人,J.Mol.Biol.196:901-917(1987))。本文中所闡述之實例性抗-GCC抗體分子具有表5及6中所列示之CDR胺基酸序列及編碼CDR之核酸序列。在一些實施例中,可將來自表5及6之序列納入識別GCC之分子中用於本文中所闡述之治療或診斷方法。所選擇之人類框架係適於活體內投予者,此意謂其在投予條件下在合理風險-益處比內較佳不呈現免疫原性。例如,此一測定可藉由活體內使用該等抗體之先前實驗及胺基酸類似性研究進行。適宜框架區可選自如下人類源抗體:其在供體抗體(例如抗-GCC抗體分子)之等效部分(例如框架區)之胺基酸序列內之框架區長度上具有至少約65%胺基酸序列一致性、且較佳地至少約70%、80%、90%或95%胺基酸序列一致性。胺基酸序列一致性可使用適宜胺基酸序列比對演算法(例如CLUSTALW)使用預設參數來測定。(Thompson J.D.等人,Nucleic Acids Res.22:4673-4680(1994)。)
在其他實施例中,藉由CDR移植抗體減少免疫原性反應可藉由CDR中胺基酸殘基之變化(例如缺失、取代)來達成(Kashmiri等人,Methods 36:25-34(2005)、美國專利第6,818,749號、Tan等人,J.Immunol.169:1119-1125(2006))。例如,較佳不改變與抗原接觸涉及之位置之殘基。通常,該等殘基SDR係處於在抗體間展示較高可變性 程度之位置。藉由(例如)Clustal方法(Higgins D.G.等人,Meth.Enzymol.266:383-402(1996))自抗-GCC抗體分子(例如本文中所闡述抗體)衍生之共有序列(例如SEQ ID NOs:63-68)有助於鑑別SDR。在本文中所闡述之人類抗-GCC抗體分子中,SDR係以下:重鏈CDR1之至少第一個殘基或在一些實施例中前四個殘基;重鏈CDR2之至少N末端部分,例如前7個、10個或13個殘基;重鏈CDR3之幾乎全部;輕鏈CDR1之C末端部分,例如在6個、8個或9個殘基之後;輕鏈CDR2之約第一個、中間及/或最後一個殘基;及輕鏈CDR3之大部分,或至少在兩個或三個殘基之後。因此,為在抗-GCC抗體分子之人類化或修飾後維持與GCC蛋白質之結合,抗-GCC抗體分子之CDR中之該等SDR殘基相比於CDR之其他殘基或框架區中之殘基較不適於(例如)自鼠類殘基變成人類共有殘基。相反地,可有利地將非人類(例如鼠類)CDR中之殘基變成人類CDR(例如本文中所闡述抗-GCC抗體分子之CDR(例如表5中所列示之序列))中所共有之殘基。例如,絲胺酸可代表重鏈CDR1之C末端之人類殘基,及/或酪胺酸可代表重鏈CDR1之第二及/或第三殘基之人類殘基;重鏈CDR2可以S-(L/V)-K-(S/G)(SEQ ID NO:7)結尾來代表人類CDR;為代表人類CDR3,在重鏈CDR3中之4個至6個殘基後可存在甘胺酸及/或在6個至9個殘基後可存在天冬胺酸;輕鏈CDR1可以(K/R)-(A/S)-SQS-(V/L)-(S/L)(SEQ ID NO:8)開始來代表人類CDR;輕鏈CDR2可在第三殘基中具有絲胺酸及/或在第四殘基中具有精胺酸來代表人類CDR;及/或輕鏈CDR3可在第二殘基中具有麩醯胺酸及/或在第三殘基中具有酪胺酸或絲胺酸來代表人類CDR。
不為完整抗體之抗-GCC抗體亦可用於本發明。該等抗體可衍生自任何本文中所闡述抗體。此類型之有用抗體分子包括(i)Fab片段,即由VL、VH、CL及CH1結構域組成之多價片段;(ii)F(ab’)2片段, 即包含兩個藉由二硫橋在鉸鏈區連接之Fab片段之二價片段;(iii)由VH及CH1結構域組成之Fd片段;(iv)由抗體之單一臂之VL及VH結構域組成之Fv片段,(v)dAb片段(Ward等人,Nature 341:544-546(1989)),其係由VH結構域組成;(vii)單一結構域功能性重鏈抗體,其係由組成VHH結構域(稱為奈米抗體),例如參見Cortez-Retamozo,等人,Cancer Res.64:2853-2857(2004)及其中所引用之參考文獻;及(vii)經分離CDR,例如一或多個連同足夠框架一起提供抗原結合片段之經分離CDR。此外,儘管Fv片段之兩個結構域(VL及VH)係由單獨基因編碼,但可使用重組方法藉由合成連接體將該兩個結構域接合在一起,該合成連接體使其能夠以其中VL及VH區配對形成單價分子的單一蛋白鏈(稱為單鏈Fv(scFv))製得(例如,參見Bird等人,Science 242:423-426(1988);及Huston等人,Proc.Natl.Acad.Sci.USA 85:5879-5883(1988)。該等單鏈抗體亦意欲涵蓋於術語抗體之「抗原結合部分」內。使用熟習此項技術者已知之習用技術獲得該等抗體片段,且篩選以與完整抗體相同之方式使用之片段。抗體片段(例如Fv、F(ab’)2及Fab)可藉由裂解完整蛋白質(例如藉由蛋白酶或化學裂解)來製備。
實施例包括包含足夠CDR(例如來自表5之所有六種CDR)以允許結合至細胞表面GCC之抗體分子。
在一實施例中,CDR(例如所有HCDR或所有LCDR或所有六種CDR)係包埋人類或人類源框架區中。人類框架區之實例包括人類生殖細胞系框架序列、已親和力成熟(活體內或活體外)之人類生殖細胞系序列或合成人類序列(例如共有序列)。在一實施例中,重鏈框架係IgG1或IgG2框架。在一實施例中,輕鏈框架係κ框架。
抗-GCC抗體分子可包含上述人類融合瘤、選定淋巴球或鼠類抗體中之一者之重鏈及輕鏈中之一或兩者之可變區之全部或抗原結合片 段。
在一實施例中,(a)之輕鏈胺基酸序列與(a)(i-ii)中所提及之參照胺基酸序列中之一者可相差多達1個、2個、3個、4個、5個、10個或15個殘基。在各實施例中,該等差異為保守取代。在實施例中,該等差異出現在框架區中。在一實施例中,(b)之重鏈胺基酸序列與(b)(i-ii)中所提及之參照胺基酸序列中之一者可相差1個、2個、3個、4個、5個、10個或15個殘基。在各實施例中,該等差異為保守取代。在實施例中,該等差異出現在框架區中。
在一實施例中,抗-GCC抗體分子包含以下中之一或兩者:(a)(i)來自表3之輕鏈可變區胺基酸序列(例如SEQ ID NO:20)或(ii)由來自表4之核苷酸序列編碼之輕鏈可變區胺基酸(例如SEQ ID NO:19)之全部或抗原結合片段之輕鏈胺基酸序列;及(b)(i)來自表3之重鏈可變區胺基酸序列(例如SEQ ID NO:18)或(ii)由來自表4之核苷酸序列編碼之重鏈胺基酸序列(例如SEQ ID NO:17)之全部或抗原結合片段之重鏈胺基酸序列。
在一實施例中,抗-GCC抗體分子包含以下中之一或兩者:a)與本發明抗-GCC抗體分子(例如上述人類融合瘤、選定淋巴球或鼠類抗體中之一者)之輕鏈可變區具有至少85%、90%、95%、97%或99%同源性之輕鏈可變區或其抗原結合片段;及(b)與本發明抗-GCC抗體分子(例如上述人類融合瘤、選定淋巴球或鼠類抗體中之一者)之重鏈可變區具有至少85%、90%、95%、97%或99%同源性之重鏈可變區或其抗原結合片段。
實例性抗體之輕鏈及重鏈可變區之胺基酸序列可參見表3。
在一實施例中,該抗-GCC抗體分子係5F9抗體分子且包括以下中之一或兩者:a)來自SEQ ID NO:32之重鏈恆定區之全部或片段;及b)來自SEQ ID NO:34之輕鏈恆定區之全部或片段。
在另一實施例中,該抗-GCC抗體分子係Abx-229抗體分子且包括以下中之一或多者:a)來自SEQ ID NO:46之重鏈可變區之全部或GCC結合片段;及b)來自SEQ ID NO:48之輕鏈可變區之全部或GCC結合片段。
在一方法中,編碼重鏈及輕鏈J區域之共有序列可用於設計用作引物以將有用限制位點引入J區域中用於V區域區段與人類C區域區段之後續連接之寡核苷酸。C區域cDNA可藉由定點誘變經修飾以將限制位點置於人類序列中之類似位置處。
表現載體包括質粒、反轉錄病毒、黏粒、YAC、EBV源游離基因體及諸如此類。習用載體係編碼功能完整之人類CH或CL免疫球蛋白序列者,其中改造適當限制位點以使得可容易插入並表現任何VH或VL序列。在該等載體中,剪接常發生在所插人J區域中之剪接供體位點與在人類C區域前面之剪接受體位點之間,且亦發生在出現在人類CH外顯子內剪接區域中。適宜表現載體可含有多個組份,例如,複製起點、可選擇標誌基因、一或多個表現控制元件(例如轉錄控制元件(例如啟動子、增強子、終止子))及/或一或多個轉譯信號、信號序列或前導序列,及諸如此類。多腺苷酸化及轉錄終止發生在編碼區域下游之天然染色體位點處。所得嵌合抗體可接合至任何強啟動子。可使用之適宜載體之實例包括適於哺乳動物宿主並基於病毒複製系統之彼等,例如猿猴病毒40(SV40)、勞斯肉瘤病毒(Rous sarcoma virus,RSV)、腺病毒2、牛乳頭狀瘤病毒(BPV)、乳多泡病毒BK突變體(BKV)或小鼠及人類細胞巨大病毒(CMV)及鼠類莫洛尼氏白血病病毒(moloney murine leukemia virus,MMLV)、天然Ig啟動子等。各種適宜載體為本技術領域內所已知,包括維持呈單一拷貝或多個拷貝或(例如)經由LTR或經由經多個整合位點改造之人工染色體變得整合至宿主細胞染色體中之載體(Lindenbaum等人,Nucleic Acids Res. 32:e172(2004),Kennard等人,Biotechnol.Bioeng.2009年5月20日在線)。適宜載體之額外實例列示於下一部分中。
因此,本發明提供表現載體,其包含編碼如下之核酸:抗體、抗體之抗原結合片段(例如人類、人類化、嵌合抗體或前述中任一者之抗原結合片段)、抗體鏈(例如重鏈、輕鏈)或結合GCC蛋白質之抗體鏈之抗原結合部分。
於真核宿主細胞中之表現係有用的,此乃因該等細胞比原核細胞更可能組裝並分泌經正確摺疊且具有免疫活性之抗體。然而,由於不正確摺疊而無活性之任何所產生抗體可根據已知方法複性(Kim及Baldwin,「Specific Intermediates in the Folding Reactions of Small Proteins and the Mechanism of Protein Folding」,Ann.Rev.Biochem.51,第459頁至第89頁(1982))。可能的是,宿主細胞將產生完整抗體之各部分,例如輕鏈二聚體或重鏈二聚體,該等二聚體亦為本發明之抗體同系物。
應瞭解,所生成之抗體不需初始具有特定期望同種型,而相反地所生成之抗體可具有任何同種型。例如,由5F9融合瘤(ATCC保藏編號PTA-8132)產生之抗體具有IgG2同種型。其後可使用本技術領域內所已知之習用技術將抗體之同種型轉換成(例如)IgG1或IgG3以當抗體結合細胞上之GCC時引發ADCC反應。該等技術尤其包括使用直接重組技術(例如參見美國專利第4,816,397)、細胞-細胞融合技術(例如參見美國專利第5,916,771號)。在細胞-細胞融合技術中,製備具有存在任何期望同種型之重鏈之骨髓瘤或其他細胞系,且製備具有輕鏈之另一骨髓瘤或其他細胞系。其後可融合該等細胞,且可分離表現完整抗體之細胞系。
在某些實施例中,GCC抗體分子係人類抗-GCC IgG1抗體。由於該等抗體具有與GCC分子之期望結合,該等抗體中之任一者可容易地 經同種型轉換以生成(例如)人類IgG4同種型,而仍具有相同可變區(其在某種程度上定義抗體之特異性及親和力)。因此,當生成滿足上文所論述之期望「結構」屬性之抗體候選物時,其通常可提供有藉助同種型轉換而所期望之至少某些額外「功能」屬性。
在一實施例中,可變區或其抗原結合片段可與其經生成所具有之恆定區以外之恆定區(或其片段)(例如來自另一抗體之恆定區(或其片段))偶合或與合成恆定區(或其片段)偶合。在各實施例中,該恆定區係IgG1或IgG2恆定區(或其片段)。可在可變區或恆定區中進行序列變化,以改變抗體分子之效應活性。
其他治療劑之設計及生成
本文中所產生並在GCC方面進行表徵之抗體提供包括其他抗體、其他拮抗劑或除抗體以外之化學部分之其他治療方式之設計係經促進。該等方式包括(但不限於)具有類似結合活性或功能性之抗體、先進抗體治療劑(例如雙特異性抗體、免疫共軛物及經放射性標記之治療劑)、肽治療劑(特定而言細胞內抗體)之生成及小分子。此外,如上文所論述,本發明抗體之效應功能可藉由同種型轉換成IgG1、IgG2、IgG3、IgG4、IgD、IgA1、IgA2、IgE或IgM來改變用於各種治療用途。
關於雙特異性抗體,可生成包含以下之雙特異性抗體:(i)兩個抗體,一個對GCC具有特異性且另一個對共軛在一起之第二分子具有特異性,(ii)單一抗體,其具有一個對GCC具有特異性之鏈及對第二分子具有特異性之第二鏈,或(iii)單鏈抗體,其對GCC及另一分子具有特異性。可使用已知技術生成該等雙特異性抗體。
另外,亦可製備「κ抗體」(Ill.等人,「Design and construction of a hybrid immunoglobulin domain with properties of both heavy and light chain variable regions」Protein Eng 10:949-57(1997))、「微抗 體」(Martin等人,EMBO J 13:5303-9(1994)、美國專利第5,837,821號)、「雙鏈抗體」(Holliger等人,Proc Natl Acad Sci USA 90:6444-6448(1993))或「Janusins」(Traunecker等人,EMBO J 10:3655-3659(1991)及Traunecker等人,Int J Cancer Suppl 7:51-52(1992))。
多肽
在另一實施例中,本發明係關於代表本文中所闡述抗體分子之多肽序列。
本發明係關於代表本發明抗體之多肽以及該等多肽之片段、類似物及衍生物。該等多肽可為重組多肽、天然產生之多肽或合成多肽。本發明多肽之片段、衍生物或類似物可為其中一或多個胺基酸殘基係經保守或非保守胺基酸殘基(較佳地保守胺基酸殘基)取代者,且該經取代胺基酸殘基可或可不為由遺傳密碼編碼者;或其可為其中一或多個胺基酸殘基包括取代基者;或其可為其中多肽與另一化合物(例如延長多肽半衰期之化合物(例如,聚乙二醇))融合者;或其可為其中額外胺基酸與多肽(例如前導或分泌序列或純化多肽或前蛋白序列所採用之序列)稠合者。該等片段、衍生物及類似物屬於本發明範圍內。在各種態樣中,本發明多肽可為經部分純化或經純化之產物。
多肽可具有與本文中所闡述抗體之胺基酸序列(例如表2或3中所總結)一致或由於一或多個胺基酸取代而相差微小變異之胺基酸序列。該變異可為通常在約1個至5個胺基酸之範圍內之「保守變化」,其中經取代胺基酸具有類似結構或化學性質,例如用異白胺酸置換白胺酸或用絲胺酸置換蘇胺酸;用精胺酸或組胺酸置換離胺酸。相比之下,變異可包括非保守變化,例如用色胺酸置換甘胺酸。類似微小變異亦可包括胺基酸缺失或插入或二者。可使用本技術領域內所已知之電腦程式(例如DNASTAR軟體(DNASTAR公司,Madison,Wis.))找到測定那些或多少胺基酸殘基可經取代、插入或缺失而不改變生物或免 疫活性之指導。
在額外態樣中,該抗體分子包含由具有ATCC登錄號PTA-8132之DNA編碼之抗體之輕鏈可變區胺基酸序列之胺基酸序列。在其他額外態樣中,該抗體分子包含由具有ATCC登錄號PTA-8132之DNA編碼之抗體之重鏈可變區序列之胺基酸序列。
如所瞭解,本發明抗體可表現於除融合瘤細胞系以外之細胞系中。編碼特定抗體之cDNA或基因體純系之序列可用於適宜哺乳動物或非哺乳動物宿主細胞。轉形可藉由任何用於將多核苷酸引入宿主細胞中之已知方法進行,該等方法包括(例如)將多核苷酸封裝於病毒(或病毒載體)中並用病毒(或載體)轉導宿主細胞,或藉由本技術領域內所已知用於將異源多核苷酸引入哺乳動物細胞中之轉染程序,例如葡聚糖調介之轉染、磷酸鈣沈澱、聚凝胺調介之轉染、原生質體融合、電穿孔、將多核苷酸囊封至脂質體中及DNA分子之直接顯微注射。所使用之轉形程序取決於欲轉形之宿主。用於將異源多核苷酸酸引入哺乳動物細胞中之方法已為本技術領域內所已知,並包括(但不限於)葡聚糖調介之轉染、磷酸鈣沈澱、聚凝胺調介之轉染、原生質體融合、電穿孔、粒子轟擊、將多核苷酸囊封於脂質體中、肽共軛物、樹枝狀聚合物及直接向細胞核中顯微注射DNA。
融合蛋白及免疫共軛物
本文中所闡述之抗-GCC抗體可藉由任何適宜方法(例如化學偶合、遺傳融合、非共價聯結或其他方式)功能連接至一或多個非抗體分子實體。
可產生其中本文中所闡述之抗-GCC抗體分子及非抗體部分係單一連續多肽鏈之組份之融合蛋白。非抗體部分可參照抗體部分定位於N末端、C末端或內部。例如,一些實施例可藉由將編碼免疫球蛋白序列之核酸插入適宜表現載體(例如pET載體(例如pET-15b, Novagen)、噬菌體載體(例如pCNATAB 5 E,Pharmacia)或其他載體(例如pRIT2T蛋白質A融合載體,Pharmacia))中來產生。所得構築體可經表現以產生包含非抗體部分(例如組胺酸標籤、E標籤或蛋白質A IgG結合結構域)之抗體鏈。融合蛋白可使用任何適宜技術進行分離或回收,例如使用適宜親和力矩陣之層析(例如參見Current Protocols in Molecular Biology(Ausubel,F.M等人編輯,第2卷,Suppl.26,第16.4.1頁至第16.7.8頁(1991))。
本發明提供引導至細胞中並在實施例中內化至其中之抗-GCC抗體分子。其能夠將治療劑或可檢測藥劑遞送至表現GCC細胞上或其中,但不遞送至未表現該標靶之細胞上或其中。因此,本發明亦提供包含與治療劑或可檢測劑共軛之本文中所闡述抗-GCC抗體分子之免疫共軛物。在實施例中,免疫共軛物對GCC之親和力為未經共軛抗體之親和力之至少10%、25%、50%、75%、80%、90%或95%。此可使用細胞表面GCC或經分離GCC來測定。在一實施例中,抗-GCC抗體分子(例如免疫共軛物)具有如藉由本文中所闡述分析測定小於1,000pM、500pM、250pM、100pM或50pM之LD50。
抗-GCC抗體分子可利用本技術領域內所已知技術經修飾以充當免疫共軛物。例如參見Vitetta Immunol Today 14:252(1993)。亦參見美國專利第5,194,594號。經放射性標記之抗體之製備亦可容易利用本技術領域內所已知技術製備。例如參見Junghans等人,Cancer Chemotherapy and Biotherapy 655-686(第2版,Chafner及Longo編輯,Lippincott Raven(1996))。亦參見美國專利第4,681,581號、第4,735,210號、第5,101,827號、第5,102,990號(美國再發證專利第35,500號)、第5,648,471號及第5,697,902號。
在一些實施例中,抗體分子及非抗體部分係藉助連接體來連結。在該等實施例中,免疫共軛物係由式( I )代表:
其中,Ab係本文中所闡述之抗-GCC抗體分子;X係連結Ab及Z之部分,例如本文中所闡述連接體在共價連接至Ab及Z中之一或兩者後之其餘部分;Z係治療劑或標記;且m在約1至約15之範圍內。
變量m代表式( I )免疫共軛物中每個抗體分子對應之-X-Z部分之數量。在各種實施例中,m在1至8、1至7、1至6、1至5、1至4、1至3或1至2之範圍內。在一些實施例中,m在2至8、2至7、2至6、2至5、2至4或2至3之範圍內。在其他實施例中,m為1、2、3、4、5或6。在包含複數個式( I )免疫共軛物之組合物中,m為每個Ab對應之-X-Z部分之平均數,亦稱為平均載藥量(在其中該等組合物包含複數個免疫共軛物之實例中,m可為除整數以外之數量(例如為該複數個共軛物間之平均數)。平均載藥量可在每個Ab 1個至約15個-X-Z部分之範圍內。在一些實施例中,當m代表平均載藥量時,m為約1、約2、約3、約4、約5、約6、約7或約8。在實例性實施例中,m為約2至約8。在另一實施例中,m為約4。在另一實施例中,m為約2。
每個Ab對應之-X-Z部分之平均數可藉由習用方式(例如質譜法、ELISA分析及HPLC)來表徵。亦可測定免疫共軛物就m而言之定量分佈。在一些情況下,來分離、純化及表徵如與具有其他載藥量之免疫共軛物不同之均質免疫共軛物(其中m為一定值)可藉由諸如反相HPLC或電泳等方式來達成。
用於製備免疫共軛物之各種適宜連接體(例如用於將抗體分子連結至治療劑或標記之異雙功能試劑)及方法為本技術領域內所已知。 (例如參見Chari等人,Cancer Research 52:127-131(1992)。)該連接體在(例如)生理條件下(例如在細胞內條件下)可為可裂解的,以使得該連接體之裂解將藥物(治療劑或標記)釋放於細胞內環境中。在其他實施例中,該連接體為不可裂解的,且藉由(例如)抗體降解釋放藥物。
該連接體可鍵結至抗體部分上之化學反應性基團,例如鍵結至游離胺基、亞胺基、羥基、硫醇或羧基(例如鍵結至N末端或C末端、鍵結至一或多個離胺酸殘基之ε胺基、一或多個麩胺酸或天冬胺酸殘基之游離羧酸基團或鍵結至一或多個半胱胺醯基殘基之巰基)。結合該連接體之位點可為抗體部分之胺基酸序列中之天然殘基,或可藉由(例如)DNA重組技術(例如藉由將半胱胺酸或蛋白酶裂解位點引入胺基酸序列中)或藉由蛋白質生物化學(例如還原、pH調整或蛋白質水解)將其引入抗體部分中。
在某些實施例中,使為連接體(X)之前體之中間物與藥物(Z)在適當條件下反應。在某些實施例中,在藥物及/或中間物上使用反應性基團。隨後使藥物與中間物間之反應產物或所衍生藥物與抗體分子在適當條件下反應。
免疫共軛物可藉由採用熟習此項技術者所熟知方法自反應物純化,例如管柱層析(例如親和力層析、離子交換層析、凝膠過濾、疏水相互作用層析)、透析、滲濾或沈澱。免疫共軛物可藉由採用熟習此項技術者所熟知方法評價,例如SDS-PAGE、質譜法或毛細管電泳。
在一些實施例中,連接體可藉由存在於細胞內環境中(例如,在溶酶體或胞內體或胞膜窖內)之裂解劑裂解。
在又其他具體實施例中,連接體係丙二酸酯連接體(Johnson等人,1995,Anticancer Res.15:1387-93)、馬來醯亞胺基苯甲醯基連接體(Lau等人,1995,Bioorg-Med-Chem.3(10):1299-1304)或3’-N-醯胺類 似物(Lau等人,1995,Bioorg-Med-Chem.3(10):1305-12)。
可與本發明組合物及方法一起使用之各種實例性連接體闡述於WO 2004-010957、美國公開案第20060074008號、美國公開案第20050238649號及美國公開案第20060024317號(其每一者以引用方式全文並出於所有目的併入本文中)中。
能夠用於使抗體分子與治療劑或標記偶合之連接體之實例包括(例如)馬來醯亞胺基己醯基(mc);馬來醯亞胺基己醯基-對-胺基苄基胺基甲酸酯;馬來醯亞胺基己醯基-肽-胺基苄基胺基甲酸酯連接體,例如馬來醯亞胺基己醯基-L-苯基丙胺酸-L-離胺酸-對-胺基苄基胺基甲酸酯及馬來醯亞胺基己醯基-L-纈胺酸-L-瓜胺酸-對-胺基苄基胺基甲酸酯(vc);3-(2-吡啶基二硫代)丙酸N-琥珀醯亞胺基酯(亦稱為4-(2-吡啶基二硫代)戊酸N-琥珀醯亞胺基酯或SPP);4-琥珀醯亞胺基-氧基羰基-2-甲基-2-(2-吡啶基二硫代)-甲苯(SMPT);3-(2-吡啶基二硫代)丙酸N-琥珀醯亞胺基酯(SPDP);4-(2-吡啶基二硫代)丁酸N-琥珀醯亞胺基酯(SPDB);2-亞胺基硫;S-乙醯基琥珀酸酐;二硫化胺基甲酸苄基酯;碳酸酯;腙連接體;N-(α-馬來醯亞胺基乙醯氧基)琥珀醯亞胺酯;N-[4-(對疊氮基水楊酸基醯胺基)丁基]-3’-(2’-吡啶基二硫代)丙醯胺(AMAS);N-[β-馬來醯亞胺基丙基氧基]琥珀醯亞胺酯(BMPS);[N-ε-馬來醯亞胺基己醯基氧基]琥珀醯亞胺酯(EMCS);N-[γ-馬來醯亞胺基丁醯基氧基]琥珀醯亞胺酯(GMBS);琥珀醯亞胺基-4-[N-馬來醯亞胺基甲基]環己烷-1-接基-[6-醯胺基己酸酯](LC-SMCC);6-(3-[2-吡啶基二硫代]-丙醯胺基)己酸琥珀醯亞胺基酯(LC-SPDP);間馬來醯亞胺基苯甲醯基-N-羥基琥珀醯亞胺酯(MBS);[4-碘乙醯基]胺基苯甲酸N-琥珀醯亞胺基酯(SIAB);4-[N-馬來醯亞胺基甲基]環己烷-1-甲酸琥珀醯亞胺基酯(SMCC);N-琥珀醯亞胺基3-[2-吡啶基二硫代]-丙醯胺基(SPDP);[N-ε-馬來醯亞胺基己醯基氧基]磺基琥珀醯亞胺酯(磺基- EMCS);N-[γ-馬來醯亞胺基丁醯基氧基]磺基琥珀醯亞胺酯(磺基-GMBS);6-甲基-α-(2-吡啶基二硫代)甲苯醯胺基]己酸4-磺基琥珀醯亞胺基酯)(磺基-LC-SMPT);6-(3’-[2-吡啶基二硫代]-丙醯胺基)己酸磺基琥珀醯亞胺基酯(磺基-LC-SPDP);間馬來醯亞胺基苯甲醯基-N-羥基磺基琥珀醯亞胺酯(磺基-MBS);[4-碘乙醯基]胺基苯甲酸N-磺基琥珀醯亞胺基酯(磺基-SIAB);4-[N-馬來醯亞胺基甲基]環己烷-1-甲酸磺基琥珀醯亞胺基酯(磺基-SMCC);4-[對馬來醯亞胺基苯基]丁酸磺基琥珀醯亞胺基酯(磺基-SMPB);乙二醇-雙(琥珀酸N-羥基琥珀醯亞胺酯)(EGS);酒石酸二琥珀醯亞胺基酯(DST);1,4,7,10-四氮雜環十二烷-1,4,7,10-四乙酸(DOTA);二伸乙基三胺-五乙酸(DTPA);及硫脲連接體。
在一些實施例中,連接體-X-具有式-Aa-Ww-Yy-,且式( I )免疫共軛物之特徵在於式( II ):
其中,Ab係本文中所闡述之抗-GCC抗體分子;-A-係延伸物單元(Stretcher unit);a為0或1;每一-W-獨立地為胺基酸單元;w為在0至12之範圍內之整數;-Y-係自犧牲(self-immolative)間隔子單元;y為0、1或2;Z係治療劑或標記;且m在約1至約15之範圍內。
延伸物單元(A)當存在時能夠將Ab單元連接至胺基酸單元(-W-)(若存在)、間隔子單元(-Y-)(若存在);或治療劑或標記(Z)。可天然或經由化學操作存在於抗-GCC抗體分子上之有用官能團包括(但不限於)巰基、胺基、羥基、碳水化合物之變旋異構羥基及羧基。適宜官能團為巰基及胺基。在一實例中,巰基可藉由還原抗-GCC抗體分子之分子內二硫鍵來生成。在另一實施例中,巰基可藉由使抗-GCC抗體分子之離胺酸部分之胺基與2-亞胺基硫(Traut試劑)或其他巰基生成試劑反應來生成。在某些實施例中,該抗-GCC抗體分子係重組抗體,且經改造以攜帶一或多個離胺酸。在某些其他實施例中,重組抗-GCC抗體分子係經改造以攜帶額外巰基,例如額外半胱胺酸。
在一實施例中,延伸物單元與Ab單元之硫原子形成鍵。硫原子可源自Ab之巰基。此實施例之代表性延伸物單元係繪示於式( IIIa )及( IIIb )之方括弧內,其中Ab-、-W-、-Y-、-Z、w及y吸入上文所定義,且Ra係選自-C1-C10伸烷基-、-C2-C10伸烯基-、-C2-C10伸炔基-、-碳環基-、-O-(C1-C8伸烷基)-、O-(C2-C8伸烯基)-、-O-(C2-C8伸炔基)-、-伸芳基-、-C1-C10伸烷基-伸芳基-、-C2-C10伸烯基-伸芳基、-C2-C10伸炔基-伸芳基、-伸芳基-C1-C10伸烷基-、-伸芳基-C2-C10伸烯基-、-伸芳基-C2-C10伸炔基-、-C1-C10伸烷基-(碳環基)-、-C2-C10伸烯基-(碳環基)-、-C2-C10伸炔基-(碳環基)-、-(碳環基)-C1-C10伸烷基-、-(碳環基)-C2-C10伸烯基-、-(碳環基)-C2-C10伸炔基、雜環-、-C1-C10伸烷基-(雜環)-、-C2-C10伸烯基-(雜環)-、-C2-C10伸炔基-(雜環)-、-(雜環)-C1-C10伸烷基-、-(雜環)-C2-C10伸烯基-、-(雜環)-C2-C10伸炔基-、-(CH2CH2O)r-或-(CH2CH2O)r-CH2-,且r為在1至10之範圍內之整數,其中該烷基、烯基、炔基、伸烷基、伸烯基、伸炔基、芳基、碳環、碳環基、雜環及伸芳基(無論單獨還是作為另一基團之一部分)係視情況經取代。在一些實施例中,該烷基、烯基、炔基、伸烷基、伸烯基、 伸炔基、芳基、碳環、碳環基、雜環及伸芳基(無論單獨還是作為另一基團之一部分)係未經取代。在一些實施例中,Ra係選自-C1-C10伸烷基-、-碳環基-、-O-(C1-C8伸烷基)-、-伸芳基-、-C1-C10伸烷基-伸芳基-、-伸芳基-C1-C10伸烷基-、-C1-C10伸烷基-(碳環基)-、-(碳環基)-C1-C10伸烷基-、-C3-C8雜環-、-C1-C10伸烷基-(雜環)-、-(雜環)-C1-C10伸烷基-、-(CH2CH2O)r-及-(CH2CH2O)r-CH2-;且r為在1至10之範圍內之整數,其中該等伸烷基係未經取代,且該等基團之其餘部分係視情況經取代。
自所有實例性實施例應理解,甚至若不明確表示,則可將1個至15個藥物部分連接至Ab(m=1至15)。
說明性延伸物單元具有式( IIIa ),其中Ra係-(CH2)5-:
應注意,在整個本申請案中,除非上下文另有所示,否則下式中之S部分係指Ab單元之硫原子。
胺基酸單元(-W-)當存在時將延伸物單元連接至間隔子單元(若存在間隔子單元),將延伸物單元連接至藥物部分(若不存在間隔子單元),且將Ab單元連接至治療劑或標記部分(若不存在延伸物單元及間隔子單元。
Ww-可為(例如)單肽、二肽、三肽、四肽、五肽、六肽、七肽、八肽、九肽、十肽、十一肽或十二肽單元。
在某些實施例中,胺基酸單元可包含天然胺基酸。在其他實施 例中,胺基酸單元可包含非天然胺基酸。說明性Ww單元係由式( VII )代表:
其中Rc及Rd係如以下:
在胺基酸單元之一態樣中,胺基酸單元係纈胺酸-瓜胺酸(vc或val-cit)。在另一態樣中,胺基酸單元係苯基丙胺酸-離胺酸(即fk)。在胺基酸單元之再一態樣中,胺基酸單元係N-甲基纈胺酸-瓜胺酸。在再一態樣中,胺基酸單元係5-胺基纈草酸、均苯基丙胺酸離胺酸、四異喹啉甲酸酯離胺酸、環己基丙胺酸離胺酸、異哌啶甲酸離胺酸、β-丙胺酸離胺酸、甘胺酸絲胺酸纈胺酸麩醯胺酸及異哌啶甲酸。
當存在胺基酸單元時,間隔子單元(-Y-)當存在時將胺基酸單元連接至治療劑或標記部分(-Z-)。另一選擇為,當存在胺基酸單元時,間隔子單元將延伸物單元連接至治療劑或標記部分。當存在胺基酸單元及延伸物單元二者時,間隔子單元亦將治療劑或標記部分連接至 Ab單元。
間隔子單元具有兩種通用類型:非自犧牲的或自犧牲的。非自犧牲間隔子單元係其中在胺基酸單元自抗體-藥物共軛物裂解(特定而言酶促裂解)後間隔子單元之一部分或全部仍結合至治療劑或標記部分者。非自犧牲間隔子單元之實例包括(但不限於)(甘胺酸-甘胺酸)間隔子單元及甘胺酸間隔子單元(二者均繪示於方案圖1中)(參見下文)。當含有甘胺酸-甘胺酸間隔子單元或甘胺酸間隔子單元之共軛物經受經由酶(例如腫瘤細胞相關蛋白酶、癌細胞相關蛋白酶或淋巴球相關蛋白酶)之酶促裂解時,甘胺酸-甘胺酸-Z部分或甘胺酸-Z部分自Ab-Aa-Ww-裂解。
另一選擇為,含有自犧牲間隔子單元之共軛物可釋放-Z。本文所使用之術語「自犧牲間隔子」係指能夠將兩個隔開之化學部分共價連接在一起形成穩定三聯分子之雙官能化學部分。若其與第一部分之鍵裂解,則其將自發地自第二化學部分分離。
在一些實施例中,-Yy-係對胺基苄基醇(PAB)單元(參見方案圖2及3),其伸苯基部分係經Q n 取代,其中Q係-C1-C8烷基、-C2-C8烯基、-C2-C8炔基、-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)、-鹵素、-硝基或-氰基;且n為在0至4之範圍內之整數。烷基、烯基及炔基(無論單獨還是作為另一基團之一部分)可視情況經取代。
在一些實施例中,-Y-係PAB基團,其經由PAB基團之胺基氮原子連接至-Ww-並經由碳酸酯、胺基甲酸酯或醚基團直接連結至-Z。
自犧牲間隔子之其他實例包括(但不限於)與PAB基團電子上類似之芳香族化合物,例如2-胺基咪唑-5-甲醇衍生物(Hay等人,1999,Bioorg.Med.Chem.Lett.9:2237)及鄰-或對-胺基苄基縮醛。可使用在醯胺鍵水解後經受環化之間隔子,例如經取代及未經取代之4-胺基丁酸醯胺(Rodrigues等人,1995,Chemistry Biology 2:223)、經適當取代 之雙環[2.2.1]及雙環[2.2.2]環系統(Storm等人,1972,J.Amer.Chem.Soc.94:5815)及2-胺基苯基丙酸醯胺(Amsberry等人,1990,J.Org.Chem.55:5867)。在甘胺酸之α位經取代之含胺藥物之消除(Kingsbury等人,1984,J.Med.Chem.27:1447)亦為自犧牲間隔子之實例。
在一些實施例中,-Z部分相同。在再一實施例中,-Z部分不同。
在一態樣中,間隔子單元(-Yy-)係由式(X)代表:
其中Q係-C1-C8烷基、-C2-C8烯基、-C2-C8炔基、-O-(C1-C8烷基)、-O-(C2-C8烯基)、-O-(C2-C8炔基)、-鹵素、-硝基或-氰基;且m為在0至4之範圍內之整數。烷基、烯基及炔基(無論單獨還是作為另一基團之一部分)可視情況經取代。
在一組選定實施例中,式( I )及( II )之共軛物為:
其中w及y各自為0、1或2:
其中w及y各自為0;
其中Aa、Ww、Yy、Z及Ab具有上文所提供之含義。
式( I )中之變量Z為治療劑或標記。治療劑可為任何發揮期望生物效應之藥劑。在一些實施例中,該治療劑使細胞對第二治療方式(例如化學治療劑、輻射療法、免疫療法)敏感。
在一些實施例中,治療劑係細胞抑制劑或細胞毒性劑。實例包括(但不限於)抗代謝物(例如氟尿嘧啶(5-FU)、氟尿苷(5-FUdR)、胺甲喋呤、甲醯四氫葉酸、羥基脲、硫鳥嘌呤(6-TG)、巰嘌呤(6-MP)、阿糖胞苷、噴司他汀、磷酸氟達拉濱、克拉屈濱(2-CDA)、天冬醯胺酶、吉西他濱、卡培他濱、硫唑嘌呤、胞嘧啶胺甲喋呤、甲氧苄啶、 乙胺嘧啶或培美曲塞);烷化劑(例如美法蘭、苯丁酸氮芥、白消安、噻替哌、依弗醯胺、卡莫司汀、洛莫司汀、司莫司汀、鏈脲黴素、達卡巴嗪、絲裂黴素C、環磷醯胺、二氯甲基二乙胺、烏拉莫司汀、二溴甘露醇、四硝酸酯、丙卡巴肼、六甲蜜胺、米托唑胺、或替莫唑胺);類烷化劑(例如順鉑、卡鉑、奈達鉑、奧沙利鉑、沙鉑或三鉑);DNA小溝烷化劑(例如多卡米星(例如CC-1065)及其任何類似物或衍生物;吡咯并苯并二氮呯或其任何類似物或衍生物);蒽環(例如道諾黴素、多柔比星、表柔比星、伊達比星、或戊柔比星);抗生素(例如放線菌素D(dactinomycin)、博來黴素、光輝黴素(mithramycin)、安麯黴素(anthramycin)、鏈佐黴素(streptozotocin)、短桿菌肽D(gramicidin D)、絲裂黴素(例如絲裂黴素C);卡奇黴素(calicheamicin);抗有絲分裂劑(例如包括類美登素(maytansinoid)、奧裏斯他汀、尾海兔素(dolastatin)、念珠藻素(cryptophycin)、長春花生物鹼(vinca alkaloid)(例如長春新鹼(vincristine)、長春花鹼(vinblastine)、長春地辛(vindesine)、長春瑞斌(vinorelbine))、紫杉烷(taxane)(例如太平洋紫杉醇(paclitaxel)、多西他賽(docetaxel)或新穎紫杉烷(例如參見於2001年5月31日公佈之國際專利公開案第WO 01/38318號))、圖布萊森(tubulysin)及秋水仙素(colchicine);拓撲異構酶抑制劑(例如伊立替康、托泊替康、喜樹鹼、依託泊苷、替尼泊苷、安吖啶或米托蒽醌);及蛋白酶體抑制劑(例如肽基酸)。關於各種治療劑與抗-GCC抗體之共軛之額外資訊參見國際申請案WO2011/050242,其以引用方式全文併入本文中。
