TW201443389A - Thickness measuring system and method for a bonding layer - Google Patents

Thickness measuring system and method for a bonding layer Download PDF

Info

Publication number
TW201443389A
TW201443389A TW103100063A TW103100063A TW201443389A TW 201443389 A TW201443389 A TW 201443389A TW 103100063 A TW103100063 A TW 103100063A TW 103100063 A TW103100063 A TW 103100063A TW 201443389 A TW201443389 A TW 201443389A
Authority
TW
Taiwan
Prior art keywords
bonding layer
thickness
interference
light source
light
Prior art date
Application number
TW103100063A
Other languages
Chinese (zh)
Other versions
TWI499756B (en
Inventor
Po-Yi Chang
Chia-Hung Cho
Yi-Sha Ku
Deh-Ming Shyu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to US14/270,962 priority Critical patent/US20140333936A1/en
Publication of TW201443389A publication Critical patent/TW201443389A/en
Application granted granted Critical
Publication of TWI499756B publication Critical patent/TWI499756B/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

In a thickness measuring system for a bonding layer according to an exemplary embodiment, an optical element changes the wavelength of a first light source to enable at least one second light source passing through a bonding layer to be incident to an object, wherein the bonding layer has an upper interface and a lower interface that are attached to the object; and an optical image capturing and analysis unit receives a plurality of reflected lights from the upper and the lower interfaces to capture a plurality of interference images of different wavelengths, and analyzes the intensity of the plurality of interference images to compute the thickness information of the bonding layer.

Description

接合層的厚度量測系統與方法 Bonding layer thickness measuring system and method

本揭露係關於一種接合層的厚度量測系統與方法。 The present disclosure relates to a thickness measurement system and method for a bonding layer.

晶圓薄化(wafer thinning)與薄晶圓處理(thin wafer handling)技術是目前三維晶片(3DIC)堆疊的重要技術之一,將待薄化設備晶圓(device wafer)暫時貼合至一外載晶圓(carrier wafer),可避免晶圓在薄化與背面處理(backside processing)後因重力及其他因素造成破壞的風險。外載晶圓之界面上的空隙(void)與微小顆粒(particle)、接合膠層厚度(adhesive thickness)、接合膠凹陷(dent)等皆會影響薄化晶圓(thin wafer)之厚度均勻性。因此在薄化晶圓之前先檢測其缺陷是非常重要的。 Wafer thinning and thin wafer handling technologies are one of the most important technologies for 3D wafer stacking, temporarily bonding device wafers to one outside. Carrier wafers avoid the risk of damage to the wafer due to gravity and other factors after thinning and backside processing. The voids on the interface of the external wafer and the particles, the adhesive thickness, the dent, etc. all affect the thickness uniformity of the thin wafer. . It is therefore important to detect defects before thinning the wafer.

超音波技術(Scanning Acoustic Microscope,SAM)、紅外穿透式影像(IR transmission imaging)等技術常用於檢測晶圓暫時貼合之界面膠層的空隙與顆粒。例如,使用超音波技術來 量測一12吋晶圓,其量測時間約為10分鐘,量測空間解析度(spatial resolution)約為50μm,並且晶圓將被浸泡於液體中。有些現有技術可以不需要將晶圓浸泡於液體中,但需要噴灑液體於檢測探頭與晶圓之間。紅外穿透式影像技術是一全域式檢測技術,能檢測膠層內部較大的氣泡,微小氣泡則配合其他演算法來強化顯示出缺陷。此兩種技術可偵測出接合膠層的空隙,但無法量測接合膠層的厚度資訊,例如厚度變化量(variation)、總厚度(total thickness)、絕對厚度(absolute thickness)等。 Techniques such as Scanning Acoustic Microscope (SAM) and IR transmission imaging are commonly used to detect voids and particles in the interfacial adhesive layer where the wafer is temporarily bonded. For example, using ultrasonic technology to A 12-inch wafer was measured with a measurement time of about 10 minutes, a measurement spatial resolution of about 50 μm, and the wafer was immersed in a liquid. Some prior art techniques do not require immersing the wafer in a liquid, but require spraying liquid between the test probe and the wafer. Infrared transmissive imaging technology is a global detection technology that detects large bubbles inside the adhesive layer. Microbubbles are combined with other algorithms to enhance the display of defects. These two techniques can detect the voids of the bonding layer, but cannot measure the thickness information of the bonding layer, such as thickness variation, total thickness, absolute thickness, and the like.

紅外光波長掃描式干涉(Infrared Ray wavelength scanning interferometry)是用來量測矽晶圓厚度之方法的其中之一。例如,基於傅立葉轉換(Fourier transform)方法相位移(phase-shifting)技術與通過零點(zero-crossing)偵測方法是最常用來分析干涉訊號。在基於傅立葉轉換方法中,可量測的最小厚度與最小厚度敏感程度受限於變化的波長範圍。相位移技術能量測晶圓的厚度變化。通過零點偵測方法可用來即時量測晶圓的表面形貌(surface shape)。 Infrared Ray wavelength scanning interferometry is one of the methods used to measure the thickness of germanium wafers. For example, the Fourier transform method based phase-shifting technique and the zero-crossing detection method are the most commonly used to analyze the interference signal. In the Fourier transform based method, the measurable minimum thickness and minimum thickness sensitivity is limited by the varying wavelength range. The phase shift technique energy measures the thickness variation of the wafer. The zero point detection method can be used to instantly measure the surface shape of the wafer.

利用紅外干涉儀來量測晶圓本身的厚度中,當一物件是雙面拋光(polished)的晶圓時,紅外光會在晶圓的表面及背面產生反射光,由於穿透晶圓的反射光路徑縮短,使得反射的光頻率產生都卜勒移位,從而產生頻率些微改變,利用此頻率的變化 可量測晶圓的厚度變化。 Using an infrared interferometer to measure the thickness of the wafer itself, when an object is a double-sided polished wafer, the infrared light will produce reflected light on the surface and back of the wafer due to reflection through the wafer. The light path is shortened so that the reflected light frequency produces a Doppler shift, resulting in a slight change in frequency, taking advantage of this frequency change. The thickness variation of the wafer can be measured.

