TW201442397A - Hybrid induction motor with self aligning permanent magnet inner rotor - Google Patents

Hybrid induction motor with self aligning permanent magnet inner rotor Download PDF

Info

Publication number
TW201442397A
TW201442397A TW102114137A TW102114137A TW201442397A TW 201442397 A TW201442397 A TW 201442397A TW 102114137 A TW102114137 A TW 102114137A TW 102114137 A TW102114137 A TW 102114137A TW 201442397 A TW201442397 A TW 201442397A
Authority
TW
Taiwan
Prior art keywords
permanent magnet
rotor
motor
magnet rotor
induction
Prior art date
Application number
TW102114137A
Other languages
Chinese (zh)
Inventor
Louis J Finkle
Original Assignee
Louis J Finkle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Louis J Finkle filed Critical Louis J Finkle
Priority to TW102114137A priority Critical patent/TW201442397A/en
Publication of TW201442397A publication Critical patent/TW201442397A/en

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

A hybrid induction motor includes an inductive rotor and an independently rotating permanent magnet rotor. The inductive rotor is a squirrel cage type rotor for induction motor operation at startup. The permanent magnet rotor is axially displaced and variably coupled to the inductive rotor (or to a motor load) through a clutch and is allowed to rotate independently of the inductive rotor at startup. The independently rotating permanent magnet rotor quickly reaches synchronous RPM at startup. As the inductive rotor approaches or reaches synchronous RPM, the coupling between the inductive rotor and the permanent magnet rotor increases until the two rotors are coupled at the synchronous RPM and the motor transitions to efficient synchronous operation.

Description

具有自動對準永磁轉子的混合型感應馬達 Hybrid induction motor with automatic alignment permanent magnet rotor

本案是美國專利申請於2012年4月20日,申請案號13/452,514的部份接續案,而且與申請案號13/452,514合併。 This case is part of the continuation of US Patent Application on April 20, 2012, application No. 13/452,514, and is merged with Application No. 13/452,514.

現代有關電動馬達的發明,特別是有關感應馬達的,有獨立的永磁轉子,非固定地接合感應轉子,以讓馬達在一開始異步運作經由重新裝配充分運作後,達到後來的同步運作。 Modern inventions relating to electric motors, particularly with respect to induction motors, have separate permanent magnet rotors that non-fixedly engage the inductive rotor to allow the motor to operate asynchronously after re-assembly at the beginning of the asynchronous operation.

電動馬達較被偏愛的形式為交流感應無刷無刷馬達。電動馬達的轉子包括一個外殼(或者如松鼠籠內裝著栗鼠的轉輪),在這之中有旋轉的定子線圈。外殼由軸向轉棒有角度地隔開周圍的轉子所組成。提供給定子線圈內的交流電電流會引入旋轉中的定子線圈磁場進入轉子,且旋轉性的磁域會引導電流導入轉棒。被誘導的電流產生感應磁場,這個感應磁場會和定子線圈磁場互相合作,而產生力矩及轉子的旋轉。 The preferred form of electric motor is the AC induction brushless brushless motor. The rotor of the electric motor includes a casing (or a runner with a chinchilla in a squirrel cage) in which there is a rotating stator coil. The outer casing consists of an axially rotating rod angularly separating the surrounding rotor. The alternating current supplied to the stator coil introduces a rotating stator coil magnetic field into the rotor, and the rotatory magnetic domain directs current into the rotating rod. The induced current produces an induced magnetic field that interacts with the stator coil magnetic field to produce torque and rotor rotation.

將電流導入轉棒時,需要求轉棒不能同步地與旋轉定子線圈磁場移動(或旋轉),因為電磁感應需要相對運動(又稱轉移),此運動會介於磁場及磁場中的導體。所以,轉子必須減少關於定子線圈的磁場去引導電流進入條,然後產生力矩,然後感應 馬達因此稱為異步馬達。 When introducing current into the rotating rod, it is required that the rotating rod cannot synchronously move (or rotate) with the rotating stator coil magnetic field, because electromagnetic induction requires relative motion (also called transfer), which is a conductor between the magnetic field and the magnetic field. Therefore, the rotor must reduce the magnetic field about the stator coil to guide the current into the strip, then generate the torque, and then sense The motor is therefore called an asynchronous motor.

其缺點在於,低功率的電磁感應馬達在原設計的操作速率上不能產生更高的效能,而且在減少負載的情況下,定子線圈所消耗的功率保持不變,反而產生更低的效能。 The disadvantage is that the low-power electromagnetic induction motor does not produce higher performance at the original design operating rate, and the power consumed by the stator coil remains the same under reduced load, resulting in lower efficiency.

一個改善電磁感應馬達效能的方法是在轉子內加入一顆永久磁鐵。一開始,加入了永久磁鐵的馬達會和典型的感應馬達以相同的方式開始運轉,但是當加入永久磁鐵的馬達到達一定的操作速率時,定子線圈的磁場就會和永久磁鐵達到同步運作。然而,永久磁鐵在大小上是有極限的,因為如果永久磁鐵太大,會造成馬達無法運轉。上述的大小極限,使得永久磁鐵帶來的優勢變得有限。 One way to improve the performance of an electromagnetic induction motor is to add a permanent magnet to the rotor. Initially, a motor incorporating a permanent magnet will start operating in the same manner as a typical induction motor, but when the motor incorporating the permanent magnet reaches a certain operating rate, the magnetic field of the stator coil will be synchronized with the permanent magnet. However, permanent magnets are limited in size because if the permanent magnets are too large, the motor will not operate. The above-mentioned size limits make the advantages of permanent magnets limited.

本發明闡述了以上的論點還有一個由感應轉子和一個獨立運作的永磁轉子所組成的混合型感應馬達的需求。感應馬達在開始啟動時,感應轉子是一個可以永久與負載馬達結合的鼠籠式馬達轉子(例如:馬達軸)。藉由離合器,永磁轉子和感應轉子是非固定的結合並且可以在感應轉子啟動時獨立自主旋轉。獨立旋轉的永磁轉子在啟動時快速地達到同步的每分鐘轉速(RPM)。當感應轉子接近或達到同步的每分鐘轉速時,感應轉子和內部永磁轉子的耦合會增加直到兩轉子結合並達到同步每分鐘轉速,然後馬達進入有效率的同步運作。 The present invention addresses the above arguments and a need for a hybrid induction motor consisting of an inductive rotor and an independently operated permanent magnet rotor. When the induction motor starts, the induction rotor is a squirrel-cage motor rotor (for example, a motor shaft) that can be permanently combined with a load motor. With the clutch, the permanent magnet rotor and the inductive rotor are non-fixed combinations and can rotate independently and independently when the induction rotor is activated. The independently rotating permanent magnet rotor quickly reaches the synchronous RPM (rpm) at start-up. When the inductive rotor approaches or reaches a synchronous per minute speed, the coupling of the inductive rotor and the internal permanent magnet rotor increases until the two rotors combine and reach a synchronous speed per minute, and then the motor enters an efficient synchronous operation.

在一個實體中,藉由一個分離的滑動離合器提供一 個永磁轉子和感應磁鐵轉子之間旋轉校準的離散角位置,並使內部永磁轉子和感應轉子結合。 In one entity, one is provided by a separate slip clutch The discrete angular positions of the calibration between the permanent magnet rotor and the induction magnet rotor are combined and the internal permanent magnet rotor and the induction rotor are combined.

根據這個發明的其中一方面來說,它提供一個混合型的感應馬達包含了外部感應轉子和可以自由轉動的永磁轉子,可以不受定子線圈轉動磁通量的限制而轉動。馬達用電時,永磁轉子會立刻加速跟上旋轉的定子線圈磁場,而外部感應轉子和負載也會達到同步的速率。當外部感應轉子趨近轉速時(定子線圈磁場和永磁轉子的轉速),閉鎖離合器會嚙合,而使得外部感應轉子和永磁轉子結合。閉鎖離合器會固定在馬達設計好的力矩上面,只要過載,離合器便會鬆開,並且開始滑動,直到負載回到同步的速率。離合器鎖的設計是為了在特定頻率下略過運作滑率,而和工作頻率嚙合。 According to one aspect of the invention, it provides a hybrid induction motor comprising an external induction rotor and a freely rotatable permanent magnet rotor that can be rotated without being limited by the rotational flux of the stator coil. When the motor is powered, the permanent magnet rotor will immediately accelerate to keep up with the rotating stator coil magnetic field, and the external induction rotor and load will also reach a synchronous rate. When the external induction rotor approaches the rotational speed (the stator coil magnetic field and the rotational speed of the permanent magnet rotor), the lockup clutch engages, causing the external inductive rotor and the permanent magnet rotor to combine. The lock-up clutch is fixed above the motor's designed torque. As soon as it is overloaded, the clutch will loosen and begin to slide until the load returns to the synchronous rate. The clutch lock is designed to skip the operating slip at a particular frequency and engage the operating frequency.

本發明提供了一個混合型感應馬達,而這個馬達含有可和轉子磁場連接的永磁轉子。當外部感應轉子克服滑差離合器在啟動時所產生的摩擦和永磁轉子本身的慣性之前,永磁轉子就能達到同步的轉速(離合器力矩是為了讓馬達的等級達到最好)。 The present invention provides a hybrid induction motor having a permanent magnet rotor connectable to a rotor field. When the external induction rotor overcomes the friction generated by the slip clutch at start-up and the inertia of the permanent magnet rotor itself, the permanent magnet rotor can reach a synchronous speed (the clutch torque is to achieve the best motor rating).

混合型感應馬達能夠自動校準並防止裝置磁力超載及因過載而熄火的情況。當馬達接近磁力過載和熄火的邊緣時,永磁轉子會在保持其同步轉速下脫離感應轉子,兩者在該瞬變現象解除後重新結合。 The hybrid induction motor automatically calibrates and prevents the device from overloading and extinguishing due to overload. When the motor approaches the edge of the magnetic overload and flameout, the permanent magnet rotor will disengage from the inductive rotor while maintaining its synchronous speed, and the two will recombine after the transient is removed.

此發明的另一實施例,這個轉子含有標準感應馬達轉子般加速的阻尼器線圈,且不會有任何負永磁的影響,或是會 切斷力矩且可從正施力做功獲益的瞬變電流,此瞬變電流是由永磁轉子透過幫助力矩啟動的滑動離合器所提供。這種阻尼器線圈可提供力矩,且不會有LSPM馬達在啟動時所產生的波動和震動。 In another embodiment of the invention, the rotor contains a damper coil of a standard induction motor rotor-like acceleration without any negative permanent magnet effect, or A transient current that cuts off the torque and benefits from the positive force applied. This transient current is provided by a slip clutch that is actuated by a permanent magnet rotor through a help torque. This damper coil provides torque without the ripples and vibrations of the LSPM motor at startup.