尾海兔素及奧裏斯他汀免疫共軛物
在一些其他實施例中,治療劑為尾海兔素。在一些實施例中,治療劑係奧裏斯他汀,例如奧裏斯他汀E(本技術領域內亦稱為尾海兔素-10之衍生物)或其衍生物。在一些實施例中,治療劑係選自式 ( XIII )至( XXIII )之化合物之化合物或其醫藥上可接受之鹽形式:
奧裏斯他汀化合物及其與抗體共軛之方法闡述於(例如)Doronina等人,Nature Biotech.,21:778-784(2003);Hamblett等人,Clin.Cancer Res.,10:7063-7070(2004);Carter及Senter,Cancer J.,14 154-169(2008);美國專利第7,498,298號、第7,091,186號、第6,884,869號;第6,323,315號;第6,239,104號;第6,034,065號;第5,780,588號;第5,665,860號;第5,663,149號;第5,635,483號;第5,599,902號;第5,554,725號;第5,530,097號;第5,521,284號;第5,504,191 號;第5,410,024號;第5,138,036號;第5,076,973號;第4,986,988號;第4,978,744號;第4,879,278號;第4,816,444號;及第4,486,414號;美國專利公開案第20090010945號、第20060074008號、第20080300192號、第20050009751號、第20050238649號及第20030083236號;及國際專利公開案第WO 04/010957號及第WO 02/088172號中,其每一者以引用方式全文並出於所有目的併入本文中。
奧裏斯他汀可為(例如)奧裏斯他汀E與酮酸間形成之酯。例如,可使奧瑞斯他汀E與對乙醯基苯甲酸或苯甲醯戊酸反應以分別產生AEB及AEVB。其他典型奧裏斯他汀包括奧裏斯他汀苯基丙胺酸苯二胺(AFP;( XVIII ))、單甲基奧裏斯他汀E(MMAE;( XIII ))及單甲基奧裏斯他汀F(MMAF;( XXI ))。
已顯示奧裏斯他汀干擾微管動力學及細胞核及細胞分裂並具有抗癌活性。用於本發明之奧裏斯他汀結合微管蛋白,且可對GCC表現細胞系發揮細胞毒性或細胞抑制效應。測定化合物是否結合微管蛋白之方法為本技術領域內所已知。例如,參見Muller等人,Anal.Chem 2006,78,4390-4397;Hamel等人,Molecular Pharmacology,1995 47:965-976;及Hamel等人,The Journal of Biological Chemistry,1990 265:28,17141-17149。出於本發明之目的,可測定化合物對微管蛋白之相對親和力。本發明之一些較佳奧裏斯他汀結合微管蛋白之親和力在MMAE對微管蛋白之結合親和力之1/10(較弱親和力)至MMAE對微管蛋白之結合親和力之10倍、20倍或甚至100倍(較高親和力)之範圍內。
有多種本技術領域內已知可用於測定奧裏斯他汀或所得免疫共軛物對期望細胞系是否發揮細胞抑制或細胞毒性效應之不同分析。例如,免疫共軛物之細胞毒性或細胞抑制活性可藉由以下方式來量測: 使表現免疫共軛物之標靶蛋白質之哺乳動物細胞暴露於細胞培養基中;將細胞培養約6小時至約5天之時期;並量測細胞活力。可使用基於細胞之活體外分析量測免疫共軛物之活力(增生)、細胞毒性及凋亡誘導(含半胱胺酸之天冬胺酸水解酶激活)。
為測定免疫共軛物是否發揮細胞抑制效應,可使用胸苷摻入分析。例如,可將96孔板之5,000細胞/孔之密度之表現標靶抗原之癌細胞培養72小時時期,並在72小時時期之最後8小時期間暴露至0.5μCi之3H-胸苷中。在存在及不存在免疫共軛物之情況下量測3H-胸苷至培養細胞中之摻入。
為測定細胞毒性,可量測壞死或凋亡(程式性細胞死亡)。壞死通常係藉由漿膜滲透性之升高;細胞之溶脹漿膜之破裂來實現。凋亡之特徵通常在於膜起泡、細胞質濃縮及內源性內切酶激活。對癌細胞之該等效應中之任一者之測定指示免疫共軛物可用於治療癌症。
細胞活力可藉由測定細胞中染料(例如中性紅、台酚藍或ALAMARTM藍)之攝取(例如參見Page等人,1993,Intl.J.Oncology 3:473-476)來量測。在此一分析中,於含有染料之培養基中培育細胞,洗滌細胞,並用分光光度計量測剩餘染料(反映染料之細胞攝取)。亦可使用蛋白質結合染料磺基玫瑰紅B(SRB)量測細胞毒性(Skehan等人,1990,J.Natl.Cancer Inst.82:1107-12)。
另一選擇為,使用四唑鎓鹽(例如MTT或WST)用於藉由檢測活得而非死的細胞進行之針對哺乳動物細胞存活及增生之定量比色分析(例如參見Mosmann,1983,J.Immunol.Methods 65:55-63)。
可藉由量測(例如)DNA斷裂對凋亡進行定量。可使用用於DNA斷裂之活體外定量測定之商業光測定方法。該等分析之實例(包括TUNEL(其檢測於斷裂DNA中之經標記核苷酸摻入)及基於ELISA之分析)闡述於Biochemica,1999,第2期,第34頁至第37頁(Roche Molecular Biochemicals)中。
凋亡亦可藉由量測細胞之形態學變化來測定。例如,如與壞死一樣,漿膜完整性之損失可藉由量測某些染料(例如螢光染料,例如吖啶橙或溴乙啶)之攝取來測定。用於量測凋亡細胞數之方法已由Duke及Cohen之Current Protocols in Immunology(Coligan等人編輯,1992,第3.17.1頁至第3.17.16頁)闡述。亦可用DNA染料(例如吖啶橙、溴乙啶或碘丙啶)標記細胞,並觀測細胞之染色質濃縮及沿內核膜之著邊。可經量測以測定凋亡之其他形態學變化包括(例如)細胞質濃縮、膜起泡增加及細胞收縮。
可在培養物之附接及「漂浮」區室二者中量測凋亡細胞之存在。例如,兩種區室可藉由以下方式來收集:去除上清液、用胰蛋白酶處所附接細胞、在離心洗滌步驟(例如以2000rpm進行10分鐘)後合併該等製劑並檢測凋亡(例如藉由量測DNA斷裂)。(例如參見Piazza等人,1995,Cancer Research 55:3110-16)。
可在動物模型中測試或驗證免疫共軛物之效應。熟習此項技術者已知多個已確定之癌症動物模型,可使用其任一者來分析免疫共軛物之效力。該等模型之非限制性實例闡述於下文。此外,檢查免疫共軛物之活體內效力之小動物模型可藉由將人類腫瘤細胞系移植至適當的免疫缺陷型齧齒動物品系(例如無胸腺裸小鼠或SCID小鼠)中來產生。
在一些實施例中,式( I )中之變量-Z係式( X-A )或式( X-B )之奧裏斯他汀部分:
其中,在每一位置處獨立地: 波形線指示鍵;R 2 係-C1-C20烷基、-C2-C20烯基或-C2-C20炔基;R 3 係-H、-C1-C20烷基、-C2-C20烯基、-C2-C20炔基、碳環、-C1-C20伸烷基(碳環)、-C2-C20伸烯基(碳環)、-C2-C20伸炔基(碳環)、-芳基、-C1-C20伸烷基(芳基)、-C2-C20伸烯基(芳基)、-C2-C20伸炔基(芳基)、-雜環、-C1-C20伸烷基(雜環)、-C2-C20伸烯基(雜環)或-C2-C20伸炔基(雜環);R 4 係-H、-C1-C20烷基、-C2-C20烯基、-C2-C20炔基、碳環、-C1-C20伸烷基(碳環)、-C2-C20伸烯基(碳環)、-C2-C20伸炔基(碳環)、-芳基、-C1-C20伸烷基(芳基)、-C2-C20伸烯基(芳基)、-C2-C20伸炔基(芳基)、-雜環、-C1-C20伸烷基(雜環)、-C2-C20伸烯基(雜環)、或-C2-C20伸炔基(雜環);R 5 係-H或-C1-C8烷基;或R 4 R 5 共同形成碳環,並具有式-(CR a R b )s-,其中R a R b 獨立地為-H、-C1-C20烷基、-C2-C20烯基、-C2-C20炔基或-碳環,且s為2、3、4、5或6;R 6 為-H、-C1-C20烷基、-C2-C20烯基或-C2-C20炔基;R 7 係-H、-C1-C20烷基、-C2-C20烯基、-C2-C20炔基、-碳環、-C1-C20伸烷基(碳環)、-C2-C20伸烯基(碳環)、-C2-C20伸炔基(碳環)、-芳基、-C1-C20伸烷基(芳基)、-C2-C20伸烯基(芳基)、-C2-C20伸炔基(芳基)、雜環、-C1-C20伸烷基(雜環)、-C2-C20伸烯基(雜環)或-C2-C20伸炔基(雜環);每一R 8 獨立地為-H、-OH、-C1-C20烷基、-C2-C20烯基、-C2-C20炔基、-O-(C1-C20烷基)、-O-(C2-C20烯基)、-O-(C1-C20炔基)或-碳環;R 9 為-H、-C1-C20烷基、-C2-C20烯基或-C2-C20炔基;R 19 為-芳基、-雜環或-碳環; R 20 為-H、-C1-C20烷基、-C2-C20烯基、-C2-C20炔基、-碳環、-O-(C1-C20烷基)、-O-(C2-C20烯基)、-O-(C2-C20炔基)或OR 18 ,其中R 18 為-H、羥基保護基團或直接鍵,其中OR 18 代表=O;且R 21 為-H、-C1-C20烷基、-C2-C20烯基、或-C2-C20炔基、-芳基、-雜環或-碳環;式( X-A )之奧裏斯他汀包括其中該烷基、烯基、炔基、伸烷基、伸烯基、伸炔基、芳基、碳環及雜環基團未經取代之彼等。
式( X-A )之奧裏斯他汀包括其中R 2 、R 3 、R 4 、R 5 、R 6 、R 7 、R 8 R 9 等基團未經取代且R 19 、R 20 R 21 等基團視情況如上文所闡述經取代之彼等。
式( X-A )之奧裏斯他汀包括彼等其中:R 2 係-C1-C8烷基;R 3 、R 4 R 7 獨立地選自-H、-C1-C20烷基、-C2-C20烯基、-C2-C20炔基、單環C3-C6碳環、-C1-C20伸烷基(單環C3-C6碳環)、-C2-C20伸烯基(單環C3-C6碳環)、-C2-C20伸炔基(單環C3-C6碳環)、-C6-C10芳基、-C1-C20伸烷基(C6-C10芳基)、-C2-C20伸烯基(C6-C10芳基)、-C2-C20伸炔基(C6-C10芳基)、-雜環、-C1-C20伸烷基(雜環)、-C2-C20伸烯基(雜環)或-C2-C20伸炔基(雜環);其中該烷基、烯基、炔基、伸烷基、伸烯基、伸炔基、碳環、芳基及雜環基團係視情況經取代;R 5 係-氫;R 6 係-C1-C8烷基;每一R 8 係獨立地選自-OH、-O-(C1-C20烷基)、-O-(C2-C20烯基)或-O-(C2-C20炔基),其中該烷基、烯基及炔基係視情況經取代;R 9 係-氫或-C1-C8-烷基;R 19 係視情況經取代之苯基;R 20 係OR 18 ;其中R 18 係H、羥基保護基團或直接鍵,其中OR 18 代 表=O;R 21 係選自-H、-C1-C20烷基、-C2-C20烯基、-C2-C20炔基或-碳環;其中該烷基、烯基、炔基及碳環基團係視情況經取代;或其醫藥上可接受之鹽形式。
式( X-A )之奧裏斯他汀包括彼等其中:R 2 係甲基;R 3 係-H、-C1-C8烷基、-C2-C8烯基或-C2-C8炔基,其中該烷基、烯基及炔基係視情況經取代;R 4 係-H、-C1-C8烷基、-C2-C8烯基、-C2-C8炔基、單環C3-C6碳環、-C6-C10芳基、-C1-C8伸烷基(C6-C10芳基)、-C2-C8伸烯基(C6-C10芳基)、-C2-C8伸炔基(C6-C10芳基)、-C1-C8伸烷基(單環C3-C6碳環)、-C2-C8伸烯基(單環C3-C6碳環)、-C2-C8伸炔基(單環C3-C6碳環);其中該烷基、烯基、炔基、伸烷基、伸烯基、伸炔基、芳基及碳環基團(無論單獨還是作為另一基團之一部分)係視情況經取代;R 5 係H;R 6 係甲基;R 7 係-C1-C8烷基、-C2-C8烯基或-C2-C8炔基;每一R 8 係甲氧基;R 9 係-氫或-C1-C8-烷基;R 19 係苯基;R 20 係OR 18 ;其中R 18 係-H、羥基保護基團或直接鍵,其中OR 18 代表=O;R 21 係甲基;或其醫藥上可接受之鹽形式。
式( X-A )之奧裏斯他汀包括彼等其中:R 2 係甲基;R 3 係H或C1-C3烷基;R 4 係C1-C5烷基;R 5 係H;R 6 係甲基;R 7 係異丙基或第二丁基;R 8 係甲氧基;R 9 係氫或C1-C8烷基;R 19 係苯基;R 20 係OR 18 ;其中R 18 係H、羥基保護基團或直接鍵,其中OR18代表=O;且R 21 係甲 基;或其醫藥上可接受之鹽形式。
式( X-A )之奧裏斯他汀包括彼等其中:R 2 係甲基或C1-C3烷基;R 3 係H或Cl-C3烷基;R 4 係C1-C5烷基;R 5 係H;R 6 係C1-C3烷基;R 7 係C1-C5烷基;R 8 係C1-C3烷氧基;R 9 係氫或C1-C8烷基;R 19 係苯基;R 20 係OR 18 ;其中R 18 係H、羥基保護基團或直接鍵,其中OR 18 代表=O;且R 21 係C1-C3烷基;或其醫藥上可接受之鹽形式。
在式( II )免疫共軛物之較佳實施例中,當Z係式( X-A )之奧裏斯他汀分子,w為在1至12、較佳地2至12之範圍內之整數,y為1或2,且a較佳為1。
說明性治療劑(-Z)包括具有以下結構之彼等。
在一些實施例中,治療劑並非TZT-1027。在一些實施例中,治療劑並非奧裏斯他汀E、尾海兔素10或奧裏斯他汀PE。
在一些實施例中,奧裏斯他汀分子係藉助含有馬來醯亞胺部分(例如馬來醯亞胺基己醯基部分)之連接體連接至抗體分子上之半胱胺酸部分。
在一些其他實施例中,奧裏斯他汀分子係使用連結至奧裏斯他汀分子上之單甲基胺基之異雙功能連接體與抗體偶合。在一些實施例中,該連接體包含可裂解部分(例如肽部分)及自犧牲對胺基苄基胺基甲酸酯間隔子。實例性連接體包括馬來醯亞胺基己醯基(mc)、馬來醯亞胺基己醯基-L-苯基丙胺酸-L-離胺酸-對-胺基苄基胺基甲酸酯及馬來醯亞胺基己醯基-L-纈胺酸-L-瓜胺酸-對-胺基苄基胺基甲酸酯(vc)。
在某些實施例中,式( I )之免疫共軛物之特徵在於式Ab-(vc- MMAF) m (式( I-4 ));Ab-(vc-MMAE) m (式( I-5 ));Ab-(mc-MMAE) m (式( I-6 ));或Ab-(mc-MMAF) m (式( I-7 )),其中Ab係本文所闡述之抗-GCC抗體分子,S係抗體之硫原子,且m具有各值且較佳上文針對式( I )所闡述之值。在某些實施例中,m為1至約5之整數。
在一些實施例中,式( I-4 )、( I-5 )、( I-6 )或( I-7 )中之變量Ab係具有一或多個表1至6中所總結之特徵之抗體分子。在某些實施例中,變量Ab係5F9抗體分子或Abx-229抗體分子。
在一些實施例中,式( I-4 )、( I-5 )、( I-6 )或( I-7 )中之變量m係在約2至約10、約6至約8或約4至約6之範圍內。
在某些特定實施例中,本發明係關於式( I-4 )、( I-5 )、( I-6 )或( I-7 )之免疫共軛物,其中Ab係5F9抗體分子且m為約4。
本文所揭示之免疫共軛物可用於改變給定生物反應。治療劑不應理解為限制於經典化學治療劑。例如,治療劑可係具有期望生物活性之核酸、蛋白質或多肽。例如,抗體分子可與可干擾基因表現之反義分子、siRNA分子、shRNA分子或miRNA分子共軛,從而產生期望生物效應。
本文所闡述之抗-GCC抗體分子亦可與前藥或前藥激活劑共軛。
醫藥組合物
在另一態樣中,本發明特徵為組合物(例如醫藥上可接受之組合物)、包含該等組合物之套組及使用該等組合物之方法。該組合物可包括與醫藥上可接受之載劑調配在一起之如本文中所闡述抗-GCC抗體分子或其免疫共軛物。在實施例中,抗-GCC抗體分子係具有表1至6中所總結之實例性特徵者。
本文所使用之「醫藥上可接受之載劑」包括任何及所有溶劑、分散介質、等滲劑及吸收延遲劑及生理上相容之類似試劑。載劑可適於靜脈內、肌內、皮下、非經腸、直腸、脊椎或表皮投予(例如藉由注射或輸注)。醫藥組合物可包括一或多種額外賦形劑,例如鹽、緩衝液、張力改變劑、凍乾保護劑、非離子型清潔劑、表面活性劑及防腐劑。
組合物可呈各種形式。該等形式包括(例如)液體、半固體及固體劑型,例如液體溶液(例如,可注射及可輸注溶液)、分散液或懸浮液、脂質體及栓劑。特定形式取決於預期投予模式及治療應用。一些典型組合物係呈意欲用於非經腸投予(例如靜脈內、皮下、腹膜內、肌內)之可注射或可輸注溶液形式。在一些實施例中,組合物係藉由靜脈內輸注或注射來投予。在其他實施例中,組合物係藉由肌內或皮下注射來投予。
本文所使用之片語「非經腸投予」及「以非經腸方式投予」意 指除經腸及局部投予以外之投予模式,通常係藉由注射且包括(但不限於)靜脈內、肌內、動脈內、鞘內、囊內、眶內、心臟內、真皮內、腹膜內、經氣管、皮下、表皮下、關節內、囊下、蛛膜下、脊柱內、硬膜外及胸骨內注射及輸注。
在一些實施例中,醫藥組合物在製造及儲存條件下無菌且穩定。可將組合物調配成溶液、微乳液、分散液、脂質體、微球體或其他適於高抗體濃度之規則結構。無菌可注射溶液可藉由以下方式來製備:將所需量活性化合物(例如抗體、抗體部分或免疫共軛物)納入具有上文所列舉成份中之一者或組合(根據需要)的適宜溶劑中,隨後進行滅菌(例如藉由過濾)。通常,可藉由將活性化合物納入含有基本分散介質及來自上文所列舉之彼等之所需其他成份的無菌媒劑中來製備分散液。在使用無菌粉末來製備無菌可注射溶液之情形中,所提供之製備方法係真空乾燥及冷凍乾燥技術,其可自預先經無菌過濾之溶液產生由活性成份加上任一額外之期望成份構成之粉末。可藉由(例如)使用諸如卵磷脂等包衣、藉由維持所需粒徑(在分散劑情形下)及藉由使用表面活性劑來維持溶液之恰當流動性。藉由向組合物中納入延遲吸收之藥劑(例如,單硬脂酸鹽及明膠)可以使可注射組合物之吸收延長。
本文所闡述之抗體分子及免疫共軛物可藉由本技術領域內所已知之各種方法來投予,但對於許多治療應用而言,投予途徑/模式係靜脈內注射或輸注。如熟習此項技術者應瞭解,投予途徑及/或模式可視期望結果而變化。在某些實施例中,活性化合物可用可防止該化合物快速釋放之載劑(例如受控釋放調配物,包括植入物、經皮貼劑及微囊化遞送系統)來製備。可使用生物可降解之生物相容聚合物,例如乙烯乙酸乙烯酯、聚酐、聚乙醇酸、膠原、聚原酸酯及聚乳酸。用於製備該等調配物之許多方法已獲得專利權或通常已為熟習此項技 術者所已知。例如參見Sustained and Controlled Release Drug Delivery Systems,J.R.Robinson編輯,Marcel Dekker公司,New York,1978。
在某些實施例中,本文所闡述之抗GCC抗體分子或免疫共軛物可經口投予,例如,利用惰性稀釋劑或可吸收食用載劑投予。化合物(及其他成份,若需要)亦可包封於硬殼或軟殼明膠膠囊中、壓製成錠劑、口頰錠、口含錠、膠囊、酏劑、懸浮液、糖漿、薄片及諸如此類。為藉由除非經腸投予以外之途徑投予抗體分子或免疫共軛物,可能需要用材料包覆該化合物或與其共投予該化合物以防止其不活化。
治療組合物可利用本技術領域內所已知之醫學裝置投予。例如,可將醫藥製劑置於裝置(例如含有一或多個劑量之氣密或液密容器)內。遞送裝置之實例包括(但不限於)小瓶、套管、針、滴袋及管線。本發明亦提供將本文所闡述之抗體分子或免疫共軛物置於此一裝置中之方法。
在一些實施例中,本發明提供本文所闡述之調配於脂質體組合物中之抗-GCC抗體分子或免疫共軛物。在一些實施例中,脂質體係包覆有抗體分子。在一些該等實施中,脂質體係填充有治療劑。脂質體遞送可允許遞送未連接至抗體之藥劑(例如治療劑)。此方法可用於遞送不適於與抗體分子交聯之藥劑(例如治療劑),或應使欲隔絕或與非標靶細胞接觸之藥劑(例如治療劑)最小化。在特定實施例中,脂質體係填充有細胞抑制劑或細胞毒性劑。在某些特定實施例中,治療劑係選自由類美登素、奧裏斯他汀、尾海兔素、多卡米星、念珠藻素、紫杉烷、DNA烷化劑、卡奇黴素及前述之衍生物組成之群組。在其他實施例中,脂質體係填充有包含RNA干擾分子(例如反義分子、siRNA、hsRNA或miRNA分子,其能夠減少GCC表現細胞中之GCC表現或另一基因(例如致癌基因)之表現)之核酸序列。在一些其他實施例中,脂質體係包覆或填充有包含抗-GCC抗體分子及治療劑或標記之 免疫共軛物。
可對劑量方案加以調整以提供最佳期望反應(例如,治療反應)。例如,可投予本文所闡述之抗GCC抗體分子或免疫共軛物之單一濃注,可隨時間投予數個分開劑量,或可根據治療情況緊急狀態所指示按比例減少或增加劑量。將非經腸組合物調配成劑量單位形式尤其有利於方便投予及劑量一致性。本文所使用之「劑量單位形式」係指適宜作為單位劑量用於欲治療個體之物理離散單位;各單位含有經計算可產生期望治療效應之預定量活性化合物與所需醫藥載劑。本發明劑量單位形式之規格依賴於且直接取決於下列因素:(a)活性化合物之獨特特性及欲達成之特定治療效應,及(b)複合此一活性化合物以治療個體敏感性之技術中所固有之限制條件。
本發明之抗-GCC抗體分子或免疫共軛物之治療上或預防上有效量之實例性、非限制性範圍為0.1mg/kg至20mg/kg或1mg/kg至10mg/kg。在一特定實施例中,本發明之抗-GCC抗體分子或免疫共軛物之治療上或預防上有效量係在大約1.8mg/kg至3.5mg/kg之範圍內或為該範圍間之任何具體值,例如1.8mg/kg、1.9mg/kg、2.0mg/kg、2.1mg/kg、2.2mg/kg、2.3mg/kg、2.4mg/kg、2.5mg/kg、2.6mg/kg、2.7mg/kg、2.8mg/kg、2.9mg/kg、3.0mg/kg、3.1mg/kg、3.2mg/kg、3.3mg/kg、3.4mg/kg或3.5mg/kg。在一些實施例中,抗-GCC抗體分子或其免疫共軛物係以高至足以達成與第二治療劑(例如DNA破壞劑)之協同作用之劑量投予。應注意,劑量值可隨欲緩解病狀之類型及嚴重性而變化。應進一步瞭解,對於任一特定個體而言,應根據個體需要及投予組合物或監督組合物投予之個人的專業判斷隨時調整具體劑量方案,且本文所述劑量範圍僅為舉例說明且並非意欲限制所主張組合物之範圍或實踐。
本發明之醫藥組合物可包括「治療有效」量之本發明抗GCC抗體 分子或免疫共軛物。「治療有效」量係指在所需時期內以所需劑量有效達成期望治療效應之量。抗體分子或免疫共軛物之治療有效量可根據下列因素而變化:例如個體之疾病狀態、年齡、性別及體重、以及抗體分子或免疫共軛物於該個體內引發期望反應之能力。治療有效量亦為抗體分子或免疫共軛物之治療有益效應勝過其任何毒性或有害效應的量。相對於未治療個體,「治療上有效劑量」較佳將所治療個體中之可量測參數(例如腫瘤負荷及/或腫瘤生長速率)抑制至少約20%、至少約40%、至少約60%且在一些實施例中至少約80%。可在預測於人類腫瘤中之效力之動物模型系統中評價化合物抑制可量測參數(例如癌症)之能力。另一選擇為,組合物之此性質可藉由熟習此項技術者已知分析檢查化合物之抑制能力(例如活體外抑制)來評價。
在另一態樣中,本發明特徵為組合物,例如醫藥上可接受之組合物,其包括與額外治療劑及醫藥上可接受之載劑一起調配之本文中所闡述之抗-GCC抗體分子或其免疫共軛物。抗-GCC抗體分子或其免疫共軛物及額外治療劑當組合使用時係以治療上有效量提供。在某些實施例中,額外治療劑係DNA破壞劑,包括(例如)拓撲異構酶I抑制劑、拓撲異構酶II抑制劑、烷化劑、類烷化劑、蒽環、DNA嵌入劑、DNA小溝烷化劑及抗代謝物。各該等DNA破壞劑之特定實例闡述於本文中。抗-GCC抗體分子可為具有表1至6中所總結之實例性特徵者。
在某些實施例中,本發明特徵為醫藥上可接受之組合物,其包括如本文中所闡述式( I-4) 、( I-5) (I-6)或 ( I-7) 之免疫共軛物及拓撲異構酶I抑制劑,其中本文中所闡述之變量Ab係抗-GCC抗體分子(例如具有表1至6中之一或多者中所闡述實例性特徵),其中免疫共軛物及拓撲異構酶I抑制劑中之每一者係以治療上有效總量存在。例如(但不限於),醫藥上可接受之組合物包括式 I-5 之免疫共軛物及伊立替康, 其中變量Ab係5F9抗體分子且m為約4。
在某些實施例中,本發明之免疫共軛物可與DNA破壞劑之組合調配成單元劑量形式以便於投予及劑量一致性。本文所使用之表述「單位劑型」係指適於欲治療患者之藥劑之物理離散單位。然而,應理解,本發明組合物之總日用量應由主治醫生在合理醫學判斷範圍內確定。在特定實施例中,免疫共軛物及DNA破壞劑之單元劑型為適於非經腸投予之液體溶液或懸浮液。在另一特定實施例中,免疫共軛物及DNA破壞劑之單元劑型係凍乾的且在再懸浮(例如於醫藥上可接受之載劑中)後適於非經腸投予。用於非經腸投予之單位劑型可在安瓿或多劑量容器中。
包含本文中所闡述之抗-GCC抗體分子或免疫共軛物之套組亦屬於本發明範圍內。進一步包括含有包含抗-GCC抗體分子或免疫共軛物之脂質體組合物之套組。套組可包括一或多種其他元件,包括:使用說明書;其他試劑,例如標記、治療劑或用於使抗體與標記或治療劑螯合或否則偶合之藥劑或放射保護組合物;用於製備供投予抗體之裝置或其他材料;醫藥上可接受之載劑;及用於向個體投予用於(例如)治療或診斷用途之裝置或其他材料。使用說明書可包括用於抗-GCC抗體分子或其他分子(例如肽)之活體外(例如在樣品中,例如來自患有癌症之患者之生檢或細胞)或活體內檢測GCC之診斷應用之說明書。說明書可包括關於治療應用指導,包括建議於(例如)患有癌症(例如胃腸源癌症,例如結腸癌、胃癌、食道癌)之患者中之投予劑量及/或模式。其他說明書可包括關於抗體與治療劑偶合或關於所共軛抗體自(例如)未反應共軛組份純化之說明書。如上文所論述,套組可包括標記,例如上文所闡述之任何標記。如上文所論述,套組可包括治療劑,例如本文所闡述之治療劑。在一些應用中,抗體將與其他組份(例如螯合劑或標記或治療劑,例如放射性同位素,例如釔或鑥)反 應。在該等情形下,套組可包括實施反應之反應器皿或用於自起始材料或反應中間物分離最終產物之分離裝置(例如層析管柱)中之一或多者。
套組可進一步含有至少一種額外試劑(例如診斷或治療劑,例如本文所闡述之診斷或治療劑)及/或一或多種額外抗-GCC抗體分子或免疫共軛物,其視情況調配於一或多種單獨醫藥製劑中或調配成單一劑型。
在某些實施例中,套組含有如本文所闡述特徵在於式( I-4)、 ( I-5)、(I-6)或 ( I-7) 之免疫共軛物,其中變量Ab係具有表1至6中所總結之實例性特徵之抗-GCC抗體分子;關於治療應用之及說明書,其包括於(例如)患有癌症(例如胃腸源之原發性或轉移性癌症,例如結腸癌、胃癌、胰臟癌或食道癌)之患者中投予免疫共軛物與DNA破壞劑之組合之建議劑量及/或模式。視情況,套組進一步含有與免疫共軛物組合使用之DNA破壞劑之單獨醫藥製劑。適於與免疫共軛物組合使用之DNA破壞劑之實例包括(例如)拓撲異構酶I抑制劑、拓撲異構酶II抑制劑、烷化劑、類烷化劑、蒽環、DNA嵌入劑、DNA小溝烷化劑及抗代謝物,且各該等DNA破壞劑之特定實例闡述於本文中。例如(但不限於),套組含有如本文中所闡述式( I-5) 之免疫共軛物之醫藥製劑,其中變量Ab係5F9抗體分子且m為約4;及關於治療應用之說明書,其包括投予免疫共軛物與拓撲異構醇I抑制劑(例如伊立替康)之組合之建議劑量及/或模式。視情況,套組進一步含有與免疫共軛物組合使用之拓撲異構酶I抑制劑之單獨醫藥製劑。
作為再一實例(但不限於),套組可含有式( I-5) 之免疫共軛物之醫藥製劑,其中變量Ab係5F9抗體分子且m為約4;及DNA破壞劑,例如拓撲異構酶I抑制劑(例如伊立替康)或DNA小溝烷化劑(例如多卡米星(例如CC-1065)或其任何類似物或衍生物;吡咯并苯并二氮呯或其任 何類似物或衍生物),其中免疫共軛物及DNA破壞劑係經共調配(例如單一劑型);及關於治療應用之說明書,其包括於(例如)患有癌症(例如胃腸源之原發性或轉移性癌症,例如結腸癌、胃癌、胰臟癌或食道癌)之患者中之給藥時間表及投予模式。
所提供套組可包括用於向患者投予之具有治療性放射性同位素之螯合劑共軛之蛋白或肽。套組可包括(i)含有螯合劑共軛之抗體之小瓶,(ii)含有用於穩定經放射性標記之抗體並向患者投予其之調配緩衝液之小瓶,及(iii)關於實施放射性標記程序之說明書。套組提供在良好條件(例如如說明書中所推薦)下使螯合劑共軛之抗體暴露至放射性同位素或其鹽中足量時間。產生具有足夠純度、特異性活性及結合特異性之經放射性標記之抗體。可將經放射性標記之抗體於(例如)調配緩衝液中稀釋至適當濃度,並在進行或不進行進一步純化情況下向患者直接投予。螯合劑共軛之抗體可以凍乾形式供應。
用途
本文所闡述之抗-GCC抗體分子具有活體外及活體內治療性及預防性效用。例如,可向培養中之細胞中(例如活體外或離體)投予該等抗體分子,或於個體中(例如活體內)投予以治療、預防及/或診斷各種病症。
本文中所闡述之抗體分子及免疫共軛物可調節GCC蛋白質之活性或功能,例如配體結合(例如ST或鳥苷素之結合)、GCC調介之信號轉導、維持腸液、電解質體內恆定、細胞內鈣釋放(鈣通量)、細胞分化、細胞增生或細胞激活。
在一態樣中,本發明特徵為殺傷GCC表現細胞、抑制或調節其生長或干擾其代謝之方法。在一實施例中,本發明提供抑制GCC調介之細胞信號傳導之方法或殺傷細胞之方法。該方法可利用表現GCC之任何細胞或組織來使用,例如癌性細胞(例如來自胃腸系統癌症(例如結 腸、胃、胰臟或食道之癌症)之細胞)或轉移性病灶。GCC表現細胞之非限制性實例包括T84人類結腸腺癌瘤細胞、新鮮或冷凍結腸腫瘤細胞及包含編碼GCC之重組核酸或其部分之細胞。
本發明方法包括使細胞與有效量(即足以抑制GCC調介之細胞信號傳導之量或足以殺傷細胞之量)之本文中所闡述之抗-GCC抗體分子或其免疫共軛物接觸的步驟。可於培養中之GCC表現細胞上使用該方法,例如活體外、離體或原位。例如,可於培養基中活體外培養表現GCC之細胞(例如藉由腫瘤或轉移性病灶之生檢收集之細胞;來自已確定癌細胞系之細胞;或重組細胞),且接觸步驟可藉由將抗-GCC抗體分子或免疫共軛物添加至培養基中來實現。在殺傷細胞之方法中,該方法包含使用裸抗-GCC抗體分子或包含抗-GCC抗體分子及細胞毒性劑(例如DNA破壞劑)之免疫共軛物。該方法將使得殺傷表現GCC之細胞,包括(特定而言)GCC表現腫瘤細胞(例如結腸腫瘤細胞)。
本發明之抗-GCC抗體分子於表現GCC之細胞中結合至該抗原之細胞外結構域或其部分。因此,當實踐本發明方法來殺傷及/或阻抑癌性細胞時,抗體分子結合至所有該等細胞,而非僅結合至所固定之細胞或細胞內抗原結構域原本暴露至細胞外環境中之細胞。因此,抗體分子之結合係集中在存在表現GCC之細胞(不管該等細胞經固定還是未經固定、有活力還是壞死)之區域。另外或另一選擇為,抗-GCC抗體分子結合至GCC並在結合表現GCC之細胞後與該抗原一起內化。
表7指示證實在結合GCC後內化之抗體分子。此抗體當(例如)連接至細胞毒性部分時可用於治療用途。
該方法亦可於個體中所存在之細胞上實施,作為活體內方案之一部分。在一實施例中,個體係人類個體。另一選擇為,個體可為表現與本文中所揭示之抗-GCC抗體分子交叉反應之GCC抗原之非人類哺乳動物。在某些實施例中,個體係具有所移植人類組織(即異種移 植物模型)之非人類哺乳動物。可向人類個體投予抗-GCC抗體分子或其免疫共軛物與DNA破壞劑之組合用於治療目的。亦可向表現與抗體交叉反應之GCC樣抗原之非人類哺乳動物(例如靈長類、豬、大鼠或小鼠)投予抗-GCC抗體分子或免疫共軛物與DNA破壞劑之組合用於獸醫目的或作為人類疾病之動物模型(例如源自轉移性結腸直腸癌患者之原發性人類腫瘤移出物之異種移植物模型)。動物模型可用於評價本文中所闡述之抗-GCC抗體或免疫共軛物及本文中所闡述之DNA破壞劑組合之治療效力(例如測試投予之劑量及時程)。對於活體內實施例,接觸步驟係於個體中實現,並包括在有效地容許抗體分子結合至細胞上所表現GCC之細胞外結構域及治療細胞二者之條件下向個體與DNA破壞劑組合投予抗-GCC抗體分子或其免疫共軛物。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如協同作用、在結束投予後防止腫瘤再生長或對腫瘤對免疫共軛物或DNA破壞劑之抗性之效應中之一或多者。
在一些實施例中,免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況與包含表5之CDR之Ab一起)與DNA破壞劑之組合產生列表1之治療效應中之一或多者(例如2、3、4、5、6、7、8或9,例如全部):(a)相對於單獨免疫共軛物或DNA破壞劑之效應產生協同反應,其中該反應視情況為腫瘤生長抑制(TGI)或腫瘤生長延遲(TGD)(例如防止腫瘤生長或再生長);(b)相對於單獨免疫共軛物或DNA破壞劑產生累加反應,其中該反應視情況為TGI或TGD(例如防止腫瘤生長或再生長);(c)產生在結束免疫共軛物、DNA破壞劑或二者之投予後持續至少1週、2週、3週、4週、5週、6週、7週、8週、9週或10週或更長時間之TGI或TGD(例如防止腫瘤生長或再生長);(d)於展示相對高、中等或較低之GCC抗原密度之癌症中導致 TGI或TGD(例如防止腫瘤生長或再生長),例如協同TGI或TGD;(e)於當單獨投予(即作為單一藥劑治療劑)時對免疫共軛物展示強、中等至強或中等敏感性之癌症中導致協同TGI或TGD(例如防止腫瘤生長或再生長);(f)於當單獨投予(即作為單一藥劑治療劑)時對免疫共軛物展示抗性之癌症中導致TGI或TGD(例如防止腫瘤生長或再生長);(g)於當單獨投予(即作為單一藥劑治療劑)時對DNA破壞劑展示敏感性之癌症中導致協同TGI或TGD(例如防止腫瘤生長或再生長);(h)於當單獨投予(即作為單一藥劑治療劑)時對DNA破壞劑展示抗性之癌症中導致TGI或TGD(例如防止腫瘤生長或再生長);且(i)在投予該療法後抑制腫瘤生長。