利用紅外麥克森架構來量測晶圓本身的厚度中,包括如採用寬頻光源及改變光路徑差的方式,是藉由擷取連續的干涉影像,再利用分析干涉波包的方式來計算出晶圓厚度。也可以利用紅外麥克森架構並且基於反射儀(reflectometry)分析理論來量測晶圓本身的厚度及晶圓表面的形貌,其中利用麥克森干涉架構可以得到晶圓表面、晶圓背面以及參考平面的三道反射光,此三道光相互干涉,其干涉條紋可利用頻譜儀或波長掃描的方式得到干涉頻譜,然後再分析晶圓的厚度與晶圓的表面形貌。 Using the infrared McKesson architecture to measure the thickness of the wafer itself, including the use of broadband sources and changing the optical path difference, is achieved by taking continuous interference images and analyzing the interference packets. Round thickness. The thickness of the wafer itself and the topography of the wafer surface can also be measured using the infrared McKesson architecture and based on reflectometry analysis theory. The surface of the wafer, the back side of the wafer, and the reference plane can be obtained using the McKinson interference architecture. The three reflected light, the three light interfere with each other, and the interference fringes can obtain the interference spectrum by means of spectrum analyzer or wavelength scanning, and then analyze the thickness of the wafer and the surface topography of the wafer.

本揭露實施例可提供一種接合層的厚度量測系統與方法。 Embodiments of the present disclosure can provide a thickness measurement system and method for a bonding layer.

本揭露的一實施例是關於一種接合層的厚度量測系統。此系統可包含一光學元件,以及一光影像擷取與分析單元。此光學元件改變一第一光源的波長,使至少一第二光源穿透一接合層並且入射至一物件,其中此接合層備有一上下兩界面,此上下兩界面與此物件貼合;此光影像擷取與分析單元接收此上下兩界面反射的複數個反射光,以擷取多張不同波長的干涉影像,並分析此多張干涉影像的光強度,從而算出此接合層的厚度資訊。 One embodiment of the present disclosure is directed to a thickness measurement system for a bonding layer. The system can include an optical component and an optical image capture and analysis unit. The optical element changes a wavelength of the first light source such that the at least one second light source penetrates a bonding layer and is incident on an object, wherein the bonding layer has an upper and lower interfaces, and the upper and lower interfaces are attached to the object; The image capturing and analyzing unit receives the plurality of reflected lights reflected by the upper and lower interfaces to extract interference images of different wavelengths, and analyzes the light intensity of the plurality of interference images to calculate the thickness information of the bonding layer.

本揭露的另一實施例是關於一種接合層的厚度量測方法。此方法可包含:改變一第一光源的波長,使至少一第二光源穿透一接合層並且入射至一物件,其中此接合層備有上下兩界面,此上下兩界面與此物件貼合;接收自此接合層的上下兩界面反射的複數個反射光;以及分析此複數個反射光的光干涉光強度,計算出此接合層的厚度資訊。 Another embodiment of the present disclosure is directed to a method of measuring the thickness of a bonding layer. The method may include: changing a wavelength of a first light source such that at least one second light source penetrates a bonding layer and is incident on an object, wherein the bonding layer is provided with upper and lower interfaces, and the upper and lower interfaces are attached to the object; Receiving a plurality of reflected lights reflected from the upper and lower interfaces of the bonding layer; and analyzing the intensity of the light interference light of the plurality of reflected lights, and calculating the thickness information of the bonding layer.

茲配合下列圖示、實施例之詳細說明及申請專利範圍,將上述及本發明之其他優點詳述於後。 The above and other advantages of the present invention will be described in detail below with reference to the following drawings, detailed description of the embodiments, and claims.

100‧‧‧厚度量測系統 100‧‧‧thickness measurement system

101‧‧‧第一光源 101‧‧‧First light source

102‧‧‧光學元件 102‧‧‧Optical components

104‧‧‧物件 104‧‧‧ objects

→‧‧‧第二光源 →‧‧‧Second light source

106‧‧‧接合層 106‧‧‧Connection layer

106a‧‧‧上界面 106a‧‧‧Upper interface

106b‧‧‧下界面 106b‧‧‧ lower interface

103‧‧‧光影像擷取與分析單元 103‧‧‧Light Image Capture and Analysis Unit

←‧‧‧反射光 ←‧‧‧Reflected light

1031‧‧‧厚度資訊 1031‧‧‧ thickness information

102a‧‧‧干涉濾鏡 102a‧‧‧Interference filter

102b‧‧‧光準直器 102b‧‧‧Light collimator

102c‧‧‧光源擴束器 102c‧‧‧Light source beam expander

102d‧‧‧透鏡 102d‧‧‧ lens

102e‧‧‧分光鏡 102e‧‧‧beam splitter

210‧‧‧改變一第一光源的波長,使至少一第二光源穿透一接合 層並且入射至一物件 210‧‧‧ Changing the wavelength of a first light source such that at least one second light source penetrates a bond Layer and incident on an object

220‧‧‧接收自該接合層的上下兩界面反射的複數個反射光 220‧‧‧Multiple reflected light received from the upper and lower interfaces of the bonding layer

230‧‧‧分析此複數個反射光的光干涉光強度,來計算出此接合層的厚度資訊 230‧‧‧Analyze the intensity of the interference light of the plurality of reflected lights to calculate the thickness information of the bonding layer

301‧‧‧可調波長光源 301‧‧‧ adjustable wavelength source

304‧‧‧暫時接合晶圓 304‧‧‧ Temporary bonding wafer

304a‧‧‧膠層 304a‧‧ ‧ layer

304b‧‧‧晶圓 304b‧‧‧ wafer

303a‧‧‧光影像擷取單元 303a‧‧‧Light image capture unit

303b‧‧‧電腦 303b‧‧‧ computer

34a與34b‧‧‧膠層的上下兩界面 Upper and lower interfaces of 34a and 34b‧‧ ‧ layers

405‧‧‧計算出接合層的一單點厚度與接合層的全域厚度變化 405‧‧‧ Calculate the thickness of a single point of the bonding layer and the thickness variation of the bonding layer

415‧‧‧結合此單點厚度的資料與此全域厚度變化的資料,來建立此接合層的全域厚度分布資訊 415‧‧‧ Combine the data of this single point thickness with the data of the thickness variation of the whole area to establish the global thickness distribution information of the joint layer

△L‧‧‧膠層的平均厚度 △ L‧‧‧ average thickness of the rubber layer

h(x,y)‧‧‧膠層在像素點(x,y)的厚度變化 h ( x, y ) ‧ ‧ thickness of the glue layer at the pixel ( x, y )

605‧‧‧利用旋轉一干涉鏡來改變光源的波長,並擷取多張不同波長的干涉影像 605‧‧‧Use a rotating interferometer to change the wavelength of the light source and capture multiple interference images of different wavelengths

610‧‧‧建立此多張干涉影像中的一單點的干涉訊號的波長與光強度的一關係圖 610‧‧‧To establish a relationship between the wavelength of a single point of interference signal and the intensity of light in the multiple interference images

615‧‧‧利用光干涉理論所模擬的訊號與此干涉頻譜圖作曲線擬合,從而求出此單點厚度 615‧‧‧ Use the signal simulated by the optical interference theory to fit the interference spectrum to curve, and find the single point thickness

第一圖是根據本揭露的一實施例,說明一種接合層的厚度量測系統。 The first figure illustrates a thickness measurement system for a bonding layer in accordance with an embodiment of the present disclosure.

