TW201436417A - Managed multi-phase operation - Google Patents

Managed multi-phase operation Download PDF

Info

Publication number
TW201436417A
TW201436417A TW102118281A TW102118281A TW201436417A TW 201436417 A TW201436417 A TW 201436417A TW 102118281 A TW102118281 A TW 102118281A TW 102118281 A TW102118281 A TW 102118281A TW 201436417 A TW201436417 A TW 201436417A
Authority
TW
Taiwan
Prior art keywords
voltage
tap
value
maximum deviation
voltage regulator
Prior art date
Application number
TW102118281A
Other languages
Chinese (zh)
Inventor
Daniel J Daley
Craig A Colopy
Christopher J Coughlin
Hanish Kumar
Gavin R Kinsley
Zhongmin Du
Original Assignee
Cooper Technologies Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/782,962 external-priority patent/US9513645B2/en
Application filed by Cooper Technologies Co filed Critical Cooper Technologies Co
Publication of TW201436417A publication Critical patent/TW201436417A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

Systems and methods for maximum deviation multi-phase operation provide techniques for controlling voltage regulators and tap changers in a multi-phase system to operate within a maximum deviation window. The maximum deviation window comprises a low boundary value and a high boundary value. In an example embodiment, systems and methods provide techniques for setting the low boundary value and the high boundary value. In another example embodiment, systems and methods provide techniques for optimized power factor correction in a multi-phase system.

Description

受管理的多相操作 Managed multiphase operation 相關申請案Related application

本申請案主張名稱為「Managed Multi-Phase Operation」且2012年3月1日提交之美國臨時專利申請案第61/605,643號之優先權,該案之全文以引用之方式併入本文中。 The present application claims priority to U.S. Provisional Application Serial No. 61/605,643, the entire disclosure of which is incorporated herein by reference.

本發明大體上係關於:具有一單相控制之一多相電力系統中之受管理的多相電壓調節及控制;及用於具有一單相控制之受管理的多相電壓調節及控制之系統、方法及裝置。 The present invention generally relates to a managed multiphase voltage regulation and control in a multiphase power system having a single phase control; and a system for managed multiphase voltage regulation and control having a single phase control , methods and devices.

多相電力系統(其載送兩個或兩個以上交流電)係一常見形式之配電。一多相電力系統之AC線通常具有自其他相位偏移之一相位。此允許多相系統傳輸比單相電力系統多之電力。一多相系統之一典型實例係三相電力系統。在一多相系統中,一電壓調節器控制器用於維持構成該多相系統之多個連接單相機構之本端操作控制。該電壓調節器控制器可通信地耦合至包括一分接頭換接器之一電壓調節器。該分接頭換接器能夠改變該電壓調節器之一分接頭位置以提供與一各自相位相關聯之可變/步進電壓輸出調節。現有多相控制方法通常包括用於控制多個相位之一單一機構或用於調節該多個相位之一鎖步群組之機構。在某些狀況中,諸如在存在非均勻平衡負載時,此控制方法會加劇系統失衡。 Multiphase power systems, which carry two or more alternating currents, are a common form of power distribution. The AC line of a multiphase power system typically has one phase from other phase offsets. This allows the multiphase system to transmit more power than a single phase power system. A typical example of a multiphase system is a three phase power system. In a multiphase system, a voltage regulator controller is used to maintain local operational control of a plurality of connected single phase mechanisms that make up the multiphase system. The voltage regulator controller is communicatively coupled to a voltage regulator that includes a tap changer. The tap changer is capable of changing one of the voltage regulator tap positions to provide variable/step voltage output regulation associated with a respective phase. Existing multiphase control methods typically include a mechanism for controlling a single mechanism of a plurality of phases or for adjusting a lockstep group of the plurality of phases. In some situations, such as in the presence of non-uniformly balanced loads, this control approach can exacerbate system imbalances.

在本發明之一實例性實施例中,一種用於最大偏差多相操作之方法包括:基於複數個分接頭換接器之一第一最高分接頭位置而設定一最大偏差窗之一低邊界值;基於該複數個分接頭換接器之一第一最低分接頭位置而設定該最大偏差窗之一高邊界值;及由複數個電壓調節器控制器基於該複數個分接頭換接器之該等分接頭位置而獨立調節各自複數個電壓調節器之各自複數個電壓。 In an exemplary embodiment of the present invention, a method for maximum deviation multiphase operation includes setting a low boundary value of one of a maximum deviation window based on a first highest tap position of a plurality of tap changers Setting a high boundary value of one of the maximum deviation windows based on one of the first lowest tap positions of the plurality of tap changers; and based on the plurality of tap changers by the plurality of voltage regulator controllers The respective voltages of the respective plurality of voltage regulators are independently adjusted by averaging the tap positions.

在本發明之另一實例性實施例中,一種用於最大偏差多相操作之系統包括:複數個電壓調節器;複數個分接頭換接器,其中該複數個分接頭換接器之各者經組態以改變該複數個電壓調節器之一者之一分接頭位置;及複數個電壓調節器控制器,其等經組態以設定該複數個分接頭換接器之分接頭位置。該系統進一步包括耦合至該複數個電壓調節器控制器之至少一者之一控制器。該控制器經組態以基於該複數個分接頭換接器之一第一最高分接頭位置而設定一最大偏差窗之一低邊界值及基於該複數個分接頭換接器之一第一最低分接頭位置而設定該最大偏差窗之一高邊界值。該複數個電壓調節器控制器經組態以基於該複數個分接頭換接器之該等分接頭位置而調節該複數個電壓調節器之各自複數個電壓。 In another exemplary embodiment of the present invention, a system for maximum deviation multiphase operation includes: a plurality of voltage regulators; a plurality of tap changers, wherein each of the plurality of tap changers A tap position configured to change one of the plurality of voltage regulators; and a plurality of voltage regulator controllers configured to set a tap position of the plurality of tap changers. The system further includes a controller coupled to at least one of the plurality of voltage regulator controllers. The controller is configured to set a low limit value of one of the maximum deviation windows based on the first highest tap position of the plurality of tap changers and a first lowest based on one of the plurality of tap changers Set the high boundary value of one of the maximum deviation windows by the tap position. The plurality of voltage regulator controllers are configured to adjust a respective plurality of voltages of the plurality of voltage regulators based on the tap positions of the plurality of tap changers.

在本發明之另一實例性實施例中,一種最佳化電力因數校正之方法包括:比較兩個電壓調節器之間之量測電力因數之一差異與一預判定最大差異;及當判定該差異大於該最大差異時,將該差異儲存為量測電力因數之一先前差異。該方法進一步包括:由一控制器調整該等電壓調節器之一者之一分接頭位置;比較該兩個電壓調節器之間之量測電力因數之一第二差異與量測電力因數之該先前差異;及當量測電力因數之該第二差異不小於量測電力因數之該先前差異時,由該控制器將該等電壓調節器之該一者之該分接頭位置恢復至一早先分接頭 位置。 In another exemplary embodiment of the present invention, a method for optimizing power factor correction includes: comparing a difference between a measured power factor between two voltage regulators and a pre-determined maximum difference; and when determining the When the difference is greater than the maximum difference, the difference is stored as one of the previous differences in the measured power factor. The method further includes: adjusting, by a controller, a tap position of one of the voltage regulators; comparing a second difference between the measured power factors between the two voltage regulators and measuring the power factor The previous difference; and the second difference of the equivalent power factor is not less than the previous difference of the measured power factor, the controller restores the tap position of the one of the voltage regulators to an earlier Connector position.

在另一實例性實施例中,一種相位角平衡之方法包含:計算一初始第一相位角、一初始第二相位角及一初始第三相位角。該初始第一相位角、該初始第二相位角及該初始第三相位角形成一初始相位平衡條件。該方法進一步包含:判定該初始第一相位角、該初始第二相位角及該初始第三相位角之何者具有最大值;及調整與具有最大值之初始相位角相反之一相位之一輸出電壓。 In another exemplary embodiment, a method of phase angle balancing includes calculating an initial first phase angle, an initial second phase angle, and an initial third phase angle. The initial first phase angle, the initial second phase angle, and the initial third phase angle form an initial phase balance condition. The method further includes determining whether the initial first phase angle, the initial second phase angle, and the initial third phase angle have a maximum value; and adjusting one of the phases opposite to an initial phase angle having a maximum value .

在另一實例性實施例中,一種電壓差量(△)平衡之方法包含:計算一初始第一電壓差量、一初始第二電壓差量及一初始第三電壓差量。該初始第一電壓差量、該初始第二電壓差量及該初始第三電壓差量形成一初始電壓平衡條件。該方法進一步包含:判定該初始第一電壓差量、該初始第二電壓差量及該初始第三電壓差量之何者具有最大值;及調整與具有最大值之初始電壓差量相反之一相位之一輸出電壓。 In another exemplary embodiment, a method of balancing a voltage difference (Δ) includes calculating an initial first voltage difference amount, an initial second voltage difference amount, and an initial third voltage difference amount. The initial first voltage difference amount, the initial second voltage difference amount, and the initial third voltage difference amount form an initial voltage balance condition. The method further includes: determining which of the initial first voltage difference amount, the initial second voltage difference amount, and the initial third voltage difference amount has a maximum value; and adjusting a phase opposite to an initial voltage difference amount having a maximum value One of the output voltages.

10‧‧‧系統 10‧‧‧System

60‧‧‧系統 60‧‧‧ system

100‧‧‧多相控制系統/多相控制器 100‧‧‧Multiphase Control System / Multiphase Controller

102‧‧‧通信鏈路 102‧‧‧Communication link

104‧‧‧通信鏈路 104‧‧‧Communication link

120‧‧‧記憶體 120‧‧‧ memory

130‧‧‧電壓調節器控制器 130‧‧‧Voltage regulator controller

132‧‧‧分接頭換接器 132‧‧‧ Tap changer

134‧‧‧電壓調節器/第一相位 134‧‧‧Voltage regulator / first phase

136‧‧‧控制信號 136‧‧‧Control signal

138‧‧‧感測信號/量測資料 138‧‧‧Sensing signal/measurement data

140‧‧‧電壓調節器控制器 140‧‧‧Voltage regulator controller

142‧‧‧分接頭換接器 142‧‧‧ Tap changer

144‧‧‧電壓調節器/第二相位 144‧‧‧Voltage regulator / second phase

146‧‧‧控制信號 146‧‧‧Control signal

148‧‧‧感測信號/量測資料 148‧‧‧Sensing signal/measurement data

150‧‧‧電壓調節器控制器/網路 150‧‧‧Voltage Regulator Controller/Network

152‧‧‧分接頭換接器 152‧‧‧ Tap changer

154‧‧‧電壓調節器/第三相位 154‧‧‧Voltage regulator / third phase

156‧‧‧控制信號 156‧‧‧Control signal

158‧‧‧感測信號/量測資料 158‧‧‧Sensing signal/measurement data

160‧‧‧管理終端機/管理電腦 160‧‧‧Manage terminal/management computer

610‧‧‧前導電壓調節器控制器 610‧‧‧ Leading Voltage Regulator Controller

620‧‧‧隨動電壓調節器控制器 620‧‧‧Slave voltage regulator controller

630‧‧‧第一電壓調節器 630‧‧‧First voltage regulator

640‧‧‧第二電壓調節器 640‧‧‧Second voltage regulator

650‧‧‧負載 650‧‧‧load

1002‧‧‧電壓差量 1002‧‧‧Voltage difference

1004‧‧‧電壓差量 1004‧‧‧Voltage difference

1006‧‧‧電壓差量 1006‧‧‧Voltage difference

1012‧‧‧相位角 1012‧‧‧ phase angle

1014‧‧‧相位角 1014‧‧‧ phase angle

1016‧‧‧相位角 1016‧‧‧ phase angle

為更完全理解本發明及其優點,現參考結合附圖之【實施方式】,附圖簡要描述如下:圖1繪示根據本發明之一實例性實施例之用於最大偏差多相操作之一系統之一圖形表示;圖2繪示根據本發明之一實例性實施例之用於最大偏差多相操作之一方法之一第一部分之一流程圖;圖3進一步繪示根據本發明之一實例性實施例之用於最大偏差多相操作之方法之一第二部分之一流程圖;圖4進一步繪示根據本發明之一實例性實施例之用於最大偏差多相操作之方法之一第三部分之一流程圖;圖5繪示根據本發明之一實例性實施例之用於最大偏差多相操作 之一方法之另一實例性實施例之一流程圖;圖6繪示根據本發明之一實例性實施例之用於最佳化電力因數校正之一系統之一圖形表示;圖7繪示根據本發明之一實例性實施例之用於最佳化電力因數校正之一方法之一流程圖;圖8繪示根據本發明之一實例性實施例之用於電壓差量平衡之一方法之一流程圖;圖9繪示根據本發明之一實例性實施例之用於相位角平衡之一方法之一流程圖;圖10A繪示根據本發明之一實例性實施例之一電壓差量向量圖;及圖10B繪示根據本發明之一實例性實施例之一相位角向量圖。 For a fuller understanding of the present invention and its advantages, reference should be made to the accompanying drawings in which FIG. A graphical representation of one of the systems; FIG. 2 is a flow diagram of one of the first portions of one of the methods for maximum deviation polyphase operation in accordance with an exemplary embodiment of the present invention; FIG. 3 further illustrates an example in accordance with the present invention One of the methods of the second embodiment of the method for maximum deviation multiphase operation of the embodiment; FIG. 4 further illustrates one of the methods for maximum deviation multiphase operation according to an exemplary embodiment of the present invention. One of three parts of a flow chart; FIG. 5 illustrates a maximum deviation multiphase operation according to an exemplary embodiment of the present invention A flow chart of another exemplary embodiment of one of the methods; FIG. 6 is a graphical representation of one of the systems for optimizing power factor correction in accordance with an exemplary embodiment of the present invention; A flow chart of one of the methods for optimizing power factor correction according to an exemplary embodiment of the present invention; FIG. 8 illustrates one of the methods for voltage difference balance according to an exemplary embodiment of the present invention. FIG. 9 is a flow chart showing one of methods for phase angle balance according to an exemplary embodiment of the present invention; FIG. 10A is a diagram showing a voltage difference vector according to an exemplary embodiment of the present invention. And FIG. 10B illustrates a phase angle vector diagram in accordance with an exemplary embodiment of the present invention.

