TW201435152A - Forming a transparent metal oxide layer on a conductive surface of a dielectric substrate - Google Patents

Forming a transparent metal oxide layer on a conductive surface of a dielectric substrate Download PDF

Info

Publication number
TW201435152A
TW201435152A TW102108023A TW102108023A TW201435152A TW 201435152 A TW201435152 A TW 201435152A TW 102108023 A TW102108023 A TW 102108023A TW 102108023 A TW102108023 A TW 102108023A TW 201435152 A TW201435152 A TW 201435152A
Authority
TW
Taiwan
Prior art keywords
conductive surface
electrolyte
substrate
oxide layer
metal oxide
Prior art date
Application number
TW102108023A
Other languages
Chinese (zh)
Inventor
Leonid B Rubin
Elena B Neburchilova
Alexander S Osipov
Original Assignee
Clear Metals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clear Metals Inc filed Critical Clear Metals Inc
Priority to TW102108023A priority Critical patent/TW201435152A/en
Publication of TW201435152A publication Critical patent/TW201435152A/en

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

A method and apparatus of forming a transparent metal oxide layer on a conductive surface of a dielectric substrate involves exposing first and second conductive surface portions of the conductive surface of the dielectric substrate to first and second electrolytes respectively to form first and second electrochemical cells in which the first conductive surface is part of the first electrochemical cell and the second conductive surface is part of the second electrochemical cell and wherein the electrochemical cells are electrically connected together by the conductive surface of the dielectric substrate. An electric potential applied across first and second counter electrodes in the first and second cells respectively drives an electric current through the first and second electrolytes and causes metal ions and oxygen in the second electrolyte to form the transparent metal oxide layer on the second conductive surface portion when a current is passed through the first and second electrolytes. The transparent metal oxide layer may be made non-conductive or conductive or even semi-conductive through the absence or inclusion of dopant in the second electrolyte. A conductive surface of a dielectric substrate of any length can be uniformly plated with a transparent metal oxide layer by moving the dielectric substrate relative to the first and second electrolytes while exposing the first and second surface portions to the first and second electrolytes respectively.

Description

於介電基材傳導性表面上形成透明金屬氧化物層之技術 Technique for forming a transparent metal oxide layer on a conductive substrate conductive surface 發明領域 Field of invention

本發明大體有關於形成透明金屬氧化物層於介電基材材料(例如,玻璃、陶瓷或聚合物材料)的傳導性表面上。該透明金屬氧化物層可導電、半導電或不導電。 The present invention is generally directed to forming a transparent metal oxide layer on a conductive surface of a dielectric substrate material (e.g., glass, ceramic or polymeric material). The transparent metal oxide layer can be electrically conductive, semi-conductive or non-conductive.

發明背景 Background of the invention

用來形成傳導性塗層的材料大體落在以下4類:金屬、金屬氧化物、導電聚合物及奈米材料。金屬塗層有最高導電率,特別是形式為奈米材料者,不過,例如,事實上只有厚約5至10奈米的超薄連續層可以被認為是透明。金屬氧化物的傳導性大體比金屬小數個數量級但是提供較好的透明度。導電塑料的傳導性也遠低於金屬但是提供較大的撓性,以及在較低成本有充分的透明度。奈米材料塗層包含金屬與金屬氧化物,目前仍在研發的實驗室階段。當前工業應用需要透明金屬氧化物層以提供電子裝置(例如,平板顯示器(FPD))的透明導體。 The materials used to form the conductive coating generally fall into the following four categories: metals, metal oxides, conductive polymers, and nanomaterials. Metal coatings have the highest electrical conductivity, especially in the form of nanomaterials, although, for example, only ultra-thin continuous layers of about 5 to 10 nanometers thick can be considered transparent. The conductivity of metal oxides is generally orders of magnitude smaller than metal but provides better transparency. Conductive plastics are also much less conductive than metals but provide greater flexibility and sufficient transparency at lower cost. Nanomaterial coatings contain metals and metal oxides and are still in the laboratory stage of research and development. Current industrial applications require a transparent metal oxide layer to provide a transparent conductor for an electronic device, such as a flat panel display (FPD).

透明導電氧化物(TCO)為有多晶或微晶或非晶 微結構的摻金屬氧化物薄膜。這些材料對於在可見光譜的入射光提供80%以上的透射比以及有約10-3至10-4歐姆.厘米的電阻率。各厚約30-50奈米的兩個TCO層用厚約10-20奈米之中間金屬層隔開的組合提供電阻率減少十倍以及光透射比增加達95%的複合結構。最近,TCO的工業應用已大幅擴充。剛性液晶顯示器及其他FPD為TCO塗層的最大市場,但是也有許多利用TCO塗層的新市場應用,包括觸控螢幕顯示器、可撓顯示器、透明顯示器、有機發光二極體(OLED)顯示器、智慧型窗戶以及固態照明也使用TCO塗層。雖然所有這些技術應用TCO塗層以致能產品機能,然而新應用對於TCO的技術要求時常與習知LCD顯示器的典型技術要求不同。 The transparent conductive oxide (TCO) is a metal-doped oxide film having a polycrystalline or microcrystalline or amorphous microstructure. These materials provide a transmittance of more than 80% for incident light in the visible spectrum and a resistivity of about 10 -3 to 10 -4 ohm.cm. A combination of two TCO layers each having a thickness of about 30-50 nm separated by an intermediate metal layer having a thickness of about 10-20 nm provides a composite structure in which the resistivity is reduced by a factor of ten and the light transmittance is increased by 95%. Recently, the industrial application of TCO has been greatly expanded. Rigid LCDs and other FPDs are the largest market for TCO coatings, but there are also many new market applications that utilize TCO coatings, including touch screen displays, flexible displays, transparent displays, organic light-emitting diode (OLED) displays, and wisdom. TCO coatings are also used for window and solid state lighting. While all of these techniques use TCO coatings to enable product functionality, the technical requirements of new applications for TCOs are often different from the typical technical requirements of conventional LCD displays.

歷史上,TCO市場已被銦錫氧化物(ITO)的需求支配。同時,濺鍍已大體成為TCO,尤其是ITO塗層,的主要沈積技術。儘管到目前為止已證明濺鍍ITO可滿足工業需求,然而濺鍍與ITO兩者有許多愈來愈明顯的重要缺點。 Historically, the TCO market has been dominated by the demand for indium tin oxide (ITO). At the same time, sputtering has become a major deposition technique for TCO, especially ITO coatings. Although sputtered ITO has proven to meet industrial needs so far, both sputtering and ITO have many important drawbacks that are becoming more apparent.

缺點之一是製造成本。銦為稀少及昂貴的材料以及濺鍍通常導致只用到約30%的銦而其餘70%沈積到濺鍍室的牆上。另外,長時間的停機時間通常與基於真空的濺鍍有關以及這也是ITO TCO製程有高總成本的原因。真空裝置,例如磁控濺鍍(magnetron sputtering)的操作及維修很複雜。結果,使用這種裝置的生產線一般需要熟練工人及工程人員以便確保穩定的生產線操作。此外,磁控濺鍍技術需要用離子衝擊來預處理基材表面以提供受濺鍍材料的 黏著。最後,高溫通常與濺鍍製程或後段退火處理有關以及這大幅限制應用ITO塗層於能夠忍受高溫的基材。結果,在溫度敏感基材(例如,塑膠)上使用基於ITO的TCO塗層有挑戰性。 One of the disadvantages is the manufacturing cost. Indium is a rare and expensive material and sputtering typically results in only about 30% of the indium and the remaining 70% is deposited on the walls of the sputtering chamber. In addition, prolonged downtime is often associated with vacuum-based sputtering and this is why the ITO TCO process has a high total cost. The operation and maintenance of vacuum devices, such as magnetron sputtering, is complicated. As a result, production lines using such devices typically require skilled workers and engineers to ensure stable line operations. In addition, magnetron sputtering requires ion impact to pretreat the substrate surface to provide a sputtered material. Adhesive. Finally, high temperatures are often associated with sputtering processes or post-annealing processes and this greatly limits the application of ITO coatings to substrates that can withstand high temperatures. As a result, the use of ITO-based TCO coatings on temperature sensitive substrates (eg, plastics) is challenging.

另一個問題是目前沒有可提供ITO塗層之電性及光學性質之ITO塗層的可行替代方案,也沒有數量在長成的市場應用需要較大的導電率及光學透明度。 Another problem is that there is currently no viable alternative to ITO coatings that provide electrical and optical properties of ITO coatings, nor does the number require greater conductivity and optical transparency in growing market applications.

此時,最終結果是,對於許多現有市場應用,能夠取代資本密集及浪費材料之濺鍍而有較低成本的新ITO沈積製程有寬廣的市場機會。能夠在中長期提供市場有較低成本及更好效能之ITO替代物的新“無銦”TCO塗佈製程也有市場。因此之故,新的TCO材料,例如摻雜雙元化合物(binary compound,例如,摻鋁氧化鋅(AZO)、摻銦氧化鋅、摻釔氧化鋅及摻鎘氧化鋅),在數個實驗室中已測試以及被提議作為代替材料。 At this point, the end result is that for many existing market applications, the new ITO deposition process, which can replace the capital-intensive and wasteful material sputtering and have lower cost, has broad market opportunities. There is also a market for new "indium-free" TCO coating processes that offer lower cost and better performance ITO alternatives in the medium to long term. For this reason, new TCO materials, such as doped binary compounds (for example, aluminum-doped zinc oxide (AZO), indium-doped zinc oxide, antimony-doped zinc oxide, and cadmium-doped zinc oxide), are used in several laboratories. It has been tested and proposed as a substitute.

最近被工業及研究團體探究的替代TCO沈積法包括濕處理方法,例如電化學方法。電化學方法係基於金屬或金屬氧化物主要於有充分體積導電率(bulk conductivity)之基材之表面上的電流驅動沈積。不過,此類方法用來塗佈使用於製造消費產品的介電基材(例如,玻璃、陶瓷及聚合物)有原理上的限制。需要傳導性表面以促進電化學製程使用於介電材料上。 Alternative TCO deposition methods recently explored by industry and research groups include wet processing methods such as electrochemical methods. Electrochemical methods are based on current driven deposition of metals or metal oxides primarily on the surface of a substrate having a sufficient bulk conductivity. However, such methods are used to coat dielectric substrates (eg, glass, ceramics, and polymers) used in the manufacture of consumer products with theoretical limitations. Conductive surfaces are required to facilitate electrochemical processes for use on dielectric materials.

傳導性金屬氧化物薄層(例如,摻FZnO氟化物的氧化鋅FznO、AZO或ITO)通過各種沈積法可沈積於玻璃及 其他介電基材上,包括例如金屬有機化學氣相沉積(MOCVD),金屬有機分子束沈積(MOMBD)及濺鍍,從而使它們有潛力可得自電化學製程。 A thin layer of conductive metal oxide (for example, zinc oxide FznO, AZO or ITO doped with FZnO fluoride) can be deposited on glass by various deposition methods. Other dielectric substrates include, for example, metal organic chemical vapor deposition (MOCVD), metal organic molecular beam deposition (MOMBD), and sputtering, giving them potential for electrochemical processes.

1994年頒給Palmer等人的美國專利第5,316,697號“CONDUCTIVE,PARTICULATE,FLUORINE-DOPED ZINC OXIDE”描述一種用化學蒸氣沈積製作傳導性、粒狀、摻氟氧化鋅產品的方法。該方法涉及在氣相氧化系統中以足以形成傳導性、粒狀、摻氟氧化鋅產品的溫度使氣相反應劑起反應。該方法使用包含元素鋅蒸氣、至少一氟源及至少一水源的氣相反應劑。 U.S. Patent No. 5,316,697 issued to Palmer et al., entitled "CONDUCTIVE, PARTICULATE, FLUORINE-DOPED ZINC OXIDE" describes a process for the production of conductive, granular, fluorine-doped zinc oxide products by chemical vapor deposition. The method involves reacting a gas phase reactant in a gas phase oxidation system at a temperature sufficient to form a conductive, particulate, fluorine-doped zinc oxide product. The method uses a gas phase reactant comprising an elemental zinc vapor, at least one fluorine source, and at least one water source.

塗上傳導性金屬氧化物的玻璃片及聚酯纖維薄膜市上可購自,例如在中國廣東省珠海市吉大園林路110號的Zhuhai Kaivo Electronic Components Co.Limited。 Glass sheets and polyester fiber films coated with conductive metal oxides are commercially available, for example, from Zhuhai Kaivo Electronic Components Co. Limited, No. 110, Jade Garden Road, Zhuhai, Guangdong, China.

用於製造傳導層於介電基材表面上的另一可能性涉及能夠製造傳導性表面於非傳導性基材上的無電沈積技術,也被習稱自催化鍍覆法。這是非嘉凡尼型鍍覆法(non-galvanic plating method),其係涉及在水性電解質與非傳導性基材表面之介面的數個順序無電化學反應,它們在不使用外部電力下發生。例如,參考頒給Ara的美國專利第US 6,464,762 B1號“Aqueous solution for the formation of indium oxide film by electroless deposition”;頒給Kozlov等人的美國專利第6,387,542 B1號“ELECTROLESS SILVER PLATING”;頒給Kim等人的美國專利US6,806,189 B2號“Method of silver(Ag)electroless plating on ITO electrode”;頒給Igarashi等人的美國專利6,527,840 B1號“Silver alloy plating bath and method of forming a silver alloy film by means of the same”;頒給ITSUPEI等人的日本專利第JP59143059號“Electroless plating apparatus”;頒給KOZO的日本專利第JP11152578A號“ELECTROLESS INDIUM OXIDE PLATING AQUEOUS SOLUTION AND ELECTROLESS PLATING METHOD”;以及頒給YOSHIHIRO的日本專利第JP 2057336號“Electroless plating for plastic”。 Another possibility for making a conductive layer on the surface of a dielectric substrate involves an electroless deposition technique capable of fabricating a conductive surface on a non-conductive substrate, also known as autocatalytic plating. This is a non-galvanic plating method involving several sequential electrochemical reactions at the interface between the aqueous electrolyte and the surface of the non-conductive substrate, which occur without the use of external electrical power. For example, U.S. Patent No. 6,464,762 B1 to Ara, et al., entitled "Aqueous solution for the formation of indium oxide film by electroless deposition"; U.S. Patent No. 6,387,542 B1 to "Kelvin et al." "ELECTROLESS SILVER PLATING"; awarded to Kim US Patent No. 6,806,189 B2, et al., "Method of silver (Ag) electroless plating on ITO "Silver alloy plating bath and method of forming a silver alloy film by means of the same"; and Japanese Patent No. JP59143059 to ITSUPEI et al., "Electroless plating", issued to Igarashi et al. "Electroless plating for plastic", Japanese Patent No. JP11152578A, entitled "ELECTROLESS INDIUM OXIDE PLATING AQUEOUS SOLUTION AND ELECTROLESS PLATING METHOD"; and Japanese Patent No. JP 2057336 issued to YOSHIHIRO.

可惜用上述方法於介電基材上製成之傳導層的品質對消費者電子產品而言是不夠的,因為用CVD及濺鍍技術以無電沈積製成之層的導電率低,厚度均勻性低,以及光透射比低。這已導致有人考慮在用電化學製程形成透明傳導性金屬氧化物層之前在介電基材上使用預塗層表面。 Unfortunately, the quality of the conductive layer made on the dielectric substrate by the above method is insufficient for consumer electronic products because the layer made by electroless deposition using CVD and sputtering techniques has low conductivity and thickness uniformity. Low, and low light transmittance. This has led to consideration of the use of pre-coated surfaces on dielectric substrates prior to the formation of transparent conductive metal oxide layers by electrochemical processes.

數個研究機構已證實在預形成於玻璃基材上之傳導性表面上製成摻鎘及摻釔氧化鋅的可能性,但是這些結果只是用預樣本證明而且是在習知電化學室中製成,這對量產工業製程而言不切實際的。 Several research institutes have demonstrated the possibility of forming cadmium-doped and antimony-doped zinc oxide on conductive surfaces pre-formed on glass substrates, but these results are only demonstrated with pre-samples and are made in conventional electrochemical chambers. Cheng, this is impractical for mass production industrial processes.

頒給Rubin等人的PCT專利申請案第CA2011/001013號“Electroplating Metal Oxides on Flat Conductive Surfaces”描述一種方法及裝置用於電化學形成氧化物層於半導體元件的平坦傳導性表面及光伏(PV)電池上。該方法涉及使背負平坦傳導性表面的工作電極(working electrode)與相對電極(counter electrode)的平坦傳導性表面 相對平行地隔開。配置用於形成氧化物層於工作電極之平坦傳導性表面上之含化學物有機電解質溶液的容積以灌溉及佔據定義於工作電極平坦傳導性表面與相對電極之間的空間。在有機電解質溶液中,電流在相對電極中實質只在平坦傳導性表面與工作電極中實質只在平坦傳導性表面之間流動持續一段時間以及其數量足以造成化學物可形成氧化物層於工作電極的平坦傳導性表面上。該裝置組特別設計成工作及相對電極可在背面接受電力以保護它們的功率輸入端子免於與會損壞它們的電解質直接接觸。因此,使用此裝置非常適合於有體積導電率的基材及相對電極但是該裝置不適合用於形成金屬氧化物層於介電材料上,即使它們的表面預先塗上傳導層。 PCT Patent Application No. CA2011/001013 to "Electroplating Metal Oxides on Flat Conductive Surfaces" to Rubin et al. describes a method and apparatus for electrochemically forming an oxide layer on a flat conductive surface of a semiconductor element and photovoltaic (PV). On the battery. The method involves flattening a conductive surface of a working electrode and a counter electrode carrying a flat conductive surface They are relatively parallel. A volume of the chemical-containing organic electrolyte solution for forming an oxide layer on the flat conductive surface of the working electrode is configured to irrigate and occupy a space defined between the flat conductive surface of the working electrode and the opposite electrode. In the organic electrolyte solution, the current flows substantially only between the flat conductive surface and the working electrode in the opposite electrode only between the flat conductive surfaces for a period of time and in an amount sufficient to cause the chemical to form an oxide layer on the working electrode. The flat conductive surface. The device set is specifically designed such that the working and opposing electrodes can receive power on the back to protect their power input terminals from direct contact with electrolytes that could damage them. Therefore, the use of this device is very suitable for substrates having a volume conductivity and opposing electrodes but the device is not suitable for forming a metal oxide layer on a dielectric material even if their surfaces are previously coated with a conductive layer.

因此,形成有高導電率及高透明度之高度均勻傳導性金屬氧化物層於大基材面積上同時保護電化學裝置的電端子免於與電解質相互作用仍是一件挑戰工作。 Therefore, it is still a challenge to form a highly uniform conductive metal oxide layer having high conductivity and high transparency while protecting the electrical terminals of the electrochemical device from interaction with the electrolyte over a large substrate area.

發明概要 Summary of invention

根據本發明之一方面,提供一種於介電基材傳導性表面上形成透明金屬氧化物層之方法。該方法包括:使該介電基材之該傳導性表面的第一及第二傳導性表面部份各自暴露於第一及第二電解質,以及形成由與該第一電解質接觸之該第一傳導性表面部份構成的第一電化學電池以及與該第一電解質接觸而且與該第一傳導性表面部份隔開的第一電極。以及該方法更包括:形成由與該第二電解質 接觸之該第二傳導性表面部份構成的第二電化學電池以及與該第二電解質接觸而且與該第二傳導性表面部份隔開的第二電極。該第一及該第二電化學電池用該傳導性表面以串聯方式電性連接在一起。該第一電解質有促進電流傳導通過該第一電解質而使該第一電極或該第一傳導性表面部份不容易出現顯著電化學反應的第一化學物。該第二電解質有促進電流傳導通過該第二電解質的第二化學物,該第二化學物包含一非水溶劑、金屬離子濃度至少足以促進該透明金屬氧化物層至所欲厚度之形成的金屬離子、以及適於促進形成該第二傳導性表面部份之該透明金屬氧化物表面一氧源。以及該方法更包括:施加一電位於該第一及該第二電極之間,使得該第二電極對於該第一電極有正極性以造成一電流在該第二電極與該第一電極之間以串聯方式流動通過該第二電解質、該第二傳導性表面部份、該第一傳導性表面部份及該第一電解質。該第二電極有充分大於該第二傳導性表面部份的正電位以導致在該第二傳導性表面部份發生電化學反應以形成該透明金屬氧化物層於該第二傳導性表面部份上。 According to one aspect of the invention, a method of forming a transparent metal oxide layer on a conductive substrate conductive surface is provided. The method includes: exposing each of the first and second conductive surface portions of the conductive surface of the dielectric substrate to the first and second electrolytes, and forming the first conductive contact with the first electrolyte The first electrochemical cell of the surface portion and the first electrode in contact with the first electrolyte and spaced apart from the first conductive surface portion. And the method further comprises: forming a second electrolyte a second electrochemical cell formed by the second conductive surface portion in contact with the second electrode in contact with the second electrolyte and partially separated from the second conductive surface. The first and second electrochemical cells are electrically connected together in series by the conductive surface. The first electrolyte has a first chemical that promotes current conduction through the first electrolyte such that the first electrode or the first conductive surface portion is less prone to significant electrochemical reactions. The second electrolyte has a second chemical that promotes current conduction through the second electrolyte, the second chemical comprising a non-aqueous solvent having a metal ion concentration at least sufficient to promote formation of the transparent metal oxide layer to a desired thickness An ion, and an oxygen source adapted to promote formation of the transparent metal oxide surface of the second conductive surface portion. And the method further includes: applying an electric current between the first electrode and the second electrode such that the second electrode has a positive polarity with respect to the first electrode to cause a current between the second electrode and the first electrode Flowing through the second electrolyte, the second conductive surface portion, the first conductive surface portion, and the first electrolyte in series. The second electrode has a positive potential sufficiently greater than the second conductive surface portion to cause an electrochemical reaction at the second conductive surface portion to form the transparent metal oxide layer on the second conductive surface portion on.

該非水溶劑可為質子性或非質子性溶劑。 The nonaqueous solvent may be a protic or aprotic solvent.

該方法可包括:由可溶於該非水溶劑的鹽類釋出能夠形成在電磁頻譜之可見區呈光學透明之該透明金屬氧化物層的金屬離子。 The method can include: releasing a metal ion capable of forming the transparent metal oxide layer optically transparent in a visible region of the electromagnetic spectrum from a salt soluble in the non-aqueous solvent.

該方法可包括:造成該第二電解質包含可電化學嵌入該透明金屬氧化物層的一摻雜物以製造一傳導性透明 金屬氧化物層。 The method can include causing the second electrolyte to comprise a dopant electrochemically intercalated into the transparent metal oxide layer to produce a conductive transparent Metal oxide layer.

該方法可包括:導入一化學添加劑至該第一及該第二電解質中之至少一者。 The method can include introducing a chemical additive to at least one of the first and second electrolytes.

該方法可包括:計算該電流中之電荷的庫倫數,以及在電荷庫倫數符合與該透明金屬氧化物層之所欲厚度關連的一電荷數準則時,停止該電位之施加。 The method can include calculating a Coulomb number of the charge in the current, and stopping applying the potential when the charge coulomb number meets a charge number criterion associated with a desired thickness of the transparent metal oxide layer.

該方法可包括:在該第二電解質中的金屬離子濃度符合一金屬離子濃度準則時,中斷該電流、更換該第二電解質、以及重新建立該電流。 The method can include interrupting the current, replacing the second electrolyte, and reestablishing the current when the metal ion concentration in the second electrolyte conforms to a metal ion concentration criterion.

該方法可包括:在該電流正在流動時,使該基材相對於該第一及該第二電解質的移動方向是由該第一電解質到該第二電解質,以造成該透明金屬氧化物層沿著該基材之該傳導性表面的縱長方向形成。 The method can include, when the current is flowing, moving the substrate relative to the first and second electrolytes from the first electrolyte to the second electrolyte to cause the transparent metal oxide layer to The longitudinal direction of the conductive surface of the substrate is formed.

形成該第一及該第二電化學電池的步驟可包括:存放該第一電解質於第一敝面容器(first open-faced container)中以及存放該第二電解質於第二敝面容器中。 The step of forming the first and second electrochemical cells can include storing the first electrolyte in a first open-faced container and storing the second electrolyte in a second kneading container.

該方法可包括:用一入口壁、一內壁、一出口壁、數個第一端壁部及第一底壁部定義該第一及該第二敝面容器,藉此定義該第一敝面容器於該入口壁、該內壁、該等第一端壁部及該第一底壁部之間,以及藉此定義該第二敝面容器於該內壁、該出口壁、數個第二端壁部及第二底壁部之間。 The method may include defining the first and second kneading containers with an inlet wall, an inner wall, an outlet wall, a plurality of first end wall portions, and a first bottom wall portion, thereby defining the first crucible a surface container between the inlet wall, the inner wall, the first end wall portion and the first bottom wall portion, and thereby defining the second kneading container on the inner wall, the outlet wall, and the plurality of Between the two end wall portions and the second bottom wall portion.

該方法可包括:使該第一電極在與該基材平行隔開的第一位置處延伸穿過該入口壁、一第一端壁部或該第 一底壁部,以及使該第二電極在與該基材平行隔開的第二位置處延伸穿過該出口壁、一第二端壁部或該第二底壁部。 The method can include extending the first electrode through the inlet wall, a first end wall portion, or the first portion at a first position spaced parallel to the substrate a bottom wall portion and the second electrode extending through the outlet wall, a second end wall portion or the second bottom wall portion at a second position spaced parallel to the substrate.