第二圖是根據本揭露一實施例,說明一種接合層的厚度量測方法。 The second figure illustrates a method of measuring the thickness of a bonding layer according to an embodiment of the present disclosure.

第三圖是根據本揭露實施例,說明一應用範例示意圖。 The third figure is a schematic diagram illustrating an application example according to an embodiment of the disclosure.

第四圖是根據本揭露一實施例,說明如何計算接合層的厚度資訊。 The fourth figure illustrates how to calculate the thickness information of the bonding layer according to an embodiment of the present disclosure.

第五圖是以第三圖之暫時接合晶圓為應用範例,說明膠層的上下兩界面的反射波的光干涉光強度與膠層厚度的關係。 The fifth figure is an example of the temporary bonding of the wafer in the third figure, and illustrates the relationship between the intensity of the light interference light of the reflected wave at the upper and lower interfaces of the adhesive layer and the thickness of the adhesive layer.

第六圖是根據本揭露一實施例,說明如何計算接合層的一單點厚度。 The sixth figure illustrates how to calculate a single point thickness of the bonding layer in accordance with an embodiment of the present disclosure.

第七圖是根據一實施例,說明光干涉理論所模擬的訊號曲線與多張干涉影像中的一單點的干涉頻譜圖作曲線擬合。 The seventh figure is a curve fitting of a signal curve simulated by the optical interference theory and an interference spectrum of a single point in a plurality of interference images according to an embodiment.

第八圖是根據本揭露另一實施例,說明利用五步相位移法的五張干涉影像的相位移與波長。 The eighth figure is a phase shift and a wavelength of five interference images using a five-step phase shift method according to another embodiment of the present disclosure.

第九圖是根據本揭露一實施例,說明接合層的厚度變化的量測結果。 The ninth drawing is a measurement result illustrating the thickness variation of the bonding layer according to an embodiment of the present disclosure.

以下,參考伴隨的圖示,詳細說明本揭露實施例,俾使本領域者易於瞭解。所述之發明創意可以採用多種變化的實施方式,當不能只限定於這些實施例。本揭露省略已熟知部分(well-known part)的描述,並且相同的參考號於本揭露中代表相同的元件。 Hereinafter, the embodiments of the present disclosure will be described in detail with reference to the accompanying drawings, which will be readily understood by those skilled in the art. The inventive concept described above may take a variety of variations, and should not be limited to only these embodiments. The disclosure omits the description of well-known parts, and the same reference numerals represent the same elements in the present disclosure.

本揭露實施例可提供一種技術,此技術可提供一種接合層的厚度量測。此接合層例如是,但不限定於,晶圓的一暫時貼合介面(例如一膠層)。以一物件是晶圓為例,此接合層例如是此晶圓的一暫時貼合界面,此接合層備有一上界面與一下界面,此上下兩界面與此晶圓貼合。此技術可利用一光學元件如干涉儀、基於相位移理論與反射的理論,來量測此界面膠的厚度資訊例如是,此界面膠的厚度及厚度的變化量,也可藉由此界面膠的單點的厚度值及此界面膠的厚度變化來建立晶圓的暫時貼合界面膠層的厚度分布。 Embodiments of the present disclosure may provide a technique that provides a thickness measurement of a bonding layer. The bonding layer is, for example, but not limited to, a temporary bonding interface (eg, a glue layer) of the wafer. For example, if the object is a wafer, the bonding layer is, for example, a temporary bonding interface of the wafer. The bonding layer has an upper interface and a lower interface, and the upper and lower interfaces are bonded to the wafer. The technology can measure the thickness information of the interface glue by using an optical component such as an interferometer, a theory based on phase shift theory and reflection, for example, the thickness and thickness of the interface glue, and the interface glue The thickness of the single point and the thickness of the interface glue change to establish the thickness distribution of the temporary bonding interface layer of the wafer.

第一圖是根據本揭露的一實施例,說明一種接合層的厚度量測系統。參考第一圖,厚度量測系統100包含一光學元件102以及一光影像擷取與分析單元103。光學元件102改變一第一光源101的波長,使至少一第二光源(以箭頭→表示)穿透一接合層106並且入射至一物件104,其中接合層106備有一上界面106a與一下界面106b,此上下兩界面(106a與106b)與物件104貼合;光影像擷取與分析單元103接收上下兩界面反射的複數個反射光1061,以擷取多張不同波長的干涉影像(interference image),並分析此多張干涉影像的光強度(intensity),從而算出接合層106的厚度資訊1031。 The first figure illustrates a thickness measurement system for a bonding layer in accordance with an embodiment of the present disclosure. Referring to the first figure, the thickness measurement system 100 includes an optical component 102 and an optical image capture and analysis unit 103. The optical element 102 changes the wavelength of a first light source 101 such that at least one second light source (indicated by an arrow →) penetrates a bonding layer 106 and is incident on an object 104. The bonding layer 106 has an upper interface 106a and a lower interface 106b. The upper and lower interfaces (106a and 106b) are attached to the object 104. The optical image capturing and analyzing unit 103 receives the plurality of reflected lights 1061 reflected by the upper and lower interfaces to capture multiple interference images of different wavelengths. And analyzing the light intensity of the plurality of interference images to calculate the thickness information 1031 of the bonding layer 106.

