TW201444284A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TW201444284A
TW201444284A TW102148182A TW102148182A TW201444284A TW 201444284 A TW201444284 A TW 201444284A TW 102148182 A TW102148182 A TW 102148182A TW 102148182 A TW102148182 A TW 102148182A TW 201444284 A TW201444284 A TW 201444284A
Authority
TW
Taiwan
Prior art keywords
impedance
wiring
correction
circuit
semiconductor device
Prior art date
Application number
TW102148182A
Other languages
Chinese (zh)
Inventor
Kenji Asaki
Kenichi Echigoya
Tetsuya Arai
Original Assignee
Ps4 Luxco Sarl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ps4 Luxco Sarl filed Critical Ps4 Luxco Sarl
Publication of TW201444284A publication Critical patent/TW201444284A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • G11C7/1057Data output buffers, e.g. comprising level conversion circuits, circuits for adapting load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018557Coupling arrangements; Impedance matching circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018585Coupling arrangements; Interface arrangements using field effect transistors only programmable

Abstract

To more precisely adjust impedance of an output terminal. Impedance of an output buffer (unit buffer) included in an I/O circuit is adjusted on the basis of impedance of a pull-up circuit (replica circuit) included in a calibration circuit. In the calibration circuit, a pull-up circuit (310), a damping resistor (R21), a correction resistor (311), an electrostatic protection unit (312), and an external resistor (Re) are connected in series. The potential at the connection of the correction resistor (311) with the electrostatic protection unit (312) is compared with a reference potential by a comparator (360). The resistance value of the correction resistor (311) is determined on the basis of line resistances of lines which are respectively connected to a data terminal and a calibration terminal (ZQ).

Description

半導體裝置 Semiconductor device

本發明係有關半導體裝置,特別是有關具備可調整輸出緩衝器之阻抗的輸出入電路之半導體裝置。 The present invention relates to a semiconductor device, and more particularly to a semiconductor device having an input/output circuit that can adjust the impedance of an output buffer.

在DRAM(Dynamic Random Access Memory)等之半導體裝置中,係為了調整輸出端子之阻抗,而有設置有調整輸出緩衝器之阻抗的校正電路者(參照專利文獻1)。輸出緩衝器係具有拉升輸出部與下拉輸出部,此等阻抗係依據經由校正電路所生成之拉升阻抗碼及下拉阻抗碼而各加以控制。 In a semiconductor device such as a DRAM (Dynamic Random Access Memory), a correction circuit for adjusting the impedance of the output buffer is provided in order to adjust the impedance of the output terminal (see Patent Document 1). The output buffer has a pull-up output unit and a pull-down output unit, and these impedances are controlled in accordance with the pull-up impedance code and the pull-down impedance code generated by the correction circuit.

[先前技術文獻] [Previous Technical Literature]

[專利文獻] [Patent Literature]

[專利文獻1]日本特開2000-183717號公報 [Patent Document 1] Japanese Patent Laid-Open Publication No. 2000-183717

校正電路係具有與輸出入電路之輸出緩衝器實質同一構成之複製緩衝器。首先,在連接外部阻抗於校正端子之狀態比較校正端子的電壓與基準電壓,調整複製緩衝器之阻抗。並且,使複製緩衝器之調整內容反映於輸出緩衝器。 The correction circuit has a replica buffer substantially identical to the output buffer of the input/output circuit. First, the voltage of the correction terminal is compared with the reference voltage in a state where the external impedance is connected to the correction terminal, and the impedance of the replica buffer is adjusted. And, the adjustment content of the copy buffer is reflected in the output buffer.

在如此之校正電路中,因應連接於校正端子之外部阻抗而調整複製緩衝器與輸出緩衝器之阻抗。 In such a correction circuit, the impedance of the replica buffer and the output buffer is adjusted in response to the external impedance connected to the correction terminal.

但校正電路與輸出入電路係一部分的配線構造為不同之故,本發明者們係思考到因此不同而引起,調整後之輸出緩衝器之阻抗則從所期望之阻抗有若干偏差之虞者。在補正依據如此之配線構造之調整偏差之後,調整輸出緩衝器之阻抗者則更佳。 However, since the correction circuit and the wiring structure of a part of the input/output circuit system are different, the inventors have thought about the difference, and the impedance of the adjusted output buffer has a slight deviation from the desired impedance. It is better to adjust the impedance of the output buffer after correcting the adjustment deviation according to such a wiring structure.

經由本發明之一側面的半導體裝置係具備:資料端子及校正端子,和輸出緩衝器,和以一端加以連接於前述輸出緩衝器之第1阻抗部,和連接前述資料端子與前述第1阻抗部之另一端的第1配線,和具有與前述輸出緩衝器實質上相等之阻抗的複製電路,和比較電路,和以一端加以連接於前述複製電路之第2阻抗部,和以一端加以連接於前述第2阻抗部之另一端的第3阻抗部,和連接前述第3阻抗部之另一端與前述校正端子之第2配線,和連接前述第3阻抗部之另一端與前述比較電路之第3配 線,前述第3阻抗部之阻抗值係較前述第1配線之阻抗值及前述第2配線之阻抗值為大者作為特徵。 A semiconductor device according to one aspect of the present invention includes: a data terminal and a correction terminal; and an output buffer; and a first impedance portion connected to the output buffer at one end; and the data terminal and the first impedance portion are connected a first wiring at the other end thereof, a replica circuit having substantially the same impedance as the output buffer, a comparison circuit, and a second impedance portion connected to the replica circuit at one end, and connected to the aforementioned one end at one end a third impedance portion at the other end of the second impedance portion, a second wiring connecting the other end of the third impedance portion and the correction terminal, and a third terminal connected to the third impedance portion and a third portion of the comparison circuit In the line, the impedance value of the third impedance portion is characterized by being larger than the impedance value of the first wiring and the impedance value of the second wiring.

經由本發明之其他一側面的半導體裝置係具 備:輸出緩衝器,和校正電路。前述校正電路係包含複製電路與比較器,依據前述比較器的輸出而調整前述複製電路之阻抗,使其調整結果反映於前述輸出緩衝器作為特徵。更且,前述校正電路則包含:加以串聯連接於前述複製電路與前述比較器之一方的輸入端子之間的第2阻尼電阻及補正阻抗者作為特徵。 Semiconductor device harness through the other side of the invention Ready: Output buffer, and correction circuit. The correction circuit includes a replica circuit and a comparator, and the impedance of the replica circuit is adjusted according to the output of the comparator, and the adjustment result is reflected in the output buffer. Furthermore, the correction circuit includes a second damping resistor and a correction resistor connected in series between the replica circuit and an input terminal of the comparator.

如根據本發明,可更佳地設定在半導體裝置之輸出緩衝器之阻抗。 According to the present invention, the impedance of the output buffer of the semiconductor device can be more preferably set.

2‧‧‧外部基板 2‧‧‧External substrate

10‧‧‧半導體裝置 10‧‧‧Semiconductor device

11‧‧‧記憶體單元陣列 11‧‧‧Memory cell array

12‧‧‧行解碼器 12‧‧‧ line decoder

13‧‧‧列解碼器 13‧‧‧ column decoder

14‧‧‧模式暫存器 14‧‧‧ mode register

15‧‧‧閂鎖電路 15‧‧‧Latch circuit

16‧‧‧輸出入電路 16‧‧‧Output and input circuit

18‧‧‧拉升電路 18‧‧‧ Pulling circuit

19‧‧‧下拉電路 19‧‧‧ Pulldown circuit

21‧‧‧指令位址端子 21‧‧‧Command Address Terminal

22‧‧‧晶片選擇端子 22‧‧‧ wafer selection terminal

23‧‧‧時脈端子 23‧‧‧ Clock Terminal

24‧‧‧資料端子 24‧‧‧data terminal

25,26‧‧‧電源端子 25,26‧‧‧Power terminals

31‧‧‧CA輸入電路 31‧‧‧CA input circuit

32‧‧‧位址閂鎖電路 32‧‧‧ address latch circuit

34‧‧‧指令解碼電路 34‧‧‧ instruction decoding circuit

36‧‧‧時脈輸入電路 36‧‧‧clock input circuit

39‧‧‧內部電源產生電路 39‧‧‧Internal power generation circuit

50‧‧‧調整緩衝器 50‧‧‧Adjust buffer

54‧‧‧時脈產生電路 54‧‧‧ clock generation circuit

100‧‧‧校正電路 100‧‧‧correction circuit

101‧‧‧輸出電路 101‧‧‧Output circuit

110,120,130‧‧‧輸出單元 110,120,130‧‧‧Output unit

111~114,121,122,131‧‧‧單位緩衝器 111~114,121,122,131‧‧‧unit buffer

141~143‧‧‧前段電路 141~143‧‧‧front circuit

150‧‧‧輸出控制電路 150‧‧‧Output control circuit

160‧‧‧靜電保護部 160‧‧‧Electrostatic Protection Department

170‧‧‧輸入緩衝器 170‧‧‧Input buffer

310,320‧‧‧拉升電路 310,320‧‧‧ Pull-up circuit

311,321,331,3111~3113‧‧‧補正阻抗 311,321,331,3111~3113‧‧‧corrected impedance

312‧‧‧靜電保護部 312‧‧‧Electrostatic Protection Department

330‧‧‧下拉電路 330‧‧‧ Pulldown circuit

340,350‧‧‧計數器 340,350‧‧‧ counter

360,370‧‧‧比較器 360, 370‧‧‧ comparator

380‧‧‧電壓產生電路 380‧‧‧Voltage generation circuit

390‧‧‧校正控制電路 390‧‧‧correction control circuit

BWD,BWZ‧‧‧接合導線 BWD, BWZ‧‧‧ bonding wire

DL‧‧‧擴散層 DL‧‧‧ diffusion layer

DQP‧‧‧資料墊片 DQP‧‧‧Material gasket

ESD1,ESD2‧‧‧ESD元件 ESD1, ESD2‧‧‧ESD components

G‧‧‧閘極電極 G‧‧‧gate electrode

GI‧‧‧閘極絕緣膜 GI‧‧‧gate insulating film

GL‧‧‧閘極配線層 GL‧‧‧ gate wiring layer

IL1~IL4‧‧‧層間絕緣層 IL1~IL4‧‧‧ interlayer insulation

L1~L4‧‧‧配線層 L1~L4‧‧‧ wiring layer

PSDL,PSZL‧‧‧電源線 PSDL, PSZL‧‧‧ power cord

R11~R14,R21~R23‧‧‧阻尼電阻 R11~R14, R21~R23‧‧‧ damping resistor

Re‧‧‧外部阻抗 Re‧‧‧External impedance

SS‧‧‧基板 SS‧‧‧Substrate

TH0~TH3‧‧‧貫穿孔電極 TH0~TH3‧‧‧through hole electrode

TL‧‧‧鎢層 TL‧‧‧Tungsten layer

ZQL1,ZQL2‧‧‧校正配線 ZQL1, ZQL2‧‧‧corrected wiring

ZQP‧‧‧校正墊片 ZQP‧‧‧ calibration gasket

圖1係顯示經由本發明之實施形態之半導體裝置的全體構成的方塊圖。 Fig. 1 is a block diagram showing the overall configuration of a semiconductor device according to an embodiment of the present invention.

圖2係顯示輸出入電路之構成的方塊圖。 Fig. 2 is a block diagram showing the composition of an input/output circuit.

圖3係單位緩衝器之電路圖。 Figure 3 is a circuit diagram of a unit buffer.

圖4係校正電路之電路圖。 Figure 4 is a circuit diagram of the correction circuit.

圖5係拉升電路之電路圖。 Figure 5 is a circuit diagram of the pull-up circuit.

圖6係下拉電路之電路圖。 Figure 6 is a circuit diagram of the pull-down circuit.

圖7係顯示考慮通過靜電保護部之配線的配線阻抗時 之資料端子與輸出電路之連接關係的電路圖。 Figure 7 shows the wiring impedance when considering the wiring passing through the electrostatic protection portion. A circuit diagram of the connection relationship between the data terminal and the output circuit.

圖8係顯示資料端子與輸出電路之間的佈局之模式圖。 Fig. 8 is a schematic view showing the layout between the data terminal and the output circuit.