該方法可包括:通過在該入口壁的一入口開孔來導入有該傳導性表面之該介電基材,以及使該基材在該第一及該第二敝面容器上面延伸使得該傳導性表面面向該第一及該第二敝面容器。該第一傳導性表面部份為該傳導性表面中在該第一容器上面延伸的一部份,以及該第二傳導性表面部份為該傳導性表面中在該第二敝面容器上面延伸的一部份,以及該方法更可包括:造成該基材之一部份延伸穿過該第二敝面容器之一出口壁的一出口開孔。 The method can include introducing the dielectric substrate having the conductive surface through an opening in the inlet wall, and extending the substrate over the first and second kneading containers such that the conducting The surface faces the first and second kneading containers. The first conductive surface portion is a portion of the conductive surface that extends over the first container, and the second conductive surface portion is the conductive surface that extends over the second kneading container A portion of the method, and the method may further comprise: causing a portion of the substrate to extend through an exit opening of the outlet wall of one of the second kneading containers.

該方法可包括:造成抵著該介電基材之該傳導性表面密封該入口開孔及該出口開孔以防止該第一及該第二電解質各自由該入口及該出口開孔露出。 The method can include causing the conductive opening against the dielectric substrate to seal the inlet opening and the outlet opening to prevent the first and second electrolytes from being exposed by the inlet and the outlet opening, respectively.

該方法可包括:造成抵著該介電基材之該傳導性表面密封該內壁以防止該第一及該第二電解質在該內壁交換。 The method can include causing the conductive surface against the dielectric substrate to seal the inner wall to prevent the first and second electrolytes from being exchanged at the inner wall.

該方法可包括:在該電流正在流動時,使該基材相對於該第一及該第二電解質的移動方向是由該第一電解質到該第二電解質,以造成該透明金屬氧化物層沿著該基材之該傳導性表面的縱長方向形成。 The method can include, when the current is flowing, moving the substrate relative to the first and second electrolytes from the first electrolyte to the second electrolyte to cause the transparent metal oxide layer to The longitudinal direction of the conductive surface of the substrate is formed.

該移動步驟可包括:使該基材移動同時該第一及該第二敝面容器保持靜止不動。 The moving step can include moving the substrate while the first and second kneading containers remain stationary.

該方法可包括:造成該第一及該第二敝面容器敝面朝下地放在該介電基材之該傳導性表面上,使得該基材 在該入口壁、該內壁、該出口壁、該第一及該第二端壁部下面延伸而使得該介電基材的該第一及該第二傳導性表面面向該第一及該第二敝面容器。該第一傳導性表面部份為該傳導性表面中在該第一敝面容器下面延伸的一部份,以及該第二傳導性表面部份為該傳導性表面中在該第二敝面容器下面延伸的一部份,以及該方法更可包括:使該介電基材之該傳導性表面的一部份在該第二敝面容器之該出口壁下面延伸。 The method can include: causing the first and second kneading containers to be placed face down on the conductive surface of the dielectric substrate such that the substrate Extending the inlet wall, the inner wall, the outlet wall, and the first and second end wall portions such that the first and second conductive surfaces of the dielectric substrate face the first and the first Two-face container. The first conductive surface portion is a portion of the conductive surface that extends under the first kneading container, and the second conductive surface portion is the conductive surface of the second kneading container A further extension, and the method, further comprising: extending a portion of the conductive surface of the dielectric substrate below the exit wall of the second kneading container.

該方法可包括:以該傳導性表面面朝上地存放該基材於存放一初始電解質的一容器中,以及造成該第一及該第二敝面容器敝面朝下地放在該介電基材之該傳導性表面上。這可包括:使該第一及該第二敝面容器實質浸入該初始電解質以及造成抵著該基材密封該入口壁、該出口壁、該第一及該第二端壁部以容納該初始電解質的第一容積於該第一敝面容器中以及容納該初始電解質的第二容積於該第二敝面容器中。 The method can include: storing the substrate with the conductive surface facing up in a container for storing an initial electrolyte, and placing the first and second kneading containers face down on the dielectric substrate The conductive surface of the material. This may include: substantially immersing the first and second kneading containers in the initial electrolyte and sealing the inlet wall, the outlet wall, the first and second end wall portions against the substrate to accommodate the initial A first volume of the electrolyte is in the first kneading container and a second volume containing the initial electrolyte is in the second kneading container.

該方法可包括:造成抵著該介電基材之該傳導性表面密封該內壁以防止該第一及該第二電解質各自在該內壁下面露出。 The method can include causing the conductive surface against the dielectric substrate to seal the inner wall to prevent the first and second electrolytes from being exposed underneath the inner wall.

該方法可包括:在該電流正在流動時,使該基材相對於該第一及該第二電解質的移動方向是由該第一電解質到該第二電解質,以造成該透明金屬氧化物層沿著該基材之該傳導性表面的縱長方向形成。該移動步驟可包括:使該第一及該第二敝面容器移動同時該基材保持靜止不動。 The method can include, when the current is flowing, moving the substrate relative to the first and second electrolytes from the first electrolyte to the second electrolyte to cause the transparent metal oxide layer to The longitudinal direction of the conductive surface of the substrate is formed. The moving step can include moving the first and second kneading containers while the substrate remains stationary.

根據本發明之另一方面,提供一種形成透明金屬氧化物層於第一介電基材之第一傳導性表面上的方法。該方法包括:使該第一介電基材的第一傳導性表面抵著一定義空間用之框體墊片(space-defining frame gasket)壓在第二介電基材之第二傳導性表面上,使得該框體定義一密閉空間於該第一傳導性表面與該第二傳導性表面之間。以及該方法更包括:通過該框體墊片中的一開孔,導入一電解質於該密閉空間,該電解質有促進電流傳導通過該電解質的化學物,該化學物包含一非水溶劑、金屬離子濃度至少足以促進該透明金屬氧化物層至所欲厚度之形成的金屬離子、以及適於促進形成該第二傳導性表面之該透明金屬氧化物表面的一氧源。以及,該方法更包括:施加一電位於該第一及該第二傳導性表面之間使得該第二傳導性表面對於該第一傳導性表面有負極性以造成一電流在該第一傳導性表面與該第二傳導性表面之間流動通過該電解質以導致在該第一傳導性表面發生電化學反應以形成該透明金屬氧化物層於該第一傳導性表面上。 In accordance with another aspect of the invention, a method of forming a transparent metal oxide layer on a first conductive surface of a first dielectric substrate is provided. The method includes: pressing a first conductive surface of the first dielectric substrate against a space-defining frame gasket of a defined space on a second conductive surface of the second dielectric substrate The frame defines a confined space between the first conductive surface and the second conductive surface. And the method further comprises: introducing an electrolyte into the sealed space through an opening in the frame gasket, the electrolyte having a chemical that promotes current conduction through the electrolyte, the chemical comprising a non-aqueous solvent, a metal ion The metal ion having a concentration at least sufficient to promote formation of the transparent metal oxide layer to a desired thickness, and an oxygen source adapted to promote formation of the surface of the transparent metal oxide of the second conductive surface. And the method further includes: applying an electric current between the first conductive surface and the second conductive surface such that the second conductive surface has a negative polarity to the first conductive surface to cause a current in the first conductivity A flow is passed between the surface and the second conductive surface through the electrolyte to cause an electrochemical reaction to occur at the first conductive surface to form the transparent metal oxide layer on the first conductive surface.

該非水溶劑可為質子性或非質子性溶劑。 The nonaqueous solvent may be a protic or aprotic solvent.

該方法可包括:由可溶於該非水溶劑的鹽類釋出能夠形成在電磁頻譜之可見區呈光學透明之該透明金屬氧化物層的金屬離子。 The method can include: releasing a metal ion capable of forming the transparent metal oxide layer optically transparent in a visible region of the electromagnetic spectrum from a salt soluble in the non-aqueous solvent.

該方法可包括:造成該第二電解質包含可電化學嵌入該透明金屬氧化物層的一摻雜物以製造一傳導性透明金屬氧化物層。 The method can include causing the second electrolyte to comprise a dopant that can be electrochemically embedded in the transparent metal oxide layer to produce a conductive transparent metal oxide layer.

該方法可包括:導入一化學添加劑於該電解質中。 The method can include introducing a chemical additive into the electrolyte.

該方法可包括:計算該電流中之電荷的庫倫數,以及在電荷庫倫數符合與該透明金屬氧化物層之所欲厚度關連的一電荷庫倫數準則時,停止該電位之施加。 The method can include calculating a Coulomb number of the charge in the current, and stopping applying the potential when the charge coulomb number meets a charge coulomb number criterion associated with a desired thickness of the transparent metal oxide layer.

該方法可包括:在該電解質中的金屬離子濃度符合一金屬離子濃度準則時,中斷該電流、更換該電解質、以及重新建立該電流。 The method can include interrupting the current, replacing the electrolyte, and reestablishing the current when the metal ion concentration in the electrolyte conforms to a metal ion concentration criterion.

該壓制步驟可包括:充分壓制以壓縮該定義空間用之框體墊片以充分密封該密閉空間以防止該電解質由該密閉空間露出。 The pressing step may include: sufficiently pressing to compress the frame spacer for the defined space to sufficiently seal the sealed space to prevent the electrolyte from being exposed by the sealed space.

施加一電位的步驟可包括:各自固定第一及第二傳導性夾鉗於該第一基材的第一及第二相對邊緣上以在該第一基材的相對邊緣與該第一傳導性表面電接觸,以及各自固定第三及第四傳導性夾鉗於該介電基材的第三及第四邊緣上以與該介電基材之該第二傳導性表面電接觸,以及使該第一及該第二夾鉗連接至一電流源之正端以及使該第三及該第四夾鉗連接至該電流源之負端。 The step of applying a potential may include: respectively fixing the first and second conductive clamps on the first and second opposite edges of the first substrate to be at the opposite edge of the first substrate and the first conductivity Surface electrical contact, and respective fixed third and fourth conductive clamps on the third and fourth edges of the dielectric substrate to electrically contact the second conductive surface of the dielectric substrate, and to cause The first and second clamps are coupled to the positive terminal of a current source and the third and fourth clamps are coupled to the negative terminal of the current source.

根據本發明之另一方面,提供一種用於形成透明金屬氧化物層於介電基材之傳導性表面上的裝置。該裝置包含用於存放第一電解質以及與第一電解質接觸之第一電極的一構件,以及用於存放第二電解質以及與該第二電解質接觸之第二電極的一構件。該裝置更包含一構件用於同時使該介電基材之該傳導性表面的第一及第二傳導性表面部份各自暴露於該第一及該第二電解質,使得該第一及該 第二傳導性表面部份各自與該第一及該第二電極隔開以各自形成第一及第二電化學電池,以及藉此該第一及該第二電化學電池用該介電基材之該傳導性表面以串聯方式電性連接在一起。該第一電解質有促進電流傳導通過該第一電解質而使該第一電極或該第一傳導性表面部份不容易出現顯著電化學反應的第一化學物。該第二電解質有促進電流傳導通過該第二電解質的第二化學物,該第二化學物包含一非水溶劑、金屬離子濃度至少足以促進該透明金屬氧化物層至所欲厚度之形成的金屬離子、以及適合促進該透明金屬氧化物層形成於該第二傳導性表面部份上的一氧源。該裝置更包含一構件用於施加一電位於該第一及該第二電極之間,使得該第二電極對於該第一電極有正極性以造成一電流在該第二電極與該第一電極之間以串聯方式流動通過該第二電解質、該第二傳導性表面部份、該第一傳導性表面部份及該第一電解質。該第二電極有充分大於該第二傳導性表面部份的正電位以導致在該第二傳導性表面部份發生電化學反應以形成該透明金屬氧化物層於該第二傳導性表面部份上。 In accordance with another aspect of the invention, an apparatus for forming a transparent metal oxide layer on a conductive surface of a dielectric substrate is provided. The device includes a member for storing a first electrolyte and a first electrode in contact with the first electrolyte, and a member for storing the second electrolyte and the second electrode in contact with the second electrolyte. The device further includes a member for simultaneously exposing each of the first and second conductive surface portions of the conductive surface of the dielectric substrate to the first and second electrolytes such that the first and the first The second conductive surface portions are each spaced apart from the first and second electrodes to form first and second electrochemical cells, respectively, and thereby the first and second electrochemical cells are used with the dielectric substrate The conductive surfaces are electrically connected together in series. The first electrolyte has a first chemical that promotes current conduction through the first electrolyte such that the first electrode or the first conductive surface portion is less prone to significant electrochemical reactions. The second electrolyte has a second chemical that promotes current conduction through the second electrolyte, the second chemical comprising a non-aqueous solvent having a metal ion concentration at least sufficient to promote formation of the transparent metal oxide layer to a desired thickness An ion, and an oxygen source adapted to promote formation of the transparent metal oxide layer on the second conductive surface portion. The device further includes a member for applying an electric current between the first electrode and the second electrode such that the second electrode has a positive polarity with respect to the first electrode to cause a current at the second electrode and the first electrode Flowing through the second electrolyte, the second conductive surface portion, the first conductive surface portion, and the first electrolyte in series. The second electrode has a positive potential sufficiently greater than the second conductive surface portion to cause an electrochemical reaction at the second conductive surface portion to form the transparent metal oxide layer on the second conductive surface portion on.

該非水溶劑可為質子性或非質子性溶劑。 The nonaqueous solvent may be a protic or aprotic solvent.

該裝置可包含由可溶於該非水溶劑的鹽類釋出能夠形成在電磁頻譜之可見區呈光學透明之該透明金屬氧化物層的金屬離子。 The apparatus can comprise a metal ion that is soluble in the transparent metal oxide layer that is optically transparent in the visible region of the electromagnetic spectrum by a salt that is soluble in the non-aqueous solvent.

該裝置可包含造成該第二電解質包含可電化學嵌入該透明金屬氧化物層的一摻雜物以製造一傳導性透明 金屬氧化物層。 The device can include causing the second electrolyte to comprise a dopant that can be electrochemically embedded in the transparent metal oxide layer to produce a conductive transparent Metal oxide layer.

該裝置可包含一構件用於計算該電流中之電荷的庫倫數,以及與用於計算庫倫數之該構件通訊的一構件用於在用於計算庫倫數之該構件指出的電荷庫倫數滿足與該透明金屬氧化物層之所欲厚度關連之一庫倫數準則時停止該電位之施加。 The apparatus can include a component for calculating a Coulomb number of the charge in the current, and a component for communicating with the member for calculating the Coulomb number for satisfying the charge coulomb number indicated by the member for calculating the Coulomb number The application of the potential is stopped when the desired thickness of the transparent metal oxide layer is associated with one of the Coulomb number criteria.

該裝置可包含用於在該第二電解質中的金屬離子濃度符合一金屬離子濃度準則時中斷該電流的一構件,用於更換該第二電解質的一構件,以及用於在第二電解質已更換後重新建立該電流的一構件。 The device may comprise a means for interrupting the current when the metal ion concentration in the second electrolyte conforms to a metal ion concentration criterion, a means for replacing the second electrolyte, and for replacing the second electrolyte After rebuilding a component of the current.

該裝置可包含一構件用於在該電流正在流動時,使該基材相對於該第一及該第二電解質的移動方向是由該第一電解質到該第二電解質,以造成該透明金屬氧化物層沿著該基材之該傳導性表面的縱長方向形成。 The device may include a member for causing the substrate to move from the first electrolyte to the second electrolyte relative to the first and second electrolytes while the current is flowing to cause the transparent metal to oxidize The layer is formed along the longitudinal direction of the conductive surface of the substrate.

用於存放該第一電解質及該第一電極的該構件可包含第一敝面容器,以及用於存放該第二電解質及該第二電極的該構件可包含第二敝面容器。 The member for storing the first electrolyte and the first electrode may comprise a first kneading container, and the member for storing the second electrolyte and the second electrode may comprise a second kneading container.

該第一敝面容器可包含一入口壁及一內壁、一對第一端壁、以及第一底壁部,以及該第二敝面容器可包含該內壁及一出口壁、一對第二端壁、以及第二底壁部,該第一及該第二敝面容器有第一及第二端壁部。 The first kneading container may include an inlet wall and an inner wall, a pair of first end walls, and a first bottom wall portion, and the second kneading container may include the inner wall and an outlet wall, a pair of The second end wall and the second bottom wall portion, the first and second kneading containers have first and second end wall portions.

該第一電極在與該基材平行隔開的第一位置處可延伸穿過該入口壁,該第一端壁部或該第一底壁部中之至少一者,以及該第二電極在與該介電基材之該傳導性表 面平行隔開的第二位置處可延伸穿過該出口壁,該等第二端壁部或該第二底壁部中之至少一者。 The first electrode may extend through the inlet wall at a first position spaced parallel to the substrate, at least one of the first end wall portion or the first bottom wall portion, and the second electrode The conductivity table with the dielectric substrate The second position parallel to the face may extend through the outlet wall, at least one of the second end wall portion or the second bottom wall portion.

用於同時暴露該基材傳導性表面之該第一及該第二表面部份的該構件可包含在該入口壁中的一入口開孔與在該出口壁中的一出口開孔用以接受及定位該介電基材以使該介電基材在該第一及該第二敝面容器上面延伸使得該第一傳導性表面部份面向該第一敝面容器以及使得該第二傳導性表面部份面向該第二敝面容器。 The member for simultaneously exposing the first and second surface portions of the substrate conductive surface may include an inlet opening in the inlet wall and an outlet opening in the outlet wall for receiving And positioning the dielectric substrate such that the dielectric substrate extends over the first and second kneading containers such that the first conductive surface portion faces the first kneading container and the second conductivity is made The surface portion faces the second kneading container.

該裝置可包含入口及出口密封件,該入口及該出口密封件係可操作地組配成可抵著該介電基材之該傳導性表面密封該入口開孔及該出口開孔以防止該第一及該第二電解質各自由該入口及該出口開孔露出。 The device can include an inlet and an outlet seal, the inlet and the outlet seal being operatively configured to seal the inlet opening and the outlet opening against the conductive surface of the dielectric substrate to prevent The first and the second electrolyte are each exposed by the inlet and the outlet opening.

該裝置可包含一內壁密封件,該內壁密封件係可操作地組配成可抵著該介電基材之該傳導性表面密封該內壁以防止該第一及該第二電解質在該內壁交換。 The device can include an inner wall seal operatively configured to seal the inner wall against the conductive surface of the dielectric substrate to prevent the first and second electrolytes from The inner wall is exchanged.

該裝置可包含一構件用於在該電流正在流動時,使該基材相對於該第一及該第二電解質的移動方向是由該第一電解質到該第二電解質,以造成該透明金屬氧化物層沿著該基材之該傳導性表面的縱長方向形成。 The device may include a member for causing the substrate to move from the first electrolyte to the second electrolyte relative to the first and second electrolytes while the current is flowing to cause the transparent metal to oxidize The layer is formed along the longitudinal direction of the conductive surface of the substrate.

用於移動的該構件可包含用於移動該基材的一構件以及用於在該基材正在移動時使該第一及該第二敝面容器保持靜止不動的一構件。 The member for movement may include a member for moving the substrate and a member for holding the first and second kneading containers stationary while the substrate is moving.

該裝置更可包含:一構件用於面朝下地安置該第一及該第二敝面容器於該介電基材之該傳導性表面上,使 得該基材在該入口壁、該內壁、該出口壁以及該第一對及該第二對端壁下面延伸,使得該介電基材的該第一及該第二傳導性表面面向該第一及該第二敝面容器。 The device may further include: a member for placing the first and second kneading containers on the conductive surface of the dielectric substrate face down; The substrate extends over the inlet wall, the inner wall, the outlet wall, and the first pair and the second pair of end walls such that the first and second conductive surfaces of the dielectric substrate face the The first and the second kneading container.

該裝置可包含用於存放一初始電解質之一容積的一構件,用於以該傳導性表面面朝上地存放該介電基材於該初始電解質中的一構件,以及用於面朝下地安置該第一及該第二敝面容器於該介電基材之該傳導性表面上之該構件可包含用於使該第一及該第二敝面容器實質浸入該初始電解質的一構件。該裝置更可包含一構件用於抵著該基材密封該入口壁、該出口壁以及該第一及該第二端壁部以容納該初始電解質的第一容積於該第一敝面容器中以及容納該初始電解質的第二容積於該第二敝面容器中。 The apparatus can include a member for storing a volume of an initial electrolyte for depositing a member of the dielectric substrate in the initial electrolyte with the conductive surface facing up, and for placing face down The member of the first and second kneading containers on the conductive surface of the dielectric substrate can comprise a member for substantially immersing the first and second kneading containers into the initial electrolyte. The device may further comprise a member for sealing the inlet wall, the outlet wall and the first and second end wall portions against the substrate to accommodate a first volume of the initial electrolyte in the first kneading container And a second volume containing the initial electrolyte in the second kneading container.

該裝置可包含一構件用於抵著該介電基材之該傳導性表面密封該內壁以防止該第一及該第二電解質各自在該內壁露出。 The device can include a member for sealing the inner wall against the conductive surface of the dielectric substrate to prevent the first and second electrolytes from being exposed at the inner wall.

該裝置可包含一構件用於在該電流正在流動時,使該基材相對於該第一及該第二電解質的移動方向是由該第一電解質到該第二電解質,以造成該透明金屬氧化物層沿著該基材之該傳導性表面的縱長方向形成。 The device may include a member for causing the substrate to move from the first electrolyte to the second electrolyte relative to the first and second electrolytes while the current is flowing to cause the transparent metal to oxidize The layer is formed along the longitudinal direction of the conductive surface of the substrate.

用於移動的該構件可包含用於移動該第一及該第二敝面容器的一構件,以及用於在該第一及該第二敝面容器正在移動時使該基材保持靜止不動的一構件。 The member for moving may include a member for moving the first and second kneading containers, and for holding the substrate stationary while the first and second kneading containers are moving A component.

根據本發明之另一方面,提供一種用於形成透明金屬氧化物層於第一介電基材之第一傳導性表面上的裝 置。該裝置包含位於該介電基材之該傳導性表面上的一定義空間用之框體墊片。該墊片有定義一空間的一內壁,該空間以該內壁及該介電基材之該傳導性表面的一部份為界。該裝置更包含一構件用於抵著該定義空間用之框體墊片地壓制第二介電基材之第二傳導性表面以使該空間為一密閉空間,以及在該框體墊片中的一開孔用於導入有促進電流傳導通過該電解質之化學物的一電解質於該密閉空間內。該化學物包含非水溶劑、金屬離子以及適於促進形成該透明金屬氧化物層於該第一介電基材之該傳導性表面上的一氧源。該裝置更包含一構件用於施加一電位於該第二介電基材之該第二傳導性表面與該第一基材之該第一傳導性表面之間使得該第一基材之該第一傳導性表面對於該第二介電基材之該第二傳導性表面有負極性以使一電流在該第二傳導性表面與該第一傳導性表面之間流動而通過該電解質以導致在該第一傳導性表面發生電化學反應以形成該透明金屬氧化物層於該第一傳導性表面上。 According to another aspect of the present invention, there is provided a device for forming a transparent metal oxide layer on a first conductive surface of a first dielectric substrate Set. The device includes a frame spacer for defining a space on the conductive surface of the dielectric substrate. The gasket has an inner wall defining a space bounded by the inner wall and a portion of the conductive surface of the dielectric substrate. The device further includes a member for pressing the second conductive surface of the second dielectric substrate against the frame spacer for the defined space to make the space a closed space, and in the frame gasket An opening is used to introduce an electrolyte having a chemical that conducts current through the electrolyte in the enclosed space. The chemical comprises a non-aqueous solvent, a metal ion, and an oxygen source adapted to promote formation of the transparent metal oxide layer on the conductive surface of the first dielectric substrate. The device further includes a member for applying an electric current between the second conductive surface of the second dielectric substrate and the first conductive surface of the first substrate such that the first substrate a conductive surface having a negative polarity to the second conductive surface of the second dielectric substrate such that a current flows between the second conductive surface and the first conductive surface to pass through the electrolyte to cause The first conductive surface undergoes an electrochemical reaction to form the transparent metal oxide layer on the first conductive surface.

該非水溶劑可為質子性或非質子性溶劑。 The nonaqueous solvent may be a protic or aprotic solvent.

該裝置可包含由可溶於該非水溶劑的鹽類釋出能夠形成在電磁頻譜之可見區呈光學透明之該透明金屬氧化物層的金屬離子。 The apparatus can comprise a metal ion that is soluble in the transparent metal oxide layer that is optically transparent in the visible region of the electromagnetic spectrum by a salt that is soluble in the non-aqueous solvent.

該裝置可包含造成該第二電解質包含可電化學嵌入該透明金屬氧化物層的一摻雜物以製造一傳導性透明金屬氧化物層。 The apparatus can include causing the second electrolyte to comprise a dopant that can be electrochemically embedded in the transparent metal oxide layer to produce a conductive transparent metal oxide layer.

該裝置可包含一構件用於計算該電流中之電荷 的庫倫數,以及與用於計算庫倫數之該構件通訊的一構件用於在用於計算庫倫數之該構件指出的電荷庫倫數滿足與該透明金屬氧化物層之所欲厚度關連的一庫倫數準則時停止該電位之施加。 The device can include a component for calculating the charge in the current a Coulomb number, and a component for communicating with the member for calculating the Coulomb number, is used to satisfy a coulomb number associated with the desired thickness of the transparent metal oxide layer in the component used to calculate the Coulomb number. The application of this potential is stopped when the number criterion is used.