在一實施例中,本發明提供治療癌症之方法,其係藉由向需要該治療之患者投予抗-GCC抗體分子或包含抗-GCC抗體分子及細胞毒性劑之免疫共軛物與DNA破壞劑的組合來實現。該方法可用於(例如)治療任何包括至少一些表現GCC抗原之細胞之癌性病症。本文所使用之術語「癌症」意欲包括所有類型之癌性生長或致癌過程、轉移性組織或經惡性轉形之細胞、組織或器官(不管何種組織病理類型或侵襲階段)。術語「癌症」及「腫瘤」可互換使用(例如當在治療方法之上下文中使用時,「癌症治療」孔「腫瘤治療」具有相同含義)。
在實施例中,該治療足以減少或抑制個體之腫瘤之生長、減少或抑制在投予該治療後個體之腫瘤之再生長、減少轉移性病灶之數量或減小其大小、減少腫瘤負載、減少原發性腫瘤負載、減少侵襲、延長存活時間或維持或改良生活品質。
癌性病症之實例包括(但不限於)實體腫瘤、軟組織腫瘤及轉移性病灶。實體腫瘤之實例包括各種器官系統(例如影響結腸之彼等)之惡性腫瘤,例如肉瘤、腺癌瘤及癌瘤。腺癌瘤包括惡性腫瘤,例如肺之 非小細胞癌瘤。亦可使用本發明之方法及組合物治療或預防上述癌症之轉移性病灶。在一些實施例中,欲治療之癌症為胃腸系統之癌症(例如原發性或轉移性結腸直腸癌、胃癌、胰臟癌或食道癌)。在一些實施例中,該療法導致一或多種來自本文列表1之對上述癌症類型中之一者之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、或對腫瘤對免疫共軛物之抗性之效應(f)或DNA破壞劑(h),或(i)在投予該療法後抑制腫瘤生長。
在一實施例中,該癌症係結腸直腸癌,例如結腸直腸腺癌瘤、結腸直腸平滑肌肉瘤、結腸直腸淋巴瘤、結腸直腸黑色素瘤或結腸直腸神經內分泌腫瘤。在特定實施例中,該癌症係轉移性結腸癌。在另一實施例中,該癌症係胃癌(例如胃腺癌瘤、淋巴瘤或肉瘤)或其轉移。在另一實施例中,該癌症係食道癌(例如食道之鱗狀細胞癌瘤或腺癌瘤)。在一些實施例中,該療法導致一或多種來自本文列表1之對上述癌症類型中之一者之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
本發明方法可用於治療任何階段或子分類之相關病症。例如,方法可用於治療階段0、I、IIA、IIB、IIIA、IIIB、IIIC及IV中之任一階段之早期或晚期結腸癌或結腸癌。
在一些實施例中,治療癌症(例如原發性或轉移性結腸直腸、胃、胰臟或食道癌)之方法包含向需要該治療之患者投予本文中所闡述之裸抗-GCC抗體分子。在其他實施例中,該方法包含投予包含本文中所闡述之抗-GCC抗體分子及細胞毒性劑之免疫共軛物與DNA破壞劑的組合。在一些該等實施中,免疫共軛物之特徵在於本文中所闡述之式( I )。在某些實施例中,免疫共軛物之特徵在於本文中所闡述之 式( I-1 )、( I-2 )、( I-3 )、( I-4 )、( I-5 )、( I-6 )或( I-7 )。在特定實施例中,免疫共軛物之特徵在於式( I )、( I-1 )、( I-2 )、( I-3 )、( I-4 )、( I-5 )、( I-6 )或( I-7 ),其中變量Ab係具有表1至6中所總結之特徵之抗體分子。在某些實施例中,變量Ab係5F9抗體分子。在某些特定實施例中,免疫共軛物之特徵在於式( I-5 )或( I-6 ),其中變量Ab係本文中所闡述之抗-GCC抗體分子,例如5F9抗體分子。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
投予抗體分子及免疫共軛物之方法闡述於上文。所用分子之適宜劑量將取決於個體之年齡及體重以及所用特定化合物。
在一些實施例中,以治療週期形式投予抗-GCC抗體分子或免疫共軛物及DNA破壞劑。「治療週期」係由治療期(在此期間如上文所闡述投予抗-GCC抗體分子或免疫共軛物及DNA破壞劑)、接著的停藥期(在此期間不投予任何抗-GCC抗體分子或免疫共軛物或DNA破壞劑)組成。可視需要重複該治療週期以達成期望效應。在一些實施例中,該期望效應係一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
本文中所闡述之療法(例如抗-GCC免疫共軛物與DNA破壞劑之組合)可其他療法組合使用。例如,該組合療法可包括本發明組合物與一或多種額外治療劑(例如一或多種抗癌劑(例如細胞毒性劑或細胞抑制劑)、激素治療、疫苗及/或其他免疫療法)共調配及/或共投予。在其他實施例中,抗-GCC免疫共軛物與DNA破壞劑之組合係與其他治 療性治療方式(包括外科手術、輻射、低溫手術及/或熱療法)組合投予。該等組合療法可有利地利用較低劑量之所投予治療劑,由此避免與各種單一療法相關之可能毒性或併發症。該等組合療法亦可克服及/或預防對習用治療方案之化學抗性。
本文所使用之「組合」投予意指,在個體罹患病症之期間將兩種(或更多種)不同治療劑遞送至個體,例如在個體已診斷有病症之後並在病症已治癒或消除之前遞送該兩種或更多種治療劑。在一些實施例中,一種治療在開始遞送第二種時仍進行遞送,以使得存在重疊。此在本文中有時稱為「同時」或「共伴」或「並行遞送」。在其他實施例中,一種治療在開始遞送另一種治療之前結束遞送。此在本文中有時稱為「相繼」或「依序遞送」。在任一情形之實施例中,該治療因組合之投予而更有效。例如,第二種治療更有效,例如利用較少第二治療即可見等效效應,或相比於在不存在第一治療之情況下投予第二治療時可見,第二治療在更大程度上減輕症狀,或利用第一治療可見類似情況。在一些實施例中,遞送使得症狀或與病症相關之其他參數之減輕程度相比於利用在不存在另一種治療之情況下遞送一種治療所觀測到之減輕程度更高。兩種治療劑之效應可部分累加、完全累加或超過累加(即協同的)。遞送可使得當遞送第二治療時仍可檢測所遞送之第一治療之效應。
在一些實施例中,與另一治療劑(例如化學治療劑)組合使用抗-GCC抗體分子或其免疫共軛物(例如式 (I-5) 之免疫共軛物,其中抗-GCC抗體視情況包含表5之CDR)。DNA破壞化學治療劑之非限制性實例包括拓撲異構酶I抑制劑(例如伊立替康、托泊替康、SN-38、片螺素D或喜樹鹼);拓撲異構酶II抑制劑(例如依託泊苷、替尼泊苷、安吖啶或米托蒽醌);蒽環(例如道諾黴素、多柔比星、表柔比星、伊達比星或戊柔比星);烷化劑(例如美法蘭、苯丁酸氮芥、白消安、噻替 哌、依弗醯胺、卡莫司汀、洛莫司汀、司莫司汀、鏈脲黴素、達卡巴嗪、絲裂黴素C、環磷醯胺、二氯甲基二乙胺、烏拉莫司汀、二溴甘露醇、四硝酸酯、丙卡巴肼、六甲蜜胺、米托唑胺或替莫唑胺);類烷化劑(例如順鉑、奧沙利鉑、卡鉑、奈達鉑、沙鉑或三鉑);DNA嵌入劑及自由基發生劑(例如博來黴素);DNA小溝烷化劑(例如多卡米星(例如CC-1065)及其類似物或衍生物;吡咯并苯并二氮呯或其類似物或衍生物);及抗代謝物(例如氟尿嘧啶(5-FU)、氟尿苷(5-FUdR)、胺甲喋呤、甲醯四氫葉酸、羥基脲、硫鳥嘌呤(6-TG)、巰嘌呤(6-MP)、阿糖胞苷、噴司他汀、磷酸氟達拉濱、克拉屈濱(2-CDA)、天冬醯胺酶、吉西他濱、卡培他濱、硫唑嘌呤、胞嘧啶胺甲喋呤、甲氧苄啶、乙胺嘧啶或培美曲塞)。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
在一些實施例中,與伊立替康組合投予免疫共軛物,且產生協同效力。
在一些實施例中,與5-氟尿嘧啶組合投予免疫共軛物,且產生協同效力。
在一些實施例中,與伊立替康組合投予免疫共軛物來治療對單獨免疫共軛物具有抗性之癌症,且產生治療效力。
破壞細胞複製之化學治療劑(即微管解聚合或穩定藥劑)包括(但不限於):紫杉烷(例如太平洋紫杉醇、多西他賽及相關類似物);長春花生物鹼(例如)長春花鹼、長春新鹼、長春瑞斌、長春地辛及長春氟寧及相關類似物;埃博黴素(epothilone)(例如)埃博黴素B、伊沙匹隆(ixabepilone)及相關類似物;軟海綿素(halichondrin)(例如軟海綿素B及相關類似物);秋水仙素位點結合劑(例如秋水仙素);沙利度胺 (thalidomide)、雷那度胺(lenalidomide)及相關類似物(例如CC-5013及CC-4047);蛋白質酪胺酸激酶抑制劑(例如甲磺酸伊馬替尼(imatinib mesylate)及吉非替尼(gefitinib));蛋白酶體抑制劑(例如硼替佐米(bortezomib));NF-κB抑制劑(包括IκB激酶之抑制劑);結合至癌症中過度表現之蛋白質且從而下調細胞複製之抗體(例如曲妥珠單抗(trastuzumab)、利妥昔單抗(rituximab)、西妥昔單抗(cetuximab)及貝伐珠單抗(bevacizumab));及已知於癌症中上調、過度表現或激活之蛋白質或酶之其他抑制劑(其之抑制作用下調細胞複製)。
與本發明之抗-GCC抗體分子或免疫共軛物組合之治療劑或治療方式之選擇取決於欲治療之病症及該病症對特定治療劑之敏感性。額外藥劑或治療方式可包括(例如)針對所治療適應症之標準批准療法。例如,當使用抗-GCC抗體分子或其免疫共軛物(例如式 (I-5) 之免疫共軛物)治療結腸癌時,其可與(例如外科手術;輻射療法)組合使用;與以下共投予:5-氟尿嘧啶(5-FU)、卡培他濱、甲醯四氫葉酸、伊立替康(CPT-11)、奧沙利鉑、順鉑、貝伐珠單抗、西妥昔單抗或帕尼單抗(panitumum)或上文所列示藥劑中之任一者之組合(例如奧沙利鉑/卡培他濱(XELOX)、5-氟尿嘧啶/甲醯四氫葉酸/奧沙利鉑(FOLFOX)、5-氟尿嘧啶/甲醯四氫葉酸/伊立替康(FOLFIRI)、FOLFOX加貝伐珠單抗或FOLFIRI加貝伐珠單抗)。作為額外實例,當使用抗-GCC抗體分子或其免疫共軛物(例如式 (I-5) 之免疫共軛物)治療胰臟癌時,其可與吉西他濱組合使用(例如共投予)。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
已證明,某些胃腸腫瘤固有地對某些化學治療劑(例如微管破壞劑太平洋紫杉醇及長春新鹼)具有抗性或獲得對其之抗性。目前,紫 杉烷已不能在結腸直腸癌(CRC)之II期試驗中展示顯著臨床益處(例如參見Swanton等人,Cell Cycle.2006年4月;5(8):818-23)。不希望受理論限制,此疾病中染色體不穩定之高發生率以及紡錘體查核點調整劑活體內之變化可解釋與用於CRC之基於紫杉烷之療法相關之令人失望之結果。利用另一強效微管破壞劑MMAE用於若干目前處於各種癌症治療之臨床調查中之靶向治療劑中,包括目前處於結腸直腸癌治療之I期調查中之與MMAE共軛之抗-GCC抗體分子。下文實例6在若干源自原發性人類結腸直腸腫瘤之腫瘤異種移植物模型中展示對包含與MMAE(強效微管抑制劑)共軛之本發明抗-GCC分子之免疫共軛物之敏感性。實例6亦在至少一種源自原發性人類結腸直腸腫瘤之腫瘤異種移植物模型中展示對相同抗-GCC mAb-MMAE免疫共軛物之化學抗性。意外地,抗-GCC mAb-MMAE免疫共軛物及DNA破壞劑之共投予使難治性腫瘤模型對DNA破壞劑之抗腫瘤活性敏感。
因此,本發明提供治療胃腸癌之方法,其係藉由投予特徵在於本文中所闡述之式( I-4 )、( I-5 )、( I-6 )或( I-7 )之免疫共軛物與DNA破壞劑之組合來實現,其中變量Ab係本文中所闡述之抗體分子,例如具有表1至6中所總結特徵中之一或多者之抗體分子。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
在特定實施例中,與DNA破壞劑組合投予之免疫共軛物之特徵在於式 (I-5) 。例如(但不限於),本發明提供治療原發性或轉移性結腸直腸癌、胃癌、胰臟癌或食道癌之方法,其係藉由共投予式( I-5) 之免疫共軛物及拓撲異構酶I抑制劑來實現,其中變量Ab係本文中所闡述之抗-GCC抗體分子(例如5F9抗體分子),且m為約4,其中免疫共軛物 及拓撲異構酶I抑制劑中之每一者係以治療上有效總量投予。在特定實施例中,拓撲異構酶I抑制劑係伊立替康,且式 (I-5) 之免疫共軛物係與伊立替康組合投予來治療原發性或轉移性結腸直腸癌。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
本發明進一步提供治療原發性或轉移性結腸直腸癌、胃癌、胰臟癌或食道癌之方法,其係藉由共投予式 (I-5) 之免疫共軛物及類烷化劑來實現,其中變量Ab係本文中所闡述之抗-GCC抗體分子(例如5F9抗體分子),且m為約4,其中免疫共軛物及類烷化劑中之每一者係以治療上有效總量投予。在特定實施例中,該類烷化劑係奧沙利鉑或順鉑,且式 (I-5) 之免疫共軛物與奧沙利鉑或順鉑組合投予來治療原發性或轉移性結腸直腸癌。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
本發明甚至進一步提供治療原發性或轉移性結腸直腸癌、胃癌、胰臟癌或食道癌之方法,其係藉由共投予式 (I-5) 之免疫共軛物及抗代謝物來實現,其中變量Ab係本文中所闡述之抗-GCC抗體分子(例如5F9抗體分子),且m為約4,其中免疫共軛物及抗代謝物中之每一者係以治療上有效總量投予。在特定實施例中,該抗代謝物係吉西他濱,且式 (I-5) 之免疫共軛物與吉西他濱組合投予來治療原發性或轉移性胰臟癌。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性 之效應,或(i)在投予該療法後抑制腫瘤生長。
本發明之免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含表5之CDR)可與DNA破壞劑以單獨調配物或以單一劑型投予。在一實施例中,當以單獨劑型投予時,可在投予DNA破壞劑之前、同時或之後投予免疫共軛物。在另一實施例中,當以單獨劑型投予時,可在DNA破壞劑之前投予一或多個劑量之免疫共軛物。在另一實施例中,當以單獨劑型投予時,可在免疫共軛物之前投予一或多個劑量之DNA破壞劑。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、或對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
在本發明之方法中,可在向患有胃腸癌之患者投予DNA破壞劑之前(例如5分鐘、15分鐘、30分鐘、45分鐘、1小時、2小時、4小時、6小時、12小時、24小時、48小時、72小時、96小時、1週、2週、3週、4週、5週、6週、8週或12週前)、與其共伴或在其之後(例如5分鐘、15分鐘、30分鐘、45分鐘、1小時、2小時、4小時、6小時、12小時、24小時、48小時、72小時、96小時、1週、2週、3週、4週、5週、6週、8週或12週後)投予本文中所闡述之免疫共軛物。在一些實施例中,同一次患者拜訪中投予免疫共軛物及DNA破壞劑。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
在一些實施例中,按序且在時間間隔內向患者(例如哺乳動物,例如人類)投予免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含具有表5之CDR之Ab)及DNA破壞劑,以使得本文中所提供之第一藥劑可 與第二藥劑一起起作用以提供相比於以其他方式投予其時更大之益處。例如,免疫共軛物及DNA破壞劑可同時或以任一順序在不同時間點依序投予;然而,若不同時投予,則其應在時間上足夠接近地投予以提供期望治療性或預防性效應。在一實施例中,免疫共軛物及DNA破壞劑在重疊時間處發揮其效應。在一些實施例中,免疫共軛物及DNA破壞劑各自以任何適當形式並藉由任何適宜途徑單獨投予。在其他實施例中,免疫共軛物及DNA破壞劑可以單一劑型同時投予。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
在一些實施例中,向患者共伴投予各治療過程,即仍在時間間隔內單獨投予個別劑量之免疫共軛物及DNA破壞劑,以使得兩種藥劑可一起起作用。換言之,若不同時或在同一天投予該等療法,則共伴實施該等給藥方案。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
在一些實施例中,向患者週期性投予免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含具有表5之CDR之Ab)及DNA破壞劑。週期性療法涉及將第一藥劑(例如第一預防劑或治療劑)投予一段時間,接著將第二藥劑及/或第三藥劑(例如第二及/或第三預防劑或治療劑)投予一段時間,及重複此依序投予。週期性療法可減少對該等療法中之一或多者之抗性之發生,避免或減少該等療法中之一者之副效應及/或改良該治療之效力。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結 束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
在一些實施例中,然後在投予藥劑之治療期之後為特定持續時間之不向患者投予治療劑之非治療期。然後在此非治療期之後可為一系列相同或不同頻率或相同或不同時間長度之後續治療期及非治療期。在一些實施例中,治療期與非治療期交替進行。應理解,週期性療法中之治療期可持續至患者達成完全反應或部分反應為止,可在此時間點終止治療。另一選擇為,週期性療法中之治療期可持續至患者達成完全反應或部分反應為止,在此時間點治療期可持續特定週期數。在一些實施例中,治療期之長度可為特定週期數,不管患者反應如何。在一些其他實施例中,治療期之長度可持續至患者復發為止。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
應瞭解,該等治療劑(例如式 (I-5) 之免疫共軛物,視情況包含具有表5之CDR之Ab;及/或DNA破壞劑)中之任一者可投予之頻率可為在以下時期內一次或一次以上:約2天、約3天、約4天、約5天、約6天、約7天、約8天、約9天、約10天、約20天、約28天、約l週、約2週、約3週、約4週、約1個月、約每2個月、約每3個月、約每4個月、約每5個月、約每6個月、約每7個月、約每8個月、約每9個月、約每10個月、約每11個月、約每年、約每2年、約每3年、約每4年或約每5年。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
例如,本發明之免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含具有表5之CDR之Ab)可與DNA破壞劑之組合每週一次、每週兩次、每兩週、每三週或每月投予指定時期。在某些實施例中,DNA破壞劑具有不同於免疫共軛物之給藥時間表之給藥時間表。例如,可每週一次或每三週一次投予免疫共軛物,且DNA破壞劑可具有如下給藥時間表:其中可在指定治療期內每天投予一定量之DNA破壞劑並持續2天、接著係持續5天之非治療期(2天給藥/5天停藥)。在另一實施例中,可每週一次或每三週一次投予免疫共軛物,且DNA破壞劑可具有如下給藥時間表:其中可在指定治療期期間在3天時期內每天投予一定量之DNA破壞劑,接著係持續4天之非治療期(3天給藥/4天停藥)。在另一實施例中,可每週一次或每三週一次投予免疫共軛物,且DNA破壞劑可具有如下給藥時間表,其中可在指定治療期期間每週兩次投予DNA破壞劑。在另一實施例中,可每週一次或每三週一次投予免疫共軛物,且DNA破壞劑可具有如下給藥時間表:其中可在指定治療期期間每兩週一次投予DNA破壞劑。在又一實施例中,可每週一次或每三週一次投予免疫共軛物,且DNA破壞劑可具有如下給藥時間表:其中可在指定治療期期間在每週之第1天及第3天投予DNA破壞劑。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
在某些實施例中,利用本文中所闡述之免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含表5之CDR)治療允許以相比於達成類似之腫瘤質量降低或腫瘤生長延遲原本所需要之頻率較低之頻率投予DNA破壞劑。例如,在一些實施例中,將免疫共軛物及DNA破壞劑添加至治療方案中使DNA破壞劑之投予頻率與單獨DNA破壞劑之投予頻率 相比減少至少約1天、2天、3天、4天、5天、1週、2週或3週。因此,可以(例如)不高於每2天、每3天、每4天、每5天、每1週、每2週、每3週、每4週或每5週之頻率向患者投予DNA破壞劑。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
可在免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含表5之CDR)之前、與免疫共軛物共伴、同時或在免疫共軛物之後投予DNA破壞劑。
在一實施例中,組合投予係根據3週或4週劑量時間表進行,其中每週一次投予第一劑量之免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含具有表5之CDR之Ab)並持續3週或4週,與在該3週或4週時期內每週兩次投予DNA破壞劑組合(例如在每週之第1天投予免疫共軛物且在每週之第1天及第2天投予DNA破壞劑,以使得第1天之免疫共軛物及第1天之DNA破壞劑在同一天實質上同時或共伴進行)。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
在另一實施例中,組合投予係根據4週劑量時間表進行,其中在該4週時間表時期內每兩週投予第一劑量之免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含具有表5之CDR之Ab),與在該4週時間表內每週兩次投予DNA破壞劑組合(例如在該4週時間表內在第1天及第14天投予免疫共軛物且每週之第1天及第2天投予DNA破壞劑)。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以 下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
在再一實施例中,該投予係根據3週劑量時間表進行,其中在該3週時間表內在第1天開始投予一次免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含表5之CDR)且接著為20天之非治療,與每週兩次投予DNA破壞劑組合,例如在該3週時間表內在1天投予免疫共軛物且接著為20天之非治療,且每週之第1天及第2天投予DNA破壞劑。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
在再一實施例中,該投予係根據3週劑量時間表進行,其中在該3週時間表內在第1天開始投予一次免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含表5之CDR)且接著係20天之非治療,與每週3次投予DNA破壞劑組合,例如在該3週時間表內在第1天投予免疫共軛物且接著係20天之非治療,且在每週之第1天、第2天及第3天投予DNA破壞劑。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應。
在再一實施例中,該投予係根據3週劑量時間表進行,其中在該3週時間表內每週一次投予免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含具有表5之CDR之Ab),與在每週之第1天及第2天投予DNA破壞劑組合。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應。
在再一實施例中,該投予係根據3週劑量時間表進行,其中在該3週時間表內每週一次投予免疫共軛物(例如式 (I-5) 之免疫共軛物,視 情況包含具有表5之CDR之Ab),與在每週之第1天、第2天及第3天投予DNA破壞劑組合。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應。
在又一實施例中,該投予係根據3週劑量時間表進行,其中在該3週時間表內每週一次投予免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含具有表5之CDR之Ab),與在第一週之第1天投予DNA破壞劑組合。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應。
在又一實施例中,該投予係根據3週劑量時間表進行,其中在該3週時間表內每週一次投予免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含具有表5之CDR之Ab),與在第一及第二週之每週之第1天投予DNA破壞劑之組合。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應。
在再一實施例中,該投予係根據3週劑量時間表進行,其中在該3週時間表內每週一次投予免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含具有表5之CDR之Ab),與在每週之第1天及第3天投予DNA破壞劑組合。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應。
在一些實施例中,免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含具有表5之CDR之A)及DNA破壞劑各自以該藥劑當以單一藥劑形式使用時常用之劑量及時間表投予。在一些其他實施例中,當共伴投予免疫共軛物及DNA破壞劑時,該等藥劑中之一或兩者可有利地以低於當該藥劑以單一藥劑形式使用時所通常投予之劑量之劑量投予,以使得該劑量降至引發不利副效應之臨限值以下。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對 免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
免疫共軛物及DNA破壞劑之組合之治療有效量或適宜劑量取決於多種因素,包括以下性質:欲治療病狀之嚴重性、特定抑制劑、投予途徑及個別患者之年齡、體重、一般健康狀況及反應。在某些實施例中,適宜劑量值為如藉由患有細胞增生病症之患者中增加之皮膚有絲分裂指數或腫瘤有絲分裂細胞中降低之染色體比對及紡錘體兩極性或有效暴露之其他標準量度所量測達成有效暴露者。在某些實施例中,適宜劑量值為如藉由腫瘤消退或疾病進展之其他標準量度(即無進展存活期或總體存活期)所量測達成治療反應者。在其他實施例中,適宜劑量值為達成此治療反應且亦使任何與治療劑投予相關之副作用最小化者。
單一或分開或多個劑量形式之免疫共軛物之適宜日劑量可通常在當與DNA破壞劑組合投予時單一藥劑形式之最大耐受劑量之約10%至約120%範圍內。在某些實施例中,適宜劑量為單一藥劑形式之最大耐受劑量之約20%至約100%。在一些其他實施例中,適宜劑量為單一藥劑形式之最大耐受劑量之約25%至約90%。在一些其他實施例中,適宜劑量為單一藥劑形式之最大耐受劑量之約30%至約80%。在一些其他實施例中,適宜劑量為單一藥劑形式之最大耐受劑量之約40%至約75%。在一些其他實施例中,適宜劑量為單一藥劑形式之最大耐受劑量之約45%至約60%。在其他實施例中,適宜劑量為單一藥劑形式之最大耐受劑量之約10%、約15%、約20%、約25%、約30%、約35%、約40%、約45%、約50%、約55%、約60%、約65%、約70%、約75%、約80%、約85%、約90%、約95%、約100%、約105%、約110%、約115%或約120%。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協 同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
應理解,可在白天或晚上之任何時間投予適宜劑量之免疫共軛物。在一些實施例中,在早上投予適宜劑量之免疫共軛物。在一些其他實施例中,在晚上投予適宜劑量之免疫共軛物。在一些其他實施例中,在早上及晚上投予適宜劑量之免疫共軛物。
單一或分開或多個劑量形式之DNA破壞劑之適宜日劑量可通常在當與本發明之抗-GCC免疫共軛物組合投予時單一藥劑形式之最大耐受劑量之約10%至約120%範圍內。在某些實施例中,適宜劑量為單一藥劑形式之最大耐受劑量之約20%至約100%。在一些其他實施例中,適宜劑量為單一藥劑形式之最大耐受劑量之約25%至約90%。在一些其他實施例中,適宜劑量為單一藥劑形式之最大耐受劑量之約30%至約80%。在一些其他實施例中,適宜劑量為單一藥劑形式之最大耐受劑量之約40%至約75%。在一些其他實施例中,適宜劑量為單一藥劑形式之最大耐受劑量之約45%至約60%。在其他實施例中,適宜劑量為單一藥劑形式之最大耐受劑量之約10%、約15%、約20%、約25%、約30%、約35%、約40%、約45%、約50%、約55%、約60%、約65%、約70%、約75%、約80%、約85%、約90%、約95%、約100%、約105%、約110%、約115%或約120%。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
因此,在一些實施例中,本發明提供向有需要之患者投予免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含具有表5之CDR之Ab) 與一定劑量之伊立替康之組合(例如以治療癌症,例如結腸癌)。伊立替康之劑量可為(例如)約10mg/kg、15mg/kg或30mg/kg(例如對於向小鼠投予)或約0.81mg/kg、1.2mg/kg或2.4mg/kg(例如對於向人類投予)或任一該等值±10%、20%、30%、40%或50%。在一些實施例中,伊立替康係以約0.4mg/kg至3.0mg/kg、0.4mg/kg至0.6mg/kg、0.6mg/kg至0.8mg/kg、0.8mg/kg至1.0mg/kg、1.0mg/kg至1.2mg/kg、1.2mg/kg至1.5mg/kg、1.5mg/kg至2.0mg/kg、2.0mg/kg至2.5mg/kg、2.5mg/kg至3.0mg/kg或任一該等下界/上界±10%、20%、30%、40%或50%之劑量範圍投予。當計算每單位時間之劑量時亦可考慮投予之定時。在一些實施例中,伊立替康係以根據2天給藥/5天停藥時間表10mg/kg(即2.9mg/kg/天)之劑量;根據2天給藥/5天停藥時間表15mg/kg(即4.3mg/kg/天)之劑量;或根每週一次30mg/kg(即亦4.3mg/kg/天)之劑量或任一該等值±10%、20%、30%、40%或50%投予(例如向小鼠投予)。在一些實施例中,伊立替康係以根據2天給藥/5天停藥時間表0.81mg/kg(即0.24mg/kg/天)之劑量;根據2天給藥/5天停藥時間表1.2mg/kg(即0.35mg/kg/天)之劑量;或每週一次2.4mg/kg(即0.35mg/kg/天)之劑量或任一該等值±10%、20%、30%、40%或50%投予(例如向人類投予)。在一些實施例中,伊立替康係以約0.1mg/kg至0.5mg/kg/天、0.1mg/kg至0.2mg/kg/天、0.2mg/kg至0.3mg/kg/天、0.3mg/kg至0.4mg/kg/天、0.2mg/kg至0.4mg/kg/天或0.4mg/kg至0.5mg/kg/天或任一該等下界/上界±10%、20%、30%、40%或50%之劑量範圍投予。在一些實施例中,伊立替康係以80mg/m2至200mg/m2、例如80mg/m2至180mg/m2、80mg/m2至150mg/m2、90mg/m2至120mg/m2、小於120mg/m2或任一該等下界/上界±10%、20%、30%、40%或50%之劑量投予;視情況根據第1天、第8天、第15天、第22天之時間表以及使得下一週期在第43天開始之停藥 時間表或第1天、第15天及第29天之時間表以及使得下一週期在第43天開始之停藥時間表進行。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
在其他實施例中,本發明提供向有需要之患者投予免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含具有表5之CDR之Ab)與指定劑量之順鉑之組合(例如以治療癌症,例如結腸癌)。例如,在一些實施例中,順鉑係以約4.0mg/kg或6.0mg/kg(例如向小鼠投予)或任一該等值±10%、20%、30%、40%或50%之劑量投予。順鉑亦可以約0.33mg/kg或0.49mg/kg(例如向人類投予)或任一該等值±10%、20%、30%、40%或50%之劑量投予。因此,在一些實施例中,順鉑可以約0.1mg/kg至0.6mg/kg、0.1mg/kg至0.2mg/kg、0.2mg/kg至0.3mg/kg、0.3mg/kg至0.4mg/kg、0.4mg/kg至0.5mg/kg、或0.5mg/kg至0.6mg/kg或任一該等下界/上界±10%、20%、30%、40%或50%之劑量範圍投予。當計算每單位時間之劑量時亦可考慮投予之定時。例如,在一些實施例中,順鉑係以每週一次4.0mg/kg(即0.57mg/kg/天);每週兩次4.0mg/kg(即0.29mg/kg/天);每週一次6.0mg/kg(即0.86mg/kg/天);或每兩週一次6.0mg/kg(即0.43mg/kg/天)或任一該等值±10%、20%、30%、40%或50%之劑量投予(例如向小鼠投予)。在某些實施例中,順鉑係以每週一次0.33mg/kg(即0.046mg/kg/天);每兩週一次0.33mg/kg(即0.023mg/kg/天);每週一次0.49mg/kg(即0.070mg/kg/天);或每兩週一次0.49mg/kg(即0.035mg/kg/天)或任一該等值±10%、20%、30%、40%或50%之劑量投予(例如向人類投予)。因此,在一些實施例中,順鉑係以約0.01mg/kg/天至0.08mg/kg/天、0.01mg/kg/天至0.02mg/kg/天、0.2mg/kg/天至0.4mg/kg/天、0.4 mg/kg/天至0.6mg/kg/天、0.2mg/kg/天至0.6mg/kg/天或0.06mg/kg/天至0.08mg/kg/天或任一該等下界/上界±10%、20%、30%、40%或50%之劑量範圍投予。在一些實施例中,順鉑係以30mg/m2至120mg/m2、例如30mg/m2至100mg/m2、40mg/m2至70mg/m2、50mg/m2至70mg/m2、小於100mg/m2或任一該等下界/上界±10%、20%、30%、40%或50%之劑量並視情況根據每三週一次或每月一次之時間表投予。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