圖9係模式性地顯示經由實施形態之半導體裝置所包含之多層配線構造的圖。 FIG. 9 is a view schematically showing a multilayer wiring structure included in the semiconductor device according to the embodiment.

圖10係顯示在以往的校正電路之調整緩衝器之構成的電路圖。 Fig. 10 is a circuit diagram showing the configuration of an adjustment buffer of a conventional correction circuit.

圖11係顯示在本實施形態之校正電路之拉升電路,補正阻抗,靜電保護部,比較器及校正端子之連接關係的電路圖(第1構成例)。 Fig. 11 is a circuit diagram showing a connection relationship between a correction circuit, a correction impedance, an electrostatic protection unit, a comparator, and a correction terminal in the correction circuit of the present embodiment (first configuration example).

圖12係顯示在第1構成例中之校正端子與拉升電路及比較器間的佈局之模式圖。 Fig. 12 is a schematic view showing the layout between the correction terminal and the pull-up circuit and the comparator in the first configuration example.

圖13係顯示在本實施形態之校正電路之拉升電路,補正阻抗,靜電保護部,比較器及校正端子之連接關係的電路圖(第2構成例)。 Fig. 13 is a circuit diagram showing a connection relationship between a correction circuit, a correction impedance, an electrostatic protection unit, a comparator, and a correction terminal in the correction circuit of the present embodiment (second configuration example).

圖14係顯示在第2構成例中之資料端子與輸出電路之間的佈局之模式圖。 Fig. 14 is a schematic view showing the layout between the data terminal and the output circuit in the second configuration example.

圖15係顯示在第2構成例中之校正端子與拉升電路及比較器間的佈局之模式圖。 Fig. 15 is a schematic view showing the layout between the correction terminal and the pull-up circuit and the comparator in the second configuration example.

圖16係顯示考慮電源寄生阻抗及結合阻抗時之資料端子與輸出電路之連接關係的電路圖。 Fig. 16 is a circuit diagram showing the connection relationship between the data terminal and the output circuit in consideration of the power supply parasitic impedance and the combined impedance.

圖17係顯示在本實施形態之校正電路之拉升電路,補正阻抗,靜電保護部,比較器及校正端子之連接關係的電路圖(第3構成例)。 Fig. 17 is a circuit diagram showing a connection relationship between a correction circuit, a correction impedance, an electrostatic protection unit, a comparator, and a correction terminal in the correction circuit of the present embodiment (third configuration example).

以下,參照附加圖面同時,對於本發明之理想的實施形態加以詳細說明。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to additional drawings.

圖1係顯示經由本發明之理想的實施形態之半導體裝置10的全體構成之方塊圖。 Fig. 1 is a block diagram showing the overall configuration of a semiconductor device 10 according to a preferred embodiment of the present invention.

經由本實施形態之半導體裝置10係集成於單一之半導體晶片的DRAM,加以安裝於外部基板2。外部基板2係為母板等之配線基板,設置有外部阻抗Re。外部阻抗Re之一端係加以電性連接於半導體裝置10之校正端子ZQ。對於校正電路100之詳細係後述之。在本實施形態中,外部阻抗Re係具有240Ω之阻抗值,另外,對於外部阻抗Re之另一端係供給有接地電位VSS。 The semiconductor device 10 of the present embodiment is mounted on a DRAM of a single semiconductor wafer and mounted on the external substrate 2. The external substrate 2 is a wiring board such as a mother board, and is provided with an external impedance Re. One end of the external impedance Re is electrically connected to the correction terminal ZQ of the semiconductor device 10. The details of the correction circuit 100 will be described later. In the present embodiment, the external impedance Re has an impedance value of 240 Ω, and the other end of the external impedance Re is supplied with the ground potential VSS.

半導體裝置10係具有記憶體單元陣列11。記憶體單元陣列11係具備複數之字元線WL與複數之位元線BL,配置有記憶體單元MC於此等交點。字元線WL係經由行解碼器12所選擇,而位元線BL係經由列解碼器13所選擇。另外,作為半導體裝置10之外部端子而設置有時脈端子23,指令位址端子21,晶片選擇端子22,資料端子24,電源端子25,26及校正端子ZQ。 The semiconductor device 10 has a memory cell array 11. The memory cell array 11 includes a plurality of word lines WL and a plurality of bit lines BL, and the memory cells MC are arranged at such intersections. The word line WL is selected by the row decoder 12, and the bit line BL is selected by the column decoder 13. Further, the pulse terminal 23, the command address terminal 21, the wafer selection terminal 22, the data terminal 24, the power supply terminals 25, 26, and the correction terminal ZQ are provided as external terminals of the semiconductor device 10.

時脈端子23係輸入有外部時脈信號CK,/CK的端子。在本說明書中,於信號名稱的前頭附有「/」的信號係意味對應之信號的反轉信號或低活性之信號者。隨之,外部時脈信號/CK係外部時脈信號CK之反轉信號。外部時脈信號CK,/CK係均加以供給至時脈輸入電路36。 加以供給至時脈輸入電路36之外部時脈信號CK,/CK係加以供給至時脈產生電路54。時脈產生電路54係依據外部時脈信號CK,/CK而生成內部時脈信號ICLK。內部時脈信號ICLK係加以供給至位址閂鎖電路32,指令解碼電路34,校正電路100及閂鎖電路15等之電路單元,而規定此等電路單元之動作時間。 The clock terminal 23 is connected to a terminal having an external clock signal CK, /CK. In the present specification, a signal having a "/" at the head of the signal name means an inverted signal of a corresponding signal or a signal of low activity. Accordingly, the external clock signal / CK is an inverted signal of the external clock signal CK. The external clock signals CK and /CK are supplied to the clock input circuit 36. The external clock signal CK, /CK supplied to the clock input circuit 36 is supplied to the clock generating circuit 54. The clock generation circuit 54 generates an internal clock signal ICLK based on the external clock signals CK, /CK. The internal clock signal ICLK is supplied to the address latch circuit 32, the command decoding circuit 34, the circuit unit such as the correction circuit 100 and the latch circuit 15, and the operation time of these circuit units is specified.

對於指令位址端子21係加以輸入有指令位址 信號CA。指令位址信號係構成指令信號CMD及位址信號ADD。對於晶片選擇端子22係加以輸入有晶片選擇信號/CS。此等信號係加以供給至指令位址(CA)輸入電路31。 加以供給至指令位址輸入電路之此等的信號之中,位址信號ADD係加以供給至位址閂鎖電路32,而指令信號CMD係加以供給至指令解碼電路34。 For the instruction address terminal 21, the input has an instruction address. Signal CA. The command address signal constitutes a command signal CMD and an address signal ADD. A wafer selection signal /CS is input to the wafer selection terminal 22. These signals are supplied to an instruction address (CA) input circuit 31. Among the signals supplied to the command address input circuit, the address signal ADD is supplied to the address latch circuit 32, and the command signal CMD is supplied to the command decoding circuit 34.

位址閂鎖電路32係同步於內部時脈ICLK而 閂鎖位址信號ADD。加以閂鎖之位址信號ADD之中行位址係加以供給至行解碼器12,而列位址係加以供給至列解碼器13。另外,對於輸入於模式暫存器裝置之情況,係位址信號ADD係作為模式設定信號而供給至模式暫存器14。模式暫存器14係設定顯示半導體裝置10之動作模式的參數。對於圖1係模式暫存器所顯示之動作模式之參數之中,顯示有驅動能力設定信號DS。詳細係後述之,但驅動能力設定信號DS係指定輸出入電路16內之複數之單位緩衝器之中,資料輸出時使其活性化之1以上的單位緩衝器。 The address latch circuit 32 is synchronized to the internal clock ICLK. The latch address signal ADD. The row address of the latched address signal ADD is supplied to the row decoder 12, and the column address is supplied to the column decoder 13. Further, in the case of input to the mode register device, the address signal ADD is supplied to the mode register 14 as a mode setting signal. The mode register 14 sets parameters for displaying the operation mode of the semiconductor device 10. The drive capability setting signal DS is displayed among the parameters of the operation mode displayed by the mode register of Fig. 1. Although the details are described later, the drive capability setting signal DS is a unit buffer that is specified to be activated by one or more of the unit buffers in the input/output circuit 16 and activated at the time of data output.

指令解碼電路34係同步於內部時脈ICLK, 經由進行指令信號CMD之保持,解碼及計數等之時,生成各種內部指令。作為內部指令係有啟動信號IACT,列信號ICOL,模式暫存器裝置信號MRS,校正信號ZQCOM等。 The instruction decode circuit 34 is synchronized to the internal clock ICLK, Various internal commands are generated when the command signal CMD is held, decoded, counted, or the like. The internal command system includes an enable signal IACT, a column signal ICOL, a mode register device signal MRS, a correction signal ZQCOM, and the like.

啟動信號IACT係於指令信號CMD則顯示行 存取(啟動指令)之情況而加以活性化。當啟動信號IACT則活性化時,閂鎖於位址閂鎖電路32之位址信號ADD則作為行位址而加以供給至行解碼器12。經由此,選擇經由位址暫存器所指定之字元線WL。 The start signal IACT is displayed on the command signal CMD. It is activated by access (start command). When the enable signal IACT is activated, the address signal ADD latched to the address latch circuit 32 is supplied to the row decoder 12 as a row address. Thereby, the word line WL specified by the address register is selected.

列信號ICOL係於指令信號CMD則顯示列存 取之情況而加以活性化。在此,列存取係指各準備指令信號各為讀指令之情況準備讀取存取,而指令信號為寫入指令之情況準備寫入存取。當內部列信號ICOL則活性化時,閂鎖於位址閂鎖電路32之位址信號ADD則作為列存取而加以供給至列解碼器13。經由此,選擇經由列存取所指定之位元線BL。 Column signal ICOL is displayed in the command signal CMD Activate it by taking the situation. Here, the column access means that the read access is prepared when each of the preparation command signals is a read command, and the write access is prepared when the command signal is a write command. When the internal column signal ICOL is activated, the address signal ADD latched to the address latch circuit 32 is supplied to the column decoder 13 as a column access. Thereby, the bit line BL specified by the column access is selected.

隨之,依序輸入啟動指令及讀指令之同時, 同步於此而如輸入行位址及列位址時,從經由此等行位址及列位址所指定之記憶體單元MC讀出有讀取資料。讀取資料DQ係藉由閂鎖電路15及輸出入電路16,從資料端子24加以輸出。另一方面,依序輸入啟動指令及寫入指令之同時,同步於此而如輸入行位址及列位址,之後,輸入寫入資料DQ於資料端子24時,寫入資料DQ係藉由輸 出入電路16及閂鎖電路15而加以供給至記憶體單元陣列11,寫入至經由行位址及列位址所指定之記憶體單元MC。閂鎖電路15係同步於內部時脈信號ICLK而執行記憶體單元陣列11與輸出入電路16之間的資料傳送。 Then, while the start command and the read command are sequentially input, When the row address and the column address are input, the read data is read from the memory cells MC designated by the row address and the column address. The read data DQ is output from the data terminal 24 by the latch circuit 15 and the input/output circuit 16. On the other hand, while the start command and the write command are sequentially input, the input row address and the column address are synchronized, and then, when the write data DQ is input to the data terminal 24, the data DQ is written by lose The input circuit 16 and the latch circuit 15 are supplied to the memory cell array 11 and written to the memory cell MC designated by the row address and the column address. The latch circuit 15 performs data transfer between the memory cell array 11 and the input/output circuit 16 in synchronization with the internal clock signal ICLK.

模式暫存器裝置信號MRS係於指令信號CMD 則顯示暫存器裝置指令之情況而加以活性化。隨之,輸入模式暫存器裝置指令時,如半導體裝置10係如輸入加以輸入至模式暫存器裝置,同步於此而從指令位址端子21輸入模式信號時,可改寫模式暫存器14之設定值者。 The mode register device signal MRS is tied to the command signal CMD Then, the status of the register device command is displayed and activated. Accordingly, when the mode register device command is input, if the semiconductor device 10 is input to the mode register device, and the mode signal is input from the command address terminal 21 in synchronization with this, the mode register 14 can be rewritten. The set value.