該裝置可包含用於在該電解質中之金屬離子濃度符合金屬離子濃度準則時中斷該電流的一構件,用於更換該電解質的一構件,以及用於在更換該電解質後重新建立該電流的一構件。 The apparatus may include a member for interrupting the current when the metal ion concentration in the electrolyte conforms to the metal ion concentration criterion, a member for replacing the electrolyte, and a means for reestablishing the current after replacing the electrolyte member.

用於壓制的該構件可操作地組配成可充分壓制以壓縮該定義空間用之框體墊片以充分密封該密閉空間以防止該電解質由該密閉空間露出。 The member for pressing is operatively assembled to form a frame gasket that is sufficiently compressible to compress the defined space to sufficiently seal the enclosed space to prevent the electrolyte from being exposed from the enclosed space.

用於施加一電位的該構件可包含各自在該第一基材之第一及第二相對邊緣上在該第一基材之相對側邊與該第一傳導性塗層電性接觸的第一及第二傳導性夾鉗以及在該介電基材之第三及第四相對邊緣上與該介電基材相對側邊之該第二傳導性表面電性接觸的第三及第四傳導性夾鉗。該第一及該第二夾鉗可操作地組配成可連接至一電流源的一負端,以及該第三及該第四夾鉗可操作地組配成可連接至該電流源的一正端。 The member for applying a potential may include a first one electrically contacting the first conductive coating on opposite sides of the first substrate on the first and second opposite edges of the first substrate And a second conductive clamp and third and fourth conductivity in electrical contact with the second conductive surface on opposite sides of the dielectric substrate on the third and fourth opposite edges of the dielectric substrate clamp. The first and second clamps are operatively configured to be coupled to a negative end of a current source, and the third and fourth clamps are operatively assembled to be connectable to the current source Positive end.

在閱讀以下本發明特定具體實施例及附圖的描述後,本技藝一般技術人員可明白本發明的其他方面及特徵。 Other aspects and features of the present invention will become apparent to those skilled in the <RTIgt;

10‧‧‧裝置 10‧‧‧ device

12、18、24、26‧‧‧構件 12, 18, 24, 26‧‧‧ components

14‧‧‧第一電解質 14‧‧‧First electrolyte

16‧‧‧第一電極 16‧‧‧First electrode

20‧‧‧第二電解質 20‧‧‧Second electrolyte

22‧‧‧第二電極 22‧‧‧second electrode

28、30‧‧‧第一及第二傳導性表面部份 28, 30‧‧‧ First and second conductive surface parts

32‧‧‧傳導性表面 32‧‧‧ Conductive surface

34‧‧‧介電基材 34‧‧‧Dielectric substrate

36、38‧‧‧第一及第二電化學電池 36, 38‧‧‧ First and second electrochemical cells

50、52‧‧‧第一及第二敝面容器 50, 52‧‧‧ first and second kneading containers

53‧‧‧主體 53‧‧‧ Subject

54‧‧‧入口壁 54‧‧‧ entrance wall

56‧‧‧內壁 56‧‧‧ inner wall

58‧‧‧第一對側壁 58‧‧‧ first pair of side walls

59‧‧‧第二對側壁 59‧‧‧Second pair of side walls

60、66‧‧‧第一及第二底壁部 60, 66‧‧‧ first and second bottom wall sections

62‧‧‧出口壁 62‧‧‧Exit wall

70‧‧‧長形入口開孔 70‧‧‧Long entrance opening

72、74‧‧‧上、下壁部 72, 74‧‧‧Upper and lower wall

76、78‧‧‧第一上、下彈性密封件 76,78‧‧‧First upper and lower elastic seals

80‧‧‧介電基材 80‧‧‧ dielectric substrate

82‧‧‧傳導性表面 82‧‧‧ Conductive surface

84‧‧‧端部 84‧‧‧End

86‧‧‧第一表面 86‧‧‧ first surface

88‧‧‧非傳導性表面 88‧‧‧ Non-conducting surface

90‧‧‧外緣 90‧‧‧ outer edge

92‧‧‧第一傳導性夾鉗 92‧‧‧First Conductive Clamp

94‧‧‧接觸件 94‧‧‧Contacts

96‧‧‧C形通道 96‧‧‧C-shaped channel

98、100‧‧‧第一及第二相對腳部 98, 100‧‧‧ first and second relative feet

102‧‧‧螺絲 102‧‧‧ screws

104‧‧‧導線 104‧‧‧Wire

106‧‧‧負端 106‧‧‧negative

107‧‧‧電流源 107‧‧‧current source

108‧‧‧電源供應器 108‧‧‧Power supply

109‧‧‧電流分流器 109‧‧‧ Current shunt

110‧‧‧長形開孔 110‧‧‧Long opening

111‧‧‧處理器電路 111‧‧‧ Processor Circuit

112、114‧‧‧上、下壁部 112, 114‧‧‧Upper and lower wall

113‧‧‧繼電器 113‧‧‧ Relay

116、118‧‧‧第二上、下彈性密封件 116, 118‧‧‧Second upper and lower elastic seals

120‧‧‧基材 120‧‧‧Substrate

122‧‧‧非傳導性下表面 122‧‧‧ Non-conductive lower surface

124‧‧‧非傳導性上表面 124‧‧‧Non-conducting upper surface

126‧‧‧端部 126‧‧‧ end

128‧‧‧第二表面 128‧‧‧second surface

130‧‧‧第二傳導性夾鉗 130‧‧‧Second conductive clamp

132‧‧‧導線 132‧‧‧Wire

134‧‧‧正端 134‧‧‧ Positive

150‧‧‧入口開孔 150‧‧‧ entrance opening

152‧‧‧出口開孔 152‧‧‧Export opening

154、156‧‧‧上、下入口壁 154, 156‧‧‧ upper and lower entrance walls

158、160‧‧‧上、下入口密封件 158, 160‧‧‧ upper and lower inlet seals

162、164‧‧‧上、下壁 162, 164‧‧‧Upper and lower walls

166、168‧‧‧上、下出口密封件 166, 168‧‧‧ upper and lower outlet seals

170‧‧‧上半部 170‧‧‧ upper half

172‧‧‧內壁密封件 172‧‧‧Inner wall seals

180、182、184‧‧‧長形開孔 180, 182, 184‧‧‧ elongated openings

186、188、190‧‧‧加熱器元件 186, 188, 190‧‧‧ heater elements

192、194‧‧‧電解質導入開孔 192, 194‧‧‧ Electrolyte introduction opening

196、198‧‧‧電解質排出開孔 196, 198‧‧‧ Electrolyte discharge opening

200、202‧‧‧入口及出口槽溝 200, 202‧‧‧ entrance and exit slots

201‧‧‧等價電路 201‧‧‧ equivalent circuit

203‧‧‧第一電阻 203‧‧‧First resistance

205‧‧‧第二電阻 205‧‧‧second resistance

207‧‧‧第三電阻 207‧‧‧ Third resistor

209‧‧‧第四電阻 209‧‧‧fourth resistor

211‧‧‧第五電阻 211‧‧‧ fifth resistor

213‧‧‧第六電阻 213‧‧‧ sixth resistor

215、217‧‧‧介面 215, 217‧‧ interface

220‧‧‧第一入口絞盤 220‧‧‧First entrance winch

222‧‧‧入口夾送滾輪 222‧‧‧Inlet pinch roller

224‧‧‧出口絞盤 224‧‧‧Export winch

226‧‧‧出口夾送滾輪 226‧‧‧Export pinch roller

228‧‧‧箭頭 228‧‧‧ arrow

246‧‧‧傳導性表面 246‧‧‧ Conductive surface

248‧‧‧介電基材 248‧‧‧ dielectric substrate

250‧‧‧系統 250‧‧‧ system

252‧‧‧一卷PET薄膜 252‧‧‧One roll of PET film

254‧‧‧心軸 254‧‧‧ mandrel

256‧‧‧反時鐘方向 256‧‧‧Counterclock direction

258‧‧‧捲取心軸 258‧‧‧Winning mandrel

300‧‧‧裝置 300‧‧‧ device

302‧‧‧深盤狀容器 302‧‧‧Deep disk container

303‧‧‧注入開孔 303‧‧‧Injection opening

304、306‧‧‧第一及第二端壁 304, 306‧‧‧ first and second end walls

307‧‧‧排出開孔 307‧‧‧Draining holes

308、310‧‧‧第一及第二側壁 308, 310‧‧‧ first and second side walls

312‧‧‧底壁 312‧‧‧ bottom wall

314‧‧‧長形開孔 314‧‧‧Long opening

316‧‧‧初始電解質 316‧‧‧Initial electrolyte

318‧‧‧基材 318‧‧‧Substrate

320‧‧‧傳導性表面 320‧‧‧ Conductive surface

350‧‧‧裝置 350‧‧‧ device

352、354、356‧‧‧入口、出口及內壁 352, 354, 356‧ ‧ entrance, exit and inner wall

358‧‧‧側壁 358‧‧‧ side wall

360‧‧‧底壁部 360‧‧‧ bottom wall

362、364、366‧‧‧共面遠端表面 362, 364, 366‧‧‧ coplanar distal surface

368、370、372‧‧‧彈性密封件 368, 370, 372‧‧‧ elastic seals

380‧‧‧第一敝面容器 380‧‧‧ first kneading container

381‧‧‧第一容積 381‧‧‧First volume

382‧‧‧第二敝面容器 382‧‧‧Second kneading container

383‧‧‧第二容積 383‧‧‧second volume

390、392‧‧‧第一及第二電極 390, 392‧‧‧ first and second electrodes

393、394‧‧‧長形開孔 393, 394‧‧‧ long open holes

396、398‧‧‧彈性密封件 396, 398‧‧‧ elastic seals

400、402‧‧‧第一及第二多個開孔 400, 402‧‧‧ first and second openings

420‧‧‧構件 420‧‧‧ components

422、424‧‧‧第一及第二傳導性表面部份 422, 424‧‧‧ first and second conductive surface parts

430‧‧‧可水平伸縮臂體 430‧‧‧ horizontally telescopic arm

432‧‧‧可垂直伸縮支架 432‧‧‧ Vertically extendable bracket

433‧‧‧箭頭 433‧‧‧ arrow

440‧‧‧最終第二傳導性表面部份 440‧‧‧Final second conductive surface part

442‧‧‧最終第一表面部份 442‧‧‧ final first surface part

500‧‧‧裝置 500‧‧‧ device

502‧‧‧電化學電池組 502‧‧‧Electrochemical battery pack

503‧‧‧第一電極 503‧‧‧First electrode

504‧‧‧壓制組件 504‧‧‧Compression assembly

505‧‧‧第二電極 505‧‧‧second electrode

506‧‧‧傳導性表面 506‧‧‧ Conductive surface

507‧‧‧矩形介電基材 507‧‧‧Rectangular dielectric substrate

508、510‧‧‧第一及第二端緣 508, 510‧‧‧ first and second edges

512、514‧‧‧夾鉗 512, 514‧‧ ‧ clamp

513、515‧‧‧導線 513, 515‧‧‧ wires

516‧‧‧定義空間用之框體墊片 516‧‧‧Defined space gasket for space

517‧‧‧平坦面 517‧‧‧flat surface

518‧‧‧側邊 518‧‧‧ side

520‧‧‧矩形開孔 520‧‧‧Rectangular opening

522‧‧‧內壁 522‧‧‧ inner wall

524‧‧‧空間 524‧‧‧ Space

526‧‧‧部份 526‧‧‧Parts

528‧‧‧框部 528‧‧‧ Frame Department

530、532‧‧‧第一及第二開孔 530, 532‧‧‧ first and second openings

534、536‧‧‧第一及第二導管 534, 536‧‧ first and second catheters

550‧‧‧第二基材 550‧‧‧Second substrate

552‧‧‧第二傳導性表面 552‧‧‧Second conductive surface

554、556‧‧‧第三及第四夾鉗 554, 556‧‧‧ third and fourth clamps

555、557‧‧‧導線 555, 557‧‧‧ wires

558、560‧‧‧第一及第二邊緣 558, 560‧‧‧ first and second edges

600、602‧‧‧第一及第二鋼板 600, 602‧‧‧ first and second steel plates

604‧‧‧第一向外延伸側部 604‧‧‧First outwardly extending side

606、608‧‧‧第一及第二向外延伸側部 606, 608‧‧‧ first and second outwardly extending sides

610、612‧‧‧第一開孔 610, 612‧‧‧ first opening

614、616‧‧‧螺栓 614, 616‧‧‧ bolts

618‧‧‧螺紋部 618‧‧‧Threading Department

620‧‧‧平滑部 620‧‧‧Smooth Department

622‧‧‧頭部 622‧‧‧ head

在圖示本發明具體實施例的附圖中,圖1為根據本發明第一具體實施例之裝置的透視圖; 圖2為圖1之裝置的橫截面/透視圖,其中橫截面圖係沿著圖1的直線11-11繪出;圖3示意圖示由圖1及圖2之裝置形成的電路;圖4根據本發明第二具體實施例示意圖示包含圖1及圖2之裝置的系統,以及用於使基材對於該裝置移動以導致在長基材上形成透明金屬氧化物層的構件;圖5示意圖示根據本發明第三具體實施例的裝置,在此有傳導性表面的聚合物介電基材捲在捲軸上以及饋入圖1及圖2的裝置,然後在通過圖1及圖2的裝置的加工後,繞在捲取捲軸上;圖6圖示本發明第四具體實施例的裝置,其係使用方向與圖1及圖2之裝置相反的變體以及用於使裝置對於含有初始電解質之固定托盤移動的構件;圖7為圖6之裝置的橫截面/片段視圖,其中橫截面係沿著圖6的直線VII-VII繪出;圖8根據本發明第五具體實施例圖示只用單一電化學電池之裝置的透視/示意圖;圖9的展開圖圖示圖8之裝置的電化學電池部份。 1 is a perspective view of a device in accordance with a first embodiment of the present invention; Figure 2 is a cross-sectional/perspective view of the apparatus of Figure 1, wherein the cross-sectional view is taken along line 11-11 of Figure 1; Figure 3 is a schematic representation of the circuit formed by the apparatus of Figures 1 and 2; Figure 4 A system comprising the apparatus of Figures 1 and 2, and means for moving a substrate against the apparatus to cause formation of a transparent metal oxide layer on a long substrate, in accordance with a second embodiment of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS A schematic view of a device according to a third embodiment of the present invention, wherein a polymeric dielectric substrate having a conductive surface is wound onto a reel and fed into the apparatus of Figures 1 and 2, and then through Figures 1 and 2 After processing the device, it is wound on a take-up reel; FIG. 6 shows a device according to a fourth embodiment of the present invention, which is a variant that uses a direction opposite to that of the device of FIGS. 1 and 2 and for the device to contain Figure 7 is a cross-sectional/fragment view of the apparatus of Figure 6, wherein the cross-section is depicted along line VII-VII of Figure 6; Figure 8 is a diagram of a fifth embodiment of the present invention A perspective/schematic diagram showing a device using only a single electrochemical cell; an expanded view of Figure 9. The electrochemical cell portion of the device of Figure 8 is illustrated.

較佳實施例之詳細說明 Detailed description of the preferred embodiment

圖1大體以元件符號10表示根據本發明第一具體實施例用以形成透明金屬氧化物層於介電基材34之傳導性表面32上的裝置。在此具體實施例中,介電基材可為有約0.3毫米至約4毫米之厚度的玻璃或陶瓷材料或有約0.05毫 米至約1毫米之厚度的聚合物材料,以及透明傳導性表面32例如可為厚度在約20奈米至約1000奈米之間以及片電阻在約500歐姆/單位面積至約5歐姆/單位面積之間的摻氟氧化鋅層。介電基材34可長數米。 1 generally illustrates, by reference numeral 10, a device for forming a transparent metal oxide layer on a conductive surface 32 of a dielectric substrate 34 in accordance with a first embodiment of the present invention. In this embodiment, the dielectric substrate can be a glass or ceramic material having a thickness of from about 0.3 mm to about 4 mm or about 0.05 mil. The polymeric material having a thickness of from about 1 mm to about 1 mm, and the transparent conductive surface 32 may, for example, have a thickness between about 20 nm and about 1000 nm and a sheet resistance of from about 500 ohms per unit area to about 5 ohms per unit. A layer of fluorine-doped zinc oxide between the areas. The dielectric substrate 34 can be several meters long.

在此具體實施例中,該裝置包含大體以元件符號12表示的構件用以存放第一電解質14及與第一電解質14接觸的第一電極16。裝置10更包含大體以元件符號18表示的構件用於存放第二電解質20及與第二電解質接觸的第二電極22。裝置10也包含大體以元件符號24及26表示的構件用於同時使介電基材34之傳導性表面32的第一及第二傳導性表面部份28、30各自暴露於第一及第二電解質14、20。第一及第二傳導性表面部份28、30各自與第一及第二電極16、22隔開以各自形成第一及第二電化學電池36、38藉此第一及第二電化學電池36、38用介電基材34之傳導性表面32以串聯方式電化學地連接在一起。 In this particular embodiment, the device includes a member generally designated by the numeral 12 for storing the first electrolyte 14 and the first electrode 16 in contact with the first electrolyte 14. Device 10 further includes a member generally indicated by reference numeral 18 for storing a second electrolyte 20 and a second electrode 22 in contact with the second electrolyte. Device 10 also includes components generally designated by reference numerals 24 and 26 for simultaneously exposing first and second conductive surface portions 28, 30 of conductive surface 32 of dielectric substrate 34 to first and second portions, respectively. Electrolytes 14, 20. First and second conductive surface portions 28, 30 are each spaced apart from first and second electrodes 16, 22 to form first and second electrochemical cells 36, 38, respectively, whereby first and second electrochemical cells 36, 38 are electrochemically joined together in series by the conductive surface 32 of the dielectric substrate 34.

第一電解質14的主要功能是使電流在第一傳導性表面部份28、第一電極16之間傳導。第一電極的化學組合物可以很簡單以及例如可以只包含溶劑及溶解態氯化鉀鹽。用這種簡單的化學組合物,在第一電極或第一傳導性表面部份不會有會讓這兩個實體顯著劣化的顯著化學反應。第二電解質20有更加複雜的化學組合物。第二電解質20的化學組合物係經組配成可促進電流在第二電極22、第二傳導部份30的傳導,以及促進電化學形成所欲透明金屬氧化物層於介電基材34的第二傳導性表面部份30上。第二 電解質20中的化學物包括非水性溶劑,濃度至少足以促進在第二傳導性表面部份30上形成該透明金屬氧化物層至所欲厚度的金屬離子,以及適合促進該透明金屬氧化物層形成於該第二傳導性表面部份上的一氧源30。裝置10更包含用於施加一電位於第一及第二電極16、22之間的構件使得第二電極22對於第一電極16有正極性以造成一電流在第二電極22、第一電極16之間以串聯方式流動通過第二電解質20、第二傳導性表面部份30、第一傳導性表面部份28及第一電解質14。這建立一電路,其中第二電極22有充分大於第二傳導性表面部份30的正電位以導致在第二傳導性表面部份30發生電化學反應,以形成該透明金屬氧化物層於第二傳導性表面部份30上。 The primary function of the first electrolyte 14 is to conduct current between the first conductive surface portion 28 and the first electrode 16. The chemical composition of the first electrode can be simple and, for example, can comprise only solvents and dissolved potassium chloride salts. With this simple chemical composition, there is no significant chemical reaction at the first electrode or first conductive surface portion that would significantly degrade both entities. The second electrolyte 20 has a more complex chemical composition. The chemical composition of the second electrolyte 20 is configured to promote conduction of current through the second electrode 22, the second conductive portion 30, and to promote electrochemical formation of the desired transparent metal oxide layer on the dielectric substrate 34. The second conductive surface portion 30 is on. second The chemical in the electrolyte 20 includes a non-aqueous solvent at a concentration at least sufficient to promote formation of the transparent metal oxide layer on the second conductive surface portion 30 to a desired thickness of metal ions, and to promote formation of the transparent metal oxide layer. An oxygen source 30 on the second conductive surface portion. The device 10 further includes means for applying a voltage between the first and second electrodes 16, 22 such that the second electrode 22 has a positive polarity with respect to the first electrode 16 to cause a current at the second electrode 22, the first electrode 16 The second electrolyte 20, the second conductive surface portion 30, the first conductive surface portion 28, and the first electrolyte 14 are flowed in series between them. This establishes a circuit in which the second electrode 22 has a positive potential sufficiently greater than that of the second conductive surface portion 30 to cause an electrochemical reaction at the second conductive surface portion 30 to form the transparent metal oxide layer. Two conductive surface portions 30.

請參考圖2,用於存放第一電解質14的構件12與用於存放第二電解質20的構件18各自由第一及第二敝面容器50、52構成。第一及第二敝面容器50、52由有入口壁54、內壁56、出口壁62、第一對側壁(圖2中只以58圖示其中之一)、第二對側壁(圖2中只以59圖示其中之一)、以及第一及第二底壁部60、66的主體53形成。入口壁54、內壁56、第一對側壁(58)及第一底壁部60定義第一敝面容器50。第二敝面容器52由內壁56、出口壁62、第二對側壁(64)及第二底壁部66定義。 Referring to FIG. 2, the member 12 for storing the first electrolyte 14 and the member 18 for storing the second electrolyte 20 are each composed of first and second kneading containers 50, 52. The first and second kneading containers 50, 52 have an inlet wall 54, an inner wall 56, an outlet wall 62, a first pair of side walls (only one of which is shown at 58 in Fig. 2), and a second pair of side walls (Fig. 2 The main body 53 of the first and second bottom wall portions 60, 66 is formed only by one of the 59 drawings. The inlet wall 54, the inner wall 56, the first pair of side walls (58) and the first bottom wall portion 60 define a first kneading container 50. The second kneading container 52 is defined by an inner wall 56, an outlet wall 62, a second pair of side walls (64), and a second bottom wall portion 66.

主體53可由經鐵弗龍回焊之陽極氧化鋁、鐵弗龍、有機玻璃或其他有化學及機械穩定性之材料製成。主體53的長度可界定於入口與出口壁54、62的外表面之間以 及可長約10厘米至約200厘米。主體53的寬度可界定於各對側壁58、59的外表面以及可長約10厘米至約200厘米。待形成透明金屬氧化物層於其上之介電基材34的寬度可確定該寬度。主體53的高度可在4厘米至約50厘米之間。當然,該高度各自定義第一及第二敝面容器50、52的深度以及可設定在上述範圍內以考慮到第一及第二電極各自與第一傳導性表面部份28及第二傳導性表面部份30有適當的間隔以及考慮到第一及第二電解質14、20有足夠的容積以提供適當的化學物供給用以形成透明金屬氧化物至所欲厚度。例如,第一及第二敝面容器50、52可深約3厘米至約47厘米以及寬約20厘米至約190厘米但是長度可不同。例如,第一敝面容器50可長約10厘米至約50厘米,以及第二敝面容器52可長約2厘米至約150厘米。 The body 53 can be made of anodized aluminum, Teflon, plexiglass or other materials that are chemically and mechanically stabilized by Teflon reflow. The length of the body 53 can be defined between the outer surfaces of the inlet and outlet walls 54, 62 And can be about 10 cm to about 200 cm long. The width of the body 53 can be defined on the outer surface of each pair of side walls 58, 59 and can be from about 10 cm to about 200 cm long. The width of the dielectric substrate 34 on which the transparent metal oxide layer is to be formed may determine the width. The height of the body 53 can be between 4 cm and about 50 cm. Of course, the heights define the depths of the first and second kneading containers 50, 52, respectively, and can be set within the above range to allow for the respective first and second electrodes and the first conductive surface portion 28 and the second conductivity. The surface portions 30 are suitably spaced and in view of the sufficient volume of the first and second electrolytes 14, 20 to provide a suitable chemical supply for forming the transparent metal oxide to the desired thickness. For example, the first and second kneading containers 50, 52 can be from about 3 cm to about 47 cm deep and from about 20 cm to about 190 cm wide, but can vary in length. For example, the first kneading container 50 can be from about 10 cm to about 50 cm in length, and the second kneading container 52 can be from about 2 cm to about 150 cm in length.

再參考圖2,第一電極16在與第一傳導性表面部份28平行隔開的第一位置延伸穿過入口壁54,以及第二電極22在與第二傳導性表面部份30平行隔開的第二位置延伸穿過出口壁62。為促進此事,入口壁54設有長形入口開孔70,長形入口開孔70有各自固定第一上、下彈性密封件76、78於其上的上、下壁部72、74。第一上、下彈性密封件76、78可由軟彈性橡膠材料製成,例如可購自美國公司E.I.du Pont de Nemours and Company的VitomTMReferring again to FIG. 2, the first electrode 16 extends through the inlet wall 54 at a first position spaced parallel to the first conductive surface portion 28, and the second electrode 22 is spaced parallel to the second conductive surface portion 30. The open second position extends through the outlet wall 62. To facilitate this, the inlet wall 54 is provided with elongated inlet openings 70 having upper and lower wall portions 72, 74 that respectively secure the first upper and lower resilient seals 76, 78 thereon. The first upper and lower elastic seals 76, 78 may be made of a soft elastic rubber material such as Vitom (TM) available from the American company EI du Pont de Nemours and Company.