在其他實施例中,本發明提供向有需要之患者投予免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含具有表5之CDR之Ab)與指定劑量之5-氟尿嘧啶(5-FU)之組合(例如以治療癌症,例如結腸癌)。例如,在一些實施例中,5-FU係以約15mg/kg或25mg/kg(例如向小鼠投予)或任一該等值±10%、20%、30%、40%或50%之劑量投予。5-FU亦可以約1.2mg/kg或2.0mg/kg(例如向人類投予)或任一該等值±10%、20%、30%、40%或50%之劑量投予。因此,在一些實施例中,5-FU係以約0.8mg/kg/天至2.4mg/kg/天、0.8mg/kg至1.0mg/kg、1.0mg/kg至1.2mg/kg、1.2mg/kg至1.4mg/kg、1.0mg/kg至1.4mg/kg、1.4mg/kg至1.6mg/kg、1.6mg/kg至1.8mg/kg、1.8mg/kg至2.0mg/kg、2.0mg/kg至2.2mg/kg、1.8mg/kg至2.2mg/kg或2.2mg/kg至2.4mg/kg或任一該等下界/上界±10%、20%、30%、40%或50%之劑量範圍投予。當計算每單位時間之劑量時亦可考慮投予之定時。例如,在一些實施例中,5-FU係以根據3天給藥/4天停藥之給藥時間表15mg/kg(即6.4mg/kg/天)或根據3天給藥/4天停藥之給藥時間表25mg/kg(例如10.7mg/kg/天)或任一該等值±10%、20%、30%、 40%或50%之劑量投予(例如向小鼠投予)。在某些實施例中,5-FU係以根據3天給藥/4天停藥之給藥時間表1.2mg/kg(即0.51mg/kg/天)或根據3天給藥/4天停藥之給藥時間表2.0mg/kg(例如0.86mg/kg/天)或任一該等值±10%、20%、30%、40%或50%之劑量投予(例如向人類投予)。因此,在一些實施例中,5-FU係以0.3mg/kg/天至0.5mg/kg/天、0.5mg/kg/天至0.7mg/kg天、0.7mg/kg/天至0.9mg/kg/天、0.9mg/kg/天至1.1mg/kg/天、0.4mg/kg/天至0.6mg/kg/天、0.7mg/kg/天至1.0mg/kg/天或0.3mg/kg/天至1.1mg/kg/天或任一該等下界/上界±10%、20%、30%、40%或50%之劑量範圍投予。在一些實施例中,5-FU係以3mg/kg至12mg/kg、例如3mg/kg至9mg/kg、例如3mg/kg至6mg/kg、例如小於6mg/kg或任一該等下界/上界±10%、20%、30%、40%或50%之劑量範圍並視情況根據4天給藥及然後在第6天、第8天、第10天及第12天所給之額外投予之時間表投予。在一些實施例中,5-FU係以200mg/m2至700mg/m2、例如200mg/m2至600mg/m2、300mg/m2至600mg/m2、300mg/m2至500mg/m2、小於600mg/m2或500mg/m2或任一該等下界/上界±10%、20%、30%、40%或50%之劑量並視情況根據第1天、第8天、第15天及第29天之時間表以及使得下一週期在第43天開始之停藥時間表或根據第1天、第2天、第14天、第15天、第29天及第30天之時間表以及使得下一週期在第43天開始之停藥時間表投予。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
在其他實施例中,本發明提供向有需要之患者投予免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含表5之CDR)與指定劑量之吉西他濱之組合(例如以治療癌症,例如胰臟癌)。例如,在一些實施例 中,吉西他濱係以約15mg/kg或20mg/kg(例如向小鼠投予)或任一該等值±10%、20%、30%、40%或50%之劑量投予。在一些實施例中,吉西他濱係以約1.2mg/kg或1.6mg/kg或任一該等值±10%、20%、30%、40%或50%之劑量投予(例如向人類投予)。因此,在一些實施例中,吉西他濱係以約0.8mg/kg至2.0mg/kg、0.8mg/kg至1.0mg/kg、1.0mg/kg至1.2mg/kg、1.2mg/kg至1.4mg/kg、1.0mg/kg至1.4mg/kg、1.4mg/kg至1.6mg/kg、1.6mg/kg至1.8mg/kg、1.4mg/kg至1.8mg/kg或1.8mg/kg至2.0mg/kg或任一該等下界/上界±10%、20%、30%、40%或50%之劑量範圍投予。當計算每單位時間之劑量時亦可考慮投予之定時。例如,在一些實施例中,吉西他濱係以每週兩次15mg/kg(即4.3mg/kg/天)或每週兩次20mg/kg(即5.7mg/kg/天)或任一該等值±10%、20%、30%、40%或50%之劑量投予(例如向小鼠投予)。吉西他濱亦可以每週兩次1.2mg/kg(即0.34mg/kg/天)或每週兩次1.6mg/kg(即0.48mg/kg/天)或任一該等值±10%、20%、30%、40%或50%之劑量投予(例如向人類投予)。因此,在一些實施例中,吉西他濱係以0.1mg/kg/天至0.3mg/kg/天、0.3mg/kg/天至0.5mg/kg/天、0.4mg/kg/天至0.6mg/kg/天、0.5mg/kg/天至0.7mg/kg/天、0.2mg/kg/天至0.6mg/kg/天或0.1mg/kg/天至0.7mg/kg/天或任一該等下界/上界±10%、20%、30%、40%或50%之劑量範圍投予。在一些實施例中,吉西他濱可以700mg/m2至1300mg/m2、例如800mg/m2至1250mg/m2、例如800mg/m2至1000mg/m2、例如小於1000mg/m2或任一該等下界/上界±10%、20%、30%、40%或50%之劑量並視情況根據每週一次並持續7週之時間表、接著1週之停藥時間表、視情況接著每週一次之週期並持續3週投予。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破 壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
應理解,可在白天或晚上之任何時間投予適宜劑量之DNA破壞劑。在一些實施例中,在早上投予適宜劑量之DNA破壞劑。在一些實施例中,在晚上投予適宜劑量之DNA破壞劑。在一些其他實施例中,在早上及晚上投予適宜劑量之DNA破壞劑。
在一些實施例中,在投予第一量之DNA破壞劑之第一治療期之後可為投予相同或不同量之相同或不同DNA破壞劑之另一治療期。眾多種治療劑與本發明之免疫共軛物及DNA破壞劑之組合組合可具有治療上相關之額外益處。可使用包含本文中所闡述之免疫共軛物及DNA破壞劑與一或多種其他治療劑之組合療法,以:例如,1)增強本發明方法及/或一或多種其他治療劑之治療效應;2)減少本發明方法及/或一或多種其他治療劑所呈現之副效應;及/或3)減少免疫共軛物及DNA破壞劑及/或一或多種其他治療劑之有效劑量。例如,該等治療劑可與本文中所闡述之免疫共軛物及DNA破壞劑組合以抑制不期望細胞生長,例如導致不期望良性病狀或腫瘤生長之不適當細胞生長。在一些實施例中,該療法導致一或多種來自本文列表1之治療效應,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
與本文中所闡述之免疫共軛物及DNA破壞劑進一步組合使用之治療劑之實例包括(但不限於)抗增生劑、抗癌劑、抗生物素藥劑、激素藥劑、植物源藥劑及生物藥劑。
抗生物素藥劑係一組以與抗生素類似之方式產生作為對天然產物之修飾之藥物。抗生物素藥劑之實例包括(但不限於)蒽環(例如多柔比星、道諾黴素、表柔比星、伊達比星及蒽醌)、絲裂黴素C、博來黴素、放線菌素D、普卡黴素(plicatomycin)。該等抗生物素藥劑藉由靶 向不同細胞組份來干擾細胞生長。例如,通常據信蒽環干擾DNA拓撲異構酶II在具有轉錄活性之DNA區域中之作用,此導致DNA鏈切斷。通常據信博來黴素螯合鐵並形成活化錯合物,然後使活化錯合物結合至DNA之鹼基,從而造成鏈切斷及細胞死亡。除免疫共軛物及DNA破壞劑以外包括抗生物素劑之組合療法可對癌症具有治療協同效應並減少與該等化學治療劑有關之副效應。
激素藥劑係一組調整其標靶器官之生長及發育之藥物。大多數激素藥劑為性類固醇及其衍生物及其類似物,例如雌激素、雄激素及黃體素。該等激素藥劑可充當性類固醇之受體之拮抗劑以下調重要基因之受體表現及轉錄。該等激素藥劑之實例係合成雌激素(例如乙烯雌酚)、抗雌激素(例如他莫昔芬(tamoxifen)、托瑞米芬(toremifene)、氟羥甲基睪酮(fluoxymesterone)及雷洛昔芬(raloxifene))、抗雄激素(比卡魯胺(bicalutamide)、尼魯米特(nilutamide)及氟他胺(flutamide))、芳香酶抑制劑(例如胺魯米特(aminoglutethimide)、阿那曲唑(anastrozole)及四唑)、酮康唑(ketoconazole)、乙酸戈舍瑞林(goserelin acetate)、亮丙瑞林(leuprolide)、乙酸甲地孕酮(megestrol acetate)及米非司酮(mifepristone)。除免疫共軛物及DNA破壞劑以外包括激素藥劑之組合療法可對癌症具有治療協同效應並減少與該等化學治療劑有關之副效應。
植物源藥劑係一組源自植物或基於藥劑之分子結構經修飾之藥物。植物源藥劑之實例包括(但不限於)長春花生物鹼(例如長春新鹼、長春花鹼、長春地辛、長春利定(vinzolidine)及長春瑞試)、鬼臼毒素(podophyllotoxin)(例如依託泊苷(VP-16)及替尼泊苷(VM-26))及紫杉烷(例如太平洋紫杉醇及多西他賽)。該等植物源藥劑通常用作結合至微管蛋白並抑制有絲分裂之抗有絲分裂劑。據信諸如依託泊苷等鬼臼毒素藉由與拓撲異構酶II相互作用來干擾DNA合成,從而導致DNA鏈 切斷。除免疫共軛物及DNA破壞劑以外包括植物源藥劑之組合療法可對癌症具有治療協同效應並減少與該等化學治療劑有關之副效應。
生物藥劑係一組當單獨使用或與化學療法及/或放射療法組合使用時引發癌症/腫瘤消退之生物分子。生物藥劑之實例包括(但不限於)免疫調節蛋白(例如細胞因子)、針對腫瘤抗原之單株抗體、腫瘤阻抑基因及癌症疫苗。除免疫共軛物及DNA破壞劑以外包括生物藥劑之組合療法可對癌症具有治療協同效應,增強患者對致腫瘤信號之免疫反應,並減少與此化學治療相關之潛在副效應。
在另一態樣中,本發明特徵為本文中所闡述之抗-GCC免疫共軛物(例如式 (I-5) 之免疫共軛物,視情況包含具有表5之CDR之Ab)與DNA-破壞劑之組合用於製造藥品之用途。在一實施例中,該藥品可用於治療癌症,例如胃腸癌,例如原發性或轉移性結腸直腸癌、胃癌、胰臟癌或食道癌。在一些實施例中,該藥品包含具有一或多個表1至6中所總結特徵之抗-GCC抗體分子。在一些實施例中,該藥品包含5F9抗體分子。在一些實施例中,該藥品具有導致一或多種來自本文列表1之治療效應之性質,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
在一些態樣中,本發明特徵免疫共軛物包含具有一或多個表1至6中所總結特徵之抗-GCC抗體分子用於製造進一步含有DNA破壞劑之藥品之用途。此一藥品可用於治療癌症,包括(但不限於)胃腸癌,例如結腸直腸癌、胃癌、胰臟癌或食道癌。在一實施例中,該藥品之免疫共軛物之特徵在於式( I-5) ,其中Ab係本文中所闡述之抗-GCC抗體分子(例如5F9抗體分子),且m為約4,且該藥品之DNA破壞劑係拓撲異構酶I抑制劑,例如伊立替康。在另一實施例中,該藥品之免疫共軛物之特徵在於式( I-5) ,其中Ab係本文中所闡述之抗-GCC抗體分 子,例如5F9抗體分子,且m為約4,且該藥品之DNA破壞劑係蒽環,例如順鉑或奧沙利鉑。在再一實施例中,該藥品之免疫共軛物之特徵在於式( I-5) ,其中Ab係本文中所闡述之抗-GCC抗體分子,例如5F9抗體分子,且m為約4,且該藥品之DNA破壞劑係抗代謝物,例如吉西他濱。在一些實施例中,該藥品具有導致一或多種來自本文列表1之治療效應之性質,例如以下中之一或多者:(a)協同作用、(c)在結束投予後防止腫瘤再生長、對腫瘤對免疫共軛物(f)或DNA破壞劑(h)之抗性之效應,或(i)在投予該療法後抑制腫瘤生長。
基於腫瘤之GCC表現及/或抗-GCC免疫共軛物敏感性調整抗-GCC療法
本文中所闡述之方法可用在GCC表現癌症上。在一些實施例中,該方法可包括檢測GCC之存在,例如檢測生物樣品中GCC之存在或檢測個體中GCC之存在或分佈,例如使用抗-GCC抗體(例如經標記之抗-GCC抗體)或配體(例如肽配體,例如結合至GCC之經標記之肽配體)進行。本文所使用之術語「檢測」涵蓋定量或定性檢測。本文中所使用之檢測GCC或GCC蛋白質意指檢測完整GCC蛋白質或檢測GCC蛋白質之包含檢測抗-GCC抗體分子或GCC結合配體所結合之表位之部分。在一些實施例中,該方法包括檢測標靶腫瘤上之GCC含量,且抗腫瘤療法係基於檢測步驟之結果進行選擇。在一些實施例中,該方法包括獲取關於個體中之GCC表現量之資訊及基於該資訊選擇抗腫瘤療法。在一些實施例中,該方法包括治療患有GCC表現癌症之個體。關於使用抗-GCC抗體檢測腫瘤上之GCC表現之額外細節參見國際申請案WO2013/163633,其以引用的方式全文併入本文中。
在一些實施例中,用於檢測腫瘤上之GCC表現之抗體係具有本文表22之VH或VL序列之抗體或具有一或多個(例如6個)來自本文表22之VH或VL序列內之CDR(例如本文表24中所闡述之彼等CDR)之抗體。例如,該抗體可包含抗-GCC兔mAb MIL-44-148-2或其部分。
因此,在另一態樣中,該方法可包括檢測GCC蛋白質,例如檢測GCC表現細胞或組織,例如腫瘤細胞或具有表現GCC之細胞之腫瘤。該方法包含:使材料(例如細胞或組織,例如表現GCC之腫瘤之樣品)與抗-GCC抗體分子(例如本文中所闡述之抗-GCC抗體分子)或GCC結合配體在允許在抗-GCC抗體分子或配體與GCC蛋白質間形成錯合物之條件下接觸;及檢測抗體分子或配體與GCC蛋白質間錯合物之形成,從而GCC蛋白質之存在,例如檢測GCC表現細胞或腫瘤。
在某些實施例中,該等組織包括以相對於其他組織(例如諸如B細胞及/或B細胞相關組織等其他組織)較高之含量表現GCC之正常及/或癌性組織。
在另一態樣中,本文中所闡述之方法可包括活體外(例如於諸如組織生檢等生物樣品中,例如來自腫瘤組織、來自個體)或活體內(例如藉由於個體中之活體內成像)檢測GCC蛋白質之存在。該方法包含:(i)使樣品與抗-GCC抗體分子或GCC結合配體接觸或向個體投予抗-GCC抗體分子或GCC結合配體;及(ii)檢測抗-GCC抗體分子或配體與GCC蛋白質間錯合物之形成。錯合物形成指示GCC之存在或含量。該方法視情況進一步包含利用本文中所闡述之免疫共軛物與DNA-破壞劑之組合治療個體,例如如下文所闡述。
在各實施例中,將於樣品或個體中所檢測之錯合物含量與參照值(例如GCC之錯合物形成或含量之值)比較。在一實施例中,超過參照值之GCC含量指示GCC調介之病症並就利用本文中所闡述之免疫共軛物及DNA破壞劑之適宜治療方案指導內科醫師。
在一實施例中,該方法包含使參照樣品(例如對照樣品(例如對照生物樣品,例如血漿、組織、生檢)或對照個體))與抗-GCC抗體分子或GCC結合配體接觸及將其中所檢測之錯合物含量與該樣品或該個體中所檢測之含量比較。
個體或樣品中之GCC抗原密度可分類為(以遞減順序)高、相對高、中等或低。GCC抗原密度可藉由任何適宜方法來量測。例如,可使用H評分方法;此方法闡述於以下各段及國際申請案WO/2013/163633中,該申請案以引用的方式全文併入本文中。作為另一實例,一或多個患者腫瘤中之GCC抗原密度可藉由活體內檢測方法(例如藉由投予與可檢測標記共軛之抗-GCC抗體並利用諸如MRI等成像系統檢測共軛物)來測定。在某些實施例中,樣品或個體中所檢測之抗原密度係使用半定量IHC評分系統(例如本文實例3及5中所闡述)來描述。例如,在一些實施例中,4+之IHC評分係分類為高GCC抗原密度,2至3+之IHC評分係分類為相對高之GCC抗原密度,2+之IHC評分係分類為中等GCC抗原密度,且1+之IHC評分係分類為低GCC抗原密度。應理解,亦可使用其他方法測定個體或樣品中之GCC抗原密度。
為計算H評分,可如下實施染色。將樣品與抗-GCC抗體一起培育過夜。此程序可使用TechMate 500或TechMate 1000(Roche Diagnostics)完全自動化。染色後,藉助至純乙醇之醇系列使載玻片脫水,接著進行二甲苯沖洗。用玻璃蓋玻片及CytoSeal將載玻片永久地蓋上蓋玻片。在顯微鏡下檢查載玻片來評估染色。陽性染色係由褐色(DAB-HRP)反應產物之存在指示。蘇木精對比染色提供藍色核染色以評估細胞及組織形態。
可於經染色細胞上如下實施H評分方法。提供腫瘤內之細胞百分數(0至100)及在0至3+之範圍內之染色強度。例如,提供強度為0、0.5、1、2及3之評分。視標誌而定,0.5染色可評分為陽性或陰性,且反映針對標誌之較淺但可察覺之染色。為獲得H評分,將腫瘤細胞百分數乘以各強度並加在一起:H評分=(%腫瘤*1)+(%腫瘤*2)+(%腫瘤*3)。例如,若腫瘤為 20%陰性(0)、30%+1、10%+2、40%+3,則H評分為170。
若100%之腫瘤細胞標明3+強度,則根據亞細胞定位(即頂端或細胞質)最大H評分為300(100%*+3)。在一些實施例中,例如作為對照,不使用單獨的總H評分來比較樣品,但除了審查細胞在每一強度下之百分數之分解以外亦進行評價。例如,90之評分可代表90%以1+強度染色之腫瘤細胞或30%3+強度之細胞。該等樣品具有相同H評分,但極為不同之GCC表現。欲在每一強度下評分之細胞百分數可有所不同,但通常以10%之增量評分;然而,單一組份之較小評分百分數亦可估計為1%及5%,以證明存在一定程度之染色。對於GCC,可考慮頂端染色用於在小量增量(例如1%及5%)下評價。
可使用H評分方法對GCC之不同亞細胞定位進行評分。該等方法包括細胞質染色及頂端相關染色。通常觀察到細胞質染色模式為遍及腫瘤細胞細胞質之彌散。然而,在一些情形下細胞質染色有多種變化形式,其包括強球狀染色或點狀染色、粗顆粒狀染色。強球狀染色可評分為3+細胞質染色。點狀染色與頂端染色相關,且並不針對此類型之細胞質染色給出單獨評分。當存在管腔時,觀測到GCC頂端染色。所觀測到之其他GCC染色模式包括膜樣非管腔染色(一例)及腫瘤管腔內存在之細胞外染色。在正常結腸組織中,染色通常為頂端染色以及彌散細胞質染色。
由於可獲得細胞質及頂端GCC表現二者之H評分,故可捕獲所有數據,且在一些情況下,可藉由使用頂端及細胞質GCC表現二者之和生成總計H評分。在該等情況下,總計評分之最大H評分變成600(300頂端+300細胞質)。
在一實施例中,將來自個體之樣品或個體中之GCC含量與參照含量(例如對照材料(例如與個體細胞相同之組織來源之正常細胞或具有與此一正常細胞相當之GCC含量之細胞)中之GCC含量)比較。該方法 可包含(例如)因應GCC之檢測含量提供病症之診斷、預後、治療效力評價或分期。與對照材料相比樣品或個體中之GCC含量較高指示與增加之GCC表現相關之病症之存在。與對照材料相比樣品或個體中之GCC含量較高亦可指示治療效力之相對缺乏、相對較差之預後或疾病之後期。GCC含量亦可用於評價或選擇未來治療,例如需要或多或少積極之治療或需要自一種治療方案切換成另一中。
GCC含量亦可用於選擇或評價患者。
腫瘤對抗-GCC免疫共軛物(例如免疫共軛物 (I-5) )(例如包含具有表5之CDR之Ab)之反應性可指導治療內科醫師確定適當抗腫瘤療法,例如利用免疫共軛物 (I-5) (例如包含具有表5之CDR之Ab)與DNA破壞劑之組合之療法。本文實例5揭示量測腫瘤對免疫共軛物療法之反應性之方法,且本文實例6揭示對抗-GCC免疫共軛物具有不同敏感性程度之腫瘤之適當治療模式。
腫瘤或癌細胞對給定治療(例如免疫共軛物或DNA破壞劑)之敏感性或抗性可分類(以遞減順序)強、中等至強、中等或具抗性。敏感性可藉由任何適宜方法來測定。例如,在一些實施例中,「強抗腫瘤活性」或「強敏感性」係指至少大約如本文實例5中所顯示當利用5F9 vcMMAE治療PHTX-09c細胞時所觀測到之抗腫瘤活性程度;「中等至強」抗腫瘤活性或敏感性係指大約當利用5F9 vcMMAE治療PHTX-21c細胞時所觀測到之抗腫瘤活性程度;「中等抗腫瘤活性」或「中等敏感性」係指大約當利用5F9 vcMMAE治療PHTX-17c細胞時所觀測到之抗腫瘤活性程度;且「具抗性」係指大約當利用5F9 vcMMAE治療PHTX-11c細胞時所觀測到之抗腫瘤活性程度或小於該程度。作為另一實例,藥物敏感性可使用細胞培養分析來測定,其中向相關癌細胞(例如自癌症患者之腫瘤進行生檢之細胞)投予所關注藥物,並測定細胞毒性活性。作為再一實例,對治療劑之腫瘤敏感性可藉由監測個體 對該藥劑之反應性來測定,例如藉由在向患者給予利用該藥劑之療法之同時在不同時間點使腫瘤大小可視化。應理解,其他方法亦可用於測定個體或樣品對免疫共軛物或DNA破壞劑之敏感性。
在一些態樣中,本發明提供測試腫瘤對抗-GCC療法(例如 (I-5) 之免疫共軛物)之敏感性以鑑別敏感性(例如強敏感性、強至中等敏感性、中等敏感性或具抗性)之方法。
例如,在各實施例中,腫瘤細胞在其表面表現大量GCC之患者可視為利用毒素共軛之抗-GCC抗體分子治療之良好候選人。在各實施例中,腫瘤細胞在其表面表現少量GCC之患者可為組合抗-GCC抗體分子與額外治療方法(例如DNA破壞劑)之候選人。在另一實施例中,抗-GCC抗體分子之劑量可經調整以反映腫瘤細胞表面所表現之GCC分子數。在其腫瘤細胞表面具有大量GCC分子之患者可利用相比於具有少量GCC分子之患者較低之劑量治療。活體內檢測GCC表現腫瘤細胞之存在可允許鑑別表現GCC之原發性腫瘤已轉移至其中之組織。關於組織已轉移之知識可導致腫瘤療法之靶向應用。
如上文所論述,抗-GCC抗體分子及GCC結合配體容許評估正常與腫瘤性組織中GCC蛋白質之存在,藉此可評估疾病之存在或嚴重性、疾病進展及/或療法效力。例如,可監測療法(例如利用諸如 (I-5) 等免疫共軛物與DNA破壞劑之組合之療法),並評估效力。在一實例中,可在自患有細胞增生疾病(例如結腸癌、胃癌及食道癌)之個體獲得之第一樣品中檢測及/或量測GCC蛋白質,且可起始療法。稍後,可自該個體獲得第二樣品,且可檢測及/或量測該樣品中之GCC蛋白質。第二樣品中所檢測或量測之GCC蛋白質之數量之降低可指示治療效力。
抗-GCC抗體序列
藉由若干方法生成抗-GCC抗體,如實例中所更詳細論述。首先 使用生成完全人類IgG2抗體之轉基因小鼠並利用Abgenix XENOMOUSE轉基因技術生成一種特定抗-GCC抗體(命名為「5F9」),並使用融合瘤技術進行分離。(隨後在CHO細胞中產生抗體5F9,如本文實例4中所闡述。)使用生成完全人類IgG2抗體之轉基因小鼠生成人類mAb Abx-229。使用Abgenix SLAM技術分離單一抗體。使用該等抗體製造完全人類IgG1抗體。藉由ELISA及流式細胞術(FCM)測試抗體對GCC之特異性。
下表1總結製造抗體分子5F9所使用之方法、生成該抗體所使用之免疫原、所使用之動物、來源、物種及同種型分離物。
測定輕鏈及重鏈可變區之序列。(表2)。5F9抗-GCC抗體之重鏈及輕鏈中之每一者之可變區之胺基酸及核酸序列分別顯示於表3及4中。5F9抗-GCC抗體之重鏈及輕鏈之CDR中之每一者之胺基酸及核酸序列分別顯示於表5及6中。
CDR之測序允許測定可充當毒素共軛位點之殘基之豐度。抗原結合區域中未配對之游離半胱胺酸可為奧裏斯他汀之共軛位點,且離胺酸可為美登素之共軛位點。毒素與CDR之胺基酸之共軛會產生改變抗體對GCC之結合親和力之問題。因此,在各實施例中,CDR缺乏可與治療劑共軛之胺基酸。
如上文所闡述產生含有mAb 5F9之重鏈及輕鏈二者之編碼序列之表現載體。
藉由以下實例闡釋本發明,但其不應理解為進一步具有限制性。
實例 實例1:抗-GCC抗體之生成及表徵
如下實施用於免疫及篩選之GCC蛋白質之生成。藉由將編碼包含以下GCC序列(信號序列及細胞外結構域)之序列之GCC基因之一部分亞選殖至表現載體中來製備GCC抗原。
(SEQ ID NO:16)
表現載體(pLKTOK107)提供C末端IgG1Fc區以與GCC序列融合。此載體包含具有IgG1鉸鏈之外顯子、CH2及CH3結構域,突變以自外顯子中之CH1片段消除半胱胺酸。此IgG1Fc區在離胺酸235及甘胺酸237處進一步突變成丙胺酸。該構築體於經SV40 T-抗原之基因轉染之人類胎腎(HEK)293細胞重組表現為與C末端人類IgG1 Fc稠合之分泌GCC序列(SEQ ID NO:3之胺基酸殘基24至430)。藉由蛋白質A層析及粒徑排阻層析純化稱為TOK107-hIg(替代名稱為hGCC-ECD/hIgG1 Fc,SEQ ID NO:62)之蛋白質。
GCC抗原亦係藉由以下方式來製備:將以上融合蛋白亞選殖至諸如pLKTOK111等表現載體中,此允許鼠類IgG2a跨膜區域融合至C末端。當此構築體重組表現於CHO細胞中時,在細胞表面檢測GCC細胞外結構域。當將pLKTOK111載體與包含鼠類CD79a(MB-1)及CD79b(B29)之pLKTOK123共轉染時,達成GCC-Ig融合蛋白(SEQ ID NO:61)之高細胞表面表現。使用來自此轉染(CHO-GCC 27號)之純系27號作為免疫原。亦使用HT-29-GCC 2號細胞作為免疫原。
對於藉由ELISA篩選融合瘤上清液及經純化mAb,將編碼GCC融合構築體之核酸選殖至pCMV1表現載體(Sigma)中。純化標籤:亦將FLAG標籤(在N末端)及His標籤(在C末端)選殖至該構築體中。將融合蛋白構築體轉染之293細胞中,表現,且經抗-FLAG® M2-瓊脂糖親和力管柱(Sigma)純化重組蛋白。
試劑及細胞系。HEK293細胞、CHO及T84人類結腸癌細胞係獲得自ATCC並根據ATCC方案進行維持。
小鼠:4週至6週齡之雌性C57BL/6小鼠係購自Taconic Farms公司(Germantown,NY)用於生成鼠類融合瘤。戶內餵養至4週至6週齡並產生人類IgG2抗體之Xenomice係獲得自Abgenix公司(Fremont,CA)用於生成人類融合瘤。獲得所有動物並根據Millennium Pharmaceuticals公司之實驗動物照護與使用委員會之指南維持。
細胞系:用於功能性分析之細胞系係GCC轉染細胞及載體對照HEK293或HT29細胞之細胞對。在EF-1α啟動子或空載體(pLKTOK4)之控制下用全長GCC轉染HT29細胞,並在G418中進行選擇。已證實當與ST肽(1-18或5-18)接觸時,該等細胞中之GCC具有cGMP反應。在CMV啟動子或空載體(pN8mycSV40)之控制下用全長GCC轉染HEK293細胞,並在殺稻瘟菌素中進行選擇。該等細胞中之GCC具有myc標籤。針對最高GCC表現所選擇之純系係293-GCC 2號、HT29-GCC 2號及HT29-GCC 5號。亦使用HT29-GCC 2號作為免疫原用於生成抗-GCC抗體分子。額外GCC表現細胞係CT26細胞。為研發表現GCC之CT26細胞系,使用pTOK58D載體。將全長GCC選殖至常用於重鏈選殖之位點中,且將螢光素酶選殖至常用於輕鏈選殖之位點中。在轉染至CT26細胞後,證實GCC及螢光素酶二者之獨立表現。GCC之表面表現係藉由流式細胞術並使用5F9抗體來證實。選擇純系32號用於進一步研究。
T84結腸癌細胞系內源性表現GCC。廣泛細胞系組中之GCC之Taqman分析揭露T84係唯一一種表現GCC之mRNA之細胞系。在T84細胞之細胞沈澱上利用GCC選擇性mAb針對GCC之染色顯示顯著GCC蛋白質表現。
利用經放射性標記之配體(ST-毒素)對GCC受體含量之定量表明 293-GCC 2號細胞相比於T84細胞表現更多GCC,而HT29-GCC 2號或5號每個細胞表現最少GCC分子。
人類mAb之生成。XENOMOUSE遺傳改造小鼠(Abgenix,Fremont,CA)(8週至10週齡)進行免疫用於產生人類單株抗體。參見Mendez等人,Nature Genetics 15:146-156(1997)、Green及Jakobovits J.Exp.Med.188:483-495(1998)。採用若干種免疫方案。在一種方案中,將100微克之人類GC-C細胞外結構域/人類Ig融合蛋白(TOK107-hIg)懸浮於杜貝克氏磷酸鹽緩衝鹽水(Dulbecco’s phosphate buffered saline,PBS;GIBCO,Grand Island,NY)中,並利用相等體積之弗式完全佐劑(complete Freund’s adjuvant,Sigma Chemical公司,St.Louis,MO)乳化。藉由在三個皮下位點、尾巴底部及一個腹膜內(i.p.)位點注射乳液來對XENOMOUSE TM 進行免疫。在初始免疫後14天,利用50μg存於弗式不完全佐劑中之TOK107-hIg給予小鼠加強免疫。血清測試指示力價補足,故在數週停藥期後,給予50μg人類TOK107-hIg之第二次加強。2週後,自尾巴靜脈收集少量血液,並藉由ELISA滴定對TOK107-Ig之血清活性並藉由FACS滴定對HT29-GCC 2號細胞之血清活性。當小鼠力價藉由ELISA超過1:24,300或藉由FACS超過1:500時,選擇其用於融合。在此次加強後近3個月,利用107個HT-29 2號細胞對小鼠進行加強,並在第二天利用50μg TOK107-hIg進行加強,二者均存於弗式不完全佐劑中。利用此方案免疫之小鼠產生5F9及1D2人類抗-GCC抗體分子。利用此方案免疫之小鼠產生5F9及1D2人類抗-GCC抗體分子。
4天後,對小鼠實施安樂死,並製備脾細胞懸浮液,並用PBS洗滌用於融合。藉由結合TOK107-hIg與非GCC抗原相比之ELISA測試融合細胞之特異性結合至GCC之抗體之產生,或藉由結合至T84細胞或HT-29純系2號細胞與載體對照相比並與非GCC表現MCF-7細胞相比之FACS測試融合細胞之特異性結合至IgG之Fc區之抗體之產生。使用ELISA或藉由FACS使用IgG或IgM特異性二級抗體測定同種型。利用此方案免疫之小鼠產生5F9人類抗-GCC抗體分子。
產生人類mAb之融合瘤:對脾細胞計數,並以2:1之脾:骨髓瘤比與不能分泌重鏈或輕鏈免疫球蛋白鏈之SP 2/0骨髓瘤細胞(ATCC號CRL8-006,Rockville,MD)混合。根據標準程序在12個96孔組織培養板中於HAT選擇培養基中利用聚乙二醇1450(ATCC)融合細胞。在融合後10天與21天間,融合瘤結腸變得可見,且收穫培養物上清液,然後藉由ELISA及FACS進行篩選。
藉由ELISA分析mAb。利用50μl/孔之2μg/ml TOK107-hlg溶液(0.1μg/孔)塗覆高蛋白質結合96孔EIA板(Costar/Corning公司,Corning,NY),並在4℃下培育過夜。抽吸過量溶液,並將各板用PBS/0.05%吐溫20(Tween-20)(3次)洗滌,然後在室溫(RT)下用1%牛血清白蛋白(BSA,fraction V,Sigma Chemical公司,MO)阻斷1hr以抑制非特異性結合。去除BSA溶液,並添加50μl/孔來自每一融合板孔之融合瘤上清液。然後在37℃下將各板培育45min,並用PBS/0.05%吐溫20洗滌3次。將於1% BSA/PBS中1:4000稀釋之山葵過氧化酶(HRP)共軛之山羊抗-小鼠或抗-人類IgG F(ab)2(H&L)(Jackson Research Laboratories公司,West Grove,PA)添加至每一孔中,且然後在37℃下將各板培育45min。洗滌後,添加50μl/孔之ABTS溶液(Zymed,South San Francisco,CA)。在Vmax微量滴定板讀數器(Molecular Devices公司,Sunnyvale,CA)上評估陽性孔在405nm下之 綠色強度。然後將所有產生陽性反應之融合瘤孔擴展至24孔培養物,藉由有限稀釋進行亞選殖,並藉由ELISA及FACS進行分析。進一步擴展三種產量最高之亞純系。
藉由流式細胞術分析mAb。在ELISA篩選之同時,在所有融合板上清液上進行流式細胞術(FACS)篩選。使HT-29純系2號或未經轉染HT-29細胞於T225燒瓶(Costar/Corning公司,Corning,NY)中之補充有10%胎牛血清(GIBCO)之DMEM(GIBCO)中生長。使用Versene(GIBCO)將細胞自燒瓶表面分離,收集,並用DMEM洗滌兩次,然後用1% BSA/PBS溶液洗滌一次。將細胞再懸浮於1% BSA/PBS中,將2×106個細胞添加至V底96孔板(Costar)之每一孔中並以2500RPM離心5min.(洗滌)。丟棄洗滌溶液,且添加50μl/孔來自每一融合板孔洗滌液之上清液。施加板密封劑(Linbro/MP Biomedicals有限公司,Solon,OH),且然後對各板溫和地進行渦旋以使細胞再懸浮並將其與上清液混合,並在4℃下(在冰上)培育30min。然後用冷1% BSA/PBS(3次)洗滌各板,且在4℃下(在冰上在黑暗中)將1:50稀釋之50μl/孔FITC共軛之驢抗-小鼠IgG F(Ab)2(H&L)或FITC共軛之山羊抗-人類IgGF(Ab)2(H&L)(Jackson)添加至每一孔中並持續30min.。將板在冷1% BSA/PBS中再次洗滌3次,並在冷1%多聚甲醛(Sigma)/PBS中進行固定。將細胞轉移至排管(Costar)中,並在FACScalibur流式細胞儀(Becton Dickenson,San Jose,CA)上進行分析。然後將任何顯示正向位移之融合瘤孔擴展至24孔培養物,藉由有限稀釋進行亞選殖。
內化分析。在GCC表現細胞及載體對照細胞二者中使用免疫螢光顯微術測試抗-GCC抗體分子之內化。使細胞在蓋玻片上生長,並置於冰上10分鐘,然後在冰上與10μg/ml抗體一起在冷培養基中培育20分鐘。對於內化,用新鮮培養基置換含有抗體之培養基,且將細胞位移至37℃並持續2小時製3小時或維持在冰上。在室溫下於PBS中沖洗 及於4%多聚甲醛中短暫固定後,在0/5% TRITON X-100中使細胞透化15min。使用螢光標記之抗-IgG抗體藉由雷射掃描共聚顯微鏡測定測試抗體之定位。抗體分子在冰上時定位至GCC表現細胞之細胞表面。在37℃下培育後,5F9在細胞膜內顯示點狀染色,此指示內化。利用載體細胞未檢測到內化。