校正信號ZQCOM係於指令信號CMD則顯示 校正指令之情況而加以活性化。校正指令係在半導體裝置10之初期化時加以發行之外,亦在通常動作時定期地加以發行。校正信號ZQCOM係使校正電路100加以活性化。校正電路100係回應於校正信號ZQCOM,同步於內部時脈信號ICLK而執行校正動作,經由此等而調整含於輸出入電路16之輸出電路101之阻抗。對於校正電路100及輸出電路101之詳細係加以後述之。 The correction signal ZQCOM is displayed on the command signal CMD It is activated by correcting the command. The correction command is issued at the time of initializing the semiconductor device 10, and is also periodically issued during normal operation. The correction signal ZQCOM activates the correction circuit 100. The correction circuit 100 performs a correcting operation in synchronization with the internal clock signal ICLK in response to the correction signal ZQCOM, and thereby adjusts the impedance of the output circuit 101 included in the input/output circuit 16. The details of the correction circuit 100 and the output circuit 101 will be described later.

電源端子25係供給有電源電位VDD,VSS。 電源電位VDD,VSS係藉由電源端子25而加以供給至內部電源產生電路39。內部電源產生電路39係依據電源電位VDD,VSS而使各種內部電位VPP,VOD,VARY,VPERI產生。內部電位VPP係主要在行解碼器12所使用,而內部電位VOD,VARY係在記憶體單元陣列11內之讀出放大器所使用,內部電位VPERI係在其他許多之 電路單元所使用。 The power supply terminal 25 is supplied with a power supply potential VDD, VSS. The power supply potential VDD and VSS are supplied to the internal power supply circuit 39 via the power supply terminal 25. The internal power generating circuit 39 generates various internal potentials VPP, VOD, VARY, and VPERI in accordance with the power supply potentials VDD and VSS. The internal potential VPP is mainly used by the row decoder 12, and the internal potentials VOD, VARY are used in the sense amplifiers in the memory cell array 11, and the internal potential VPERI is in many other places. Used by circuit units.

對於電源端子26係供給有電源電位VDDQ, VSSQ。電源電位VDDQ,VSSQ係加以供給至輸出入電路16,作為含於輸出入電路16之輸出電路101之動作電源而加以使用。電源電位VDDQ之電位係與電源電位VDD相同,而電源電位VSSQ之電位係與電源電位VSS相同,但伴隨著輸出電路101之動作而產生的電源雜訊則呈未傳送於其他電路而分離電源路徑。但在本發明中並非必須進行如此之電源路徑之分離者。 The power supply terminal 26 is supplied with a power supply potential VDDQ, VSSQ. The power supply potentials VDDQ and VSSQ are supplied to the input/output circuit 16 and used as an operation power supply of the output circuit 101 included in the input/output circuit 16. The potential of the power supply potential VDDQ is the same as the power supply potential VDD, and the potential of the power supply potential VSSQ is the same as the power supply potential VSS. However, the power supply noise generated by the operation of the output circuit 101 is not transmitted to another circuit and the power supply path is separated. . However, it is not necessary to perform such a separation of the power paths in the present invention.

圖2係顯示輸出入電路16之構成的方塊圖。 2 is a block diagram showing the configuration of the input/output circuit 16.

如圖2所示,輸出入電路16係具備:輸出電路101,輸入緩衝器170,前段電路141,142,143,輸出控制電路150。輸出入電路16係更具備靜電保護部160。對於靜電保護部160之詳細係後述之。 As shown in FIG. 2, the input/output circuit 16 includes an output circuit 101, an input buffer 170, front stage circuits 141, 142, and 143, and an output control circuit 150. The input/output circuit 16 further includes an electrostatic protection unit 160. The details of the electrostatic protection unit 160 will be described later.

輸出電路101係包含輸出單元110,120,130之3個輸出單元。但本發明之輸出單元之個數係並非限定於3個。 The output circuit 101 includes three output units of the output units 110, 120, 130. However, the number of output units of the present invention is not limited to three.

各輸出單元110係包含4個單位緩衝器(輸出緩衝器)111~114與各以60Ω加以並聯連接之阻尼電阻R11,R12,而輸出單元120係包含2個單位緩衝器(輸出緩衝器)121,122與60Ω之阻尼電阻R13,輸出單元130係包含1個單位緩衝器(輸出緩衝器)131與120Ω(r1)之阻尼電阻R14(第1阻抗部,第1阻尼電阻)。在此,作為阻尼電阻R11~R14係例如可使用擴散層,鎢(W),氮化鈦 (TiN)等之高阻抗配線者。但本發明之輸出單元中之單位緩衝器之個數及阻尼電阻之個數以及阻抗值係並非限定於圖2所示之構成者。各單位緩衝器111~114,121,122,131係可調整阻抗(第1阻抗)。在本實施形態中,各單位緩衝器111~114,121,122,131之阻抗則加以調整為120Ω。由作為如此之構成者,在1個校正電路總括調整複數之單位緩衝器之阻抗,可簡略化校正動作。 Each of the output units 110 includes four unit buffers (output buffers) 111 to 114 and damping resistors R11 and R12 each connected in parallel with 60 Ω, and the output unit 120 includes two unit buffers (output buffers) 121. The output unit 130 includes one unit buffer (output buffer) 131 and 120 Ω (r1) damping resistor R14 (first impedance portion, first damping resistor). Here, as the damping resistors R11 to R14, for example, a diffusion layer, tungsten (W), titanium nitride can be used. High-impedance routers such as (TiN). However, the number of unit buffers, the number of damping resistors, and the impedance value in the output unit of the present invention are not limited to those shown in FIG. Each of the unit buffers 111 to 114, 121, 122, and 131 can adjust the impedance (first impedance). In the present embodiment, the impedance of each of the unit buffers 111 to 114, 121, 122, and 131 is adjusted to 120 Ω. As a component of this configuration, the correction circuit can be simplified by collectively adjusting the impedance of the complex unit buffer in one correction circuit.

另外,當看各輸出單元時,輸出單元110係 呈以60Ω驅動資料端子24地加以調整,輸出單元120係呈以120Ω驅動資料端子24地加以調整,輸出單元130係呈以240Ω驅動資料端子24地加以調整。即,各輸出單元係在各單元緩衝的阻抗之調整後,呈成為實質上相等於以本身所包含之單位緩衝器數量除以外部阻抗Re之阻抗值的值之阻抗地加以設計。 In addition, when looking at each output unit, the output unit 110 is The data terminal 24 is adjusted by the 60 Ω driving data terminal, the output unit 120 is adjusted by driving the data terminal 24 with 120 Ω, and the output unit 130 is adjusted by driving the data terminal 24 with 240 Ω. In other words, each output unit is designed to have an impedance that is substantially equal to the value of the unit buffer included in itself and the impedance value of the external impedance Re after adjustment of the impedance of each unit buffer.

另外,各單位緩衝器111~114,121,122, 131係在讀取動作時,活性化有本身所包含之輸出單元110,120,130時而加以活性化,將資料端子24驅動成高位準或低位準之任一。 In addition, each unit buffer 111~114, 121, 122, When the reading operation is performed, the 131 system is activated by the activation of the output units 110, 120, and 130 included therein, and the data terminal 24 is driven to either the high level or the low level.

對於輸出單元110~130之前段係設置有各前 段電路141~143。前段電路141~143係指定是否使對應之輸出單元活性化,再調整含於對應之輸出單元之單位緩衝器之阻抗。如圖2所示,對於前段電路141~143係從輸出控制電路150供給有活性化信號151P~153P與活性化信號151N~153N,而從校正電路100共通地供給有阻抗調整碼 DRZQ。也就是前段電路141~143係經由活性化信號151P~153P或活性化信號151N~153N,只是對應之輸出單元之活性化時,因應阻抗調整碼DRZQ,指定是否使含於對應之輸出單元之中的各單位緩衝器111~114,121,122,131之複數的輸出電晶體(後述)之任一開啟。此等輸出電晶體的開啟/關閉係經由活性化信號141P~143P與活性化信號141N~143N所指定。 For the output units 110~130, the previous section is set with each front Segment circuits 141 to 143. The front-end circuits 141 to 143 specify whether or not to activate the corresponding output unit, and then adjust the impedance of the unit buffer included in the corresponding output unit. As shown in FIG. 2, the front-end circuits 141 to 143 are supplied with the activation signals 151P to 153P and the activation signals 151N to 153N from the output control circuit 150, and the impedance adjustment code is commonly supplied from the correction circuit 100. DRZQ. That is, the front-end circuits 141 to 143 pass through the activation signals 151P to 153P or the activation signals 151N to 153N, and only when the corresponding output unit is activated, whether or not to be included in the corresponding output unit is determined by the impedance adjustment code DRZQ. Any one of the plurality of output transistors (described later) of the unit buffers 111 to 114, 121, 122, and 131 is turned on. The on/off of these output transistors is specified by the activation signals 141P to 143P and the activation signals 141N to 143N.

輸出控制電路150係指定複數之輸出單元 110~130之中使其活性化之輸出單元110~130之同時,指定使其活性化之單位緩衝器的輸出邏輯位準。使其活性化之輸出單元的指定係依據從模式暫存器14所供給之驅動能力設定信號DS。 The output control circuit 150 specifies a plurality of output units At the same time as the output units 110 to 130 which are activated in the range of 110 to 130, the output logic level of the unit buffer to be activated is designated. The designation of the output unit to be activated is based on the drive capability setting signal DS supplied from the mode register 14.

如此,輸出控制電路150則由依據驅動能力 設定信號DS,選擇活性化對象之輸出單元者,使驅動資料端子之單位緩衝器的數量變化。當所活性化之單位緩衝器的數量變化時,輸出端子之阻抗(輸出阻抗)則產生變化。如圖2所示,在本實施形態中,單位緩衝器111~114,121,122,131則並聯連接於輸出控制電路150與資料端子24之間之故,當所活性化之單位緩衝器之數量增加時,輸出阻抗係減少,相反地當所活性化之單位緩衝器之數量減少時,輸出阻抗係增加。 Thus, the output control circuit 150 is based on the driving capability. The signal DS is set to select the output unit of the activation target, and the number of unit buffers for driving the data terminal is changed. When the number of activated unit buffers changes, the impedance (output impedance) of the output terminals changes. As shown in FIG. 2, in the present embodiment, the unit buffers 111 to 114, 121, 122, and 131 are connected in parallel between the output control circuit 150 and the data terminal 24, and the activated unit buffer is As the number increases, the output impedance decreases, and conversely, as the number of activated unit buffers decreases, the output impedance increases.

圖3係單位緩衝器131之電路圖。 FIG. 3 is a circuit diagram of the unit buffer 131.

如圖3所示,單位緩衝器131係具備:加以並聯連接於電源線(電源電位VDDQ)與節點B之間之複數 (在本實施形態中係5個)之P通道MOS電晶體(輸出電晶體,第1電晶體)211~215,和加以並聯連接於電源線(電源電位VSSQ)與節點B之間之複數(在本實施形態中係5個)之N通道MOS電晶體(輸出電晶體,第2電晶體)221~225。另外,節點B係藉由阻尼電阻R14,及靜電保護部160而加以連接於資料端子24。單位緩衝器131之中,P通道MOS電晶體211~215所成之部分係構成拉升電路18,而N通道MOS電晶體221~225所成之部分係構成下拉電路19。 As shown in FIG. 3, the unit buffer 131 is provided with a plurality of parallel connection between a power supply line (power supply potential VDDQ) and a node B. (5 in the present embodiment) P-channel MOS transistors (output transistors, first transistors) 211 to 215, and a plurality of parallel connection between the power supply line (power supply potential VSSQ) and the node B ( In the present embodiment, five) N-channel MOS transistors (output transistors, second transistors) 221 to 225 are used. Further, the node B is connected to the data terminal 24 by a damping resistor R14 and an electrostatic protection unit 160. Among the unit buffers 131, the portions of the P-channel MOS transistors 211 to 215 constitute the pull-up circuit 18, and the portions of the N-channel MOS transistors 221 to 225 constitute the pull-down circuit 19.

對於輸出電晶體211~215之閘極係供給有構成活性化信號143P之5個活性化信號143P1~143P5,而對於輸出電晶體221~225之閘極係供給有構成活性化信號143N之5個活性化信號143N1~143N5。經由此,含於單位緩衝器131之10個MOS電晶體係經由10條活性化信號143P1~143P5與活性化信號143N1~143N5,個別地加以開啟/關閉控制。 Five activation signals 143P1 to 143P5 constituting the activation signal 143P are supplied to the gates of the output transistors 211 to 215, and five activation signals 143N are supplied to the gates of the output transistors 221 to 225. The activation signal is 143N1~143N5. Thereby, the 10 MOS electro-crystal systems included in the unit buffer 131 are individually turned on/off controlled via the 10 activation signals 143P1 to 143P5 and the activation signals 143N1 to 143N5.