在本揭露的實施範例中,此物件例如是一晶圓。此接合層是與此晶圓貼合的一界面膠層。在此光學元件中,可旋轉一干涉濾鏡的不同角度,例如延著一光主軸,從10°開始,每次增加0.25°旋轉至45°為止,來調整第一光源101通過此干涉濾鏡的不同波長。例如,此光學元件可利用一光準直器102b將此第一光源101準直化入射至一干涉濾鏡102a,此至少一第二光源再經由如一光源擴束器102c與一透鏡102d,穿透此接合層106入射至此物件。此光影像擷取與分析單元擷取的多張干涉影像是此至少一第二光源入射(以箭頭→表示)至此接合層的上下兩界面後,經由此上下兩界面反射光(以箭頭←表示)產生相互干涉,並且經由一分光鏡102e反射而產生的多張光干 涉光強度影像。此接合層的厚度資訊至少包括此接合層的至少一單點絕對厚度資料以及此接合層的全域厚度分布資訊。有了此接合層的至少一單點絕對厚度資料以及此接合層的全域厚度分布資訊,厚度量測系統100還可分析得出有關此物件的資訊,例如可利用曲面擬合方法來產生物件的表面形貌的資料。 In the embodiment of the present disclosure, the object is, for example, a wafer. The bonding layer is an interface glue layer bonded to the wafer. In the optical component, the different angles of the interference filter can be rotated, for example, by a light spindle, and the first light source 101 is adjusted through the interference filter from 10° every time by 0.25° rotation to 45°. Different wavelengths. For example, the optical component can collimate the first light source 101 into an interference filter 102a by using a light collimator 102b. The at least one second light source is further passed through, for example, a light source expander 102c and a lens 102d. The bonding layer 106 is incident on the object. The plurality of interference images captured by the light image capturing and analyzing unit are the at least one second light source incident (indicated by an arrow) to the upper and lower interfaces of the bonding layer, and the light is reflected by the upper and lower interfaces (indicated by an arrow ←) Producing a plurality of light-dryings that interfere with each other and are reflected by a beam splitter 102e Light intensity image. The thickness information of the bonding layer includes at least one single point absolute thickness data of the bonding layer and global thickness distribution information of the bonding layer. With at least one single point absolute thickness data of the bonding layer and global thickness distribution information of the bonding layer, the thickness measurement system 100 can also analyze information about the object, for example, a surface fitting method can be used to generate the object. Information on the surface topography.

承上述,根據本揭露一實施例,可提供一種接合層的厚度量測方法,如第二圖所示。請參考第二圖,此厚度量測方法可改變一第一光源的波長,使至少一第二光源穿透一接合層並且入射至一物件(步驟210),如上述所在載,此接合層備有上下兩界面,此上下兩界面與此物件貼合。然後,此厚度量測方法可接收自該接合層的上下兩界面反射的複數個反射光(步驟220),並且可分析此複數個反射光的光干涉光強度,來計算出此接合層的厚度資訊(步驟230)。 In view of the above, according to an embodiment of the present disclosure, a method for measuring the thickness of a bonding layer can be provided, as shown in the second figure. Referring to the second figure, the thickness measurement method can change the wavelength of a first light source such that at least one second light source penetrates a bonding layer and is incident on an object (step 210). There are two upper and lower interfaces, and the upper and lower interfaces are attached to the object. Then, the thickness measuring method can receive a plurality of reflected lights reflected from the upper and lower interfaces of the bonding layer (step 220), and can analyze the optical interference light intensity of the plurality of reflected lights to calculate the thickness of the bonding layer. Information (step 230).

在本揭露的實施範例中,此厚度量測方法可利用旋轉一干涉濾鏡的不同角度來改變此第一光源的波長,以產生此至少一第二光源。以下以一暫時接合晶圓(temporary bonded wafer)為一應用範例,說明本揭露之厚度量測的技術。此應用範例中,第一光源是一可調波長光源;此暫時接合晶圓包含一物件如晶圓、以及一接合層,此接合層例如是備有一上界面與一下界面的一膠層。 In an embodiment of the present disclosure, the thickness measurement method may change the wavelength of the first light source by using different angles of the rotation-interference filter to generate the at least one second light source. The following describes a technique for thickness measurement of the present disclosure by using a temporarily bonded wafer as an application example. In this application example, the first light source is a tunable wavelength light source; the temporary bonding wafer includes an object such as a wafer, and a bonding layer, for example, a bonding layer having an upper interface and a lower interface.

第三圖是根據本揭露實施例,說明一應用範例示意圖。在此應用範例中,一可調波長光源301經由光學元件102中的光源擴束器102c與透鏡102d,將此可調波長光源301擴束及準直化後,入射(以箭頭→表示)至一暫時接合晶圓304。此暫時接合晶圓304包含一膠層304a暫時貼合一晶圓304b。貼合於暫時貼合晶圓304的一表面的膠層304a的上下兩界面(34a與34b)的反射光(以箭頭←表示)相互干涉,透過光影像擷取與分析單元中如一光影像擷取單元303a擷取此反射波的光干涉光強度,以及藉由一厚度分析單元如一電腦303b、一計算裝置、一處理器等,分析光干涉光強度的資料,來計算膠層304a的厚度資訊。 The third figure is a schematic diagram illustrating an application example according to an embodiment of the disclosure. In this application example, a tunable wavelength light source 301 is expanded and collimated by the light source beam expander 102c and the lens 102d in the optical element 102, and then incident (indicated by an arrow) to A wafer 304 is temporarily bonded. The temporary bonding wafer 304 includes a glue layer 304a for temporarily bonding a wafer 304b. The reflected light (indicated by the arrow ←) of the upper and lower interfaces (34a and 34b) of the adhesive layer 304a bonded to one surface of the temporarily bonded wafer 304 interferes with each other, and is transmitted through the light image capturing and analyzing unit such as an optical image. The taking unit 303a captures the intensity of the light interference light of the reflected wave, and analyzes the data of the intensity of the light interference light by a thickness analyzing unit such as a computer 303b, a computing device, a processor, etc., to calculate the thickness information of the adhesive layer 304a. .

根據本揭露一實施例,如第四圖所示,計算一接合層的厚度資訊可包括:計算出接合層的一單點厚度與接合層的全域厚度變化(步驟405);以及結合此單點厚度的資料與此全域厚度變化的資料,來建立此接合層的全域厚度分布資訊(步驟415)。 According to an embodiment of the present disclosure, as shown in the fourth figure, calculating the thickness information of a bonding layer may include: calculating a single point thickness of the bonding layer and a global thickness variation of the bonding layer (step 405); and combining the single point The thickness data and the global thickness variation data are used to establish global thickness distribution information for the bonding layer (step 415).