抗-GCC抗體分子之性質之總結。表7總結5F9 mAb之活體外性質。(T84=人類結腸腫瘤細胞,MCF7=人類乳房腫瘤細胞,WB=西方墨點(western blot),IP=免疫沈澱,IHC=免疫組織化學;內化使用T84細胞,與MCF-7細胞相比)。
另外,測試5F9抗體分子抑制GCC表現細胞中ST肽誘導之鈣離子通量之能力。在存在50nM ST之情況下在存在或不存在抗-GCC抗體分子下在HT29-GCC 18號細胞中實施cGMP分析。5F9對鈣離子通量存在劑量依賴性抑制。
抗-GCC抗體分子之相對親和力之估計。自ELISA量測針對TOK107-hIg並藉由FACS量測利用GCC表現細胞估計5F9抗-GCC抗體分子之相對親和力(EC50;半數最大結合之抗體濃度)。下表展示結果。
抗-GCC抗體分子之親和力之量測。在22℃下使用BIACORETM T100系統(GE Healthcare,Piscataway,NJ)量測抗-GCC 5F9抗體之親和力。
步驟1:將MAb 5F9(Prep A)於10mM乙酸鈉(pH 4.0)中稀釋至20μg/mL,且將參照5F9 MAb(Prep B)於10mM乙酸鈉(pH 4.0)中稀釋至10μg/mL。使用標準胺偶合將每一mAb共價固定化至若干CM4 BIACORE晶片。對於所製備之每一CM4晶片,使Prep A 5F9以約75至100 RU固定化於兩個流動池上,而使Prep B 5F9以約70至80 RU固定化至一個流動池。使用每一CM4晶片之剩餘之第四個流動池作為參照流動池。
步驟2:使用Pace等人,Protein Science,4:2411(1995)及Pace及Grimsley,Current Protocols in Protein Science 3.1.1-3.1.9(2003)所闡述之方法測定GCC-ECD-Fc(TOK107-hIg)之儲備溶液濃度。
步驟3:對於步驟1中所闡述之每一所製備CM4晶片,以202nM至1.6nM(2×連續稀釋)之濃度範圍注射GCC-ECD-Fc並持續2分鐘,接著進行7分鐘解離。一式三份隨機注射樣品,其中散置數個緩衝液注射週期用於雙重參照。為獲得更顯著之解離速率衰減速率,以2分鐘注射及4小時解離時間實施三次額外101nM GCC-ECD-Fc注射及三次額外緩衝液注射。所有實驗均使用100μL/min之流速,且利用10mM甘胺酸-HCl(pH 2.0)之20秒脈衝使所有表面再生。所有樣品均係在電泳緩衝液中製備,該緩衝液為Hepes緩衝鹽水、0.005%聚山梨醇酯20(pH 7.4,HBS-P)且添加有100μg/mL之BSA。
步驟4:利用Scrubber 2.0軟體(BioLogic Software,Campbell,Australia)處理所有感測圖(表面電漿子共振對時間之圖)數據,並使用CLAMPTM軟體整體擬合至包括質量輸送常數km項之1:1相互作用模型(Myszka及Morton Trends Biochem.Sci.23:149-150(1998))。
1:1模型提供對數據之極良好擬合,只要使mAb固定化程度保持 低至足以使得得自感測圖數據之整體分析之Rmax對於每一表面至少低於12 RU即可。在大多數情形下,兩個Prep A 5F9表面中之一者具有對於可靠動力學量測而言過低(低於2 RU)之Rmax。然而,只要可能時同時擬合來自相同CM4晶片之GCC-ECD-Fc與Prep A 5F9結合之兩個流動池之數據。當製備產生較高Rmax(>12 RU)之mAb表面時,感測圖明顯顯示錯合物動力學,且因此1:1模型擬合數據較差。由於如下事實此並不意外:GCC-ECD-Fc係二價構築體,且較高表面密度之經固定化mAb最可能增加GCC-ECD-Fc積極結合至表面之可能性。此研究所報導之複製僅包括很好擬合至1:1相互作用模型之彼等數據。Prep A 5F9及Prep B參照mAb之所有複製之所得KD及速率常數分別列示於表9及表10中。
毒素與抗體之共軛
奧裏斯他汀。可使用公開之程序(例如Doronina等人,Nature Biotech.,21:778-784(2003))實施藉由奧裏斯他汀之共軛。概言之,將奧裏斯他汀連接至抗體鏈之半胱胺酸。先藉由還原抗體分子中之二硫鍵來實現與半胱胺酸之連接。對還原過程之控制力求將該還原限制至一些(但不必全部)鏈間二硫鍵。因此,奧裏斯他汀能夠在游離半胱胺酸處結合。在淬滅共軛反應後去除反應副產物並緩衝液交換成期望調配物。
簡言之,在37℃下預平衡7.6mg/mL之抗-GCC抗體分子,且然後添加15%體積之500mM硼酸鈉(pH 8.0)以將pH提高至7.5至8.0。該溶液亦含有1mM DTPA。藉由添加每莫耳抗-GCC抗體分子2.6當量之叁(2-羧基乙基)膦(TCEP)並在37℃下攪拌來部分還原給抗體。28分鐘後,將經還原抗-GCC抗體分子之溶液置於冰上,然後立刻用4.8莫耳當量至4.9莫耳當量(相對於抗-GCC抗體分子)之藥物連接體(例如mc-vc-MMAF或mc-vc-MMAE或mc-MMAF)以存於DMSO中之20.5mM溶液形式處理。引入額外DMSO以使該混合物達10體積% DMSO。將該反應混合物在冰上攪拌約90分鐘,然後用5倍莫耳過量之N-乙醯基半胱胺酸(相對於mc-vc-MMAF)處理。藉由切向流過濾、先濃縮至約10mg/mL、然後利用約10個滲濾體積之PBS滲濾來分離該共軛物。所得抗體藥物共軛物具有每個抗體約4個藥物-連接體單元之平均載藥量。為便利起見,在以下實例及附接圖中,以以下縮寫格式提及奧裏斯他汀免疫共軛物(不管載藥量):「Ab-vc-MMAF」係指與mc-vc-MMAF共軛之抗-GCC抗體分子;「Ab-vc-MMAE」係指與mc-vc-MMAE共軛之抗-GCC抗體分子;且「Ab-mc-MMAF」係指與mc-MMAF之抗-GCC抗體分子共軛。以相同格式提及包含特定抗-GCC抗體分子之免疫共軛物,例如5F9-vc-MMAF、5F9-vc-MMAE及5F9-mc-MMAF。
為製備平均載藥量為每個抗體約兩個藥物-連接體單元之抗體藥 物共軛物,藉由將TCEP之量減少50%來修改該方案(上文)。藥物連接體之量亦減少50%。相應抗體藥物共軛物縮寫為Ab-vc-MMAF(2)。
5F9 vcMMAE之製備
使用與上文所闡述之一般方法類似之方法,使用本文中所闡述之vc(Val-Cit)連接體使5F9 mAb與命名為MMAE(式( XIII ))之奧裏斯他汀衍生物共軛以產生命名為5F9 vcMMAE之免疫共軛物。如先前所闡述完成vc連接體與MMAE(Seattle Genetics公司,Bothell,WA)之共軛(例如參見US 2006/0074008)。
簡言之,利用0.3M磷酸氫二鈉將5F9 mAb存於100mM乙酸鹽(pH 5.8)中之17.8mg/mL溶液調整至pH 8,從而產生11.3mg/ml之最終mAb濃度。然後,添加DTPA以於該反應混合物中達1mM最終濃度。然後藉由添加2.28莫耳當量之TCEP(相對於mAb之莫耳數)部分還原mAb,且然後在37℃下攪拌1.5小時。然後將經部分還原之mAb溶液冷卻至4℃,且以存於DMSO中之20.3mM溶液形式添加4.4莫耳當量之vcMMAE(相對於抗體之莫耳數)。將該混合物在22℃下攪拌30分鐘,然後在添加5莫耳當量之N-乙醯基半胱胺酸(相對於vcMMAE之莫耳數)後再攪拌15分鐘。藉由利用10個滲濾體積之PBS(pH 7.4)對免疫共軛物之超濾/滲濾去除過量之經淬滅vcMMAE及其他反應組份。所得免疫共軛物命名為5F9 vcMMAE且具有下式:
其中Ab係5F9 mAb,且m為1至8。平均載藥量(m)為約3.6。在包含複數個共軛物之組合物中,附接至抗體之MMAE分子之平均數為3.6。
細胞毒性分析。為量測每一抗體結合、內化並殺傷標靶表現細胞能力,實施細胞毒性分析。在此分析中,將細胞與各種濃度之未經共軛一級抗-GCC抗體及固定濃度之無毒之DM1共軛之抗-人類Fc二級抗體(間接細胞毒性)或與各種濃度之毒素共軛之抗-GCC mAb(直接細胞毒性)一起培育。培育4天後藉由WST分析量測細胞活力。人類抗-GCC抗體對293-GCC 2號細胞之相對效能顯示於表8中,且使用DM1共軛之小鼠抗-人類IgG mAb來測定(自純系HP607(CRL1753,ATCC)純化MAH-IgG)。5F9及229為LD50為26pM及78pM之最強效抗-GCC mAb。儘管本文中未顯示,但誤差通常在該等平均值之20%內,如藉由複製範圍或>2個複製之標準偏差所量測。
細胞表面結合。藉由在間接免疫螢光分析中使用流式細胞術評價未經共軛5F9或與奧裏斯他汀共軛之5F9之結合。將1×106個細胞/孔平鋪與V底96孔板中,並與1μg/ml至0.001μg/ml之連續抗體稀釋一起在冰上培育1小時。用3% FBS於冷PBS中將細胞洗滌兩次,並與1:200小鼠抗-人類PE IgG(Southern Biotech 2043-09)一起在冰上培育1小時。再次洗滌細胞,並藉由流式細胞術在BD FACS Canto II流式細胞儀上進行分析。使用FACS Canto II系統軟體分析數據,且測定平均螢光強度。
與GCC截斷突變體之細胞表面結合。生成GCC ECD之截斷突變體(FL成熟肽及8種截斷(△1-32、△1-49、△1-94、△1-128、△1-177、△1-226、△1-279、△1-229及△1-379),呈經FLAG加標籤之構築體(pFLAG-CMV-3)形式,代表大約50個胺基酸缺失增量。構築體於293細胞中表現,接著於經GCC ECD突變體轉染之293細胞之溶解產物中 藉由抗-GCC抗體分子進行免疫沈澱並針對FLAG表位進行西方墨點。抗體5F9結合具有△1-32突變之細胞,而不結合具有△1-49突變之細胞。當在胺基酸33至50之間截斷蛋白質時5F9與GCC之結合有所損失,此表明此區域參與5F9與其於GCC上之結合表位之識別。然而,由於大鼠及小鼠GCC序列與此區域中之人類GCC一致,且5F9不結合小鼠或大鼠GCC,故5F9抗體可能結合藉由人類GCC之胺基酸33至50之存在所形成之構象表位。
實例2. 毒素-連接體選擇/ADC表徵
在抗體藥物共軛物(ADC)策略(即高度強效之毒素與抗體之共軛)中,毒素之細胞毒性可係以標靶特異性方式針對腫瘤,從而將毒素遞送至抗原表現腫瘤細胞中而不影響正常組織中之抗原陰性細胞,由此減少全身性毒性。以與抗-GCC mAb之ADC形式評價奧裏斯他汀(尾海兔素10之類似物)及美登素類毒素。該等毒素均為微管聚合之抑制劑,用作抗-有絲分裂劑。使細胞與游離毒素接觸之測試指示游離毒素之細胞毒性在具有GCC表現之細胞與不具有GCC之對照細胞之間無區別。相對於HT29-GCC 5號細胞,該等游離毒素對293-載體、293-GCC 2號細胞、HT29-載體係強有效的,如表12中所顯示。
使不同毒素與抗體共軛之化學過程有所不同且影響連接體穩定性。連接體穩定性藉由影響血液或非標靶組織中之藥物釋放與腫瘤處 之藥物釋放來影響治療窗口。理想ADC連接體在血液中時具有高穩定性,但在標靶調介之細胞進入後有效釋放。
奧裏斯他汀
評價三個奧裏斯他汀-連接體對。為先活體外評價該等共軛物且然後確定何種毒素-連接體用於大規模活體內研究,使5F9與vcMMAE、vcMMAF及mcMMAF(20mg/共軛物)共軛。
奧裏斯他汀係與天然產物尾海兔素10相關之合成毒素。MMAE及MMAF有微妙差別,其中MMAF形式在R2位具有羧酸基團,從而減少作為游離毒素形式之細胞滲透性及效能。MMAE係Pgp藥物幫浦基質,而MMAF不是。
藉助部分抗體還原過程、與馬來醯亞胺基藥物衍生物反應、利用過量半胱胺酸淬滅、濃縮及緩衝液交換成PBS來使奧裏斯他汀與鏈間半胱胺酸共軛。奧裏斯他汀可附接有在細胞攝取後裂解之組織自溶酶B敏感性二肽連接體或不可裂解連接體。
在vc單甲裏斯他汀連接體中,纈胺酸瓜胺酸二肽連接係藉助胺基甲酸對胺基苄基酯(PAB)基團附接至藥物並藉助馬來二醯亞胺基己醯基共軛基團附接至抗體。內化後,二肽連接體係藉由溶酶體蛋白酶組織自溶酶B裂解,PAB基團自我破壞,並釋放游離毒素。此連接體係經設計以維持血清穩定性,同時使藉由組織自溶酶B之細胞內藥物釋放最大化。
奧裏斯他汀亦可藉助直接附接至馬來醯亞胺基共軛基團之不可裂解連接體(例如MMAF)連接至抗體,且無肽酶敏感性連接體。MC共軛之ADC亦有效標靶調介之細胞殺傷。
認為不可裂解奧裏斯他汀共軛物之藥物釋放機制係藉助在溶酶體中之一般抗體降解。藉助LC/MS研究已報導Ab-mcMMAF共軛物釋放以單一半胱胺酸加合物形式毒素。
抗體藥物共軛物之結合
所有5F9抗體藥物共軛物同樣地結合至293-GCC 2號細胞。表10顯示在293-GCC 2號細胞,5F9共軛物在漸增濃度下之平均螢光強度。其他研究確定,5F9-SPDB-DM4共軛物以濃度依賴性方式結合293-GCC 2號細胞,而209-SPDB-DM4抗體不結合。
在經GCC核酸轉染並針對GCC表現選擇之各種細胞之直接細胞毒性分析中測試5F9-奧裏斯他汀毒素共軛物。GCC之表面表現量之調查發現293 GCC 2號細胞表現大量GCC;HT 29 2號及CT 26 2.5號細胞以中等至較低量表現GCC;CT 26 32號細胞以高位準表現GCC;且HT 29 GCC 5號及HT 29 GCC 18號表現少量GCC。表11顯產生三種奧裏斯他汀共軛物在細胞表現標靶中或在野生型細胞或載體對照細胞中之細胞毒性數據之多個研究之彙編。觀測在5F9共軛之毒素於293 GCC 2號細胞上之所有情形下均觀測到標靶增強之殺傷,其中當相對於MMAE使用MMAF時窗口大大增加。MMAF之可裂解及不可裂解二種形式具有類似效力。作為陰性對照,亦利用sc209抗體製備抗體藥物共軛物,sc209抗體為針對不相關標靶產生之人類IgG1單株抗體,且對GCC無反應性。利用209 ADC對5F9 vcMMAF ADC之直接細胞毒性分 析在293細胞模型及HT29細胞模型中顯示標靶增強之細胞殺傷。5F9共軛之毒素活性在細胞系中之比較指示細胞毒性程度與細胞所表現之GCC量具有一定相關性。該等數據表明,至少一些表現最多GCC之細胞系比表現較少量GCC之細胞更易受共軛物之細胞毒性活性影響。對於每個細胞之相對GCC數參見實例1。細胞毒性程度差異之另一因素可為共軛物之內化或細胞內處理之差異,其可在野生型細胞系中有所變化。
若該等效能在活體內轉化且在mc與vcMMAF之間效力相等,則mcMMAF之預測MTD較高可表明此共軛物之治療窗口較大。
實例3:活體內評價 腫瘤模型:
在小鼠異種移植物模型中評價5F9 ADC之活體內細胞毒性。利用HT29-GCC 5號及18號細胞系進行初始活體內工作。亦測試293-GCC 2號細胞系之活體內生長,並研發為可連續移植之套管針模型。
為解決異種移植物模型中之GCC表現量是否與患有轉移性結腸癌之患者中之GCC表現量相關之問題,藉由異種移植物組織、人類原發性結腸腫瘤及轉移之IHC分析比較GCC表現量。利用一組新鮮冷凍細胞系及組織用於藉由IHC利用針對GCC 3G1之小鼠mAb進行之GCC定量。對於IHC定量,使用半定量0至3評分系統進行評分。若腫瘤模型GCC含量臨床GCC含量,則建模將可能為準確的或高估臨床上所需要之暴露。若腫瘤模型GCC含量>臨床GCC含量,建模可低估臨床上所需要之暴露。
雖然轉移性樣品中之GCC表現存在一些可變性,藉由HT29-GCC 5號及18號細胞之表現係許多轉移性樣品之範圍內。藉由IHC,於HT29-GCC 5號及18號細胞上之GCC染色係等效的或低於轉移性細胞上之GCC染色。此數據表明吾人腫瘤模型以於metCRC之臨床樣品中所見含量相當之含量表現GCC。
表16代表在192小時時間點收穫之各種組織之閃爍計數,且代表三個動物之平均值。相對於HT29-載體腫瘤,5F9優先在HT29-GCC 5號腫瘤中累積,而209不顯示顯著不同之累積。此結果支持,可預期5F9抗體藥物共軛物在GCC表現腫瘤中累積。在所評價之其他所有組織中,5F9對mAb 209之抗體累積程度之差異極小。
經放射性標記之5F9於攜帶HT29-GCC 5號及HT29-載體腫瘤之小鼠中 之活體內分佈
在攜帶腫瘤之小鼠中實施放射成像研究以評價抗-GCC抗體5F9及陰性對照抗體sc209(靶向不相關細胞表面標靶之人類IgG1單株抗體)之腫瘤靶向及活體內生物分佈。使用DTPA作為雙功能螯合劑用111In放射性標記該等抗體。利用GCC(-)及GCC(+)腫瘤之鼠類雙腫瘤模型調查活體內性質(包括腫瘤靶向及在正常組織中所時間之生物分佈)。獲得活體內影像(SPECT/CT),且使用組織放射性活性計數補充空間解析度。
使皮下腫瘤在裸小鼠中生長,其中HT29-載體腫瘤在右邊且HT29-GCC 5號腫瘤在左邊。以0.3 mCi=15μg/動物給藥抗體。每組有三隻動物,且在1h、24h、48h、72h、120h及192h時收穫各組。
來自192h組動物之組織之調查指示5F9及209二者在大部分正常組織(例如血液、心、胃、小腸、大腸、肌肉及皮膚)中及HT29-載體對照腫瘤中累積至類似程度。Ab 209在肝中累積之略高於5F9之含量,且5F9在肺、脾及腎中累積至略高於209之含量。在HT29-GCC 5號腫瘤中,5F9優先以209累積含量之2倍以上含量累積。此結果支持,可預期5F9抗體藥物共軛物在GCC表現腫瘤中累積。
為瞭解腫瘤中之抗體累積之動力學,獲得每一抗體在整個研究中所有時間點之腫瘤數據。唯一顯示累積之組織為於GCC表現腫瘤中之5F9抗體。所有其他組織中之放射性活性程度保持相對平坦,其中在5F9程度與209程度之間存在少許差異。5F9優先在HT29-GCC 5號腫瘤中累積,而209不顯示任何累積。此結果支持,可預期5F9抗體藥物共軛物在GCC表現腫瘤中累積。
表16. 111 In標記之GCC特異性mAb而非對照mAb至表現GCC之腫瘤之累積。
經放射性標記之5F9於GCC表現腫瘤中經7天之累積支持每週一次給藥時間表。
於HT29-GCC 5號s.c.腫瘤中之先導性效力研究
在攜帶HT29-GCC 5號腫瘤之小鼠中實施研究以確定有效共軛物及劑量方案。以單一或多個劑量向小鼠給藥。該等研究確定,以較高含量之毒素共軛物(例如根據q3d×5時間表150μg/kg 5F9vcMMAF)過於頻繁給藥可存在毒性。另一研究確定,q14d×5時間表在此模型中過於頻繁以致於不允許一些毒素共軛物相對於對照顯示顯著效力。另外,在此模型中利用類美登素(maytansinoid)-抗體共軛物之PD研究展示僅利用DM4毒素而非DM1毒素時有劑量依賴性磷酸化組蛋白累積。在此模型中之另一研究顯示非GCC特異性209-毒素共軛物之一些腫瘤生長抑制。該等結果表明需要評價其他活體內模型。
在攜帶293-GCC 2號腫瘤之小鼠中利用5F9 ADC之PK/PD研究。
替代腫瘤模型使用293-GCC 2號細胞。在攜帶293-GCC 2號腫瘤之小鼠中實施針對5F9 ADC之PD研究。利用單一劑量之5F9vcMMAF以75ug/kg或150ug/kg向小鼠給藥,且在磷酸化組蛋白H3之PD分析之1hr直至4天之時間點處獲得血清來測試毒素對腫瘤細胞之抗有絲分裂效應。藉由腫瘤之石蠟包埋切片之抗體(Upstate Biotechnology,now Millipore,Billerica,MA)染色檢測磷酸化組蛋白H3。表17中之數據顯示每一ADC使得腫瘤中之pH3陽性細胞群顯著增加,此指示其每一者 以75μg/kg及150μg/kg毒素劑量當量均能夠到達腫瘤並對腫瘤細胞具有期望抗-有絲分裂效應。
類似研究量測利用5F9vcMMAF、5F9-SPDB-DM4及5F9-SMCC-DM1治療之攜帶293-GCC 2號腫瘤之小鼠中之磷酸化組蛋白含量。利用單一劑量以150ug/kg向小鼠給藥,且在總抗體及毒素共軛之抗體二者之PK分析之1hr直至21天之時間點處獲得血清。293-GCC 2號腫瘤中磷酸化組蛋白H3陽性細胞之百分數因應所有三種ADCS而增加:5F9vcMMAF、5F9-SMCC-DM1及5F9-SPDB-DM4。最大磷酸化組蛋白H3含量超過基線增加2倍至4倍,其中在注射後24小時具有峰。
在293-GCC 2號s.c.腫瘤中利用5F9vcMMAF及5F9-DMx之效力研究
以兩種劑量(75μg/kg及150μg/kg毒素)根據q14d×5時間表測試5F9-SPDB-DM4、5F9-SMCC-DM1及5F9vcMMAF在293-GCC 2號腫瘤模型中之效力。具體而言,此研究包括媒劑治療對照、Sc209-DM1(150μg/kg DM1當量)、Sc209-DM4(150μg/kg DM4當量)、Sc209- vcMMAF(150μg/kg MMAF當量)、5F9-DM1(150μg/kg DM1當量)、5F9-DM1(75μg/kg DM1當量)、5F9-DM4(150μg/kg DM4 eg)、5F9-DM4(75μg/kg DM4當量)、5F9-vcMMAF(150μg/kg MMAF當量)及5F9-vcMMAF(75μg/kg MMAF當量)。使用攜帶293-GCC 2號細胞之Taconic雌性小鼠(10只小鼠/組)。
圖1繪示根據q14d時間表用5F9vc-MMAF、-DM1及-DM4治療之攜帶293-GCC 2號之SCID小鼠中之腫瘤生長。利用5F9-SPDB-DM4在293-GCC 2號模型中觀測到劑量依賴性效力,而209-SPDB-DM4對照沒有任何效應。5F9-SMCC-DM1亦有效,然而不如150ug/kg之5F9-SPDB-DM4有效。5F9vcMMAF(75ug/kg及150ug/kg)大多有效,然而209vcMMAF亦具有一些活性。因此,在該等劑量及時間表下,5F9-SPDB-DM4與其對照共軛物具有最大有效差別。
在293-GCC 2號s.c.腫瘤中利用5F9vcMMAF及5F9-DMx之效力研究
以兩種劑量(75ug/kg及150ug/kg毒素)根據q7d×5時間表測試5F9-SPDB-DM4及5F9-SMCC-DM1在293-GCC 2號腫瘤模型中之效力。具體而言,此研究包括媒劑治療對照、5F9單獨(15mg/kg)、DM1(300μg/kg)、DM4(300μg/kg)、Sc209-DM1(150μg/kg DM1當量)、Sc209-DM4(150μg/kg DM4當量)、Sc209-vcMMAF(150μg/kg MMAF當量)、5F9-DM1(150μg/kg DM1當量)、5F9-DM1(75μg/kg DM1當量)、5F9-DM4(150μg/kg DM4當量)及5F9-DM4(75μg/kg DM4當量)。使用攜帶293-GCC 2號細胞之Taconic雌性小鼠(10只小鼠/組)。
在293 GCC 2號腫瘤中利用奧裏斯他汀共軛物之效力研究
用5F9與vc MMAE、vcMMAF或mcMMAF之共軛物以三種劑量治療攜帶293 GCC 2號腫瘤之SCID小鼠,與209與該等毒素或游離毒素之共軛物或媒劑對照比較。根據q7d×4時間表iv投予劑量。在第3天、第7天、第10天、第13天及第17天收穫腫瘤。用對照試劑治療之小鼠 中之腫瘤展示體積持續增加。用5F9奧裏斯他汀共軛物治療之腫瘤顯示此腫瘤生長之劑量依賴性及時間依賴性抑制。表18提供結果總結(TGI=腫瘤生長抑制,T/C=治療/對照,TGD=腫瘤生長延遲,CR/PR=完全反應/部分反應;p值=判斷統計顯著性之量度,NS=不顯著)。
該等ADC中之所有三者在293 GCC 2號模型中根據q7d時間表係有效的。5F9-vcMMAF及5F9-mcMMAF比5F9-vcMMAE更強效,此與活體內PD(pHisH3)及活體外細胞毒性數據相關。
在T84 s.c.腫瘤中利用5F9vcMMAF及5F9-DMx之效力研究
以兩種劑量(75ug/kg及150ug/kg毒素)根據q7d×5時間表測試5F9-SPDB-DM4及5F9-SMCC-DM1在T84腫瘤模型中之效力。具體而言,此研究包括媒劑治療對照、5F9單獨(15mg/kg)、DM1(300μg/kg)、 DM4(300μg/kg)、Sc209-DM1(150μg/kg DM1當量)、Sc209-DM4(150μg/kg DM4當量)、Sc209-vcMMAF(150μg/kg MMAF當量)、5F9-DM1(150μg/kg DM1當量)、5F9-DM1(75μg/kg DM1當量)、5F9-DM4(150μg/kg DM4當量)及5F9-DM4(75μg/kg DM4當量)。使用攜帶T84細胞之Taconic雌性小鼠(10只小鼠/組)。(「Sc209-[毒素]」或「209-[毒素]」係指在本文中所闡述研究中用作對照之非GCC靶向ADC)。
ADC在原發性腫瘤模型中之抗腫瘤活性
實施兩個類似研究,以測定5F9-vcMMAE之活體內抗腫瘤活性,並將在各種劑量及給藥時間表下在PHTX-9c原發性人類結腸腫瘤異種移植物小鼠中5F9-vcMMAE與游離毒素MMAE及非GCC vcMMAE抗體毒素共軛物(209-vcMMAE)之抗腫瘤活性比較,並測定在治療後之再生長動力學。對雌性CB-17 SCID小鼠(8週齡)皮下(SC)接種至具有PHTX-9c腫瘤片段(2mm×2mm)之側面中。使用游標卡尺每週兩次監測腫瘤生長,且使用式(0.5×[長度×寬度2])計算平均腫瘤體積。當平均腫瘤體積達到大約150mm3(研究A)或160mm3(研究B)時,將動物隨機分成治療群組(對於研究A而言n=10/群組且對於研究B而言n=9/群組)。
以如下方式治療(研究A)小鼠:根據每週一次(QW)給藥時間表(3個劑量)利用0.938mg/kg、1.875mg/kg、3.75mg/kg或7.5mg/kg 5F9-vcMMAE靜脈內(IV)治療20天,或根據QW(每週一次)時間表利用包括媒劑(0.9%鹽水)、0.075mg/kg或0.15mg/kg MMAE之對照IV治療,或根據QW給藥時間表利用1.875mg/kg或3.75mg/kg 209-vcMMAE IV治療20天。在第二研究(研究B)中,以如下方式治療小鼠:根據QW時間表(3個劑量)利用0.938mg/kg、1.875mg/kg、3.75mg/kg、7.5mg/kg或10.0mg/kg 5F9-vcMMAE IV治療,或根據每週兩次(BIW)時 間表(6個劑量)利用3.75mg/kg IV治療,或利用包括媒劑、7.5或10mg/kg 209-vcMMAE之對照治療,或根據QW時間表利用0.135mg/kg或0.18mg/kg MMAE IV投予20天。在QW時間表之第1天、第8天及第15天及BIW時間表之第1天、第4天、第8天、第11天、第15天及第18天投予劑量。藉由以下原理計算游離MMAE之劑量以匹配免疫共軛物劑量中之MMAE量:MMAE之當量劑量為MLN0264劑量之1.8%。連接體+MMAE之當量劑量為5F9-vcMMAE劑量之4%。該等計算係基於平均3.9個MMAE分子/抗體及150kD之游離抗體分子量。實際抗體分子量將因糖基化程度而略有不同。
每週兩次量測腫瘤體積及體重,並持續超過治療期,以兩側再生長動力學,如藉由腫瘤生長延遲(TGD)來證明。持續進行腫瘤體積量測直至腫瘤體積達到治療群組內之單一小鼠之體重之10%為止,此時終止該群組。在第20天測定腫瘤生長抑制(TGI)之百分數([對照群組之平均腫瘤體積-治療群組之平均腫瘤體積]/對照群組之平均腫瘤體積;T/C比)。使用雙尾Welch t-測試將治療群組間之T/C比與對照群組之T/C比相比。由於若一個腫瘤達到大小極限(大約1000mm3),則終止整個群組,故可不能計算平均再生長緩慢之群組之TGD。
使用線性混合效應消退模型評估在治療群組之各對之間腫瘤生長趨勢隨時間之差異。該等模型解釋在多個時間點處量測每一動物之事實。針對每一比較擬合單獨模型,且使用來自模型之預測值計算每一治療群組之曲線下面積(AUC)。然後計算AUC(dAUC)相對於參照群組之降低百分比。統計上顯著P值(<0.05)表明兩個治療群組隨時間之趨勢不同。結果總結於下表19及20中。
在兩個研究中在所有5F9-vcMMAE治療群組中均觀測到抗腫瘤活性,且顯示該效應為劑量依賴性的。兩個研究之結果相當。在根據QW時間表用5F9-vcMMAE以0.938mg/kg IV治療之小鼠中,與媒劑群 組相比TGI為20.7%至21.4%,p值為<0.05。在根據QW時間表IV投予之1.875mg/kg治療群組中,TGI為41.3%至44.7%,p值為<0.001。在根據QW時間表IV投予之3.75mg/kg治療群組中,與媒劑群組相比TGI為65.3%至65.7%(p<0.001)。以7.5mg/kg IV QW投予之5F9-vcMMAE產生之TGI of 84.1%至84.3%(p<0.001),且10mg/kg IV QW(僅研究B)產生91.2%之TGI(p<0.001)。當根據BIW時間表(S)IV投予3.75mg/kg時,觀測到顯著抑制,其中TGI為84.9%(p<0.001)。
以7.5mg/kg及10.0mg/kg之較高209-vcMMAE劑量觀測到中等抗腫瘤活性,其中TGI分別為35.7%及45.4%(p<0.001),但低劑量之209-vcMMAE(1.875mg/kg及3.75mg/kg)不呈現任何抑制(p>0.05)。藉由高209-vcMMAE觀測到之抗腫瘤活性可能歸因於免疫共軛物之MMAE部分之非特異性活性。
投予游離毒素MMAE產生混合結果:IV QW投予之0.075mg/kg、0.135mg/kg及0.15mg/kg不產生任何腫瘤生長抑制(p>0.05),但IV QW投予0.18mg/kg產生50.4%之TGI(p<0.001)。
在治療期期間觀測到之最大的最大體重損失為在研究B之游離毒素0.18mg/kg MMAE群組及相同研究之0.938mg/kg 5F9-vcMMAE群組中在第7天之2.3%。此指示該藥物耐受良好。
超過治療期仍持續進行腫瘤體積量測直至腫瘤體積達到治療群組內之單一小鼠之體重之10%,且然後終止治療群組。在該等研究中,腫瘤再生長似乎為劑量依賴性的。
表19. SCID小鼠中之原發性人類結腸腫瘤異種移植物之治療之研究A結果。
在CT26 hGCC/luc 32號播散性模型(balb/c小鼠)中利用裸5F9抗hGCC抗體之先導性效力研究
此模型測試裸抗體結合至循環中之GCC表現腫瘤細胞並預防新腫瘤產生之能力。藉由i.v.利用CT26 hGCC/luc 32號細胞以1×105/小鼠及5×105/小鼠對雌性balb/c小鼠接種。向對照群組投予媒劑0.9% NaCl及非特異性抗體(裸209)用於與投予裸5F9比較。兩種抗體係經改造(在pLKTOK58載體中)以具有IgG1同種型,故在結合至細胞表面抗原(即針對5F9之GCC及針對209之不相關標靶)後其Fc區可引發抗體依賴性細胞調介之細胞毒性反應。在藉由i.v.利用一次/週i.v×4(q7d×4)之給藥時間表接種之前一天開始給藥。藉由Xenogen成像系統每週兩次監測腫瘤生長。亦每週兩次監測體重及存活。在此研究結束時獲取肺重量及包括MRI影像之影像。
如圖2中所顯示,5F9群組(40mg/kg及10mg/kg;1×105/小鼠)顯示效力(在接種後第34天:T/C(治療/對照)為0.04至0.05)。與209群組相比5F9群組之T/C在接種後第34天為0.18至0.14。與0.9% NaCl(生理鹽水)群組相比209 40mg/kg群組之T/C為0.64。在5×105群組中利用5F9未見任何益處。
每一群組在此研究結束時之肺重量顯示於圖3中。T測試:媒劑相對於209 40mg/kg P=0.4;媒劑相對於5F9 40mg/kg P<0.05;媒劑相對於5F9 10mg/kg P<0.01。對肺之目測證實,5F9-治療群組中之腫瘤結節少於媒劑或209-治療群組。小鼠之活體內MRI顯示在媒劑治療小鼠中大量肺腫瘤滲出至周圍組織及心臟移位。在5F9 40mg/kg治療小鼠中,看見正常肺呈現且無腫瘤之證據。
存活曲線顯示於圖4中。觀測到利用5F9治療群組(1×105)時之存活顯著增加,且在5F9 10mg/kg與40mg/kg群組之間無差別。
實例4:生成抗體產生細胞系
為生成以>600mg/L之生產率表現5F9之穩定CHO細胞系純系,藉由將輕鏈可變區(SEQ ID NO:19)及重鏈可變區(SEQ ID NO:17)亞選 殖至含有WT人類IgG1 Fc及新黴素抗性基因之pLKTOK58表現載體中來生成5F9之表現載體。5F9可變區-IgG1融合產物之表現係處在EF-1a啟動子之控制下。
抗-GCC人類單株抗體5F9可變區之選殖及測序
自人類融合瘤46.5F9亞純系8.2分離(Qiagen之RNeasy套組)總RNA。此融合瘤攜帶輕鏈之「標準之」公開κ恆定區(GenBank登錄號AW383625或BM918539)及重鏈之「標準之」公開IgG2恆定區(GenBank登錄號BX640623或AJ294731)。藉由傳統方法(Nature Methods 2,629-630(2005))合成5’race-ready多聚G尾cDNA。自cDNA藉由5’race使用多聚C錨定寡聚糖與對K恆定區具有特異性之反向引物之組合PCR擴增輕鏈可變區。利用對IgG2恆定區具有特異性之反向引物與對已知重鏈前導序列具有特異性之正向引物之多個組合擴增重鏈可變區。對PCR產物進行TOPO®選殖(InvitrogenTM,Life Technologies公司),並利用M13F及M13R引物測序。
攜帶抗-GCC人類單株抗體5F9之哺乳動物表現載體之構築
構築攜帶5F9輕鏈及重鏈可變區之哺乳動物表現載體以生成產生CHO細胞系。對於天然構築體,將5F9輕鏈及重鏈之可變區亞選殖至pLKTOK58D(美國專利申請案第20040033561號)中。此載體攜帶兩種哺乳動物選擇標誌:新黴素抗性及DHFR/胺甲喋呤(用於擴增)。該載體允許自串聯EF1α啟動子共表現輕鏈及重鏈二者,該等串聯EF1α啟動子各自位於該載體之前導序列-κ恆定區及前導序列-IgG1(野生型Fc)恆定區之上游。對於亞選殖,自序列經證實之TOPO純系利用含有獨特限制位點之基因特異性引物PCR擴增輕鏈及重鏈之可變區以定向選殖至載體之各別前導序列-κ及前導序列-IgG1區域之接點中。引物之序列係如下(5F9可變區特異性序列呈粗體):
天然5F9輕鏈前導序列可變引物:
正向NotI (SEQ ID NO:21)
反向BsiWI (SEQ ID NO:22)
天然5F9重鏈前導序列可變引物
正向EcoRI (SEQ ID NO:23)
反向Blpl (SEQ ID NO:24)
藉由輕鏈及重鏈二者之雙鏈DNA測序確定純系。
使用兩種轉染方法將構築體引入CHO細胞中:傳統MPI過程及Crucell過程。利用天然5F9構築體使用傳統MPI過程起始CHO細胞轉染。使用線性化及非線性化DNA並利用電穿孔或Lipopfectamine 2000 CD轉染。藉助選擇於G418、非核苷培養基及5nM胺甲喋呤中選擇生成大約30個穩定庫。基於抗體產生量之FMAT分析,選擇3個穩定庫用於選殖。具有最高產量之庫分泌以12.2ug/ml抗體。該3個庫已經冷凍。