拉升電路18與下拉電路19係各呈在導通時成為特定之阻抗(在實施例中係120Ω)地加以設計。但從輸出電晶體之開啟阻抗係經由製造條件而不均之同時,經由在動作時之環境溫度或電源電壓而變動之情況,未必可得到所期望之阻抗。因此,對於為了將實際之阻抗作為目標值,係必須調整欲使其開啟之輸出電晶體的數量,為了有關之目的,使用複數之輸出電晶體所成之並聯電路。 The pull-up circuit 18 and the pull-down circuit 19 are each designed to have a specific impedance (120 Ω in the embodiment) at the time of conduction. However, the desired impedance is not necessarily obtained from the case where the opening impedance of the output transistor is varied due to the uneven manufacturing conditions and the ambient temperature or the power supply voltage during the operation. Therefore, in order to use the actual impedance as the target value, it is necessary to adjust the number of output transistors to be turned on, and for the related purpose, a parallel circuit formed by a plurality of output transistors is used.

對於為了將單位緩衝器131之阻抗細微且廣 範圍地進行調整,係使構成拉升電路18及下拉電路19之複數的輸出電晶體的W/L比(閘極寬度/閘極長度比)相互作為不同者為佳,作為2的乘方之加權為特別理想。即,將輸出電晶體211之W/L比作為「1WLp」之情況,將輸出電晶體212~215之W/L比各設定為「2WLp」,「4WLp」,「8WLp」,「16WLp」者為特別理想。同樣地,將輸出電晶體221之W/L比作為「1WLn」之情況,將輸出電晶體222~225之W/L比各設定為「2WLn」,「4WLn」,「8WLn」,「16WLn」者為特別理想。 For the purpose of making the impedance of the unit buffer 131 fine and wide The range is adjusted so that the W/L ratio (gate width/gate length ratio) of the plurality of output transistors constituting the pull-up circuit 18 and the pull-down circuit 19 is preferably different from each other as a power of two. Weighting is especially desirable. That is, when the W/L ratio of the output transistor 211 is "1WLp", the W/L ratio of the output transistors 212 to 215 is set to "2WLp", "4WLp", "8WLp", and "16WLp". It is especially ideal. Similarly, when the W/L ratio of the output transistor 221 is "1WLn", the W/L ratios of the output transistors 222 to 225 are set to "2WLn", "4WLn", "8WLn", and "16WLn". It is especially ideal.

對於其他的單位緩衝器111~114,121,122,亦除了輸入有對應此之活性化信號141P,142P及動作信號141N,142N之外係具有與圖3所示之單位緩衝器131實質上相同之電路構成。 The other unit buffers 111-114, 121, 122 are substantially the same as the unit buffer 131 shown in FIG. 3 except that the corresponding activation signals 141P, 142P and the operation signals 141N, 142N are input. The circuit is constructed.

圖4係校正電路100之電路圖。 4 is a circuit diagram of the correction circuit 100.

如圖4所示,校正電路100係具備:拉升電路(複製電路)310,320,和下拉電路330,和控制拉升電路310,320之動作的計數器340,和控制下拉電路330之動作的計數器350,和控制計數器340的比較器360,和控制計數器350的比較器370,和供給基準電壓ZQVREF(=1/2VDD)於比較器360,370之電壓產生電路380,和產生計數器之動作信號ACT1,ACT2之校正控制電路390。另外,校正電路100係包含:串聯地加以連接於拉升電路310與校正端子ZQ之間的阻尼電阻R21(第2阻抗部,第2阻尼阻抗),和補正阻抗311(第3阻抗部, 補正阻抗),和靜電保護部312。更且另外,校正電路100係包含:加以連接於拉升電路320與節點A之間的阻尼電阻R22及補正阻抗321,和加以連接於下拉電路330與節點A之間的阻尼電阻R23及補正阻抗331。節點A係加以連接於比較器370之一方的輸入端子。補正阻抗311與靜電保護部312之詳細係後述之。 As shown in FIG. 4, the correction circuit 100 includes: a pull-up circuit (replication circuit) 310, 320, and a pull-down circuit 330, and a counter 340 that controls the operation of the pull-up circuits 310, 320, and controls the action of the pull-down circuit 330. A counter 350, and a comparator 360 for controlling the counter 340, and a comparator 370 for controlling the counter 350, and a voltage generating circuit 380 for supplying a reference voltage ZQVREF (= 1/2 VDD) to the comparators 360, 370, and an action signal for generating a counter ACT1, ACT2 correction control circuit 390. Further, the correction circuit 100 includes a damping resistor R21 (second impedance portion, second damping impedance) connected in series between the pull-up circuit 310 and the correction terminal ZQ, and a correction impedance 311 (third impedance portion, The impedance is corrected, and the electrostatic protection portion 312. In addition, the correction circuit 100 includes: a damping resistor R22 and a correction impedance 321 connected between the pull-up circuit 320 and the node A, and a damping resistor R23 and a correction impedance connected between the pull-down circuit 330 and the node A. 331. Node A is connected to an input terminal of one of the comparators 370. The details of the correction impedance 311 and the electrostatic protection portion 312 will be described later.

圖5係拉升電路310之電路圖。 FIG. 5 is a circuit diagram of the pull-up circuit 310.

如圖5所示,拉升電路310係具有與含於單位緩衝器111~114,121,122,131之拉升電路18實質上相同的電路構造。具體而言,拉升電路310係具備並聯連接於電源線(電源電位VDD)與阻尼電阻R21之間的5個P通道MOS電晶體411~415。 As shown in FIG. 5, the pull-up circuit 310 has substantially the same circuit configuration as the pull-up circuit 18 included in the unit buffers 111-114, 121, 122, and 131. Specifically, the pull-up circuit 310 includes five P-channel MOS transistors 411 to 415 connected in parallel between the power supply line (power supply potential VDD) and the damping resistor R21.

以下,有將拉升電路310,補正阻抗311,靜電保護部312,校正端子ZQ及外部阻抗Re彙整稱作「調整緩衝器50(第2緩衝器)」之情況。 Hereinafter, the pull-up circuit 310, the correction impedance 311, the electrostatic protection unit 312, the correction terminal ZQ, and the external impedance Re are referred to as "adjustment buffer 50 (second buffer)".

含於拉升電路310之電晶體411~415係對應於圖3所示之輸出電晶體211~215,各具有同一之阻抗。隨之,與電晶體211~215之W/L比同樣,電晶體411~415之W/L比亦加以設定為「1WLp」,「2WLp」,「4WLp」,「8WLp」,「16WLp」。但阻抗只要實質上相同,含於拉升電路310之電晶體411~415,和圖3所示之輸出電晶體211~215則無需完全相同之電晶體尺寸,而使用縮小之電晶體亦可。 The transistors 411 to 415 included in the pull-up circuit 310 correspond to the output transistors 211 to 215 shown in FIG. 3, each having the same impedance. Accordingly, similarly to the W/L ratio of the transistors 211 to 215, the W/L ratios of the transistors 411 to 415 are also set to "1WLp", "2WLp", "4WLp", "8WLp", and "16WLp". However, if the impedances are substantially the same, the transistors 411 to 415 included in the pull-up circuit 310 and the output transistors 211 to 215 shown in FIG. 3 do not need to have the same crystal size, and a reduced transistor may be used.

對於電晶體411~415之閘極係自計數器340 供給有阻抗碼DRZQP1~DRZQP5,經由此而控制拉升電路310。阻抗碼DRZQP1~DRZQP5係各對應於活性化信號141P1~141P5。 For the gates of the transistors 411~415, the self-counter 340 The impedance codes DRZQP1 to DRZQP5 are supplied, and the pull-up circuit 310 is controlled thereby. The impedance codes DRZQP1 to DRZQP5 correspond to the activation signals 141P1 to 141P5, respectively.

對於拉升電路320,亦具有與圖5所示之拉升 電路310同一之電路構成。對於含於拉升電路320側之5個電晶體之閘極,亦供給有阻抗碼DRZQP1~DRZQP5。 For the pull-up circuit 320, it also has the pull-up as shown in FIG. Circuit 310 is constructed in the same circuit. The impedance codes DRZQP1 to DRZQP5 are also supplied to the gates of the five transistors included on the side of the pull-up circuit 320.

圖6係下拉電路330之電路圖。 FIG. 6 is a circuit diagram of the pull-down circuit 330.

如圖6所示,下拉電路330係具有與含於單 位緩衝器111~114,121,122,131之下拉電路19實質上相同的電路構成。具體而言,下拉電路330係具備並聯連接於電源線(電源電位VSS)與節點A之間的5個N通道MOS電晶體421~425。含於下拉電路330之電晶體421~425係對應於圖3所示之電晶體221~225,各具有同一之阻抗。此點係與拉升電路310同樣。 As shown in FIG. 6, the pull-down circuit 330 has and is included in the single The bit buffers 111 to 114, 121, 122, and 131 are substantially identical in circuit configuration. Specifically, the pull-down circuit 330 includes five N-channel MOS transistors 421 to 425 connected in parallel between the power supply line (power supply potential VSS) and the node A. The transistors 421 to 425 included in the pull-down circuit 330 correspond to the transistors 221 to 225 shown in FIG. 3, each having the same impedance. This point is the same as the pull-up circuit 310.

阻尼電阻R21係對應於圖2所示之輸出單元 130之阻尼電阻R14,其阻抗值係設定於120Ω。此理由係因在本實施形態中,校正電路100則呈對應於由1個單位緩衝器所成之輸出單元,即,圖2之輸出單元130地加以構成之故。 Damping resistor R21 corresponds to the output unit shown in Figure 2. The damping resistor R14 of 130 has an impedance value set at 120 Ω. The reason for this is that, in the present embodiment, the correction circuit 100 is configured to correspond to an output unit formed by one unit buffer, that is, the output unit 130 of FIG.

另外,阻尼電阻R22及補正阻抗321係各對 應於阻尼電阻R21及補正阻抗311之阻抗。由作為如此構成,從拉升電路310而視之節點C與從拉升電路320而視之節點A則實質上成為同一關係。在此,阻尼電阻R22係具有與阻尼電阻R21實質上同一之阻抗值(120Ω),另 外,補正阻抗321係具有與補正阻抗311實質上同一之阻抗值(後述)。 In addition, the damping resistor R22 and the correction impedance 321 are pairs Should be the impedance of the damping resistor R21 and the correction impedance 311. With such a configuration, the node C viewed from the pull-up circuit 310 and the node A viewed from the pull-up circuit 320 have substantially the same relationship. Here, the damping resistor R22 has substantially the same impedance value (120 Ω) as the damping resistor R21, and Further, the correction impedance 321 has substantially the same impedance value (described later) as the correction impedance 311.

另外,阻尼電阻R23及補正阻抗331係各對 應於阻尼電阻R22及補正阻抗321之阻抗。由作為如此構成者,從節點A而視之拉升電路320與從節點A而視之下拉電路330則實質上成為同一關係,可更精確地進行下拉電路330之調整者。在此,阻尼電阻R23係具有與阻尼電阻R22實質上同一之阻抗值(120Ω),另外,補正阻抗331係具有與補正阻抗321實質上同一之阻抗值。 In addition, the damping resistor R23 and the correction impedance 331 are pairs Should be the impedance of the damping resistor R22 and the correction impedance 321 . As a component of this configuration, the pull-up circuit 320 viewed from the node A has substantially the same relationship as the pull-down circuit 330 from the node A, and the adjuster of the pull-down circuit 330 can be performed more accurately. Here, the damping resistor R23 has substantially the same impedance value (120 Ω) as the damping resistor R22, and the correction impedance 331 has substantially the same impedance value as the correction impedance 321 .

對於電晶體421~425之閘極係自計數器350 供給有阻抗碼DRZQN1~DRZQN5,經由此而控制下拉電路330。阻抗碼DRZQN1~DRZQN5係各對應於活性化信號161N1~161N5。 For the gates of the transistors 421 ~ 425 from the counter 350 The impedance codes DRZQN1 to DRZQN5 are supplied, and the pull-down circuit 330 is controlled thereby. The impedance codes DRZQN1 to DRZQN5 correspond to the activation signals 161N1 to 161N5, respectively.