該等圖式僅繪示本發明之實例性實施例且因此不應被視為限制本發明之範疇,此係因為本發明可容許其他等效實施例。該等圖式中所展示之元件及特徵未必按比例繪製,相反,重點在於清楚地繪示本發明之實例性實施例之原理。另外,可放大某些尺寸以有助於視覺上傳達此等原理。 The drawings are merely illustrative of the exemplary embodiments of the invention and are therefore not to be construed as limiting the scope of the invention. The elements and features of the present invention are not necessarily to In addition, certain dimensions can be enlarged to help visually convey these principles.

在以下段落中,將以舉例方式參考附圖而進一步詳細描述本發明。在該描述中,省略或簡要描述熟知組件、方法及/或處理技術以便不使本發明不清楚。如本文中所使用,「本發明」意指本文中所描述之本發明之實施例之任一者及任何等效物。此外,參考「本發明」之各種(若干)特徵不暗示:全部實施例必須包括該(等)參考特徵。 In the following paragraphs, the invention will be described in further detail by way of example with reference to the accompanying drawings. In the description, well-known components, methods, and/or processing techniques are omitted or described in order to not obscure the invention. As used herein, "the invention" means any of the embodiments of the invention described herein and any equivalents thereof. Furthermore, reference to various features of the "invention" does not imply that all embodiments must include the reference features.

在實施例中,由被一或多個處理器執行之一電腦程式實施本發明之一些態樣,如所描述及所繪示。如一般技術者所明白,可由各種形式之電腦可讀指令至少部分實施本發明,且非意欲本發明受限於由 處理器執行之一特定組或序列之指令。 In an embodiment, some aspects of the invention are implemented by a computer program executed by one or more processors, as described and illustrated. As is apparent to those skilled in the art, the present invention may be at least partially implemented by various forms of computer readable instructions, and it is not intended that the invention be limited by The processor executes one of a particular set or sequence of instructions.

參考圖2至圖4及圖6之程序流程圖,應注意,可使用圖2至圖4及圖6中所繪示之一替代順序之步驟來實踐本發明。即,圖2至圖4及圖6中所繪示之程序流程僅供說明,且可使用不同於所繪示程序流程之程序流程來實踐本發明。另外,應注意,不是每個實施例中均需要全部步驟。換言之,可在不背離本發明之精神及範疇之情況下省略或取代該等步驟之一或多者。在替代實施例中,依不同順序執行步驟,彼此並行地執行步驟,或完全省略步驟,及/或可在不背離本發明之範疇及精神之情況下執行某些額外步驟。 Referring to the flowcharts of FIGS. 2 through 4 and FIG. 6, it should be noted that the present invention may be practiced using one of the steps illustrated in FIGS. 2 through 4 and FIG. That is, the program flow illustrated in FIGS. 2 to 4 and FIG. 6 is for illustrative purposes only, and the present invention may be practiced using a program flow different from the illustrated program flow. Additionally, it should be noted that not all steps are required in every embodiment. In other words, one or more of the steps may be omitted or substituted without departing from the spirit and scope of the invention. In an alternate embodiment, the steps are performed in a different order, the steps are performed in parallel with each other, or the steps are omitted altogether, and/or some additional steps can be performed without departing from the scope and spirit of the invention.

現轉至圖式(其中相同元件符號指示全部相同元件),詳細描述本發明之實例性實施例。 The exemplary embodiments of the present invention are described in detail with reference to the drawings.

圖1繪示具有一多相控制器之用於複數個電壓調節器之最大偏差多相操作之一系統10之一實施例。系統10包括一多相控制系統100及電壓調節器134、144及154之各自分接頭換接器132、142及152。多相控制系統100包括一記憶體120及電壓調節器控制器130、140及150。電壓調節器控制器130、140及150之各者經組態以設定分接頭換接器132、142及152之一各自者之一分接頭,如圖所繪示。應注意,電壓調節器控制器130、140及150可一起整合為一單一控制器之部分或彼此分離。應進一步注意,記憶體120可部分駐留於電壓調節器控制器130、140及150之各者內,或作為包含電壓調節器控制器130、140及150之各者之該單一整合控制器之部分。 1 illustrates an embodiment of a system 10 for maximum deviation multiphase operation for a plurality of voltage regulators having a multiphase controller. System 10 includes a multi-phase control system 100 and respective tap changers 132, 142, and 152 of voltage regulators 134, 144, and 154. The multiphase control system 100 includes a memory 120 and voltage regulator controllers 130, 140, and 150. Each of the voltage regulator controllers 130, 140, and 150 is configured to set a tap of one of the respective ones of the tap changers 132, 142, and 152, as shown. It should be noted that the voltage regulator controllers 130, 140, and 150 can be integrated together as part of a single controller or separate from each other. It should be further noted that the memory 120 can reside partially within each of the voltage regulator controllers 130, 140, and 150, or as part of the single integrated controller that includes each of the voltage regulator controllers 130, 140, and 150. .

在一實施例中,電壓調節器134、144及154各提供一線電壓給一3相電力輸送系統之一各自相位。然而,系統10可包括更少或更多電壓調節器、分接頭換接器及電壓調節器控制器。此外,如此項技術中所瞭解,分接頭換接器132、142及152之各者包括複數個分接頭(可由該等分接頭選擇電壓調節器134、144及154之一者之一線電壓)且電壓 調節器134、144及154之各者包括一電力變壓器之一繞組。例如(但不限於),可供分接頭換接器132、142及152之各者選擇之分接頭之數目可在自32個分接頭至64個分接頭之範圍內。一般技術者應瞭解,可使用各種類型之電壓調節器、各種類型之分接頭換接器及具有可供選擇之任何數目個分接頭位置之分接頭換接器來體現本發明。 In one embodiment, voltage regulators 134, 144, and 154 each provide a line voltage to a respective phase of one of the 3-phase power delivery systems. However, system 10 can include fewer or more voltage regulators, tap changers, and voltage regulator controllers. Moreover, as understood in the art, each of the tap changers 132, 142, and 152 includes a plurality of taps (the line voltage of one of the voltage regulators 134, 144, and 154 can be selected by the taps) and Voltage Each of the regulators 134, 144, and 154 includes a winding of one of the power transformers. For example, but not limited to, the number of taps available for each of the tap changers 132, 142, and 152 can range from 32 taps to 64 taps. One of ordinary skill will appreciate that the present invention can be embodied using various types of voltage regulators, various types of tap changers, and tap changers having any number of tap positions to choose from.

電壓調節器控制器130、140及150之各者自各自電壓調節器134、144及154之繞組之一各自者接收一感測信號138、148或158。分別根據由分接頭換接器132、142及152之一者設定之一分接頭位置,各感測信號包括基於各自電壓調節器134、144及154之繞組之一者之一當前線輸出電壓及/或電流之一電壓及/或電流感測信號。各感測信號138、148及158進一步包括容許電壓調節器控制器130、140及150判定分接頭換接器132、142及152之分接頭位置之回饋。由來自電壓調節器控制器130、140或150之一者之一控制信號136、146或156控制分接頭換接器之各者。 Each of voltage regulator controllers 130, 140, and 150 receives a sense signal 138, 148, or 158 from one of the respective windings of respective voltage regulators 134, 144, and 154. One of the tap positions is set according to one of the tap changers 132, 142, and 152, respectively, and each sense signal includes a current line output voltage based on one of the windings of the respective voltage regulators 134, 144, and 154 and / or current one of the voltage and / or current sensing signal. Each of the sense signals 138, 148, and 158 further includes allowable voltage regulator controllers 130, 140, and 150 to determine the feedback of the tap positions of tap changers 132, 142, and 152. Each of the tap changers is controlled by one of the control signals 136, 146 or 156 from one of the voltage regulator controllers 130, 140 or 150.

電壓調節器控制器130、140及150經由一通信鏈路而通信地耦合在一起。在一實施例中,電壓調節器控制器130、140及150之一者用作一前導,自其他電壓調節器控制器130、140及150接收回饋,及協調其他電壓調節器控制器130、140及150之操作,以及其他態樣。例如下文進一步詳細所描述,前導控制器經組態以在電壓調節器控制器130、140及150中傳輸包括低分接頭位置邊界值及高分接頭位置邊界值之一最大偏差窗,且電壓調節器控制器130、140及150經組態以在一操作模式中在該最大偏差窗內操作分接頭換接器132、142及152之分接頭位置。即,在一操作模式中,電壓調節器控制器130、140及150經組態以在由該最大偏差窗界定之分接頭值之一可容許範圍內設定分接頭換接器132、142及152之分接頭。電壓調節器控制器130、140及150經進一步組態以鑒於感測信號138、148及158及分接頭值之 該可容許範圍而設定分接頭換接器132、142及152之分接頭。另外,電壓調節器控制器130、140及150經組態以將諸如當前分接頭位置資訊之資訊傳輸至前導控制器,使得前導控制器可管理其他串聯電壓調節器控制器130、140及150之操作。 Voltage regulator controllers 130, 140, and 150 are communicatively coupled together via a communication link. In one embodiment, one of the voltage regulator controllers 130, 140, and 150 acts as a preamble, receives feedback from other voltage regulator controllers 130, 140, and 150, and coordinates other voltage regulator controllers 130, 140. And 150 operations, and other aspects. For example, as described in further detail below, the lead controller is configured to transmit in the voltage regulator controllers 130, 140, and 150 a maximum deviation window including one of a low tap position boundary value and a high tap position boundary value, and voltage regulation The controllers 130, 140, and 150 are configured to operate the tap positions of the tap changers 132, 142, and 152 within the maximum deviation window in an operational mode. That is, in an operational mode, voltage regulator controllers 130, 140, and 150 are configured to set tap changers 132, 142, and 152 within an allowable range of one of the tap values defined by the maximum deviation window. Tap. Voltage regulator controllers 130, 140, and 150 are further configured to account for sensed signals 138, 148, and 158 and tap values The taps of the tap changers 132, 142, and 152 are set to the allowable range. Additionally, voltage regulator controllers 130, 140, and 150 are configured to communicate information, such as current tap position information, to the preamble controller such that the preamble controller can manage other series voltage regulator controllers 130, 140, and 150 operating.

電壓調節器控制器130、140及150經由通信鏈路102而通信地耦合至一網路150。一管理終端機160亦經由通信鏈路104而通信地耦合至網路150。使用通信鏈路102及104及網路150,管理終端機160能夠與電壓調節器控制器130、140及150通信。例如,管理電腦160可用於更新電壓調節器控制器130、140及150之參數及設定值以管理電壓調節器控制器130、140及150之多相操作。 Voltage regulator controllers 130, 140, and 150 are communicatively coupled to a network 150 via communication link 102. A management terminal 160 is also communicatively coupled to the network 150 via the communication link 104. Using communication links 102 and 104 and network 150, management terminal 160 can communicate with voltage regulator controllers 130, 140, and 150. For example, management computer 160 can be used to update parameters and settings of voltage regulator controllers 130, 140, and 150 to manage multi-phase operation of voltage regulator controllers 130, 140, and 150.

一般而言,多相控制系統100經組態以基於複數個分接頭換接器132、142及152之一當前最高分接頭位置及一使用者自定最大偏差值而設定一最大偏差窗之一低邊界值、基於複數個分接頭換接器132、142及152之一當前最低分接頭位置及該使用者自定最大偏差值而設定該最大偏差窗之一高邊界值及由複數個電壓調節器控制器130、140及150基於複數個分接頭換接器132、142及152之分接頭位置而獨立調節複數個電壓調節器134、144及154之電壓。如本文中所描述,該最大偏差窗包括複數個分接頭換接器132、142及152之可接受分接頭位置之一範圍。在一操作模式中,多相控制系統100在電壓調節器控制器130、140及150之間傳送該最大偏差窗,且電壓調節器控制器130、140及150在由該最大偏差窗界定之可容許分接頭位置內分別獨立調節電壓調節器134、144及154之電壓(經由分接頭換接器)。例如,電壓調節器控制器130、140及150之一前導控制器可在該等控制器之間傳送該最大偏差窗。 In general, the multi-phase control system 100 is configured to set one of the maximum deviation windows based on the current highest tap position of one of the plurality of tap changers 132, 142, and 152 and a user-defined maximum deviation value. a low boundary value, setting a high boundary value of the maximum deviation window and adjusting by a plurality of voltages based on a current minimum tap position of the plurality of tap changers 132, 142, and 152 and the user-defined maximum deviation value The controllers 130, 140, and 150 independently adjust the voltages of the plurality of voltage regulators 134, 144, and 154 based on the tap positions of the plurality of tap changers 132, 142, and 152. As described herein, the maximum deviation window includes a range of acceptable tap positions for the plurality of tap changers 132, 142, and 152. In an operational mode, the multi-phase control system 100 communicates the maximum deviation window between the voltage regulator controllers 130, 140, and 150, and the voltage regulator controllers 130, 140, and 150 are defined by the maximum deviation window. The voltages of the voltage regulators 134, 144, and 154 are independently adjusted within the tap position (via the tap changer). For example, one of the voltage regulator controllers 130, 140, and 150 may transmit the maximum deviation window between the controllers.

如下文進一步詳細所描述,最大偏差窗MaxDevWin包括一陣列之高邊界值及低邊界值{低邊界值、高邊界值}。當處於一最大偏差多 相操作模式時,該高邊界值及該低邊界值表示分接頭換接器之分接頭位置之高邊界及低邊界。多相控制系統100可參考使用者自定最大偏差值MaxDevU(其可由一管理者(例如)使用管理終端機160來界定)而設定最大偏差窗之高邊界及低邊界。在開始最大偏差操作模式時,多相控制器系統100亦可參考受管理之電壓調節器之最高當前分接頭位置及最低當前分接頭位置而設定最大偏差窗之高邊界及低邊界,如下文進一步詳細所描述。 As described in further detail below, the maximum deviation window MaxDevWin includes an array of high boundary values and low boundary values {low boundary values, high boundary values}. When at a maximum deviation In the phase mode of operation, the high boundary value and the low boundary value represent the high and low boundaries of the tap position of the tap changer. The multiphase control system 100 can set the high and low boundaries of the maximum deviation window with reference to the user-defined maximum deviation value MaxDevU (which can be defined by a manager (eg, using the management terminal 160). When the maximum deviation mode of operation is initiated, the multi-phase controller system 100 can also set the high and low boundaries of the maximum deviation window with reference to the highest current tap position and the lowest current tap position of the managed voltage regulator, as further described below. Described in detail.

