TW201432256A - Resistive MEMS humidity sensor - Google Patents

Resistive MEMS humidity sensor Download PDF

Info

Publication number
TW201432256A
TW201432256A TW102147072A TW102147072A TW201432256A TW 201432256 A TW201432256 A TW 201432256A TW 102147072 A TW102147072 A TW 102147072A TW 102147072 A TW102147072 A TW 102147072A TW 201432256 A TW201432256 A TW 201432256A
Authority
TW
Taiwan
Prior art keywords
sensing film
film
sensing
circuit connection
location
Prior art date
Application number
TW102147072A
Other languages
Chinese (zh)
Other versions
TWI598583B (en
Inventor
Ando Feyh
Andrew Graham
Ashwin Samarao
Gary Yama
Gary O'brien
Original Assignee
Bosch Gmbh Robert
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Gmbh Robert filed Critical Bosch Gmbh Robert
Publication of TW201432256A publication Critical patent/TW201432256A/en
Application granted granted Critical
Publication of TWI598583B publication Critical patent/TWI598583B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid

Abstract

A semiconductor device includes a substrate, an insulating film provided on a surface of the substrate, and a sensing film formed of a conductive material deposited on top of the insulating film. The sensing film defines at least one conductive path between a first position and a second position on the insulating film. A first circuit connection is electrically connected to the sensing film at the first position on the insulating layer, and a second circuit connection is electrically connected to the sensing film at the second position. A control circuit is operatively connected to the first circuit connection and the second circuit connection for measuring an electrical resistance of the sensing film. The sensing film has a thickness that enables a resistivity of the sensing film to be altered predictably in a manner that is dependent on ambient moisture content.

Description

電阻式微機電系統濕度感測器 Resistive MEMS humidity sensor

本揭示內容大體上關於半導體裝置,且明確地說,關於微機電系統(MicroElectroMechanical System,MEMS)濕度感測器。 The present disclosure relates generally to semiconductor devices and, in particular, to a Micro Electro Mechanical System (MEMS) humidity sensor.

相關申請案之交叉參考 Cross-reference to related applications

本申請案主張2012年12月19日由Feyh等人所提申的美國臨時申請案序號第61/739,633號的優先權,該案標題為「電阻式微機電系統濕度感測器(RESISTIVE MEMS HUMIDITY SENSOR)」,本文以引用的方式將其揭示內容完整併入。 The present application claims priority to U.S. Provisional Application Serial No. 61/739,633, filed on Dec. 19, 2012, to the name of "RESISTIVE MEMS HUMIDITY SENSOR The disclosure is hereby incorporated by reference in its entirety.

濕度感測器廣泛地使用在各種領域中,用以測量存在於一特殊環境的空氣中的水蒸汽的數額。濕度感測器被配置成使用電容來測量濕度的電容式感測器裝置。電容式濕度感測器包含一被設置在一對電極之間的介電層。該介電層係由一種被配置成用以吸收及保留水分子的材料所形成,例如,聚合物,水分子的濃度和環境濕度成正比。水分子會以相依於濃度的方式改變該兩個電極之間的電容。所以,藉由測量該兩個電極之間的電容並且將已測得的電容和一對應濕度值產生關聯便能夠決定濕度。 Humidity sensors are widely used in various fields to measure the amount of water vapor present in the air of a particular environment. The humidity sensor is configured as a capacitive sensor device that uses capacitance to measure humidity. The capacitive humidity sensor includes a dielectric layer disposed between a pair of electrodes. The dielectric layer is formed from a material that is configured to absorb and retain water molecules, for example, a polymer, the concentration of water molecules is proportional to the ambient humidity. The water molecules change the capacitance between the two electrodes in a concentration dependent manner. Therefore, the humidity can be determined by measuring the capacitance between the two electrodes and correlating the measured capacitance with a corresponding humidity value.

雖然可用於測量濕度;但是,電容式感測器卻依賴體效應 (bulk effect)來改變電容以及表示濕度的變化。因此,電容式濕度感測器改變環境濕度的響應時間通常相對緩慢。這係因為其需要時間讓水分子響應於濕度變化而擴散至該感測器的介電層之中以及擴散至該感測器的介電層外面。為避免時間落後(time-lag)誤差,電容式濕度感測器需要一長時間常數讓該介電層中的水濃度在實施電容測量之前達到平衡。 Although it can be used to measure humidity; however, capacitive sensors rely on body effects (bulk effect) to change the capacitance and indicate the change in humidity. Therefore, the response time of a capacitive humidity sensor to change the ambient humidity is typically relatively slow. This is because it takes time for the water molecules to diffuse into the dielectric layer of the sensor and out to the outside of the dielectric layer of the sensor in response to changes in humidity. To avoid time-lag errors, capacitive humidity sensors require a constant time to allow the water concentration in the dielectric layer to equilibrate before performing capacitance measurements.