如此,拉升電路310,320係均具有與含於單 位緩衝器111~114,121,122,131之拉升電路18實質上相同的電路構成,而下拉電路330係具有與含於單位緩衝器111~114,121,122,131之下拉電路19實質上相同的電路構成。 Thus, the pull-up circuits 310, 320 are all included with the single The pull-up circuits 18 of the bit buffers 111-114, 121, 122, 131 are substantially identical in circuit configuration, and the pull-down circuit 330 has the essence of the pull-down circuit 19 included in the unit buffers 111-114, 121, 122, 131. The same circuit is constructed.

如圖4所示,拉升電路320與下拉電路330 係構成具有與單位緩衝器111實質上相同電路構成之「複製緩衝器」。在此所稱之「實質上相同」係指在縮小含於複製緩衝器之電晶體之情況,亦看做相同的意思。複製緩衝器之輸出端的接點A係如圖4所示,加以連接於比較器370之非反轉輸入端子(+)。 As shown in FIG. 4, the pull-up circuit 320 and the pull-down circuit 330 A "copy buffer" having substantially the same circuit configuration as the unit buffer 111 is constructed. As used herein, "substantially the same" refers to the case where the transistor included in the replica buffer is reduced, and the same meaning is also considered. The contact A of the output of the replica buffer is connected to the non-inverting input terminal (+) of the comparator 370 as shown in FIG.

校正控制電路390係因應校正信號ZQCOM 與內部時脈ICLK,各產生計數器340之動作信號ACT1與計數器350之動作信號ACT2。 Correction control circuit 390 is responsible for correcting signal ZQCOM The action signal ACT1 of the counter 340 and the action signal ACT2 of the counter 350 are each generated with the internal clock ICLK.

比較器360係比較節點C之電位與基準電壓 ZQVREF,依據比較結果而輸出得到高位準或低位準之任一方的邏輯位準之比較結果信號COMP1。 Comparator 360 compares the potential of node C with the reference voltage ZQVREF outputs a comparison result signal COMP1 of the logic level of either the high level or the low level according to the comparison result.

比較器370係比較節點A之電位與基準電壓 ZQVREF,依據比較結果而輸出得到高位準或低位準之任一方的邏輯位準之比較結果信號COMP2。 Comparator 370 compares the potential of node A with the reference voltage ZQVREF outputs a comparison result signal COMP2 which obtains the logic level of either the high level or the low level according to the comparison result.

計數器340係同步於動作控制信號ACT1,對 應於比較器360之輸出信號COMP1之邏輯位準而共計或倒數本身的計數值。計數器340之計數值係作為阻抗碼DRZQP而加以使用。 The counter 340 is synchronized with the action control signal ACT1, The count value of itself should be totaled or reciprocated at the logic level of the output signal COMP1 of the comparator 360. The count value of the counter 340 is used as the impedance code DRZQP.

另一方面,計數器350係同步於動作控制信 號ACT2,對應於比較器370之輸出信號COMP2之邏輯位準而共計或倒數本身的計數值。計數器350之計數值係作為阻抗碼DRZQN而加以使用。 On the other hand, the counter 350 is synchronized with the action control letter. The number ACT2 corresponds to the logical level of the output signal COMP2 of the comparator 370 to total or count the count value of itself. The count value of the counter 350 is used as the impedance code DRZQN.

以上則為輸出入電路16及校正電路100之構 成。在校正動作中,校正電路100則呈使拉升電路310及阻尼電阻R21之合成阻抗,與外部阻抗Re之阻抗做為一致地,將各拉升電路310之阻抗及下拉電路330之阻抗調整為120Ω。並且,利用此調整結果而將輸出入電路16之各單位緩衝器之拉升電路18及下拉電路19之各阻抗設定為120Ω。但以往的校正電路係未考慮到通過輸出入電 路16之靜電保護部160之配線或通過校正電路100之靜電保護部312之配線的配線阻抗之影響,而因此,校正動作後之各單位緩衝器的阻抗則有從所期望的值偏差之虞。 在本實施形態中,為了消解此偏差,而於校正電路100之阻尼電阻R21與節點C之間配置補正阻抗311。以下,對於通過靜電保護部312之配線則對於校正動作帶來的影響,及補正阻抗311之配置,詳細加以說明。 The above is the structure of the input and output circuit 16 and the correction circuit 100. to make. In the correcting operation, the correction circuit 100 adjusts the impedance of the pull-up circuit 310 and the impedance of the pull-down circuit 330 to the combined impedance of the pull-up circuit 310 and the damping resistor R21 in accordance with the impedance of the external impedance Re. 120Ω. Then, the impedance of each of the pull-up circuit 18 and the pull-down circuit 19 of each unit buffer of the input/output circuit 16 is set to 120 Ω by the result of this adjustment. However, the previous correction circuit did not take into account the input and output. The wiring of the electrostatic protection unit 160 of the path 16 or the wiring impedance of the wiring of the electrostatic protection unit 312 of the correction circuit 100 affects the impedance of each unit buffer after the correction operation from the desired value. . In the present embodiment, in order to eliminate the deviation, the correction impedance 311 is disposed between the damping resistor R21 of the correction circuit 100 and the node C. Hereinafter, the influence of the wiring by the electrostatic protection unit 312 on the correction operation and the arrangement of the correction impedance 311 will be described in detail.

圖7係顯示考慮通過靜電保護部160之配線 的配線阻抗時之資料端子24與輸出電路101之連接關係的電路圖。特別是圖7係著眼於輸出單元130與資料端子24之連接的圖。對於資料端子24等之外部端子係為了從靜電放電保護半導體電路而有設置ESD(Electro-Static Discharge)元件ESD1(第1ESD元件)者。此ESD元件係例如,自加以二極體連接MOS電晶體等所構成。對於為了從靜電放電保護內部電路,係必須迅速地將加以施加於外部端子之靜電釋放於電源線(在圖7中係VSS電源線)。因此,對於ESD元件係使用尺寸大之MOS電晶體。 FIG. 7 shows wiring that is considered to pass through the electrostatic protection portion 160. A circuit diagram of the connection relationship between the data terminal 24 and the output circuit 101 at the time of wiring impedance. In particular, FIG. 7 focuses on the connection of the output unit 130 to the data terminal 24. The external terminal such as the data terminal 24 is provided with an ESD (Electro-Static Discharge) element ESD1 (first ESD element) in order to protect the semiconductor circuit from electrostatic discharge. This ESD element is constituted, for example, by a diode-connected MOS transistor or the like. In order to protect the internal circuit from electrostatic discharge, it is necessary to quickly discharge the static electricity applied to the external terminal to the power supply line (the VSS power supply line in Fig. 7). Therefore, a large-sized MOS transistor is used for the ESD element.

圖8係顯示資料端子24與輸出電路101之間 的佈局之模式圖。另外,圖9係模式性地顯示本實施形態之半導體裝置10所包含之多層配線構造的圖。 Figure 8 shows the data terminal 24 and the output circuit 101. Schematic diagram of the layout. In addition, FIG. 9 is a view schematically showing a multilayer wiring structure included in the semiconductor device 10 of the present embodiment.

如圖9所示,本實施形態之半導體裝置10係 具有形成有擴散層DL及閘極配線層GL於基板SS的表面,於其上方,從接近於基板SS的表面側依序層積有第1配線層L1,第2配線層L2,第3配線層L3,第4配線 層L4之構造。第1配線層L1係例如,包含鎢的配線層,而第2乃至第4配線層係各包含鋁或銅的配線層。各層係經由層間絕緣層IL1~IL4而相互加以絕緣。另外,最上層之第4配線層L4之上面係經由保護用之層間絕緣層IL5而加以被覆。對於閘極配線層GL與基板SS的表面之間係形成有薄的閘極絕緣膜GI。擴散層DL及閘極配線層GL與第1配線層L1係經由貫通層間絕緣層IL1之貫穿孔電極TH0,僅在必要的場所相互加以連接。同樣地,第1配線層L1與第2配線層L2係經由貫通層間絕緣層IL2之貫穿孔電極TH1,僅在必要的場所相互加以連接。另外,第2配線層L2與第3配線層L3係經由貫通層間絕緣層IL3之貫穿孔電極TH2,僅在必要的場所相互加以連接。 更且,第3配線層L3與第4配線層L4係經由貫通層間絕緣層IL4之貫穿孔電極TH3,僅在必要的場所相互加以連接。 As shown in FIG. 9, the semiconductor device 10 of the present embodiment is The surface on which the diffusion layer DL and the gate wiring layer GL are formed is formed on the substrate SS, and the first wiring layer L1, the second wiring layer L2, and the third wiring are sequentially stacked from the surface side close to the substrate SS. Layer L3, 4th wiring The construction of layer L4. The first wiring layer L1 is, for example, a wiring layer containing tungsten, and the second to fourth wiring layers each include a wiring layer of aluminum or copper. Each layer is insulated from each other via the interlayer insulating layers IL1 to IL4. Further, the upper surface of the fourth wiring layer L4 of the uppermost layer is covered by the interlayer insulating layer IL5 for protection. A thin gate insulating film GI is formed between the gate wiring layer GL and the surface of the substrate SS. The diffusion layer DL, the gate wiring layer GL, and the first wiring layer L1 are connected to each other only via a through-hole electrode TH0 that penetrates the interlayer insulating layer IL1. Similarly, the first interconnect layer L1 and the second interconnect layer L2 are connected to each other only via a through-hole electrode TH1 that penetrates the interlayer insulating layer IL2. In addition, the second interconnect layer L2 and the third interconnect layer L3 are connected to each other only via a through-hole electrode TH2 that penetrates the interlayer insulating layer IL3. Further, the third interconnect layer L3 and the fourth interconnect layer L4 are connected to each other only via a through-hole electrode TH3 that penetrates the interlayer insulating layer IL4.

如圖8所示,對於作為第4配線層L4所形成 之資料墊片DQP(對應於資料端子24)與輸出電路101之間係包含:以MOS電晶體構造所形成之ESD元件ESD1,與各作為第1配線層L1所形成之阻尼電阻R11~R14,與通過作為第2配線層L2所形成之ESD元件ESD1之上方而連接資料墊片DQP與阻尼電阻R11~R14之各自一端之資料配線DQL1(第1配線),與連接各阻尼電阻R11~R14之中之對應的1個之另一端與單位緩衝器111~114,121,122,131之中之對應的1個或複數個之資料配線 DQL2。ESD元件ESD1係包含:於矽等之基板SS中作為源極‧汲極所形成之擴散層DL與形成於基板SS上之閘極電極G。ESD元件1之源極‧汲極之一方係藉由貫穿孔電極TH0,TH1及第1配線層L1(對於圖8係未圖示)而加以連接於資料配線DQL1。ESD元件ESD1之源極‧汲極之另一方係加以連接於不圖示之電源線(VSS電位)。資料墊片DQP係藉由貫穿孔電極TH3,TH2及第3配線層L3(對於圖8係未圖示)而與資料配線DQL1加以連接。資料配線DQL1與阻尼電阻R11~R14之各自的一端係藉由貫穿孔電極TH1加以互相連接。同樣地,阻尼電阻R11~R14之另一端與資料配線DQL2係藉由對應之貫穿孔電極TH1而相互加以連接。如圖8所示,資料配線DQL1係為了加以連接於ESD元件ESD1之對應的擴散層DL而包含縫隙狀之部分。因此,在本實施形態中,資料配線DQL1係具有1Ω程度之配線阻抗。 As shown in FIG. 8, it is formed as the fourth wiring layer L4. The data pad DQP (corresponding to the data terminal 24) and the output circuit 101 include an ESD element ESD1 formed by a MOS transistor structure and damping resistors R11 to R14 formed as the first wiring layer L1. The data wiring DQL1 (first wiring) connected to each of the data pad DQP and the damping resistors R11 to R14 is connected to the upper side of the ESD element ESD1 formed as the second wiring layer L2, and the respective damping resistors R11 to R14 are connected. One or more of the corresponding ones of the corresponding ones and one or more of the unit buffers 111 to 114, 121, 122, and 131 DQL2. The ESD element ESD1 includes a diffusion layer DL formed as a source ‧ a drain and a gate electrode G formed on the substrate SS in a substrate SS such as 矽. One of the source and the drain of the ESD element 1 is connected to the data line DQL1 via the through hole electrodes TH0 and TH1 and the first wiring layer L1 (not shown in FIG. 8). The other source of the ESD element ESD1 and the other side of the drain are connected to a power supply line (VSS potential) (not shown). The data pad DQP is connected to the data line DQL1 via the through hole electrodes TH3 and TH2 and the third wiring layer L3 (not shown in FIG. 8). One end of each of the data wiring DQL1 and the damping resistors R11 to R14 is connected to each other by the through hole electrode TH1. Similarly, the other ends of the damping resistors R11 to R14 and the data wiring DQL2 are connected to each other via the corresponding through-hole electrodes TH1. As shown in FIG. 8, the data wiring DQL1 includes a slit-like portion for connection to the corresponding diffusion layer DL of the ESD element ESD1. Therefore, in the present embodiment, the data wiring DQL1 has a wiring impedance of about 1 Ω.