在一態樣中,多相控制系統100經組態以基於系統10之某些初始條件而將最大偏差窗之低邊界值及高邊界值兩者設定為複數個分接頭換接器之最高當前分接頭位置及最低當前分接頭位置之一平均值。多相控制系統100經進一步組態以基於系統10之其他初始條件而將低邊界值及高邊界值兩者設定為複數個分接頭換接器132、142及152之最高當前分接頭位置及最低當前分接頭位置之一平均值。 In one aspect, the multi-phase control system 100 is configured to set both the low boundary value and the high boundary value of the maximum deviation window to the highest current of the plurality of tap changers based on certain initial conditions of the system 10. The average of one of the tap position and the lowest current tap position. The multi-phase control system 100 is further configured to set both the low and high boundary values to the highest current tap position and minimum of the plurality of tap changers 132, 142, and 152 based on other initial conditions of the system 10. The average of one of the current tap positions.

在其他態樣中,多相控制系統100經進一步組態以判定複數個分接頭換接器132、142及152之第一者及第二者之分接頭位置之間之一差異及複數個分接頭換接器132、142及152之第二者及第三者之分接頭位置之間之一差異是否各等於或大於該使用者自定最大偏差值,且當判定該等差異各等於或大於使用者自定最大偏差值,複數個分接頭換接器132、142及152之兩者之位置被設定為低邊界值,且由與複數個分接頭換接器之該兩者相關聯之電壓調節器輸出之線電壓高於一設定電壓帶時,使最大偏差窗之高邊界值及低邊界值之各者遞減。多相控制系統100經進一步組態以判定複數個分接頭換接器132、142及152之第一者及第二者之分接頭位置之間之一差異及複數個分接頭換接器132、142及152之第二者及第三者之分接頭位置之一差異是否各等於或大於使用者自定最大偏差值,且當判定該等差異各等於或大於使用者自定最大偏差值,複數個分接頭換接器之兩者之位置被設定為高邊 界值,且由與複數個分接頭換接器之該兩者相關聯之電壓調節器輸出之線電壓低於該設定電壓帶時,使最大偏差窗之高邊界值及低邊界值之各者遞增。 In other aspects, the multi-phase control system 100 is further configured to determine a difference and a plurality of points between the tap positions of the first and second of the plurality of tap changers 132, 142, and 152. Whether the difference between one of the second and third tap positions of the joint changers 132, 142, and 152 is equal to or greater than the user-defined maximum deviation value, and when it is determined that the differences are equal to or greater than The user-defined maximum deviation value, the position of both of the plurality of tap changers 132, 142, and 152 is set to a low boundary value, and the voltage associated with the two of the plurality of tap changers When the line voltage of the regulator output is higher than a set voltage band, the maximum boundary value and the low boundary value of the maximum deviation window are decremented. The multi-phase control system 100 is further configured to determine a difference between the first and second tap positions of the plurality of tap changers 132, 142, and 152 and a plurality of tap changers 132, Whether one of the difference between the second and third of the 142 and 152 tap positions is equal to or greater than the user-defined maximum deviation value, and when it is determined that the differences are equal to or greater than the user-defined maximum deviation value, the plural The position of the two tap changers is set to the high side a threshold value, and the line voltage of the voltage regulator output associated with the plurality of tap changers is lower than the set voltage band, such that each of the high boundary value and the low boundary value of the maximum deviation window Increment.

轉至圖2,描述用於最大偏差多相操作200之一方法。在步驟202中,多相控制系統100判定是否啟用多相最大偏差模式。參考系統10,可基於系統10之當前狀態、電壓調節器控制器之各者之當前狀態或設定值及接收自(例如)管理終端機160之命令或參數而作出判定。當多相控制系統100判定條件被設定為啟用最大偏差多相最大偏差模式時,程序前進至步驟204。在步驟204中,由多相控制系統100設定最大偏差窗MaxDevWin之低邊界值及高邊界值。在一實施例中,將低值及高值分別設定為-16及16,但其他初始值係在本發明之範疇內。在步驟206中,在複數個電壓調節器控制器130、140及150之間傳送MaxDevWin,且在步驟208中,設定電壓調節器控制器130、140及150之各者以啟動最大偏差多相模式。 Turning to Figure 2, one method for maximum deviation multiphase operation 200 is described. In step 202, the polyphase control system 100 determines if the multiphase maximum deviation mode is enabled. Referring to system 10, a determination can be made based on the current state of system 10, the current state or set value of each of the voltage regulator controllers, and commands or parameters received from, for example, management terminal 160. When the multi-phase control system 100 determines that the condition is set to enable the maximum deviation multi-phase maximum deviation mode, the routine proceeds to step 204. In step 204, the low boundary value and the high boundary value of the maximum deviation window MaxDevWin are set by the multi-phase control system 100. In one embodiment, the low and high values are set to -16 and 16, respectively, but other initial values are within the scope of the present invention. In step 206, MaxDevWin is transmitted between the plurality of voltage regulator controllers 130, 140, and 150, and in step 208, each of the voltage regulator controllers 130, 140, and 150 is set to initiate the maximum deviation polyphase mode. .

在步驟208中進入最大偏差多相模式之後,在步驟210中出現一延遲。可由多相控制系統100設定該延遲以允許出現分接頭換接器132、142及152之任何分接頭變化,如由電壓調節器控制器130、140及150在啟動最大偏差多相模式之後所指示。在實施例中,步驟210中之延遲時間量可根據設計考量而變動。在步驟212中,多相控制系統100將MaxDevWin之低邊界值MaxDevL設定為分接頭換接器132、142及152中之當前最高分接頭位置TPIH減去使用者自定最大偏差值MaxDevU。此外,在步驟214中,多相控制系統100將MaxDevWin之高邊界值MaxDevH設定為分接頭換接器132、142及152中之當前最低分接頭位置TPIL加上使用者自定最大偏差值MaxDevU。 After entering the maximum deviation polyphase mode in step 208, a delay occurs in step 210. This delay can be set by the multi-phase control system 100 to allow any tap changes of the tap changers 132, 142, and 152 to occur, as indicated by the voltage regulator controllers 130, 140, and 150 after initiating the maximum deviation polyphase mode. . In an embodiment, the amount of delay time in step 210 may vary depending on design considerations. In step 212, the polyphase control system 100 sets the low boundary value MaxDevL of MaxDevWin to the current highest tap position TPIH of the tap changers 132, 142, and 152 minus the user-defined maximum deviation value MaxDevU. Further, in step 214, the multi-phase control system 100 sets the high boundary value MaxDevH of MaxDevWin to the current lowest tap position TPIL of the tap changers 132, 142, and 152 plus the user-defined maximum deviation value MaxDevU.

在步驟216中,多相控制系統100判定MaxDevL之值是否大於MaxDevH之值。若在步驟216中判定MaxDevL大於MaxDevH,則程序 前進至步驟218,其中當啟動最大偏差多相模式時,由多相控制系統100將MaxDevL及MaxDevH兩者設定為分接頭換接器132、142及152之最高分接頭位置及最低分接頭位置之一平均值。在步驟220中,多相控制系統100在電壓調節器130、140及150之間發送MaxDevWin且在步驟222中出現程序之一延遲。在步驟222中之該延遲之後,多相控制系統100在步驟224中根據電壓調節器控制器130、140及150之方向而判定分接頭換接器132、142及152之各者是否已安定至由最高分接頭位置及最低分接頭位置之該平均值界定之分接頭。若分接頭換接器尚未安定,則程序返回至步驟220且在電壓調節器控制器130、140及150之間傳送MaxDevWin,且程序在步驟222中延遲。 In step 216, the polyphase control system 100 determines if the value of MaxDevL is greater than the value of MaxDevH. If it is determined in step 216 that MaxDevL is greater than MaxDevH, the program Proceeding to step 218, when the maximum deviation polyphase mode is initiated, both the MaxDevL and MaxDevH are set by the multi-phase control system 100 to the highest tap position and the lowest tap position of the tap changers 132, 142, and 152. An average value. In step 220, the polyphase control system 100 transmits MaxDevWin between the voltage regulators 130, 140, and 150 and one of the programs is delayed in step 222. After the delay in step 222, the multi-phase control system 100 determines in step 224 whether each of the tap changers 132, 142, and 152 has been stabilized to the direction of the voltage regulator controllers 130, 140, and 150. A tap defined by the average of the highest tap position and the lowest tap position. If the tap changer has not been stabilized, the program returns to step 220 and MaxDevWin is transferred between voltage regulator controllers 130, 140 and 150, and the program is delayed in step 222.

另一方面,若在啟動最大偏差多相模式時分接頭換接器132、142及152已各安定至由最高分接頭位置及最低分接頭位置之平均值界定之分接頭,則程序前進至步驟226。在步驟226中,多相控制系統100使MaxDevH遞增1。參考圖3,在步驟226之後,在步驟302中於電壓調節器控制器130、140及150之間傳送MaxDevWin(具有MaxDevH之更新值),且程序在步驟304中延遲。在步驟306中,多相控制系統100判定MaxDevH與MaxDevL之間之差異是否等於MaxDevU。若為否,則程序前進至步驟308,其中多相控制系統100使MaxDevL遞減1,在步驟310中於電壓調節器控制器130、140及150之間傳送MaxDevWin,且程序在步驟312中延遲。在步驟314中,多相控制系統100再次判定MaxDevH與MaxDevL之間之差異是否等於MaxDevU,且若為否,則返回至步驟226以使MaxDevH遞增1。 On the other hand, if the tap changers 132, 142, and 152 are each set to the tap defined by the average of the highest tap position and the lowest tap position when the maximum deviation polyphase mode is activated, the program proceeds to the step. 226. In step 226, multiphase control system 100 increments MaxDevH by one. Referring to FIG. 3, after step 226, MaxDevWin (with the updated value of MaxDevH) is transferred between voltage regulator controllers 130, 140, and 150 in step 302, and the program is delayed in step 304. In step 306, the polyphase control system 100 determines if the difference between MaxDevH and MaxDevL is equal to MaxDevU. If not, the program proceeds to step 308 where the multi-phase control system 100 decrements MaxDevL by 1, and in step 310, MaxDevWin is transferred between the voltage regulator controllers 130, 140 and 150, and the program is delayed in step 312. In step 314, the polyphase control system 100 again determines if the difference between MaxDevH and MaxDevL is equal to MaxDevU, and if not, returns to step 226 to increment MaxDevH by one.

應注意,在步驟218、220、222、224、226、302、304、306、308、310、312及314中,多相控制系統100回應於步驟216中所判定之一「錯誤」條件而首先折疊及接著重新打開由MaxDevWin界定之可用分接頭位置之窗。特定言之,若在步驟216中判定MaxDevL大於 MaxDevH,則多相控制系統100在步驟218中首先折疊可用分接頭位置之窗,在步驟220、222及224中等待電壓調節器控制器130、140及150將分接頭換接器132、142及152之各分接頭位置設定為相同分接頭位置,及接著在步驟226、302、304、306、308、310、312及314中逐漸重新打開可用分接頭位置之窗。 It should be noted that in steps 218, 220, 222, 224, 226, 302, 304, 306, 308, 310, 312, and 314, the polyphase control system 100 first responds to one of the "error" conditions determined in step 216. Fold and then reopen the window of available tap positions defined by MaxDevWin. Specifically, if it is determined in step 216 that MaxDevL is greater than MaxDevH, the multi-phase control system 100 first folds the available tap position window in step 218, and waits for the voltage regulator controllers 130, 140, and 150 to tap the tap changers 132, 142 in steps 220, 222, and 224. The tap positions of 152 are set to the same tap position, and then the windows of the available tap positions are gradually reopened in steps 226, 302, 304, 306, 308, 310, 312, and 314.

若在步驟216中多相控制系統100判定MaxDevL小於MaxDevH,則程序前進至圖4中所繪示之步驟402。在步驟402中,在電壓調節器控制器130、140及150之間傳送MaxDevWin,且程序在步驟404中延遲。在步驟404之延遲之後,多相控制系統100容許由電壓調節器控制器130、140及150獨立調節電壓調節器134、144及154。特定言之,在步驟406中,電壓調節器控制器130、140及150使用分接頭換接器132、142及152來電壓調節電壓調節器134、144及154之各者之線電壓輸出。電壓調節器控制器130、140及150可基於電壓、電流及分接頭位置感測回饋信號138、148及158而電壓調節電壓調節器134、144及154之線電壓。 If the multi-phase control system 100 determines in step 216 that MaxDevL is less than MaxDevH, then the program proceeds to step 402 depicted in FIG. In step 402, MaxDevWin is transferred between voltage regulator controllers 130, 140, and 150, and the program is delayed in step 404. After the delay of step 404, the multi-phase control system 100 allows the voltage regulators 134, 144, and 154 to be independently regulated by the voltage regulator controllers 130, 140, and 150. In particular, in step 406, voltage regulator controllers 130, 140, and 150 use tap changers 132, 142, and 152 to voltage regulate the line voltage output of each of voltage regulators 134, 144, and 154. The voltage regulator controllers 130, 140, and 150 can voltage regulate the line voltages of the voltage regulators 134, 144, and 154 based on the voltage, current, and tap position sense feedback signals 138, 148, and 158.

在步驟408、410及412中,多相控制系統100判定分接頭換接器132、142及152之任何兩者之分接頭位置之間之差異是否等於或大於MaxDevU。若為否,則程序返回至步驟406,其中繼續獨立電壓調節。另一方面,若多相控制系統100在步驟408、410及412中判定分接頭換接器132、142及152之任何兩者之分接頭位置之間之差異等於或大於MaxDevU,則程序前進至步驟414。在步驟414中,多相控制系統100判定分接頭換接器132、142及152之兩者之位置是否被設定為高邊界值MaxDevH及由與複數個分接頭換接器之該兩者相關聯之電壓調節器輸出之線電壓是否低於一設定電壓帶。若多相控制系統100判定步驟414中之條件為真,則程序前進至步驟418,其中使MaxDevH及MaxDevL兩者遞增1。 In steps 408, 410, and 412, the multi-phase control system 100 determines whether the difference between the tap positions of any two of the tap changers 132, 142, and 152 is equal to or greater than MaxDevU. If not, the program returns to step 406 where independent voltage regulation continues. On the other hand, if the multi-phase control system 100 determines in steps 408, 410, and 412 that the difference between the tap positions of any two of the tap changers 132, 142, and 152 is equal to or greater than MaxDevU, the program proceeds to Step 414. In step 414, the polyphase control system 100 determines if the position of both of the tap changers 132, 142, and 152 is set to a high boundary value MaxDevH and is associated with both of the plurality of tap changers. Whether the line voltage of the voltage regulator output is lower than a set voltage band. If the multi-phase control system 100 determines that the condition in step 414 is true, then the program proceeds to step 418 where both MaxDevH and MaxDevL are incremented by one.