電容式濕度感測器也會因為污染及/或老化的關係而產生漂移及受到破壞。舉例來說,當水分子被吸收至該介電層之中以及從該介電層處被釋放時,非水分子會連同水分子一起被吸收至該介電材料之中。於某些情況中,該非水分子會被陷捕在該介電材料中。隨著時間經過,非水分子或污染累增在該介電層中便會改變該感測器的電容響應及/或降低該介電材料吸收水分子的能力。 Capacitive humidity sensors can also drift and be damaged due to contamination and/or aging. For example, when water molecules are absorbed into and released from the dielectric layer, non-aqueous molecules are absorbed into the dielectric material along with the water molecules. In some cases, the non-aqueous molecules will be trapped in the dielectric material. Over time, non-aqueous molecules or contamination build up in the dielectric layer can alter the capacitive response of the sensor and/or reduce the ability of the dielectric material to absorb water molecules.

於本揭示內容的其中一實施例中,一種半導體裝置包含:一基板;一絕緣膜,其被提供在該基板的一表面上;以及一感測膜,其係由被沉積在該絕緣膜頂端的一導體材料所形成。該感測膜定義至少一導體路徑在該絕緣膜上的一第一位置與一第二位置之間。一第一電路連接線在該絕緣層上的該第一位置處被電連接至該感測膜;以及一第二電路連接線在該第二位置處被電連接至該感測膜。一控制電路在操作上會被連接至該第一電路連接線與該第二電路連接線,用以測量該感測膜的一電阻。該感測膜的厚度使得該感測膜的電阻係數以相依於環境濕氣內含物的方式而可預測地改變。 In one embodiment of the present disclosure, a semiconductor device includes: a substrate; an insulating film provided on a surface of the substrate; and a sensing film deposited on the top of the insulating film A conductor material is formed. The sensing film defines at least one conductor path between a first location and a second location on the insulating film. A first circuit connection line is electrically connected to the sensing film at the first location on the insulating layer; and a second circuit connection line is electrically connected to the sensing film at the second location. A control circuit is operatively coupled to the first circuit connection line and the second circuit connection line for measuring a resistance of the sensing film. The thickness of the sensing film is such that the resistivity of the sensing film is predictably altered in a manner that is dependent on ambient moisture content.

該感測膜可以具有約1至10nm的厚度並且可以由合宜的導 體材料形成,例如,鉑、鋁、鈦、氮化鈦或是氮化鉭。該絕緣膜的厚度可以落在從小於10nm至約5mm的範圍中。該感測膜與該絕緣膜可以利用原子層沉積(Atomic Layer Deposition,ALD)製程來沉積。 The sensing film may have a thickness of about 1 to 10 nm and may be guided by a suitable guide The bulk material is formed, for example, platinum, aluminum, titanium, titanium nitride or tantalum nitride. The thickness of the insulating film may fall in a range from less than 10 nm to about 5 mm. The sensing film and the insulating film may be deposited by an Atomic Layer Deposition (ALD) process.

於其中一實施例中,該感測膜被圖案化成用以包含複數個空隙,以便降低該感測膜的導電係數。該空隙可被用來吸收水分子,用以改變該感測膜的電阻係數。在該空隙下方的該絕緣層的介電材料可以包括一厭水材料或是一親水材料,用以幫助水分子聚集在該空隙中,舉例來說,藉由推移水使其遠離該基板進入該空隙之中或是藉由從該膜處將水吸汲至該空隙之中。該控制電路被配置成用以將該感測膜之經測得的電阻和一濕度值產生關聯。該控制電路亦可以被配置成用以傳導一重置脈衝通過該感測膜。該重置脈衝被配置成用以加熱該感測膜至讓水分子從該感測膜處被釋出的程度。 In one embodiment, the sensing film is patterned to include a plurality of voids to reduce the conductivity of the sensing film. The void can be used to absorb water molecules to change the resistivity of the sensing film. The dielectric material of the insulating layer under the void may comprise a water-repellent material or a hydrophilic material to help water molecules accumulate in the void, for example, by moving water away from the substrate into the The water is sucked into the gap by the water from the membrane. The control circuit is configured to correlate the measured resistance of the sensing film with a humidity value. The control circuit can also be configured to conduct a reset pulse through the sensing film. The reset pulse is configured to heat the sensing film to the extent that water molecules are released from the sensing film.