再者,混合型感應馬達安全地使用鐵素體磁鐵,因此其離合器裝置不必將磁鐵暴露在高壓消磁力下,而是在保持磁片的轉速下將磁力過載情況降至正常。 Furthermore, the hybrid induction motor safely uses a ferrite magnet, so that the clutch device does not have to expose the magnet to the high-pressure demagnetization force, but reduces the magnetic overload condition to a normal state while maintaining the rotational speed of the magnetic disk.

10’‧‧‧馬達 10’‧‧‧Motor

10”‧‧‧馬達 10"‧‧" motor

10’”‧‧‧馬達 10’”‧‧‧ motor

10””‧‧‧馬達 10""‧‧" motor

10a‧‧‧馬達 10a‧‧‧Motor

10b‧‧‧馬達 10b‧‧‧Motor

10c‧‧‧馬達 10c‧‧‧Motor

10d‧‧‧馬達 10d‧‧‧Motor

10e‧‧‧馬達 10e‧‧‧Motor

10f‧‧‧馬達 10f‧‧‧Motor

10g‧‧‧馬達 10g‧‧‧ motor

10h‧‧‧馬達 10h‧‧‧ motor

10i‧‧‧馬達 10i‧‧‧Motor

10j‧‧‧馬達 10j‧‧‧Motor

10k‧‧‧馬達 10k‧‧‧ motor

11‧‧‧外殼 11‧‧‧Shell

12‧‧‧定子 12‧‧‧ Stator

12g‧‧‧定子 12g‧‧‧stator

12h‧‧‧定子 12h‧‧‧stator

12i‧‧‧定子 12i‧‧‧stator

12j‧‧‧定子 12j‧‧‧stator

14‧‧‧定子線圈 14‧‧‧statar coil

16b‧‧‧轉子 16b‧‧‧Rotor

16c‧‧‧轉子 16c‧‧‧Rotor

16d‧‧‧轉子 16d‧‧‧Rotor

16e‧‧‧轉子 16e‧‧‧Rotor

16f‧‧‧轉子 16f‧‧‧Rotor

17g‧‧‧端環 17g‧‧‧End ring

17h‧‧‧端環 17h‧‧‧End ring

17i‧‧‧端環 17i‧‧‧End ring

18‧‧‧定子線圈背鐵 18‧‧‧ Stator coil back iron

20‧‧‧感應轉子 20‧‧‧Induction rotor

20a‧‧‧感應轉子 20a‧‧‧Induction rotor

20c‧‧‧感應轉子 20c‧‧‧Induction rotor

20d‧‧‧感應轉子 20d‧‧‧Induction rotor

20e‧‧‧感應轉子 20e‧‧‧Induction rotor

20f‧‧‧感應轉子 20f‧‧‧Induction rotor

20g‧‧‧感應轉子 20g‧‧‧Induction rotor

20h‧‧‧感應轉子 20h‧‧‧Induction rotor

20i‧‧‧感應轉子 20i‧‧‧Induction rotor

20j‧‧‧感應轉子 20j‧‧‧Induction rotor

22a‧‧‧感應條 22a‧‧‧Sensor strip

22e‧‧‧感應條 22e‧‧‧Sensor strip

22j‧‧‧感應條 22j‧‧‧Sensor strip

23‧‧‧感應帶 23‧‧‧Induction belt

23a‧‧‧導引片 23a‧‧‧Guiding film

23b‧‧‧導電環 23b‧‧‧ Conductive ring

26‧‧‧永磁轉子 26‧‧‧ permanent magnet rotor

26a‧‧‧永磁轉子 26a‧‧‧ permanent magnet rotor

26b‧‧‧永磁轉子 26b‧‧‧ permanent magnet rotor

26c‧‧‧永磁轉子 26c‧‧‧ permanent magnet rotor

26d‧‧‧永磁轉子 26d‧‧‧ permanent magnet rotor

26e‧‧‧永磁轉子 26e‧‧‧ permanent magnet rotor

26f‧‧‧永磁轉子 26f‧‧‧ permanent magnet rotor

26g‧‧‧永磁轉子 26g‧‧‧ permanent magnet rotor

26h‧‧‧永磁轉子 26h‧‧‧ permanent magnet rotor

26i‧‧‧永磁轉子 26i‧‧‧ permanent magnet rotor

26j‧‧‧永磁轉子 26j‧‧‧ permanent magnet rotor

29‧‧‧轉軸 29‧‧‧ shaft

31‧‧‧主機板 31‧‧‧ motherboard

32‧‧‧馬達軸 32‧‧‧Motor shaft

32a‧‧‧定子線圈磁場 32a‧‧‧statar coil magnetic field

34’‧‧‧無段滑動離合器 34'‧‧‧No-slip clutch

34”‧‧‧離散滑動離合器 34”‧‧‧Discrete slip clutch

34'”‧‧‧離心離合器 34'"‧‧‧ centrifugal clutch

34””‧‧‧電磁離合器 34””‧‧•Electromagnetic clutch

34a‧‧‧離合器 34a‧‧‧Clutch

34c‧‧‧離合器 34c‧‧‧Clutch

34d‧‧‧離合器 34d‧‧‧Clutch

34e‧‧‧離合器 34e‧‧‧Clutch

34g‧‧‧離合器 34g‧‧‧ clutch

34h‧‧‧離合器 34h‧‧‧Clutch

34i‧‧‧離合器 34i‧‧‧Clutch

34j‧‧‧離合器 34j‧‧‧Clutch

40‧‧‧電能 40‧‧‧electric energy

42‧‧‧永磁轉子轉速 42‧‧‧ permanent magnet rotor speed

44‧‧‧感應轉子轉速 44‧‧‧Induction rotor speed

48‧‧‧扭矩 48‧‧‧ Torque

50‧‧‧彈簧 50‧‧‧ Spring

50a‧‧‧定子線圈磁場 50a‧‧‧statar coil magnetic field

50c‧‧‧定子線圈磁場 50c‧‧‧statar coil magnetic field

52‧‧‧環板 52‧‧‧ Ring plate

54‧‧‧環狀摩擦表面 54‧‧‧Circular friction surface

56‧‧‧環板 56‧‧‧ Ring plate

58‧‧‧齒痕 58‧‧‧ tooth marks

59‧‧‧齒狀物 59‧‧‧ teeth

60‧‧‧葉片 60‧‧‧ leaves

62‧‧‧離心旋轉塊 62‧‧‧ Centrifugal rotating block

64‧‧‧圓柱口 64‧‧‧ cylindrical mouth

66a‧‧‧轉速 66a‧‧‧Speed

66b‧‧‧轉速 66b‧‧‧Speed

68a‧‧‧離心力 68a‧‧‧ centrifugal force

68b‧‧‧離心力 68b‧‧‧ centrifugal force

70‧‧‧保護套 70‧‧‧ protective cover

72‧‧‧彈簧 72‧‧‧ Spring

74‧‧‧線圈 74‧‧‧ coil

76‧‧‧電感線圈 76‧‧‧Inductance coil

82‧‧‧軸承 82‧‧‧ bearing

84‧‧‧永久磁鐵 84‧‧‧ permanent magnet

針對以上此發明各方面的特長的個別敘述與附圖 Individual narratives and drawings for the features of the various aspects of the invention above

圖1為電動馬達結構的示意圖,內部擁有獨立轉動的永磁轉子,感應轉子固定在永磁轉子外側,在感應轉子外是馬達的靜子線圈。 1 is a schematic view of the structure of an electric motor having an independently rotating permanent magnet rotor inside, the induction rotor being fixed outside the permanent magnet rotor, and outside the induction rotor being a stator coil of the motor.

圖2為電動馬達結構的示意圖,感應轉子連接著馬達轉軸,獨立轉動的永磁轉子在感應轉子外側,而靜子線圈在永磁轉子外側。 2 is a schematic view of the structure of the electric motor. The induction rotor is connected to the motor shaft, the independently rotating permanent magnet rotor is outside the induction rotor, and the stator coil is outside the permanent magnet rotor.

圖3為電動馬達結構的示意圖,馬達的靜子線圈在最內,獨立轉動的永磁轉子在其外側,而感應轉子在兩者之外連接著一個負載器。 Figure 3 is a schematic illustration of the structure of the electric motor with the stator coil of the motor at the innermost, the independently rotating permanent magnet rotor on its outer side, and the induction rotor connected to a loader outside of the two.

圖4為電動馬達的配置:靜子線圈在轉子內部、連接負載的感應轉子在靜子線圈外部、和獨立旋轉永磁轉子在感應轉子外部。 Figure 4 shows the configuration of the electric motor: the stator coil is inside the rotor, the induction rotor connected to the load is outside the stator coil, and the independently rotating permanent magnet rotor is outside the induction rotor.

圖5為相對每分鐘轉速和感應及永磁轉子的力矩。 Figure 5 shows the relative rotational speed per minute and the torque of the induction and permanent magnet rotor.

圖6為連續滑動離合器的側視圖。 Figure 6 is a side view of the continuous slip clutch.

圖7為連續滑動離合器的端視圖。 Figure 7 is an end view of the continuous slip clutch.

圖8為分離滑動離合器的側視圖。 Figure 8 is a side view of the split slip clutch.

圖9為分離滑動離合器的端視圖。 Figure 9 is an end view of the split slip clutch.

圖10為離心離合器連接永磁轉子及感應轉子的側視圖。 Figure 10 is a side view of the centrifugal clutch connecting the permanent magnet rotor and the induction rotor.

圖11為圖10的11-11剖面線去描繪出的離心離合器連結永磁轉子及感應轉子的剖視圖。 Figure 11 is a cross-sectional view showing the centrifugal clutch-connected permanent magnet rotor and the induction rotor taken along the line 11-11 of Figure 10 .

圖12為電磁離合器連接永磁轉子及感應轉子的側視圖。 Figure 12 is a side view of the electromagnetic clutch connecting the permanent magnet rotor and the induction rotor.

圖13為圖12的13-13剖面線去描繪出的電磁離合器連接永磁轉子及感應轉子的剖視圖。 Figure 13 is a cross-sectional view showing the electromagnetic clutch connecting permanent magnet rotor and the induction rotor taken along line 13-13 of Figure 12;

圖14為第一實施例馬達實體側視圖。 Figure 14 is a side view of the motor body of the first embodiment.

圖15為第一實施例馬達實體剖視圖。 Figure 15 is a cross-sectional view showing the motor body of the first embodiment.