第一電極16為包含介電基材80(例如,玻璃)的平面電極,例如厚約0.3至4毫米,有傳導性表面82配置於一寬面上。傳導性表面82可由有化學穩定性的材料製成,例 如,厚約300奈米至約1500奈米以及片電阻約20Ω/sq至約0.1Ω/sq的摻氟氧化鋅。此傳導層可用例如CVD或濺鍍技術在介電基材80上製成。第一電極16插穿入口開孔70使得第一電極的端部84靠在內壁56的第一表面86附近。可裝設支撐件(未圖示)以將端部84定位成第一電極會與第一傳導性表面部份27平行。第一上、下彈性密封件76、78壓在第一電極16的傳導性表面82及非傳導性表面88上以防第一電解質14通過入口開孔70露出。第一電極16更有在第一敝面容器50外延伸的外緣90,固定於外緣90的是包含接觸件94及有第一及第二相對腳部98、100之C形通道96的第一傳導性夾鉗92。接觸件94收容於第一腳部98與第一電極16的傳導性表面82之間以便與其接觸。接觸件94由充分軟的導電金屬製成,例如銀或銦,例如。裝設如圖示於102處的螺絲以緊緊地頂著傳導性表面82地壓制接觸件94以與其有良好的電接觸。夾鉗92連接至導線104,導線104連接至電源供應器108的負端106。 The first electrode 16 is a planar electrode comprising a dielectric substrate 80 (e.g., glass), for example, having a thickness of about 0.3 to 4 mm, and a conductive surface 82 disposed on a wide surface. The conductive surface 82 can be made of a chemically stable material, such as For example, fluorine-doped zinc oxide having a thickness of about 300 nm to about 1500 nm and a sheet resistance of about 20 Ω/sq to about 0.1 Ω/sq. This conductive layer can be formed on dielectric substrate 80 using, for example, CVD or sputtering techniques. The first electrode 16 is inserted through the inlet opening 70 such that the end 84 of the first electrode is adjacent the first surface 86 of the inner wall 56. A support (not shown) may be provided to position the end 84 such that the first electrode will be parallel to the first conductive surface portion 27. The first upper and lower elastic seals 76, 78 are pressed against the conductive surface 82 and the non-conductive surface 88 of the first electrode 16 to prevent the first electrolyte 14 from being exposed through the inlet opening 70. The first electrode 16 further has an outer edge 90 extending outside the first kneading container 50. The outer electrode 90 is fixed to the outer edge 90 by a contact member 94 and a C-shaped channel 96 having first and second opposing legs 98, 100. First conductive clamp 92. The contact member 94 is received between the first leg portion 98 and the conductive surface 82 of the first electrode 16 for contact therewith. Contact 94 is made of a sufficiently soft conductive metal, such as silver or indium, for example. A screw as shown at 102 is mounted to press the contact 94 against the conductive surface 82 to make good electrical contact therewith. The clamp 92 is connected to a wire 104 that is connected to the negative end 106 of the power supply 108.

同樣,出口壁62設有長形開孔110,長形開孔110有各自固定第二上、下彈性密封件116、118的上、下壁部112、114。第二電極22與第一電極16相同以及有具非傳導性下表面122及非傳導性上表面124的基材120。第二電極22插入開孔110直到它的端部126鄰接內壁56的第二表面128。可裝設支撐件(未圖示)以將端部126定位成第二電極會與第二傳導性表面部份30平行。第二上、下彈性密封件116、118與在說明第一電極(76及78)時提及的相同以及各自 抵頂傳導性及非傳導性表面124、122以密封開孔110以防第二電解質20通過開孔110露出。該第二電極設有與用於第一電極16之傳導性夾鉗92相同的第二傳導性夾鉗130以及導線132連接至第二傳導性夾鉗130以使它連接至電源供應器108的正端134。 Similarly, the outlet wall 62 is provided with elongated openings 110 having upper and lower wall portions 112, 114 that each secure the second upper and lower resilient seals 116, 118. The second electrode 22 is identical to the first electrode 16 and has a substrate 120 having a non-conductive lower surface 122 and a non-conductive upper surface 124. The second electrode 22 is inserted into the opening 110 until its end 126 abuts the second surface 128 of the inner wall 56. A support (not shown) may be provided to position the end 126 such that the second electrode will be parallel to the second conductive surface portion 30. The second upper and lower elastic seals 116, 118 are the same as those mentioned in the description of the first electrodes (76 and 78) and The conductive and non-conductive surfaces 124, 122 are abutted to seal the opening 110 to prevent the second electrolyte 20 from being exposed through the opening 110. The second electrode is provided with the same second conductive clamp 130 as the conductive clamp 92 for the first electrode 16 and the wire 132 is connected to the second conductive clamp 130 to connect it to the power supply 108 Positive end 134.

第一電極16與第一傳導性表面部份28可隔開約1毫米至約50毫米。第二電極22與第二傳導性表面部份30可隔開相同的距離。 The first electrode 16 can be spaced apart from the first conductive surface portion 28 by between about 1 mm and about 50 mm. The second electrode 22 and the second conductive surface portion 30 can be separated by the same distance.

用於同時使基材34傳導性表面32中之第一及第二傳導性表面部份28、30各自暴露於第一及第二電解質的構件包括在入口壁54的入口開孔150與在出口壁62的出口開孔152用以接受及定位介電基材34以使介電基材在第一及第二敝面容器50、52上面延伸使得第一傳導性表面部份28面向第一敝面容器50以及使得第二傳導性表面部份30面向第二敝面容器52。入口開孔150有各自附著至上、下入口密封件158、160的上、下入口壁154、156。上、下入口密封件158、160與彈性密封件76、78相同。上入口密封件58壓在介電基材34的無塗層表面上同時下入口密封件160壓在基材的傳導性表面32上從而密封入口開孔以防第一電解質14由入口開孔150露出。 A member for simultaneously exposing each of the first and second conductive surface portions 28, 30 of the substrate 34 conductive surface 32 to the first and second electrolytes includes an inlet opening 150 at the inlet wall 54 and an outlet The outlet opening 152 of the wall 62 is adapted to receive and position the dielectric substrate 34 such that the dielectric substrate extends over the first and second kneading containers 50, 52 such that the first conductive surface portion 28 faces the first side The face container 50 and the second conductive surface portion 30 face the second kneading container 52. The inlet openings 150 have upper and lower inlet walls 154, 156 that are each attached to the upper and lower inlet seals 158, 160. The upper and lower inlet seals 158, 160 are identical to the elastomeric seals 76, 78. The upper inlet seal 58 is pressed against the uncoated surface of the dielectric substrate 34 while the lower inlet seal 160 is pressed against the conductive surface 32 of the substrate to seal the inlet opening to prevent the first electrolyte 14 from being opened by the inlet opening 150. Exposed.

同樣,出口開孔152有各自連接至與彈性密封件116、118相同之上、下出口密封件166、168的上、下壁162、164。上出口密封件166壓在基材34的無塗層表面上同時下出口密封件168壓在介電基材34的第二傳導性表面部份30 上以密封出口開孔152以防第二電解質20由出口開孔152露出。入口及出口開孔150、152配置於公共基材平面中,該公共基材平面與第一及第二電極16、22位於其中的電極平面平行及隔開。基材平面與電極平面經配置成第一及第二電解質14、20各自可接觸傳導性表面32的整個第一及第二傳導性表面部份28、30。在圖示具體實施例中,內壁56配置於入口壁、出口壁54、62兩者的中間以及有稍微在基材平面下面的上半部170。內壁密封件172配置於上半部170上以便接觸介電基材34的傳導性表面32。內壁密封件172的厚度大約與下入口密封件160的厚度相同。這可充分防止第一電解質14與第二電解質20之間的離子交換。如果內壁密封件172的厚度小於入口密封件160的厚度,則在基材34的傳導性表面32與入口密封件172之間形成空間,導致在第一電解質14、第二電解質20之間有離子交換路徑(未圖示)。在第一及第二電極16、22之間產生通過第一、第二電解質14、20的離子交換路徑可能導致不合意金屬氧化物鍍覆於第一電極16上。 Likewise, the outlet openings 152 have upper and lower walls 162, 164 that are each coupled to the same upper and lower outlet seals 166, 168 as the elastomeric seals 116, 118. The upper outlet seal 166 is pressed against the uncoated surface of the substrate 34 while the lower outlet seal 168 is pressed against the second conductive surface portion 30 of the dielectric substrate 34. The outlet opening 152 is sealed to prevent the second electrolyte 20 from being exposed by the outlet opening 152. The inlet and outlet openings 150, 152 are disposed in a common substrate plane that is parallel and spaced apart from the electrode plane in which the first and second electrodes 16, 22 are located. The substrate plane and electrode plane are configured such that the first and second electrolytes 14, 20 can each contact the entire first and second conductive surface portions 28, 30 of the conductive surface 32. In the illustrated embodiment, the inner wall 56 is disposed intermediate the inlet wall, the outlet walls 54, 62, and has an upper half 170 that is slightly below the plane of the substrate. Inner wall seal 172 is disposed on upper half 170 to contact conductive surface 32 of dielectric substrate 34. The thickness of the inner wall seal 172 is approximately the same as the thickness of the lower inlet seal 160. This can sufficiently prevent ion exchange between the first electrolyte 14 and the second electrolyte 20. If the thickness of the inner wall seal 172 is less than the thickness of the inlet seal 160, a space is formed between the conductive surface 32 of the substrate 34 and the inlet seal 172, resulting in a relationship between the first electrolyte 14 and the second electrolyte 20. Ion exchange path (not shown). The generation of an ion exchange path through the first and second electrolytes 14, 20 between the first and second electrodes 16, 22 may result in undesirable metal oxide plating on the first electrode 16.

在圖1清楚可見,入口壁54、內壁56及出口壁62各有各自接受加熱器元件186、188及190的長形開孔180、182及184,加熱器元件186、188及190用於加熱第一及第二敝面容器50、52以及最終用於加熱第一及第二電解質14、20至約有15℃至約120℃的溫度。再參考圖2,在圖示具體實施例中,第一、第二及第三長形開孔180、182及184都配置於大約在基材平面、電極平面中間的平面中。 As best seen in Figure 1, the inlet wall 54, inner wall 56 and outlet wall 62 each have elongated openings 180, 182 and 184 that receive heater elements 186, 188 and 190, respectively, for which heater elements 186, 188 and 190 are used. The first and second kneading vessels 50, 52 are heated and ultimately used to heat the first and second electrolytes 14, 20 to a temperature of between about 15 ° C and about 120 ° C. Referring again to Figure 2, in the illustrated embodiment, the first, second, and third elongate apertures 180, 182, and 184 are all disposed in a plane approximately midway between the substrate plane and the electrode plane.

再參考圖2,第一及第二底壁部60、66有各自的電解質導入開孔192、194以及各自的電解質排出開孔196、198。電解質導入開孔192、194可連接至各自的導管(未圖示)各自用以供給第一及第二電解質14、20的容積。排出開孔196、198可連接至公共排水溝(未圖示)或回收裝置用以回收及/或再利用第一及第二電解質14、20。 Referring again to Figure 2, the first and second bottom wall portions 60, 66 have respective electrolyte introduction openings 192, 194 and respective electrolyte discharge openings 196, 198. The electrolyte introduction openings 192, 194 can be connected to respective conduits (not shown) for supplying the volumes of the first and second electrolytes 14, 20. The discharge openings 196, 198 can be connected to a common drain (not shown) or a recovery device for recovering and/or reusing the first and second electrolytes 14, 20.

理想上,在導入任何電解質於第一或第二敝面容器50或52之前,使第一及第二電極16、22及介電基材34位於如圖2所示的位置。一旦第一及第二電極16、22就位,通過電解質導入開孔192、194,分配第一及第二電解質14、20的容積進入第一及第二敝面容器50、52直到第一電解質14觸及介電基材34的第一傳導性表面部份28以及直到第二電解質20觸及第二傳導性表面部份30。例如,可使用鄰接入口及出口開孔150、152的入口及出口槽溝200、202以收集通過在入口或出口開孔150、152之密封件露出的任何電解質。 Ideally, the first and second electrodes 16, 22 and the dielectric substrate 34 are placed in the position shown in Figure 2 prior to introduction of any electrolyte into the first or second kneading container 50 or 52. Once the first and second electrodes 16, 22 are in place, the volumes of the first and second electrolytes 14, 20 are dispensed through the electrolyte introduction openings 192, 194 into the first and second kneading vessels 50, 52 until the first electrolyte 14 contacts the first conductive surface portion 28 of the dielectric substrate 34 and until the second electrolyte 20 contacts the second conductive surface portion 30. For example, the inlet and outlet channels 200, 202 adjacent the inlet and outlet openings 150, 152 can be used to collect any electrolyte that is exposed through the seals at the inlet or outlet openings 150, 152.

第一及第二電解質14、20有促進電流傳導通過它們的化學物以及可包含含有甲醇、乙醇、丙醇、異丙醇、乙二醇、丙三醇及四氫糠醇(tetrahydrofurfuryl alcohol)中至少一者的質子性非水溶劑。 The first and second electrolytes 14, 20 have chemicals that promote current conduction therethrough and may include at least methanol, ethanol, propanol, isopropanol, ethylene glycol, glycerol, and tetrahydrofurfuryl alcohol. One of the protic non-aqueous solvents.

替換地,它們可包含含有N-甲基乙醯胺(N-Methylacetamide)、二甲基甲醯胺、乙腈(acetonitrile)、二甲基亞碸(DMSO)及碳酸丙烯(propylene carbonate)中至少一者的非質子性非水溶劑。 Alternatively, they may comprise at least one of N-Methylacetamide, dimethylformamide, acetonitrile, dimethyl hydrazine (DMSO), and propylene carbonate. A non-protic non-aqueous solvent.

如上述,第一電解質14,例如,可很簡單以及只包含非水溶劑及至少一鹽,例如氯化鉀,以考慮到導電率。 As described above, the first electrolyte 14, for example, can be simple and contains only a nonaqueous solvent and at least one salt such as potassium chloride to account for conductivity.

至少第二電解質20有包含足以允許形成透明金屬氧化物層至所欲厚度之氧源的化學組合物。該氧源可包含溶解氧或至少一氧前驅物,例如溶解態硝酸鹽、亞硝酸鹽、過氧化合物、臭氧、微量水中之至少一者。應選擇準備用於形成透明金屬氧化物層之電化學製程的溶解氧的濃度藉由至少提供足夠的氧源給分配於第二敝面容器52內之第二電解質20的容積以促進形成有所欲厚度的金屬氧化物層。 At least the second electrolyte 20 has a chemical composition comprising a source of oxygen sufficient to allow formation of a layer of transparent metal oxide to a desired thickness. The source of oxygen may comprise dissolved oxygen or at least one oxygen precursor, such as at least one of dissolved nitrate, nitrite, peroxygen, ozone, traces of water. The concentration of dissolved oxygen to be prepared for the electrochemical process for forming the transparent metal oxide layer should be selected to promote formation by providing at least a sufficient source of oxygen to the volume of the second electrolyte 20 dispensed in the second kneading vessel 52. The thickness of the metal oxide layer.

第二電解質20的化學組合物也包含一金屬離子源,它可充分溶於選定溶劑以及會促進金屬透明氧化物層形成至所欲厚度以及使得透明金屬氧化物層在有約380奈米至約750奈米之波長的光譜區域中有約85%至約95%的光學透明度。 The chemical composition of the second electrolyte 20 also includes a source of metal ions which is sufficiently soluble in the selected solvent and which promotes the formation of the metal transparent oxide layer to a desired thickness and such that the transparent metal oxide layer is between about 380 nm and about There is an optical transparency of about 85% to about 95% in the spectral region of the wavelength of 750 nm.

使用將會形成透明氧化鋅層於此的上述裝置,第二電解質中的化學物會包含金屬離子源,例如至少一溶解態鋅鹽或至少一鋅酸鹽或該至少一溶解態鋅鹽與該至少一鋅酸鹽的組合。例如,該至少一溶解態鋅鹽可為硝酸、氯化物、高氯酸鹽或硫酸鹽。例如,該有機溶劑電解質溶液可含有0.0001 Eq/L(克當量/公升)至0.1 Eq/L的鋅或由0.0001 Eq/L的鋅至飽和濃度以製造厚約10奈米至約500奈米的氧化鋅薄膜。 Using the above apparatus in which a transparent zinc oxide layer will be formed, the chemical in the second electrolyte may comprise a source of metal ions, such as at least one dissolved zinc salt or at least one zincate or the at least one dissolved zinc salt and A combination of at least one zincate. For example, the at least one dissolved zinc salt can be nitric acid, chloride, perchlorate or sulfate. For example, the organic solvent electrolyte solution may contain 0.0001 Eq/L (gram equivalent/liter) to 0.1 Eq/L zinc or from 0.0001 Eq/L zinc to a saturated concentration to produce a thickness of about 10 nm to about 500 nm. Zinc oxide film.

在想要形成透明非傳導性氧化鋁層時,該金屬離子源可包含至少一溶解態鋁鹽或至少一鋁酸鹽或該至少一 溶解態鋁鹽或至少一鋁酸鹽的組合。例如,該溶解態氧化鋁鹽可為硝酸、氯化物、高氯酸鹽或硫酸鹽。例如,該有機溶劑電解質溶液可包含0.0001 Eq/L(克當量/公升)至0.1 Eq/L的鋁或由0.0001 Eq/L的鋁至飽和濃度以製造厚約10奈米至約500奈米的氧化鋁薄膜。 When it is desired to form a transparent non-conductive aluminum oxide layer, the metal ion source may comprise at least one dissolved aluminum salt or at least one aluminum aluminate or the at least one A combination of a dissolved aluminum salt or at least one aluminate. For example, the dissolved alumina salt can be nitric acid, chloride, perchlorate or sulfate. For example, the organic solvent electrolyte solution may contain 0.0001 Eq/L (gram equivalent/liter) to 0.1 Eq/L of aluminum or from 0.0001 Eq/L of aluminum to a saturated concentration to produce a thickness of about 10 nm to about 500 nm. Alumina film.

在想要形成透明非傳導性氧化銦層時,該金屬離子源可包含至少一溶解態銦鹽。例如,該至少一溶解態銦鹽可為硝酸、氯化物或硫酸鹽。例如,該有機溶劑電解質溶液可包含0.0001 Eq/L至0.1 Eq/L的銦或由0.0001 Eq/L的銦至飽和濃度以製造厚約10奈米至約500奈米的氧化銦薄膜。 When it is desired to form a transparent non-conductive indium oxide layer, the metal ion source may comprise at least one dissolved indium salt. For example, the at least one dissolved indium salt can be nitric acid, chloride or sulfate. For example, the organic solvent electrolyte solution may contain 0.0001 Eq/L to 0.1 Eq/L of indium or from 0.0001 Eq/L of indium to a saturated concentration to produce an indium oxide film having a thickness of about 10 nm to about 500 nm.

在想要形成透明非傳導性氧化鎘層時,該金屬離子源可包含至少一溶解態鎘鹽。例如,該至少一溶解態鎘鹽可為硝酸、氯化物、高氯酸鹽或硫酸鹽。例如,該有機溶劑電解質溶液可包含0.0001 Eq/L至0.1 Eq/L的鎘或由0.0001 Eq/L的鎘至飽和濃度以及製造厚約10奈米至約500奈米的氧化鎘薄膜。 When it is desired to form a transparent non-conductive cadmium oxide layer, the metal ion source may comprise at least one dissolved cadmium salt. For example, the at least one dissolved cadmium salt can be nitric acid, chloride, perchlorate or sulfate. For example, the organic solvent electrolyte solution may contain 0.0001 Eq/L to 0.1 Eq/L of cadmium or from 0.0001 Eq/L of cadmium to a saturated concentration and a cadmium oxide film having a thickness of about 10 nm to about 500 nm.

在想要形成透明非傳導性氧化鎂層時,該金屬離子源可包含至少一溶解態鎂鹽。例如,該至少一溶解態鎂鹽可為硝酸、氯化物或高氯酸鹽。例如,該有機溶劑電解質溶液可包含0.0001 Eq/L至0.1 Eq/L的鎂或由0.0001 Eq/L的鎂至飽和濃度以及製造厚約10奈米至約500奈米的氧化鎂薄膜。 When it is desired to form a transparent non-conductive magnesium oxide layer, the metal ion source may comprise at least one dissolved magnesium salt. For example, the at least one dissolved magnesium salt can be nitric acid, chloride or perchlorate. For example, the organic solvent electrolyte solution may contain 0.0001 Eq/L to 0.1 Eq/L of magnesium or a magnesium to saturation concentration of 0.0001 Eq/L and a magnesium oxide film having a thickness of about 10 nm to about 500 nm.

在想要形成透明非傳導性氧化銀層時,該金屬離子源可包含至少一溶解態銀鹽。例如,該至少一溶解態銀 鹽可為硝酸或高氯酸鹽。例如,該有機溶劑電解質溶液可包含0.0001 Eq/L至0.1 Eq/L的銀或由0.0001 Eq/L的銀至飽和濃度以製造厚約10奈米至約500奈米的氧化銀薄膜。 When it is desired to form a transparent non-conductive silver oxide layer, the metal ion source may comprise at least one dissolved silver salt. For example, the at least one dissolved silver The salt can be nitric acid or perchlorate. For example, the organic solvent electrolyte solution may contain 0.0001 Eq/L to 0.1 Eq/L of silver or from 0.0001 Eq/L of silver to a saturated concentration to produce a silver oxide film having a thickness of about 10 nm to about 500 nm.

在想要形成透明非傳導性氧化釔層時,該金屬離子源可包含至少一溶解態釔鹽。例如,該至少一溶解態釔鹽可為硝酸、氯化物、高氯酸鹽或硫酸鹽。例如,該有機溶劑電解質溶液可包含0.0001 Eq/L(克當量/公升)至0.1 Eq/L的釔或由0.0001 Eq/L的釔至飽和濃度以製造厚約10奈米至約500奈米的氧化釔薄膜。 When it is desired to form a transparent non-conductive cerium oxide layer, the metal ion source may comprise at least one dissolved cerium salt. For example, the at least one dissolved cerium salt can be nitric acid, chloride, perchlorate or sulfate. For example, the organic solvent electrolyte solution may contain 0.0001 Eq/L (gram equivalent/liter) to 0.1 Eq/L of hydrazine or from 0.0001 Eq/L hydrazine to a saturated concentration to produce a thickness of about 10 nm to about 500 nm. Yttrium oxide film.

在想要形成透明非傳導性氧化鈧層時,該金屬離子源可包含至少一溶解態鈧鹽。例如,該至少一溶解態鈧鹽可為硝酸、氯化物、高氯酸鹽或硫酸鹽。例如,該有機溶劑電解質溶液可包含0.0001 Eq/L(克當量/公升)至0.1 Eq/L的鈧或由0.0001 Eq/L的鈧至飽和濃度以及製造厚約10奈米至約500奈米的氧化鈧薄膜。 When it is desired to form a transparent non-conductive cerium oxide layer, the metal ion source may comprise at least one dissolved cerium salt. For example, the at least one dissolved cerium salt can be nitric acid, chloride, perchlorate or sulfate. For example, the organic solvent electrolyte solution may contain 0.0001 Eq/L (gram equivalent/liter) to 0.1 Eq/L of rhodium or from 0.0001 Eq/L of rhodium to a saturated concentration and a thickness of about 10 nm to about 500 nm. Yttrium oxide film.

在想要形成鑭系元素的透明非傳導性氧化物層時,鑭系元素的離子源可包含至少一溶解態鑭系元素鹽。例如,該至少一溶解態鑭系元素鹽可為硝酸、氯化物、高氯酸鹽或硫酸鹽。例如,該有機溶劑電解質溶液可包含0.0001 Eq/L至0.1 Eq/L的鑭系元素或由0.0001 Eq/L的鑭系元素至飽和濃度以製造厚約10奈米至約500奈米的鑭系元素氧化物薄膜。 When it is desired to form a transparent non-conductive oxide layer of a lanthanide, the ion source of the lanthanide may comprise at least one dissolved lanthanide salt. For example, the at least one dissolved lanthanide salt can be nitric acid, chloride, perchlorate or sulfate. For example, the organic solvent electrolyte solution may comprise from 0.0001 Eq/L to 0.1 Eq/L of a lanthanide or from a 0.0001 Eq/L lanthanide to a saturated concentration to produce a lanthanide system having a thickness of from about 10 nm to about 500 nm. Elemental oxide film.

在想要形成透明非傳導性氧化鎵層時,該金屬離子源可包含至少一溶解態鎵鹽。例如,該至少一溶解態鎵 鹽可為硝酸、氯化物、高氯酸鹽或硫酸鹽。例如,該有機溶劑電解質溶液可包含0.0001 Eq/L至0.1 Eq/L的鎵或由0.0001 Eq/L的鎵至飽和濃度以製造厚約10奈米至約500奈米的氧化鎵薄膜。 When it is desired to form a transparent non-conductive gallium oxide layer, the metal ion source may comprise at least one dissolved gallium salt. For example, the at least one dissolved state gallium The salt can be nitric acid, chloride, perchlorate or sulfate. For example, the organic solvent electrolyte solution may contain 0.0001 Eq/L to 0.1 Eq/L of gallium or from 0.0001 Eq/L of gallium to a saturation concentration to produce a gallium oxide film having a thickness of about 10 nm to about 500 nm.