本揭露實施例的厚度量測可依據光干涉理論(例如紅外光波長掃描式干涉技術)、相位移(phase shifting)技術、及搭配頻譜曲線擬合(spectrum curve fitting)技術來計算此厚度。利用光干涉理論,光影像擷取與分析單元擷取的多張干涉影像其光干涉光強度與膠層厚度關係式可如下表示:I(kx,y)=I 0(x,y)+A(x,y)cos{2kn.L(x,y)}....................(1) 其中,L(x,y)為接合層在一像素點(x,y)所對應的接合層厚度;I(k;x,y)為接合層在像素點(x,y)之反射波的光干涉光強度;I 0(x,y)為干涉影像之背景在像素點(x,y)的光干涉光強度;A(x,y)為在像素點(x y)的光干涉振幅,單位為微米;n為接合層的反射率(refractive index);以及λ為反射波的光波長,單位為奈米(nano meter,nm)。此接合層在一像素點(x,y)所對應的絕對厚度L(x,y)=△L+h(x,y),其中△L為接合層的平均厚度;h(x,y)為接合層在像素點(x,y)的厚度變化;並且k=2π/λ。所以式(1)中,接合層的表面在一單點(x,y)的光干涉光強度可表示如下:I(k;x,y)=I 0(x,y)+A(x,y)cos{2kn.[△L+h(x,y)]} (2) The thickness measurement of the disclosed embodiments can be calculated based on optical interference theory (e.g., infrared wavelength scanning interferometry), phase shifting techniques, and spectral curve fitting techniques. Using the optical interference theory, the relationship between the optical interference light intensity and the thickness of the glue layer of the multiple interference images captured by the optical image capture and analysis unit can be expressed as follows: I ( k ; x , y ) = I 0 ( x , y ) + A ( x , y )cos{2 kn . L(x,y)}..............(1) where L( x,y ) is the bonding layer at a pixel point ( x,y ) Corresponding bonding layer thickness; I(k; x, y) is the optical interference light intensity of the reflected wave of the bonding layer at the pixel point ( x, y ); I 0 ( x , y ) is the background of the interference image at the pixel point ( x,y ) light interference light intensity; A(x,y) is the light interference amplitude at the pixel point ( xy ) in micrometers; n is the resistivity of the bonding layer; and λ is the reflected wave The wavelength of light, in nanometer (nm). This bonding layer is a pixel (x, y) corresponding to the absolute thickness L (x, y) = △ L + h (x, y), where △ L is the average thickness of the bonding layer; h (x, y) The thickness of the bonding layer at the pixel point ( x, y ) varies; and k = 2 π / λ . Therefore, in equation (1), the intensity of light interference at a single point ( x, y ) of the surface of the bonding layer can be expressed as follows: I ( k ; x , y ) = I 0 ( x , y ) + A ( x , y )cos{2 kn . [△ L + h ( x , y )]} (2)

依據不同的波長λ,在單點(x,y)的光干涉光強度可表示如下: ,並且其對應的特定相位ψ(x,y)可以表示為 According to different wavelengths λ , the intensity of light interference at a single point (x, y) can be expressed as follows: And its corresponding specific phase ψ( x,y ) can be expressed as

如之前所述,接合層的上下兩界面的反射光會相互干涉,兩波長干涉的相位變化可表示如下: 其中,△λ為波長變化量。 也就是 As described earlier, the reflected light at the upper and lower interfaces of the bonding layer interfere with each other, and the phase change of the two-wavelength interference can be expressed as follows: Here, Δλ is a wavelength change amount. That is

以第三圖之暫時接合晶圓為應用範例,根據上述的計算式,第五圖說明來自膠層304a的上下兩界面(34a與34b)的反射波的光干涉光強度與膠層厚度的關係。膠層304a的表面在任一像素點(x,y)對應的絕對厚度是膠層304a的平均厚度△L加上膠層304a在此像素點(x,y)的厚度變化h(x,y)。此厚度變化h(x,y)可得出如下式: 其中,λ為反射波的波長,n為膠層304a的反射率,ψ為在像素點(x,y)之反射波的光干涉光強度所對應的相位。 Taking the temporary bonding wafer of the third figure as an application example, according to the above calculation formula, the fifth figure illustrates the relationship between the light interference light intensity of the reflected wave from the upper and lower interfaces (34a and 34b) of the adhesive layer 304a and the thickness of the adhesive layer. . The absolute thickness corresponding to the surface of the glue layer 304a at any pixel point ( x, y ) is the average thickness ΔL of the glue layer 304a plus the thickness variation h ( x, y ) of the glue layer 304a at this pixel point ( x, y ). . This thickness change h ( x, y ) can be expressed as follows: Here, λ is the wavelength of the reflected wave, n is the reflectance of the adhesive layer 304a, and ψ is the phase corresponding to the intensity of the light interference light of the reflected wave at the pixel point ( x, y ).

承上述,第六圖是根據一實施例,說明如何計算接合層的一單點厚度。參考第六圖,首先可利用旋轉一干涉鏡來改變光源的波長,並擷取多張不同波長的干涉影像(步驟605),然後建立此多張干涉影像中的一單點的干涉訊號的波長與光強度的一關係圖(也就是干涉頻譜圖)(步驟610),再利用光干涉理論所模擬的訊號與此干涉頻譜圖作曲線擬合,從而求出此單點厚度(步驟615)。 In view of the above, the sixth figure illustrates how to calculate a single point thickness of the bonding layer according to an embodiment. Referring to the sixth figure, first, a rotating interferometer can be used to change the wavelength of the light source, and multiple interference images of different wavelengths are captured (step 605), and then the wavelength of the interference signal of a single point in the multiple interference images is established. A relationship with the light intensity (i.e., the interference spectrogram) is obtained (step 610), and the signal simulated by the optical interference theory is fitted to the interference spectrogram for curve fitting to determine the single point thickness (step 615).