替代地,若多相控制系統100判定步驟416中之條件為假,則程序前進至步驟420,其中多相控制系統100判定分接頭換接器132、142及152之兩者之位置是否被設定為低邊界值MaxDevL及由與複數個分接頭換接器之兩者相關聯之電壓調節器輸出之線電壓是否高於設定電壓帶。若多相控制系統100判定步驟416中之條件為真,則程序前進至步驟420,其中使MaxDevH及MaxDevL兩者遞減1。在步驟418或420之後,程序前進至步驟422,其中在電壓調節器控制器130、140及150之間傳送MaxDevWin,且在步驟424中延遲。在步驟424中之延遲之後,程序返回至步驟406,其中繼續獨立電壓調節。 Alternatively, if the multi-phase control system 100 determines that the condition in step 416 is false, the program proceeds to step 420 where the multi-phase control system 100 determines if the positions of the tap changers 132, 142, and 152 are set. Whether the line value of the low-limit value MaxDevL and the voltage regulator output associated with both of the plurality of tap changers is higher than the set voltage band. If the multi-phase control system 100 determines that the condition in step 416 is true, then the program proceeds to step 420 where both MaxDevH and MaxDevL are decremented by one. After either step 418 or 420, the program proceeds to step 422 where MaxDevWin is transferred between voltage regulator controllers 130, 140 and 150 and delayed in step 424. After the delay in step 424, the program returns to step 406 where independent voltage regulation continues.

在另一實施例中,多相控制系統100可經進一步組態以在各種操作模式中操作電壓調節器控制器130、140及150。例如,多相控制系統100可在一類型之增強前導/隨動模式中控制電壓調節器控制器130、140及150,其中隨歷時時間而記錄歷史分接頭位置。即,多相控制系統100可追蹤分接頭換接器132、142及152(例如)在一天之某時段或一周之某天之各自分接頭位置且將此資訊儲存於記憶體120中。當嘗試解決一系統變動或對系統波動進行故障診斷時,多相控制系統100可參考儲存於記憶體120中之歷史分接頭位置資訊以基於(例如)一天或一周之某時段之先前(若干)分接頭位置而設定電壓調節器134、144及154之分接頭。基於此操作,若偵測到中性線之一損失,則可在修復期間或修復之後基於一歷史分接頭位置而將一分接頭換接器設定至一分接頭位置。可每隔例如(但不限於)三十分鐘將歷史分接頭位置資料儲存於記憶體120中。多相控制系統100亦可計算分接頭位置在數小時、數天或數周操作內之一運行平均值。 In another embodiment, the multi-phase control system 100 can be further configured to operate the voltage regulator controllers 130, 140, and 150 in various modes of operation. For example, multi-phase control system 100 can control voltage regulator controllers 130, 140, and 150 in a type of enhanced pilot/slave mode in which historical tap positions are recorded over time. That is, the multi-phase control system 100 can track the tap changers 132, 142, and 152, for example, at respective tap positions for a certain time of day or day of the week and store this information in the memory 120. When attempting to resolve a system change or troubleshooting a system fluctuation, the multi-phase control system 100 may refer to historical tap position information stored in the memory 120 based on, for example, a previous (several) period of a day or week. The taps of the voltage regulators 134, 144, and 154 are set at the tap position. Based on this operation, if one of the neutral lines is detected to be lost, a tap changer can be set to a tap position based on a historical tap position during or after repair. The historical tap position data may be stored in the memory 120 every, for example, but not limited to, thirty minutes. The multi-phase control system 100 can also calculate a running average of one of the tap positions over hours, days, or weeks of operation.

在另一實施例中,多相控制系統100可在一操作模式中操作以在一可允許偏差內平均化電壓調節器134、144及154之線電壓。若任何調節器之間之分接頭位置之一差異係在一界定之可允許偏差內,則多 相控制系統100可在不超過該可允許偏差之情況下調節至一平均系統電壓。多相控制系統100可經進一步組態以在由一計時器維持之一使用者自定時段期間在本文所描述之任何操作模式中操作。 In another embodiment, the multi-phase control system 100 can operate in an operational mode to average the line voltages of the voltage regulators 134, 144, and 154 within an allowable deviation. If one of the tap positions between any regulators is within a defined allowable deviation, then more The phase control system 100 can adjust to an average system voltage without exceeding the allowable deviation. The multi-phase control system 100 can be further configured to operate in any of the modes of operation described herein during a user-defined period maintained by a timer.

在其他態樣中,多相控制系統100可在一定時操作模式屆滿之後容許以下額外操作模式之一者:分接至中性模式、聯動(ganged)操作模式、調節至歷史分接頭位置模式。可藉由多相控制系統100在該定時操作模式屆滿之後將分接頭換接器132、142及152之各者導指至分接至中性而界定分接至中性模式。可藉由多相控制系統100在該定時操作模式屆滿之後基於一前導調節器之一平均電壓計算將全部電壓調節器134、144及154鎖定於聯動模式中(鎖步操作)而界定聯動操作模式。可藉由多相控制系統100在該定時操作模式屆滿之後調節至歷史分接頭位置資料(其先前儲存於記憶體120中,如上文所描述)而界定調節至歷史分接頭位置模式。 In other aspects, the multi-phase control system 100 can allow one of the following additional modes of operation after expiration of a timed mode of operation: tap to neutral mode, ganged mode of operation, and adjust to historical tap position mode. The tap-to-neutral mode can be defined by the multi-phase control system 100 by directing each of the tap changers 132, 142, and 152 to tap-to-neutral after the timing mode of operation expires. The coordinated operation mode can be defined by the multi-phase control system 100 locking the entire voltage regulators 134, 144, and 154 in the interlock mode (lock-step operation) based on an average voltage calculation of one of the pilot regulators after the timing operation mode expires. . The adjustment to the historical tap position mode can be defined by the multi-phase control system 100 adjusting to historical tap position data (which was previously stored in the memory 120, as described above) after the timed operational mode expires.

可由電壓調節器控制器130、140及150之一者或管理終端機160之一控制面板處之使用者可選選項實現本文中所描述之模式之任何者之停用。若停用一模式,則電壓調節器控制器130、140及150可恢復正常調節或恢復基於另一預定模式之調節。 Deactivation of any of the modes described herein may be accomplished by a user selectable option at one of the voltage regulator controllers 130, 140, and 150 or one of the management terminals 160. If a mode is deactivated, the voltage regulator controllers 130, 140, and 150 can resume normal regulation or resume adjustment based on another predetermined mode.

轉至圖5,描述用於最大偏差多相操作500之一方法之另一實施例。在步驟502中,多相控制器100判定是否啟用多相最大偏差模式。參考系統10,可基於系統10之當前狀態、電壓調節器控制器130、140及150之各者之當前狀態或設定值及接收自(例如)管理終端機160之命令或參數而作出判定。當多相控制器100判定條件被設定為啟用最大偏差多相最大偏差模式時,程序前進至步驟504。在步驟504中,將最大偏差窗MaxDevWin之低邊界值及高邊界值分別設定為值TPIL及TPIH。即,在步驟504中,多相控制系統100將MaxDevWin之低邊界值MaxDevL設定為分接頭換接器132、142及152中之當前最低分接頭 位置TPIL且將MaxDevWin之高邊界值MaxDevH設定為分接頭換接器132、142及152中之當前最高分接頭位置TPIH。在步驟506中,在複數個電壓調節器控制器130、140及150之間傳送MaxDevWin,且在步驟508中,設定電壓調節器控制器130、140及150之各者以啟動最大偏差多相模式。 Turning to FIG. 5, another embodiment of a method for maximum deviation multiphase operation 500 is described. In step 502, the multiphase controller 100 determines whether the multiphase maximum deviation mode is enabled. The reference system 10 can make a determination based on the current state of the system 10, the current state or set value of each of the voltage regulator controllers 130, 140, and 150 and the commands or parameters received from, for example, the management terminal 160. When the multi-phase controller 100 determines that the condition is set to enable the maximum deviation multi-phase maximum deviation mode, the routine proceeds to step 504. In step 504, the low boundary value and the high boundary value of the maximum deviation window MaxDevWin are set to the values TPIL and TPIH, respectively. That is, in step 504, the polyphase control system 100 sets the low boundary value MaxDevL of MaxDevWin to the current lowest tap of the tap changers 132, 142, and 152. Position TPIL and set the high boundary value MaxDevH of MaxDevWin to the current highest tap position TPIH in tap changers 132, 142, and 152. In step 506, MaxDevWin is transmitted between the plurality of voltage regulator controllers 130, 140, and 150, and in step 508, each of the voltage regulator controllers 130, 140, and 150 is set to initiate the maximum deviation polyphase mode. .

在步驟508中進入最大偏差多相模式之後,在步驟509中出現一延遲。如由電壓調節器控制器130、140及150在啟動最大偏差多相模式之後所指示,可由多相控制系統100設定該延遲以允許出現分接頭換接器132、142及152之任何分接頭變化。在實施例中,步驟509中之延遲時間量可根據設計考量而變動。在步驟510中,多相控制系統100計算MaxDevM之值(其被界定為TPIH-TPIL)。具體言之,MaxDevM之值等於分接頭換接器132、142及152中之當前最高分接頭位置TPIH減去分接頭換接器132、142及152中之當前最低分接頭位置TPIL。 After entering the maximum deviation polyphase mode in step 508, a delay occurs in step 509. The delay may be set by the multi-phase control system 100 to allow for any tap change of the tap changers 132, 142, and 152 as indicated by the voltage regulator controllers 130, 140, and 150 after the maximum deviation polyphase mode is initiated. . In an embodiment, the amount of delay time in step 509 can vary depending on design considerations. In step 510, multiphase control system 100 calculates the value of MaxDevM (which is defined as TPIH-TPIL). In particular, the value of MaxDevM is equal to the current highest tap position TPIH in tap changers 132, 142, and 152 minus the current lowest tap position TPIL in tap changers 132, 142, and 152.

在步驟512中,多相控制系統100判定MaxDevM之值是否大於使用者自定最大偏差值MaxDevU。若在步驟512中判定MaxDevM大於MaxDevU,則程序前進至步驟514,其中多相控制系統100將MaxDevWin之高邊界值MaxDevH設定為TPIH-1。在步驟514之後,程序前進至步驟516,其中在複數個電壓調節器控制器130、140及150之間傳送MaxDevWin。在步驟518中,多相控制系統100再次計算MaxDevM之值,且在步驟520中,多相控制系統100再次判定MaxDevM之值是否大於使用者自定最大偏差值MaxDevU。若在步驟520中MaxDevM之值仍大於使用者自定最大偏差值MaxDevU,則程序前進至步驟522,其中多相控制系統100將MaxDevWin之低邊界值MaxDevL設定為TPIL+1。 In step 512, the polyphase control system 100 determines if the value of MaxDevM is greater than the user-defined maximum deviation value MaxDevU. If it is determined in step 512 that MaxDevM is greater than MaxDevU, the program proceeds to step 514, in which the multi-phase control system 100 sets the high boundary value MaxDevH of MaxDevWin to TPIH-1. After step 514, the program proceeds to step 516 where MaxDevWin is transferred between the plurality of voltage regulator controllers 130, 140 and 150. In step 518, the multi-phase control system 100 again calculates the value of MaxDevM, and in step 520, the multi-phase control system 100 again determines if the value of MaxDevM is greater than the user-defined maximum deviation value MaxDevU. If the value of MaxDevM is still greater than the user-defined maximum deviation value MaxDevU in step 520, the program proceeds to step 522, in which the multi-phase control system 100 sets the low boundary value MaxDevL of MaxDevWin to TPIL+1.

在步驟522之後,程序前進至步驟524,其中在複數個電壓調節器控制器130、140及150之間傳送MaxDevWin。在步驟526中,多相控 制系統100再次計算MaxDevM之值,且在步驟528中,多相控制系統100再次判定MaxDevM之值是否大於使用者自定最大偏差值MaxDevU。若在步驟528中MaxDevM之值仍大於使用者自定最大偏差值MaxDevU,則程序返回至步驟514,其中多相控制系統100使MaxDevWin之當前高邊界值MaxDevH減1。 After step 522, the program proceeds to step 524 where MaxDevWin is transferred between the plurality of voltage regulator controllers 130, 140 and 150. In step 526, multiphase control The system 100 again calculates the value of MaxDevM, and in step 528, the polyphase control system 100 again determines if the value of MaxDevM is greater than the user-defined maximum deviation value MaxDevU. If the value of MaxDevM is still greater than the user-defined maximum deviation value MaxDevU in step 528, the program returns to step 514 where the polyphase control system 100 decrements the current high boundary value MaxDevH of MaxDevWin by one.

應注意,步驟510、512、514、516、518、520、522、524、526及528尋求緩慢地使分接頭換接器132、142及152中之當前最高分接頭位置TPIH與當前最低分接頭位置TPIL之間之差異在由使用者自定最大偏差值MaxDevU界定之範圍內。尤其當首先啟動最大偏差多相模式時,MaxDevM之值可大於MaxDevU之值。在方法500中,在步驟512、520及528中(及稍後在步驟536中)識別此條件。亦應注意,在步驟508中啟動最大偏差多相模式之後,各電壓調節器控制器130、140及150控制其各自分接頭換接器132、142及152之分接頭位置且使該分接頭位置維持在由最大偏差窗MaxDevWin界定之位置內。最初,因為在步驟504中將最大偏差窗MaxDevWin設定為分接頭換接器132、142及152中之當前最高分接頭位置TPIH及當前最低分接頭位置TPIL,所以電壓調節器控制器130、140及150無需改變分接頭位置。然而,由於在步驟514及522中遞增地約束最大偏差窗MaxDevWin之上邊界MaxDevH及下邊界MaxDevL,所以電壓調節器控制器130、140及150可視情況改變分接頭位置以使分接頭換接器132、142及152之分接頭位置在由MaxDevWin界定之可容許分接頭位置之範圍內。接著,分接頭換接器132、142及152中之當前最高分接頭位置TPIH與當前最低分接頭位置TPIL之間之差異MaxDevM將減小。依此方式,MaxDevM之值將最終收斂為等於或小於使用者自定最大偏差值MaxDevU之值。 It should be noted that steps 510, 512, 514, 516, 518, 520, 522, 524, 526, and 528 seek to slowly bring the current highest tap position TPIH of the tap changers 132, 142, and 152 to the current lowest tap. The difference between the positions TPIL is within the range defined by the user-defined maximum deviation value MaxDevU. Especially when the maximum deviation polyphase mode is first started, the value of MaxDevM can be greater than the value of MaxDevU. In method 500, this condition is identified in steps 512, 520, and 528 (and later in step 536). It should also be noted that after the maximum deviation polyphase mode is initiated in step 508, each voltage regulator controller 130, 140, and 150 controls the tap position of its respective tap changer 132, 142, and 152 and causes the tap position It is maintained within the position defined by the maximum deviation window MaxDevWin. Initially, since the maximum deviation window MaxDevWin is set to the current highest tap position TPIH and the current lowest tap position TPIL in the tap changers 132, 142, and 152 in step 504, the voltage regulator controllers 130, 140 and 150 does not need to change the tap position. However, since the maximum deviation window MaxDevWin upper boundary MaxDevH and the lower boundary MaxDevL are incrementally constrained in steps 514 and 522, the voltage regulator controllers 130, 140, and 150 may change the tap position as appropriate to cause the tap changer 132. The tap positions of 142 and 152 are within the range of allowable tap positions defined by MaxDevWin. Next, the difference MaxDevM between the current highest tap position TPIH and the current lowest tap position TPIL in the tap changers 132, 142, and 152 will decrease. In this way, the value of MaxDevM will eventually converge to a value equal to or less than the user-defined maximum deviation value MaxDevU.