本發明還提供一種製作半導體裝置的方法。該方法包括:沉積一介電材料於一基板的一表面上,用以形成一絕緣膜;以及沉積一導體感測膜在該絕緣膜頂端,用以在該絕緣膜上形成介於一第一位置與一第二位置之間的一導體路徑。該感測膜的厚度被沉積至使得該感測膜的電阻係數以相依於環境濕氣內含物的方式而改變。一第一電路連接線會被形成在該第一位置處;以及一第二電路連接線會被形成在該第二位置處。 The present invention also provides a method of fabricating a semiconductor device. The method includes: depositing a dielectric material on a surface of a substrate to form an insulating film; and depositing a conductor sensing film on the top of the insulating film to form a first layer on the insulating film A conductor path between the location and a second location. The thickness of the sensing film is deposited such that the resistivity of the sensing film changes in a manner that is dependent on ambient moisture content. A first circuit connection line is formed at the first position; and a second circuit connection line is formed at the second position.

此外,本發明還提供一種操作濕度感測器的方法。該方法包括傳導一測量電流通過該濕度感測器的一導體感測膜,該感測膜被沉積在提供於一基板上的一介電絕緣膜頂端並且具有約1至10nm的厚度,俾使得該感測膜的電阻係數以相依於環境濕氣內含物的方式而改變。該測量電流 接著會被估算以決定該感測膜的電阻。該經決定的電阻接著會和一濕度值產生關聯。 Moreover, the present invention also provides a method of operating a humidity sensor. The method includes conducting a conductor sensing film through a current sensing film of the humidity sensor, the sensing film being deposited on a top end of a dielectric insulating film provided on a substrate and having a thickness of about 1 to 10 nm. The resistivity of the sensing film changes in a manner that is dependent on the contents of the ambient moisture. Measuring current It is then estimated to determine the resistance of the sensing film. The determined resistance is then correlated with a humidity value.

10‧‧‧電阻式MEMS濕度感測器 10‧‧‧Resistive MEMS Humidity Sensor

12‧‧‧基板 12‧‧‧Substrate

14‧‧‧絕緣膜 14‧‧‧Insulation film

16‧‧‧感測膜 16‧‧‧Sensing film

18‧‧‧黏接墊或連接終端 18‧‧‧bonding pad or connection terminal

20‧‧‧控制電路系統 20‧‧‧Control circuit system

22‧‧‧開口、細孔或是間隙 22‧‧‧ openings, pores or gaps

24‧‧‧分區、分段或是長條 24‧‧‧Division, segmentation or strip

圖1A所示的係根據本揭示內容的電阻式MEMS濕度感測器的一實施例的略圖。 1A is a schematic illustration of an embodiment of a resistive MEMS humidity sensor in accordance with the present disclosure.

圖1B所示的係圖1A的電阻式MEMS濕度感測器的剖視圖。 Figure 1B is a cross-sectional view of the resistive MEMS humidity sensor of Figure 1A.

圖2所示的係圖1的感測器的一實施例的俯視立面圖,圖中顯示一具有曲折圖案的感測膜。 2 is a top elevational view of an embodiment of the sensor of FIG. 1, showing a sensing film having a meandering pattern.

圖3所示的係圖1與2的絕緣膜與感測膜的剖視圖,圖中顯示該感測器的吸收部位。 Fig. 3 is a cross-sectional view showing the insulating film and the sensing film of Figs. 1 and 2, showing the absorption portion of the sensor.

圖4A與4B所示的係被形成在原處之用於電阻式MEMS濕度感測器的感測膜的示意圖。 4A and 4B are schematic views of a sensing film for a resistive MEMS humidity sensor formed in situ.