第七圖是根據一實施例,說明光干涉理論所模擬的訊號曲線與多張干涉影像中的一單點的干涉頻譜圖作曲線擬合,其中實線曲線代表光干涉理論所模擬的干涉訊號(interference signal),虛線曲線代表利用多張干涉影像中的一單點的干涉頻譜圖所做出的曲線擬合,橫軸的變數代表1/λ,即1/波長,縱軸的變數代表振幅(amplitude)。藉由從干涉頻譜圖所做出的頻譜曲線擬合可初步決定接合層的平均厚度△L。單點厚度可設定為從該頻譜曲線擬合決定的平均厚度△LThe seventh figure is a curve fitting of a signal curve simulated by the optical interference theory and an interference spectrum of a single point in a plurality of interference images according to an embodiment, wherein the solid line curve represents an interference signal simulated by the optical interference theory. (interference signal), the dotted curve represents the curve fitting made by using a single point interference spectrum in multiple interference images. The variable on the horizontal axis represents 1/λ, that is, 1/wavelength, and the variable on the vertical axis represents amplitude. (amplitude). The average thickness Δ L of the bonding layer can be initially determined by fitting the spectral curve from the interference spectrogram. The single point thickness can be set to the average thickness Δ L determined from the fit of the spectral curve.

求出單點厚度之後,藉由改變波長的量(即△λ),可於多張干涉相位圖中選取特定相位的干涉影像,並且利用一相位演算法如三步、四步或五步等相位移法以及相位展開法來算出各個像素點(x,y)的相位。如第八圖的範例所示,利用五步相位移可使用五個參考相位移(reference phase shifting),即△ψ=(i-1)×π/2且i=1,2,3,4,5,來擷取出五張不同波長的干涉影像,然後此五張干涉影像的各個像素點(x,y)的光強度I 1~I 5分別可表示如下: 所以,像素點(x,y)所對應的特定相位ψ(x,y)可以表示為 也就是說,特定相位ψ(x,y)可由前述五張干涉影像的各個像素點(x,y)的光強度I 1~I 5來算出。然後,全域(Full-Field)接合層的厚度變化h(x,y)可利用式子來得出。如此,依相位值計算出全域接合層的厚度變化。 After determining the thickness of a single point, by changing the amount of wavelength (ie, Δλ), an interference image of a specific phase can be selected in a plurality of interference phase diagrams, and a phase algorithm such as three steps, four steps, or five steps is utilized. The phase shift method and the phase unwrapping method calculate the phase of each pixel point ( x, y ). As shown in the example of the eighth figure, five phase shifts can be used with a five-step phase shift, ie Δψ=(i-1)×π/2 and i=1,2,3,4 5, to extract five different wavelength interference images, then the light intensity I 1 ~ I 5 of each pixel ( x, y ) of the five interference images can be expressed as follows: Therefore, the pixel (x, y) a specific phase ψ (x, y) can be expressed as the corresponding That is, the specific phase ψ( x, y ) can be calculated from the light intensities I 1 to I 5 of the respective pixel points ( x, y ) of the five interference images described above. Then, the thickness variation h ( x, y ) of the global (Full-Field) bonding layer can be utilized Come to draw. Thus, the thickness variation of the global bonding layer is calculated from the phase values.

也就是說,計算出全域接合層的厚度變化可包含:藉由改變波長的量,於多張干涉相位圖中選取數個特定相位的多張干涉影像;並且利用一相位移法,算出接合層之各個像素點(x,y)所對應的相位,再依據算出的各相位計算出全域接合層的厚度變化。最後將單點厚度的資料與接合層的全域厚度變化的資料整合,即可建立全域接合層的厚度分布。第九圖是根據本揭露一實施例,說明接合層的厚度分布的量測結果,其中橫軸代表接合層的像素點的位置(position),縱軸代表接合層的厚度(單位為微米(μm))。在第九圖的實驗範例中,根據其曲線分布結果,接合層的最大厚度(maximum thickness)19.86μm約在位置450之處,最小厚度(minimum thickness)16.09μm約在位置50之處。也就是說,此接合層的厚度可從16.09μm變化至19.86μm。換句話說,此接合層的總厚度變化(total thickness variation)為3.76μm,即最大厚度與最小厚度之間的差。 That is, calculating the thickness variation of the global bonding layer may include: selecting a plurality of interference images of a plurality of specific phases in the plurality of interference phase maps by changing the amount of the wavelength; and calculating the bonding layer by using a phase shift method The phase corresponding to each pixel point ( x, y ) is used to calculate the thickness variation of the global bonding layer based on the calculated phases. Finally, by integrating the data of the single point thickness with the data of the global thickness variation of the bonding layer, the thickness distribution of the global bonding layer can be established. The ninth drawing is a measurement result of the thickness distribution of the bonding layer according to an embodiment of the present disclosure, wherein the horizontal axis represents the position of the pixel of the bonding layer, and the vertical axis represents the thickness of the bonding layer (in micrometers (μm) )). In the experimental example of the ninth figure, according to the result of the curve distribution, the maximum thickness of the bonding layer is 19.86 μm at the position 450, and the minimum thickness of 16.09 μm is about the position 50. That is, the thickness of this bonding layer can be changed from 16.09 μm to 19.86 μm. In other words, the total thickness variation of this bonding layer is 3.76 μm, that is, the difference between the maximum thickness and the minimum thickness.

綜上所述,本揭露的實施例提供一種接合層的厚度量測系 統與方法。其技術可利用一光學元件如干涉儀、基於相位移理論與反射的理論、頻譜曲線擬合等,來分析多張干涉影像的光強度及量測接合層的厚度資訊,厚度資訊例如是,但不限定於此接合層的單點厚度及全域厚度變化量,也可藉由此接合層的單點厚度值及此接合層的厚度變化來建立一物件的接合層的厚度分布。 In summary, the embodiments of the present disclosure provide a thickness measurement system for a bonding layer. System and method. The technology can use an optical component such as an interferometer, phase shift theory and reflection theory, spectral curve fitting, etc. to analyze the light intensity of multiple interference images and measure the thickness information of the bonding layer. The thickness information is, for example, but The thickness of the bonding layer of an object may be established by the single-point thickness value of the bonding layer and the thickness variation of the bonding layer, without being limited to the single-point thickness and the thickness variation of the entire bonding layer.

以上所述者僅為本揭露實施例,當不能依此限定本揭露實施之範圍。即大凡本發明申請專利範圍所作之均等變化與修飾,皆應仍屬本發明專利涵蓋之範圍。 The above is only the embodiment of the disclosure, and the scope of the disclosure is not limited thereto. That is, the equivalent changes and modifications made by the scope of the present invention should remain within the scope of the present invention.