若在步驟512、520或528中判定MaxDevM之值等於或小於使用者自定最大偏差值MaxDevU,則程序前進至步驟530,其中在步驟530 中出現一穩定延遲。步驟530中之該延遲可組態為與步驟509中之延遲相同或不同。在步驟532中,多相控制系統100讀取分接頭換接器132、142及152之各者之當前分接頭位置,且在步驟534中,計算、擷取或判定MaxDevM、MaxDevH及MaxDevL之值。在步驟536中,多相控制系統100判定MaxDevM之值是否大於使用者自定最大偏差值MaxDevU。若在步驟536中判定MaxDevM之值大於使用者自定最大偏差值MaxDevU,則程序前進至步驟514,如圖所繪示。替代地,若在步驟536中判定MaxDevM之值等於或小於使用者自定最大偏差值MaxDevU,則程序前進至步驟538,其中在複數個電壓調節器控制器130、140及150之間傳送MaxDevWin。一般而言,可認為步驟538包括一穩定狀態,其中由電壓調節器控制器130、140及150繼續獨立電壓調節。 If it is determined in step 512, 520 or 528 that the value of MaxDevM is equal to or less than the user-defined maximum deviation value MaxDevU, the program proceeds to step 530, where at step 530 A stable delay occurs. The delay in step 530 can be configured to be the same or different than the delay in step 509. In step 532, the polyphase control system 100 reads the current tap position of each of the tap changers 132, 142, and 152, and in step 534, calculates, retrieves, or determines the values of MaxDevM, MaxDevH, and MaxDevL. . In step 536, the multi-phase control system 100 determines if the value of MaxDevM is greater than the user-defined maximum deviation value MaxDevU. If it is determined in step 536 that the value of MaxDevM is greater than the user-defined maximum deviation value MaxDevU, then the program proceeds to step 514 as illustrated. Alternatively, if it is determined in step 536 that the value of MaxDevM is equal to or less than the user-defined maximum deviation value MaxDevU, the program proceeds to step 538 where MaxDevWin is transmitted between the plurality of voltage regulator controllers 130, 140, and 150. In general, step 538 can be considered to include a steady state in which independent voltage regulation is continued by voltage regulator controllers 130, 140, and 150.

在步驟540、542及544中,多相控制系統100判定分接頭換接器132、142及152之任何兩者之分接頭位置之間之差異是否等於或大於MaxDevU。若多相控制系統100在步驟540、542及544之任何者中判定分接頭換接器132、142及152之任何兩者之分接頭位置之間之差異等於或大於MaxDevU,則程序前進至步驟546。在步驟546中,多相控制系統100設定MaxDevF旗標,其指示分接頭換接器132、142及152之分接頭位置被設定於由使用者自定最大偏差值MaxDevU界定之限制內。在步驟546中,多相控制系統100亦開始一計時器ModeSelectTimer。若計時器ModeSelectTimer屆滿或溢出,則由方法500界定之程序將退出至另一預定常式,且計時器ModeSelectTimer一般在設定MaxDevF旗標時運行。計時器ModeSelectTimer可正計時或倒計時且可經設定以在一預判定且可組態之時間量內運行,直至(例如)指向方法500之一中斷。依此方式,若分接頭換接器132、142及152之分接頭位置在一延長預判定且可組態之時段內被設定於由使用 者自定最大偏差值MaxDevU界定之限制內,則計時器ModeSelectTimer將導致由方法500界定之程序中斷或結束。 In steps 540, 542, and 544, the multi-phase control system 100 determines whether the difference between the tap positions of any two of the tap changers 132, 142, and 152 is equal to or greater than MaxDevU. If the multiphase control system 100 determines in any of steps 540, 542, and 544 that the difference between the tap positions of any two of the tap changers 132, 142, and 152 is equal to or greater than MaxDevU, the program proceeds to the step 546. In step 546, the multi-phase control system 100 sets a MaxDevF flag indicating that the tap positions of the tap changers 132, 142, and 152 are set within limits defined by the user-defined maximum deviation value MaxDevU. In step 546, the polyphase control system 100 also begins a timer ModeSelectTimer. If the timer ModeSelectTimer expires or overflows, the program defined by method 500 will exit to another predetermined routine, and the timer ModeSelectTimer will typically run when the MaxDevF flag is set. The timer ModeSelectTimer can be timed or counted and can be set to run for a predetermined and configurable amount of time until, for example, one of the methods 500 is interrupted. In this manner, if the tap positions of the tap changers 132, 142, and 152 are set to be used during an extended pre-determined and configurable period of time Within the limits defined by the maximum deviation value MaxDevU, the timer ModeSelectTimer will cause the program defined by method 500 to be interrupted or terminated.

若多相控制系統100在步驟540、542及544中判定分接頭換接器132、142及152之任何兩者之分接頭位置之間之差異不等於或大於MaxDevU,則程序前進至步驟558。在步驟558中,多相控制系統100清除MaxDevF旗標且停止或重設計時器ModeSelectTimer,且程序前進至步驟530。因此,若多相控制系統100在步驟540、542及544中判定分接頭換接器132、142及152之任何兩者之分接頭位置之間之差異不等於或大於MaxDevU,則一般由電壓調節器控制器130、140及150繼續獨立電壓調節。 If the multiphase control system 100 determines in steps 540, 542, and 544 that the difference between the tap positions of any two of the tap changers 132, 142, and 152 is not equal to or greater than MaxDevU, then the program proceeds to step 558. In step 558, the polyphase control system 100 clears the MaxDevF flag and stops or resets the timer ModeSelectTimer, and the program proceeds to step 530. Therefore, if the multiphase control system 100 determines in steps 540, 542, and 544 that the difference between the tap positions of any two of the tap changers 132, 142, and 152 is not equal to or greater than MaxDevU, then the voltage is generally regulated. Controllers 130, 140 and 150 continue independent voltage regulation.

在步驟548中,多相控制系統100判定分接頭換接器132、142及152之兩者之位置是否被設定為高邊界值MaxDevH及由與複數個分接頭換接器之該兩者相關聯之電壓調節器輸出之線電壓是否低於一設定電壓帶。若多相控制系統100判定步驟548中之條件為真,則程序前進至步驟552,其中使MaxDevH及MaxDevL兩者遞增1。替代地,若多相控制系統100判定步驟548中之條件為假,則程序前進至步驟550,其中多相控制系統100判定分接頭換接器132、142及152之兩者之位置是否被設定為低邊界值MaxDevL及由與複數個分接頭換接器之該兩者相關聯之電壓調節器輸出之線電壓是否高於該設定電壓帶。若多相控制系統100判定步驟550中之條件為假,則程序返回至步驟530。替代地,若多相控制系統100判定步驟550中之條件為真,則程序前進至步驟554,其中使MaxDevH及MaxDevL兩者遞減1。在步驟552或554之後,程序前進至步驟556,其中在電壓調節器控制器130、140及150之間傳送MaxDevWin且程序前進至步驟530以由電壓調節器控制器130、140及150繼續獨立電壓調節。 In step 548, the multi-phase control system 100 determines whether the position of both of the tap changers 132, 142, and 152 is set to a high boundary value MaxDevH and is associated with both of the plurality of tap changers. Whether the line voltage of the voltage regulator output is lower than a set voltage band. If the multi-phase control system 100 determines that the condition in step 548 is true, then the program proceeds to step 552 where both MaxDevH and MaxDevL are incremented by one. Alternatively, if the multi-phase control system 100 determines that the condition in step 548 is false, the program proceeds to step 550 where the multi-phase control system 100 determines if the positions of the tap changers 132, 142, and 152 are set. Whether the low boundary value MaxDevL and the line voltage output by the voltage regulator associated with the plurality of tap changers are higher than the set voltage band. If the multi-phase control system 100 determines that the condition in step 550 is false, the program returns to step 530. Alternatively, if the multi-phase control system 100 determines that the condition in step 550 is true, then the program proceeds to step 554 where both MaxDevH and MaxDevL are decremented by one. After either step 552 or 554, the program proceeds to step 556 where MaxDevWin is transferred between voltage regulator controllers 130, 140 and 150 and the program proceeds to step 530 to continue the independent voltage by voltage regulator controllers 130, 140 and 150. Adjustment.

轉至圖6,描述用於最佳化電力因數校正之一系統60。系統60包 括一前導電壓調節器控制器610、一隨動電壓調節器控制器620、一第一電力系統之相位A之一電壓調節器630、一第二電力系統之相位A之一電壓調節器640及一負載650。圖6繪示兩個單獨多相電力輸送系統之共同相位「A」之間之一並聯連接。在圖6中,來自兩個不同電力系統之共同相位之線輸出並聯耦合或連接以驅動負載650。在此組態中,自第一電力系統及第二電力系統兩者之相位A給負載650供應電力,其在負載650需要大量電力時係必需的。電壓調節器630及640類似於參考圖1而描述之電壓調節器。各電壓調節器630及640調節一各自多相電力系統之相位A之一線電壓。 Turning to Figure 6, a system 60 for optimizing power factor correction is described. System 60 packs a pre-voltage regulator controller 610, a follow-up voltage regulator controller 620, a voltage regulator 630 of phase A of a first power system, a voltage regulator 640 of phase A of a second power system, and A load of 650. Figure 6 illustrates one of the parallel connections between the common phases "A" of two separate multiphase power delivery systems. In Figure 6, the line outputs from the common phases of two different power systems are coupled or connected in parallel to drive the load 650. In this configuration, the phase A from both the first power system and the second power system supplies power to the load 650, which is necessary when the load 650 requires a large amount of power. Voltage regulators 630 and 640 are similar to the voltage regulators described with reference to FIG. Each voltage regulator 630 and 640 adjusts the phase A voltage of a phase of a respective multiphase power system.

前導電壓調節器控制器610及隨動電壓調節器控制器620經組態以分別使用第一電壓調節器630及第二電壓調節器640來調節第一電力系統及第二電力系統之相位A之線輸出電壓。基於電壓及/或電流感測回饋信號,前導電壓調節器控制器610及隨動電壓調節器控制器620可藉由視情況改變第一電壓調節器630及第二電壓調節器640之分接頭換接器之分接頭而調節輸出電壓。在圖6所繪示之組態中,前導電壓調節器控制器610與隨動電壓調節器控制器620通信地耦合且前導電壓調節器控制器610指導隨動電壓調節器控制器620。例如,可用一電壓程式化前導電壓調節器控制器610以針對負載650而調節且相應地協調隨動電壓調節器控制器620之電壓控制。 The lead voltage regulator controller 610 and the follower voltage regulator controller 620 are configured to adjust the phase A of the first power system and the second power system using the first voltage regulator 630 and the second voltage regulator 640, respectively Line output voltage. Based on the voltage and/or current sensing feedback signal, the lead voltage regulator controller 610 and the follower voltage regulator controller 620 can change the tap change of the first voltage regulator 630 and the second voltage regulator 640 as appropriate. Adjust the output voltage by tapping the connector. In the configuration depicted in FIG. 6, the preamble voltage regulator controller 610 is communicatively coupled to the follower voltage regulator controller 620 and the lead voltage regulator controller 610 directs the follower voltage regulator controller 620. For example, the pilot voltage regulator controller 610 can be programmed with a voltage to regulate for the load 650 and coordinate the voltage control of the slave voltage regulator controller 620 accordingly.

因為來自電壓調節器630及640之線輸出耦合在一起以如圖6中所繪示般驅動負載650,所以若該等電壓調節器之間存在一失衡,則循環電流可在電壓調節器630與640之間流動。該失衡之存在可歸因於各自電壓調節器630及640之性質差異,諸如阻抗失配。可由電壓調節器控制器610及620藉由量測由電壓調節器630及640之各者輸送之電力之電力因數差異而至少部分識別此失衡。因此,前導電壓調節器控制器610及隨動電壓調節器控制器620經組態以使用由電壓調節器630及640 提供之電壓及電流感測信號來量測由電壓調節器630及640之各者輸送之電力之電力因數。如此項技術中所瞭解,電力因數被界定為所輸送之實電力與所輸送之複數電力之絕對值之間之比率。理想地,由電壓調節器630及640輸送之電力之電力因數將為1。 Because the line outputs from voltage regulators 630 and 640 are coupled together to drive load 650 as depicted in FIG. 6, if there is an imbalance between the voltage regulators, the circulating current can be at voltage regulator 630. Flowing between 640. The existence of this imbalance can be attributed to differences in properties of the respective voltage regulators 630 and 640, such as impedance mismatch. The imbalance can be at least partially identified by voltage regulator controllers 610 and 620 by measuring the difference in power factor of the power delivered by each of voltage regulators 630 and 640. Thus, the lead voltage regulator controller 610 and the follower voltage regulator controller 620 are configured to use the voltage regulators 630 and 640. A voltage and current sense signal is provided to measure the power factor of the power delivered by each of voltage regulators 630 and 640. As understood in the art, the power factor is defined as the ratio between the actual power delivered and the absolute value of the transmitted complex power. Ideally, the power factor of the power delivered by voltage regulators 630 and 640 will be one.

當第一電壓調節器630之電力因數不同於第二電壓調節器640之電力因數時,循環電流將在該兩個調節器之間流動,其導致能量損失且或許導致系統損壞。校正電力因數之差異之一方式為改變電壓調節器控制器630及640之分接頭換接器之分接頭位置。 When the power factor of the first voltage regulator 630 is different from the power factor of the second voltage regulator 640, a circulating current will flow between the two regulators, which results in energy loss and may cause system damage. One way to correct the difference in power factor is to change the tap position of the tap changer of voltage regulator controllers 630 and 640.