圖16為第一實施例馬達的第一轉子更詳細的側視圖。 Figure 16 is a more detailed side view of the first rotor of the motor of the first embodiment.

圖17是第一實施例感應轉子馬達的實體側視圖。 Figure 17 is a solid side view of the induction rotor motor of the first embodiment.

圖18是第一實施例感應轉子馬達的實體剖視圖。 Figure 18 is a solid sectional view of the induction rotor motor of the first embodiment.

圖19A是第一實施例永磁轉子馬達的實體側視圖。 Figure 19A is a solid side view of the permanent magnet rotor motor of the first embodiment.

圖19B是第一實施例永磁轉子馬達的實體端視圖。 Figure 19B is a solid end view of the permanent magnet rotor motor of the first embodiment.

圖20是沿著圖19A中的20-20剖面線所描繪出的第一實施例永磁轉子馬達的實體剖視圖。 Figure 20 is a solid cross-sectional view of the permanent magnet rotor motor of the first embodiment depicted along line 20-20 of Figure 19A.

圖21是馬達中靜子線圈磁場內的磁力線的示意圖。 Figure 21 is a schematic illustration of magnetic lines of force in the field of the stator coil in the motor.

圖22是第二實施例馬達的實體側視圖。 Figure 22 is a solid side view of the motor of the second embodiment.

圖23是第二實施例馬達的實體剖視圖。 Figure 23 is a solid sectional view of the motor of the second embodiment.

圖24更詳盡描繪了第二實施例轉子馬達的實體側視圖。 Figure 24 depicts in more detail a solid side view of the rotor motor of the second embodiment.

圖25是第二實施例感應轉子馬達的實體側視圖。 Figure 25 is a solid side view of the induction rotor motor of the second embodiment.

圖26是的第二實施例感應轉子馬達的實體剖視圖。 Figure 26 is a solid sectional view of the induction rotor motor of the second embodiment.

圖27A是第二實施例永磁轉子馬達的實體側視圖。 Figure 27A is a solid side view of the permanent magnet rotor motor of the second embodiment.

圖27B是第二實施例永磁轉子馬達的實體端視圖。 Figure 27B is a solid end view of the permanent magnet rotor motor of the second embodiment.

圖28是沿著圖27A中的28-28剖面線所描繪出的第二實施例永磁轉子馬達的實體剖視圖。 Figure 28 is a solid cross-sectional view of the permanent magnet rotor motor of the second embodiment depicted along the line 28-28 of Figure 27A.

圖29為第二實施例永磁轉子馬達之實體靜子線圈磁力線。 Figure 29 is a diagram showing the physical stator coil magnetic lines of the permanent magnet rotor motor of the second embodiment.

圖30為第三實施例馬達實體側視圖。 Figure 30 is a side view of the motor body of the third embodiment.

圖31為第三實施例馬達實體剖視圖。 Figure 31 is a cross-sectional view showing the motor body of the third embodiment.

圖32為第三實施例轉子馬達之詳細實體側視圖。 Figure 32 is a detailed solid side view of the rotor motor of the third embodiment.

圖33為第三實施例感應轉子馬達之實體側視圖。 Figure 33 is a side elevational view of the induction rotor motor of the third embodiment.

圖34為第三實施例感應轉子馬達之實體剖視圖。 Figure 34 is a perspective view showing the solid body of the induction rotor motor of the third embodiment.

圖35為第三實施例永磁轉子馬達之實體側視圖。 Figure 35 is a solid side view of the permanent magnet rotor motor of the third embodiment.

圖35B為第三實施例永磁轉子馬達之實體端視圖。 Figure 35B is a solid end view of the permanent magnet rotor motor of the third embodiment.

圖36為第三實施例永磁轉子馬達之實體靜子線圈磁力線。 Figure 36 is a diagram showing the physical stator coil magnetic lines of the permanent magnet rotor motor of the third embodiment.

圖37為第四實施例馬達實體側視圖。 Figure 37 is a side view of the motor body of the fourth embodiment.

圖38為第四實施例轉子實體馬達分解圖。 Figure 38 is an exploded view of the rotor solid motor of the fourth embodiment.

圖39為第四實施例感應轉子馬達之實體側視圖。 Figure 39 is a side elevational view of the induction rotor motor of the fourth embodiment.

圖40為第四實施例感應轉子馬達之實體剖視圖。 Figure 40 is a perspective view showing the solid state of the induction rotor motor of the fourth embodiment.

圖41為第四實施例永磁轉子馬達之實體側視圖。 Figure 41 is a solid side view of the permanent magnet rotor motor of the fourth embodiment.

圖42是沿著圖41中的42-42剖面線所描繪出的第四實施例永磁轉子馬達之實體剖視圖。 Figure 42 is a solid cross-sectional view of the permanent magnet rotor motor of the fourth embodiment taken along line 42-42 of Figure 41.

圖43為第四實施例轉子的側視圖,當離心離合器滑動時,轉子會每分鐘以低轉 速轉動。 Figure 43 is a side view of the rotor of the fourth embodiment, when the centrifugal clutch slides, the rotor will turn low every minute. Rotate at a speed.

圖44為第四實施例轉子,是沿著圖43中的44-44剖面線所描繪出之實體剖視圖。 Figure 44 is a cross-sectional view of the rotor of the fourth embodiment, taken along the line 44-44 of Figure 43.

圖45為第四實施例轉子的側視圖,當離心式離合器接合時,轉子會每分鐘以高轉速轉動。 Figure 45 is a side elevational view of the rotor of the fourth embodiment, with the rotor rotating at a high speed per minute when the centrifugal clutch is engaged.

圖46為第四實施例轉子,是沿著圖45中的46-46剖面線所描繪出之剖視圖。 Figure 46 is a cross-sectional view of the rotor of the fourth embodiment, taken along line 46-46 of Figure 45.

圖47為顯示出第五實施例馬達實體的側視圖。 Figure 47 is a side view showing the motor body of the fifth embodiment.

圖48為顯示出第五實施例馬達實體的分解圖。 Figure 48 is an exploded view showing the motor body of the fifth embodiment.

圖49為顯示出第五實施例馬達實體之感應轉子的側視圖。 Figure 49 is a side view showing the induction rotor of the motor body of the fifth embodiment.

圖50為顯示出第五實施例馬達實體之感應轉子的側視圖。 Figure 50 is a side view showing the induction rotor of the motor body of the fifth embodiment.

圖51為顯示第五實施例馬達實體之永磁轉子的側視圖。 Figure 51 is a side view showing a permanent magnet rotor of a motor body of a fifth embodiment.

圖52為顯示第五實施例馬達實體之永磁轉子,是沿著圖51中的52-52剖面線所描繪出之剖視圖。 Figure 52 is a cross-sectional view showing the permanent magnet rotor of the motor body of the fifth embodiment, taken along line 52-52 of Figure 51.

圖53為顯示第六實施例馬達實體的側視圖。 Figure 53 is a side view showing the motor body of the sixth embodiment.

圖54為顯示第六實施例馬達實體之轉子的分解圖。 Figure 54 is an exploded view showing the rotor of the motor body of the sixth embodiment.

圖55為顯示第六實施例馬達實體之感應轉子的側視圖。 Figure 55 is a side view showing the induction rotor of the motor body of the sixth embodiment.

圖56為顯示第六實施例馬達實體之感應轉子,是沿著圖55中的56-56剖面線所描繪出的剖視圖。 Figure 56 is a cross-sectional view showing the induction rotor of the motor body of the sixth embodiment, taken along line 56-56 of Figure 55.

圖57為顯示第六實施例馬達實體的核心薄片側面圖。 Figure 57 is a side elevational view showing the core sheet of the motor body of the sixth embodiment.

圖58是沿著圖57中的58-58剖面線所描繪出的第六實施例馬達的主機板部位的剖視圖。 Figure 58 is a cross-sectional view of the main plate portion of the motor of the sixth embodiment taken along line 58-58 of Figure 57.

圖59A表示第六實施例馬達中永磁轉子的具體側視圖。 Fig. 59A is a specific side view showing the permanent magnet rotor in the motor of the sixth embodiment.

圖59B表示第六實施例馬達中永磁轉子的具體端視圖。 Fig. 59B is a specific end view showing the permanent magnet rotor in the motor of the sixth embodiment.

圖60表示纏繞在第六實施例馬達中永磁轉子周圍的感應帶的透視圖。 Fig. 60 is a perspective view showing the induction belt wound around the permanent magnet rotor in the motor of the sixth embodiment.

圖61表示未纏繞的感應帶。 Figure 61 shows an unwound inductive strip.

圖62表示第七實施例馬達的具體側視圖。 Fig. 62 is a specific side view showing the motor of the seventh embodiment.

圖63表示第八實施例馬達的具體側視圖。 Figure 63 shows a specific side view of the motor of the eighth embodiment.

圖64表示第九實施例馬達的具體側視圖。 Fig. 64 is a specific side view showing the motor of the ninth embodiment.

圖65表示第十實施例馬達的具體側視圖。 Fig. 65 is a specific side view showing the motor of the tenth embodiment.

圖66表示第十實施例馬達中獨立轉動的永磁轉子的具體剖視圖。 Fig. 66 is a cross-sectional view showing the permanent magnet rotor which is independently rotated in the motor of the tenth embodiment.

圖67表示第十實施例馬達中感應轉子的具體剖視圖。 Figure 67 is a cross-sectional view showing the induction rotor of the motor of the tenth embodiment.

圖68表示第十一實施例馬達的具體側視圖。 Figure 68 shows a specific side view of the motor of the eleventh embodiment.

相關的參考資料透過幾個不同的圖像顯示出相同的構成要素。 Related references show the same components through several different images.

下列的敘述是此發明在一個最佳的狀態下所進行。這個描述不是被限制的定義,而只是為了描述一個或多個較好的發明實施例。這個領域的發明應該參考這些說明。 The following description is made in the best mode of the invention. This description is not a limitation of the definition, but merely to describe one or more preferred embodiments of the invention. Inventions in this field should refer to these instructions.