在想要形成形成由周期表中屬IVA族之過渡金屬(例如,鈦、鋯或鉿)構成的透明非傳導性氧化物層時,該等過渡金屬的離子源可包含至少一溶解態金屬鹽。例如,該至少一溶解態金屬鹽可為氯化物或硫酸鹽。例如,該有機溶劑電解質溶液可包含0.0001 Eq/L至0.1 Eq/L的過渡金屬或由0.0001 Eq/L的過渡金屬至飽和濃度以製造厚約10奈米至約500奈米的透明金屬氧化物薄膜。 When it is desired to form a transparent non-conductive oxide layer composed of a transition metal of the group IVA of the periodic table (for example, titanium, zirconium or hafnium), the ion source of the transition metal may comprise at least one dissolved metal salt. . For example, the at least one dissolved metal salt can be a chloride or a sulfate. For example, the organic solvent electrolyte solution may comprise from 0.0001 Eq/L to 0.1 Eq/L of transition metal or from 0.0001 Eq/L of transition metal to saturation concentration to produce a transparent metal oxide having a thickness of from about 10 nm to about 500 nm. film.

在想要形成由周期表中屬IVB族之金屬(例如,鍺、錫或鉛)構成的透明非傳導性氧化物層時,該合適金屬的離子源可包含至少一溶解態金屬鹽。例如,該至少一溶解態金屬鹽可為氯化物或硫酸鹽。例如,該有機溶劑電解質溶液可包含0.0001 Eq/L至0.1 Eq/L的金屬或由0.0001 Eq/L的金屬至飽和濃度以製造厚約10奈米至約500奈米的金屬氧化物薄膜。 When it is desired to form a transparent non-conductive oxide layer composed of a metal of Group IVB of the periodic table (for example, antimony, tin or lead), the ion source of the suitable metal may comprise at least one dissolved metal salt. For example, the at least one dissolved metal salt can be a chloride or a sulfate. For example, the organic solvent electrolyte solution may comprise from 0.0001 Eq/L to 0.1 Eq/L of metal or from 0.0001 Eq/L of metal to a saturated concentration to produce a metal oxide film having a thickness of from about 10 nm to about 500 nm.

在想要形成由周期表中屬VA族之過渡金屬(例如,釩、鈮或鉭)構成的透明非傳導性氧化物層時,該過渡金屬的離子源可包含至少一溶解態過渡金屬鹽。例如,該至少一溶解態過渡金屬鹽可為硝酸或氯化物。例如,該有機溶劑電解質溶液可包含0.0001 Eq/L至0.1 Eq/L的金屬或由0.0001 Eq/L的金屬至飽和濃度以製造厚約10奈米至約 500奈米的金屬氧化物薄膜。 When it is desired to form a transparent non-conductive oxide layer composed of a transition metal of Group VA of the periodic table (for example, vanadium, niobium or tantalum), the ion source of the transition metal may comprise at least one dissolved transition metal salt. For example, the at least one dissolved transition metal salt can be nitric acid or chloride. For example, the organic solvent electrolyte solution may comprise from 0.0001 Eq/L to 0.1 Eq/L of metal or from 0.0001 Eq/L of metal to a saturation concentration to produce a thickness of about 10 nm to about 500 nm metal oxide film.

在想要形成由周期表中屬VIA族之過渡金屬(例如,鉻、鉬或鎢)構成的透明非傳導性氧化物層時,該過渡金屬的離子源可包含至少一溶解態過渡金屬鹽。例如,該至少一溶解態過渡金屬鹽可為氯化物或硫酸鹽。例如,該有機溶劑電解質溶液可包含0.0001 Eq/L至0.1 Eq/L的金屬或由0.0001 Eq/L的金屬至飽和濃度以製造厚約10奈米至約500奈米的金屬氧化物薄膜。 When it is desired to form a transparent non-conductive oxide layer composed of a transition metal of Group VIA of the periodic table (for example, chromium, molybdenum or tungsten), the ion source of the transition metal may comprise at least one dissolved transition metal salt. For example, the at least one dissolved transition metal salt can be a chloride or a sulfate. For example, the organic solvent electrolyte solution may comprise from 0.0001 Eq/L to 0.1 Eq/L of metal or from 0.0001 Eq/L of metal to a saturated concentration to produce a metal oxide film having a thickness of from about 10 nm to about 500 nm.

在想要形成由周期表中屬VIIA族之過渡金屬(例如,錳或錸)構成的透明非傳導性氧化物層時,該過渡金屬的離子源可包含至少一溶解態過渡金屬鹽。例如,該至少一溶解態過渡金屬鹽可為氯化物或硫酸鹽,例如。例如,該有機溶劑電解質溶液可包含0.0001 Eq/L至0.1 Eq/L的金屬或由0.0001 Eq/L的金屬至飽和濃度以製造厚約10奈米至約500奈米的金屬氧化物薄膜。 When it is desired to form a transparent non-conductive oxide layer composed of a transition metal of the group VIIA of the periodic table (for example, manganese or cerium), the ion source of the transition metal may comprise at least one dissolved transition metal salt. For example, the at least one dissolved transition metal salt can be a chloride or a sulfate, for example. For example, the organic solvent electrolyte solution may comprise from 0.0001 Eq/L to 0.1 Eq/L of metal or from 0.0001 Eq/L of metal to a saturated concentration to produce a metal oxide film having a thickness of from about 10 nm to about 500 nm.

在想要形成由周期表中屬VIII族之金屬(例如,鐵、鈷、鎳或釕)構成的透明非傳導性氧化物層時,該合適金屬的離子源可包含至少一溶解態金屬鹽。例如,該至少一溶解態金屬鹽可為氯化物或硫酸鹽。例如,該有機溶劑電解質溶液可包含0.0001 Eq/L至0.1 Eq/L的金屬或由0.0001 Eq/L的金屬至飽和濃度以製造厚約10奈米至約500奈米的金屬氧化物薄膜。 When it is desired to form a transparent non-conductive oxide layer composed of a metal of Group VIII of the periodic table (for example, iron, cobalt, nickel or ruthenium), the ion source of the suitable metal may comprise at least one dissolved metal salt. For example, the at least one dissolved metal salt can be a chloride or a sulfate. For example, the organic solvent electrolyte solution may comprise from 0.0001 Eq/L to 0.1 Eq/L of metal or from 0.0001 Eq/L of metal to a saturated concentration to produce a metal oxide film having a thickness of from about 10 nm to about 500 nm.

在想要形成由周期表中屬VB族之金屬(例如,銻或鉍)構成的透明非傳導性氧化物層時,該合適金屬的離子 源可包含至少一溶解態金屬鹽。例如,該至少一溶解態金屬鹽可為硝酸、氯化物或硫酸鹽。例如,該有機溶劑電解質溶液可包含0.0001 Eq/L至0.1 Eq/L的金屬或由0.0001 Eq/L的金屬至飽和濃度以製造厚約10奈米至約500奈米的金屬氧化物薄膜。 When it is desired to form a transparent non-conductive oxide layer composed of a metal of the VB group of the periodic table (for example, ruthenium or osmium), the ion of the suitable metal The source may comprise at least one dissolved metal salt. For example, the at least one dissolved metal salt can be nitric acid, chloride or sulfate. For example, the organic solvent electrolyte solution may comprise from 0.0001 Eq/L to 0.1 Eq/L of metal or from 0.0001 Eq/L of metal to a saturated concentration to produce a metal oxide film having a thickness of from about 10 nm to about 500 nm.

第二電解質20可包含濃度造成透明金屬氧化物層有傳導性的摻雜物。選擇該摻雜物以及第二電解質20中之前驅物的濃度藉此形成摻雜透明傳導性金屬氧化物於第二傳導性表面30上以具有在1000至1.0 Ω/sq之間的片電阻,以及可見光波長範圍內的透射比在60%至100%的範圍內。例如,摻雜物可包含由以下各物組成之群組選出的至少一元素:鹵素、鋅、鎘、鎂、銅、銀、金、硼、鋁、鎵、銦、鈧、釔、鍺、錫、鉛、鈦、鋯、鉿、釩、鈮、鉭、鉻、鉬、鎢、錳、錸、鐵、鈷、鎳、釕、砷、銻、鉍、鉑等金屬、以及鑭系元素。 The second electrolyte 20 may comprise a dopant having a concentration that causes the transparent metal oxide layer to be conductive. Selecting the dopant and the concentration of the precursor in the second electrolyte 20 thereby forming a doped transparent conductive metal oxide on the second conductive surface 30 to have a sheet resistance of between 1000 and 1.0 Ω/sq, And the transmittance in the visible light wavelength range is in the range of 60% to 100%. For example, the dopant may comprise at least one element selected from the group consisting of halogen, zinc, cadmium, magnesium, copper, silver, gold, boron, aluminum, gallium, indium, antimony, bismuth, antimony, tin. , lead, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, antimony, iron, cobalt, nickel, antimony, arsenic, antimony, antimony, platinum and other metals, and actinides.

在想要形成透明傳導性摻鋁氧化鋅層時,該金屬離子源可包含至少一溶解態鋅鹽與至少一溶解態鋁鹽。例如,該溶解態鋅鹽可為硝酸、氯化物、高氯酸鹽或硫酸鹽。例如,該溶解態鋁鹽可選自硝酸、氯化物、高氯酸鹽或硫酸鹽。例如,該有機溶劑電解質溶液可包含克當量比率在約10000:1至5:1之間的鋅與鋁以製造厚約10奈米至約500奈米的摻鋁氧化鋅薄膜。 When it is desired to form a transparent conductive aluminum-doped zinc oxide layer, the metal ion source may comprise at least one dissolved zinc salt and at least one dissolved aluminum salt. For example, the dissolved zinc salt can be nitric acid, chloride, perchlorate or sulfate. For example, the dissolved aluminum salt can be selected from the group consisting of nitric acid, chloride, perchlorate or sulfate. For example, the organic solvent electrolyte solution may comprise zinc and aluminum in a gram equivalent ratio of between about 10,000:1 and 5:1 to produce an aluminum-doped zinc oxide film having a thickness of from about 10 nanometers to about 500 nanometers.

在想要形成摻釔氧化鋅層時,該金屬離子源可包含至少一溶解態鋅鹽與至少一溶解態釔鹽。例如,該溶解 態鋅鹽可選自硝酸、氯化物、高氯酸鹽或硫酸鹽。例如,該溶解態釔鹽可選自硝酸、氯化物、高氯酸鹽或硫酸鹽。例如,該有機溶劑電解質溶液可包含克當量比率在約10000:1至5:1之間的鋅與釔以及製造厚約10奈米至約500奈米的摻釔氧化鋅薄膜。 When it is desired to form a cerium-doped zinc oxide layer, the metal ion source may comprise at least one dissolved zinc salt and at least one dissolved cerium salt. For example, the dissolution The zinc salt may be selected from the group consisting of nitric acid, chloride, perchlorate or sulfate. For example, the dissolved cerium salt can be selected from the group consisting of nitric acid, chloride, perchlorate or sulfate. For example, the organic solvent electrolyte solution may comprise zinc and ruthenium in a gram equivalent ratio of between about 10,000:1 and 5:1 and an antimony-doped zinc oxide film having a thickness of from about 10 nm to about 500 nm.

在想要形成透明傳導性摻銦氧化鋅層時,該金屬離子源可包含至少一溶解態鋅鹽與至少一溶解態銦鹽。例如,該溶解態鋅鹽可為硝酸、氯化物、高氯酸鹽或硫酸鹽,以及該至少一溶解態銦鹽可為硝酸、氯化物、高氯酸鹽或硫酸鹽。例如,該有機溶劑電解質溶液可包含克當量比率在約10000:1至5:1之間的鋅與銦以製造厚約10奈米至約500奈米的摻銦氧化鋅薄膜。 When it is desired to form a transparent conductive indium doped zinc oxide layer, the metal ion source may comprise at least one dissolved zinc salt and at least one dissolved indium salt. For example, the dissolved zinc salt can be nitric acid, chloride, perchlorate or sulfate, and the at least one dissolved indium salt can be nitric acid, chloride, perchlorate or sulfate. For example, the organic solvent electrolyte solution may comprise zinc and indium in a gram equivalent ratio of between about 10,000:1 and 5:1 to produce an indium-doped zinc oxide film having a thickness of from about 10 nanometers to about 500 nanometers.

在想要形成透明傳導性摻鎘氧化鋅層時,該金屬離子源可包含至少一溶解態鋅鹽與至少一溶解態鎘鹽。例如,該溶解態鋅鹽可為硝酸、氯化物、高氯酸鹽或硫酸鹽,以及該至少一溶解態鎘鹽可為硝酸、氯化物、高氯酸鹽或硫酸鹽。例如,該有機溶劑電解質溶液可包含克當量比率在約10:1至1:10之間的鋅與鎘以製造厚約10奈米至約500奈米的摻鎘氧化鋅薄膜。 When it is desired to form a transparent conductive cadmium zinc oxide layer, the metal ion source may comprise at least one dissolved zinc salt and at least one dissolved cadmium salt. For example, the dissolved zinc salt can be nitric acid, chloride, perchlorate or sulfate, and the at least one dissolved cadmium salt can be nitric acid, chloride, perchlorate or sulfate. For example, the organic solvent electrolyte solution may comprise zinc and cadmium in a gram equivalent ratio of between about 10:1 and 1:10 to produce a cadmium-doped zinc oxide film having a thickness of from about 10 nanometers to about 500 nanometers.

在想要形成透明傳導性摻氯氧化鋅層時,該金屬離子源可包含至少一溶解態鋅鹽與至少一溶解態氯化物。例如,該至少一鋅鹽可為硝酸、氯化物、高氯酸鹽或硫酸鹽。例如,該有機溶劑電解質溶液可包含0.0001 Eq/L(克當量/公升)至0.1 Eq/L的鋅或由0.0001 Eq/L的鋅至飽和溶液的 濃度以及由0.0001 Eq/L至0.1 Eq/L的氯化物或由0.0001 Eq/L的氯化物至飽和溶液的濃度以製造厚約10奈米至約500奈米的摻氯氧化鋅薄膜。 When it is desired to form a transparent conductive chlorine-doped zinc oxide layer, the metal ion source may comprise at least one dissolved zinc salt and at least one dissolved chloride. For example, the at least one zinc salt can be nitric acid, chloride, perchlorate or sulfate. For example, the organic solvent electrolyte solution may contain 0.0001 Eq/L (gram equivalent/liter) to 0.1 Eq/L zinc or 0.0001 Eq/L zinc to a saturated solution. Concentrations and concentrations of from 0.0001 Eq/L to 0.1 Eq/L of chloride or from 0.0001 Eq/L of chloride to a saturated solution to produce a chlorine-doped zinc oxide film having a thickness of from about 10 nm to about 500 nm.

在想要形成透明傳導性摻錫氧化銦層時,該金屬離子源可包含至少一溶解態銦鹽與至少一溶解態錫鹽。例如,該溶解態銦鹽可為硝酸、氯化物、高氯酸鹽或硫酸鹽,以及該至少一溶解態錫鹽可選自硝酸、氯化物或硫酸鹽。例如,該有機溶劑電解質溶液可包含克當量比率在約200:1至1:1之間的銦與錫以製造厚約10奈米至約500奈米的摻錫氧化銦薄膜。 When it is desired to form a transparent conductive tin-doped indium oxide layer, the metal ion source may comprise at least one dissolved indium salt and at least one dissolved tin salt. For example, the dissolved indium salt can be nitric acid, chloride, perchlorate or sulfate, and the at least one dissolved tin salt can be selected from the group consisting of nitric acid, chloride or sulfate. For example, the organic solvent electrolyte solution may comprise indium and tin in a gram equivalent ratio of between about 200:1 and 1:1 to produce a tin-doped indium oxide film having a thickness of from about 10 nanometers to about 500 nanometers.

在想要形成透明傳導性摻銦氧化鎘層時,該金屬離子源可包含至少一溶解態鎘鹽與至少一溶解態銦鹽。例如,該溶解態鎘鹽可為硝酸、氯化物、高氯酸鹽或硫酸鹽,以及該至少一溶解態銦鹽可為硝酸、氯化物、高氯酸鹽或硫酸鹽。例如,該有機溶劑電解質溶液可包含克當量比率在約1000:1至10:1之間的鎘與銦以製造厚約10奈米至約500奈米的摻銦氧化鎘薄膜。 When it is desired to form a transparent conductive indium doped cadmium oxide layer, the metal ion source may comprise at least one dissolved cadmium salt and at least one dissolved indium salt. For example, the dissolved cadmium salt can be nitric acid, chloride, perchlorate or sulfate, and the at least one dissolved indium salt can be nitric acid, chloride, perchlorate or sulfate. For example, the organic solvent electrolyte solution may comprise cadmium and indium in a gram equivalent ratio of between about 1000:1 and 10:1 to produce an indium-doped cadmium oxide film having a thickness of from about 10 nm to about 500 nm.

可使用該裝置與靜止不動的基材,如圖2所示,但是這只能在第二傳導性表面部份30上製成透明金屬氧化物層。為此,用上述選項中之一個所欲者組配第一及第二電解質14、16以包含會產生所欲金屬氧化物層的化學物,然後激活恆定電流電源供應器108以施加電位於第二、第一電極22、16之間使得電流由第二電極22流出通過第二電解質20至第二傳導性表面部份30,通過在內壁密封件172上面 延伸的傳導性表面32至第一傳導性表面部份28,然後通過第一電解質14至第一電極16。 The device can be used with a stationary substrate, as shown in Figure 2, but this can only be made as a transparent metal oxide layer on the second conductive surface portion 30. To this end, the first and second electrolytes 14, 16 are assembled with one of the above options to contain a chemical that will produce the desired metal oxide layer, and then the constant current power supply 108 is activated to apply electricity to the first 2. The first electrode 22, 16 causes current to flow from the second electrode 22 through the second electrolyte 20 to the second conductive surface portion 30, passing over the inner wall seal 172. The extended conductive surface 32 to the first conductive surface portion 28 then passes through the first electrolyte 14 to the first electrode 16.

圖3圖示大體以元件符號201表示的等價電路。該等價電路包含電源供應器108與連接至第一及第二電極16、22的導線104、132。第二電極(22)用第一電阻203表示。第二電解質20用第二電阻205表示,第二傳導性表面部份(30)用第三電阻207表示,第一傳導性表面部份(28)用第四電阻209表示,第一電解質14用第五電阻211表示,以及第一電極16用第六電阻213表示。 FIG. 3 illustrates an equivalent circuit generally indicated by element symbol 201. The equivalent circuit includes a power supply 108 and wires 104, 132 coupled to the first and second electrodes 16, 22. The second electrode (22) is represented by a first resistor 203. The second electrolyte 20 is represented by a second resistor 205, the second conductive surface portion (30) is represented by a third resistor 207, and the first conductive surface portion (28) is represented by a fourth resistor 209 for the first electrolyte 14 The fifth resistor 211 indicates that the first electrode 16 is represented by a sixth resistor 213.

實際上,電阻203、205、207、209、211及213是以串聯方式跨越電源供應器108的正、負端使得第二電極22的正電位高於第一電極16。這造成每個電阻有壓降而把在第二電極22與第二傳導性表面部份30的介面215以及第二電解質與第二傳導性表面部份30的介面217的電位設置成較高的電位以促進在形成透明金屬氧化物層之介面217處的陰極化學反應。第二傳導性表面部份30有相對低導電率,因此沿著第二傳導性表面部份30有負陰極電位相對均勻以及促進形成對應均勻的透明金屬氧化物層於第二傳導性表面部份30上。 In fact, the resistors 203, 205, 207, 209, 211, and 213 are across the positive and negative ends of the power supply 108 in series such that the positive potential of the second electrode 22 is higher than the first electrode 16. This causes a voltage drop across each of the resistors to set the potential of the interface 215 of the second electrode 22 and the second conductive surface portion 30 and the interface 217 of the second electrolyte and the second conductive surface portion 30 to a higher level. The potential is to promote a cathodic chemical reaction at the interface 217 where the transparent metal oxide layer is formed. The second conductive surface portion 30 has a relatively low conductivity, so that the negative cathode potential is relatively uniform along the second conductive surface portion 30 and promotes the formation of a corresponding uniform transparent metal oxide layer on the second conductive surface portion. 30 on.

應瞭解,如果在第一電解質14、第二電解質20之間存在離子交換路徑(圖3中為用電阻R7表示的阻性電流流動路徑),其係分流第一及第二傳導性表面部份28、30之間的電流面導致第二傳導性表面的鍍覆效率降低。鍍覆效率降低造成在電阻因離子交換路徑而顯著減少第一及第二 傳導性表面部份28、30的組合壓降而減少流經第二傳導性表面部份30的電流時,會減少在第二傳導性表面部份30的電子交換量從而減少形成於其上的透明金屬氧化物層。 It should be understood that if there is an ion exchange path between the first electrolyte 14 and the second electrolyte 20 (the resistive current flow path represented by the resistor R7 in FIG. 3), the first and second conductive surface portions are shunted. The current surface between 28 and 30 results in a decrease in the plating efficiency of the second conductive surface. Reduced plating efficiency results in a significant reduction in resistance due to ion exchange paths. First and second The combined voltage drop of the conductive surface portions 28, 30 reduces the current flowing through the second conductive surface portion 30, reducing the amount of electron exchange at the second conductive surface portion 30 and thereby reducing the amount of electron exchange formed thereon. Transparent metal oxide layer.

再參考圖2,在圖示具體實施例中,電源供應器108設有電流源107以及用於計算流經圖3電路201之電流之電荷庫倫數的構件。再參考圖2電源供應器108更包含與用於計算庫倫數之構件通訊的一構件用於在用於計算庫倫數之該構件指出的電荷庫倫數滿足與塗在第二傳導性表面部份30上之透明金屬氧化物之所欲厚度關連的準則時停止該電位之施加。用於計算庫倫數之該構件可包含有積分功能的安培計,該積分功能的實現例如可用電流分流器(current shunt)109與處理器電路111,用於監視跨越分流器的電壓以產生表示電流流量的訊號。處理器電路111可包含累加電流訊號以產生電荷庫倫數值的積分程式。用於停止電位之施加的該構件可包含處理器電路111與程式碼,該程式碼造成處理器電路111比較電荷庫倫數和與透明金屬氧化物之所欲厚度關連的預定數,以及激活可操作以控制例如繼電器113之處理器電路111的輸出,用於中斷電路以藉此停止施加電位至第一及第二電極16、20以及停止電路的電流流動。替換地或另外,處理器電路111可監視第二電解質20中的離子導電率感測器(未圖示),以得到第二電解質之導電率的圖像,該導電率係與第二電解質中的金屬離子數成正比。處理器電路109更可包含程式碼造成它可激活輸出訊號以自動打開在連接至排出開孔196、198之排出導管(未圖示) 上的閥(未圖示)以排出第一及第二電解質14及20。該程式碼也可造成處理器電路109關閉排出導管上的閥然後打開在連接至電解質導入開孔192、194之入口導管(未圖示)上的閥(未圖示)以允許導入新的第一及第二電解質14、20於第一及第二敝面容器50、52內。該程式碼也可指示處理器電路109造成繼電器113通電以造成電位再度施加於第二及第一電極22、16之間以藉此在第一及第二電解質14、20更換後重新建立電流的流動。 Referring again to FIG. 2, in the illustrated embodiment, power supply 108 is provided with a current source 107 and means for calculating the number of charge coulombs of the current flowing through circuit 201 of FIG. Referring again to FIG. 2, the power supply 108 further includes a component for communicating with the means for calculating the Coulomb number for the charge coulomb number indicated by the member for calculating the Coulomb number to be satisfied and applied to the second conductive surface portion 30. The application of this potential is stopped when the desired thickness of the transparent metal oxide is related. The means for calculating the Coulomb number may include an amperometric meter with an integral function, such as a current shunt 109 and a processor circuit 111 for monitoring the voltage across the shunt to generate a representative current The signal of the traffic. The processor circuit 111 can include an integrating program that accumulates current signals to produce a charge coulomb value. The means for stopping the application of the potential may comprise processor circuit 111 and a code which causes processor circuit 111 to compare the charge coulomb number with a predetermined number associated with the desired thickness of the transparent metal oxide, and to activate the operational To control the output of the processor circuit 111, such as the relay 113, for interrupting the circuit to thereby stop the application of potential to the first and second electrodes 16, 20 and the current flow of the stop circuit. Alternatively or additionally, the processor circuit 111 can monitor an ionic conductivity sensor (not shown) in the second electrolyte 20 to obtain an image of the conductivity of the second electrolyte, the conductivity being in the second electrolyte The number of metal ions is proportional. The processor circuit 109 can further include a code that causes it to activate the output signal to automatically open the exhaust conduit (not shown) that is coupled to the discharge apertures 196, 198. A valve (not shown) is provided to discharge the first and second electrolytes 14 and 20. The code may also cause the processor circuit 109 to close the valve on the discharge conduit and then open a valve (not shown) on the inlet conduit (not shown) that is connected to the electrolyte introduction openings 192, 194 to allow introduction of a new The first and second electrolytes 14, 20 are within the first and second kneading containers 50, 52. The code may also instruct the processor circuit 109 to cause the relay 113 to energize to cause a potential to be applied again between the second and first electrodes 22, 16 to thereby reestablish current after the first and second electrolytes 14, 20 are replaced. flow.