再次返回圖7,考慮上述之資料配線DQL1之 配線阻抗,輸出單元130則計算驅動資料端子24之阻抗時,成為rm+r1+rdESD。rm係顯示拉升電路18之阻抗,而r1係顯示阻尼電阻R14之阻抗值。另外,rdESD係顯示資料配線DQL1之阻抗值,具體而言係顯示從資料端子24至阻尼電阻R14之一端的阻抗值。即,rdESD係在圖8中,顯示從資料墊片DQP至連接阻尼電阻R14之一端與資料配線DQL1之貫穿孔電極TH1為止之阻抗值。 Returning to Figure 7 again, consider the above data wiring DQL1 The wiring impedance, when the output unit 130 calculates the impedance of the drive data terminal 24, becomes rm+r1+rdESD. The rm system shows the impedance of the pull-up circuit 18, and r1 shows the impedance value of the damping resistor R14. Further, the rdESD displays the impedance value of the data wiring DQL1, specifically, the impedance value from the data terminal 24 to one end of the damping resistor R14. That is, the rdESD is shown in FIG. 8 and shows the impedance value from the data pad DQP to the one end of the connection damping resistor R14 and the through hole electrode TH1 of the data line DQL1.

圖10係顯示在以往的校正電路之調整緩衝器 50’之構成的電路圖(未有補正阻抗)。此調整緩衝器50’係對應於圖4所示之調整緩衝器50。如上述,與資料端子24同樣,對於校正端子ZQ亦配置有ESD元件ESD2(第2ESD元件)。因此,從節點C對於校正端子ZQ之間係存在有校正配線ZQL1(阻抗值rzESD)。 Figure 10 shows the adjustment buffer of the conventional correction circuit. Circuit diagram of the composition of 50' (no correction impedance). This adjustment buffer 50' corresponds to the adjustment buffer 50 shown in Fig. 4. As described above, similarly to the data terminal 24, the ESD element ESD2 (second ESD element) is also disposed for the correction terminal ZQ. Therefore, the correction wiring ZQL1 (impedance value rzESD) exists between the slave node C and the correction terminal ZQ.

當將拉升電路310之阻抗作為rm時,比較器 360係並非rm+r1=re,更嚴格而言係成為探索成為rm+r1=rzESD+re之rm者。在此,re係顯示外部阻抗Re之阻抗值。另外,r1係顯示阻尼電阻R21之阻抗值,此值係呈成為與輸出單元130之阻尼電阻R14相等地加以設定。使用此結果而調整輸出單元130之單位緩衝器131之阻抗的情況,即,輸出單元130之單位緩衝器131之阻抗rm則呈成為與拉升電路310之阻抗rm=rzESD+re-r1地調整單位緩衝器131之阻抗的情況,輸出單元130之單位緩衝器則驅動資料端子24之阻抗則呈為re+rdEDS+rzEDS。 也就是,輸出單元130之單位緩衝器則驅動資料端子24之阻抗則有從外部阻抗Re之阻抗偏差之虞。在其他的單位緩衝器亦產生有同樣的問題。隨之,對於使拉升電路310之調整內容反映於複製緩衝器,而使複製緩衝器之調整內容反映於輸出緩衝器之拉升電路18時,係亦考慮圖7,8所示之資料配線DQL1與圖10所示之校正配線ZQL1之配線阻抗者為佳。 When the impedance of the pull-up circuit 310 is taken as rm, the comparator The 360 system is not rm+r1=re. More strictly, it is to explore the rm of rm+r1=rzESD+re. Here, the re shows the impedance value of the external impedance Re. Further, r1 indicates the impedance value of the damping resistor R21, and this value is set to be equal to the damping resistor R14 of the output unit 130. Using this result, the impedance of the unit buffer 131 of the output unit 130 is adjusted, that is, the impedance rm of the unit buffer 131 of the output unit 130 is adjusted to be the impedance rm=rzESD+re-r1 of the pull-up circuit 310. In the case of the impedance of the unit buffer 131, the unit buffer of the output unit 130 drives the impedance of the data terminal 24 to be re+rdEDS+rzEDS. That is, the unit buffer of the output unit 130 drives the impedance of the data terminal 24 to have an impedance deviation from the external impedance Re. The same problem arises in other unit buffers. Accordingly, when the adjustment content of the pull-up circuit 310 is reflected in the copy buffer, and the adjustment content of the copy buffer is reflected in the pull-up circuit 18 of the output buffer, the data wiring shown in FIGS. 7 and 8 is also considered. It is preferable that the wiring resistance of the DQL1 and the correction wiring ZQL1 shown in FIG.

圖11係顯示在本實施形態中追加補正阻抗 311之拉升電路310與校正端子ZQ的連接關係之電路圖 (第1構成例)。在本實施形態中係於阻尼電阻R21與連接點C之間追加補正阻抗311。經由此補正阻抗311,相抵圖7,8所示之資料配線DQL1之配線阻抗與圖10,11所示之校正配線ZQL1之配線阻抗的影響。 Figure 11 shows the addition of a correction impedance in this embodiment. Circuit diagram of the connection relationship between the pull-up circuit 310 of 311 and the correction terminal ZQ (First configuration example). In the present embodiment, the correction impedance 311 is added between the damping resistor R21 and the connection point C. Thereby, the impedance 311 is corrected to the influence of the wiring impedance of the data wiring DQL1 shown in Figs. 7 and 8 and the wiring impedance of the correction wiring ZQL1 shown in Figs.

顯示圖11所示之電路圖之校正端子ZQ與拉 升電路310及比較器360之間的佈局之模式圖示於圖12。 Display the calibration terminal ZQ and pull of the circuit diagram shown in Figure 11. A schematic diagram of the layout between the riser circuit 310 and the comparator 360 is shown in FIG.

如圖12所示,作為第4配線層L4所形成之 校正墊片ZQP(對應於校正端子ZQ)與拉升電路310及比較器360之間係包含:以MOS電晶體構造所形成之ESD元件ESD2,和作為第2配線層L2所形成之校正配線ZQL1(第2配線),ZQL2(第3配線),及補正阻抗311,和作為第1配線層L1所形成阻尼電阻R21。ESD元件ESD2係與圖8所示之ESD元件ESD1同樣地,包含:於矽等之基板SS中作為源極‧汲極所形成之擴散層DL與形成於基板SS上之閘極電極G。ESD元件ESD2之源極‧汲極之一方係藉由貫穿孔電極TH0,TH1及第1配線層L1(對於圖12係未圖示)而加以連接於校正配線ZQL1。ESD元件ESD1之源極‧汲極之另一方係加以連接於不圖示之電源線(VSS電位)。校正墊片ZQP係藉由貫穿孔電極TH3,TH2及第3配線層L3(對於圖12係未圖示)而與校正配線ZQL1加以連接。如圖12所示,校正配線ZQL1係為了加以連接於ESD元件ESD2之對應的擴散層DL而包含縫隙狀之部分。因此,在本實施形態中,校正配線ZQL1係具 有1Ω程度之配線阻抗。 As shown in FIG. 12, it is formed as the fourth wiring layer L4. The correction pad ZQP (corresponding to the correction terminal ZQ) and the pull-up circuit 310 and the comparator 360 include: an ESD element ESD2 formed by a MOS transistor structure, and a correction wiring ZQL1 formed as a second wiring layer L2. (second wiring), ZQL2 (third wiring), and correction impedance 311, and damping resistor R21 formed as the first wiring layer L1. Similarly to the ESD element ESD1 shown in FIG. 8, the ESD element ESD2 includes a diffusion layer DL formed as a source ‧ a drain and a gate electrode G formed on the substrate SS in a substrate SS such as 矽. One of the source and the drain of the ESD element ESD2 is connected to the correction wiring ZQL1 by the through hole electrodes TH0 and TH1 and the first wiring layer L1 (not shown in FIG. 12). The other source of the ESD element ESD1 and the other side of the drain are connected to a power supply line (VSS potential) (not shown). The correction pad ZQP is connected to the correction wiring ZQL1 via the through hole electrodes TH3 and TH2 and the third wiring layer L3 (not shown in FIG. 12). As shown in FIG. 12, the correction wiring ZQL1 includes a slit-like portion for connection to the corresponding diffusion layer DL of the ESD element ESD2. Therefore, in the present embodiment, the correction wiring ZQL1 is provided. There is a wiring impedance of 1 Ω.

另外,校正配線ZQL1則分歧成朝向於比較器 360之校正配線ZQL2與朝向於拉升電路310之補正阻抗311之分歧點則對應於圖11之節點C。補正阻抗311係在一端藉由貫穿孔電極TH1而與阻尼電阻R21之一端加以連接。 In addition, the correction wiring ZQL1 is divided into a comparator The divergence point of the correction wiring ZQL2 of 360 and the correction impedance 311 directed to the pull-up circuit 310 corresponds to the node C of FIG. The correction impedance 311 is connected to one end of the damping resistor R21 at one end by the through hole electrode TH1.

在圖12中,圖11所示之校正配線ZQL1之配 線阻抗之阻抗值rzESD係對應於從校正墊片ZQP至節點C為止之阻抗值。 In Fig. 12, the correction wiring ZQL1 shown in Fig. 11 is matched. The impedance value rzESD of the line impedance corresponds to the impedance value from the correction pad ZQP to the node C.

接著,對於補正阻抗311之阻抗值之決定方 法加以說明。補正阻抗311之阻抗值rc係經由下述之方法加以算出。拉升電路310之阻抗值rm係呈成立有rm+r1+rc=rzESD+re地加以調整。使其阻抗值rm反映於輸出緩衝器之後,在輸出緩衝器中,係必須成立有rm+r1+rdESD=re(參照圖7)。從以上之2式消去re時,成為rm+r1+rc=rzESD+(rm+r1+rdESD),成為rc=rzESD+rdESD。即,經由追加rc=(rzESD+rdESD)之補正阻抗311之時,可相抵圖7,8所示之資料配線DQL1之配線阻抗與圖11,12所示之校正配線ZQL1之配線阻抗的影響。 其結果,成為輸出電路101之各單位緩衝器之阻抗rm=re-r1,改善有各輸出電路101之輸出單元110,120,130則驅動資料端子24之阻抗的精確度。在此,rc=rzESD+rdESD之情況為佳,rc係即使為其近邊的值亦可得到一定的補正效果,rc係作為不足rzESD+rdESD之1.5倍者為 佳。 Next, the decision value of the impedance value of the correction impedance 311 is determined. The law is explained. The impedance value rc of the correction impedance 311 is calculated by the following method. The impedance value rm of the pull-up circuit 310 is adjusted by establishing rm+r1+rc=rzESD+re. After the impedance value rm is reflected in the output buffer, rm+r1+rdESD=re must be established in the output buffer (refer to Figure 7). When re is removed from the above equation 2, rm+r1+rc=rzESD+(rm+r1+rdESD) becomes rc=rzESD+rdESD. In other words, when the correction impedance 311 of rc=(rzESD+rdESD) is added, the influence of the wiring impedance of the data wiring DQL1 shown in FIGS. 7 and 8 and the wiring impedance of the correction wiring ZQL1 shown in FIGS. As a result, the impedance rm=re-r1 of each unit buffer of the output circuit 101 is improved, and the accuracy of the impedance of the data terminal 24 driven by the output units 110, 120, and 130 of each output circuit 101 is improved. Here, the case of rc=rzESD+rdESD is better, and the rc system can obtain a certain correction effect even if it is a near-edge value, and the rc system is 1.5 times less than rzESD+rdESD. good.