為達瞭解本揭示內容之原理的目的,現在將參考圖中所示及下面書面說明書中所述的實施例。應該瞭解的係,其並沒有限制本揭示內容之範疇的意圖。應該進一步瞭解的係,如熟習和本揭示內容有關技術的人士通常可進行者,本揭示內容包含已解釋實施例的任何變更與修正並且包含本揭示內容之原理的進一步應用。 For the purposes of understanding the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings and in the written description. It is to be understood that there is no intention to limit the scope of the disclosure. It is to be understood that the subject matter of the present disclosure is to be construed as a

圖1A與1B所示的係根據本揭示內容的電阻式MEMS濕度感測器10的一實施例的略圖。該濕度感測器10包含一基板12、一絕緣膜14、一感測膜16以及一對黏接墊或連接終端18。基板12可以包括一互補 式金屬氧化物半導體(Complementary Metal Oxide Semiconductor,CMOS)基板,於其中一實施例中,其係一矽晶圓或是另一種類型的基板。圖中雖然並未顯示;不過,根據本揭示內容的濕度感測器10可輕易地整合於其它感測器裝置上,例如,壓力感測器或是麥克風。 1A and 1B are schematic views of an embodiment of a resistive MEMS humidity sensor 10 in accordance with the present disclosure. The humidity sensor 10 includes a substrate 12, an insulating film 14, a sensing film 16, and a pair of bonding pads or connection terminals 18. The substrate 12 can include a complementary A semiconductor metal oxide semiconductor (CMOS) substrate, in one embodiment, is a wafer or another type of substrate. Although not shown in the drawings; however, the humidity sensor 10 in accordance with the present disclosure can be easily integrated into other sensor devices, such as pressure sensors or microphones.

濕度感測器10的絕緣膜14包括被沉積在基板12上的一層介電材料。絕緣膜14係由一合宜的介電材料所形成,例如,氧化鋁(Al2O3)、二氧化矽(SiO2)、氮化矽(SiN)、四氮化三矽(Si3N4)、碳化矽(SiC)以及類似物。於其中一實施例中,該絕緣膜的厚度介於小於10nm厚至約5mm之間(<10nm至5mm)。該絕緣膜14可以允許所希望膜厚度的任何合宜方式來沉積。 The insulating film 14 of the humidity sensor 10 includes a layer of dielectric material deposited on the substrate 12. The insulating film 14 is formed of a suitable dielectric material, for example, aluminum oxide (Al 2 O 3 ), germanium dioxide (SiO 2 ), tantalum nitride (SiN), tantalum nitride (Si 3 N 4 ), tantalum carbide (SiC). And similar. In one embodiment, the thickness of the insulating film is between less than 10 nm thick and about 5 mm (<10 nm to 5 mm). The insulating film 14 can be deposited in any convenient manner to allow the desired film thickness.

感測膜16包括一被沉積在絕緣膜14上的金屬或半導體膜。可用於該感測膜的材料的範例包含鉑(Pt)、鋁(Al)、鈦(Ti)、氮化鈦(TiN)、氮化鉭(TaN)以及類似物;不過,亦可以使用其它合宜的金屬或半導體材料。黏接墊18係被提供用以將感測膜16連接至控制電路系統20。控制電路系統20被配置成用以傳導一已知電流通過該感測膜並且用以測量因空氣中濕氣內含物變化所造成的該感測膜中的電阻(或是阻抗)的變化。 The sensing film 16 includes a metal or semiconductor film deposited on the insulating film 14. Examples of materials that can be used for the sensing film include platinum (Pt), aluminum (Al), titanium (Ti), titanium nitride (TiN), tantalum nitride (TaN), and the like; however, other suitable uses may also be used. Metal or semiconductor material. A bond pad 18 is provided to connect the sensing film 16 to the control circuitry 20. Control circuitry 20 is configured to conduct a known current through the sensing membrane and to measure changes in electrical resistance (or impedance) in the sensing membrane due to changes in moisture content in the air.

感測膜16被配置成用以在該黏接墊18之間形成一電阻式電路元件,其電阻會隨著濕度改變。感測膜16可以被配置成用以具有約10至10000歐姆/平方的電阻值。於其中一實施例中,該感測膜利用原子層沉積(ALD)製程沉積至約1至10nm的厚度。ALD係一種沉積技術,其使用連續的自限表面反應以每次一個原子層的方式來沉積薄膜。這允許以精確及均勻的厚度來形成超薄膜。較薄的感測膜通常會較佳,因為它們有較高的固有電阻,其會比較厚的感測膜更容易受到水蒸汽濃度變化的影響。 The sensing film 16 is configured to form a resistive circuit element between the bond pads 18, the resistance of which varies with humidity. The sensing film 16 can be configured to have a resistance value of about 10 to 10,000 ohms/square. In one embodiment, the sensing film is deposited to a thickness of about 1 to 10 nm using an atomic layer deposition (ALD) process. ALD is a deposition technique that uses a continuous self-limiting surface reaction to deposit a film one atom at a time. This allows the ultra-thin film to be formed with a precise and uniform thickness. Thinner sensing films are generally preferred because of their higher inherent resistance, which is more susceptible to changes in water vapor concentration than thicker sensing films.