儘管圖示於圖1及圖2的裝置10可用來形成透明金屬氧化物層於第二傳導性表面部份30上,然而應瞭解,這只是整個傳導性表面32的一小部份。此外,應瞭解,由於介電基材34之傳導性表面32有相對低的導電率,第二傳導性表面30上的負陰極電位在縱長方向不夠均勻以促進形成對應均勻的透明金屬氧化物層於長度實際有用之介電基材34的傳導性表面32上。介電基材的大面積傳導性表面可接受均勻透明金屬氧化物層,如果基材34對於第一及第二電解質14、20平滑地移動以暴露整個長度的基材34於第二電解質20以及藉此逐漸均勻地鍍覆傳導性表面的話。可優化介電基材34之傳導性表面32的導電率、第一及第二敝面容器50、52的長度以及基材34的線性速度以在有給定長度的介電基材上提供有高度均勻性之厚度、光學透明度及導電率的透明金屬氧化物層。 Although the device 10 illustrated in Figures 1 and 2 can be used to form a transparent metal oxide layer on the second conductive surface portion 30, it should be understood that this is only a small portion of the entire conductive surface 32. In addition, it will be appreciated that since the conductive surface 32 of the dielectric substrate 34 has a relatively low conductivity, the negative cathode potential on the second conductive surface 30 is not uniform enough in the longitudinal direction to promote the formation of a corresponding uniform transparent metal oxide. The layer is on the conductive surface 32 of the dielectric substrate 34 that is actually useful in length. The large area conductive surface of the dielectric substrate can accept a uniform transparent metal oxide layer if the substrate 34 is smoothly moved with respect to the first and second electrolytes 14, 20 to expose the entire length of the substrate 34 to the second electrolyte 20 and Thereby, the conductive surface is gradually and uniformly plated. The conductivity of the conductive surface 32 of the dielectric substrate 34, the length of the first and second kneading containers 50, 52, and the linear velocity of the substrate 34 can be optimized to provide a height on a dielectric substrate having a given length. A transparent metal oxide layer of uniform thickness, optical transparency, and electrical conductivity.

請參考圖4,裝置10可用來形成透明金屬氧化物層於介電基材34之傳導性表面32的大部份上係藉由使介電 基材34順著由第一電解質14至第二電解質20的方向對於第一及第二電解質14、20移動同時該電流在流動以造成透明金屬氧化物層沿著介電基材34之傳導性表面32的縱長方向形成。 Referring to FIG. 4, the device 10 can be used to form a transparent metal oxide layer over most of the conductive surface 32 of the dielectric substrate 34 by dielectric The substrate 34 moves toward the first and second electrolytes 14, 20 in a direction from the first electrolyte 14 to the second electrolyte 20 while the current is flowing to cause conductivity of the transparent metal oxide layer along the dielectric substrate 34. The longitudinal direction of the surface 32 is formed.

為了促進基材與第一及第二電解質的相對運動,裝置10設有第一入口絞盤220與入口夾送滾輪(entrance pinch roller)222以及有出口絞盤224及出口夾送滾輪226。入口及出口絞盤220、224與夾送滾輪222、226具有可彈性變形外表面以輕輕夾住介電基材34及其傳導性表面32以引導介電基材通過裝置10。入口絞盤220順時鐘方向旋轉以及壓在介電基材34的傳導性表面32上同時入口夾送滾輪222壓在介電基材34的無塗層表面上。介電基材34因此夾在入口絞盤220與入口夾送滾輪222之間,使得在入口絞盤220旋轉時,沿著箭頭228所示的方向將介電基材34推入入口開孔70。 To facilitate relative movement of the substrate to the first and second electrolytes, the apparatus 10 is provided with a first inlet winch 220 and an entrance pinch roller 222 and an outlet winch 224 and an outlet pinch roller 226. The inlet and outlet winches 220, 224 and the pinch rollers 222, 226 have an elastically deformable outer surface to gently grip the dielectric substrate 34 and its conductive surface 32 to direct the dielectric substrate through the device 10. The inlet winch 220 is rotated clockwise and pressed against the conductive surface 32 of the dielectric substrate 34 while the inlet pinch roller 222 is pressed against the uncoated surface of the dielectric substrate 34. The dielectric substrate 34 is thus sandwiched between the inlet winch 220 and the inlet pinch roller 222 such that as the inlet winch 220 rotates, the dielectric substrate 34 is pushed into the inlet opening 70 in the direction indicated by arrow 228.

同時,出口絞盤224也順時鐘方向旋轉以及壓在介電基材34中剛剛已暴露於第二電解質20而有塗層的傳導性表面32上,同時出口夾送滾輪226壓在介電基材34的無塗層表面上使得基材夾在出口絞盤224、出口夾送滾輪226之間,藉由由出口開孔152拉出基材可進一步協助介電基材34的線性運動。這允許有任何長度之介電基材的傳導性表面塗上透明金屬氧化物層。入口及出口絞盤220、224的轉速係使得介電基材34傳導性表面32的給定第二表面部份30暴露於第二電解質20的時間足以造成有所欲厚度的透明金屬氧化物層可形成於其上。隨著第二電解質20的金屬離子濃 度遞減,入口及出口絞盤220、224的轉速應跟著減少,以使正被形成的層保持均勻的厚度直到第二電解質20的金屬離子濃度到達預定的金屬離子濃度,這時初始化以下順序:停止施加電流,更換第二電解質,然後再施加電流,如上述。可能需要一連串的順序,亦即,第二電解質的補充,以及補充次數會取決於待形成透明金屬氧化物層於其上之介電基材的長度。在圖示具體實施例中,可旋轉入口及出口絞盤220、224以便產生基材34相對於裝置10例如約有0.1厘米/分鐘至10厘米/分鐘的線性運動。 At the same time, the exit winch 224 is also rotated clockwise and pressed against the conductive surface 32 of the dielectric substrate 34 that has just been exposed to the second electrolyte 20 while the exit pinch roller 226 is pressed against the dielectric substrate. The uncoated surface of 34 causes the substrate to be sandwiched between the exit winch 224 and the exit pinch roller 226, and the linear movement of the dielectric substrate 34 can be further assisted by pulling the substrate out of the exit opening 152. This allows the conductive surface of any length of dielectric substrate to be coated with a layer of transparent metal oxide. The rotational speeds of the inlet and outlet winches 220, 224 are such that a given second surface portion 30 of the conductive substrate 32 of the dielectric substrate 34 is exposed to the second electrolyte 20 for a time sufficient to cause a desired thickness of the transparent metal oxide layer. Formed on it. With the metal ion of the second electrolyte 20 is concentrated The degree of decrease, the rotational speed of the inlet and outlet winches 220, 224 should be reduced to maintain a uniform thickness of the layer being formed until the metal ion concentration of the second electrolyte 20 reaches a predetermined metal ion concentration, at which time the following sequence is initialized: stop application Current, replace the second electrolyte, and then apply current, as described above. A series of sequences may be required, i.e., the replenishment of the second electrolyte, and the number of additions may depend on the length of the dielectric substrate on which the transparent metal oxide layer is to be formed. In the illustrated embodiment, the inlet and outlet winches 220, 224 can be rotated to create a linear motion of the substrate 34 relative to the device 10, for example, from about 0.1 cm/min to 10 cm/min.

第一或第二敝面容器的長度與介電基材的運動速度係獨立地優化以在在大長度之介電基材的傳導性金屬氧化物上形成高度均勻的厚度、光學透明度及導電率。 The length of the first or second kneading container is independently optimized from the speed of movement of the dielectric substrate to form a highly uniform thickness, optical transparency, and electrical conductivity on the conductive metal oxide of the dielectric substrate of large length. .

請參考圖5,可使用圖1的裝置10於根據本發明第三具體實施例的系統250以形成透明金屬氧化物層於由聚合物薄膜(例如,聚乙烯對苯二甲酸酯(PET))形成之介電基材248的傳導性表面246上。就此情形而言,大體圖示於252的一卷PET薄膜提供於心軸254上以及可操作以反時鐘方向256旋轉以及使它的前緣饋入裝置10的入口開孔150。該前緣按規定路線通過入口壁54,越過第一及第二敝面容器50、52,然後通過出口壁62的出口開孔152。然後,該前緣纏繞於也可操作以反時鐘方向旋轉的捲取心軸(take up spindle)258上。至少捲取心軸258用例如馬達(未圖示)驅動以拉扯介電基材248通過裝置10以適當的速度越過第一及第二電解質14、20以形成透明金屬氧化物層於介電基材248 的傳導性表面246上。因此,可形成透明金屬氧化物層於經預形成有初始透明傳導性表面的PET薄膜上以及該PET薄膜可具有任何長度。如上述,可能需要補充第二電解質,這取決於第二電解質的容積,薄膜的寬度及長度。 Referring to FIG. 5, the apparatus 10 of FIG. 1 can be used in the system 250 according to the third embodiment of the present invention to form a transparent metal oxide layer from a polymer film (eg, polyethylene terephthalate (PET). Formed on the conductive surface 246 of the dielectric substrate 248. In this regard, a roll of PET film, generally illustrated at 252, is provided on mandrel 254 and is operable to rotate in a counterclockwise direction 256 and feed its leading edge into inlet opening 150 of device 10. The leading edge passes through the inlet wall 54 in a prescribed manner, over the first and second kneading containers 50, 52, and then through the outlet opening 152 of the outlet wall 62. The leading edge is then wound onto a take up spindle 258 that is also operable to rotate in a counterclockwise direction. At least the take-up mandrel 258 is driven, for example, by a motor (not shown) to pull the dielectric substrate 248 through the device 10 at a suitable speed across the first and second electrolytes 14, 20 to form a transparent metal oxide layer on the dielectric substrate. Material 248 On the conductive surface 246. Thus, a transparent metal oxide layer can be formed on the PET film pre-formed with the initial transparent conductive surface and the PET film can have any length. As mentioned above, it may be necessary to supplement the second electrolyte depending on the volume of the second electrolyte, the width and length of the film.

圖6根據本發明第四具體實施例圖示大體以元件符號300表示的裝置。裝置300包含有第一及第二端壁304、306,第一及第二側壁308、310及底壁312的深盤狀容器(deep tray container)302。底壁312中設有長形開孔314以容納加熱元件,如上述。深盤狀容器302由適於惰性存放一容積之初始電解質316的化學穩定及導熱材料製成,例如,經鐵弗龍回焊之氧化鋁。有待塗覆傳導性表面320的基材318放在深盤狀容器302中使得傳導性表面320面朝上地與初始電解質316接觸。請參考圖7,深盤狀容器302有在第一端壁304中的注入開孔(fill opening)303以及在對面端壁306中的排出開孔307以各自用於填入及排出電解質。 Figure 6 illustrates a device generally designated by the symbol 300 in accordance with a fourth embodiment of the present invention. Device 300 includes first and second end walls 304, 306, first and second side walls 308, 310 and a bottom tray 312 of deep tray container 302. An elongated opening 314 is provided in the bottom wall 312 to accommodate the heating element, as described above. The deep disc-shaped container 302 is made of a chemically stable and thermally conductive material suitable for inertly storing a volume of the initial electrolyte 316, for example, Teflon reflowed alumina. The substrate 318 to be coated with the conductive surface 320 is placed in the deep disc-shaped container 302 such that the conductive surface 320 is in contact with the initial electrolyte 316 face up. Referring to Figure 7, the deep disc-shaped container 302 has a fill opening 303 in the first end wall 304 and a discharge opening 307 in the opposite end wall 306 for filling and discharging the electrolyte, respectively.

再參考圖6,在此具體實施例中,大體在350處圖示與圖2之裝置10類似而處於倒立位置的裝置。裝置350與圖2類似的地方是它有大體為矩形的形狀以及它有入口、出口及內壁352、354及356和側壁(只圖示其中之一於358),以及有底壁部360。底壁部360面朝上而且裝置的最上面部份,因為該裝置處於倒立方位,如圖示。不過裝置350與圖2不同的地方在於入口及出口壁352、354沒有入口及出口開孔以及內壁356不短於入口及出口壁352、354。反而,入口、出口及內壁352、354及356有各自加上彈性密封件368、370 及372的共面遠端表面362、364、366。在端壁358的共面遠端表面上裝設類似的密封件。因此,在入口壁352、內壁356及端壁358之間和底部360形成第一敝面容器380。同樣,在出口壁354、內壁356、端壁358之間和底壁部360形成第二敝面容器382。此具體實施例的裝置350與圖2之裝置不同的地方也在於各自與圖2中之電極16、22相同的第一及第二電極390、392經圖示成彼等各自延伸穿過底壁部360的長形開孔393、394以各自伸入第一及第二敝面容器380、382。開孔393、394各自用類型與上述密封件76、78相同的彈性密封件396、398密封以防止第一及第二敝面容器380、382的任何電解質通過底部360露出。此外,底部360有至少一開孔,在此情形下,各自與第一及第二敝面容器380、382關連的第一及第二多個開孔400及402用於在裝置350放低進入深盤狀容器302時釋出空氣,如以下所解釋的。裝置350係連接至用於面朝下地安置第一及第二敝面容器380、382於介電基材318之傳導性表面320上的構件420使得基材在入口壁352、出口壁354及內壁356和第一對及第二對端壁358下面延伸使得介電基材318的第一及第二傳導性表面部份422、424面向第一及第二敝面容器380、382,如圖7中的虛線輪廓所示。在圖示具體實施例中,用於實現裝置350之定位的構件是由有可水平伸縮臂體430及可垂直伸縮支架432的伸縮型機械手臂提供。 Referring again to Figure 6, in this particular embodiment, a device similar to device 10 of Figure 2 is shown generally at 350 in an inverted position. Device 350 is similar to that of Figure 2 in that it has a generally rectangular shape and that it has inlets, outlets and inner walls 352, 354 and 356 and side walls (only one of which is shown at 358), and a bottomed wall portion 360. The bottom wall portion 360 faces up and the uppermost portion of the device because the device is in the inverted cube position as shown. However, device 350 differs from FIG. 2 in that inlet and outlet walls 352, 354 have no inlet and outlet openings and inner wall 356 is not shorter than inlet and outlet walls 352, 354. Instead, the inlet, outlet, and inner walls 352, 354, and 356 each have an elastomeric seal 368, 370. And coplanar distal surfaces 362, 364, 366 of 372. A similar seal is mounted on the coplanar distal surface of the end wall 358. Thus, a first kneading container 380 is formed between the inlet wall 352, the inner wall 356 and the end wall 358 and the bottom 360. Likewise, a second kneading container 382 is formed between the outlet wall 354, the inner wall 356, the end wall 358, and the bottom wall portion 360. The device 350 of this embodiment differs from the device of FIG. 2 in that the first and second electrodes 390, 392, each identical to the electrodes 16, 22 of FIG. 2, are illustrated as extending through the bottom wall, respectively. The elongated openings 393, 394 of the portion 360 extend into the first and second kneading containers 380, 382, respectively. The openings 393, 394 are each sealed with the same resilient seals 396, 398 of the type as the seals 76, 78 described above to prevent any electrolyte of the first and second kneading containers 380, 382 from being exposed through the bottom 360. In addition, the bottom portion 360 has at least one opening, in which case the first and second plurality of openings 400 and 402, each associated with the first and second kneading containers 380, 382, are used to lower the entry in the device 350. The deep disc-shaped container 302 releases air as explained below. The device 350 is coupled to the member 420 for placing the first and second kneading containers 380, 382 on the conductive surface 320 of the dielectric substrate 318 face down such that the substrate is within the inlet wall 352, the outlet wall 354, and The wall 356 and the first pair and the second pair of end walls 358 extend below such that the first and second conductive surface portions 422, 424 of the dielectric substrate 318 face the first and second kneading containers 380, 382, as shown The outline of the dotted line in 7 is shown. In the illustrated embodiment, the means for achieving the positioning of the device 350 is provided by a telescoping robot having a horizontally telescopic arm body 430 and a vertically extendable bracket 432.

由以虛線輪廓圖示的裝置350可見,用可垂直伸縮支架432放低該裝置進入深托盤302。深托盤302及裝置 350的尺寸經製作成第一對及第二對端壁358、359係抵頂側壁308、310的內表面。 As seen by the device 350 illustrated in dashed outline, the device is lowered into the deep tray 302 by the vertically extendable bracket 432. Deep tray 302 and device The dimensions of 350 are made such that the first pair and the second pair of end walls 358, 359 are against the inner surfaces of the top sidewalls 308, 310.

請參考圖7,裝置350係放低進入深盤狀容器302直到密封件368、370及372和端壁密封件都與基材318的傳導性表面320接觸以便各自用基材318的第一及第二傳導性表面部份422、424封閉敝面容器380、382以藉此在第一及第二敝面容器380、382內建立與第一及第二電解質隔離的電化學電池。在第一敝面容器380中有第一容積381的初始電解質316以及第二敝面容器382中有第二容積383的初始電解質316時,第一及第二敝面容器380、382幾乎浸入初始電解質316,同時在第一容積表面與底壁部360之間留有空氣間隙以及在第二容積表面與底壁部360之間留有空氣間隙。因此,密封件368、370及372和端壁密封件可用來貼著基材318傳導性表面320密封入口壁352、出口壁354、內壁356和第一及第二端壁358以使第一敝面容器380含有第一容積381的初始電解質316以及第二容器382含有第二容積383的初始電解質316。 Referring to Figure 7, device 350 is lowered into deep disc-shaped container 302 until seals 368, 370 and 372 and end wall seals are in contact with conductive surface 320 of substrate 318 for the first use of substrate 318, respectively. The second conductive surface portions 422, 424 enclose the kneading containers 380, 382 to thereby establish an electrochemical cell isolated from the first and second electrolytes within the first and second kneading containers 380, 382. When the first kneading container 380 has the initial electrolyte 316 of the first volume 381 and the initial electrolyte 316 of the second kneading container 382 having the second volume 383, the first and second kneading containers 380, 382 are almost immersed in the initial The electrolyte 316 simultaneously leaves an air gap between the first volume surface and the bottom wall portion 360 and an air gap between the second volume surface and the bottom wall portion 360. Thus, seals 368, 370 and 372 and end wall seals can be used to seal inlet wall 352, outlet wall 354, inner wall 356 and first and second end walls 358 against substrate 318 conductive surface 320 for first The kneading container 380 contains the initial electrolyte 316 of the first volume 381 and the second container 382 contains the initial electrolyte 316 of the second volume 383.

空氣間隙使得電解質調整化學物可通過開孔400、402來加入第一及/或第二容積。例如,添加酸或鹼至第一容積以將電解質之第一容積的酸鹼值調整至所欲值以保護第一電極不會有金屬氧化物形成於其表面上是合乎需要的。 The air gap allows electrolyte conditioning chemicals to be added to the first and/or second volume through openings 400, 402. For example, it may be desirable to add an acid or base to the first volume to adjust the pH of the first volume of the electrolyte to a desired value to protect the first electrode from metal oxide formation on its surface.

再參考圖7,在說明圖2時提及的電源供應器108各自連接至第一及第二電極390、392使得第二電極392有大 於第一電極390的正電位從而造成電流由第二電極392流入第二敝面容器382中的電解質第二容積383,通過第二傳導性表面部份424,通過在內壁356下面的傳導性表面320(未圖示於圖7)進入第一傳導性表面部份422,然後進入第一敝面容器380中的電解質第一容積381,然後進入第一電極390。這造成第二傳導性表面部份424更負於第二電極392從而造成透明金屬氧化物層可形成於第二傳導性表面部份424上。 Referring again to FIG. 7, the power supplies 108 mentioned in the description of FIG. 2 are each connected to the first and second electrodes 390, 392 such that the second electrode 392 has a large The positive potential of the first electrode 390 thereby causing current to flow from the second electrode 392 into the second volume 383 of the electrolyte in the second kneading vessel 382, through the second conductive surface portion 424, through the conductivity below the inner wall 356 Surface 320 (not shown in Figure 7) enters first conductive surface portion 422, then enters electrolyte first volume 381 in first kneading vessel 380 and then enters first electrode 390. This causes the second conductive surface portion 424 to be more negative to the second electrode 392 such that a transparent metal oxide layer can be formed on the second conductive surface portion 424.

如果裝置350在托盤302中保持不動,只有與在第二敝面容器382中之電解質接觸的第二傳導性表面部份424會有塗層。不過,為了塗覆較大的表面面積,可水平伸縮臂體430可順著箭頭433的方向移動,同時托盤302與介電基材318保持靜止不動,以使裝置350移到圖示於圖7之虛線輪廓的位置。可水平伸縮臂體430可沿著箭頭433的方向以約0.1厘米/分鐘至約10厘米/分鐘的線性速度移動,例如,像是在第一具體實施例中,導致第一及第二敝面容器380、382可從以實線輪廓圖示的第二傳導性表面部份424到最後在裝置350最終位置(在圖7中以虛線輪廓圖示)與第二敝面容器382中之電解質接觸的最終第二傳導性表面部份440,掃過基材318的傳導性表面320以連續塗覆實質所有的傳導性表面320。應瞭解,在最終第一表面部份442上不形成透明金屬氧化物傳導性表面,因為此部份不暴露於第二敝面容器382中之電解質的第二容積383,在此最終第二傳導性表面部份440的電位更負於第二電極392。因此,在此具體實 施例中,基材318上的傳導性表面320有一小部份(最終第一表面部份442)不會塗上透明金屬氧化物。 If the device 350 remains stationary in the tray 302, only the second conductive surface portion 424 that is in contact with the electrolyte in the second kneading container 382 will be coated. However, to apply a larger surface area, the horizontally telescoping arm body 430 can be moved in the direction of arrow 433 while the tray 302 and the dielectric substrate 318 remain stationary to move the device 350 to the Figure 7 The position of the dotted outline. The horizontally telescopic arm body 430 is movable in a direction of arrow 433 at a linear velocity of from about 0.1 cm/min to about 10 cm/min, for example, as in the first embodiment, resulting in the first and second kneading surfaces The containers 380, 382 can be in contact with the electrolyte in the second kneading container 382 from the second conductive surface portion 424, shown in solid line outline, to the final position in the final position of the device 350 (shown in phantom outline in Figure 7). The resulting second conductive surface portion 440 sweeps across the conductive surface 320 of the substrate 318 to continuously coat substantially all of the conductive surface 320. It will be appreciated that no transparent metal oxide conductive surface is formed on the final first surface portion 442 because this portion is not exposed to the second volume 383 of the electrolyte in the second kneading container 382 where the second second conduction is ultimately achieved. The potential of the surface portion 440 is more negative than the second electrode 392. Therefore, here is the concrete In the embodiment, a small portion of the conductive surface 320 on the substrate 318 (final first surface portion 442) is not coated with a transparent metal oxide.

請參考圖8,根據本發明第五具體實施例的裝置大體以元件符號500表示。裝置500包含大體以元件符號502表示的電化學電池組以及大體以元件符號504示的壓制組件(pressing assembly)。 Referring to FIG. 8, a device in accordance with a fifth embodiment of the present invention is generally indicated by reference numeral 500. Device 500 includes an electrochemical battery pack, generally indicated by reference numeral 502, and a pressing assembly, generally indicated by reference numeral 504.

請參考圖9的展開圖圖示包含第一電極503的電化學電池組502,第一電極503包含有將會在其上形成透明金屬氧化物層之傳導性表面506的矩形介電基材507。基材507有各自連接至夾鉗512、514的第一及第二端緣508、510。夾鉗512、514如同圖2的夾鉗92。夾鉗512、514用電位相同及連接至電源供應器108負端106(在說明圖2時提及)的導線513、515電性連接在一起。定義空間用之框體墊片516位在介電基材507的傳導性表面506上。例如,該定義空間用之框體墊片可由軟彈性橡膠材料製成,例如杜邦所生產的VitonTM。墊片516有形式與第一傳導層506之對應顯露區(它在第一及第二夾鉗512、514之間及側邊(圖9只以518圖示其中之一)之間)匹配的矩形。墊片516經形成有由墊片516內壁522定義的矩形開孔520。內壁522定義以內壁522與介電基材504傳導性表面506之一部份526為界的空間524。墊片516有框部528而框部528有延伸穿過它以及與空間524相通的第一及第二開孔530、532。開孔530、532各自接受及保持第一及第二導管534、536用以各自接受及排出空間524的電解質,如以下所述。 Referring to the expanded view of FIG. 9, an electrochemical battery pack 502 comprising a first electrode 503 comprising a rectangular dielectric substrate 507 having a conductive surface 506 on which a transparent metal oxide layer will be formed is illustrated. . Substrate 507 has first and second end edges 508, 510 that are each coupled to jaws 512, 514. The clamps 512, 514 are like the clamp 92 of FIG. The clamps 512, 514 are electrically connected together by wires 513, 515 of the same potential and connected to the negative terminal 106 of the power supply 108 (mentioned in the description of Figure 2). The frame spacer 516 defining the space is on the conductive surface 506 of the dielectric substrate 507. For example, the housing space defined by the spacer may be formed of a soft elastomeric material, for example produced by DuPont Viton TM. The spacer 516 has a form matching the corresponding exposed area of the first conductive layer 506 (between the first and second clamps 512, 514 and the side (only one of which is illustrated by 518 in FIG. 9)) rectangle. Shim 516 is formed with a rectangular opening 520 defined by inner wall 522 of shim 516. Inner wall 522 defines a space 524 bounded by inner wall 522 and a portion 526 of conductive substrate 506 conductive surface 506. The shim 516 has a frame portion 528 and the frame portion 528 has first and second openings 530, 532 extending therethrough and communicating with the space 524. The openings 530, 532 each receive and retain the first and second conduits 534, 536 for receiving and discharging the electrolyte of the space 524, respectively, as described below.