100‧‧‧厚度量測系統 100‧‧‧thickness measurement system

101‧‧‧第一光源 101‧‧‧First light source

102‧‧‧光學元件 102‧‧‧Optical components

104‧‧‧物件 104‧‧‧ objects

→‧‧‧第二光源 →‧‧‧Second light source

106‧‧‧接合層 106‧‧‧Connection layer

106a‧‧‧上界面 106a‧‧‧Upper interface

106b‧‧‧下界面 106b‧‧‧ lower interface

103‧‧‧光影像擷取與分析單元 103‧‧‧Light Image Capture and Analysis Unit

←‧‧‧反射光 ←‧‧‧Reflected light

1031‧‧‧厚度資訊 1031‧‧‧ thickness information

102a‧‧‧干涉濾鏡 102a‧‧‧Interference filter

102b‧‧‧光準直器 102b‧‧‧Light collimator

102c‧‧‧光源擴束器 102c‧‧‧Light source beam expander

102d‧‧‧透鏡 102d‧‧‧ lens

102e‧‧‧分光鏡 102e‧‧‧beam splitter

Claims (16)

一種接合層的厚度量測系統,該系統包含:一光學元件,改變一第一光源的波長,使至少一第二光源穿透一接合層並且入射至一物件,其中該接合層備有上下兩界面,該上下兩界面與該物件貼合;以及一光影像擷取與分析單元,接收該上下兩界面反射的複數個反射光,以擷取多張不同波長的干涉影像,並分析該多張干涉影像的光強度,從而算出該接合層的厚度資訊。 A thickness measurement system for a bonding layer, the system comprising: an optical component that changes a wavelength of a first light source such that at least one second light source penetrates a bonding layer and is incident on an object, wherein the bonding layer is provided with two upper and lower An interface, the upper and lower interfaces are attached to the object; and an optical image capturing and analyzing unit receives the plurality of reflected lights reflected by the upper and lower interfaces to capture a plurality of interference images of different wavelengths, and analyzes the plurality of images The light intensity of the image is interfered to calculate the thickness information of the bonding layer. 如申請專利範圍第1項所述之系統,其中該物件是一晶圓。 The system of claim 1, wherein the object is a wafer. 如申請專利範圍第1項所述之系統,其中該接合層是該物件的一界面膠層。 The system of claim 1, wherein the bonding layer is an interface layer of the article. 如申請專利範圍第1項所述之系統,其中該光學元件旋轉一干涉濾鏡的不同角度來調整該第一光源通過該干涉濾鏡的不同波長。 The system of claim 1, wherein the optical element rotates a different angle of the interference filter to adjust different wavelengths of the first light source through the interference filter. 如申請專利範圍第4項所述之系統,其中該光學元件利用一光準直器將該第一光源準直化入射至一干涉濾鏡,該至少一第二光源再經由一光源擴束器穿透該接合層入射至該物件。 The system of claim 4, wherein the optical component collimates the first light source into an interference filter by using a light collimator, and the at least one second light source is further passed through a light source beam expander The bonding layer is incident on the object. 如申請專利範圍第1項所述之系統,其中該光影像擷取與分析單元擷取的該多張干涉影像是該至少一第二光源入射至該上下兩界面後,經由該上下兩界面反射光產生相互干涉而產生的多張光干涉光強度影像。 The system of claim 1, wherein the plurality of interference images captured by the optical image capturing and analyzing unit are reflected by the upper and lower interfaces after the at least one second light source is incident on the upper and lower interfaces. The light generates a plurality of light interference light intensity images generated by mutual interference. 如申請專利範圍第1項所述之系統,其中該接合層的厚度資訊至少包括該接合層的一單點厚度的資料以及該接合層的全 域厚度分布資訊。 The system of claim 1, wherein the thickness information of the bonding layer includes at least a single point thickness of the bonding layer and a total of the bonding layer Domain thickness distribution information. 如申請專利範圍第1項所述之系統,其中該系統利用該接合層的厚度資訊,產生出該物件的表面形貌的資訊。 The system of claim 1, wherein the system uses the thickness information of the bonding layer to generate information on the surface topography of the object. 一種接合層的厚度量測方法,包含:改變一第一光源的波長,使至少一第二光源穿透一接合層並且入射至一物件,該物件與該接合層貼合,其中該接合層備有上下兩界面,該上下兩界面與該物件貼合;接收自該接合層的上下兩界面反射的複數個反射光;以及分析該複數個反射光的光干涉光強度,計算出該接合層的厚度資訊。 A method for measuring a thickness of a bonding layer, comprising: changing a wavelength of a first light source, causing at least one second light source to penetrate a bonding layer and incident on an object, the object bonding with the bonding layer, wherein the bonding layer is prepared Having upper and lower interfaces, the upper and lower interfaces are attached to the object; receiving a plurality of reflected lights reflected from the upper and lower interfaces of the bonding layer; and analyzing the intensity of the interference light of the plurality of reflected lights, and calculating the bonding layer Thickness information. 如申請專利範圍第9項所述之方法,其中計算出該接合層的厚度資訊還包括:計算出該接合層的一單點厚度與該接合層的全域厚度變化;以及結合該單點厚度的資料與該全域厚度變化的資料,來建立該接合層的全域厚度分布資訊。 The method of claim 9, wherein calculating the thickness information of the bonding layer further comprises: calculating a single point thickness of the bonding layer and a global thickness variation of the bonding layer; and combining the single point thickness The data and the global thickness variation data are used to establish the global thickness distribution information of the bonding layer. 如申請專利範圍第9項所述之方法,其中該方法利用旋轉一干涉濾鏡的不同角度來改變該第一光源的波長,以產生該至少一第二光源。 The method of claim 9, wherein the method uses a different angle of the rotation-interference filter to change the wavelength of the first source to generate the at least one second source. 如申請專利範圍第10項所述之方法,其中計算出該接合層的該單點厚度還包括:利用旋轉一干涉鏡來改變該第一光源的波長,並擷取多張不同波長的干涉影像; 建立該多張干涉影像中的一單點的干涉訊號的波長與光強度的一干涉頻譜圖;以及利用光干涉理論所模擬的多個訊號與該干涉頻譜圖作曲線擬合,從而求出該單點厚度。 The method of claim 10, wherein calculating the single point thickness of the bonding layer further comprises: using a rotating interferometer to change a wavelength of the first light source, and extracting multiple interference images of different wavelengths ; Establishing an interference spectrogram of the wavelength and the intensity of the interference signal of the single point in the plurality of interference images; and fitting a plurality of signals simulated by the optical interference theory to the interference spectrum to perform the curve fitting Single point thickness. 如申請專利範圍第10項所述之方法,其中計算出接合層的全域厚度變化還包括:藉由改變該第一光源的波長的量,於多張干涉相位圖中選取數個特定相位的多張干涉影像;以及利用一相位移法,算出該接合層之各像素點所對應的相位,再依據算出的該各像素點所對應的相位,計算出該接合層的全域厚度變化。 The method of claim 10, wherein calculating the global thickness variation of the bonding layer further comprises: selecting a plurality of specific phases in the plurality of interference phase maps by changing the amount of the wavelength of the first light source And interfering with the image; and calculating a phase corresponding to each pixel of the bonding layer by using a phase shift method, and calculating a global thickness variation of the bonding layer according to the calculated phase corresponding to each pixel. 如申請專利範圍第13項所述之方法,其中該數個特定相位由該多張干涉影像的各像素點的光強度來算出。 The method of claim 13, wherein the plurality of specific phases are calculated from light intensities of respective pixels of the plurality of interference images. 如申請專利範圍第12項所述之方法,其中該接合層的一平均厚度係從該干涉頻譜圖所作的頻譜曲線擬合來初步決定。 The method of claim 12, wherein an average thickness of the bonding layer is initially determined from a spectral curve fit of the interference spectrogram. 如申請專利範圍第15項所述之方法,其中該單點厚度設定為從該頻譜曲線擬合決定的該平均厚度。 The method of claim 15, wherein the single point thickness is set to the average thickness determined from the spectral curve fit.
TW103100063A 2013-05-10 2014-01-02 Thickness measuring system and method for a bonding layer TWI499756B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/270,962 US20140333936A1 (en) 2013-05-10 2014-05-06 Thickness measuring system and method for a bonding layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361821805P 2013-05-10 2013-05-10