感應轉子與永磁轉子的排列組合:根據圖1中現有的發明,第一實施例馬達10’有一個獨立旋轉永磁轉子26,一個感應轉子20連結馬達軸32(或是其他負載量)和永磁轉子26,和在感應轉子20外部的靜子線圈12,這個獨立的旋轉永磁轉子26會與感應轉子20做非固定的連結。當啟動馬 達10’時,這個非固定的連結使得獨立旋轉永磁轉子26在很短的時間內加速到同步的速度。連結到一個負載量的獨立的感應轉子20會以較永磁轉子26慢的加速速度。這個非固定的連結可能會以磨擦離合器,離心離合器或是電子控制離合器的任何一種方式,如同以下的段落說明。一旦感應轉子20接近同步速度的時候,它會和永磁轉子26嚙合同步運作,且感應轉子20裡的外殼運作會停止產生電流,由於缺乏旋轉靜子線圈磁場和外殼中的感應條滑動,馬達10’會如永磁馬達般有相同的效率運作。 Arrangement combination of induction rotor and permanent magnet rotor: According to the prior invention of Fig. 1, the first embodiment motor 10' has an independent rotating permanent magnet rotor 26, and an induction rotor 20 is coupled to the motor shaft 32 (or other load) and The permanent magnet rotor 26, and the stator coil 12 external to the inductive rotor 20, this independent rotating permanent magnet rotor 26 will be non-fixedly coupled to the inductive rotor 20. When starting the horse At 10', this non-fixed joint causes the independently rotating permanent magnet rotor 26 to accelerate to a synchronous speed in a short period of time. The independent induction rotor 20 coupled to a load will have a slower acceleration speed than the permanent magnet rotor 26. This non-fixed connection may be in the form of a friction clutch, a centrifugal clutch or an electronically controlled clutch, as explained in the following paragraphs. Once the inductive rotor 20 approaches the synchronous speed, it will operate in synchronism with the permanent magnet rotor 26, and the operation of the housing in the inductive rotor 20 will stop generating current, due to the lack of rotating the stator coil magnetic field and the sensing strip sliding in the housing, the motor 10 'It will operate with the same efficiency as a permanent magnet motor.

根據本發明,在圖2中,第二個電子馬達結構10”讓感應轉子20與馬達軸32作連結,和在感應轉子外的的獨立旋轉永磁轉子26,也和在獨立旋轉永磁轉子外的靜子線圈作連結。這個電子馬達結構10”和原則上的電子馬達結構10’相似,除了永磁轉子26存在在感應轉子20外這個構造不同(也就是它是存在在感應轉子20和靜子線圈12之間。永磁轉子26則是構成一個環形磁)。 In accordance with the present invention, in FIG. 2, a second electronic motor structure 10" couples the inductive rotor 20 to the motor shaft 32, and an independent rotating permanent magnet rotor 26 outside the inductive rotor, as well as in an independently rotating permanent magnet rotor. The outer stator coil is connected. This electronic motor structure 10" is similar to the principle electronic motor structure 10' except that the permanent magnet rotor 26 is present outside the inductive rotor 20 in a different configuration (i.e., it is present in the inductive rotor 20 and the stator). Between the coils 12. The permanent magnet rotor 26 constitutes a ring magnet.

第三個馬達結構10”’有靜子線圈12在轉子20和26中,獨立旋轉的永磁轉子26會在靜子線圈12的外側,且感應轉子20會負載耦合於永磁轉子26及靜子線圈12間。電子馬達結構10"'在原則上與電子馬達結構10’相似,除了靜子線圈12會同時存在轉子20和26中,且永磁轉子26通常在介於靜子線圈12和感應轉子20中的環狀磁場區之間。 The third motor structure 10"' has a stator coil 12 in the rotors 20 and 26, and the independently rotating permanent magnet rotor 26 will be outside the stator coil 12, and the inductive rotor 20 will be load coupled to the permanent magnet rotor 26 and the stator coil 12. The electronic motor structure 10"' is similar in principle to the electronic motor structure 10' except that the stator coils 12 are present in the rotors 20 and 26 simultaneously, and the permanent magnet rotors 26 are typically interposed between the stator coils 12 and the inductive rotors 20. Between the annular magnetic field regions.

第四個馬達結構10””有靜子線圈12在轉子20和26中,感應轉子20會負載耦合在靜子線圈12之外。且感應轉子20之外 的永磁轉子26會獨立地旋轉,如圖4所示,馬達的結構10””在原則上與電子馬達結構10’相似,除了靜子線圈12會同時存在轉子20和26中,而且永磁轉子26會在感應轉子20之外,永磁轉子26則較好以環狀磁場組成。 The fourth motor structure 10"" has a stator coil 12 in the rotors 20 and 26, and the inductive rotor 20 is load coupled outside the stator coil 12. And outside the induction rotor 20 The permanent magnet rotor 26 will rotate independently, as shown in Figure 4, the structure 10"" of the motor is similar in principle to the electronic motor structure 10' except that the stator coil 12 will be present in both rotors 20 and 26, and the permanent magnet rotor 26 will be outside the induction rotor 20, and the permanent magnet rotor 26 will preferably be composed of a toroidal magnetic field.

在開始的階段,與感應轉子20及永磁轉子26相關的每分鐘轉速與扭矩皆展示於圖五。當電能40輸出時永磁轉子扭矩48會快速提升,幫助永磁轉子26克服對感應轉子20的磁滯,使永磁轉子的轉子轉速42會快速地達到同步的每分鐘轉速。隨著感應轉子轉速44的每分鐘轉速接近同步的每分鐘轉速且扭矩48下降,永磁轉子26與感應轉子20被鎖進於同步的每分鐘轉速且轉子會轉換成高速有效能的永久磁場運作。 At the beginning, the speed and torque per minute associated with the inductive rotor 20 and the permanent magnet rotor 26 are shown in Figure 5. When the electrical energy 40 is output, the permanent magnet rotor torque 48 is rapidly increased, helping the permanent magnet rotor 26 to overcome the hysteresis of the inductive rotor 20, so that the rotor speed 42 of the permanent magnet rotor can quickly reach the synchronous revolutions per minute. As the rotational speed per minute of the inductive rotor speed 44 approaches the synchronous revolutions per minute and the torque 48 drops, the permanent magnet rotor 26 and the inductive rotor 20 are locked into a synchronous per minute rotational speed and the rotor is converted into a permanent magnetic field of high speed effective energy. .

非固定連接感應及永磁轉子之實施例離合器:圖6,無段滑動離合器34’之側視圖;圖7,無段滑動離合器34’之端視圖。無段滑動離合器34’包含了環板52,環板52包含於永磁轉子26中,彈簧50將其推至感應轉子20之環狀摩擦表面54。無段滑動離合器34’與彈簧50因連續運動產生摩擦,當永磁轉子扭矩48達到巔峰時(見附圖5),其使永磁轉子26不受感應轉子在啟動階段之轉速所控制,當永磁轉子扭矩48下降時,無段滑動離合器34’亦使轉子20和26之轉速固定於每分鐘轉速同步中。 Embodiment of the non-fixed connection induction and permanent magnet rotor Clutch: Figure 6, side view of the stepless slip clutch 34'; Figure 7, end view of the stepless slip clutch 34'. The stepless slip clutch 34' includes a ring plate 52 that is included in the permanent magnet rotor 26 that is urged to the annular friction surface 54 of the inductive rotor 20. The stepless slip clutch 34' and the spring 50 generate friction due to continuous motion. When the permanent magnet rotor torque 48 reaches a peak (see FIG. 5), the permanent magnet rotor 26 is not controlled by the rotational speed of the induction rotor during the starting phase. When the magnetic rotor torque 48 drops, the stepless slip clutch 34' also fixes the rotational speed of the rotors 20 and 26 to the revolutions per minute.

圖8為,離散滑動離合器34”之側視圖;圖9為,離散滑動離合器34”之端視圖。離散滑動離合器34”包含,環板56上一致排列的齒狀物59,及相對應齒痕58;其使離散滑動離合器 34”能嚙合永磁轉子26與感應轉子20兩者之間的關係,如此參考定子線圈磁場,並能校準轉子極。當轉子於少量極域時,例如:四極,這樣的離散校準為較佳使用。 Figure 8 is a side elevational view of the discrete slip clutch 34"; Figure 9 is an end view of the discrete slip clutch 34". Discrete slip clutch 34" includes teeth 59 that are uniformly aligned on ring plate 56, and corresponding tooth marks 58; which enable discrete slip clutches 34" can mesh the relationship between the permanent magnet rotor 26 and the inductive rotor 20, so as to reference the stator coil magnetic field, and can calibrate the rotor pole. When the rotor is in a small number of polar regions, for example, four poles, such discrete calibration is preferred. use.

圖10為,離心離合器34”’連結永磁轉子26與感應轉子20之側視圖;圖11為圖10的線11-11去描繪的剖視圖,離心離合器34”’連結永磁轉子26與感應轉子20。依附在感應轉子20之葉片60,延伸至在永磁轉子26底端的凹面圓柱口64。離心旋轉塊62存在於葉片60之中,且持續與感應轉子20一同轉動。隨著感應轉子20轉速達到同步轉速,離心旋轉塊62會被推至圓柱口64之內層,進而將永磁轉子26與感應轉子20固定至相同之迴轉。 Figure 10 is a side elevational view of the centrifugal clutch 34"' joining the permanent magnet rotor 26 and the inductive rotor 20; Figure 11 is a cross-sectional view taken along line 11-11 of Figure 10, the centrifugal clutch 34"' joining the permanent magnet rotor 26 and the inductive rotor 20. The blade 60 attached to the inductive rotor 20 extends to a concave cylindrical opening 64 at the bottom end of the permanent magnet rotor 26. The centrifugal rotating block 62 is present in the vane 60 and continues to rotate with the inductive rotor 20. As the rotational speed of the induction rotor 20 reaches the synchronous speed, the centrifugal rotating block 62 is pushed to the inner layer of the cylindrical port 64, thereby fixing the permanent magnet rotor 26 and the induction rotor 20 to the same rotation.

圖12為電磁離合器34””連接永磁轉子及感應轉子20的側視圖;圖13為圖11的13-13剖面線去描繪出的電磁離合器34””連接永磁轉子26和感應轉子20的剖視圖。電磁離合器34””包括線圈(或螺線管)74接收通過電感線圈76在感應轉子20內之電流,線圈74推動離合器保護套70遠離圓柱口64,而彈簧72則把保護套推向圓柱狀口64的內部。保護套70可以在如圖11中所示當感應轉子的每分鐘轉速提高時,用來取代如同圓柱口64內面接觸的離心旋轉塊62提供相似的功效。由電感線圈76產生的電流和感應轉子每分鐘轉速及同步轉速的差異成正比,因此,在啟動時會分離電磁離合器34””,當感應轉子每分鐘轉速接近同步轉速時會接合電磁離合器34””。 12 is a side view of the electromagnetic clutch 34"" connecting the permanent magnet rotor and the induction rotor 20; FIG. 13 is the electromagnetic clutch 34"" depicted in the section 13-13 of FIG. 11 connected to the permanent magnet rotor 26 and the induction rotor 20. Cutaway view. The electromagnetic clutch 34"" includes a coil (or solenoid) 74 that receives current through the inductive coil 76 within the inductive rotor 20, the coil 74 pushes the clutch guard 70 away from the cylindrical port 64, and the spring 72 pushes the protective sleeve toward the cylindrical shape The inside of the mouth 64. The protective sleeve 70 can be used to provide similar efficacy in place of the centrifugal rotating block 62 as the inner surface of the cylindrical opening 64 when the rotational speed per minute of the inductive rotor is increased as shown in FIG. The current generated by the inductor 76 is proportional to the difference in the number of revolutions per minute and the synchronous speed of the inductive rotor. Therefore, the electromagnetic clutch 34"" is disengaged at the start, and the electromagnetic clutch 34 is engaged when the inductive rotor approaches the synchronous speed every minute." ".