在此內文中,參考圖7而描述最佳化電力因數校正之一方法700。應在開始時注意,可由前導電壓調節器控制器610、隨動電壓調節器控制器620或前導電壓調節器控制器610及隨動電壓調節器控制器620之一組合執行方法700之步驟。在步驟710中,比較由第一電壓調節器630及第二電壓調節器640輸出之電力之間之量測電力因數之一差異與一使用者自定最大差異。例如,若由第一電壓調節器630輸出之電力之電力因數被量測為0.95,由第二電壓調節器640輸出之電力之電力因數被量測為0.8,且使用者自定最大差異為0.1,則步驟710中之條件為真且程序前進至步驟720。 In this context, one method 700 of optimizing power factor correction is described with reference to FIG. It should be noted at the outset that the steps of method 700 may be performed in combination by one of lead voltage regulator controller 610, follower voltage regulator controller 620 or lead voltage regulator controller 610 and follower voltage regulator controller 620. In step 710, one of the measured power factor differences between the power output by the first voltage regulator 630 and the second voltage regulator 640 is compared to a user-defined maximum difference. For example, if the power factor of the power output by the first voltage regulator 630 is measured to be 0.95, the power factor of the power output by the second voltage regulator 640 is measured as 0.8, and the user-defined maximum difference is 0.1. The condition in step 710 is true and the program proceeds to step 720.

在步驟720中,計算由各相位輸出之線電壓之一平均值且比較該平均值與針對調節而設定之一使用者自定電壓。若該平均電壓等於或大於該調節設定電壓,則程序前進至步驟722,其中將由第一電壓調節器630及第二電壓調節器640輸出之電力之間之量測電力因數之差異儲存於記憶體中(即,作為(例如)△1)。在步驟724中,隨動電壓調節器控制器620命令第二電壓調節器640至一較低分接頭位置。在步驟726中,比較電力因數之差異與儲存於記憶體中之先前值以判定其是否低於先前值。換言之,在降低第二電壓調節器640之分接頭位置之後,再次量測由第一電壓調節器630及第二電壓調節器640輸出之電力之間 之電力因數之差異且比較該差異與在降低第二電壓調節器640之分接頭位置之前所量測之電力因數之差異。若該差異更低,則程序返回至步驟710以判定電力因數之新差異是否小於使用者自定最大值。 In step 720, an average of one of the line voltages output by each phase is calculated and compared to the average value and one of the user-defined voltages is set for the adjustment. If the average voltage is equal to or greater than the adjustment set voltage, the program proceeds to step 722, where the difference between the measured power factors between the powers output by the first voltage regulator 630 and the second voltage regulator 640 is stored in the memory. Medium (ie, as (for example) Δ1). In step 724, the follower voltage regulator controller 620 commands the second voltage regulator 640 to a lower tap position. In step 726, the difference in power factor is compared to the previous value stored in the memory to determine if it is lower than the previous value. In other words, after the tap position of the second voltage regulator 640 is lowered, the power output by the first voltage regulator 630 and the second voltage regulator 640 is measured again. The difference in power factor is compared and the difference is compared to the power factor measured before the tap position of the second voltage regulator 640 is lowered. If the difference is lower, the program returns to step 710 to determine if the new difference in power factor is less than the user-defined maximum.

替代地,在步驟720中,若平均電壓不等於或大於(即,小於)調節設定電壓,則程序前進至步驟723,其中將由第一電壓調節器630及第二電壓調節器640輸出之電力之間之量測電力因數之差異儲存於記憶體中(即,作為(例如)△1)。在步驟725中,前導電壓調節器控制器610命令第一電壓調節器630至一較高分接頭位置。應注意,相較於步驟724,在步驟725中命令第一電壓調節器630至一較高分接頭位置係可接受的,此係因為未在步驟720中發現平均電壓等於或大於調節設定電壓。在步驟727中,比較電力因數之差異與儲存於記憶體中之先前值以判定其是否低於先前值。若該差異更低,則程序返回至步驟710以判定電力因數之新差異是否小於使用者自定最大值。 Alternatively, in step 720, if the average voltage is not equal to or greater than (ie, less than) the set voltage, the program proceeds to step 723 where the power output by the first voltage regulator 630 and the second voltage regulator 640 is The difference between the measured power factors is stored in the memory (ie, as, for example, Δ1). In step 725, the lead voltage regulator controller 610 commands the first voltage regulator 630 to a higher tap position. It should be noted that the first voltage regulator 630 to a higher tap position is acceptable in step 725 as compared to step 724 because the average voltage is not found to be equal to or greater than the regulated set voltage in step 720. In step 727, the difference in power factor is compared to the previous value stored in the memory to determine if it is lower than the previous value. If the difference is lower, the program returns to step 710 to determine if the new difference in power factor is less than the user-defined maximum.

返回至步驟726,若比較電力因數之差異與先前值且判定電力因數之差異高於先前值,則程序前進至步驟728,其中隨動電壓調節器控制器620命令第二電壓調節器640提高分接頭位置。應注意,因為步驟726中未判定步驟724中之分接頭降低命令之後之電力因數之差異小於步驟722中所儲存之差異,所以由步驟728中之分接頭提高命令復原步驟724中之分接頭降低命令以使系統有效返回至其初始狀態。接著,程序前進至步驟740,其中執行一對應程序之步驟。 Returning to step 726, if the difference in power factor is compared to the previous value and the difference in power factor is determined to be higher than the previous value, the process proceeds to step 728, in which the slave voltage regulator controller 620 commands the second voltage regulator 640 to increase the score. Connector location. It should be noted that because the difference in power factor after the tap reduction command in step 724 is not determined in step 726 is less than the difference stored in step 722, the tap reduction in the tap upgrade command recovery step 724 in step 728 is reduced. Command to return the system to its initial state. Next, the program proceeds to step 740 where a step of a corresponding program is executed.

類似地,返回至步驟727,若比較電力因數之差異與先前值且判定電力因數之差異高於先前值,則程序前進至步驟729,其中前導電壓調節器控制器610命令第一電壓調節器630降低分接頭位置。應注意,因為步驟727中未判定步驟725中之分接頭提高命令之後之電力因數之差異小於步驟723中所儲存之差異,所以由步驟729中之分接頭降低命令復原步驟725中之分接頭提高命令以使系統有效返回至其初始 狀態。接著,程序前進至步驟740,其中執行一對應程序之步驟。 Similarly, returning to step 727, if the difference in power factor is compared to the previous value and the difference in power factor is determined to be higher than the previous value, the program proceeds to step 729, where the lead voltage regulator controller 610 commands the first voltage regulator 630. Reduce the tap position. It should be noted that since the difference in power factor after the tap increase command in step 725 is not determined in step 727 is less than the difference stored in step 723, the tap improvement in the tap down command recovery step 725 in step 729 is increased. Command to return the system to its original status. Next, the program proceeds to step 740 where a step of a corresponding program is executed.

步驟740及742至749之程序分別類似於步驟720及722至729,只是:在步驟744中,前導電壓調節器控制器610命令第一電壓調節器控制器630在步驟744中提高分接頭位置,而非隨動電壓控制器調節器控制器620命令第二電壓調節器控制器640提高分接頭位置(如同步驟724)。因此,步驟740及742至749表示相較於步驟720及722至729而減小電力因數差異之一相反方法。 The procedures of steps 740 and 742 through 749 are similar to steps 720 and 722 through 729, respectively, except that in step 744, the pilot voltage regulator controller 610 commands the first voltage regulator controller 630 to increase the tap position in step 744, The non-slave voltage controller regulator controller 620 commands the second voltage regulator controller 640 to increase the tap position (as in step 724). Thus, steps 740 and 742 through 749 represent one of the opposite methods of reducing the power factor difference compared to steps 720 and 722 through 729.

在方法700之替代實施例中,程序可在步驟710中之決定之後直接前進至步驟740而非720,且若步驟740及742至749無法減小電力因數之差異,則程序僅返回至步驟720。在另一實施例中,可儲存步驟720及722至729之電力因數差異成功減小之一記錄及步驟720及722至729之電力因數差異成功減小之一記錄。在此情況中,在步驟710之後,程序可基於參考所儲存之記錄而判定之電力因數差異成功減小之一早先歷史而前進至步驟720或740。 In an alternate embodiment of method 700, the program may proceed directly to step 740 instead of 720 after the decision in step 710, and if steps 740 and 742 through 749 fail to reduce the difference in power factor, the program only returns to step 720. . In another embodiment, one of the records for successfully reducing the power factor difference of steps 720 and 722 through 729 and one of the successful reductions of the power factor difference for steps 720 and 722 to 729 can be stored. In this case, after step 710, the program may proceed to step 720 or 740 based on a successful success of the power factor difference determined with reference to the stored record.

再次參考圖1,在某些實例性實施例中,多相控制系統100能夠監測及控制藉由獨立控制分接頭換接器132、142及152之各者而調節之三個相位之間之電壓差量及相位角。如上文所論述,感測信號138、148及158將來自各自電壓調節器134、144及154之回饋提供至調節器控制器130、140及150。在某些實例性實施例中,感測信號138、148及158各包含與各自相位之波形相關之資料。該三個相位之波形可彼此比較以計算該三個相位之各者之間之一電壓差量及一相位角。因此,可獨立控制三個各自分接頭換接器132、142及152之一或多者以調整及校正及/或改良電壓差量及相位角平衡。 Referring again to FIG. 1, in certain exemplary embodiments, multiphase control system 100 is capable of monitoring and controlling the voltage between three phases that are adjusted by independently controlling each of tap changers 132, 142, and 152. Difference and phase angle. As discussed above, sense signals 138, 148, and 158 provide feedback from respective voltage regulators 134, 144, and 154 to regulator controllers 130, 140, and 150. In some exemplary embodiments, sense signals 138, 148, and 158 each contain data related to the waveform of the respective phase. The three phase waveforms can be compared to each other to calculate a voltage difference and a phase angle between each of the three phases. Thus, one or more of the three respective tap changers 132, 142, and 152 can be independently controlled to adjust and correct and/or improve the voltage differential and phase angle balance.

圖8繪示根據本發明之一實例性實施例之監測及控制相位之間之電壓差量之一方法。圖10A繪示三個相位134、144及154及該三個相位之間之各自電壓差量1002、1004及1006之一向量圖。如上文所論 述,調節器控制器130、140及150接收含有與各自相位之電壓相關之資料之感測信號138、148及158。參考圖8及圖10A,在監測及控制方法之步驟802中,多相控制系統100使用此資料來計算相位之各者之間之一初始電壓差量或差異。例如,第一相位134與第二相位144之間之初始電壓差異可表示為差量10 1002,第二相位144與第三相位154之間之初始電壓差異可表示為差量20 1004,及第三相位154與第一相位134之間之初始電壓差異可表示為差量30 1006。在步驟804中,判定最大差量值。在步驟806中,調整與最大差量值相反之相位或電壓調節器134、144、154之輸出電壓。例如,若最大差量值為表示第一相位134與第二相位144之間之電壓差異之差量10 1002,則調整對應於第三相位154之電壓調節器之分接頭位置以調整第三相位之輸出電壓。 FIG. 8 illustrates one method of monitoring and controlling the amount of voltage difference between phases in accordance with an exemplary embodiment of the present invention. FIG. 10A illustrates a vector diagram of three phases 134, 144, and 154 and respective voltage differences 1002, 1004, and 1006 between the three phases. As discussed above, regulator controllers 130, 140, and 150 receive sense signals 138, 148, and 158 that contain data associated with the voltages of the respective phases. Referring to Figures 8 and 10A, in step 802 of the monitoring and control method, the polyphase control system 100 uses this data to calculate an initial voltage difference or difference between each of the phases. For example, the initial voltage difference between the first phase 134 and the second phase 144 can be expressed as a difference of 1 0 1002, and the initial voltage difference between the second phase 144 and the third phase 154 can be expressed as a difference of 2 0 1004, And the initial voltage difference between the third phase 154 and the first phase 134 can be expressed as a difference of 3 0 1006. In step 804, a maximum difference value is determined. In step 806, the phase opposite the maximum delta value or the output voltage of voltage regulators 134, 144, 154 is adjusted. For example, if the maximum difference value is the difference 1 0 1002 indicating the voltage difference between the first phase 134 and the second phase 144, the tap position of the voltage regulator corresponding to the third phase 154 is adjusted to adjust the third. The output voltage of the phase.

隨後,在步驟808中,計算新電壓差異(即,差量),且該等新差量可分別表示為差量11、差量21及差量31。在步驟810中,比較該等新差量以判定該等新差量(差量11、差量21及差量31)之間之電壓平衡是否優於初始差量(差量10、差量20及差量30)之間之平衡。若平衡確實更佳,則自步驟802起重複程序,直至該等新差量之間之平衡不優於初始差量。當平衡並非更佳時,程序前進至步驟812,其中復原前次電壓調節器調整以使系統進入三個相位之間之一最佳化電壓平衡條件。因此,在步驟814中,維持當前電壓調節器設定值。 Subsequently, in step 808, new voltage differences (ie, deltas) are calculated, and the new deltas can be represented as deltas 1 1 , deltas 2 1 , and deltas 3 1 , respectively . In step 810, the new differences are compared to determine whether the voltage balance between the new differences (difference 1 1 , difference 2 1 , and difference 3 1 ) is better than the initial difference (difference 1 0 The balance between the difference of 2 0 and the difference of 3 0 ). If the balance is indeed better, the procedure is repeated from step 802 until the balance between the new differences is not better than the initial difference. When the balance is not better, the program proceeds to step 812 where the previous voltage regulator adjustment is restored to bring the system into one of the three phases to optimize the voltage balancing condition. Therefore, in step 814, the current voltage regulator setpoint is maintained.

在某些實例性實施例中,多相控制系統100週期性地重新確認系統處於最佳化電壓差量平衡條件。在此等實例性實施例中,方法包含步驟816,其中判定是否已歷時一預判定時段。若該預判定時段已歷時(其意謂該再次確認最佳化狀態),則自步驟802起重複方法。若尚未歷時該預判定時段,則維持當前電壓調節器設定值,如同步驟814。圖8中所繪示之實例性方法僅為平衡三相系統中之電壓差量之一方法。在替代實施例中,可改動或移除圖8之實例性方法中所繪示步 驟之某些者。同樣地,一類似方法可應用於其他類型之多相控制系統。 In certain exemplary embodiments, multi-phase control system 100 periodically reconfirms that the system is in an optimized voltage delta balance condition. In these example embodiments, the method includes a step 816 in which it is determined whether a pre-determination period has elapsed. If the pre-determination period has elapsed (which means that the re-confirmation of the optimization state), the method is repeated from step 802. If the pre-determination period has not been elapsed, the current voltage regulator setting is maintained as in step 814. The exemplary method illustrated in Figure 8 is only one way to balance the voltage difference in a three-phase system. In an alternate embodiment, the steps depicted in the example method of FIG. 8 may be modified or removed. Some of the sudden. Similarly, a similar approach can be applied to other types of multiphase control systems.