電化學電池組502更包含含有有第二傳導性表面552之第二基材550的第二電極505以及各自配置於第二基材550之第一及第二邊緣558、560而且與第二傳導性表面552接觸的第三及第四夾鉗554、556。夾鉗554、556與夾鉗512、514相同因而與圖2的夾鉗92相同。夾鉗554、556用連接至在說明圖2時所述之電源供應器108之正端134的導線555、557相互電性連接。 The electrochemical battery 502 further includes a second electrode 505 including a second substrate 550 having a second conductive surface 552 and first and second edges 558, 560 respectively disposed on the second substrate 550 and with the second conduction The third and fourth jaws 554, 556 are in contact with the surface 552. The clamps 554, 556 are identical to the clamps 512, 514 and thus identical to the clamp 92 of FIG. The clamps 554, 556 are electrically coupled to each other by wires 555, 557 that are coupled to the positive terminal 134 of the power supply 108 as described with respect to FIG.

再參考圖9,第二電極505抵貼墊片516的平坦面517使得墊片516的平坦面517與傳導性表面552在夾鉗554、556之間的部份接觸。 Referring again to FIG. 9, the second electrode 505 abuts against the flat surface 517 of the spacer 516 such that the flat surface 517 of the spacer 516 contacts the portion of the conductive surface 552 between the clamps 554, 556.

再參考圖8,壓制組件504包含經形塑成各自有表面部份的第一及第二鋼板600、602,該等表面部份各自與第一及第二基材504、550中未被夾鉗512、514、555及556佔據的區域接觸,以及更被形塑成有第一及第二向外延伸側部,圖8只圖示第一板600的第一向外延伸側部604,以及圖8圖示第二板602的第一及第二向外延伸側部606、608。第一向外延伸側部604、606包含第一開孔610、612。第一板600的開孔610有螺紋,以及第二板602的開孔612是平滑的以接受穿過它的螺栓614。在第二向外延伸部份上設有類似的開孔,田中只圖示有螺栓616接受於其中的向外延伸部份608。螺栓614、616相同以及各有螺紋部618、平滑部620及頭部622。螺栓614穿過開孔612以允許螺紋618與帶螺紋開孔610的配對螺紋嚙合。同樣,螺栓616與在第一及第二板600、602之第二向外延伸側部上的對應開孔嚙合。然後, 上緊螺栓614、616以拉扯第一及第二板600、602在一起從而使第一及第二傳導性表面506、552壓抵墊片516的相對側面藉此密封空間524(參考圖9)。然後,通過第一導管534泵送有如以上在說明第一具體實施例之第二電解質時提及之組合物的電解質進入空間(524),以及允許空氣通過第二導管536逸出直到空間(524)完全填滿電解質。然後,激活電源供應器108以施加一電位於介電基材507中要塗上透明金屬氧化物的傳導性表面506與基材550的第一傳導性表面552之間,使得第二基材550的第一傳導性表面552對於介電基材507的傳導性表面506有正極性以造成一電流在第一傳導性表面552與介電基材507的傳導性表面506之間流動通過空間(524)中的電解質導致在介電基材507的傳導性表面506發生電化學反應以形成透明金屬氧化物層於介電基材507的傳導性表面506上。如以上在說明第一具體實施例時所述,電源供應器108有用於計算該電流中之電荷的庫倫數的構件以及可具有一構件用於在用數得庫倫數表示的電荷庫倫數符合與透明金屬氧化物之所欲厚度關連的庫倫數準則時停止該電位的施加。此外,該電源供應器可具有一構件用於在第二電解質中的金屬離子濃度符合金屬離子濃度準則時中斷該電流。該裝置更可包含:例如藉由吹空氣進入第一導管534從而通過第二導管536壓出電解質來移除空間524中之離子耗盡電解質的構件。替換地或另外,可用例如沖洗液(例如,沒有金屬離子的溶劑)沖出該電解質。一旦沖掉電解質,藉由泵送通過如上述的第一導管534,可導入新 容積的電解質於空間524內。然後,在更換電解質之後,可自動或手動重新激活電源供應器108以重新建立電流。 Referring again to Figure 8, the press assembly 504 includes first and second steel sheets 600, 602 that are shaped into respective surface portions, each of which is not sandwiched between the first and second substrates 504, 550. The regions occupied by the jaws 512, 514, 555, and 556 are in contact, and more shaped to have first and second outwardly extending sides, and FIG. 8 illustrates only the first outwardly extending side 604 of the first panel 600, And FIG. 8 illustrates first and second outwardly extending sides 606, 608 of the second plate 602. The first outwardly extending sides 604, 606 include first apertures 610, 612. The opening 610 of the first plate 600 is threaded and the opening 612 of the second plate 602 is smooth to receive the bolt 614 therethrough. Similar openings are provided in the second outwardly extending portion, and only the outwardly extending portion 608 in which the bolt 616 is received is illustrated in the field. The bolts 614 and 616 are identical and each has a threaded portion 618, a smooth portion 620, and a head portion 622. Bolt 614 passes through opening 612 to allow thread 618 to engage mating threads of threaded opening 610. Likewise, the bolt 616 engages a corresponding opening in the second outwardly extending side of the first and second plates 600, 602. then, The bolts 614, 616 are tightened to pull the first and second plates 600, 602 together such that the first and second conductive surfaces 506, 552 are pressed against the opposite sides of the spacer 516 thereby sealing the space 524 (see Figure 9) . Then, the electrolyte entering the space (524) with the composition mentioned above in describing the second electrolyte of the first embodiment is pumped through the first conduit 534, and air is allowed to escape through the second conduit 536 until the space (524) ) completely fill the electrolyte. Then, the power supply 108 is activated to apply an electricity between the conductive surface 506 of the dielectric substrate 507 to be coated with the transparent metal oxide and the first conductive surface 552 of the substrate 550 such that the second substrate 550 The first conductive surface 552 has a positive polarity with respect to the conductive surface 506 of the dielectric substrate 507 to cause a current to flow through the space between the first conductive surface 552 and the conductive surface 506 of the dielectric substrate 507 (524 The electrolyte in the ) causes an electrochemical reaction at the conductive surface 506 of the dielectric substrate 507 to form a transparent metal oxide layer on the conductive surface 506 of the dielectric substrate 507. As described above in describing the first embodiment, the power supply 108 has means for calculating the Coulomb number of the charge in the current and may have a member for the charge coulomb number in the representation of the Coulomb number. The application of this potential is stopped when the Coron number criterion associated with the desired thickness of the transparent metal oxide is used. Additionally, the power supply can have a means for interrupting the current when the metal ion concentration in the second electrolyte meets the metal ion concentration criteria. The apparatus may further comprise: means for removing the ion-depleted electrolyte in the space 524 by, for example, blowing air into the first conduit 534 to press the electrolyte through the second conduit 536. Alternatively or additionally, the electrolyte can be flushed out with, for example, a rinse solution (e.g., a solvent free of metal ions). Once the electrolyte is flushed, it can be introduced by pumping through the first conduit 534 as described above. The volume of electrolyte is within space 524. Then, after the electrolyte is replaced, the power supply 108 can be automatically or manually reactivated to re-establish the current.

在每個上述具體實施例中,提供一種方法及裝置用以電化學形成透明金屬氧化物於介電基材(例如,玻璃、聚合物或陶瓷材料)傳導性表面上。上述裝置及它們所執行的方法提供厚度高度均勻及有高度均勻之導電率及光學透明度的金屬氧化物層。在介電基材的相對大傳導性表面上面實現高度均勻性可用上述方法,其係使基材移動同時電解質保持靜止不動,如以上在說明第一、第二、第三及第四具體實施例時所述,或使電解質移動同時基材保持靜止不動,如第四具體實施例所示。在第一、第二、第三及第四具體實施例的情形下,基材上的傳導層塗有透明金屬氧化物層,以及用於各個第一及第二電化學電池的相對電極幾乎不劣化。 In each of the above specific embodiments, a method and apparatus are provided for electrochemically forming a transparent metal oxide on a conductive surface of a dielectric substrate (eg, glass, polymer or ceramic material). The above described devices and methods performed thereby provide a metal oxide layer having a highly uniform thickness and a highly uniform electrical conductivity and optical transparency. Achieving a high degree of uniformity over a relatively large conductive surface of the dielectric substrate can be achieved by moving the substrate while the electrolyte remains stationary, as explained above in the first, second, third and fourth embodiments. As described, the electrolyte is moved while the substrate remains stationary, as shown in the fourth embodiment. In the case of the first, second, third and fourth embodiments, the conductive layer on the substrate is coated with a transparent metal oxide layer, and the opposite electrodes for the respective first and second electrochemical cells are hardly Deterioration.

儘管已描述及圖解說明本發明的特定具體實施例,然而該等具體實施例應視為僅供示範且對於由以下申請專利範圍界定的本發明不具限定性。 While the specific embodiments of the invention have been described and illustrated, the specific embodiments are not to

10‧‧‧裝置 10‧‧‧ device

12、18、24、26‧‧‧構件 12, 18, 24, 26‧‧‧ components

14‧‧‧第一電解質 14‧‧‧First electrolyte

16‧‧‧第一電極 16‧‧‧First electrode

20‧‧‧第二電解質 20‧‧‧Second electrolyte

22‧‧‧第二電極 22‧‧‧second electrode

36、38‧‧‧第一及第二電化學電池 36, 38‧‧‧ First and second electrochemical cells

50、52‧‧‧第一及第二敝面容器 50, 52‧‧‧ first and second kneading containers

186、188、190‧‧‧加熱器元件 186, 188, 190‧‧‧ heater elements

Claims (58)