圖13係在本實施形態中追加補正阻抗之拉升 電路310(調整緩衝器50)之電路圖(第2構成例)。如圖8,圖12所示,在第1實施形態中,顯示資料配線DQL1與校正配線ZQL1則同時作為第2配線層L2而加以形成的例。對此,第2構成例係如圖14及圖15所示,資料配線DQL1’與校正配線ZQL1則加以形成於相互不同之配線層。在此,圖14係顯示在第2構成例之資料端子24與輸出電路101之間的佈局之模式圖,而圖15係顯示在第2構成例之校正端子ZQ與拉升電路310及比較器360之間的佈局之模式圖。然而,在圖14,圖15中,對於各與圖8,圖12重複之構成係附上同一的符號,省略重複之說明。 Fig. 13 shows the addition of the correction impedance in the present embodiment. Circuit diagram of circuit 310 (adjustment buffer 50) (second configuration example). As shown in FIG. 8 and FIG. 12, in the first embodiment, the display data line DQL1 and the correction line ZQL1 are simultaneously formed as the second wiring layer L2. On the other hand, in the second configuration example, as shown in Figs. 14 and 15, the data wiring DQL1' and the correction wiring ZQL1 are formed in mutually different wiring layers. Here, FIG. 14 is a schematic diagram showing the layout between the data terminal 24 and the output circuit 101 of the second configuration example, and FIG. 15 is a diagram showing the correction terminal ZQ and the pull-up circuit 310 and the comparator of the second configuration example. A pattern diagram of the layout between 360s. It is noted that the same reference numerals are attached to the same components as those in FIG. 8 and FIG. 12, and the overlapping description will be omitted.

如圖14所示,在第2構成例中,資料配線 DQL1’則作為第3配線層L3而加以形成。另一方面,如圖15所示,校正配線ZQL1係與第1構成例同樣地,作為第2配線層L2而加以形成。 As shown in FIG. 14, in the second configuration example, the data wiring DQL1' is formed as the third wiring layer L3. On the other hand, as shown in FIG. 15, the correction wiring ZQL1 is formed as the second wiring layer L2 in the same manner as the first configuration example.

因此,如圖13,圖15所示,在第2構成例 中,將補正阻抗311'作為2個補正阻抗3111,3112之串聯阻抗而形成。具體而言,補正阻抗3112(第1阻抗成分)係具有:與資料配線DQL1’同一之配線層,即,作為第3配線層L3而加以形成之同時,與資料配線DQL1’實質上相等之阻抗值(rc'1)。另一方面,補正阻抗3111(第2阻抗成分)係具有:與校正配線ZQL1同一之配線層,即,作 為第2配線層L2而加以形成之同時,與校正配線ZQL1同一之阻抗值(rc'2)。經由如此根據2種類之阻抗而構成之補正阻抗之時,可接近2個配線DQL1’,ZQL1之溫度特性與補正阻抗之溫度特性者。 Therefore, as shown in FIG. 13 and FIG. 15, in the second configuration example In the middle, the correction impedance 311' is formed as a series impedance of two correction impedances 3111 and 3112. Specifically, the correction impedance 3112 (first impedance component) has a wiring layer which is the same as the data wiring DQL1', that is, is formed as the third wiring layer L3, and is substantially equal in impedance to the data wiring DQL1'. Value (rc'1). On the other hand, the correction impedance 3111 (second impedance component) has the same wiring layer as the correction wiring ZQL1, that is, The second wiring layer L2 is formed and has the same impedance value (rc'2) as the correction wiring ZQL1. When the correction impedance is configured based on the impedance of the two types as described above, the temperature characteristics of the two wirings DQL1' and ZQL1 and the temperature characteristics of the correction impedance can be approximated.

圖16係顯示考慮電源寄生阻抗及結合阻抗時 之資料端子24與輸出電路101之連接關係的電路圖。對於資料配線DQL1或校正配線ZQL1之阻抗以外,亦對於MOS電晶體之源極係存在有電源線PSDL之電源寄生阻抗(阻抗值rsd),對於外部端子之外側係存在有封裝之接合導線或BWD之接合阻抗(阻抗值rud)。 Figure 16 shows the power supply parasitic impedance and combined impedance. A circuit diagram of the connection relationship between the data terminal 24 and the output circuit 101. In addition to the impedance of the data wiring DQL1 or the correction wiring ZQL1, the power supply parasitic impedance (resistance value rsd) of the power supply line PSDL exists for the source of the MOS transistor, and the packaged bonding wire or BWD exists for the outer side of the external terminal. Bonding impedance (impedance value rud).

圖17係顯示在本實施形態中追加補正阻抗之 拉升電路310與校正端子ZQ的連接關係之電路圖(第3構成例)。第3構成例之補正阻抗3113係亦加以考慮上述之電源線PSDL之電源寄生阻抗或接合導線或BWZ之接合阻抗。對於拉升電路310之電源線PSZL亦存在有因電源寄生阻抗(阻抗值rsr)或外部阻抗Re之連接引起之接合阻抗(阻抗值rur)。 Fig. 17 shows the addition of the correction impedance in the present embodiment. A circuit diagram of a connection relationship between the pull-up circuit 310 and the correction terminal ZQ (third configuration example). The correction impedance 3113 of the third configuration example also considers the power supply parasitic impedance of the power supply line PSDL or the bonding impedance of the bonding wire or BWZ. The power supply line PSZL of the pull-up circuit 310 also has a junction impedance (impedance value rur) due to the connection of the power supply parasitic impedance (impedance value rsr) or the external impedance Re.

不僅配線DQL1’,ZQL1之阻抗,而考慮電源 寄生阻抗或接合阻抗之補正阻抗3113的阻抗值rc2係經由下述之方法加以算出。在調整緩衝器50中,係呈成立有rsr+rm+r1+rc2=rzESD+rur+re地,調整有拉升電路310之阻抗值rm。使此時之阻抗值rm反映於輸出緩衝器之後,在輸出緩衝器中,係必須成立有rsd+rm+r1+rdESD=rerud(參照圖16)。從以上之2式消去re時,成為rsr+rm +r1+rc2=rzESD+rur+(rsd+rm+r1+rdESD+rud)。成為rc2=rzESD+rdESD+(rsd-rsr)+(rud+rur)。即,經由追加阻抗值rc2為rzESD+rdESD+(rsd-rsr)+(rud+rur)之補正阻抗3113之時,加上於配線DQL1,ZQL1,可補正至經由電源寄生阻抗或接合阻抗之不同者。 rc2=rzESD+rdESD+(rsd-rsr)+(rud+rur)者為佳,但rc2係既使為其近邊的值,亦可得到一定之補正效果。 Not only the wiring DQL1', ZQL1 impedance, but also the power supply The impedance value rc2 of the parasitic impedance or the corrected impedance 3113 of the joint impedance is calculated by the following method. In the adjustment buffer 50, rsr+rm+r1+rc2=rzESD+rur+re is established, and the impedance value rm of the pull-up circuit 310 is adjusted. After the impedance value rm at this time is reflected in the output buffer, rsd+rm+r1+rdESD=rerud must be established in the output buffer (refer to FIG. 16). When re is removed from the above formula 2, it becomes rsr+rm +r1+rc2=rzESD+rur+(rsd+rm+r1+rdESD+rud). Become rc2=rzESD+rdESD+(rsd-rsr)+(rud+rur). In other words, when the additional impedance value rc2 is the correction impedance 3113 of rzESD+rdESD+(rsd-rsr)+(rud+rur), the wiring DQL1 and ZQL1 can be corrected to the difference between the power supply parasitic impedance or the junction impedance. . Rc2=rzESD+rdESD+(rsd-rsr)+(rud+rur) is better, but the rc2 system can get a certain correction effect even if it is a near-edge value.

以上,依據實施形態,對於半導體裝置10以 說明過。經由導入補正阻抗於調整緩衝器50之時,將資料配線或校正配線之配線阻抗,電源寄生阻抗,接合阻抗的影響相抵,成為可作為更精確之校正。對於是否考慮資料配線或校正配線之配線阻抗,電源寄生阻抗及接合阻抗之中任一係為任意。例如,對於接合阻抗則比較於資料配線或校正配線之配線阻抗或電源寄生阻抗為充分小時,僅考慮資料配線或校正配線之配線阻抗與電源寄生阻抗之影響亦可。 The above, according to the embodiment, for the semiconductor device 10 Explain. By introducing the correction impedance to the adjustment buffer 50, the wiring impedance of the data wiring or the correction wiring, the power supply parasitic impedance, and the influence of the junction impedance are offset, and this can be corrected more accurately. Regarding whether or not to consider the wiring impedance of the data wiring or the correction wiring, any of the power supply parasitic impedance and the bonding impedance is arbitrary. For example, the bonding impedance is sufficiently smaller than the wiring impedance or the power supply parasitic impedance of the data wiring or the correction wiring, and only the influence of the wiring impedance of the data wiring or the correction wiring and the parasitic impedance of the power supply may be considered.

當補正阻抗之阻抗值變大時,調整緩衝器50 之IV特性的線形性則變強。換言之,含於拉升電路310之電晶體群之IV特性(非線形)之調整緩衝器50的影響則變小。但如根據本發明者們之調查,對於rm+r1=240Ω而言,補正阻抗係1Ω程度,最大為5Ω程度。並且,補正阻抗則如為5Ω以下,對於調整緩衝器50之IV特性而言之補正阻抗的影響係確認到幾乎未產生者。 When the impedance value of the correction impedance becomes large, the adjustment buffer 50 is adjusted. The linearity of the IV characteristic is stronger. In other words, the influence of the adjustment buffer 50 of the IV characteristic (non-linear) of the transistor group included in the pull-up circuit 310 becomes small. However, according to the investigation by the present inventors, for rm+r1=240 Ω, the correction impedance is about 1 Ω, and the maximum is about 5 Ω. Further, the correction impedance is 5 Ω or less, and the influence of the correction impedance on the IV characteristic of the adjustment damper 50 is confirmed to be almost ungenerated.

以上,對於本發明之理想的實施形態已做過 說明,但本發明係並不限定於上述之實施形態,而可在不脫離本發明之內容之範圍做各種變更,而此等亦當然包含於本發明之範圍內者。例如,本發明係亦可適用於記載於日本特開2008-228332號公報及日本特開2011-61580號公報之半導體裝置。作為引用此等公開公報的揭示內容而放入於此者。 Above, it has been done for the ideal embodiment of the present invention. The present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the scope of the invention, and these are of course included in the scope of the invention. For example, the present invention is also applicable to a semiconductor device disclosed in Japanese Laid-Open Patent Publication No. 2008-228332, and No. 2011-61580. It is incorporated herein by reference to the disclosure of such publication.