圖9繪示根據本發明之一實例性實施例之監測及控制相位之間之相位角之一方法。圖10B繪示三個相位134、144及154及該三個相位之間之各自相位角1012、1014及1016之一向量圖。參考圖9及圖10B,在步驟902中,多相控制系統使用來自調節器控制器之量測資料138、148及158來計算與該三個相位相關聯之一組初始相位角。例如,第一相位角134與第二相位角144之間之初始相位角可表示為相位角10 1012,第二相位144與第三相位154之間之初始相位角可表示為相位角20 1014,及第三相位154與第一相位134之間之初始相位角可表示為相位角30 1016。在步驟904中,判定最大相位角。在步驟906中,調整與最大相位角相反之電壓調節器134、144、154之輸出電壓。例如,若最大相位角為表示第一相位134與第二相位144之間之相位角之相位角10 1012,則調整對應於第三相位154之電壓調節器之分接頭位置以調整第三相位154之輸出電壓。 9 illustrates one method of monitoring and controlling phase angles between phases in accordance with an exemplary embodiment of the present invention. FIG. 10B illustrates a vector diagram of three phases 134, 144, and 154 and respective phase angles 1012, 1014, and 1016 between the three phases. Referring to Figures 9 and 10B, in step 902, the polyphase control system uses the measurements 138, 148, and 158 from the regulator controller to calculate a set of initial phase angles associated with the three phases. For example, an initial phase angle between the first phase angle 134 and the second phase angle 144 can be expressed as a phase angle of 1 0 1012, and an initial phase angle between the second phase 144 and the third phase 154 can be expressed as a phase angle of 2 0 The initial phase angle between 1014, and the third phase 154 and the first phase 134 can be expressed as a phase angle of 3 0 1016. In step 904, the maximum phase angle is determined. In step 906, the output voltages of the voltage regulators 134, 144, 154 opposite the maximum phase angle are adjusted. For example, if the maximum phase angle is a phase angle 1 0 1012 indicating a phase angle between the first phase 134 and the second phase 144, the tap position of the voltage regulator corresponding to the third phase 154 is adjusted to adjust the third phase. 154 output voltage.

隨後,在步驟908中,計算新相位角,且該等新相位角可分別表示為相位角11、相位角21及相位角31。在步驟910中,比較該等新相位角以判定該等新相位角(相位角11、相位角21及相位角31)之間之相位角平衡是否優於初始相位角(相位角10、相位角20及相位角30)之間之平衡。若該平衡確實更佳,則自步驟902起重複程序,直至該等新相位角之間之平衡不優於初始相位角。當該平衡並非更佳時,程序前進至步驟912,其中復原前次電壓調節器調整以使系統進入該三個相位之間之一最佳化相位角平衡條件。因此,在步驟914中,維持當前電壓調節器設定值。 Subsequently, in step 908, new phase angles are calculated, and the new phase angles can be represented as phase angle 1 1 , phase angle 2 1 , and phase angle 3 1 , respectively . In step 910, the new phase angles are compared to determine whether the phase angle balance between the new phase angles (phase angle 1 1 , phase angle 2 1 , and phase angle 3 1 ) is better than the initial phase angle (phase angle 1) The balance between 0 , phase angle 2 0 and phase angle 3 0 ). If the balance is indeed better, the procedure is repeated from step 902 until the balance between the new phase angles is not better than the initial phase angle. When the balance is not better, the program proceeds to step 912 where the previous voltage regulator adjustment is restored to cause the system to enter one of the three phases to optimize the phase angle balance condition. Therefore, in step 914, the current voltage regulator setting is maintained.

在某些實例性實施例中,如上文所類似論述,多相控制系統100在步驟916中週期性地重新確認系統處於最佳化相位角平衡條件。圖9 中所繪示之實例性方法僅為平衡三相系統中之相位角之一方法。在替代實施例中,可改動或移除圖9之實例性方法中所繪示步驟之某些者。同樣地,一類似方法可應用於其他類型之多相控制系統。 In certain exemplary embodiments, as discussed above, the multi-phase control system 100 periodically re-confirms that the system is in an optimized phase angle balancing condition in step 916. Figure 9 The exemplary method illustrated in the illustration is only one method of balancing the phase angle in a three-phase system. In alternate embodiments, some of the steps depicted in the example method of FIG. 9 may be modified or removed. Similarly, a similar approach can be applied to other types of multiphase control systems.

在某些實例性實施例中,作為一既存控制方案,由多相控制系統100自動執行用於電壓差量或相位角平衡之電壓調節器134、144及154之控制。在某些實例性實施例中,當判定應調整分接頭換接器132、142及152之一或多者以促成一更佳電壓差量或相位角平衡時,由一操作者手動執行電壓調節器134、144及154之控制。在某些實例性實施例中,該操作者可針對三個相位之各者而設定額外電壓設定值(其包含頻寬及時間延遲設定值)以允許相位角差異。 In some exemplary embodiments, control of voltage regulators 134, 144, and 154 for voltage differential or phase angle balancing is automatically performed by multi-phase control system 100 as an existing control scheme. In certain exemplary embodiments, voltage adjustment is performed manually by an operator when it is determined that one or more of the tap changers 132, 142, and 152 should be adjusted to facilitate a better voltage or phase angle balance. Control of 134, 144 and 154. In certain example embodiments, the operator may set additional voltage settings (which include bandwidth and time delay settings) for each of the three phases to allow for phase angle differences.

雖然已在本文中詳細描述本發明之實施例,但該等描述僅供說明。本文中所描述之本發明之特徵具代表性,且在替代實施例中,可添加或省略某些特徵及元件。另外,熟習技術者可在不背離以下申請專利範圍中所界定之本發明之精神及範疇之情況下對本文中所描述之該等實施例之態樣作出修改,申請專利範圍之範疇應被賦予最廣泛解釋以便涵蓋修改方案及等效結構。 Although the embodiments of the present invention have been described in detail herein, the description is for illustration only. The features of the invention described herein are representative, and in alternative embodiments certain features and elements may be added or omitted. In addition, those skilled in the art can modify the aspects of the embodiments described herein without departing from the spirit and scope of the invention as defined in the following claims. The broadest interpretation is to cover the modifications and equivalent structures.

10‧‧‧系統 10‧‧‧System

100‧‧‧多相控制系統/多相控制器 100‧‧‧Multiphase Control System / Multiphase Controller

102‧‧‧通信鏈路 102‧‧‧Communication link

104‧‧‧通信鏈路 104‧‧‧Communication link

120‧‧‧記憶體 120‧‧‧ memory

130‧‧‧電壓調節器控制器 130‧‧‧Voltage regulator controller

132‧‧‧分接頭換接器 132‧‧‧ Tap changer

134‧‧‧電壓調節器/第一相位 134‧‧‧Voltage regulator / first phase

136‧‧‧控制信號 136‧‧‧Control signal

138‧‧‧感測信號/量測資料 138‧‧‧Sensing signal/measurement data

140‧‧‧電壓調節器控制器 140‧‧‧Voltage regulator controller

142‧‧‧分接頭換接器 142‧‧‧ Tap changer

144‧‧‧電壓調節器/第二相位 144‧‧‧Voltage regulator / second phase

146‧‧‧控制信號 146‧‧‧Control signal

148‧‧‧感測信號/量測資料 148‧‧‧Sensing signal/measurement data

150‧‧‧電壓調節器控制器/網路 150‧‧‧Voltage Regulator Controller/Network

152‧‧‧分接頭換接器 152‧‧‧ Tap changer

154‧‧‧電壓調節器/第三相位 154‧‧‧Voltage regulator / third phase

156‧‧‧控制信號 156‧‧‧Control signal

158‧‧‧感測信號/量測資料 158‧‧‧Sensing signal/measurement data

160‧‧‧管理終端機/管理電腦 160‧‧‧Manage terminal/management computer

Claims (24)