可評價Crucell STAR元件以製備含有STAR元件之5F9表現載體。
5F9/hIgG1重鏈核苷酸序列為: (SEQ ID NO:31)
5F9/hIgG1重鏈蛋白質序列為: (SEQ ID NO:32)
5F9/hκ輕鏈核苷酸序列為: (SEQ ID NO:33)
5F9/hκ輕鏈蛋白質序列為: (SEQ ID NO:34)
將5F9之下文所列示之重鏈及輕鏈核酸序列插入pTOK58D載體中: (SEQ ID NO:35)
(SEQ ID NO:36)
將下文編碼Abx-229重鏈及輕鏈序列之序列插入pTOK58D載體中: (SEQ ID NO:37)
(SEQ ID NO:38)
實例5:原發性人類轉移性結腸直腸腫瘤中之GCC表現
研發兔單株抗-GCC抗體(在本文中稱為MIL-44-148-2)以定量評價雌性SCID小鼠中之四種源自mCRC患者樣品之不同原發性人類腫瘤異種移植物(「PHTX」)(在本文中稱為PHTX-09c、PHTX-21cm、PHTX-17c及PHTX-11c)中之GCC表現。使用先前證實具有較高之GCC表現量之源自GCC轉染細胞系之腫瘤異種移植物模型(HEK293-GCC 2號)作為對照。
使用Epitomics之RabMAb®服務(Burlingame,CA)生成針對如下重組蛋白之抗-GCC兔單株抗體:其組合與其中兩個突變Fc受體結合區域(FcR)係經突變以防止Fc受體結合之小鼠IgG2a Fc區(mIgG2a FcRmutII)稠合之人類GCC之細胞外區域。在Epitomics藉由融合來自經免疫兔之分離B細胞與Epitomics之專門融合伴侶細胞系生成真正的兔-兔融合瘤(參見美國專利7,402,409;7,429,487;7,462,697;7,575,896;7,732,168;及8,062,867)。藉由ELISA及流式細胞術(FCM)測試並證實抗體對GCC之特異性。藉由ELISA及流式細胞術(FCM)測試並證實抗-GCC抗體之特異性。篩選若干純系用於免疫組織化學,且選擇MIL-44-148-2純系為具有最優活性。
測定輕鏈及重鏈可變區之序列。下表21係MIL-44-148-2抗-GCC抗體之可變區之SEQ ID NO之總結。重鏈及輕鏈中之每一者之可變區之胺基酸及核酸序列分別顯示於表22及23中。
MIL-44-148-2抗體之重鏈及輕鏈之CDR中之每一者之胺基酸及核酸序列分別顯示於表24及25中。
MIL-44-148-2 H2核酸(SEQ ID NO:39)
MIL-44-148-2 H2胺基酸(SEQ ID NO:40)
MIL-44-148-2 L5核酸(SEQ ID NO:41)
MIL-44-148-2 L5胺基酸(SEQ ID NO:42)
利用MIL-44-148-2之免疫組織化學
對5μm厚切片評估原發性人類腫瘤異種移植物之福爾馬林(Formalin)固定且石蠟包埋(FFPE)之組織中之GCC蛋白質含量,並在Ventana Medical Systems(Tucson,AZ)Discovery XT®自動化染色器上與MIL-44-148-2抗體(3.5μg/mL)一起培育1小時。利用兔抗-山羊二級抗體(Vector Laboratories)使抗體生物素化,並利用3,3’-二胺基貝斯丁(3,3’-diaminobexidine,DAB)基板定位系統(Ventana Medical Systems)顯影。利用蘇木精對載玻片進行對比染色,並使用Aperio全像掃描系統(Aperio whole slide scanning system)成像。
圖5A至5E繪示各種腫瘤異種移植物模型中IHC分析之結果。如圖5A至5E中所顯示,GCC含量在原發性人類腫瘤異種移植物間有所不同,其中評分在源自HEK293-GCC腫瘤異種移植物之細胞中為4+,在源自mCRC患者之各種PHTX腫瘤異種移植物中為1+、2+及2至3+。
測試5F9 vcMMAE免疫共軛物以不同濃度在四種原發性人類腫瘤異種移植物模型中之單一藥劑抗腫瘤活性,以探究GCC表現量在腫瘤敏感性是否起作用。使用利用針對不相關標靶產生且與GCC無任何交叉反應性之人類IgG1單株抗體製備之基於MMAE之抗體藥物共軛物(在圖6A至6E中稱為209-vcMMAE)作為陰性對照。亦使用游離MMAE作為陰性對照。各種異種移植物模型中之5F9 vcMMAE劑量範圍、給藥時間表及相應效力之總結顯示於下表26中(T/C=腫瘤/對照之體積)。
各種異種移植物模型中之單一藥劑活體內活性之結果繪示於圖6A至6E中。如圖6A中所顯示,在如上文所闡述之IHC分析中所展示具有相對高之GCC抗原密度(評分2至3+)之PHTX-09c模型中可見在1.875mg/kg至10mg/kg範圍內之劑量下(在第1天、第8天及第15天I.V.投予QW×3週)具有5F9 vcMMAE誘導之強抗腫瘤活性。如圖6A中所進一步顯示,免疫共軛物之抗腫瘤活性在給藥後(在第15天之最後一次劑量)在7.5mg/kg及10mg/kg含量下再維持3週。腫瘤直至大約第40天才開始再生長。
在PHTX-17c模型中在0.9375mg/kg至10mg/kg範圍內之劑量下(在第1天、第8天及第15天I.V.投予QW×3週)可見對5F9 vcMMAE免疫共軛物之中等敏感性(圖6B),該模型具有中等GCC抗原密度(IHC評分2+)。
亦在PHTX-21c模型中在3.75mg/kg至10mg/kg範圍內之劑量下(在第1天、第8天、第15天及第22天I.V.投予QW×4)可見中等至強之活體內抗腫瘤活性(圖6E),該模型在考慮到其較低之抗原表現量時有點意外(IHC評分1+)。如圖6E中所顯示,3.75mg/kg及10mg/kg劑量有效防止在給藥時間表期間之腫瘤生長。意外地,抗腫瘤活性在給藥後 (在第22天之最後一次劑量)在7.5mg/kg含量下再維持7週至8週,且在給藥後在10mg/kg含量下維持超過15週之出乎意料甚至更長之時間。
相比之下,PHTX-11c模型相對地對在1.875mg/kg至7.5mg/kg範圍內之劑量下(在第1天、第8天及第15天I.V.投予QW×3週)之免疫共軛物具有抗性,儘管該模型具有中等GCC表現量(IHC評分2+)。如圖6C中所顯示,在QW×3給藥時間表期間或在給藥後未觀測到任何抗腫瘤活性。以較高濃度每兩週投予並不顯示抗腫瘤效力之任何改良(圖6D)。
圖7A顯示在PHTX-11c模型中之GCC染色且圖7B顯示MLN0264染色(二者均為IHC),且可看出染色模式重疊。因此,證實5F9 vcMMAE免疫共軛物在難治性PHTX-11c模型中結合至GCC。亦評估血清對腫瘤中之游離MMAE含量以確保5F9 vcMMAE免疫共軛物正由腫瘤處理(即免疫共軛物正經內化且MMAE正經裂解)。MMAE難治性PHTX-11c模型及敏感性PHTX-09c及HEK293 GCC 2號模型中之游離MMAE血清及腫瘤含量之比較顯示於下表27中。證實在給藥期間及在給藥後腫瘤內藥物之存在。另外,此腫瘤模型中之游離MMAE含量與對免疫共軛物具有敏感性之腫瘤異種移植物模型中所見之含量相同。該等結果證明對於5F9 vcMMAE而言具有難治性之臨床前模型(例如PHTX-11c模型)有效結合並處理抗-GCC ADC。
在對5F9 vcMMAE免疫共軛物之腫瘤敏感性中亦將致癌突變狀態考慮為潛在因素。所測試之各種異種移植物模型之基因型顯示於下表28中。表29總結各種腫瘤異種移植物模型之抗原密度、突變狀態、給藥方案及活體內效力。儘管如圖6A至6D中所展示對5F9 vcMMAE免疫共軛物之敏感性似乎部分地由抗原密度驅動,但其似乎不依賴於致癌突變狀態。應注意,難治性PHTX-11c模型呈現與敏感性PHTX-09c及PHTX17c模型不同之KRAS突變。不希望受任何理論限制,在KRAS中之密碼子12與密碼子61突變之間無已知生物差別,且本發明者已證明具有該等突變之細胞在活體外細胞毒性分析中對5F9 vcMMAE免疫共軛物具有敏感性。
總而言之,5F9 vcMMAE誘導之抗腫瘤活性似乎部分地取決於腫瘤中之抗原密度。顯示具有高GCC抗原密度之異種移植物腫瘤模型(293HEK GCC 2號及PHTX-09c)對免疫共軛物具有高敏感性,而相比之下具有較低抗原密度值之異種移植物模型具有中等敏感性,PHTX-11c模型(其對免疫共軛物具有抗性,儘管證實結合至腫瘤內之GCC及 免疫共軛物之有效腫瘤處理)除外。進一步探究PHTX-11c模型中之抗性機制。
實例6:抗-GCC免疫共軛物及CPT-11(伊立替康)之組合投予之活體內評價
此研究之目的係評價在實例5中所闡述之四種原發性人類腫瘤異種移植物模型(PHTX-09c、PHTX-21c、PHTX-17c及PHTX-11c)中藉由組合投予5F9 vcMMAE免疫共軛物(在本文中亦稱為「MLN0264」)及CPT-11(拓撲異構酶I抑制劑,亦稱為伊立替康或Camptosar®)所誘導之活體內抗腫瘤活性。該等研究係如以下實施。
向攜帶PHTX-09C s.c異種移植物之雌性CB-17 SCID小鼠靜脈內投予之5F9 vcMMAE及CPT-11之抗腫瘤活性(研究編號CPGC-11-EF07)
如實例5中所展示,PHTX-09c模型對各種濃度之5F9 vcMMAE免疫共軛物之單一藥劑活性具有高敏感性。此研究之目標係評價5F9 vcMMAE免疫共軛物與CPT-11之組合。更具體而言,此研究之目的係評價根據每週一次給藥時間表以1.875及3.75mg/kg靜脈內投予5F9 vcMMAE與根據2天給藥/5天停藥之給藥時間表以10mg/kg靜脈內投予 CPT-11之組合於CB17 SCID小鼠中之PHTX-09c s.c.異種移植物中的抗腫瘤活性。根據表30製備劑量調配物。研究設計顯示於表31中。
每一治療群組之終點為a)腫瘤體積達到10%體重;或b)體重損失>20%。研究起始日期之預計腫瘤體積為200mm3
不早於給藥前1天,對所有動物稱重並精確至克,並分組。在每 次投予前使給藥溶液渦旋,以確保正確遞送化合物。動物接受使用25號至30號、½英吋至3/4英吋長之1cc注射器I.V.投予之大約0.1ml劑量。基於20克之平均體重向動物給藥。
每週兩次使用游標卡尺(0.01mm)獲得腫瘤體積量測。使用下式計算腫瘤體積:V=W2×L/2(V=腫瘤體積,W=沿腫瘤短軸所量測之寬度,L=沿腫瘤短軸所量測之長度)。亦每週兩次使用Mettler天平(0.1gm)獲取體重量測。
在腫瘤生長抑制(TGI)%及腫瘤生長延遲(TGD)方面評價效力。在任一天(當對照治療群組之最大腫瘤體積(MTV)達到最大允許腫瘤體積時)使用下式評估TGI:TGI=100-[治療MTV/對照MTV]×100。
藉由計算T-C來評估TGD,其中T=治療群組腫瘤達到預定大小之平均時間(天數),且其中C=對照群組腫瘤達到預定大小(例如1,000mm3)之平均時間(天數)。
如圖8A中所顯示,劑量在所有治療群組中均耐受良好。各種治療群組之平均腫瘤體積曲線顯示於圖8B中。停止給藥後之腫瘤再生長動力學顯示於圖8C中。研究結果總結於表32中。
使用混合效應線性消退模型對CPGC-11-EF07研究實施縱向分析,以在某種程度上確定5F9 vcMMAE免疫共軛物及CPT-11之組合抗腫瘤效力為累加的還是協同的。所有腫瘤值(腫瘤體積或光子通量)在log 10轉形之前均加1。在治療群組間比較該等值,以評估隨時間之趨勢之差異是否在統計上顯著。為比較治療群組之各對,使用最大概似法將以下混合效應線性消退模型擬合至數據:
其中Y ijk 係在i th 治療中k th 動物在j th 時間點處之log 10腫瘤值,Y i0k 係在i th 治療中k th 動物之第0天(基線)log 10腫瘤值,天數j係中位數居中之時間點且(與天數 2 j 一起)作為連續變量來處理,且e ijk 係殘餘誤差。使用空間冪次律共變數矩陣解釋對同一動物隨時間之重複量測。若相互作用術語以及天數 2 j 術語在統計上不顯著,則將其去除。
使用概似比測試評估一對給定之治療群組是否呈現在統計上顯著之差異。將完整模型之-2 log概似與無任何治療項者(簡化模型)相比,且使用卡方測試(Chi-squared test)來測試該等值之差異。測試之自由度係計算為完整模型之自由度與簡化模型之自由度間之差異。自以上模型獲得log腫瘤值之預測差異(Y ijk -Y i0k ,其可解釋為log 10(相對於第0天之倍數變化))來計算每一治療群組之平均AUC值。然後將dAUC值計算為:
此假定AUC ctl 為正數。在AUCctl為負數之情況下,使上式乘以-1。
對於協同作用分析,使用log腫瘤值之觀測差異計算每一動物之AUC值。在自該研究去除治療群組中之動物之情況下,將最後觀測之腫瘤值轉入所有後續時間點。使用來自上文所闡述之成對模型之預測 值計算對照或媒劑群組之AUC。為解決關於組合治療劑之效應相對於個別治療劑為協同的、累加的還是次累加的問題,計算以下統計數據:
協同作用評分=(平均值(Frac A )+平均值(Frac B )-平均值(Frac AB )) * 100 (6)
其中A k B k 係個別治療群組中之k th 動物,且AB k 係組合治療群組中之k th 動物。AUC ctl 係對照群組之模型預測AUC,且作為無可變性之常數來處理。若協同作用評分小於0,則認為組合治療之效應為協同的,若協同作用評分等於0,則為累加的,且若協同作用評分大於0,則為次累加的。協同作用評分之標準誤係計算為群組A、B及AB間之平方標準誤之和之平方根。使用Welch-Satterthwaite等式估計自由度。藉由將協同作用評分除以其標準誤來計算P值,並利用上文計算之自由度針對t-分佈(雙尾)進行測試。
考慮到此研究之探究性質,多重比較不存在任何預定調整並檢查終點。所有<0.05之P值在此分析中稱為在統計上顯著。
表33係群組符號之注釋表。表34列示成對比較之結果。dAUC係治療AUC中所觀測到之相對於參照群組之降低百分比。負的dAUC係解釋為AUC相對於參照之增加。重要的是不僅評價P值,且亦評價dAUC。與顯著P值、但小dAUC值比較可能並不感興趣。
表35列示協同作用分析。統計上顯著之負的協同作用評分指示協同組合(「Syn.」)。統計上顯著之正的協同作用評分指示次累加或拮抗組合(「Antag.」)。統計上不顯著之評分應視為累加的(「Add.」)。
如表35中所顯示,使用QW×3週I.V.投予3.75mg/kg劑量之免疫共軛物及在第1天及第2天I.V.投予10mg/kg劑量之CPT-11(2天給藥、5天停藥之時間表)之給藥方案達成協同活性。I.V.QW投予1.875mg/kg之較低劑量之免疫共軛物與根據2天停藥、5天停藥之時間表I.V.投予10mg/kg之CPT-11並持續3週的組合產生累加效應。
如圖8B及8C中所顯示,5F9 vcMMAE免疫共軛物及CPT-11二者在PHTX-09c模型(即證明具有相對高之GCC抗原密度(IHC評分2至3+)之模型)中分別具有強及中等單一藥劑活性。意外地,每一藥劑之個別效力可藉由在利用次最優濃度之免疫共軛物之給藥方案下組合投予兩種藥劑來進一步改良。免疫共軛物及CPT-11之組合起作用以防止腫瘤在組合給藥方案期間生長並進一步防止腫瘤在停止給藥(在第15天之最後一次劑量)後再生長並再持續3週至4週。
向攜帶PHTX-21C s.c.異種移植物之雌性CB-17 SCID小鼠靜脈內投予之MLN0264、CPT-11之抗腫瘤活性(研究編號CPGC-11-04)
如實例5中所展示,PHTX-21c模型對具有中等敏感性各種濃度之5F9 vcMMAE免疫共軛物之單一藥劑活性,儘管該模型具有較低GCC抗原密度值(IHC評分1+)。此研究之目標係評價5F9 vcMMAE及CPT-11在PHTX-21c模型中之抗腫瘤活性。如上文所闡述之CPGC-11-07研究所展示,I.V.QW投予3.75mg/kg劑量之免疫共軛物與根據2天給藥、5天停藥之時間表I.V.投予10mg/kg劑量之CPT-11的組合產生協同活性。應用自CPGC-11-07研究學到之知識並探究CPT-11之額外給藥方案,在PHTX-21c模型中評價根據QW給藥時間表以3.75mg/kg I.V.投予5F9 vcMMAE與以10mg/kg或15mg/kg根據2天給藥/5天停藥之給藥時間表投予及根據30mg/kg每週一次時間表投予CPT-11的組合。根據表36製備劑量調配物。研究設計顯示於表37中。
藉由30mg/kg給藥溶液之1:1稀釋製備15mg/kg給藥溶液。藉由15mg/kg給藥溶液之2:1稀釋製備10mg/kg給藥溶液。
每一治療群組之終點為a)腫瘤體積達到10%體重;或b)體重損失>20%。研究起始日期之預計腫瘤體積為200mm3
不早於給藥前1天,對所有動物稱重並精確至克,並分組。在每次投予前使給藥溶液渦旋,以確保正確遞送化合物。動物接受使用27號至30號、½英吋至3/4英吋長之1cc注射器I.V.投予之大約0.1ml劑量。基於18.6克之平均體重向動物給藥。
每週兩次使用游標卡尺(0.01mm)獲得腫瘤體積量測。使用下式計算腫瘤體積:V=W2×L/2(V=腫瘤體積,W=沿腫瘤短軸所量測之寬度,L=沿腫瘤短軸所量測之長度)。亦每週兩次使用Mettler天平(0.1gm)獲取 體重量測。
在腫瘤生長抑制(TGI)%及腫瘤生長延遲(TGD)方面評價效力。在任一天(當對照治療群組之最大腫瘤體積(MTV)達到最大允許腫瘤體積時)使用下式評估TGI:TGI=100-[治療MTV/對照MTV]×100。
藉由計算T-C來評估TGD,其中T=治療群組腫瘤達到預定大小(例如1,000mm3)之平均時間(天數),且其中C=對照群組腫瘤達到預定大小之平均時間(天數)。
如圖9A中所顯示,劑量在所有治療群組中均耐受良好。各種治療群組之平均腫瘤體積曲線顯示於圖9B中。如圖8B中所顯示,免疫共軛物以單一藥劑形式在3.75mg/kg劑量下具有相對低之抗腫瘤活性,而CPT-11在所投予之兩個較低劑量下具有中等至較高單一藥劑活性。腫瘤再生長動力學曲線顯示於圖9C中。如圖9B及9C中所顯示,與10mg/kg及15mg/kg CPT-11群組之組合治療群組間在給藥期間之腫瘤體積及腫瘤再生長在給藥後達到1000mm3之預定體積之天數方面無差異。兩種給藥方案不僅有效防止在給藥期間之腫瘤生長,且亦意外地誘導在給藥後之腫瘤體積降低(參見圖9B)。兩種給藥方案亦有效防止腫瘤在給藥後再生長並持續額外5週。腫瘤直至大約第50天才開始再生長。研究結果總結於表38中。
使用混合效應線性消退模型對CPGC-11-EF04研究實施縱向分析,以在某種程度上確定5F9 vcMMAE免疫共軛物及CPT-11之組合抗腫瘤效力為累加的還是協同的。所有腫瘤值(腫瘤體積或光子通量)在log 10轉形之前均加1。在治療群組間比較該等值,以評估隨時間之趨勢之差異是否在統計上顯著。為比較治療群組之各對,使用最大概似法將以下混合效應線性消退模型擬合至數據:
其中Y ijk 係在i th 治療中k th 動物在j th 時間點處之log 10腫瘤值,Y i0k 係在i th 治療中k th 動物之第0天(基線)log 10腫瘤值,天數j係中位數居中之時間點且(與天數 2 j 一起)作為連續變量來處理,且e ijk 係殘餘誤差。使用空間冪次律共變數矩陣解釋對同一動物隨時間之重複量測。若相互作用術語以及天數 2 j 術語在統計上不顯著,則將其去除。
使用概似比測試評估一對給定之治療群組是否呈現在統計上顯著之差異。將完整模型之-2 log概似與無任何治療項者(簡化模型)相比,且使用卡方測試來測試該等值之差異。測試之自由度係計算為完整模型之自由度與簡化模型之自由度間之差異。
自以上模型獲得log腫瘤值之預測差異(Y ijk -Y i0k ,其可解釋為log 10(相對於第0天之倍數變化))來計算每一治療群組之平均AUC值。然後將dAUC值計算為:
此假定AUC ctl 為正數。在AUCctl為負數之情況下,使上式乘以 -1。
對於協同作用分析,使用log腫瘤值之觀測差異計算每一動物之AUC值。在自該研究去除治療群組中之動物之情況下,將最後觀測之腫瘤值轉入所有後續時間點。使用來自上文所闡述之成對模型之預測值計算對照或媒劑群組之AUC。為解決關於組合治療劑之效應相對於個別治療劑為協同的、累加的還是次累加的問題,計算以下統計數據:
協同作用評分=(平均值Frac A )+平均值Frac B )-平均值Frac AB )) * 100 (6)
其中A k B k 係個別治療群組中之k th 動物,且AB k 係組合治療群組中之k th 動物。AUC ctl 係對照群組之模型預測AUC,且作為無可變性之常數來處理。協同作用評分之標準誤係計算為群組A、B及AB間之平方標準誤之和之平方根。使用Welch-Satterthwaite等式估計自由度。實施假設測試以確定協同作用評分是否不同於0。藉由將協同作用評分除以其標準誤來計算P值,並利用上文計算之自由度針對t-分佈(雙尾)進行測試。
將該效應分類成四種不同類別。若協同作用評分小於0,則認為其為協同的,且若協同作用評分並非在統計上不同於0,則為累加的。若協同作用評分大於0,但該組合之平均AUC低於兩種單一藥劑治療劑中之最低平均AUC,則該組合為次累加的。若協同作用評分大於0,且該組合之平均AUC大於單一藥劑治療劑中之至少一者之平均AUC,則該組合為拮抗的。
區間分析(若要求)涉及與另一治療群組及時間間隔相比之指定治療群組及時間間隔。對於給定群組、時間間隔及動物,藉由下式估計 每天之腫瘤生長速率速率=100 * (10Y/△t -1) (7)
其中△Ylog 10腫瘤體積在所關注間隔後之差異,且△t係時間間隔之長度。若缺失一或兩個時間點,則忽略該動物。然後使用變異數不等之雙側非成對t-測試比較動物間之平均速率。
考慮到此研究之探究性質,多重比較不存在任何預定調整並檢查終點。所有<0.05之P值在此分析中稱為在統計上顯著。
表39係群組符號之注釋表。表40列示成對比較之結果。dAUC係治療AUC中所觀測到之相對於參照群組之降低百分比。負的dAUC係解釋為AUC相對於參照之增加。重要的是不僅評價P值,且亦評價dAUC。與顯著P值、但小dAUC值比較可能並不感興趣。
表41列示協同作用分析。統計上顯著之負的協同作用評分指示協同組合(「Syn.」)。當該組合相比於表現得最好之單一藥劑表現得更好(即具有較低AUC)時,統計上顯著之正的協同、指示次累加組合(「Sub-add」)。當該組合相比於表現得最好之單一藥劑表現得更不好時,統計上顯著之正的協同作用評分指示拮抗組合(「Antag.」)。統計上不顯著之評分應視為累加的(「Add.」)。
如表41中所顯示,在MLN0264 3.75mg/kg QW CPT-11 10mg/kg D1、D2/週(群組E)及ML0264 3.75mg/kg QW CPT-11 15mg/kg D1、D2/週(群組F)治療群組之間達成協同活性。使用CPT-11之替代時間表(每週一次,如與每週第1天及第2天相對)之第三治療群組G可見累加效應。不希望受任何理論限制,此替代給藥時間表可對該組合之累加與協同效應具有影響在此治療群組中CPT-11之劑量亦較高。
總而言之,5F9 vcMMAE免疫共軛物與CPT-11之組合根據每週第1天及第2天給藥時間表在不同給藥量在低抗原表現PHTX-21c模型中之作用意外地良好。藥劑之組合不僅防止在給藥期間之腫瘤生長,且亦不可預測地在給藥後減小腫瘤大小。該組合亦防止在停止給藥後之腫瘤再生長並持續出乎意料長之時期。如本文中所展示,5F9 vcMMAE免疫共軛物起作用以使腫瘤對DNA破壞活性敏感,從而使得該兩種藥劑之組合在次最優劑量下以協同方式起作用。
向攜帶PHTX-17C s.c.異種移植物之雌性CB-17 SCID小鼠靜脈內投予之MLN0264、CPT-11之抗腫瘤活性(研究編號CPGC-11-EF06)
如上文所闡述,上文顯示組合投予5F9 vcMMAE免疫共軛物及CPT-11在兩種對免疫共軛物之單一藥劑活性具有中等至較高敏感性但具有極為不同之GCC抗原含量之原發性人類腫瘤異種移植物模型(PHTX-09c具有IHC評分2至3+;PHTX-21c具有IHC評分1+)中具有協同活性。此研究之目標係評價在具有中等GCC抗原密度值並對單獨免疫共軛物具有中等敏感性之模型中之組合活性。如實例5中所顯示,PHTX-17c模型呈現中等抗原表現(IHC評分2+),並對5F9 vcMMAE免疫共軛物之單一藥劑活性呈現中等敏感性。因此,使用PHTX-17c模型評價根據QW給藥時間表以3.75mg/kg I.V.投予5F9 vcMMAE與根據2天給藥/5天停藥給藥時間表以10mg/kg或15mg/kg I.V.投予CPT-11的組合。根據表42製備劑量調配物。研究設計顯示於表43中。
藉由30mg/kg給藥溶液之1:1稀釋製備15mg/kg給藥溶液。藉由15mg/kg給藥溶液之2:1稀釋製備10mg/kg給藥溶液。
每一治療群組之終點為a)腫瘤體積達到10%體重;或b)體重損失>20%。研究起始日期之預計腫瘤體積為200mm3
不早於給藥前1天,對所有動物稱重並精確至克,並分組。在每 次投予前使給藥溶液渦旋,以確保正確遞送化合物。動物接受使用25號至30號、½英吋至3/4英吋長之1cc注射器I.V.投予之大約0.1ml劑量。基於20.5克之平均體重向動物給藥。
每週兩次使用游標卡尺(0.01mm)獲得腫瘤體積量測(0.01mm)。使用下式計算腫瘤體積:V=W2×L/2(V=腫瘤體積,W=沿腫瘤短軸所量測之寬度,L=沿腫瘤短軸所量測之長度)。亦每週兩次使用Mettler天平(0.1gm)獲取體重量測。
在腫瘤生長抑制(TGI)%及腫瘤生長延遲(TGD)方面評價效力。在任一天(當對照治療群組之最大腫瘤體積(MTV)達到最大允許腫瘤體積時)使用下式評估TGI:TGI=100-[治療MTV/對照MTV]×100。
藉由計算T-C來評估TGD,其中T=治療群組腫瘤達到預定大小(例如1,000mm3)之平均時間(天數),且其中C=對照群組腫瘤達到預定大小之平均時間(天數)。
如圖10A中所顯示,劑量在所有治療群組中均耐受良好。各種治療群組之平均腫瘤體積曲線顯示於圖10B中。停止給藥後之腫瘤再生長動力學顯示於圖10C中。如圖10C中所顯示,CPT-11 10mg/kg與15mg/kg組合治療群組之間無差異;兩者均防止腫瘤在給藥後再生長並持續額外3週+。研究結果總結於表44中。
如先前參照上文CPGC-11-EF07研究所闡述使用混合效應線性消退模型對CPGC-11-EF06研究實施縱向分析,以在某種程度上確定5F9 vcMMAE免疫共軛物及CPT-11之組合抗腫瘤效力為累加的還是協同的。
表45係群組符號之注釋表。表46列示成對比較之結果。dAUC係治療AUC中所觀測到之相對於參照群組之降低百分比。負的dAUC係解釋為AUC相對於參照之增加。重要的是不僅評價P值,且亦評價dAUC。與顯著P值、但小dAUC值比較可能並不感興趣。
表47列示協同作用分析。統計上顯著之負的協同作用評分指示協同組合(「Syn.」)。統計上顯著之正的協同作用評分指示次累加或拮抗組合(「Antag.」)。統計上不顯著之評分應視為累加的(「Add.」)。
如表47中所顯示,在所有三種組合治療群組間達成累加活性。
總而言之,具有中等GCC抗原密度值(IHC評分2+)並對當以單一藥劑形式投予時之5F9 vcMMAE免疫共軛物具有中等敏感性之PHTX-17c模型亦對組合投予免疫共軛物與CPT-11展示中等敏感性,此乃因該組合治療為累加的,而非利用PHTX-09c及PHTX-21c模型(二者均對免疫共軛物具有中等至較高敏感性但分別具有較高及較低之GCC抗原表現量)所見之協同效應。
向攜帶PHTX-11c s.c.異種移植物之雌性CB-17 SCID小鼠靜脈內投予之MLN0264/CPT-11之抗腫瘤活性(研究編號CPGC-12-EF01)
如上文所闡述,上文顯示組合投予5F9 vcMMAE免疫共軛物及CPT-11在兩種對免疫共軛物之單一藥劑活性具有中等至較高敏感性但 具有極為不同之GCC抗原含量之原發性人類腫瘤異種移植物模型(PHTX-09c具有IHC評分2至3+;PHTX-21c具有IHC評分1+)中具有協同活性,但在對免疫共軛物具有中等敏感性並具有中等GCC抗原密度值之模型(PHTX-17c具有IHC評分2+)中具有累加活性。此研究之目標係探究在具有中等GCC抗原密度值但對單獨免疫共軛物具有抗性之模型中之組合活性。如實例5中所顯示,PHTX-11c模型呈現中等抗原表現(IHC評分2+),但對5F9 vcMMAE免疫共軛物之單一藥劑活性具有抗性(圖6C及6D))。因此,使用PHTX-11c模型評價以7.5mg/kg之劑量開始I.V.QW投予5F9 vcMMAE與以10mg/kg、15mg/kg根據2天給藥/5天停藥之給藥時間表並以30mg/kg QW投予CPT-11組合的組合療法。根據表48製備劑量調配物。研究設計顯示於表49中。
藉由30mg/kg給藥溶液之1:1稀釋製備15mg/kg給藥溶液。藉由15mg/kg給藥溶液之2:1稀釋製備10mg/kg給藥溶液。
每一治療群組之終點為a)腫瘤體積達到10%體重;或b)體重損失>20%。研究起始日期之預計腫瘤體積為200mm3
不早於給藥前1天,對所有動物稱重並精確至克,並分組。在每次投予前使給藥溶液渦旋,以確保正確遞送化合物。動物接受使用25號至30號、½英吋至3/4英吋長之1cc注射器I.V.投予之大約0.1ml劑量。基於20.1克之平均體重向動物給藥。
每週兩次使用游標卡尺(0.01mm)獲得腫瘤體積量測(0.01mm)。使用下式計算腫瘤體積:V=W2×L/2(V=腫瘤體積,W=沿腫瘤短軸所量測之寬度,L= 沿腫瘤短軸所量測之長度)。亦每週兩次使用Mettler天平(0.1gm)獲取體重量測。
在腫瘤生長抑制(TGI)%及腫瘤生長延遲(TGD)方面評價效力。在任一天(當對照治療群組之最大腫瘤體積(MTV)達到最大允許腫瘤體積時)使用下式評估TGI:TGI=100-[治療MTV/對照MTV]×100。
藉由計算T-C來評估TGD,其中T=治療群組腫瘤達到預定大小之平均時間(天數),且其中C=對照群組腫瘤達到預定大小(例如1,000mm3)之平均時間(天數)。
如圖11A中所顯示,劑量在所有治療群組中均耐受良好。各種治療群組之平均腫瘤體積曲線顯示於圖11B中。腫瘤再生長動力學顯示於圖11C中。
如圖11B中所顯示,單獨免疫共軛物在7.5mg/kg高劑量下具有極低活性,且在所投予之三種不同劑量下利用單獨CPT-11所見之活性存在極少差異。然而,與10mg/kg及15mg/kg之CPT-11二者之組合治療均完全抑制在給藥期間之腫瘤生長,並進一步防止在停止給藥後之腫瘤再生長並持續額外6週至7週。腫瘤直至大約第60天才開始再生長。研究結果總結於表50中。
使用混合效應線性消退模型對CPGC-12-EF01研究實施縱向分析,以在某種程度上確定5F9 vcMMAE免疫共軛物及CPT-11之組合抗腫瘤效力為累加的還是協同的。所有腫瘤值(腫瘤體積或光子通量)在log 10轉形之前均加1。在治療群組間比較該等值,以評估隨時間之趨勢之差異是否在統計上顯著。為比較治療群組之各對,使用最大概似法將以下混合效應線性消退模型擬合至數據:
其中Y ijk 係在i th 治療中k th 動物在j th 時間點處之log 10腫瘤值,Y i0k 係在i th 治療中k th 動物之第0天(基線)log 10腫瘤值,天數j係中位數居中之時間點且(與天數 2 j 一起)作為連續變量來處理,且e ijk 係殘餘誤差。使用空間冪次律共變數矩陣解釋對同一動物隨時間之重複量測。若相互作用術語以及天數 2 j 術語在統計上不顯著,則將其去除。
使用概似比測試評估一對給定之治療群組是否呈現在統計上顯著之差異。將完整模型之-2 log概似與無任何治療項者(簡化模型)相比,且使用卡方測試來測試該等值之差異。測試之自由度係計算為完整模型之自由度與簡化模型之自由度間之差異。
自以上模型獲得log腫瘤值之預測差異(Y ijk -Y i0k ,其可解釋為log 10(相對於第0天之倍數變化))來計算每一治療群組之平均AUC值。然後將dAUC值計算為:
此假定AUC ctl 為正數。在AUC ctl 為負數之情況下,使上式乘以-1。
對於協同作用分析,使用log腫瘤值之觀測差異計算每一動物之AUC值。在自該研究去除治療群組中之動物之情況下,將最後觀測之腫瘤值轉入所有後續時間點。使用來自上文所闡述之成對模型之預測值計算對照或媒劑群組之AUC。為解決關於組合治療劑之效應相對於個別治療劑為協同的、累加的還是次累加的問題,計算以下統計數據:
協同作用評分=(平均值(Frac A )+平均值(Frac B )-平均值(Frac AB )) * 100 (6)
其中A k B k 係個別治療群組中之k th 動物,且AB k 係組合治療群組中之k th 動物。AUC ctl 係對照群組之模型預測AUC,且作為無可變性之常數來處理。協同作用評分之標準誤係計算為群組A、B及AB間之平方標準誤之和之平方根。使用Welch-Satterthwaite等式估計自由度。藉由將協同作用評分除以其標準誤來計算P值,並利用上文計算之自由度針對t-分佈(雙尾)進行測試。
將該效應分類成四種不同類別。若協同作用評分小於0,則認為其為協同的,且若協同作用評分並非在統計上不同於0,則為累加的。若協同作用評分大於0,但該組合之平均AUC低於兩種單一藥劑治療劑中之最低平均AUC,則該組合為次累加的。若協同作用評分大於0,且該組合之平均AUC大於單一藥劑治療劑中之至少一者之平均AUC,則該組合為拮抗的。區間分析(若要求)涉及與另一治療群組及時間間隔相比之指定治療群組及時間間隔。對於給定群組、時間間隔 及動物,藉由下式估計每天之腫瘤生長速率速率=100 * (10Y/△t -1) (7)
其中△Ylog 10腫瘤體積在所關注間隔後之差異,且△t係時間間隔之長度。若缺失一或兩個時間點,則忽略該動物。然後使用變異數不等之雙側非成對t-測試比較動物間之平均速率。
考慮到此研究之探究性質,多重比較不存在任何預定調整並檢查終點。所有<0.05之P值在此分析中稱為在統計上顯著。
表51係群組符號之注釋表。表52列示成對比較之結果。dAUC係治療AUC中所觀測到之相對於參照群組之降低百分比。負的dAUC係解釋為AUC相對於參照之增加。重要的是不僅評價P值,且亦評價dAUC。與顯著P值、但小dAUC值比較可能並不感興趣。
表53列示協同作用分析。統計上顯著之負的協同作用評分指示協同組合(「Syn.」)。當該組合相比於表現得最好之單一藥劑表現得更好(即具有較低AUC)時,統計上顯著之正的協同作用評分指示次累加(「Sub-add」)組合。當該組合相比於表現得最好之單一藥劑表現得更不好時,統計上顯著之正的協同作用評分指示拮抗組合(「Antag」)。統計上不顯著之評分應視為累加的(「Add.」)。