馬達實體設計: 圖14為第一實施例馬達10a的側視圖;圖15為第一實施例馬達10a之剖面圖;圖16為更詳細的第一實施例馬達10a轉片的側視圖;圖17為第一實施例馬達10a的感應轉子20a之側視圖;圖18為第一實施例馬達10a的感應轉子20a的剖視圖;圖19A為第一實施例馬達10a的永磁轉子26a的側視圖;圖19B為第一實施例馬達10a的永磁轉子26a的端視圖;圖20為第一實施例馬達10a的永磁轉子26a的剖視圖;圖21所示為第一實施例馬達10a之定子線圈磁場50a。馬達10a包含外殼11、定子線圈14、定子線圈背鐵18。感應轉子20a包含感應條22a,範圍幾乎達到感應轉片20a的深度以避免漏磁,並擴大定子線圈磁場32a到永磁轉子26a。馬達10a包含離合器34a(可能為離合器34’、34”、34”’、或34””)。 Motor entity design: Figure 14 is a side view of the motor 10a of the first embodiment; Figure 15 is a cross-sectional view of the motor 10a of the first embodiment; Figure 16 is a side view of the rotor of the motor 10a of the first embodiment in more detail; A side view of the induction rotor 20a of the motor 10a; Fig. 18 is a cross-sectional view of the induction rotor 20a of the motor 10a of the first embodiment; Fig. 19A is a side view of the permanent magnet rotor 26a of the motor 10a of the first embodiment; An end view of the permanent magnet rotor 26a of the motor 10a of the embodiment; Fig. 20 is a cross-sectional view of the permanent magnet rotor 26a of the motor 10a of the first embodiment; and Fig. 21 shows a stator coil magnetic field 50a of the motor 10a of the first embodiment. The motor 10a includes a housing 11, a stator coil 14, and a stator coil back iron 18. The inductive rotor 20a includes a sensing strip 22a having a range almost reaching the depth of the inductive rotor 20a to avoid magnetic flux leakage and enlarging the stator coil magnetic field 32a to the permanent magnet rotor 26a. Motor 10a includes a clutch 34a (possibly a clutch 34', 34", 34"', or 34"").

圖22為第二實施例馬達10b的側視圖;圖23為第二實施例馬達10b的剖視圖。 Figure 22 is a side view of the motor 10b of the second embodiment; Figure 23 is a cross-sectional view of the motor 10b of the second embodiment.

圖24更詳盡描繪了第二實施例馬達10b的轉子16b的側視圖,圖25描繪了第二實施例馬達10b的感應轉子20b的側視圖,圖26則沿著圖25中的剖面線26-26所描繪出的第二實施例馬達10b的感應轉子20b的剖視圖,圖27A描繪了第二實施例馬達10b的永磁轉子26b的側視圖,圖27B則是描繪了第二實施例馬達10b的永磁轉子26b的端視圖,圖28則是沿著圖27A中的剖面線28-28所描繪的第二實施例馬達10b的永磁轉子26b的剖視圖,而第二實施例馬達10b中的定子線圈磁場則是被描繪在圖29中。馬達10b包含了馬達外殼11,定子線圈14,以及定子線圈背鐵18。感應馬達20b包含了四個 可以產生四個磁極直到感應轉子20a深處的氣隙,以避免磁通量的漏損並且擴展定子線圈磁場到永磁轉子26a中。馬達10a則包括了離合器34a,或者離合器34’、34”、34”’,以及34””,但是最適用的還是離合器34”。 Figure 24 depicts in more detail a side view of the rotor 16b of the second embodiment motor 10b, Figure 25 depicts a side view of the inductive rotor 20b of the second embodiment motor 10b, and Figure 26 is taken along section line 26 of Figure 25 - 26 is a cross-sectional view of the induction rotor 20b of the second embodiment motor 10b, FIG. 27A depicts a side view of the permanent magnet rotor 26b of the second embodiment motor 10b, and FIG. 27B depicts the motor 10b of the second embodiment. An end view of the permanent magnet rotor 26b, Fig. 28 is a cross-sectional view of the permanent magnet rotor 26b of the second embodiment motor 10b depicted along section line 28-28 of Fig. 27A, and the stator of the second embodiment motor 10b The coil magnetic field is depicted in Figure 29. The motor 10b includes a motor housing 11, a stator coil 14, and a stator coil back iron 18. Induction motor 20b contains four Four magnetic poles can be generated until the air gap deep in the induction rotor 20a to avoid leakage of the magnetic flux and expand the stator coil magnetic field into the permanent magnet rotor 26a. Motor 10a includes clutch 34a, or clutches 34', 34", 34"', and 34"", but clutch 34" is most suitable.

根據圖示,第三實施例馬達10c的側視圖則是被描繪在圖30,第三實施例馬達10c的剖視圖則是圖31,第三實施例馬達10c的轉子16c側視圖則是更被詳盡描繪在圖32,而圖33則是描繪了第三實施例馬達10c的感應轉子20c的側視圖,圖34則是根據圖33中的剖面線34-34所描繪出第三實施例馬達10c的感應轉子20c的剖視圖,圖35A描繪了第三實施例馬達10c的永磁轉子26c的側視圖,圖35B則描繪了第三實施例馬達10c的永磁轉子26c的端視圖,而第三實施例馬達10c內的定子線圈磁場50c則是被描繪在圖36中。馬達10c包含了離合器34c,或者是離合器34’、34”、34”’和34””,但是最適用的還是離合器34”。 According to the illustration, the side view of the motor 10c of the third embodiment is depicted in Fig. 30, the cross-sectional view of the motor 10c of the third embodiment is Fig. 31, and the side view of the rotor 16c of the motor 10c of the third embodiment is more detailed. 3 is a side view depicting the inductive rotor 20c of the third embodiment motor 10c, and FIG. 34 is a third embodiment of the motor 10c depicted in accordance with section lines 34-34 of FIG. A cross-sectional view of the inductive rotor 20c, FIG. 35A depicts a side view of the permanent magnet rotor 26c of the motor 10c of the third embodiment, and FIG. 35B depicts an end view of the permanent magnet rotor 26c of the motor 10c of the third embodiment, and a third embodiment The stator coil magnetic field 50c in the motor 10c is depicted in FIG. Motor 10c includes clutch 34c, or clutches 34', 34", 34"' and 34"", but clutch 34" is most suitable.

根據圖示,第四實施例馬達10d的側視圖被描繪在圖37,其轉子16d的分解圖則是被描繪在圖38,第四實施例馬達10d的感應轉子20d的側視圖被描繪在圖39,而圖40則是根據圖38中的剖面線40-40所描繪出的第四實施例馬達10d的感應轉子20d的剖視圖。圖41描繪了第四實施例馬達10d的永磁轉子26d的側視圖,而沿著圖41中的剖面線42-42來描繪出的第四實施例馬達10d的永磁轉子26d的剖視圖則是表示在圖35中。馬達10d具有離合器34d,又或者是離合器34’、34”、34”’和34””,當然最好還是離合器34”為 佳。 According to the illustration, a side view of the motor 10d of the fourth embodiment is depicted in Fig. 37, an exploded view of the rotor 16d is depicted in Fig. 38, and a side view of the induction rotor 20d of the motor 10d of the fourth embodiment is depicted in the figure. 39, and Fig. 40 is a cross-sectional view of the inductive rotor 20d of the fourth embodiment motor 10d depicted in section line 40-40 of Fig. 38. Figure 41 depicts a side view of the permanent magnet rotor 26d of the motor 10d of the fourth embodiment, and a cross-sectional view of the permanent magnet rotor 26d of the motor 10d of the fourth embodiment depicted along the section line 42-42 of Figure 41 is This is shown in Fig. 35. The motor 10d has a clutch 34d, or is also a clutch 34', 34", 34"' and 34"", and of course the clutch 34" is preferably good.

圖43為在低轉速的狀況下用離心式離合器34”'滑動第四實施例轉子16d的側視圖,而圖44為沿著圖43中剖面線44-44描繪的第四實施例轉子34”’的剖視圖。轉速66a屬於低轉速,而離心旋轉塊62只有低離心力68a,因此只要輕微地將轉動的永磁轉子26d和感應轉子20d耦合即可。 Figure 43 is a side elevational view of the fourth embodiment rotor 16d slid with a centrifugal clutch 34"' at low rotational speeds, and Figure 44 is a fourth embodiment rotor 34" taken along section line 44-44 of Figure 43. 'Cross section view'. The rotation speed 66a belongs to the low rotation speed, and the centrifugal rotation block 62 has only the low centrifugal force 68a, so that the rotating permanent magnet rotor 26d and the induction rotor 20d can be coupled slightly.

圖45為在高轉速的狀況下用離心式離合器34”'銜接第四實施例轉子16d的側視圖,而圖46為沿著圖45中剖面線46-46描繪的第四實施例轉子34”'的剖視圖。轉速66b屬於高轉速,而離心旋轉塊62產生高離心力68b,因此必須用力將轉動的永磁轉子26d和感應轉子20d耦合。 Figure 45 is a side elevational view of the fourth embodiment rotor 16d engaged with the centrifugal clutch 34"' at high rotational speeds, and Figure 46 is a fourth embodiment rotor 34 depicted along section line 46-46 of Figure 45. 'Cross section view'. The rotational speed 66b belongs to a high rotational speed, and the centrifugal rotating block 62 generates a high centrifugal force 68b, so that the rotating permanent magnet rotor 26d and the inductive rotor 20d must be coupled with force.