Publications (2)

Publication Number Publication Date
TW201443389A true TW201443389A (en) 2014-11-16
TWI499756B TWI499756B (en) 2015-09-11

Family

ID=52423297

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103100063A TWI499756B (en) 2013-05-10 2014-01-02 Thickness measuring system and method for a bonding layer

Country Status (1)

Country Link
TW (1) TWI499756B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI625516B (en) * 2015-09-15 2018-06-01 Ngk Insulators Ltd Method for estimating thickness tendency of composite substrate and piezoelectric substrate
TWI731992B (en) * 2016-08-01 2021-07-01 日商迪思科股份有限公司 Thickness measuring device
TWI731993B (en) * 2016-08-01 2021-07-01 日商迪思科股份有限公司 Measuring device
CN113587827A (en) * 2021-06-10 2021-11-02 浙江晶盛机电股份有限公司 Wafer surface shape real-time online measuring system and measuring method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL125964A (en) * 1998-08-27 2003-10-31 Tevet Process Control Technolo Method and apparatus for measuring the thickness of a transparent film, particularly of a photoresist film on a semiconductor substrate
EP1061355A1 (en) * 1999-06-18 2000-12-20 Instrumentarium Corporation A method and arrangement for radiation absorption measurements of gaseous media
JP2008510958A (en) * 2004-08-20 2008-04-10 トラック ”エヌ” ファインド ピーティーワイ リミテッド Equipment to assist in the discovery of goods
US7619746B2 (en) * 2007-07-19 2009-11-17 Zygo Corporation Generating model signals for interferometry
DE102011051146B3 (en) * 2011-06-17 2012-10-04 Precitec Optronik Gmbh Test method for testing a bonding layer between wafer-shaped samples

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI625516B (en) * 2015-09-15 2018-06-01 Ngk Insulators Ltd Method for estimating thickness tendency of composite substrate and piezoelectric substrate
TWI731992B (en) * 2016-08-01 2021-07-01 日商迪思科股份有限公司 Thickness measuring device
TWI731993B (en) * 2016-08-01 2021-07-01 日商迪思科股份有限公司 Measuring device
CN113587827A (en) * 2021-06-10 2021-11-02 浙江晶盛机电股份有限公司 Wafer surface shape real-time online measuring system and measuring method thereof

Also Published As

Publication number Publication date
TWI499756B (en) 2015-09-11

Similar Documents

Publication Publication Date Title
US20140333936A1 (en) Thickness measuring system and method for a bonding layer
JP4885212B2 (en) Method and system for analyzing low coherence interferometer signals for information about thin film structures
TWI499756B (en) Thickness measuring system and method for a bonding layer
US10054423B2 (en) Optical method and system for critical dimensions and thickness characterization
FR3045813A1 (en) DEVICE AND METHOD FOR MEASURING HEIGHT IN THE PRESENCE OF THIN LAYERS
US20200355622A1 (en) Optical phase measurement system and method
WO2015001918A1 (en) Interference measurement method and device
WO2015095724A2 (en) Digital shearography ndt system for speckless objects
CN109540007A (en) The measurement method and measuring device of super thick film
WO2013118543A1 (en) Surface measurement device
US20180059032A1 (en) Device and method for detecting defects in bonding zones between samples such as wafers
CN106323163B (en) A kind of surface 3D detection device and detection method
US7667852B2 (en) Measuring the shape, thickness variation, and material inhomogeneity of a wafer
Sun et al. A method for measuring and correcting errors in the thickness of semiconductor thin films based on reflection spectroscopy fitting technology
TWI601938B (en) Optical interferometric apparatus for real-time full-field thickness inspection
JP5581282B2 (en) Surface shape measuring device
Abdelsalam et al. Highly accurate film thickness measurement based on automatic fringe analysis
CN107894204B (en) Interferometer and imaging method thereof
CN110186388A (en) Synchronization phase shift measurement system and method based on white light interference spectrum
Yuan et al. Internal defect detection method based on dual-channel speckle interferometry
TWI447351B (en) Orthogonal-polarization mirau interferometry and beam-splitting module and interferometric system using the same
JP2010197370A (en) Optical application measuring device
TWI464387B (en) Heterodyne interferometer based on the subtraction between optical interference signals designed for measuring the ellipsometric parameters of thin films
Tsai et al. Phase-based method in heterodyne-modulated ellipsometer
Røyset et al. Quantitative measurements of flow velocity and direction using transversal Doppler optical coherence tomography