如表53中所顯示,組合活性在MLN0264 7.5mg/kg QW CPT-11 10mg/kg D1、D2/週(治療群組E)中為協同的,且在其他兩個組合治療群組(群組F及G)中為累加的。應注意,協同作用分析僅考慮腫瘤體積/腫瘤生長抑制。其不考慮腫瘤生長延遲。如圖11C中所顯示,利用10mg/kg及15mg/kg之CPT-11與7.5mg/kg之5F9 vcMMAE免疫共軛物活性之組合可見顯著腫瘤再生長延遲(約80天)。因此,圖11C中所顯示之腫瘤再生長動力學表明兩個治療群組E及F之協同活性。考慮到針對兩個治療群組E及F所觀測之意外之腫瘤生長延遲長度及圖11C中所顯示之各別曲線之類似性,將使用與上文所闡述統計方法不同之統計方法再評估治療群組F之協同作用分析。治療群組G(MLN0264 7.5mg/kg QW CPT-11 30mg/kg D1/週)使用一次/週給藥時間表,與治療群組E及F之每週第1天及第2天之時間表相對。不希望受任何理論限 制,此替代給藥時間表刻對此治療群組之累加與協同效應具有影響。
總而言之,具有中等GCC抗原密度(IHC評分2+)但對當以單一藥劑形式投予時之5F9 vcMMAE免疫共軛物具有抗性之PHTX-11c模型在多個給藥方案下對組合療法具有意外之敏感性、特定而言在延遲之腫瘤再生長方面。儘管其對免疫共軛物之單一藥劑活性具有抗性,但免疫共軛物有效地使腫瘤對DNA破壞劑活性敏感。如上文所提及,重複協同作用分析以證實關於延長之腫瘤再生長延遲所見之協同活性。
總之,本文中所闡述之活體內組合研究證明,抗-GCC免疫共軛物與CPT-11之組合以協同方式起作用以抑制腫瘤生長,不管對單獨免疫共軛物之腫瘤敏感性且不管GCC抗原密度。抗腫瘤活性甚至在停止給藥後維持意外長之時期。在每一所評價臨床前模型中,在每一藥劑之次最優劑量下達成協同或增強活性,此證明抗-GCC免疫共軛物與CPT-11之組合提供優於投予任一單獨藥劑之治療益處。預期在該等臨床前模型中所見之協同或增強效應可轉化至臨床模型中。該組合為癌症對單獨免疫共軛物具有抗性之患者提供有希望之治療替代方案。
實例7:抗-GCC免疫共軛物與順鉑之組合投予之活體內評價
此研究之目的係評價在實例5中所闡述之源自mCRC之PHTX-09c原發性人類腫瘤異種移植物(「PHTX」)中藉由組合投予5F9 vcMMAE免疫共軛物(在本文中有時稱為「MLN0264」)及順鉑所誘導之活體內抗腫瘤活性。該研究係如以下實施。
向攜帶PHTX-09c s.c.異種移植物之雌性CB-17 SCID小鼠靜脈內投予之5F9 vcMMAE及順鉑之抗腫瘤活性(研究編號CPGC-11-EF05)
如實例5中所展示,PHTX-09c模型對各種濃度之5F9 vcMMAE免疫共軛物之單一藥劑活性具有高敏感性。此研究之目標係評價5F9 vcMMAE免疫共軛物與順鉑之組合。更具體而言,此研究之目的係評價根據每週一次給藥時間表以1.875mg/kg及3.75mg/kg投予5F9 vcMMAE與根據每週或每兩週一次之給藥時間表以4mg/kg及6mg/kg靜脈內(IV)或腹膜內(IP)投予順鉑之組合於CB17 SCID小鼠中之PHTX-09c s.c.異種移植物中的抗腫瘤活性。根據表54製備劑量調配物。研究設計顯示於表55中。
每一治療群組之終點為a)腫瘤體積達到10%體重;或b)體重損失>20%。研究起始日期之預計腫瘤體積為200mm3
不早於給藥前1天,對所有動物稱重並精確至克,並分組。在每次投予前使給藥溶液渦旋,以確保正確遞送化合物。動物接受使用27號至30號、½英吋至3/4英吋長之1cc注射器I.V.投予之大約0.1ml劑 量。基於20.9克之平均體重向動物給藥。
每週兩次使用游標卡尺(0.01mm)獲得腫瘤體積量測。使用下式計算腫瘤體積:V=W2×L/2(V=腫瘤體積,W=沿腫瘤短軸所量測之寬度,L=沿腫瘤短軸所量測之長度)。亦每週兩次使用Mettler天平(0.1gm)獲取體重量測。
在腫瘤生長抑制(TGI)%及腫瘤生長延遲(TGD);治療對對照腫瘤達到最終研究體積之天數差異)方面評價效力。
在任一天(當對照治療群組之最大腫瘤體積(「MTV」)達到最大允許腫瘤體積時)使用下式評估TGI:TGI=100-[治療MTV/對照MTV]×100。
藉由計算T-C來評估TGD,其中T=治療群組腫瘤達到預定大小之平均時間(天數),且其中C=對照群組腫瘤達到預定大小(例如1,000mm3)之平均時間(天數)。
概言之,i.v.劑量途徑經測定耐受優於i.p.給藥。如圖12A中所顯示,劑量在所有組合治療群組中均耐受良好,且組合治療之耐受優於單獨之順鉑(其中可見體重損失>15%)。每週一次以4mg/kg投予之順鉑可耐受2個劑量,每週一次以6mg/kg投予之順鉑僅可耐受1個劑量。各種治療群組之平均腫瘤體積曲線顯示於圖12B中。
使用混合效應線性消退模型對CPGC-11-EF05研究實施縱向分析,以在某種程度上確定5F9 vcMMAE免疫共軛物及順鉑之組合抗腫瘤效力為累加的還是協同的。所有腫瘤值(腫瘤體積或光子通量)在log 10 轉形之前均加1。在治療群組間比較該等值,以評估隨時間之趨勢之差異是否在統計上顯著。為比較治療群組之各對,使用最大概似法將以下混合效應線性消退模型擬合至數據:
其中Y ijk 係在i th 治療中k th 動物在j th 時間點處之log 10腫瘤值,Y i0k 係在i th 治療中k th 動物之第0天(基線)log 10腫瘤值,天數j係中位數居中之時間點且(與天數 2 j 一起)作為連續變量來處理,且e ijk 係殘餘誤差。使用空間冪次律共變數矩陣解釋對同一動物隨時間之重複量測。若相互作用術語以及天數 2 j 術語在統計上不顯著,則將其去除。
使用概似比測試評估一對給定之治療群組是否呈現在統計上顯著之差異。將完整模型之-2 log概似與無任何治療項者(簡化模型)相比,且使用卡方測試來測試該等值之差異。測試之自由度係計算為完整模型之自由度與簡化模型之自由度間之差異。自以上模型獲得log腫瘤值之預測差異(Y ijk -Y i0k ,其可解釋為log 10(相對於第0天之倍數變化))來計算每一治療群組之平均AUC值。然後將dAUC值計算為:
此假定AUC ctl 為正數。在AUC ctl 為負數之情況下,使上式乘以-1。
對於協同作用分析,使用log腫瘤值之觀測差異計算每一動物之AUC值。在自該研究去除治療群組中之動物之情況下,將最後觀測之腫瘤值轉入所有後續時間點。使用來自上文所闡述之成對模型之預測值計算對照或媒劑群組之AUC。協同作用之量度係如以下定義:
協同作用評分=(平均值(Frac A )+平均值(Frac B )-平均值(Frac AB )) * 100 (6)
其中A k B k 係個別治療群組中之k th 動物,且AB k 係組合治療群組中之k th 動物。AUC ctl 係對照群組之模型預測AUC,且作為無可變性之 常數來處理。協同作用評分之標準誤係計算為群組A、B及AB間之平方標準誤之和之平方根。使用Welch-Satterthwaite等式估計自由度。實施假設測試以確定協同作用評分是否不同於0。藉由將協同作用評分除以其標準誤來計算P值,並利用上文計算之自由度針對t-分佈(雙尾)進行測試。
將該效應分類成四種不同類別。若協同作用評分小於0,則認為其為協同的,且若協同作用評分並非在統計上不同於0,則為累加的。若協同作用評分大於0,但該組合之平均AUC低於兩種單一藥劑治療劑中之最低平均AUC,則該組合為次累加的。若協同作用評分大於0,且該組合之平均AUC大於單一藥劑治療劑中之至少一者之平均AUC,則該組合為拮抗的。
區間分析(若要求)涉及與另一治療群組及時間間隔相比之指定治療群組及時間間隔。對於給定群組、時間間隔及動物,藉由下式估計每天之腫瘤生長速率速率=100 * (10Y/△t -1) (7)
其中△Ylog 10腫瘤體積在所關注間隔後之差異,且△t係時間間隔之長度。若缺失一或兩個時間點,則忽略該動物。然後使用變異數不等之雙側非成對t-測試比較動物間之平均速率。
考慮到此研究之探究性質,多重比較不存在任何預定調整並檢查終點。所有<0.05之P值在此分析中稱為在統計上顯著。
表56係群組符號之注釋表。表57列示成對比較之結果。dAUC係治療AUC中所觀測到之相對於參照群組之降低百分比。負的dAUC係解釋為AUC相對於參照之增加。重要的是不僅評價P值,且亦評價dAUC。與顯著P值、但小dAUC值比較可能並不感興趣。
表58列示協同作用分析。統計上顯著之負的協同作用評分指示協同組合(「Syn.」)。當該組合相比於表現得最好之單一藥劑表現得 更好(即具有較低AUC)時,統計上顯著之正的協同作用評分指示次累加組合(「Sub-add」)。當該組合相比於表現得最好之單一藥劑表現得更不好時,統計上顯著之正的協同作用評分指示拮抗組合(「Antag.」)。統計上不顯著之評分應視為累加的(「Add.」)。
如表58中所顯示,使用ML0264 3.75mg/kg順鉑6mg/kg D1第1週(治療群組F)以及ML0264 3.75mg/kg順鉑4mg/kg D1第1週及第2週(治 療群組G)之給藥方案達成協同活性。使用較低劑量之免疫共軛物(1.875mg/kg)與順鉑6mg/kg D1第1週(治療群組E)之組合可見累加活性。
如圖12B中所顯示,在所有組合群組中可見改良之抗腫瘤活性,其中在治療群組F及G中可見協同活性。如圖12C中所顯示,利用4mg/kg及6mg/kg之順鉑治療與3.75mg/kg之5F9 vcMMAE免疫共軛物活性之組合可見顯著腫瘤再生長延遲(約50天)。
總而言之,如上文所闡述之IHC分析(評分2至3+)中所展示具有相對高之GCC抗原密度且對當以單一藥劑形式投予時之各種濃度之5F9 vcMMAE免疫共軛物具有高敏感性之PHTX-09c模型對以所測試免疫共軛物之較高劑量(3.75mg/kg)與順鉑之不同劑量及給藥時間表之組合組合投予免疫共軛物及順鉑展示協同敏感性。
實例8:抗-GCC免疫共軛物及5-氟尿嘧啶之組合投予之活體內評價
此研究之目的係評價在實例5中所闡述之源自mCRC之PHTX-21c原發性人類腫瘤異種移植物(「PHTX」)中藉由組合投予5F9 vcMMAE免疫共軛物(在本文中有時稱為「MLN0264」)及5-氟尿嘧啶(5-FU)所誘導之活體內抗腫瘤活性。該研究係如以下實施。
向攜帶PHTX-21C s.c.異種移植物之雌性CB-17 SCID小鼠靜脈內投予之MLN0264及5-氟尿嘧啶之抗腫瘤活性(研究編號CPGC-11-EF01)
如實例5中所展示,PHTX-21c模型對具有中等敏感性各種濃度之5F9 vcMMAE免疫共軛物之單一藥劑活性,儘管該模型具有較低GCC抗原密度值(IHC評分1+)。此研究之目標係評價5F9 vcMMAE及5-氟尿嘧啶(5-FU)在PHTX-21c模型中之抗腫瘤活性。評價根據每週一次給藥時間表以3.75mg/kg及7.5mg/kg投予5F9 vcMMAE與根據3天給藥/4天停藥之給藥時間表以15mg/kg及25mg/kg IV投予4週5-FU的組合。使用對GCC具有抗體非特異性之vc-MMAE免疫共軛物(稱為209- vcMMAE)作為對照。根據表59製備劑量調配物。研究設計顯示於表60中。
藉由1:1稀釋7.5mg/kg給藥溶液來製備3.75mg/kg給藥溶液。
藉由3:2稀釋25mg/kg給藥溶液來製備15mg/kg給藥溶液。
每一治療群組之終點為a)腫瘤體積達到10%體重;或b)體重損失>20%。研究起始日期之預計腫瘤體積為200mm3
不早於給藥前1天,對所有動物稱重並精確至克,並分組。在每次投予前使給藥溶液渦旋,以確保正確遞送化合物。動物接受使用27號至30號、½英吋至3/4英吋長之1cc注射器I.V.投予之大約0.1ml劑量。基於19.5克之平均體重向動物給藥。
每週兩次使用游標卡尺(0.01mm)獲得腫瘤體積量測。使用下式計算腫瘤體積: V=W2×L/2(V=腫瘤體積,W=沿腫瘤短軸所量測之寬度,L=沿腫瘤短軸所量測之長度)。亦每週兩次使用Mettler天平(0.1gm)獲取體重量測。
在腫瘤生長抑制(TGI)%及腫瘤生長延遲(TGD)方面評價效力。在任一天(當對照治療群組之最大腫瘤體積(MTV)達到最大允許腫瘤體積時)使用下式評估TGI:TGI=100-[治療MTV/對照MTV]×100。
藉由計算T-C來評估TGD,其中T=治療群組腫瘤達到預定大小(例如1,000mm3)之平均時間(天數),且其中C=對照群組腫瘤達到預定大小之平均時間(天數)。
如圖13A中所顯示,劑量在所有治療群組中均耐受良好。各種治療群組之平均腫瘤體積曲線顯示於圖13B中。如圖8B中所顯示,5F9-vcMMAE免疫共軛物以單一藥劑形式在3.75mg/kg劑量下具有相對低之抗腫瘤活性,5-FU在15mg/kg及25mg/kg二者下之單一藥劑抗腫瘤活性類似,各自亦具有相對低之抗腫瘤活性。意外地,3.75mg/kg之免疫共軛物與25mg/kg之5-FU在治療過程期間完全消滅腫瘤體積。
腫瘤再生長動力學曲線顯示於圖13C中。如圖13C中所顯示,本文中所闡述利用3.75mg/kg之免疫共軛物及25mg/kg 5-FU之組合治療方案不僅有效防止在給藥期間之腫瘤生長,且亦防止在給藥後之腫瘤再生長並持續額外45週。腫瘤直至大約第50天才開始再生長。
使用上文實例7中所闡述之方法使用混合效應線性消退模型對CPGC-11-EF01研究實施縱向分析,以在某種程度上確定5F9 vcMMAE免疫共軛物及5-FU之組合抗腫瘤效力為累加的還是協同的。
表61係群組符號之注釋表。表62列示成對比較之結果。dAUC係治療AUC中所觀測到之相對於參照群組之降低百分比。負的dAUC係解釋為AUC相對於參照之增加。重要的是不僅評價P值,且亦評價dAUC。與顯著P值、但小dAUC值比較可能並不感興趣。
表63列示協同作用分析。統計上顯著之負的協同作用評分指示協同組合(「Syn.」)。當該組合相比於表現得最好之單一藥劑表現得更好(即具有較低AUC)時,統計上顯著之正的協同作用評分指示次累加組合(「Sub-add」)。當該組合相比於表現得最好之單一藥劑表現得更不好時,統計上顯著之正的協同作用評分指示拮抗組合(「Antag.」)。統計上不顯著之評分應視為累加的(「Add.」)。
如表63中所顯示,在MLN0264 3.75mg/kg及5-FU 25mg/kg治療群組中達成協同活性。
實例9:人類胰臟腫瘤微陣列及臨床樣品中之GCC表現
使用基於上文實例5所闡述之IHC分析之自動化方案評價源自胰臟癌患者樣品之原發性人類腫瘤異種移植物(PHTX)在雌性SCID小鼠中及購自商業來源(例如US BioMax及Pantomics)之胰臟腫瘤微陣列(TMA)中之GCC表現。該等腫瘤涵蓋一系列腫瘤等級。亦經由IHC在自專門CRO(QualTek)之組織數據庫獲得之人類胰臟腫瘤樣品中評估GCC表現。
自各種組織樣品製備4微米切片。藉助二甲苯、接著梯度乙醇系列至蒸餾水之4分鐘、5分鐘變化對組織切片進行脫蠟。在Black and Decker蒸煮機之上部室中之毛細管間隙中利用SHIER2溶液使用蒸汽熱誘導表位恢復(SHIER)並持續20分鐘。
熟習此項技術者可認識到一級抗體增強劑可為具有與MIL-44- 148-2或MIL-44-67兔mAb(兔IgG)相同之同種型之於除兔以外之物種(例如人類、大鼠、山羊、小鼠等)中產生之抗-兔二級抗體或適於擴增MIL-44信號之類似試劑。
以上方案使用MIL-44-148-2在1.0μg/ml下之過夜抗體培育與基於非生物素之過氧化酶檢測(購自Thermo/Lab Vision之Ultravision套組)並使用DAB作為色素原。使用TechMate 500或TechMate 1000(Roche Diagnostics)使此程序完全自動化。染色後,藉助乙醇系列至純乙醇、接著二甲苯沖洗使載玻片脫水。用玻璃蓋玻片及CytoSeal將載玻片永久地蓋上蓋玻片。在顯微鏡下檢查載玻片來評估染色。陽性染色係由褐色(DAB-HRP)反應產物之存在指示。蘇木精對比染色提供藍色核染色以評估細胞及組織形態。
使用H評分方法用於定量GCC表現。H評分方法提供最優數據分解用於確定染色之強度及腫瘤百分數在腫瘤類型內及其間之變異。其亦提供用於確定陽性染色之臨限值之良好手段。在此方法中,提供染色強度在0至3+範圍內之腫瘤內之細胞百分數(0至100)。在本發明方法中,提供強度為0、0.5、1、2及3之評分。視標誌而定,0.5染色可評分為陽性或陰性,且反映針對標誌之較淺但可察覺之染色。為獲得H評分,將腫瘤細胞百分數乘以各強度並加在一起:H評分=(%腫瘤*1)+(%腫瘤*2)+(%腫瘤*3)。例如,若腫瘤為20%陰性(0)、30% +1、10% +2、40% +3,則H評分為170。
若100%之腫瘤細胞標明3+強度,則根據亞細胞定位(即頂端或細胞質)最大H評分為300(100%* +3)。首先,作為對照,不使用單獨的總H評分來比較樣品,但除了審查細胞在每一強度下之百分數之分解以外亦進行評價。例如,90之評分可代表90%以1+強度染色之腫瘤細胞或30% 3+強度之細胞。該等樣品具有相同H評分,但極為不同之GCC表現。欲在每一強度下評分之細胞百分數可有所不同,但通常以 10%之增量評分;然而,單一組份之較小評分百分數亦可估計為1%及5%,以證明存在一定程度之染色。對於GCC,可考慮頂端染色用於在小量增量(例如1%及5%)下評價。
使用H評分方法對GCC之兩種不同亞細胞定位進行評分。該等方法包括細胞質染色及頂端相關染色。通常觀察到細胞質染色模式為遍及腫瘤細胞細胞質之彌散。然而,在一些情形下細胞質染色有多種變化形式,其包括強球狀染色或點狀染色、粗顆粒狀染色。強球狀染色係評分為3+細胞質染色。點狀染色與頂端染色相關,且並不針對此類型之細胞質染色給出單獨評分(對於點狀染色n=4個樣品)。當存在管腔時,觀測到GCC頂端染色。所觀測到之其他GCC染色模式包括膜樣非管腔染色(一例)及腫瘤管腔內存在之細胞外染色。在正常結腸組織中,染色通常為頂端染色以及彌散細胞質染色。
由於獲得細胞質及頂端GCC表現二者之H評分,且由於未知一種定位類型是否比另一種對GCC靶向療法之效力更重要,故捕獲所有數據,且在一些情況下,藉由使用頂端及細胞質GCC表現二者之和生成總計H評分。在該等情況下,總計評分之最大H評分變成600(300頂端+300細胞質)。
篩選總共218個原發性及轉移性胰臟腫瘤。137個表現GCC,其中58個樣品之合併之細胞質及頂端H評分100。137個GCC陽性樣品之H評分之圖解總結顯示於圖14中。
實例10:抗-GCC免疫共軛物與吉西他濱之組合投予之活體內評價
此研究之目的係評價在小鼠胰臟癌異種移植物原發性人類腫瘤移出物(PHTX)模型中藉由組合投予5F9 vcMMAE免疫共軛物(在本文中有時稱為「MLN0264」)及吉西他濱所誘導之活體內抗腫瘤活性。該等模型包括來自具有野生型及突變體KRAS之患者之腫瘤組織。藉由Champions Oncology(Hackensack,NJ)使用其CTG平臺生成5種胰臟 PHTX。內部研發2種PHTX模型。使用上文所闡述之自動化IHC分析在7種PHTX模型中之每一者中評價GCC表現。5種Champions模型(CTG模型)及2種內置模型(PHTX模型)之GCC IHC H評分顯示於表70中。
在所有7種胰臟皮下異種移植物小鼠模型中實施單一藥劑5F9 vcMMAE免疫共軛物之活體內抗腫瘤研究。向動物投予媒劑、0.135mg/kg每週一次(QW)之游離MMAE、7.5mg/kg QW之非GCC靶向ADC或3.75mg/kg或7.5mg/kg QW之5F9 vcMMAE。PHTX-215Pa及PHTX-249Pa模型中之免疫共軛物之單一藥劑活性之結果分別顯示於圖15A及15B中。
如圖15A中所顯示,在PHTX-215Pa模型(KRAS wt)中截至第22天7.5mg/kg之5F9 vcMMAE免疫共軛物相對於5F9 vcMMAE免疫共軛物之游離MMAE(3.75mg/kg)導致顯著較高之腫瘤生長抑制(TGI)。此包括在8只動物中之3只中之腫瘤消退。7.5mg/kg劑量之5F9 vcMMAE亦導致延遲之腫瘤再生長。類似地,如圖15B中所顯示,在PHTX-249Pa模型中,截至第21天單一藥劑5F9 vcMMAE免疫共軛物相對於媒劑或游離MMAE顯示顯著TGI。在PHTX-249Pa模型(KRAS G12D)中截至第20天至第22天7.5mg/kg之5F9 vcMMAE顯著優於3.75mg/kg之劑量。 表71總結在所有7種胰臟腫瘤異種移植物模型間之單一藥劑5F9 vcMMAE活性之TGI數據。
在攜帶PHTX-249Pa s.c.異種移植物之雌性CB-17 SCID小鼠中靜脈內投予之5F9 vcMMAE免疫共軛物及吉西他濱之抗腫瘤活性(研究編號CPGC-13-EF05及CPGC-13-EF08)
此研究之目標係測定根據每週一次(QW)時間表靜脈內投予7.5mg/kg之5F9 vcMMAE免疫共軛物與15mg/kg及20mg/kg每週兩次(BIW)之吉西他濱或在每週第1天及第3天15mg/kg之吉西他濱之組合在CB17 SCID F小鼠中之PHTX-249 Pa s.c異種移植物中之協同作用或累加抗腫瘤活性。使用對GCC具有抗體非特異性之vc-MMAE免疫共軛物(稱為209-vcMMAE)作為對照。根據表71A及表71B製備劑量調配 物。研究設計顯示於表72A及72B中。
吉西他濱儲備溶液濃度係38mg/ml。
基於19.7g BW,MLN0264儲備溶液濃度係8.13mg/ml,用於40只小鼠,總共需要將5.19mg MLN0264及726.9ul儲備溶液製成3273.1ul NS。
吉西他濱:基於19.7g BW,儲備溶液濃度係38mg/ml,用於34只小鼠,總共需要10.047mg。將264.4ul儲備吉西他濱製成3135.6ul NS。
每一治療群組之終點為a)腫瘤體積達到10%體重;或b)體重損失>20%。研究起始日期之預計腫瘤體積為200mm3
第D0天係治療之第一天。不早於給藥前1天,對所有動物稱重並精確至克,並分組。在每次投予前使給藥溶液渦旋,以確保正確遞送化合物。動物接受使用27號至30號、½英吋至3/4英吋長之1cc注射器I.V.投予之大約0.1ml劑量。基於19.7克之平均體重向動物給藥。
每週兩次使用游標卡尺(0.01mm)獲得腫瘤體積量測。使用下式計算腫瘤體積:V=W2×L/2(V=腫瘤體積,W=沿腫瘤短軸所量測之寬度,L=沿腫瘤短軸所量測之長度)。亦每週兩次使用Mettler天平(0.1gm)獲取體重量測。
在腫瘤生長抑制(TGI)%及腫瘤生長延遲(TGD)方面評價效力。在任一天(當對照治療群組之最大腫瘤體積(MTV)達到最大允許腫瘤體積時)使用下式評估TGI:TGI=100-[治療MTV/對照MTV]×100。當腫瘤體積達到約230mm3時,對動物進行治療。
藉由計算T-C來評估TGD,其中T=治療群組腫瘤達到預定大小(例如1,000mm3)之平均時間(天數),且其中C=對照群組腫瘤達到預定大小之平均時間(天數)。
來自PHTX-249Pa模型中所測試之各種給藥時間表及濃度之結果之比較顯示於圖16A中。PHTX-249Pa模型中之各種治療群組之平均腫瘤體積曲線顯示於圖16B中。值得注意的係,利用5F9 vcMMAE免疫共軛物加在第1天及第3天15mg/kg之吉西他濱之組合,7只動物中之3只存在腫瘤消退,而利用單一藥劑吉西他濱或7.5mg/kg之單一藥劑免疫共軛物未見任何腫瘤消退。各別腫瘤生長延遲為70.5天及17天。所有劑量均耐受良好。
使用實例7中所闡述之方法使用混合效應線性消退模型對CPGC- 13-EF05及CPGC-13-EF08研究實施縱向分析,以在某種程度上確定5F9 vcMMAE免疫共軛物及吉西他濱之組合抗腫瘤效力為累加的還是協同的。表72A及72B係群組符號之注釋表。表73A及73B列示成對比較之結果。dAUC係治療AUC中所觀測到之相對於參照群組之降低百分比。負的dAUC係解釋為AUC相對於參照之增加。重要的是不僅評價P值,且亦評價dAUC。與顯著P值、但小dAUC值比較可能並不感興趣。
表74A及74B列示協同作用分析。統計上顯著之負的協同作用評分指示協同組合(「Syn.」)。當該組合相比於表現得最好之單一藥劑表現得更好(即具有較低AUC)時,統計上顯著之正的協同作用評分指示次累加組合(「Sub-add」)。當該組合相比於表現得最好之單一藥劑表現得更不好時,統計上顯著之正的協同作用評分指示拮抗組合(」Antag.」)。統計上不顯著之評分應視為累加的(」Add.」)。
如表74A及74B中所顯示,在所有組合治療群組間均可見累加活性。
在攜帶PHTX-215Pa s.c.異種移植物之雌性CB-17 SCID小鼠中靜脈內投予之5F9 vcMMAE免疫共軛物及吉西他濱之抗腫瘤活性(研究編號CPGC-13-EF10)
此研究之目標係測定根據QW時間表3.75mg/kg及7.5mg/kg之MLN0264與根據第1天、第3天時間表15mg/kg之吉西他濱之組合在CB17 SCID F小鼠中之PHTX-215 Pa s.c異種移植物中之協同作用及累加抗腫瘤活性。根據表75製備劑量調配物。研究設計顯示於表76中。
每一治療群組之終點為a)腫瘤體積達到10%體重;或b)體重損失>20%。研究起始日期之預計腫瘤體積為200mm3
第D0天係治療之第一天。不早於給藥前1天,對所有動物稱重並精確至克,並分組。在每次投予前使給藥溶液渦旋,以確保正確遞送化合物。動物接受使用27號至30號、½英吋至3/4英吋長之1cc注射器I.V.投予之大約0.1ml劑量。基於19.4克之平均體重向動物給藥。
每週兩次使用游標卡尺(0.01mm)獲得腫瘤體積量測。使用下式計算腫瘤體積:V=W2×L/2(V=腫瘤體積,W=沿腫瘤短軸所量測之寬度,L=沿腫瘤短軸所量測之長度)。亦每週兩次使用Mettler天平(0.1gm)獲取體重量測。
在腫瘤生長抑制(TGI)%及腫瘤生長延遲(TGD)方面評價效力。在任一天(當對照治療群組之最大腫瘤體積(MTV)達到最大允許腫瘤體積時)使用下式評估TGI:TGI=100-[治療MTV/對照MTV]×100。當腫瘤體積達到約230mm3時,對動物進行治療。
藉由計算T-C來評估TGD,其中T=治療群組腫瘤達到預定大小(例如1,000mm3)之平均時間(天數),且其中C=對照群組腫瘤達到預定大小之平均時間(天數)。
PHTX-215Pa模型中之各種治療群組之平均腫瘤體積曲線顯示於圖16C中。如圖16C中所顯示,在PHTX-215模型中5F9 vcMMAE免疫共軛物與吉西他濱之組合亦導致增強之TGI及腫瘤消退。值得注意的係,利用免疫共軛物加在第1天及第3天15mg/kg之吉西他濱之組合所有8只動物存在腫瘤消退(TGI 93%),而利用單一藥劑吉西他濱未見任何腫瘤消退(TGI 69%)。各別腫瘤生長延遲為60.4及22.7天。所有劑量均耐受良好。
使用實例7中所闡述之方法使用混合效應線性消退模型對CPGC-13-EF10研究實施縱向分析,以在某種程度上確定5F9 vcMMAE免疫共軛物及吉西他濱之組合抗腫瘤效力為累加的還是協同的。表77A係群組符號之注釋表。表77B列示成對比較之結果。dAUC係治療AUC中所觀測到之相對於參照群組之降低百分比。負的dAUC係解釋為AUC相對於參照之增加。重要的是不僅評價P值,且亦評價dAUC。與顯著P值、但小dAUC值比較可能並不感興趣。
表77C列示協同作用分析。統計上顯著之負的協同作用評分指示協同組合(「Syn.」)。當該組合相比於表現得最好之單一藥劑表現得更好(即具有較低AUC)時,統計上顯著之正的協同作用評分指示次累加組合(「Sub-add」)。當該組合相比於表現得最好之單一藥劑表現得更不好時,統計上顯著之正的協同作用評分指示拮抗組合(「Antag.」)。統計上不顯著之評分應視為累加的(「Add.」)。
如表77中所顯示,在組合治療群組間可見累加活性。
總而言之,該等數據指示5F9 vcMMAE免疫共軛物在表現GCC之胰臟癌異種移植物模型中展示抗腫瘤活性。免疫共軛物與吉西他濱之組合與任一單獨單一藥劑相比在表現GCC之胰臟癌異種移植物模型中展示增強之抗腫瘤活性。該等數據表明免疫共軛物以單一藥劑形式及與吉西他濱組合可作為患有胰臟癌之患者之潛在療法適用於臨床調查。
儘管已參照本發明所提供之實施例顯示並闡述本發明,但熟習此項技術者應理解,可對其形式及細節作出各種改變,此並不背離隨附申請專利範圍中所涵蓋之本發明範圍。
<110> 美商千禧製藥公司
<120> 投予抗-GCC抗體-藥物共軛物及DNA破壞劑來治療胃腸癌
<130> M2051-7034WO
<140>
<141>
<150> 61/892,854
<151> 2013-10-18
<150> 61/770,802
<151> 2013-02-28
<160> 68
<170> PatentIn version 3.5
<210> 1
<211> 18
<212> PRT
<213> 大腸桿菌
<400> 1
<210> 2
<211> 3222
<212> DNA
<213> 智人
<400> 2
<210> 3
<211> 1073
<212> PRT
<213> 智人
<400> 3
<210> 4
<211> 6
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成6×His標籤
<220>
<221> misc_feature
<222> (1)..(6)
<223> 此序列可涵蓋2個至5個、但較佳6個His殘基
<400> 4
<210> 5
<211> 30
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成多肽
<400> 5
<210> 6
<211> 25
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成肽
<400> 6
<210> 7
<211> 4
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成肽
<220>
<221> MOD_RES
<222> (2)..(2)
<223> Leu或Val
<220>
<221> MOD_RES
<222> (4)..(4)
<223> Ser或Gly
<400> 7
<210> 8
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成肽
<220>
<221> MOD_RES
<222> (1)..(1)
<223> Lys或Arg
<220>
<221> MOD_RES
<222> (2)..(2)
<223> Ala或Ser
<220>
<221> MOD_RES
<222> (6)..(6)
<223> Val或Leu
<220>
<221> MOD_RES
<222> (7)..(7)
<223> Ser或Lau
<400> 8
<210> 9
<211> 4
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成肽
<400> 9
<210> 10
<211> 15
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成寡核苷酸
<400> 10
<210> 11
<211> 45
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成寡核苷酸
<400> 11
<210> 12
<211> 33
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成寡核苷酸
<400> 12
<210> 13
<211> 33
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成寡核苷酸
<400> 13
<210> 14
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成寡核苷酸
<400> 14
<210> 15
<211> 27
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成寡核苷酸
<400> 15
<210> 16
<211> 420
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成多肽
<400> 16
<210> 17
<211> 357
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成多核苷酸
<400> 17
<210> 18
<211> 119
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成多肽
<400> 18
<210> 19
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成多核苷酸
<400> 19
<210> 20
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成多肽
<400> 20
<210> 21
<211> 112
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成引物
<400> 21
<210> 22
<211> 45
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成引物
<400> 22
<210> 23
<211> 103
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成引物
<400> 23
<210> 24
<211> 45
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成引物
<400> 24
<210> 25
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成肽
<400> 25
<210> 26
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成肽
<400> 26
<210> 27
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成肽
<400> 27
<210> 28
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成肽