一種用於最大偏差多相操作之方法,其包括:基於複數個分接頭換接器之一第一最高分接頭位置而設定一最大偏差窗之一低邊界值;基於該複數個分接頭換接器之一第一最低分接頭位置而設定該最大偏差窗之一高邊界值;及由複數個電壓調節器控制器基於該複數個分接頭換接器之該等分接頭位置而獨立調節各自複數個電壓調節器之各自複數個電壓。 A method for maximum deviation multiphase operation, comprising: setting a low boundary value of a maximum deviation window based on a first highest tap position of a plurality of tap changers; switching based on the plurality of taps One of the first lowest tap positions is set to set a high boundary value of the maximum deviation window; and the plurality of voltage regulator controllers independently adjust the respective complex numbers based on the tap positions of the plurality of tap changers Each of the voltage regulators has a plurality of voltages. 如請求項1之方法,其中該第一最高分接頭位置包括一當前最高分接頭位置,且其中該第一最低分接頭位置包括一當前最低分接頭位置。 The method of claim 1, wherein the first highest tap position comprises a current highest tap position, and wherein the first lowest tap position comprises a current lowest tap position. 如請求項1之方法,其包括:基於該複數個分接頭換接器之該第一最高分接頭位置及一使用者自定最大偏差值而設定該最大偏差窗之該低邊界值;及基於該複數個分接頭換接器之該第一最低分接頭位置及該使用者自定最大偏差值而設定該最大偏差窗之該高邊界值。 The method of claim 1, comprising: setting the low boundary value of the maximum deviation window based on the first highest tap position of the plurality of tap changers and a user-defined maximum deviation value; The first lowest tap position of the plurality of tap changers and the user-defined maximum deviation value set the high boundary value of the maximum deviation window. 如請求項3之方法,其包括:判定該複數個分接頭換接器之一第一分接頭換接器及一第二分接頭換接器之分接頭位置之間之一差異及該複數個分接頭換接器之該第二分接頭換接器及一第三分接頭換接器之分接頭位置之間之一差異是否各自等於或大於該使用者自定最大偏差值;當判定該等差異各等於或大於該使用者自定最大偏差值,該複數個分接頭換接器之兩者之位置被設定為該低邊界值、且由 與該複數個分接頭換接器之該兩者相關聯之電壓調節器輸出之線電壓高於一設定電壓帶時,使該最大偏差窗之該高邊界值及該低邊界值之各者遞減;及當判定該等差異各等於或大於該使用者自定最大偏差值,複數個分接頭換接器之兩者之位置被設定為該高邊界值、且由與該複數個分接頭換接器之該兩者相關聯之電壓調節器輸出之線電壓低於該設定電壓帶時,使該最大偏差窗之該高邊界值及該低邊界值之各者遞增。 The method of claim 3, comprising: determining a difference between the tap position of the first tap changer and the second tap changer of the plurality of tap changers and the plurality of Whether the difference between the tap position of the second tap changer and the third tap changer of the tap changer is equal to or greater than the user-defined maximum deviation value; The difference is equal to or greater than the user-defined maximum deviation value, and the positions of the two plurality of tap changers are set to the low boundary value, and When the line voltage of the voltage regulator output associated with the plurality of tap changers is higher than a set voltage band, the high boundary value of the maximum deviation window and the low boundary value are decremented And when it is determined that the differences are equal to or greater than the user-defined maximum deviation value, the positions of the plurality of tap changers are set to the high boundary value, and are switched by the plurality of taps When the line voltage of the voltage regulator output associated with the two is lower than the set voltage band, the high boundary value of the maximum deviation window and the low boundary value are incremented. 如請求項2之方法,其進一步包括:當在設定該低邊界值及該高邊界值之後該低邊界值大於該高邊界值時,將該低邊界值及該高邊界值兩者設定為該複數個分接頭換接器之該最高當前分接頭位置及該最低當前分接頭位置之一平均值。 The method of claim 2, further comprising: setting the low boundary value and the high boundary value to be both when the low boundary value and the high boundary value are set to be greater than the high boundary value An average of one of the highest current tap position and the lowest current tap position of the plurality of tap changers. 如請求項5之方法,其進一步包括:在將該低邊界值及該高邊界值兩者設定為該複數個分接頭換接器之該最高當前分接頭位置及該最低當前分接頭位置之該平均值之後,使該最大偏差窗之該高邊界值遞增及使該最大偏差窗之該低邊界值遞減,直至該最大偏差窗等於該使用者自定最大偏差值。 The method of claim 5, further comprising: setting the low boundary value and the high boundary value to the highest current tap position and the lowest current tap position of the plurality of tap changers After the average, the high boundary value of the maximum deviation window is incremented and the low boundary value of the maximum deviation window is decremented until the maximum deviation window is equal to the user-defined maximum deviation value. 如請求項1之方法,其進一步包括:將該低邊界值及該高邊界值自一前導電壓調節器控制器傳輸至該複數個電壓調節器控制器,其中該前導電壓調節器控制器選自該複數個電壓調節器控制器。 The method of claim 1, further comprising: transmitting the low boundary value and the high boundary value from a lead voltage regulator controller to the plurality of voltage regulator controllers, wherein the lead voltage regulator controller is selected from the group consisting of The plurality of voltage regulator controllers. 如請求項1之方法,其進一步包括:控制該複數個分接頭換接器之該等分接頭位置以在該低邊界值及該高邊界值內操作。 The method of claim 1, further comprising: controlling the tap positions of the plurality of tap changers to operate within the low boundary value and the high boundary value. 一種用於最大偏差多相操作之系統,其包括:複數個電壓調節器;複數個分接頭換接器,該複數個分接頭換接器之各者經組態以改變該複數個電壓調節器之一者之一分接頭位置;複數個電壓調節器控制器,其等經組態以設定該複數個分接頭換接器之分接頭位置;及一控制器,其耦合至該複數個電壓調節器控制器之至少一者,該控制經組態以:基於該複數個分接頭換接器之一第一最高分接頭位置而設定一最大偏差窗之一低邊界值;及基於該複數個分接頭換接器之一第一最低分接頭位置而設定該最大偏差窗之一高邊界值,其中該複數個電壓調節器控制器經組態以基於該複數個分接頭換接器之該等分接頭位置而調節該複數個電壓調節器之各自複數個電壓。 A system for maximum deviation multiphase operation, comprising: a plurality of voltage regulators; a plurality of tap changers, each of the plurality of tap changers configured to change the plurality of voltage regulators One of the tap positions; a plurality of voltage regulator controllers configured to set a tap position of the plurality of tap changers; and a controller coupled to the plurality of voltage adjustments At least one of the controllers configured to: set a low boundary value of one of the maximum deviation windows based on the first highest tap position of the plurality of tap changers; and based on the plurality of points Setting a high threshold value of one of the maximum deviation windows, wherein the plurality of voltage regulator controllers are configured to be based on the plurality of tap changers The respective positions of the plurality of voltage regulators are adjusted by the joint position. 如請求項9之用於最大偏差多相操作之系統,其中該第一最高分接頭位置包括一當前最高分接頭位置,且其中該第一最低分接頭位置包括一當前最低分接頭位置。 A system for maximum deviation multiphase operation of claim 9, wherein the first highest tap position comprises a current highest tap position, and wherein the first lowest tap position comprises a current lowest tap position. 如請求項9之用於最大偏差多相操作之系統,其中該控制器經進一步組態以:基於該複數個分接頭換接器之該第一最高分接頭位置及一使用者自定最大偏差值而設定一最大偏差窗之該低邊界值;及基於該複數個分接頭換接器之該第一最低分接頭位置及該使用者自定最大偏差值而設定該最大偏差窗之該高邊界值。 The system of claim 9 for maximum deviation multiphase operation, wherein the controller is further configured to: determine the first highest tap position and a user-defined maximum deviation based on the plurality of tap changers Setting a low boundary value of a maximum deviation window; and setting the high boundary of the maximum deviation window based on the first lowest tap position of the plurality of tap changers and the user-defined maximum deviation value value. 如請求項11之用於最大偏差多相操作之系統,其中該控制器經進一步組態以: 判定該複數個分接頭換接器之一第一分接頭換接器及一第二分接頭換接器之分接頭位置之間之一差異及該複數個分接頭換接器之該第二分接頭換接器及一第三分接頭換接器之間之一差異是否各等於或大於該使用者自定最大偏差值;當判定該等差異各等於或大於該使用者自定最大偏差值,該複數個分接頭換接器之兩者之位置被設定為該低邊界值、且由與該複數個分接頭換接器之該兩者相關聯之電壓調節器輸出之線電壓高於一設定電壓帶時,使該最大偏差窗之該高邊界值及該低邊界值之各者遞減;及當判定該等差異各等於或大於該使用者自定最大偏差值,該複數個分接頭換接器之兩者之位置被設定為該高邊界值、且由與該複數個分接頭換接器之該兩者相關聯之電壓調節器輸出之線電壓低於該設定電壓帶時,使該最大偏差窗之該高邊界值及該低邊界值之各者遞增。 The system of claim 11 for maximum deviation multiphase operation, wherein the controller is further configured to: Determining a difference between a tap position of the first tap changer and a second tap changer of the plurality of tap changers and the second score of the plurality of tap changers Whether the difference between the joint changer and the third tap changer is equal to or greater than the user-defined maximum deviation value; when it is determined that the differences are equal to or greater than the user-defined maximum deviation value, The position of the plurality of tap changers is set to the low boundary value, and the line voltage of the voltage regulator output associated with the plurality of tap changers is higher than a setting And the voltage band is such that the high boundary value of the maximum deviation window and the low boundary value are decremented; and when the difference is determined to be equal to or greater than the user-defined maximum deviation value, the plurality of taps are switched The position of both of the devices is set to the high boundary value, and the line voltage of the voltage regulator output associated with the plurality of tap changers is lower than the set voltage band, so that the maximum The high boundary value of the deviation window and the low boundary value Who is incremented. 如請求項9之用於最大偏差多相操作之系統,其中該複數個電壓調節器控制器控制該複數個分接頭換接器之該等分接頭位置以在該低邊界值及該高邊界值內操作。 The system of claim 9 for maximum deviation multiphase operation, wherein the plurality of voltage regulator controllers control the tap positions of the plurality of tap changers to be at the low boundary value and the high boundary value Internal operation. 如請求項9之用於最大偏差多相操作之系統,其中該複數個電壓調節器控制器包括一第一電壓調節器控制器、一第二電壓調節器控制器及一第三電壓調節器控制器,其中該複數個分接頭換接器包括與該第一電壓調節器控制器相關聯之一第一分接頭換接器、與該第二電壓調節器控制器相關聯之一第二分接頭換接器及與該第三電壓調節器控制器相關聯之一第三分接頭換接器,及其中該第一調節器控制器經組態以將該低邊界值及該高邊界值傳輸至該第二電壓調節器控制器及該第三電壓調節器控制 器。 The system of claim 9 for maximum deviation multiphase operation, wherein the plurality of voltage regulator controllers comprise a first voltage regulator controller, a second voltage regulator controller, and a third voltage regulator control The plurality of tap changers including a first tap changer associated with the first voltage regulator controller and a second tap associated with the second voltage regulator controller a changer and a third tap changer associated with the third voltage regulator controller, and wherein the first regulator controller is configured to transmit the low boundary value and the high boundary value to The second voltage regulator controller and the third voltage regulator control Device. 如請求項14之用於最大偏差多相操作之系統,其中該第二電壓調節器控制器及該第三電壓調節器控制器經組態以分別將該第二分接頭換接器及該第三分接頭換接器之該等分接頭位置傳輸至該第一電壓調節器控制器。 The system of claim 14 for maximum deviation multiphase operation, wherein the second voltage regulator controller and the third voltage regulator controller are configured to respectively respectively apply the second tap changer and the first The tap positions of the three-prong connector are transmitted to the first voltage regulator controller. 如請求項9之用於最大偏差多相操作之系統,其包括:一管理終端機,其經組態以控制及/或監測該複數個電壓調節器控制器。 A system for maximum deviation multiphase operation of claim 9, comprising: a management terminal configured to control and/or monitor the plurality of voltage regulator controllers. 一種最佳化電力因數校正之方法,其包括:比較兩個電壓調節器之間之量測電力因數之一差異與一預判定最大差異;當判定該差異大於該最大差異時,將該差異儲存為量測電力因數之一先前差異;由一控制器調整該等電壓調節器之一者之一分接頭位置;比較該兩個電壓調節器之間之量測電力因數之一第二差異與量測電力因數之該先前差異;及當量測電力因數之該第二差異不小於量測電力因數之該先前差異時,由該控制器使該等電壓調節器之該一者之該分接頭位置返回至一早前分接頭位置。 A method for optimizing power factor correction, comprising: comparing a difference between a measured power factor between two voltage regulators and a pre-determined maximum difference; and when determining that the difference is greater than the maximum difference, storing the difference To measure a previous difference in one of the power factors; adjust a tap position of one of the voltage regulators by a controller; compare a second difference and amount of the measured power factor between the two voltage regulators Measuring the previous difference of the power factor; and when the second difference of the equivalent power factor is not less than the previous difference of the measured power factor, the controller causes the tap position of the one of the voltage regulators Return to the previous tap position. 如請求項17之最佳化電力因數校正之方法,其包括:比較與該兩個電壓調節器相關聯之一平均線電壓值與一設定電壓調節值;及當該平均線電壓值大於或等於該設定電壓調節值時,將該兩個電壓調節器之一第一電壓調節器設定至一較低分接頭位置。 A method for optimizing power factor correction according to claim 17, comprising: comparing one of an average line voltage value associated with the two voltage regulators with a set voltage adjustment value; and when the average line voltage value is greater than or equal to When the voltage adjustment value is set, the first voltage regulator of one of the two voltage regulators is set to a lower tap position. 如請求項18之最佳化電力因數校正之方法,其包括:當該平均線電壓值不大於或等於該設定電壓調節值時,將該 兩個電壓調節器之一第二電壓調節器設定至一較高分接頭位置。 The method for optimizing power factor correction according to claim 18, comprising: when the average line voltage value is not greater than or equal to the set voltage adjustment value, One of the two voltage regulators, the second voltage regulator, is set to a higher tap position. 如請求項17之最佳化電力因數校正之方法,其中該預判定最大差異為一使用者自定最大偏差值。 The method of optimizing power factor correction of claim 17, wherein the pre-determined maximum difference is a user-defined maximum deviation value. 一種相位角平衡之方法,其包括:計算一初始第一相位角、一初始第二相位角及一初始第三相位角,其中該初始第一相位角、該初始第二相位角及該初始第三相位角形成一初始相位平衡條件;判定該初始第一相位角、該初始第二相位角及該初始第三相位角之何者具有最高值;及調整與具有最大值之該初始相位角相反之一相位之一輸出電壓。 A method of phase angle balancing, comprising: calculating an initial first phase angle, an initial second phase angle, and an initial third phase angle, wherein the initial first phase angle, the initial second phase angle, and the initial The three phase angles form an initial phase balance condition; determining which of the initial first phase angle, the initial second phase angle, and the initial third phase angle has the highest value; and adjusting the opposite of the initial phase angle having the maximum value One phase of one phase output voltage. 如請求項21之相位角平衡之方法,其包括:計算一新第一相位角、一新第二相位角及一新第三相位角,其中該新第一相位角、該新第二相位角及該新第三相位角形成一新平衡條件;判定該新平衡條件是否優於該初始平衡條件;當該新平衡條件優於該初始平衡條件時:判定該新第一相位角、該新第二相位角及該新第三相位角之何者具有最大值;及調整與具有最大值之該新相位角相反之該相位之該輸出電壓;及當該新平衡條件不優於該初始平衡條件時,復原一前次調整。 A method for balancing a phase angle of claim 21, comprising: calculating a new first phase angle, a new second phase angle, and a new third phase angle, wherein the new first phase angle, the new second phase angle And the new third phase angle forms a new equilibrium condition; determining whether the new equilibrium condition is better than the initial equilibrium condition; when the new equilibrium condition is better than the initial equilibrium condition: determining the new first phase angle, the new first Which of the two phase angles and the new third phase angle has a maximum value; and adjusting the output voltage of the phase opposite the new phase angle having a maximum value; and when the new equilibrium condition is not superior to the initial equilibrium condition , restore a previous adjustment. 一種電壓差量平衡之方法,其包括:計算一初始第一電壓差量、一初始第二電壓差量及一初始第 三電壓差量,其中該初始第一電壓差量、該初始第二電壓差量及該初始第三電壓差量形成一初始相位平衡條件;判定該初始第一電壓差量、該初始第二電壓差量及該初始第三電壓差量之何者具有最大值;及調整與具有最大值之該初始電壓差量相反之一相位之一輸出電壓。 A method for balancing a voltage difference, comprising: calculating an initial first voltage difference, an initial second voltage difference, and an initial a third voltage difference amount, wherein the initial first voltage difference amount, the initial second voltage difference amount, and the initial third voltage difference amount form an initial phase balance condition; determining the initial first voltage difference amount, the initial second voltage Which of the difference and the initial third voltage difference has a maximum value; and adjusts one of the output voltages opposite to the initial voltage difference having the maximum value. 如請求項23之電壓差量平衡之方法,其包括:計算一新第一電壓差量、一新第二電壓差量及一新第三電壓差量,其中該新第一電壓差量、該新第二電壓差量及該新第三電壓差量形成一新平衡條件;判定該新平衡條件是否優於該初始平衡條件;當該新平衡條件優於該初始平衡條件時:判定該新第一電壓差量、該新第二電壓差量及該新第三電壓差量之何者具有最大值;及調整與具有最大值之該新電壓差量相反之該相位之該輸出電壓;及當該新平衡條件不優於該初始平衡條件時,復原一前次調整。 The method for balancing the voltage difference of claim 23, comprising: calculating a new first voltage difference amount, a new second voltage difference amount, and a new third voltage difference amount, wherein the new first voltage difference amount, the new The new second voltage difference and the new third voltage difference form a new equilibrium condition; determining whether the new balance condition is better than the initial balance condition; when the new balance condition is better than the initial balance condition: determining the new a voltage difference amount, the new second voltage difference amount, and the new third voltage difference amount having a maximum value; and adjusting the output voltage of the phase opposite to the new voltage difference amount having a maximum value; and when When the new balance condition is not better than the initial balance condition, the previous adjustment is restored.
TW102118281A 2013-03-01 2013-05-23 Managed multi-phase operation TW201436417A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/782,962 US9513645B2 (en) 2012-03-01 2013-03-01 Managed multi-phase operation

Publications (1)

Publication Number Publication Date
TW201436417A true TW201436417A (en) 2014-09-16

Family

ID=51945578

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102118281A TW201436417A (en) 2013-03-01 2013-05-23 Managed multi-phase operation

Country Status (1)

Country Link
TW (1) TW201436417A (en)

Similar Documents

Publication Publication Date Title
US10263509B2 (en) Optimizing power factor correction between voltage regulators
US8639389B2 (en) System and method for controlling voltage on a distribution feeder
EP3419136A1 (en) Direct current power grid voltage control method
JP6877295B2 (en) Judgment method of voltage regulator and voltage regulator
US20220253080A1 (en) Smart voltage reduction and reverse power operating mode determination for load tap charging transformers and voltage regulators
JP2006325380A (en) Voltage and reactive power control system, and voltage and reactive power control method
KR102499207B1 (en) Selective parallel running method for measuring/control devices
US10177672B2 (en) Voltage regulation for multi-phase power systems
KR101505472B1 (en) Double dead band On Load Tap Changing transformer and control method
JP2020510154A (en) How to control the rotation speed of a centrifugal pump
US10446340B2 (en) Method for controlled energising of a transformer
TW201436417A (en) Managed multi-phase operation
JPH11332103A (en) Autonomous distribution line voltage adjustor and control of voltage of high-voltage distribution line using the adjustor
KR20190043297A (en) Apparatus for controlling voltage regulation based on voltage measurement, Method thereof, and Computer readable storage medium having the same
JP2012228045A (en) Voltage adjusting device and method of adjusting voltage
KR20160080026A (en) Method for operating dual controller
JP5244501B2 (en) Voltage reactive power control system
JP5917950B2 (en) Distribution line voltage adjustment method and voltage regulator
KR20210048262A (en) Apparatus and method for controlling extinction angle of lcc hvdc system
JP6063180B2 (en) Distribution line voltage regulator and voltage regulation method
JP3761630B2 (en) Automatic power factor adjuster
JPH0549163A (en) Dc power supply
JPH06348349A (en) Voltage control method for power supply system
JPS5848117A (en) Tap switching controller at alternating current and direct current conversion station
JPH03251100A (en) Exciter for synchronous machine