ZQVREF‧‧‧基準電壓 ZQVREF‧‧‧ reference voltage

VDD,VSS‧‧‧電源電位 VDD, VSS‧‧‧ power supply potential

DRZQP‧‧‧阻抗碼 DRZQP‧‧‧ Impedance code

ZQ‧‧‧校正端子 ZQ‧‧‧correction terminal

ZQL1‧‧‧校正配線 ZQL1‧‧‧corrected wiring

Re‧‧‧外部阻抗 Re‧‧‧External impedance

rzESD‧‧‧阻抗值 rzESD‧‧‧ impedance value

rm‧‧‧阻抗 Rm‧‧‧impedance

rc‧‧‧阻抗值 Rc‧‧‧ impedance value

R21‧‧‧阻尼電阻 R21‧‧‧damping resistor

310‧‧‧拉升電路 310‧‧‧ Pulling circuit

311‧‧‧補正阻抗 311‧‧‧corrected impedance

312‧‧‧靜電保護部 312‧‧‧Electrostatic Protection Department

360‧‧‧比較器 360‧‧‧ comparator

Claims (18)

一種半導體裝置,其特徵為具備:資料端子及校正端子,和輸出緩衝器,和以一端加以連接於前述輸出緩衝器之第1阻抗部,和連接前述資料端子與前述第1阻抗部之另一端的第1配線,和具有與前述輸出緩衝器實質上相等之阻抗的複製電路,和比較電路,和以一端加以連接於前述複製電路之第2阻抗部,和以一端加以連接於前述第2阻抗部之另一端的第3阻抗部,和連接前述第3阻抗部之另一端與前述校正端子之第2配線,和連接前述第3阻抗部之另一端與前述比較電路之第3配線,前述第3阻抗部之阻抗值係較前述第1配線之阻抗值及前述第2配線之阻抗值為大者。 A semiconductor device comprising: a data terminal and a correction terminal; and an output buffer; and a first impedance portion connected to the output buffer at one end; and another end connecting the data terminal and the first impedance portion a first wiring, a replica circuit having substantially the same impedance as the output buffer, and a comparison circuit, and a second impedance portion connected to the replica circuit at one end, and connected to the second impedance at one end a third impedance portion at the other end of the portion, a second wiring connecting the other end of the third impedance portion and the correction terminal, and a third wiring connecting the other end of the third impedance portion and the comparison circuit, the The impedance value of the impedance portion is larger than the impedance value of the first wiring and the impedance value of the second wiring. 如申請專利範圍第1項記載之半導體裝置,其中,前述第3阻抗部之阻抗值係實質上相等於前述第1配線之阻抗值與前述第2配線之阻抗值的和者。 The semiconductor device according to claim 1, wherein the impedance value of the third impedance portion is substantially equal to a sum of an impedance value of the first wiring and an impedance value of the second wiring. 如申請專利範圍第1項或第2項記載之半導體裝置,其中,前述第3阻抗部係包含:具有與前述第1配線 相同溫度特性之第1部分,和具有與前述第2配線相同溫度特性之第2部分者。 The semiconductor device according to the first or second aspect of the invention, wherein the third impedance portion includes: having the first wiring The first part of the same temperature characteristic and the second part having the same temperature characteristics as the second wiring. 如申請專利範圍第1項乃至第3項任一項記載之半導體裝置,其中,更具備:連接於前述第1配線之第1保護元件,和連接於前述第2配線之第2保護元件者。 The semiconductor device according to any one of claims 1 to 3, further comprising: a first protective element connected to the first wiring; and a second protective element connected to the second wiring. 如申請專利範圍第4項記載之半導體裝置,其中,前述第1及第2保護元件係為ESD保護元件者。 The semiconductor device according to claim 4, wherein the first and second protection elements are ESD protection elements. 如申請專利範圍第1項乃至第5項記載之半導體裝置,其中,更包含含有第1配線層與形成於前述第1配線層之上方的第2配線層之多層配線構造,各前述第1及第2配線以及前述第3阻抗部係作為前述第2配線層而加以形成者。 The semiconductor device according to the first to fifth aspect of the invention, further comprising a multilayer wiring structure including a first wiring layer and a second wiring layer formed above the first wiring layer, each of the first and The second wiring and the third impedance portion are formed as the second wiring layer. 如申請專利範圍第6項記載之半導體裝置,其中,各前述第1及第2阻抗部則作為前述第1配線層而加以形成者。 The semiconductor device according to claim 6, wherein each of the first and second impedance portions is formed as the first wiring layer. 一種半導體裝置,其特徵為具備:輸出緩衝器,和包含複製電路及比較器,依據前述比較器的輸出而調整前述複製電路之阻抗,使其調整結果反映於前述輸出緩衝器之校正電路,前述校正電路則更包含:加以串聯連接於前述複製電路與前述比較器之一方的輸入端子之間的第2阻尼電阻及補正阻抗者。 A semiconductor device comprising: an output buffer; and a correction circuit including a replica circuit and a comparator, wherein an impedance of the replica circuit is adjusted according to an output of the comparator, and an adjustment result is reflected in the output buffer; The correction circuit further includes a second damping resistor and a correction resistor connected in series between the replica circuit and an input terminal of one of the comparators. 如申請專利範圍第8項記載之半導體裝置,其中,更具備校正端子, 前述補正阻抗係以一端與前述第2阻尼電阻加以連接,以另一端與前述校正端子加以連接著。 The semiconductor device according to claim 8, wherein the semiconductor device further includes a correction terminal. The correction impedance is connected to the second damping resistor at one end and to the correction terminal at the other end. 如申請專利範圍第9項記載之半導體裝置,其中,更具備資料端子,前述輸出緩衝器係更包含:拉升電路,和以一端加以連接於前述拉升電路,而以另一端加以連接於前述資料端子之第1阻尼電阻者。 The semiconductor device according to claim 9, further comprising a data terminal, wherein the output buffer further includes: a pull-up circuit connected to the pull-up circuit at one end and connected to the aforementioned end at the other end The first damping resistor of the data terminal. 如申請專利範圍第10項記載之半導體裝置,其中,更具備:連接前述第1阻尼電阻之另一端與前述資料端子之第1配線,和連接前述補正阻抗之另一端與前述校正端子之第2配線者。 The semiconductor device according to claim 10, further comprising: a first wiring connecting the other end of the first damping resistor and the data terminal; and a second terminal connecting the correction impedance and the second correction terminal Wiring person. 如申請專利範圍第11項記載之半導體裝置,其中,前述補正阻抗之阻抗值係依據前述第1配線之阻抗值及前述第2配線之阻抗值而加以設定者。 The semiconductor device according to claim 11, wherein the impedance value of the correction impedance is set based on an impedance value of the first wiring and an impedance value of the second wiring. 如申請專利範圍第12項記載之半導體裝置,其中,前述補正阻抗之阻抗值係實質上與前述第1配線之阻抗值與前述第2配線之阻抗值的合計值相等者。 The semiconductor device according to claim 12, wherein the impedance value of the correction impedance is substantially equal to a total value of the impedance value of the first wiring and the impedance value of the second wiring. 如申請專利範圍第11項乃至第13項任一項記載之半導體裝置,其中,更包含:連接於前述第1配線之第1保護元件,和連接於前述第2配線之第2保護元件者。 The semiconductor device according to any one of the preceding claims, further comprising: a first protective element connected to the first wiring; and a second protective element connected to the second wiring. 如申請專利範圍第11項乃至第14項任一項記載之半導體裝置,其中,更具備包含前述第1配線層與形成於該第1配線層上方之第2配線層之多層配線構造,各前述第1及第2阻尼電阻係作為前述第1配線層而 加以形成,而各前述第1及第2配線以及前述補正阻抗係作為前述第2配線層而加以形成者。 The semiconductor device according to any one of the first aspect, wherein the semiconductor device further includes a multilayer wiring structure including the first wiring layer and a second wiring layer formed above the first wiring layer, and each of the foregoing The first and second damping resistors are used as the first wiring layer The first and second wirings and the correction impedance are formed as the second wiring layer. 如申請專利範圍第11項乃至第14項任一項記載之半導體裝置,其中,更具備包含第1配線層與形成於該第1配線層上方之第2配線層與形成於該第2配線層上方之第3配線層之多層配線構造,各前述第1及第2阻尼電阻係作為前述第1配線層而加以形成,前述第1配線係作為前述第2配線層而加以形成,前述第2配線係作為前述第3配線層而加以形成,前述補正阻抗係包含作為前述第2配線層而加以形成之第1部分與作為前述第3配線層而加以形成之第3部分者。 The semiconductor device according to any one of the aspects of the present invention, further comprising: a first wiring layer, a second wiring layer formed over the first wiring layer, and a second wiring layer In the multilayer wiring structure of the third wiring layer, each of the first and second damping resistors is formed as the first wiring layer, and the first wiring is formed as the second wiring layer, and the second wiring is formed. The third wiring layer is formed as the third wiring layer, and the correction impedance includes a first portion formed as the second wiring layer and a third portion formed as the third wiring layer. 如申請專利範圍第10項乃至第16項任一項記載之半導體裝置,其中,前述補正阻抗之阻抗值係依據前述資料端子之接合阻抗之阻抗值與前述校正端子之接合阻抗之阻抗值而加以設定者。 The semiconductor device according to any one of claims 10 to 16, wherein the impedance value of the correction impedance is based on an impedance value of a junction impedance of the data terminal and an impedance value of a junction impedance of the correction terminal. Setter. 如申請專利範圍第8項乃至第17項任一項記載之半導體裝置,其中,前述補正阻抗之阻抗值係依據在前述輸出緩衝器之電源寄生阻抗之阻抗值與在前述複製電路之電源寄生阻抗之阻抗值而加以設定者。 The semiconductor device according to any one of claims 8 to 17, wherein the impedance value of the correction impedance is based on an impedance value of a power supply parasitic impedance of the output buffer and a power supply parasitic impedance of the replica circuit. The impedance value is set.
TW102148182A 2012-12-26 2013-12-25 Semiconductor device TW201444284A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012283311 2012-12-26
JP2013034399 2013-02-25

Publications (1)

Publication Number Publication Date
TW201444284A true TW201444284A (en) 2014-11-16

Family

ID=51020824

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102148182A TW201444284A (en) 2012-12-26 2013-12-25 Semiconductor device

Country Status (2)

Country Link
TW (1) TW201444284A (en)
WO (1) WO2014103735A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353245A (en) * 2015-11-16 2016-02-24 西安华芯半导体有限公司 DRAM DDR calibration circuit and method based on ZQ pin
CN109994146A (en) * 2017-12-29 2019-07-09 长鑫存储技术有限公司 The detection circuit and semiconductor storage unit of semiconductor storage unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170143127A (en) * 2016-06-20 2017-12-29 삼성전자주식회사 Semiconductor memory device calibrating termination resistance and termination resistance calibration method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177580A (en) * 1999-12-20 2001-06-29 Sony Corp Impedance adapting system
JP2001352238A (en) * 2000-04-03 2001-12-21 Matsushita Electric Ind Co Ltd Constant impedance driver and method for designing the same
JP4450605B2 (en) * 2003-11-14 2010-04-14 株式会社ルネサステクノロジ Semiconductor device
JP4936054B2 (en) * 2007-03-05 2012-05-23 日本電気株式会社 Impedance adjustment circuit and impedance adjustment method
JP5578820B2 (en) * 2009-09-11 2014-08-27 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353245A (en) * 2015-11-16 2016-02-24 西安华芯半导体有限公司 DRAM DDR calibration circuit and method based on ZQ pin
CN109994146A (en) * 2017-12-29 2019-07-09 长鑫存储技术有限公司 The detection circuit and semiconductor storage unit of semiconductor storage unit
CN109994146B (en) * 2017-12-29 2021-03-23 长鑫存储技术有限公司 Detection circuit of semiconductor memory device and semiconductor memory device

Also Published As

Publication number Publication date
WO2014103735A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
US9571102B2 (en) Semiconductor device having impedance calibration function to data output buffer and semiconductor module having the same
US8553471B2 (en) Data output buffer and memory device
JP4201128B2 (en) Semiconductor integrated circuit device
JP4199789B2 (en) Method for adjusting output circuit of semiconductor device
US10063241B2 (en) Die location compensation
US9368189B2 (en) Semiconductor device including output circuit constituted of plural unit buffer circuits in which impedance thereof are adjustable
US8461867B2 (en) Semiconductor device having plural unit buffers constituting output buffer
KR101839881B1 (en) Circuit for controlling impedance and semiconductor device including the same
US8390318B2 (en) Semiconductor device having calibration circuit for adjusting output impedance of output buffer circuit
US20110109361A1 (en) Semiconductor device and information processing system
JP4384207B2 (en) Semiconductor integrated circuit
JP2006203405A (en) Output circuit of semiconductor device, semiconductor device with the same, and characteristic adjusting method of output circuit
US20080001622A1 (en) Semiconductor memory device with on die termination circuit
US9912498B2 (en) Testing impedance adjustment
TW201138307A (en) Semiconductor devices having on-die termination structures for reducing current consumption and termination methods performed in the semiconductor devices
TWI294217B (en) Internal voltage reference for memory interface
JP4450605B2 (en) Semiconductor device
TW201444284A (en) Semiconductor device
TW201530542A (en) Resistive ratio-based memory cell
US9362908B2 (en) Semiconductor apparatus including output buffer
JP2009022029A (en) Semiconductor integrated circuit device
JP4618602B2 (en) Semiconductor device
US11329036B2 (en) Semiconductor memory device
JP2013200933A (en) Semiconductor storage device
JP2012253485A (en) Semiconductor device