一種於一介電基材之傳導性表面上形成透明金屬氧化物層之方法,該方法包含下列步驟:使該介電基材之該傳導性表面的第一及第二傳導性表面部份各自暴露於第一及第二電解質;形成由與該第一電解質接觸之該第一傳導性表面部份以及與該第一電解質接觸而且與該第一傳導性表面部份隔開的第一電極所構成的第一電化學電池;形成由與該第二電解質接觸之該第二傳導性表面部份以及與該第二電解質接觸而且與該第二傳導性表面部份隔開的第二電極所構成的第二電化學電池;其中該第一及該第二電化學電池用該傳導性表面以串聯方式電性連接在一起;以及其中該第一電解質有促進電流傳導通過該第一電解質而不會促進該第一電極或該第一傳導性表面部份之顯著電化學反應的第一化學物;以及其中該第二電解質有促進電流傳導通過該第二電解質的第二化學物,該第二化學物包括一非水溶劑、金屬離子濃度至少足以促進該透明金屬氧化物層至所欲厚度之形成的金屬離子、以及適合促進該透明金屬氧化物層形成於該第二傳導性表面部份上的一氧源;施加一電位於該第一及該第二電極之間,使得該第二電極對於該第一電極有正極性以造成一電流在該第 二電極與該第一電極之間以串聯方式流動通過該第二電解質、該第二傳導性表面部份、該第一傳導性表面部份及該第一電解質;使得該第二電極有充分大於該第二傳導性表面部份的正電位以導致在該第二傳導性表面部份發生電化學反應以形成該透明金屬氧化物層於該第二傳導性表面部份上。 A method of forming a transparent metal oxide layer on a conductive surface of a dielectric substrate, the method comprising the steps of: respectively: first and second conductive surface portions of the conductive surface of the dielectric substrate Exposing to the first and second electrolytes; forming a first conductive surface portion in contact with the first electrolyte and a first electrode in contact with the first electrolyte and spaced apart from the first conductive surface portion Forming a first electrochemical cell; forming a second conductive surface portion in contact with the second electrolyte and a second electrode in contact with the second electrolyte and spaced apart from the second conductive surface portion a second electrochemical cell; wherein the first and second electrochemical cells are electrically connected together in series by the conductive surface; and wherein the first electrolyte has a current promoting conduction through the first electrolyte without a first chemical that promotes a significant electrochemical reaction of the first electrode or the first conductive surface portion; and wherein the second electrolyte has a first layer that promotes current conduction through the second electrolyte a chemical, the second chemical comprising a non-aqueous solvent, a metal ion concentration at least sufficient to promote formation of the transparent metal oxide layer to a desired thickness, and a layer suitable for promoting formation of the transparent metal oxide layer in the second An oxygen source on the conductive surface portion; an electric current is applied between the first electrode and the second electrode such that the second electrode has a positive polarity to the first electrode to cause a current in the first a second electrode and the first electrode flow in series through the second electrolyte, the second conductive surface portion, the first conductive surface portion and the first electrolyte; such that the second electrode is sufficiently larger than A positive potential of the second conductive surface portion causes an electrochemical reaction to occur at the second conductive surface portion to form the transparent metal oxide layer on the second conductive surface portion. 如申請專利範圍第1項之方法,其中該非水溶劑為質子性或非質子性。 The method of claim 1, wherein the non-aqueous solvent is protic or aprotic. 如申請專利範圍第1項或第2項之方法,其更包含:由可溶於該非水溶劑的鹽類釋出能夠形成在電磁頻譜之可見區呈光學透明之該透明金屬氧化物層的金屬離子。 The method of claim 1 or 2, further comprising: releasing a metal capable of forming the transparent metal oxide layer optically transparent in a visible region of the electromagnetic spectrum from a salt soluble in the nonaqueous solvent; ion. 如申請專利範圍第1項至第3項中之任一項的方法,其更包含:造成該第二電解質包括可電化學嵌入該透明金屬氧化物層的一摻雜物以製造一傳導性透明金屬氧化物層。 The method of any one of clauses 1 to 3, further comprising: causing the second electrolyte to include a dopant electrochemically intercalating the transparent metal oxide layer to produce a conductive transparent Metal oxide layer. 如申請專利範圍第4項之方法,其更包含:納入一化學添加劑至該第一及該第二電解質中之至少一者。 The method of claim 4, further comprising: incorporating a chemical additive to at least one of the first and second electrolytes. 如申請專利範圍第1項至第5項中之任一項的方法,其更包含:計算該電流中之電荷的庫倫數,以及在電荷庫倫數符合與該透明金屬氧化物層之所欲厚度關連的一電荷數準則時,停止該電位之施加。 The method of any one of claims 1 to 5, further comprising: calculating a Coulomb number of the charge in the current, and satisfying a desired thickness of the transparent metal oxide layer at the charge coulomb number When a charge number criterion is associated, the application of the potential is stopped. 如申請專利範圍第1項至第6項中之任一項的方法,其更包含:在該第二電解質中的金屬離子濃度符合一金屬離 子濃度準則時,中斷該電流、更換該第二電解質、以及重新建立該電流。 The method of any one of claims 1 to 6, further comprising: the metal ion concentration in the second electrolyte conforms to a metal ion In the sub-concentration criterion, the current is interrupted, the second electrolyte is replaced, and the current is re-established. 如申請專利範圍第1項至第7項中之任一項的方法,其更包含:在該電流正在流動時,使該基材相對於該第一及該第二電解質以由該第一電解質到該第二電解質的方向移動,以造成該透明金屬氧化物層沿著該基材之該傳導性表面的縱長方向形成。 The method of any one of clauses 1 to 7, further comprising: when the current is flowing, the substrate is made relative to the first and second electrolytes by the first electrolyte Moving in the direction of the second electrolyte to cause the transparent metal oxide layer to be formed along the longitudinal direction of the conductive surface of the substrate. 如申請專利範圍第1項至第7項中之任一項的方法,其中形成該第一及該第二電化學電池的步驟包含:存放該第一電解質於第一敝面容器中以及存放該第二電解質於第二敝面容器中。 The method of any one of clauses 1 to 7, wherein the step of forming the first and second electrochemical cells comprises: storing the first electrolyte in a first kneading container and storing the same The second electrolyte is in the second kneading container. 如申請專利範圍第9項之方法,其更包含:用一入口壁、一內壁、一出口壁、數個第一端壁部及第一底壁部定義該第一及該第二敝面容器,藉此定義該第一敝面容器於該入口壁、該內壁、該等第一端壁部及該第一底壁部之間,以及藉此定義該第二敝面容器於該內壁、該出口壁、數個第二端壁部及第二底壁部之間。 The method of claim 9, further comprising: defining the first and second sides with an inlet wall, an inner wall, an outlet wall, a plurality of first end wall portions, and a first bottom wall portion a container, thereby defining the first kneading container between the inlet wall, the inner wall, the first end wall portion and the first bottom wall portion, and thereby defining the second kneading container therein Between the wall, the outlet wall, the plurality of second end wall portions, and the second bottom wall portion. 如申請專利範圍第10項之方法,其更包含:使該第一電極在相對於該基材平行隔開的第一位置處延伸穿過該入口壁、一第一端壁部或該第一底壁部,以及使該第二電極在相對於該基材平行隔開的第二位置處延伸穿過該出口壁、一第二端壁部或該第二底壁部。 The method of claim 10, further comprising: extending the first electrode through the inlet wall, a first end wall portion or the first portion at a first position spaced parallel to the substrate a bottom wall portion and a second electrode extending through the outlet wall, a second end wall portion or the second bottom wall portion at a second position spaced parallel to the substrate. 如申請專利範圍第9項至第11項中之任一項的方法,其更包含:通過在該入口壁的一入口開孔來納入有該傳導 性表面之該介電基材,以及造成該基材在該第一及該第二敝面容器上面延伸使得該傳導性表面面向該第一及該第二敝面容器,其中該第一傳導性表面部份為該傳導性表面中在該第一容器上面延伸的一部份,以及其中該第二傳導性表面部份為該傳導性表面中在該第二敝面容器上面延伸的一部份,以及其中該方法更包含:造成該基材之一部份延伸穿過該第二敝面容器之一出口壁的一出口開孔。 The method of any one of clauses 9 to 11, further comprising: incorporating the conduction by opening an opening in the inlet wall The dielectric substrate of the surface, and causing the substrate to extend over the first and second kneading containers such that the conductive surface faces the first and second kneading containers, wherein the first conductivity The surface portion is a portion of the conductive surface that extends over the first container, and wherein the second conductive surface portion is a portion of the conductive surface that extends over the second kneading container And wherein the method further comprises: causing a portion of the substrate to extend through an outlet opening of one of the outlet walls of the second kneading container. 如申請專利範圍第12項之方法,其更包含:造成在該介電基材上抵著該傳導層密封該入口開孔及該出口開孔以防止該第一及該第二電解質各自由該入口及該出口開孔漏出。 The method of claim 12, further comprising: causing the inlet opening and the outlet opening to be sealed against the conductive layer on the dielectric substrate to prevent the first and second electrolytes from being The inlet and the outlet opening leak. 如申請專利範圍第13項之方法,其更包含:造成在該介電基材上抵著該傳導性表面密封該內壁以防止該第一及該第二電解質在該內壁交換。 The method of claim 13, further comprising: sealing the inner wall against the conductive surface on the dielectric substrate to prevent the first and second electrolytes from being exchanged at the inner wall. 如申請專利範圍第9項至第14項中之任一項的方法,其更包含:在該電流正在流動時,使該基材相對於該第一及該第二電解質以由該第一電解質到該第二電解質的方向移動,以造成該透明金屬氧化物層沿著該基材之該傳導性表面的縱長方向形成。 The method of any one of clauses 9 to 14, further comprising: when the current is flowing, the substrate is opposed to the first and second electrolytes by the first electrolyte Moving in the direction of the second electrolyte to cause the transparent metal oxide layer to be formed along the longitudinal direction of the conductive surface of the substrate. 如申請專利範圍第15項之方法,其中該移動包含:使該基材移動同時該第一及該第二敝面容器保持靜止不動。 The method of claim 15, wherein the moving comprises: moving the substrate while the first and second kneading containers remain stationary. 如申請專利範圍第9項至第11項中之任一項的方法,其更包含:造成該第一及該第二敝面容器敝面朝下地放在 該介電基材之該傳導性表面上,使得該基材在該入口壁、該內壁、該出口壁、及該第一及該第二端壁部下面延伸而使得該介電基材的該第一及該第二傳導性表面面向該第一及該第二敝面容器,其中該第一傳導性表面部份為該傳導性表面中在該第一敝面容器下面延伸的一部份,以及其中該第二傳導性表面部份為該傳導性表面中在該第二敝面容器下面延伸的一部份,以及其中該方法更包含:使該介電基材之該傳導性表面的一部份在該第二敝面容器之該出口壁下面延伸。 The method of any one of clauses 9 to 11, further comprising: causing the first and second kneading containers to be placed face down The conductive surface of the dielectric substrate is such that the substrate extends under the inlet wall, the inner wall, the outlet wall, and the first and second end wall portions to cause the dielectric substrate The first and second conductive surfaces face the first and second kneading containers, wherein the first conductive surface portion is a portion of the conductive surface extending below the first kneading container And wherein the second conductive surface portion is a portion of the conductive surface that extends under the second kneading container, and wherein the method further comprises: disposing the conductive surface of the dielectric substrate A portion extends below the outlet wall of the second kneading container. 如申請專利範圍第17項之方法,其更包含:以該傳導性表面面朝上地存放該介電基材於存放一初始電解質的一容器中以及其中造成該第一及該第二敝面容器敝面朝下地放在該介電基材之該傳導性表面上的步驟係包含:造成該第一及該第二敝面容器實質浸入該初始電解質,以及造成抵著該基材密封該入口壁、該出口壁、該第一及該第二端壁部以容納該初始電解質的第一容積於該第一敝面容器中以及容納該初始電解質的第二容積於該第二敝面容器中。 The method of claim 17, further comprising: storing the dielectric substrate with the conductive surface facing up in a container for storing an initial electrolyte and causing the first and second sides thereof The step of placing the container face down on the conductive surface of the dielectric substrate comprises: causing the first and second kneading containers to substantially immerse into the initial electrolyte, and causing the inlet to be sealed against the substrate a wall, the outlet wall, the first and second end wall portions to accommodate a first volume of the initial electrolyte in the first kneading container and a second volume containing the initial electrolyte in the second kneading container . 如申請專利範圍第18項之方法,其更包含:造成抵著該介電基材之該傳導性表面密封該內壁以防止該第一及該第二電解質各自在該內壁下面漏出。 The method of claim 18, further comprising: causing the conductive surface against the dielectric substrate to seal the inner wall to prevent the first and second electrolytes from leaking under the inner wall. 如申請專利範圍第9項至第12項及第17項至第19項中之任一項的方法,其更包含:在該電流正在流動時,使該基材相對於該第一及該第二電解質以由該第一電解質 到該第二電解質的方向移動,以造成該透明金屬氧化物層沿著該基材之該傳導性表面的縱長方向形成。 The method of any one of claims 9 to 12, wherein the substrate further comprises: when the current is flowing, the substrate is relative to the first and the first Two electrolytes Moving in the direction of the second electrolyte to cause the transparent metal oxide layer to be formed along the longitudinal direction of the conductive surface of the substrate. 如申請專利範圍第20項之方法,其中該移動包含:使該第一及該第二敝面容器移動同時該基材保持靜止不動。 The method of claim 20, wherein the moving comprises: moving the first and second kneading containers while the substrate remains stationary. 一種形成一透明金屬氧化物層於一第一介電基材之第一傳導性表面上的方法,該方法包含下列步驟:使該第一介電基材的第一傳導性表面抵著一定義空間用之框體墊片壓在一第二介電基材之第二傳導性表面上,使得該框體定義一密閉空間於該第一傳導性表面與該第二傳導性表面之間;通過該框體墊片中的一開孔,接納一電解質於該密閉空間中,該電解質有促進電流傳導通過該電解質的化學物,該化學物包括一非水溶劑、金屬離子濃度至少足以促進該透明金屬氧化物層至所欲厚度之形成的金屬離子、以及適合促進該透明金屬氧化物層形成於該第一傳導性表面上的一氧源;以及施加一電位於該第一及該第二傳導性表面之間使得該第一傳導性表面對於該第二傳導性表面有負極性以造成一電流在該第二傳導性表面與該第一傳導性表面之間流動通過該電解質以導致在該第一傳導性表面發生電化學反應以形成該透明金屬氧化物層於該第一傳導性表面上。 A method of forming a transparent metal oxide layer on a first conductive surface of a first dielectric substrate, the method comprising the steps of: placing a first conductive surface of the first dielectric substrate against a definition The space frame gasket is pressed onto the second conductive surface of the second dielectric substrate such that the frame defines a closed space between the first conductive surface and the second conductive surface; An opening in the frame gasket receives an electrolyte in the sealed space, the electrolyte having a chemical that promotes current conduction through the electrolyte, the chemical comprising a non-aqueous solvent, the metal ion concentration being at least sufficient to promote the transparency a metal oxide layer to a desired thickness of metal ions, and an oxygen source suitable for promoting formation of the transparent metal oxide layer on the first conductive surface; and applying an electric current to the first and second conduction The first conductive surface has a negative polarity with respect to the second conductive surface to cause a current to flow between the second conductive surface and the first conductive surface through the electrolyte It leads to the formation of a transparent metal oxide layer on the first conductive surface of an electrochemical reaction occurs at the first conductive surface. 如申請專利範圍第22項之方法,其中該非水溶劑為質子性或非質子性。 The method of claim 22, wherein the non-aqueous solvent is protic or aprotic. 如申請專利範圍第22項或第23項之方法,其更包含:由可溶於該非水溶劑的鹽類釋出能夠形成在電磁頻譜之可見區呈光學透明之該透明金屬氧化物層的金屬離子。 The method of claim 22 or 23, further comprising: releasing a metal capable of forming the transparent metal oxide layer optically transparent in a visible region of the electromagnetic spectrum from a salt soluble in the nonaqueous solvent; ion. 如申請專利範圍第22項至第24項中之任一項的方法,其更包含:造成該第二電解質包括可電化學嵌入該透明金屬氧化物層的一摻雜物以製造一傳導性透明金屬氧化物層。 The method of any one of clauses 22 to 24, further comprising: causing the second electrolyte to include a dopant electrochemically intercalating the transparent metal oxide layer to produce a conductive transparent Metal oxide layer. 如申請專利範圍第25項之方法,其更包含:納入一化學添加劑於該電解質中。 The method of claim 25, further comprising: incorporating a chemical additive into the electrolyte. 如申請專利範圍第22項至第26項中之任一項的方法,其更包含:計算該電流中之電荷的庫倫數,以及在電荷庫倫數符合與該透明金屬氧化物層之所欲厚度關連的一電荷庫倫數準則時,停止該電位之施加。 The method of any one of claims 22 to 26, further comprising: calculating a Coulomb number of the charge in the current, and satisfying a desired thickness of the transparent metal oxide layer at the charge coulomb number The application of this potential is stopped when a charge coulomb number criterion is associated. 如申請專利範圍第22項至第26項中之任一項的方法,其更包含:在該電解質中的金屬離子濃度符合一金屬離子濃度準則時,中斷該電流、更換該電解質、以及重新建立該電流。 The method of any one of claims 22 to 26, further comprising: interrupting the current, replacing the electrolyte, and re-establishing when the metal ion concentration in the electrolyte conforms to a metal ion concentration criterion This current. 如申請專利範圍第22項至第28項中之任一項的方法,其中該壓抵步驟包含:充分壓抵以壓縮該定義空間用之框體墊片以充分密封該密閉空間以防止該電解質由該密閉空間漏出。 The method of any one of clauses 22 to 28, wherein the pressing step comprises: sufficiently pressing against a frame gasket for compressing the defined space to sufficiently seal the sealed space to prevent the electrolyte Leaked out of the sealed space. 如申請專利範圍第22項至第29項中之任一項的方法,其中施加一電位的該步驟包含:各自固定第一及第二傳導性夾鉗於該第一基材的第一及第二相對邊緣上以在該 第一基材的相對邊緣與該第一傳導性表面電接觸,以及各自固定第三及第四傳導性夾鉗於該介電基材的第三及第四邊緣上以與該介電基材之該第二傳導性表面電接觸,以及使該第一及該第二夾鉗連接至一電流源之正端以及使該第三及該第四夾鉗連接至該電流源之負端。 The method of any one of clauses 22 to 29, wherein the step of applying a potential comprises: first and second fixing the first and second conductive clamps to the first substrate Two opposite edges to The opposite edges of the first substrate are in electrical contact with the first conductive surface, and the third and fourth conductive clips are respectively secured to the third and fourth edges of the dielectric substrate to interface with the dielectric substrate The second conductive surface is in electrical contact, and the first and second clamps are coupled to a positive terminal of a current source and the third and fourth clamps are coupled to a negative terminal of the current source. 一種用於形成一透明金屬氧化物層於一介電基材之傳導性表面上的裝置,該裝置包含:用於存放第一電解質以及一與該第一電解質接觸之第一電極的一構件;用於存放第二電解質以及一與該第二電解質接觸之第二電極的一構件;一用以同時使該介電基材之該傳導性表面的第一及第二傳導性表面部份各自暴露於該第一及該第二電解質的構件,使得該第一及該第二傳導性表面部份各自與該第一及該第二電極隔開以各自形成第一及第二電化學電池,以及藉此該第一及該第二電化學電池用該介電基材之該傳導性表面以串聯方式電性連接在一起;其中該第一電解質有促進電流傳導通過該第一電解質而不會促進該第一電極或該第一傳導性表面部份之顯著電化學反應的第一化學物;以及其中該第二電解質有促進電流傳導通過該第二電解質的第二化學物,該第二化學物包括一非水溶劑、金屬離子濃度至少足以促進該透明金屬氧化物層至所欲厚度之形成的金屬離子、以及適合促進該透明金屬氧化 物層形成於該第二傳導性表面部份上的一氧源;一用以施加一電位於該第一及該第二電極之間的構件,使得該第二電極對於該第一電極有正極性以造成一電流在該第二電極與該第一電極之間以串聯方式流動通過該第二電解質、該第二傳導性表面部份、該第一傳導性表面部份及該第一電解質;使得該第二電極有充分大於該第二傳導性表面部份的正電位以導致在該第二傳導性表面部份發生電化學反應以形成該透明金屬氧化物層於該第二傳導性表面部份上。 A device for forming a transparent metal oxide layer on a conductive surface of a dielectric substrate, the device comprising: a member for storing a first electrolyte and a first electrode in contact with the first electrolyte; a member for storing a second electrolyte and a second electrode in contact with the second electrolyte; a method for simultaneously exposing each of the first and second conductive surface portions of the conductive surface of the dielectric substrate The first and second conductive surface portions are spaced apart from the first and second electrodes to form first and second electrochemical cells, respectively, and Thereby, the first and second electrochemical cells are electrically connected together in series by the conductive surface of the dielectric substrate; wherein the first electrolyte has a current promoting conduction through the first electrolyte without promoting a first chemical or a first electrochemically significant first chemical of the first conductive surface portion; and wherein the second electrolyte has a second chemical that promotes current conduction through the second electrolyte, the second chemical Comprises a non-aqueous solvent, the metal ion concentration is at least sufficient to promote formation of a metal ion of the transparent metal oxide layer to a desired thickness, and for the promotion of the transparent metal oxide a layer of an oxygen source formed on the second conductive surface portion; a member for applying a voltage between the first electrode and the second electrode, such that the second electrode has a positive electrode for the first electrode Characterizing to cause a current to flow in series between the second electrode and the first electrode through the second electrolyte, the second conductive surface portion, the first conductive surface portion and the first electrolyte; Having the second electrode have a positive potential sufficiently greater than the second conductive surface portion to cause an electrochemical reaction at the second conductive surface portion to form the transparent metal oxide layer on the second conductive surface portion Share. 如申請專利範圍第31項之裝置,其中該非水溶劑為質子性或非質子性。 The device of claim 31, wherein the non-aqueous solvent is protic or aprotic. 如申請專利範圍第31項或第32項之裝置,其更包含由可溶於該非水溶劑的鹽類釋出能夠形成在電磁頻譜之可見區呈光學透明之該透明金屬氧化物層的金屬離子。 The device of claim 31 or 32, further comprising a metal ion which is soluble in the non-aqueous solvent and which is capable of forming the transparent metal oxide layer which is optically transparent in the visible region of the electromagnetic spectrum. . 如申請專利範圍第31項至第33項中之任一項的裝置,其更包含造成該第二電解質包括可電化學嵌入該透明金屬氧化物層的一摻雜物以製造一傳導性透明金屬氧化物層。 The device of any one of claims 31 to 33, further comprising causing the second electrolyte to include a dopant electrochemically intercalating the transparent metal oxide layer to produce a conductive transparent metal Oxide layer. 如申請專利範圍第31項至第34項中之任一項的裝置,其更包含一構件用以計算該電流中之電荷的庫倫數,以及與用於計算庫倫數之該構件通訊的一構件用於在用於計算庫倫數之該構件指出的電荷庫倫數滿足與該透明金屬氧化物層之所欲厚度關連之一庫倫數準則時停止 該電位之施加。 The apparatus of any one of claims 31 to 34, further comprising a component for calculating a Coulomb number of the charge in the current, and a component for communicating with the member for calculating the Coulomb number Stopping when the charge coulomb number indicated by the member for calculating the Coulomb number satisfies one of the coulomb number criteria associated with the desired thickness of the transparent metal oxide layer The application of this potential. 如申請專利範圍第31項至第35項中之任一項的裝置,其更包含:用於在該第二電解質中之金屬離子濃度符合一金屬離子濃度準則時中斷該電流的一構件,用於更換該第二電解質的一構件,以及用於在第二電解質已更換後重新建立該電流的一構件。 The apparatus of any one of claims 31 to 35, further comprising: a member for interrupting the current when the metal ion concentration in the second electrolyte conforms to a metal ion concentration criterion, A member for replacing the second electrolyte, and a member for reestablishing the current after the second electrolyte has been replaced. 如申請專利範圍第31項至第36項中之任一項的裝置,其更包含一構件用以在該電流正在流動時,使該基材相對於該第一及該第二電解質以由該第一電解質到該第二電解質的方向移動,以造成該透明金屬氧化物層沿著該基材之該傳導性表面的縱長方向形成。 The device of any one of claims 31 to 36, further comprising a member for causing the substrate relative to the first and second electrolytes when the current is flowing The first electrolyte moves in the direction of the second electrolyte to cause the transparent metal oxide layer to be formed along the longitudinal direction of the conductive surface of the substrate. 如申請專利範圍第31項至第36項中之任一項的裝置,其中用於存放該第一電解質及該第一電極的該構件包含一第一敝面容器,以及其中用於存放該第二電解質及該第二電極的該構件包含一第二敝面容器。 The device of any one of clauses 31 to 36, wherein the member for storing the first electrolyte and the first electrode comprises a first kneading container, and wherein the The second electrolyte and the member of the second electrode comprise a second kneading container. 如申請專利範圍第38項之裝置,其中該第一敝面容器包含一入口壁及一內壁、一對第一端壁、以及一第一底壁部,以及其中該第二敝面容器包含該內壁及一出口壁、一對第二端壁、以及一第二底壁部,其中該第一及該第二敝面容器有第一及第二端壁部。 The device of claim 38, wherein the first kneading container comprises an inlet wall and an inner wall, a pair of first end walls, and a first bottom wall portion, and wherein the second kneading container comprises The inner wall and an outlet wall, a pair of second end walls, and a second bottom wall portion, wherein the first and second kneading containers have first and second end wall portions. 如申請專利範圍第39項之裝置,其中該第一電極在相對於該基材平行隔開的第一位置處延伸穿過該入口壁、該等第一端壁部中之至少一者或該第一底壁部,以及其中該第二電極在相對於該介電基材之該傳導性表面平行 隔開的第二位置處延伸穿過該出口壁、該等第二端壁部中之至少一者或該第二底壁部。 The device of claim 39, wherein the first electrode extends through the inlet wall, at least one of the first end wall portions or at a first position spaced parallel to the substrate a first bottom wall portion, and wherein the second electrode is parallel to the conductive surface relative to the dielectric substrate The spaced second position extends through the outlet wall, at least one of the second end wall portions, or the second bottom wall portion. 如申請專利範圍第39項或第40項中之任一項的裝置,其中用於同時暴露該基材之傳導性表面之該第一及該第二表面部份的該構件包含在該入口壁中的一入口開孔與在該出口壁中的一出口開孔,用以接受及定位該介電基材以使該介電基材在該第一及該第二敝面容器上面延伸使得該第一傳導性表面部份面向該第一敝面容器以及使得該第二傳導性表面部份面向該第二敝面容器。 The device of any one of the preceding claims, wherein the member for simultaneously exposing the first and second surface portions of the conductive surface of the substrate is included in the inlet wall An inlet opening and an outlet opening in the outlet wall for receiving and positioning the dielectric substrate such that the dielectric substrate extends over the first and second kneading containers such that The first conductive surface portion faces the first kneading container and the second conductive surface portion faces the second kneading container. 如申請專利範圍第41項之裝置,其更包含入口及出口密封件,該入口及該出口密封件係可操作地組配成可抵著該介電基材之該傳導性表面密封該入口開孔及該出口開孔以防止該第一及該第二電解質各自由該入口及該出口開孔漏出。 The device of claim 41, further comprising an inlet and outlet seal, the inlet and the outlet seal being operatively configured to seal the inlet against the conductive surface of the dielectric substrate The aperture and the outlet opening prevent the first and second electrolytes from leaking out of the inlet and the outlet opening, respectively. 如申請專利範圍第42項之裝置,其更包含一內壁密封件,該內壁密封件係可操作地組配成可抵著該介電基材之該傳導性表面密封該內壁以防止該第一及該第二電解質在該內壁交換。 The device of claim 42, further comprising an inner wall seal operatively assembled to seal the inner wall against the conductive surface of the dielectric substrate to prevent The first and second electrolytes are exchanged at the inner wall. 如申請專利範圍第38項至第43項中之任一項的裝置,其更包含一構件用於在該電流正在流動時使該基材相對於該第一及該第二電解質以由該第一電解質到該第二電解質的方向移動,以造成該透明金屬氧化物層沿著該基材之該傳導性表面的縱長方向形成。 The device of any one of claims 38 to 43 further comprising a member for causing the substrate to be relative to the first and second electrolytes when the current is flowing An electrolyte moves in the direction of the second electrolyte to cause the transparent metal oxide layer to be formed along the longitudinal direction of the conductive surface of the substrate. 如申請專利範圍第44項之裝置,其中用於移動的該構件 包含用於移動該基材的一構件以及用於在該基材正在移動時使該第一及該第二敝面容器保持靜止不動的一構件。 The device of claim 44, wherein the component for moving A member for moving the substrate and a member for holding the first and second kneading containers stationary while the substrate is moving. 如申請專利範圍第39項至第40項中之任一項的裝置,其更包含一構件用於以面朝下地定位該第一及該第二敝面容器於該介電基材之該傳導性表面上使得該基材在該入口壁、該內壁、該出口壁以及該第一對及該第二對端壁下面延伸,使得該介電基材的該第一及該第二傳導性表面面向該第一及該第二敝面容器。 The device of any one of claims 39 to 40, further comprising a member for positioning the conduction of the first and second kneading containers on the dielectric substrate face down The substrate is such that the substrate extends under the inlet wall, the inner wall, the outlet wall, and the first pair and the second pair of end walls, such that the first and second conductivity of the dielectric substrate The surface faces the first and second kneading containers. 如申請專利範圍第46項之裝置,其更包含:用於存放一初始電解質之一容積的一構件;用於以該傳導性表面面朝上地存放該介電基材於該初始電解質中的一構件;以及其中用於以面朝下地定位該第一及該第二敝面容器於該介電基材之該傳導性表面上的該構件包含用於造成該第一及該第二敝面容器實質浸入該初始電解質的一構件;以及一用於抵著該基材密封該入口壁、該出口壁以及該第一及該第二端壁部的構件,以容納該初始電解質的第一容積於該第一敝面容器中以及容納該初始電解質的第二容積於該第二敝面容器中。 The device of claim 46, further comprising: a member for storing a volume of an initial electrolyte; and storing the dielectric substrate in the initial electrolyte with the conductive surface facing up a member; and wherein the member for positioning the first and second kneading containers face-down on the conductive surface of the dielectric substrate comprises for causing the first and second faces a member substantially immersed in the initial electrolyte; and a member for sealing the inlet wall, the outlet wall, and the first and second end walls against the substrate to accommodate the first volume of the initial electrolyte A second volume in the first kneading container and containing the initial electrolyte is in the second kneading container. 如申請專利範圍第47項之裝置,其更包含一構件用於抵著該介電基材之該傳導性表面密封該內壁以防止該第一及該第二電解質各自在該內壁漏出。 The device of claim 47, further comprising a member for sealing the inner wall against the conductive surface of the dielectric substrate to prevent the first and second electrolytes from leaking out of the inner wall. 如申請專利範圍第45項至第47項中之任一項的裝置,其更包含一構件用於在該電流正在流動時,使該基材相對於該第一及該第二電解質以由該第一電解質到該第二電解質的方向移動,以造成該透明金屬氧化物層沿著該基材之該傳導性表面的縱長方向形成。 The device of any one of claims 45 to 47, further comprising a member for causing the substrate relative to the first and second electrolytes when the current is flowing The first electrolyte moves in the direction of the second electrolyte to cause the transparent metal oxide layer to be formed along the longitudinal direction of the conductive surface of the substrate. 如申請專利範圍第49項之裝置,其中用於移動的該構件包含用於移動該第一及該第二敝面容器的一構件,以及用於在該第一及該第二敝面容器正在移動時使該基材保持靜止不動的一構件。 The device of claim 49, wherein the member for moving comprises a member for moving the first and second kneading containers, and for the first and second kneading containers being A member that keeps the substrate stationary while moving. 一種用於形成一透明金屬氧化物層於一第一介電基材之第一傳導性表面上的裝置,該裝置包含:定位於該第一介電基材之該第一傳導性表面上的一定義空間用之框體墊片,該墊片有定義一空間的一內壁,該空間係以該內壁與該第一介電基材之該第一傳導性表面的一部份為界;一有第二傳導性表面的第二基材;一用於抵著該定義空間用之框體墊片地壓抵該第一基材之該第一傳導性表面以造成該空間為一密閉空間的構件;在該框體墊片中用於納入一電解質於該密閉空間的一開孔,該電解質有促進電流傳導通過該電解質的化學物,該化學物包括非水溶劑、金屬離子、以及適合促進該透明金屬氧化物層形成於該第一傳導性表面上的一氧源;以及 一用於施加一電位於該第二介電基材之該第二傳導性表面與該第一基材之該第一傳導性表面之間的構件,使得該第一基材之該第一傳導性表面對於該第二介電基材之該第二傳導性表面有負極性以造成一電流在該第二傳導性表面與該第一傳導性表面之間流動而通過該電解質以導致在該第一傳導性表面發生電化學反應以形成該透明金屬氧化物層於該第一傳導性表面上。 A device for forming a transparent metal oxide layer on a first conductive surface of a first dielectric substrate, the device comprising: positioning on the first conductive surface of the first dielectric substrate a frame gasket for defining a space, the gasket having an inner wall defining a space bounded by the inner wall and a portion of the first conductive surface of the first dielectric substrate a second substrate having a second conductive surface; a first conductive surface for pressing against the first substrate with the frame gasket for the defined space to cause the space to be sealed a member of the space; the opening in the frame gasket for incorporating an electrolyte in the sealed space, the electrolyte having a chemical that promotes current conduction through the electrolyte, the chemical comprising a non-aqueous solvent, a metal ion, and An oxygen source adapted to promote formation of the transparent metal oxide layer on the first conductive surface; a member for applying a second electrode between the second conductive surface of the second dielectric substrate and the first conductive surface of the first substrate, such that the first conductive of the first substrate The surface has a negative polarity for the second conductive surface of the second dielectric substrate to cause a current to flow between the second conductive surface and the first conductive surface to pass through the electrolyte to cause A conductive surface undergoes an electrochemical reaction to form the transparent metal oxide layer on the first conductive surface. 如申請專利範圍第51項之裝置,其中該非水溶劑為質子性或非質子性溶劑。 The device of claim 51, wherein the non-aqueous solvent is a protic or aprotic solvent. 如申請專利範圍第51項或第52項之裝置,其更包含由可溶於該非水溶劑的鹽類釋出能夠形成在電磁頻譜之可見區呈光學透明之該透明金屬氧化物層的金屬離子。 The device of claim 51 or 52, further comprising a metal ion which is soluble in the non-aqueous solvent and which is capable of forming the transparent metal oxide layer which is optically transparent in the visible region of the electromagnetic spectrum. . 如申請專利範圍第51項至第53項中之任一項的裝置,其更包含造成該第二電解質包括可電化學嵌入該透明金屬氧化物層的一摻雜物以製造一傳導性透明金屬氧化物層。 The apparatus of any one of clauses 51 to 53, further comprising causing the second electrolyte to include a dopant electrochemically intercalating the transparent metal oxide layer to produce a conductive transparent metal Oxide layer. 如申請專利範圍第53項或第54項之裝置,其更包含一構件用於計算該電流中之電荷的庫倫數,以及與用於計算庫倫數之該構件通訊的一構件用於在用於計算庫倫數之該構件指出的電荷庫倫數滿足與該透明金屬氧化物層之所欲厚度關連之一庫倫數準則時停止該電位之施加。 A device according to claim 53 or 54 further comprising a component for calculating a Coulomb number of the charge in the current, and a member for communicating with the member for calculating the Coulomb number for use in The application of the potential is stopped when the number of charge coulombs indicated by the member of the Coulomb number satisfies one of the Coulomb number criteria associated with the desired thickness of the transparent metal oxide layer. 如申請專利範圍第52項至第55項中之任一項的裝置,其更包含:用於在該電解質中之金屬離子濃度符合依金屬離子濃度準則時中斷該電流的一構件,用於更換該電解 質的一構件,以及用於在該電解質更換後重新建立該電流的一構件。 The device of any one of claims 52 to 55, further comprising: a member for interrupting the current when the metal ion concentration in the electrolyte meets the metal ion concentration criterion, for replacement The electrolysis A component of the mass and a component for reestablishing the current after the electrolyte is replaced. 如申請專利範圍第52項至第56項中之任一項的裝置,其中用於壓抵的該構件可操作地組配成可壓縮該定義空間用之框體墊片以充分密封該密閉空間以防止該電解質由該密閉空間漏出。 The device of any one of clauses 52 to 56, wherein the member for pressing is operatively assembled to compress the frame gasket for the defined space to sufficiently seal the sealed space In order to prevent the electrolyte from leaking out of the sealed space. 如申請專利範圍第51項至第57項中之任一項的裝置,其中用於施加一電位的該構件包含各自在該第一基材之第一及第二相對邊緣上與該第一傳導性塗層於該第一基材之相對側邊電性接觸的第一及第二傳導性夾鉗,以及在該介電基材之第三及第四相對邊緣上與該介電基材相對側邊之該第二傳導性表面電性接觸的第三及第四傳導性夾鉗,其中該第一及該第二夾鉗可操作地組配成可連接至一電流源的一負端,以及其中該第三及該第四夾鉗可操作地組配成可連接至該電流源的一正端。 The device of any one of clauses 51 to 57, wherein the member for applying a potential comprises each of the first and second opposite edges of the first substrate and the first conduction First and second conductive clamps electrically contacting the opposite sides of the first substrate, and opposite the dielectric substrate on the third and fourth opposite edges of the dielectric substrate The third and fourth conductive clamps of the second conductive surface electrically contacting the side, wherein the first and the second clamp are operably assembled to be connected to a negative end of a current source, And wherein the third and fourth clamps are operatively assembled to be coupled to a positive terminal of the current source.
TW102108023A 2013-03-07 2013-03-07 Forming a transparent metal oxide layer on a conductive surface of a dielectric substrate TW201435152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102108023A TW201435152A (en) 2013-03-07 2013-03-07 Forming a transparent metal oxide layer on a conductive surface of a dielectric substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102108023A TW201435152A (en) 2013-03-07 2013-03-07 Forming a transparent metal oxide layer on a conductive surface of a dielectric substrate

Publications (1)

Publication Number Publication Date
TW201435152A true TW201435152A (en) 2014-09-16

Family

ID=51943236

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102108023A TW201435152A (en) 2013-03-07 2013-03-07 Forming a transparent metal oxide layer on a conductive surface of a dielectric substrate

Country Status (1)

Country Link
TW (1) TW201435152A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623997B (en) * 2016-02-19 2018-05-11 斯庫林集團股份有限公司 Plating apparatus and plating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623997B (en) * 2016-02-19 2018-05-11 斯庫林集團股份有限公司 Plating apparatus and plating method

Similar Documents

Publication Publication Date Title
US9039886B2 (en) Method of transferring graphene
EP2816078A1 (en) Transparent conductive film and electric device
US20170080696A1 (en) Methods and apparatus for transfer for films among substrates
CN104651791B (en) Energy-saving flexible transparent conductive film and preparation method thereof
CN103534387B (en) Optoelectronic pole and manufacture method thereof, photoelectrochemical cell and use energy system and the method for forming hydrogen of this battery
CN104916370A (en) Method of manufacturing transparent conductor, transparent conductor and device for manufacturing the same, and device for manufacturing transparent conductor precursor
CN101821860A (en) Production system of thin film solar battery
JP2002237606A (en) Substrate for solar cell, solar cell using the same, and method of manufacturing the solar cell
US20100200408A1 (en) Method and apparatus for the solution deposition of high quality oxide material
KR20220083779A (en) Electrochromic device, method of manufacture and operation thereof
Krumpmann et al. Influence of a sputtered compact TiO2 layer on the properties of TiO2 nanotube photoanodes for solid-state DSSCs
Kang et al. Electroplated silver–nickel core–shell nanowire network electrodes for highly efficient perovskite nanoparticle light-emitting diodes
CN109309162A (en) A kind of perovskite-based thin-film solar cells and preparation method thereof
Chen Characterization of porous WO 3 electrochromic device by electrochemical impedance spectroscopy
Yeang et al. Transparent, High‐Charge Capacity Metal Mesh Electrode for Reversible Metal Electrodeposition Dynamic Windows with Dark‐State Transmission< 0.1%
Mehmood et al. Influence of applied voltage on optimal performance and durability of tungsten and vanadium oxide co-sputtered thin films for electrochromic applications
CN110129850B (en) Stepwise deposition preparation method of ferric ferrocyanide film
US20140209471A1 (en) Forming an oxide layer on a flat conductive surface
TW201435152A (en) Forming a transparent metal oxide layer on a conductive surface of a dielectric substrate
TW201222118A (en) A colour-changing device of liquid filling type and the method thereof
US20160010236A1 (en) Forming a transparent metal oxide layer on a conductive surface of a dielectric substrate
Atak et al. Fabrication of an all solid-state electrochromic device using zirconium dioxide as an ion-conducting layer
JP2005108468A (en) Transparent conductive sheet, manufacturing method of the same, and photosensitive solar cell using the same
Lou et al. Toward durably flexible nickel oxide electrochromic film by covering an 18 nm zinc tin oxide buffer layer
CN108054281A (en) It is a kind of to prepare SnO using cryogenic fluid reaction2The method of film and prepare the method for perovskite solar cell with it