圖47為第五實施例馬達10e的側視圖,而圖48為第五實施例馬達10e中第五實施例轉子16e的分解圖,圖49為第五實施例馬達10e中第五實施例感應轉子20e的側視圖,而圖50為沿著圖49中剖面線50-50去描繪的第五實施例馬達10e中第五實施例感應轉子20e的剖視圖。圖51為第五實施例馬達10e中包含感應條22e的第五實施例永磁轉子26e的側視圖。而圖52為沿著圖51中剖面線52-52去描繪的第五實施例馬達10e中永磁轉子26e的剖視圖。感應條22e幫助永磁轉子26e啟動時所產生的角加速度且幫助趨近同步轉速。馬達10e包含離合器34e,而此離合器有可能是34’、34”、34”'或34””,但最好是離心式離合器34”。 Figure 47 is a side view of the motor 10e of the fifth embodiment, and Figure 48 is an exploded view of the rotor 16e of the fifth embodiment of the motor 10e of the fifth embodiment, and Figure 49 is an induction rotor of the fifth embodiment of the motor 10e of the fifth embodiment. A side view of 20e, and Fig. 50 is a cross-sectional view of the fifth embodiment of the induction rotor 20e of the fifth embodiment motor 10e depicted along section line 50-50 of Fig. 49. Figure 51 is a side view of a fifth embodiment permanent magnet rotor 26e including a sensing strip 22e in the motor 10e of the fifth embodiment. Figure 52 is a cross-sectional view of the permanent magnet rotor 26e of the fifth embodiment motor 10e depicted along section line 52-52 of Figure 51. The sensing strip 22e assists the angular acceleration generated when the permanent magnet rotor 26e is activated and helps to approach the synchronous rotational speed. Motor 10e includes clutch 34e, which may be 34', 34", 34"' or 34"", but is preferably a centrifugal clutch 34".

圖53為第六實施例馬達10f的側視圖,而圖54為第六 實施例馬達10f中第六實施例轉子16f的分解圖,圖55為第六實施例馬達10f中第六實施例感應轉子20f的側視圖,而圖56為沿著圖55中剖面線56-56去描繪的第六實施例馬達10f中第六實施例感應轉子20f的剖視圖。圖57為主基板31的側視圖,而圖58為主基板31的剖視圖。圖59A為第六實施例馬達10f中第六實施例永磁轉子26f的側視圖,而圖59B為第六實施例馬達10f中永磁轉子26f的端視圖,圖61為纏繞著第六實施例實體馬達中第六實施例永磁轉子的感應帶23的透視圖,而圖61為展開的感應帶23。主機板31是被固定在馬達軸32而永磁26轉子繞著主機板31轉動。感應帶23包含導引片23a與導電環23b,導引片23a的末端與導電環23b通電連接。具體的感應帶23是一個緊黏銅片的環形磁鐵。銅片的厚度最好在0.015到0.020英吋讓空氣間隙保持在最小但允許渦電流快速地引導永磁轉子至同步轉速讓外圈感應轉子在負載允許離合器把感應轉子拉到最終同步轉速狀況下加速。根據上述,永磁轉子26f是一個可以和感應磁鐵有多種結合的簡單環狀磁鐵。馬達10f包含了一個離合器34e它可以是離合器34’、34”、34”'、34””,但離心離合器34”會是最好的選擇。 Figure 53 is a side view of the motor 10f of the sixth embodiment, and Figure 54 is the sixth An exploded view of the rotor 16f of the sixth embodiment of the motor 10f of the embodiment, Fig. 55 is a side view of the induction rotor 20f of the sixth embodiment of the motor 10f of the sixth embodiment, and Fig. 56 is a section 56-56 along the line of Fig. 55. A sixth sectional view of the induction rotor 20f of the sixth embodiment of the motor 10f is depicted. 57 is a side view of the main substrate 31, and FIG. 58 is a cross-sectional view of the main substrate 31. Figure 59A is a side view of the permanent magnet rotor 26f of the sixth embodiment of the motor 10f of the sixth embodiment, and Figure 59B is an end view of the permanent magnet rotor 26f of the motor 10f of the sixth embodiment, and Figure 61 is a sixth embodiment of the winding A perspective view of the induction belt 23 of the permanent magnet rotor of the sixth embodiment in the solid motor, and Fig. 61 is the unfolded induction belt 23. The main board 31 is fixed to the motor shaft 32 and the permanent magnet 26 rotor is rotated around the main board 31. The induction belt 23 includes a guiding piece 23a and a conductive ring 23b, and the end of the guiding piece 23a is electrically connected to the conductive ring 23b. The specific inductive strip 23 is a ring magnet that is tightly bonded to the copper sheet. The thickness of the copper sheet is preferably between 0.015 and 0.020 inches to keep the air gap to a minimum but allows the eddy current to quickly direct the permanent magnet rotor to the synchronous speed so that the outer ring induction rotor allows the clutch to pull the induction rotor to the final synchronous speed. accelerate. According to the above, the permanent magnet rotor 26f is a simple annular magnet which can be combined with various types of induction magnets. Motor 10f includes a clutch 34e which may be a clutch 34', 34", 34"', 34"", but centrifugal clutch 34" may be the best choice.

根據在圖62的實施方式,可以看到第七實施例馬達10g的具體側視圖。馬達10g包含一個定子12g、一個永磁轉子26g、一個感應轉子20g、鼠籠式馬達轉子端環17g還有一個離合器34g。永磁轉子26g是一個外圍包覆銅的環型磁鐵。 According to the embodiment of Fig. 62, a specific side view of the motor 10g of the seventh embodiment can be seen. The motor 10g includes a stator 12g, a permanent magnet rotor 26g, an induction rotor 20g, a squirrel cage motor rotor end ring 17g, and a clutch 34g. The permanent magnet rotor 26g is a ring magnet surrounded by copper.

根據在圖63的實施方式,可以看到第八實施例馬達 10h的具體側視圖。馬達10h包含一個定子12h、一個永磁轉子26h、一個感應轉子20h、鼠籠式馬達轉子端環17h還有一個離合器34h。永磁轉子26h是一個外圍包覆銅的環型磁鐵。馬達10h有一個內定子12h還有一個感應轉子20h和一個在定子12h外部的永久磁鐵轉子26h。離合器34h是在鼠籠式馬達轉子端環17h的內部。 According to the embodiment in Fig. 63, the motor of the eighth embodiment can be seen 10h specific side view. The motor 10h includes a stator 12h, a permanent magnet rotor 26h, an induction rotor 20h, a squirrel cage motor rotor end ring 17h, and a clutch 34h. The permanent magnet rotor 26h is a ring magnet surrounded by copper. The motor 10h has an inner stator 12h and an inductive rotor 20h and a permanent magnet rotor 26h external to the stator 12h. The clutch 34h is inside the squirrel-cage motor rotor end ring 17h.

根據在圖64的實施方式,可以看到第九實施例的馬達10i的具體側視圖。馬達10i包含一個定子12i、一個永磁轉子26i、一個感應轉子20i、一個鼠籠式馬達轉子端環17i還有一個離合器34i。永磁轉子26i是一個外圍包覆銅的環形磁鐵。馬達10i有一個定子12i還有一個感應轉子20i和一個定子12i在外部的永磁轉子26i。離合器34i是在鼠籠式馬達轉子端環外部。 According to the embodiment in Fig. 64, a specific side view of the motor 10i of the ninth embodiment can be seen. The motor 10i includes a stator 12i, a permanent magnet rotor 26i, an induction rotor 20i, a squirrel cage motor rotor end ring 17i, and a clutch 34i. The permanent magnet rotor 26i is a ring magnet surrounded by copper. The motor 10i has a stator 12i and an induction rotor 20i and a permanent magnet rotor 26i with a stator 12i on the outside. The clutch 34i is external to the rotor end ring of the squirrel cage motor.

圖65為馬達10j的結構側視圖;圖66是沿著圖65上剖面線66-66剖面的馬達10j剖視圖,您可以看到獨立轉動的永磁轉子26j的橫截面;圖67是沿著圖65上直線67-67切下的馬達10j剖視圖,您可以看到感應轉子20j的橫截面。馬達10j包含定子12j和固定在馬達轉軸29旋轉的感應轉子20j,獨立旋轉的永磁轉子26j經由轉接器或軸承82與轉軸29同軸,離合器34j再將獨立旋轉的永磁轉子26j接合至轉軸29;不同於馬達10a至10i沿半徑方向替換位置的設置,此馬達的感應轉子20j和獨立旋轉的永磁轉子26j是沿軸方向替換位置。 Figure 65 is a side view of the structure of the motor 10j; Figure 66 is a cross-sectional view of the motor 10j taken along the section line 66-66 of Figure 65, you can see the cross section of the independently rotating permanent magnet rotor 26j; A cross-sectional view of the motor 10j cut by a straight line 67-67 on 65, you can see the cross section of the induction rotor 20j. The motor 10j includes a stator 12j and an inductive rotor 20j fixed to the rotation of the motor shaft 29, the independently rotating permanent magnet rotor 26j is coaxial with the rotating shaft 29 via an adapter or bearing 82, and the clutch 34j couples the independently rotating permanent magnet rotor 26j to the rotating shaft. 29; Unlike the arrangement in which the motors 10a to 10i are replaced in the radial direction, the induction rotor 20j of the motor and the independently rotating permanent magnet rotor 26j are replaced in the axial direction.

獨立旋轉的永磁體轉子26j包含用來操作同步運作的永久磁鐵(例如:環狀磁鐵)84和感應條22j;不需永久磁鐵84帶動 獨立旋轉的永磁轉子,感應條22j幫助永磁轉子開始依定子線圈磁通的旋轉方向轉動並與定子線圈磁通的磁場連接。再者,在一個兩極交流電頻率60Hz的馬達中,定子線圈磁通的轉速高達3600rpm,即便獨立轉動的永磁轉子26j的慣性質量非常低且能夠自行開始運轉,失去連結的現象仍可能發生。在獨立轉動的永磁轉子26j中的感應條22j能幫助其在失去連結的情況下轉動直到永久磁鐵84的磁場連接旋轉的定子線圈磁通磁場帶動獨立轉動的永磁轉子26j至同步轉速。 The independently rotating permanent magnet rotor 26j includes a permanent magnet (for example, a ring magnet) 84 and a sensing strip 22j for operating synchronously; no permanent magnet 84 is required to drive The independently rotating permanent magnet rotor, the sensing strip 22j helps the permanent magnet rotor to start rotating in the direction of rotation of the stator coil flux and to be connected to the magnetic field of the stator coil flux. Furthermore, in a motor with a two-pole alternating current frequency of 60 Hz, the rotational speed of the stator coil magnetic flux is as high as 3,600 rpm, and even if the inertial mass of the independently rotating permanent magnet rotor 26j is very low and can start to operate by itself, the phenomenon of losing the connection may still occur. The sensing strip 22j in the independently rotating permanent magnet rotor 26j can help it rotate in the event of loss of the connection until the magnetic field of the permanent magnet 84 is coupled to the rotating stator coil flux magnetic field to drive the independently rotating permanent magnet rotor 26j to the synchronous rotational speed.