<400> 28
<210> 29
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成肽
<400> 29
<210> 30
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成肽
<400> 30
<210> 31
<211> 1444
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成多核苷酸
<400> 31
<210> 32
<211> 468
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成多肽
<400> 32
<210> 33
<211> 722
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成多核苷酸
<400> 33
<210> 34
<211> 233
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成多肽
<400> 34
<210> 35
<211> 702
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成多核苷酸
<400> 35
<210> 36
<211> 1407
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成多核苷酸
<400> 36
<210> 37
<211> 1410
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成多核苷酸
<400> 37
<210> 38
<211> 705
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成多核苷酸
<400> 38
<210> 39
<211> 1380
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成多核苷酸
<400> 39
<210> 40
<211> 459
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成多肽
<400> 40
<210> 41
<211> 711
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成多核苷酸
<400> 41
<210> 42
<211> 236
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成多肽
<400> 42
<210> 43
<211> 117
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成多肽
<400> 43
<210> 44
<211> 110
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成多肽
<400> 44
<210> 45
<211> 351
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成多核苷酸
<400> 45
<210> 46
<211> 120
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成多肽
<400> 46
<210> 47
<211> 330
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成多核苷酸
<400> 47
<210> 48
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成多肽
<400> 48
<210> 49
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成肽
<400> 49
<210> 50
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成肽
<400> 50
<210> 51
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成肽
<400> 51
<210> 52
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成肽
<400> 52
<210> 53
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成肽
<400> 53
<210> 54
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成肽
<400> 54
<210> 55
<211> 15
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成寡核苷酸
<400> 55
<210> 56
<211> 48
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成寡核苷酸
<400> 56
<210> 57
<211> 30
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成寡核苷酸
<400> 57
<210> 58
<211> 33
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成寡核苷酸
<400> 58
<210> 59
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成寡核苷酸
<400> 59
<210> 60
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之說明:合成寡核苷酸
<400> 60
<210> 61
<211> 707
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成多肽
<400> 61
<210> 62
<211> 638
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成多肽
<400> 62
<210> 63
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成共有序列
<220>
<221> MOD_RES
<222> (1)..(3)
<223> 任何胺基酸
<220>
<221> MOD_RE
<222> (4)..(4)
<223> Met或Trp
<220>
<221> MOD_RES
<222> (5)..(5)
<223> Ser或Asn
<400> 63
<210> 64
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成共有序列
<220>
<221> MOD_RES
<222> (1)..(1)
<223> 任何胺基酸
<220>
<221> MOD_RES
<222> (3)..(4)
<223> 任何胺基酸
<220>
<221> MOD_RES
<222> (7)..(7)
<223> 任何胺基酸或不存在
<220>
<221> MOD_RES
<222> (8)..(8)
<223> 任何胺基酸
<220>
<221> MOD_RES
<222> (9)..(9)
<223> Thr或Ile
<220>
<221> MOD_RES
<222> (10)..(10)
<223> Tyr、Thr或Ser
<220>
<221> MOD_RES
<222> (11)..(12)
<223> 任何胺基酸
<220>
<221> MOD_RES
<222> (13)..(13)
<223> Leu或Val
<220>
<221> MOD_RES
<222> (15)..(15)
<223> Ser或Gly
<400> 64
<210> 65
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成共有序列
<220>
<221> MOD_RES
<222> (1)..(6)
<223> 任何胺基酸且此區域可涵蓋4個至6個殘基
<220>
<221> MOD_RES
<222> (8)..(10)
<223> 任何胺基酸且此區域可涵蓋2個至3個殘基
<400> 65
<210> 66
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成共有序列
<220>
<221> MOD_RES
<222> (1)..(1)
<223> Arg或Lys
<220>
<221> MOD_RES
<222> (2)..(2)
<223> Ala或Ser
<220>
<221> MOD_RES
<222> (6)..(6)
<223> Val或Leu
<220>
<221> MOD_RES
<222> (7)..(7)
<223> Ser或Leu
<220>
<221> MOD_RES
<222> (8)..(16)
<223> 任何胺基酸且此區域可涵蓋5個至9個殘基
<400> 66
<210> 67
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成共有序列
<220>
<221> MOD_RES
<222> (1)..(2)
<223> 任何胺基酸
<220>
<221> MOD_RES
<222> (4)..(4)
<223> 任何胺基酸
<220>
<221> MOD_RES
<222> (6)..(7)
<223> 任何胺基酸
<400> 67
<210> 68
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 人工序列之說明:合成共有序列
<220>
<221> MOD_RES
<222> (1)..(1)
<223> Gln、His或Met
<220>
<221> MOD_RES
<222> (3)..(3)
<223> Tyr或Ser
<220>
<221> MOD_RES
<222> (4)..(10)
<223> 任何胺基酸且此區域可涵蓋5個至7個殘基
<400> 68

Claims (123)

  1. 一種治療胃腸癌之方法,該方法包含向需要該治療之患者投予式( I-5) 之免疫共軛物: 或其醫藥上可接受之鹽,其中Ab係抗-GCC抗體分子或其抗原結合片段,且其中m為1至8之整數;與DNA破壞劑之組合,其中該免疫共軛物及該DNA破壞劑之量當以組合使用時是治療上有效的。
  2. 如請求項1之方法,其中該抗-GCC抗體分子包含:a)三個包含以下胺基酸序列之重鏈互補決定區(CDR):VH CDR1 GYYWS(SEQ ID NO:25);VH CDR2 EINHRGNTNDNPSLKS(SEQ ID NO:26);及VH CDR3 ERGYTYGNFDH(SEQ ID NO:27);及b)三個包含以下胺基酸序列之輕鏈CDR:VL CDR1 RASQSVSRNLA(SEQ ID NO:28);VL CDR2 GASTRAT(SEQ ID NO:29);及VL CDR3 QQYKTWPRT(SEQ ID NO:30)。
  3. 如請求項1之方法,其中m為3至5。
  4. 如請求項3之方法,其中m為約4。
  5. 如請求項1之方法,其中該胃腸癌係GCC表現癌症。
  6. 如請求項1之方法,其中該胃腸癌對該免疫共軛物當以單一藥劑 形式投予時之活性具有抗性。
  7. 如請求項1之方法,其中該胃腸癌係選自由以下組成之群組:結腸直腸癌、胃癌、胰臟癌及食道癌或其轉移。
  8. 如請求項1之方法,其中該DNA破壞劑係選自由以下組成之群組:拓撲異構酶I抑制劑、拓撲異構酶II抑制劑、烷化劑、類烷化劑、蒽環、DNA嵌入劑、DNA小溝烷化劑及抗代謝物。
  9. 如請求項8之方法,其中該DNA破壞劑係拓撲異構酶I抑制劑、蒽環或抗代謝物。
  10. 如請求項8之方法,DNA破壞劑係選自由伊立替康(irinotecan)、托泊替康(topotecan)及喜樹鹼(camptothecin)組成之群組之拓撲異構酶I抑制劑。
  11. 如請求項10之方法,其中該拓撲異構酶I抑制劑係伊立替康。
  12. 如請求項10之方法,其中該胃腸癌係原發性或轉移性結腸直腸癌。
  13. 如請求項8之方法,其中該DNA破壞劑係選自由以下組成之群組之類烷化劑:順鉑(cisplatin)、奧沙利鉑(oxaliplatin)、卡鉑(carboplatin)、奈達鉑(nedaplatin)、沙鉑(satraplatin)及三鉑。
  14. 如請求項13之方法,其中該類烷化劑係順鉑。
  15. 如請求項14之方法,其中該胃腸癌係原發性或轉移性結腸直腸癌。
  16. 如請求項8之方法,其中該DNA破壞劑係選自由以下組成之群組之抗代謝物:氟尿嘧啶(5-FU)、氟尿苷(5-FUdR)、胺甲喋呤、甲醯四氫葉酸、羥基脲、硫鳥嘌呤(6-TG)、巰嘌呤(6-MP)、阿糖胞苷、噴司他汀(pentostatin)、磷酸氟達拉濱(fludarabine phosphate)、克拉屈濱(cladribine,2-CDA)、天冬醯胺酶、吉西他濱(gemcitabine)、卡培他濱(capecitibine)、硫唑嘌呤、胞嘧啶 胺甲喋呤、甲氧苄啶(trimethoprim)、乙胺嘧啶及培美曲塞(pemetrexed)。
  17. 如請求項16之方法,其中該抗代謝物係吉西他濱。
  18. 如請求項17之方法,其中該胃腸癌係原發性或轉移性胰臟癌。
  19. 如請求項16之方法,其中該抗代謝物係5-氟尿嘧啶。
  20. 如請求項19之方法,其中該胃腸癌係原發性或轉移性結腸直腸癌。
  21. 如請求項1之方法,其中該免疫共軛物及該DNA破壞劑係共伴投予。
  22. 如請求項1之方法,其中該免疫共軛物及該DNA破壞劑係依序投予。
  23. 如請求項1之方法,其中該免疫共軛物及該DNA破壞劑係包含於單獨調配物中。
  24. 如請求項1之方法,其中該抗-GCC抗體分子係單株抗體或其抗原結合片段。
  25. 如請求項1之方法,其中該抗-GCC抗體分子係IgG1抗體。
  26. 如請求項1之方法,其中該抗-GCC抗體分子進一步包含人類或人類源輕鏈及重鏈可變區框架。
  27. 一種治療原發性或轉移性結腸直腸癌之方法,該方法包含向需要該治療之患者投予式( I-5) 之免疫共軛物: 或其醫藥上可接受之鹽,其中Ab係抗-GCC抗體分子或其抗原結合片段,且m為1至8之整數; 與拓撲異構酶I抑制劑之組合,其中該免疫共軛物及拓撲異構酶I抑制劑之量當以組合使用時是治療上有效的。
  28. 如請求項27之方法,其中該抗-GCC抗體分子包含:a)三個包含以下胺基酸序列之重鏈互補決定區(CDR):VH CDR1 GYYWS(SEQ ID NO:25);VH CDR2 EINHRGNTNDNPSLKS(SEQ ID NO:26);及VH CDR3 ERGYTYGNFDH(SEQ ID NO:27);及b)三個包含以下胺基酸序列之輕鏈CDR:VL CDR1 RASQSVSRNLA(SEQ ID NO:28);VL CDR2 GASTRAT(SEQ ID NO:29);及VL CDR3 QQYKTWPRT(SEQ ID NO:30)。
  29. 如請求項27之方法,其中m為3至5。
  30. 如請求項27之方法,其中m為約4。
  31. 如請求項27之方法,其中該原發性或轉移性結腸直腸癌係GCC表現癌症。
  32. 如請求項27之方法,其中該癌症係對該免疫共軛物當以單一藥劑形式投予時之活性具有抗性。
  33. 如請求項27之方法,其中該拓撲異構酶I抑制劑係選自由伊立替康、托泊替康及喜樹鹼組成之群組。
  34. 如請求項33之方法,其中該拓撲異構酶I抑制劑係伊立替康。
  35. 如請求項27之方法,其中該免疫共軛物及拓撲異構酶I抑制劑係共伴投予。
  36. 如請求項27之方法,其中該免疫共軛物及拓撲異構酶I抑制劑係依序投予。
  37. 如請求項27之方法,其中該免疫共軛物及拓撲異構酶I抑制劑係 包含於單獨調配物中。
  38. 如請求項27之方法,其中該抗-GCC抗體分子係單株抗體或其抗原結合片段。
  39. 如請求項27之方法,其中該抗-GCC抗體分子係IgG1抗體。
  40. 如請求項27之方法,其中該抗-GCC抗體分子進一步包含人類或人類源輕鏈及重鏈可變區框架。
  41. 一種治療原發性或轉移性結腸直腸癌之方法,該方法包含向需要該治療之患者投予式( I-5) 之免疫共軛物: 或其醫藥上可接受之鹽,其中Ab係抗-GCC抗體分子或其抗原結合片段,且m為1至8之整數;與類烷化劑之組合,其中該免疫共軛物及類烷化劑之量當以組合使用時是治療上有效的。
  42. 如請求項41之方法,其中該抗-GCC抗體分子包含:a)三個包含以下胺基酸序列之重鏈互補決定區(CDR):VH CDR1 GYYWS(SEQ ID NO:25);VH CDR2 EINHRGNTNDNPSLKS(SEQ ID NO:26);及VH CDR3 ERGYTYGNFDH(SEQ ID NO:27);及b)三個包含以下胺基酸序列之輕鏈CDR:VL CDR1 RASQSVSRNLA(SEQ ID NO:28);VL CDR2 GASTRAT(SEQ ID NO:29);及VL CDR3 QQYKTWPRT(SEQ ID NO:30)。
  43. 如請求項41之方法,其中m為3至5。
  44. 如請求項41之方法,其中m為約4。
  45. 如請求項41之方法,其中該原發性或轉移性結腸直腸癌係GCC表現癌症。
  46. 如請求項41之方法,其中該癌症係對該免疫共軛物當以單一藥劑形式投予時之活性具有抗性。
  47. 如請求項41之方法,其中該類烷化劑係選自由以下組成之群組:奧沙利鉑、順鉑、卡鉑、奈達鉑、沙鉑及三鉑。
  48. 如請求項47之方法,其中該類烷化劑係順鉑。
  49. 如請求項41之方法,其中該免疫共軛物及類烷化劑係共伴投予。
  50. 如請求項41之方法,其中該免疫共軛物及類烷化劑係依序投予。
  51. 如請求項41之方法,其中該免疫共軛物及類烷化劑係包含於單獨調配物中。
  52. 如請求項41之方法,其中該抗-GCC抗體分子係單株抗體或其抗原結合片段。
  53. 如請求項41之方法,其中該抗-GCC抗體分子係IgG1抗體。
  54. 如請求項41之方法,其中該抗-GCC抗體分子進一步包含人類或人類源輕鏈及重鏈可變區框架。
  55. 一種治療原發性或轉移性結腸直腸癌之方法,該方法包含向需要該治療之患者投予式( I-5) 之免疫共軛物: 或其醫藥上可接受之鹽,其中Ab係抗-GCC抗體分子或其抗原結 合片段,且m為1至8之整數;與抗代謝物藥劑之組合,其中該免疫共軛物及抗代謝物藥劑之量當以組合使用時是治療上有效的。
  56. 如請求項55之方法,其中該抗-GCC抗體分子包含:a)三個包含以下胺基酸序列之重鏈互補決定區(CDR):VH CDR1 GYYWS(SEQ ID NO:25);VH CDR2 EINHRGNTNDNPSLKS(SEQ ID NO:26);及VH CDR3 ERGYTYGNFDH(SEQ ID NO:27);及b)三個包含以下胺基酸序列之輕鏈CDR:VL CDR1 RASQSVSRNLA(SEQ ID NO:28);VL CDR2 GASTRAT(SEQ ID NO:29);及VL CDR3 QQYKTWPRT(SEQ ID NO:30)。
  57. 如請求項55之方法,其中m為3至5。
  58. 如請求項55之方法,其中m為約4。
  59. 如請求項55之方法,其中該原發性或轉移性結腸直腸癌係GCC表現癌症。
  60. 如請求項55之方法,其中該癌症係對該免疫共軛物當以單一藥劑形式投予時之活性具有抗性。
  61. 如請求項55之方法,其中該抗代謝物藥劑係選自由以下組成之群組:氟尿嘧啶(5-FU)、氟尿苷(5-FUdR)、胺甲喋呤、甲醯四氫葉酸、羥基脲、硫鳥嘌呤(6-TG)、巰嘌呤(6-MP)、阿糖胞苷、噴司他汀、磷酸氟達拉濱、克拉屈濱(2-CDA)、天冬醯胺酶、吉西他濱、卡培他濱、硫唑嘌呤、胞嘧啶胺甲喋呤、甲氧苄啶、乙胺嘧啶及培美曲塞。
  62. 如請求項61之方法,其中該抗代謝物藥劑係5-氟尿嘧啶。
  63. 如請求項58之方法,其中該免疫共軛物及抗代謝物藥劑係共伴 投予。
  64. 如請求項55之方法,其中該免疫共軛物及抗代謝物藥劑係依序投予。
  65. 如請求項55之方法,其中該免疫共軛物及抗代謝物藥劑係包含於單獨調配物中。
  66. 如請求項55之方法,其中該抗-GCC抗體分子係單株抗體或其抗原結合片段。
  67. 如請求項55之方法,其中該抗-GCC抗體分子係IgG1抗體。
  68. 如請求項55之方法,其中該抗-GCC抗體分子進一步包含人類或人類源輕鏈及重鏈可變區框架。
  69. 一種治療原發性或轉移性胰臟癌之方法,該方法包含向需要該治療之患者投予式( I-5) 之免疫共軛物: 或其醫藥上可接受之鹽,其中Ab係抗-GCC抗體分子或其抗原結合片段,且m為1至8之整數;與抗代謝物之組合,其中該免疫共軛物及抗代謝物之量當以組合使用時是治療上有效的。
  70. 如請求項69之方法,其中該抗-GCC抗體分子包含:a)三個包含以下胺基酸序列之重鏈互補決定區(CDR):VH CDR1 GYYWS(SEQ ID NO:25);VH CDR2 EINHRGNTNDNPSLKS(SEQ ID NO:26);及VH CDR3 ERGYTYGNFDH(SEQ ID NO:27);及b)三個包含以下胺基酸序列之輕鏈CDR: VL CDR1 RASQSVSRNLA(SEQ ID NO:28);VL CDR2 GASTRAT(SEQ ID NO:29);及VL CDR3 QQYKTWPRT(SEQ ID NO:30)。
  71. 如請求項69之方法,其中m為3至5。
  72. 如請求項69之方法,其中m為約4。
  73. 如請求項69之方法,其中該原發性或轉移性胰臟癌係GCC表現癌症。
  74. 如請求項69之方法,其中該抗代謝物係選自由以下組成之群組:氟尿嘧啶(5-FU)、氟尿苷(5-FUdR)、胺甲喋呤、甲醯四氫葉酸、羥基脲、硫鳥嘌呤(6-TG)、巰嘌呤(6-MP)、阿糖胞苷、噴司他汀、磷酸氟達拉濱、克拉屈濱(2-CDA)、天冬醯胺酶、吉西他濱、卡培他濱、硫唑嘌呤、胞嘧啶胺甲喋呤、甲氧苄啶、乙胺嘧啶及培美曲塞。
  75. 如請求項74之方法,其中該抗代謝物係吉西他濱。
  76. 如請求項73之方法,其中該免疫共軛物及抗代謝物係共伴投予。
  77. 如請求項69之方法,其中該免疫共軛物及抗代謝物係依序投予。
  78. 如請求項69之方法,其中該免疫共軛物及抗代謝物係包含於單獨調配物中。
  79. 如請求項69之方法,其中該抗-GCC抗體分子係單株抗體或其抗原結合片段。
  80. 如請求項69之方法,其中該抗-GCC抗體分子係IgG1抗體。
  81. 如請求項69之方法,其中該抗-GCC抗體分子進一步包含人類或人類源輕鏈及重鏈可變區框架。
  82. 一種套組,其包含式 (I-5) 之免疫共軛物: 或其醫藥上可接受之鹽,其中Ab係包含以下之抗-GCC抗體:a)三個包含以下胺基酸序列之重鏈互補決定區(CDR):VH CDR1 GYYWS(SEQ ID NO:25);VH CDR2 EINHRGNTNDNPSLKS(SEQ ID NO:26);及VH CDR3 ERGYTYGNFDH(SEQ ID NO:27);及b)三個包含以下胺基酸序列之輕鏈CDR:VL CDR1 RASQSVSRNLA(SEQ ID NO:28);VL CDR2 GASTRAT(SEQ ID NO:29);及VL CDR3 QQYKTWPRT(SEQ ID NO:30),或其抗原結合片段,且其中m為約4;及關於投予該免疫共軛物與DNA破壞劑之組合用於治療胃腸癌之說明書。
  83. 如請求項82之套組,其中該胃腸癌係GCC表現癌症。
  84. 如請求項82之套組,其中該胃腸癌對該免疫共軛物當以單一藥劑形式投予時之活性具有抗性。
  85. 如請求項82之套組,其中該胃腸癌係選自由以下組成之群組:結腸直腸癌、胃癌、胰臟癌及食道癌或其轉移。
  86. 如請求項82之套組,其進一步包含選自由以下組成之群組之DNA破壞劑:拓撲異構酶I抑制劑、拓撲異構酶II抑制劑、烷化劑、類烷化劑、蒽環、DNA嵌入劑、DNA小溝烷化劑及抗代謝物。
  87. 如請求項86之套組,其中該DNA破壞劑係拓撲異構酶I抑制劑、類烷化劑或抗代謝物。
  88. 如請求項86之套組,其中該DNA破壞劑係選自由伊立替康、托泊替康及喜樹鹼組成之群組之拓撲異構酶I抑制劑。
  89. 如請求項88之套組,其中該拓撲異構酶I抑制劑係伊立替康。
  90. 如請求項89之套組,其中該胃腸癌係原發性或轉移性結腸直腸癌。
  91. 如請求項82之套組,其中該DNA破壞劑係選自由以下組成之群組之類烷化劑:順鉑、奧沙利鉑、卡鉑、奈達鉑、沙鉑及三鉑。
  92. 如請求項91之套組,其中該類烷化劑係順鉑。
  93. 如請求項92之套組,其中該胃腸癌係原發性或轉移性結腸直腸癌。
  94. 如請求項82之套組,其中該DNA破壞劑係選自由以下組成之群組之抗代謝物:氟尿嘧啶(5-FU)、氟尿苷(5-FUdR)、胺甲喋呤、甲醯四氫葉酸、羥基脲、硫鳥嘌呤(6-TG)、巰嘌呤(6-MP)、阿糖胞苷、噴司他汀、磷酸氟達拉濱、克拉屈濱(2-CDA)、天冬醯胺酶、吉西他濱、卡培他濱、硫唑嘌呤、胞嘧啶胺甲喋呤、甲氧苄啶、乙胺嘧啶及培美曲塞。
  95. 如請求項94之套組,其中該抗代謝物係5-氟尿嘧啶。
  96. 如請求項95之套組,其中該胃腸癌係原發性或轉移性結腸直腸癌。
  97. 如請求項94之套組,其中該抗代謝物係吉西他濱。
  98. 如請求項97之套組,其中該胃腸癌係原發性或轉移性胰臟癌。
  99. 如請求項1至26中任一項之方法,其中該免疫共軛物及該DNA破壞劑之投予導致協同效力。
  100. 如請求項27之方法,其中該免疫共軛物及該拓撲異構酶I抑制劑之投予導致協同效力。
  101. 如請求項41之方法,其中該免疫共軛物及該類烷化劑之投予導致協同效力。
  102. 如請求項55之方法,其中該免疫共軛物及該抗代謝物之投予導致協同效力。
  103. 如請求項69之方法,其中該癌症係對該免疫共軛物當以單一藥劑形式投予時之活性具有抗性。
  104. 如請求項1之方法,其中該癌症具有相對高或中等之GCC抗原密度。
  105. 如請求項27之方法,其中該癌症具有相對高或中等之GCC抗原密度。
  106. 如請求項41之方法,其中該癌症具有相對高或中等之GCC抗原密度。
  107. 如請求項55之方法,其中該癌症具有相對高或中等之GCC抗原密度。
  108. 如請求項69之方法,其中該癌症具有相對高或中等之GCC抗原密度。
  109. 如請求項1之方法,其中該癌症具有低GCC抗原密度。
  110. 如請求項27之方法,其中該癌症具有低GCC抗原密度。
  111. 如請求項41之方法,其中該癌症具有低GCC抗原密度。
  112. 如請求項55之方法,其中該癌症具有低GCC抗原密度。
  113. 如請求項69之方法,其中該癌症具有低GCC抗原密度。
  114. 如請求項1之方法,其進一步包含測定該癌症之GCC抗原密度之步驟。
  115. 如請求項27之方法,其進一步包含測定該癌症之GCC抗原密度之步驟。
  116. 如請求項41之方法,其進一步包含測定該癌症之GCC抗原密度之 步驟。
  117. 如請求項55之方法,其進一步包含測定該癌症之GCC抗原密度之步驟。
  118. 如請求項69之方法,其進一步包含測定該癌症之GCC抗原密度之步驟。
  119. 如請求項1之方法,其進一步包含測定該癌症對單獨之該免疫共軛物之敏感性之步驟。
  120. 如請求項27之方法,其進一步包含測定該癌症對單獨之該免疫共軛物之敏感性之步驟。
  121. 如請求項41之方法,其進一步包含測定該癌症對單獨之該免疫共軛物之敏感性之步驟。
  122. 如請求項55之方法,其進一步包含測定該癌症對單獨之該免疫共軛物之敏感性之步驟。
  123. 如請求項69之方法,其進一步包含測定該癌症對單獨之該免疫共軛物之敏感性之步驟。
TW103106933A 2013-02-28 2014-02-27 投予抗-gcc抗體-藥物共軛物及dna破壞劑來治療癌症 TW201444577A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361770802P 2013-02-28 2013-02-28
US201361892854P 2013-10-18 2013-10-18

Publications (1)

Publication Number Publication Date
TW201444577A true TW201444577A (zh) 2014-12-01

Family

ID=51428806

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103106933A TW201444577A (zh) 2013-02-28 2014-02-27 投予抗-gcc抗體-藥物共軛物及dna破壞劑來治療癌症

Country Status (8)

Country Link
US (1) US20140356383A1 (zh)
EP (1) EP2961424A4 (zh)
JP (1) JP2016511257A (zh)
KR (1) KR20150122730A (zh)
CN (1) CN105142664A (zh)
CA (1) CA2902757A1 (zh)
TW (1) TW201444577A (zh)
WO (1) WO2014134311A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2774032C (en) 2009-10-23 2019-03-26 Millennium Pharmaceuticals, Inc. Anti-gcc antibody molecules and related compositions and methods
SG11201406855TA (en) * 2012-04-27 2014-11-27 Millennium Pharm Inc Anti-gcc antibody molecules and use of same to test for susceptibility to gcc-targeted therapy
WO2021205325A1 (en) * 2020-04-08 2021-10-14 Pfizer Inc. Anti-gucy2c antibodies and uses thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2404431C (en) * 2000-03-27 2011-06-07 Thomas Jefferson University Guanylyl cyclase c in the detection of stomach and esophageal cancers
WO2010065293A1 (en) * 2008-12-03 2010-06-10 Boehringer Ingelheim Pharmaceuticals Inc. Antibodies for guanylyl cyclase receptors
CA2774032C (en) * 2009-10-23 2019-03-26 Millennium Pharmaceuticals, Inc. Anti-gcc antibody molecules and related compositions and methods

Also Published As

Publication number Publication date
US20140356383A1 (en) 2014-12-04
CA2902757A1 (en) 2014-09-04
WO2014134311A1 (en) 2014-09-04
KR20150122730A (ko) 2015-11-02
JP2016511257A (ja) 2016-04-14
CN105142664A (zh) 2015-12-09
EP2961424A1 (en) 2016-01-06
EP2961424A4 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
US10941211B2 (en) Anti-GCC antibody molecules and related compositions and methods
KR101783529B1 (ko) 항체-약물 접합체
TW201444577A (zh) 投予抗-gcc抗體-藥物共軛物及dna破壞劑來治療癌症
EP4401791A1 (en) Antibody-drug conjugate for use in methods of treating chemotherapy-resistant cancer
US11434303B2 (en) Anti-LY6H antibodies and antibody drug conjugates
AU2013202036B2 (en) Anti-GCC antibody molecules and related compositions and methods
WO2023228095A1 (en) Dosage regimen of an anti-cdh6 antibody-drug conjugate
AU2015202283A1 (en) Anti-GCC antibody molecules and related compositions and methods