在另一種獨立轉動的永磁轉子示意圖中,感應帶23(如上述纏繞在獨立轉動的永磁轉子周圍)可能會取代感應條22j。圖60為纏繞著的感應帶23的透視圖,圖61為未纏繞前的感應帶圖示。圖61為展開的感應帶23。感應帶23可能是銅製品或是不含鐵的傳送帶,而它提供了和感應條22j在啟動時同樣的效益。感應條22j和感應帶23都能引起感應磁場,感應帶23可創造渦電流,感應條22j可創造磁通量,而兩者皆和定子線圈磁通量相輔相承。 In another independently rotating permanent magnet rotor schematic, the inductive strip 23 (as described above wrapped around an independently rotating permanent magnet rotor) may replace the inductive strip 22j. Fig. 60 is a perspective view of the wound induction belt 23, and Fig. 61 is an illustration of the induction belt before unwinding. Figure 61 shows the unfolded inductive strip 23. The sensing strip 23 may be a copper or iron-free conveyor belt, and it provides the same benefits as the sensing strip 22j at startup. Both the sensing strip 22j and the sensing strip 23 can induce an induced magnetic field, the sensing strip 23 can create an eddy current, and the sensing strip 22j can create a magnetic flux, both of which are complementary to the stator coil magnetic flux.

馬達10j包含離合器34j,而此離合器有可能是34’、34”、34”’或34””,但最好是離心式離合器34”。離心式離合器34”’的操作如圖44和圖46所示。 The motor 10j includes a clutch 34j, which may be 34', 34", 34"' or 34"", but is preferably a centrifugal clutch 34". The operation of the centrifugal clutch 34"' is shown in Figures 44 and 46. Shown.

馬達10K的第11實施例實體如圖68所示。馬達10j也包含感應轉子、永磁轉子和定子線圈,但滑動離合器34’取代了馬達10j中的離心式離合器。 The eleventh embodiment of the motor 10K is shown in Fig. 68. The motor 10j also includes an induction rotor, a permanent magnet rotor and a stator coil, but the slip clutch 34' replaces the centrifugal clutch in the motor 10j.

當以實體化及其應用方式來敘述此發明時,設計者 可幫我們做大量的修改和變化,且不會超出以上聲明中提到的範圍。 When describing the invention in terms of materialization and its application, the designer It can help us make a lot of modifications and changes without going beyond the scope mentioned in the above statement.

10j‧‧‧馬達 10j‧‧‧Motor

12j‧‧‧定子 12j‧‧‧stator

20j‧‧‧感應轉子 20j‧‧‧Induction rotor

26j‧‧‧永磁轉子 26j‧‧‧ permanent magnet rotor

29‧‧‧轉軸 29‧‧‧ shaft

31j‧‧‧主機板 31j‧‧‧ motherboard

34j‧‧‧離合器 34j‧‧‧Clutch

82‧‧‧軸承 82‧‧‧ bearing

84‧‧‧永久磁鐵 84‧‧‧ permanent magnet

Claims (26)

一種具有自動對準永磁轉子的混和型感應馬達,先以感應式的模式啟動,進而再轉移與永磁轉子同步運作的模式。此馬達具有:一個馬達軸;一個產生旋轉式定子線圈磁場的固定定子線圈;一個轉子也包含一個固定在馬達軸上的感應轉子,以及一個可以產生電流的鼠籠式馬達,以及一個和馬達同軸的永久磁鐵,其以不固定的方式和馬達軸連結,讓永磁轉子可以在軸上獨立旋轉;藉此每當感應轉子沒有與定子線圈磁場同步運作時,定子線圈磁場就會和感應轉子中的鼠籠式馬達配合去產生電流,而為了增加永磁轉子和定子線圈磁場同步旋轉的速度,定子線圈磁場就會和永磁轉子共同去運作。 A hybrid induction motor with an automatic alignment permanent magnet rotor that is first activated in an inductive mode and then transferred to a mode that operates synchronously with the permanent magnet rotor. The motor has: a motor shaft; a fixed stator coil that generates a magnetic field of the rotating stator coil; a rotor also includes an inductive rotor fixed to the motor shaft, and a squirrel cage motor that can generate current, and a motor coaxial a permanent magnet that is coupled to the motor shaft in an unfixed manner so that the permanent magnet rotor can rotate independently on the shaft; thereby the stator coil magnetic field and the inductive rotor are each time the inductive rotor does not operate in synchronism with the stator coil magnetic field. The squirrel cage motor cooperates to generate current, and in order to increase the synchronous rotation speed of the permanent magnet rotor and the stator coil, the stator coil magnetic field will work together with the permanent magnet rotor. 根據申請專利範圍第1項具有自動對準永磁轉子的混和型感應馬達,當馬達軸和永磁轉子每分鐘旋轉的次數幾近相同,永磁轉子及馬達軸間的聯軸器也會幾乎固定。 According to the mixed-type induction motor with automatic alignment of the permanent magnet rotor according to the first paragraph of the patent application, when the number of rotations of the motor shaft and the permanent magnet rotor is almost the same, the coupling between the permanent magnet rotor and the motor shaft will be almost fixed. 根據申請專利範圍第2項具有自動對準永磁轉子的混和型感應馬達,永磁轉子及馬達軸間的聯軸器會當兩者每分鐘達到完全同 步的旋轉數時而完全固定。 According to the second application of the patent scope, there is a hybrid induction motor with an automatic alignment permanent magnet rotor. The coupling between the permanent magnet rotor and the motor shaft will be exactly the same every minute. The number of rotations of the steps is now completely fixed. 根據申請專利範圍第2項具有自動對準永磁轉子的混和型感應馬達,其中永磁轉子及感應轉子是由電力運作的離合器去連接起來的。 According to the second application of the patent application, there is a hybrid induction motor having an automatic alignment permanent magnet rotor, wherein the permanent magnet rotor and the induction rotor are connected by a clutch operated by electric power. 根據申請專利範圍第4項具有自動對準永磁轉子的混和型感應馬達,其中在永磁轉子和馬達軸間的聯軸器為用來減少當感應條在感應轉子滑動時永磁轉子和馬達軸間耦合的電磁離合器,而在啟動時定子線圈會產生很大的磁場。 A hybrid induction motor having an automatic alignment permanent magnet rotor according to item 4 of the patent application, wherein the coupling between the permanent magnet rotor and the motor shaft is used to reduce the permanent magnet rotor and the motor when the induction strip slides on the induction rotor An electromagnetic clutch coupled between the shafts, and the stator coil generates a large magnetic field at the time of starting. 根據申請專利範圍第2項具有自動對準永磁轉子的混和型感應馬達,其中永磁轉子與馬達軸之間的聯軸器是離心離合器。 According to the second aspect of the patent application, there is a hybrid induction motor having an automatic alignment permanent magnet rotor, wherein the coupling between the permanent magnet rotor and the motor shaft is a centrifugal clutch. 根據申請專利範圍第6項具有自動對準永磁轉子的混和型感應馬達,當感應轉子的速度增加時,其中的離心離合器會增加永磁轉子及馬達軸之間的連接次數。 According to the sixth aspect of the patent application, a hybrid induction motor having an automatic alignment permanent magnet rotor, when the speed of the induction rotor is increased, the centrifugal clutch therein increases the number of connections between the permanent magnet rotor and the motor shaft. 根據申請專利範圍第7項具有自動對準永磁轉子的混和型感應馬達,在離心離合器中的砝碼會和感應轉子一起轉動。 According to the hybrid type induction motor with automatic alignment of the permanent magnet rotor according to item 7 of the patent application, the weight in the centrifugal clutch rotates together with the induction rotor. 根據申請專利範圍第8項具有自動對準永磁轉子的混和型感應 馬達,其中離心離合器包括外鐘形部分迴圈式地固定在永磁轉片上,內部旋轉塊部分包含大量的旋轉塊,以迴圈式固定在感應轉片上,且能自由地以放射狀接觸外鐘部分,當感應轉子接近同步轉速時,從外鐘部分產生力量去連接感應轉子和永磁轉子的旋轉。 Mixed type induction with automatic alignment of permanent magnet rotor according to item 8 of the patent application scope a motor, wherein the centrifugal clutch includes an outer bell-shaped portion that is fixedly looped on the permanent magnet rotor, and the inner rotating block portion includes a plurality of rotating blocks that are fixed in a loop on the inductive rotor and are freely radially contactable In the clock portion, when the induction rotor approaches the synchronous rotational speed, a force is generated from the outer clock portion to connect the rotation of the induction rotor and the permanent magnet rotor. 根據申請專利範圍第2項具有自動對準永磁轉子的混和型感應馬達,在永磁轉子及馬達軸間的聯軸器為會讓永磁轉子在啟動時更快加速的滑動離合器。 According to the second application of the patent scope, a hybrid induction motor having an automatic alignment permanent magnet rotor, the coupling between the permanent magnet rotor and the motor shaft is a slip clutch that allows the permanent magnet rotor to accelerate faster at startup. 根據申請專利範圍第10項具有自動對準永磁轉子的混和型感應馬達,其中滑動離合器是提供永磁轉子及感應轉子間離散角位置旋轉校準的位置滑動離合器。 A hybrid induction motor having an automatic alignment permanent magnet rotor according to claim 10, wherein the slip clutch is a positional slip clutch that provides a rotational angular alignment of the permanent magnet rotor and the inductive rotor. 根據申請專利範圍第10項具有自動對準永磁轉子的混和型感應馬達,其中離散位置滑動離合器會提供此一個連續旋轉對齊的位置角度範圍,其介於永磁轉子及感應轉子之間。 A hybrid induction motor having a self-aligning permanent magnet rotor according to claim 10, wherein the discrete position slip clutch provides a range of positional angles of continuous rotational alignment between the permanent magnet rotor and the induction rotor. 根據申請專利範圍第1項具有自動對準永磁轉子的混和型感應馬達,其中永磁轉子包含了一些與旋轉定子磁場耦合的感應棒,而此感應棒啟動時會幫助加速永磁轉子。 According to the scope of claim 1, the hybrid induction motor having an automatic alignment permanent magnet rotor, wherein the permanent magnet rotor includes some induction rods coupled to the magnetic field of the rotating stator, and the induction rod starts to help accelerate the permanent magnet rotor. 根據申請專利範圍第1項具有自動對準永磁轉子的混和型感 應馬達,其中永磁轉子包含了一個與旋轉定子磁場耦合的感應帶,而此感應棒啟動時會幫助加速永磁轉子。 According to the first paragraph of the patent application, there is a mixed sense of automatic alignment of the permanent magnet rotor. The motor, wherein the permanent magnet rotor includes an inductive strip coupled to the magnetic field of the rotating stator, and the induction rod will help accelerate the permanent magnet rotor when activated. 根據申請專利範圍第14項具有自動對準永磁轉子的混和型感應馬達,感應帶被永磁轉子包覆在裡面。 According to the 14th item of the patent application, a hybrid induction motor having an automatic alignment permanent magnet rotor, the induction belt is covered by a permanent magnet rotor. 根據申請專利範圍第14項具有自動對準永磁轉子的混和型感應馬達,感應帶包含空出的導體帶子與導體性圓環用電力的連接,作用發生在引導帶的末端。 According to the mixed-type induction motor having the self-aligning permanent magnet rotor according to the 14th article of the patent application, the induction belt includes an electrically connected connection between the vacated conductor strip and the conductive ring, and the action occurs at the end of the guide belt. 根據申請專利範圍第15項具有自動對準永磁轉子的混和型感應馬達,永久磁鐵是一個環狀的永久磁鐵且一個感應帶包含了一些個別間隔開的感應帶,起初會以電力連接了導體性的圓環於每個感應帶的末端,這個被環繞的環型磁鐵會提供因感應而產生的力矩,在啟動時會加速環形永磁轉子 According to the fifteenth item of the patent application, a hybrid induction motor having an automatic alignment permanent magnet rotor, the permanent magnet is a ring-shaped permanent magnet and an induction belt includes a plurality of individually spaced induction bands, which are initially electrically connected to the conductor. The ring of the sex is at the end of each sensor band. This surrounded ring magnet provides the torque generated by the induction and accelerates the ring permanent magnet rotor at startup. 根據申請專利範圍第17項具有自動對準永磁轉子的混和型感應馬達,感應帶是介於.015 and .020英吋厚的銅帶。 According to the scope of the patent application, there is a hybrid induction motor with an automatic alignment permanent magnet rotor. The induction belt is a copper strip with a thickness of .015 and .020 inches. 根據申請專利範圍第1項具有自動對準永磁轉子的混和型感應馬達,轉子會在發動機定子線圈中。 According to the first application of the patent scope, a hybrid induction motor having an automatic alignment permanent magnet rotor, the rotor will be in the engine stator coil. 根據申請專利範圍第19項具有自動對準永磁轉子的混和型感應馬達,永磁轉子存在於感應轉子中。 According to the 19th item of the patent application, there is a hybrid induction motor having an automatic alignment permanent magnet rotor, and a permanent magnet rotor is present in the induction rotor. 根據申請專利範圍第19項具有自動對準永磁轉子的混和型感應馬達,永磁轉子存在於感應轉子外。 According to the 19th item of the patent application, a hybrid induction motor having an automatic alignment permanent magnet rotor exists, and the permanent magnet rotor exists outside the induction rotor. 根據申請專利範圍第19項具有自動對準永磁轉子的混和型感應馬達,永磁轉子會以軸向位移的方式存在於感應轉子旁。 According to the hybrid type induction motor with automatic alignment of the permanent magnet rotor according to the 19th patent application, the permanent magnet rotor exists in the axial displacement manner beside the induction rotor. 根據申請專利範圍第1項具有自動對準永磁轉子的混和型感應馬達,永磁轉子存在於定子線圈外。 According to the first application of the patent scope, there is a hybrid induction motor having an automatic alignment permanent magnet rotor, and the permanent magnet rotor exists outside the stator coil. 根據申請專利範圍第23項具有自動對準永磁轉子的混和型感應馬達,永磁轉子存在於感應轉子中。 According to the 23rd item of the patent application, there is a hybrid induction motor having an automatic alignment permanent magnet rotor, and a permanent magnet rotor is present in the induction rotor. 一種具有自動對準永磁轉子的混和型感應馬達,從感應轉子和同步運作的轉換開始;馬達結構包括:一個馬達軸;一個固定定子線圈所創造一個旋轉定子線圈磁場;一個旋轉轉子包括一個感應轉子成軸地固定在馬達軸也包括鼠籠式電動機產生電流,以及一個永磁轉子成軸地與馬達軸作多變的旋轉性連結,當感應轉子每分鐘以低轉速旋轉時,它會允許 馬達軸裡的永磁轉子獨立地旋轉,且當感應轉子接近同步轉速時,它會增加永磁轉子和馬達軸間的連結。定子線圈磁場中會和鼠籠式馬達配合而在感應轉子中產生電流,這時感應轉子的轉動與定子線圈磁場的轉動會不同步,且定子線圈磁場會和永磁轉子配合而加速永磁定子線圈的轉動與定子線圈磁場的轉動同步。 A hybrid induction motor having an automatic alignment permanent magnet rotor, starting from the conversion of the induction rotor and the synchronous operation; the motor structure comprises: a motor shaft; a fixed stator coil creates a rotating stator coil magnetic field; and a rotating rotor includes an induction The rotor is axially fixed to the motor shaft and also includes a squirrel-cage motor for generating current, and a permanent magnet rotor is pivotally coupled to the motor shaft for variable rotation. When the induction rotor rotates at a low speed every minute, it allows The permanent magnet rotor in the motor shaft rotates independently, and when the induction rotor approaches the synchronous speed, it increases the connection between the permanent magnet rotor and the motor shaft. The stator coil magnetic field cooperates with the squirrel cage motor to generate current in the induction rotor. At this time, the rotation of the induction rotor and the rotation of the stator coil magnetic field are not synchronized, and the stator coil magnetic field cooperates with the permanent magnet rotor to accelerate the permanent magnet stator coil. The rotation is synchronized with the rotation of the stator coil magnetic field. 一種具有自動對準永磁轉子的混和型感應馬達,先以感應模式啟動,再進而轉變為與永磁轉子同步運作的模式,此一馬達其包括:一個馬達軸;一個可以產生轉動定子線圈磁場的固定定子線圈;一個與馬達軸及包括下列構成物為同軸的轉動轉子:一個固定於馬達軸的感應轉子,以及一個可以產生電流之鼠籠式馬達,以及一個永磁轉子,藉由離心離合器,同軸且非固定轉動的方式與感應轉子連結。當感應轉子於低轉速時,其使感應轉子之永磁轉子獨立迴轉;當感應轉子達到每分鐘同步轉速時,其將漸增性地耦合永磁轉子與感應轉子之每分鐘轉速,當感應轉子不與定子線圈磁場同步時,定子線圈磁場將與鼠籠式馬達一同作用,產生電流於感應轉子中;此外,定子線圈磁場與永磁轉子亦會相互作用,加速永磁轉子之迴轉,直至與定子線 圈磁場同步轉動。 A hybrid induction motor having an automatic alignment permanent magnet rotor is first activated in an induction mode and then converted into a mode of operation in synchronization with a permanent magnet rotor. The motor includes: a motor shaft; and a magnetic field capable of generating a rotating stator coil Fixed stator coil; a rotating rotor coaxial with the motor shaft and including: an induction rotor fixed to the motor shaft, and a squirrel cage motor capable of generating electric current, and a permanent magnet rotor by centrifugal clutch The coaxial and non-fixed rotation is coupled to the inductive rotor. When the induction rotor is at a low rotational speed, it causes the permanent magnet rotor of the induction rotor to rotate independently; when the induction rotor reaches the synchronous rotation speed per minute, it will incrementally couple the rotational speed of the permanent magnet rotor and the induction rotor every minute, when the induction rotor When not synchronized with the stator coil magnetic field, the stator coil magnetic field will act together with the squirrel cage motor to generate current in the induction rotor; in addition, the stator coil magnetic field will interact with the permanent magnet rotor to accelerate the rotation of the permanent magnet rotor until Stator line The magnetic field of the circle rotates synchronously.
TW102114137A 2013-04-22 2013-04-22 Hybrid induction motor with self aligning permanent magnet inner rotor TW201442397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102114137A TW201442397A (en) 2013-04-22 2013-04-22 Hybrid induction motor with self aligning permanent magnet inner rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102114137A TW201442397A (en) 2013-04-22 2013-04-22 Hybrid induction motor with self aligning permanent magnet inner rotor

Publications (1)

Publication Number Publication Date
TW201442397A true TW201442397A (en) 2014-11-01

Family

ID=52423058

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102114137A TW201442397A (en) 2013-04-22 2013-04-22 Hybrid induction motor with self aligning permanent magnet inner rotor

Country Status (1)

Country Link
TW (1) TW201442397A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105846567A (en) * 2015-01-30 2016-08-10 铃木株式会社 External-rotor variable excitation motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105846567A (en) * 2015-01-30 2016-08-10 铃木株式会社 External-rotor variable excitation motor

Similar Documents

Publication Publication Date Title
RU2638829C2 (en) Hybrid induction electric motor with self-aligning inner rotor based on permanent magnets
RU2543992C2 (en) Reconfigurable synchronous induction motor
CA2612041C (en) Electromagnetic variable transmission
RU2251195C2 (en) Electrical machine and electric generator (alternatives)
US9419504B2 (en) Hybrid induction motor with self aligning permanent magnet inner rotor
BRPI0706124A (en) method for manufacturing a synchronous electric machine
Melfi et al. Viability of highly efficient multi-horsepower line-start permanent-magnet motors
TW201832453A (en) Hybrid induction motor with self aligning hybrid induction/permanent magnet rotor
GB2443032A (en) Rotating machine operable as a generator and as a starter
JP2007503199A (en) Electric motor having a permanent magnet rotor
EP2372106A1 (en) Turbogenerator
CN105763009A (en) Hybrid magnetic circuit low harmonic wave multi-stator flux-weakening speed extension permanent magnet synchronous motor, and method thereof
TW201442397A (en) Hybrid induction motor with self aligning permanent magnet inner rotor
CN106505815B (en) Motor
TWI572121B (en) Reconfigurable electric motor with induced synchronization
KR20190032216A (en) Electric machine comprising a stator provided with an inner tubular sleeve
JP2006006026A (en) Rotor and rotating electric machine equipped therewith
Cistelecan et al. Three phase line start claw poles permanent magnet motor with pole changing winding
RU2517172C1 (en) Inductor-type generator
WO2018076482A1 (en) Motor
RU2406213C1 (en) Face-type electrical machine
CN205666741U (en) Mix weak magnetism of two stators of magnetic circuit and expand fast solid rotor PMSM
RU2538772C2 (en) Inductor machine
RU2529643C2 (en) Inductor electrical machine
KR20040036134A (en) Line-Started Permanent Magnet Motor