因為感測膜16非常薄(舉例來說,1至10nm),所以,該膜的電阻變化主要係因水分子改變該膜16之表面處的導電係數所造成的表面效應而導致。因此,相較於運用體效應的習知電容式濕度感測器,電阻式濕度感測器10會有更小的時間常數,且因此,會有較快的響應時間。此外,藉由運用表面效應,感測膜16亦比較不會有因體污染與老化所造成的誤差及漂移。 Since the sensing film 16 is very thin (for example, 1 to 10 nm), the resistance change of the film is mainly caused by the surface effect caused by the change of the conductivity at the surface of the film 16 by water molecules. Therefore, the resistive humidity sensor 10 has a smaller time constant than the conventional capacitive humidity sensor using the body effect, and therefore, has a faster response time. In addition, by using the surface effect, the sensing film 16 is also less likely to have errors and drifts due to body contamination and aging.

感測膜16可以提高感測元件之固有電阻及/或提高該膜之電阻對濕度變化之靈敏度的方式進行圖案化或塑形。於其中一實施例中,感測膜16被圖案化成網狀、格柵或是類陣列的結構,例如,圖1A與1B中所示。感測膜16可以被圖案化成用以形成其它形狀,例如,蜿蜒的形狀,如圖2中所示,其依循該黏接墊18之間的一條曲折路徑。 The sensing film 16 can be patterned or shaped in such a way as to increase the inherent resistance of the sensing element and/or increase the sensitivity of the resistance of the film to changes in humidity. In one embodiment, the sensing film 16 is patterned into a mesh, grid or array-like structure, such as shown in Figures 1A and 1B. The sensing film 16 can be patterned to form other shapes, such as the shape of a crucible, as shown in FIG. 2, following a tortuous path between the bonding pads 18.

感測膜16的圖案導致感測膜16在感測膜16的分區、分段或是長條24之間設置著開口、細孔或是間隙22(本文中稱為空隙),如圖3中所示。於多孔的感測膜中,主要有兩種類型的水蒸汽吸收部位。其中一種類型的吸收部位係在感測膜16的分區、分段或是長條24上。另一種類型的吸收部位係在長條24之間的空隙22之中的絕緣膜14上。用於該絕緣層的介電材料會經過選擇用以增強該吸收部位中一或兩種吸收水分子的能力並且沿著該黏接墊之間的感測膜16增加導體路徑。 The pattern of the sensing film 16 causes the sensing film 16 to be provided with openings, pores or gaps 22 (referred to herein as voids) between the partitions, segments or strips 24 of the sensing film 16, as in FIG. Shown. Among the porous sensing films, there are mainly two types of water vapor absorbing sites. One type of absorbent site is on the partition, segment or strip 24 of the sensing membrane 16. Another type of absorbing portion is on the insulating film 14 in the gap 22 between the strips 24. The dielectric material used for the insulating layer is selected to enhance one or both of the ability to absorb water molecules in the absorbing site and to increase the conductor path along the sensing film 16 between the bonding pads.

該介電材料的範例可以包括厭水材料及親水材料中的其中一種。當該介電質為親水性時,水分子會朝絕緣膜14被吸汲並且吸收在位於該感測膜16的長條24之間的空隙22中的部位上。當該介電質為厭水性時,水分子會被推移遠離絕緣膜14朝向該感測膜16的長條24上的吸收部 位。在兩種方式中,多孔感測膜16的電阻會因水分子增加該黏接墊18之間跨越感測膜16的導體路徑而下降。 Examples of the dielectric material may include one of a hydrophobic material and a hydrophilic material. When the dielectric is hydrophilic, water molecules are attracted toward the insulating film 14 and absorbed at a portion located in the void 22 between the strips 24 of the sensing film 16. When the dielectric is water repellent, water molecules are pushed away from the insulating film 14 toward the absorbing portion of the strip 24 of the sensing film 16. Bit. In both modes, the electrical resistance of the porous sensing membrane 16 is reduced by the increase in water molecules that increase the conductor path between the bonding pads 18 across the sensing film 16.

於一替代實施例中,用於該介電質及該感測膜的材料可被提供而使得空隙22中的吸收部位及長條24上的吸收部位有同等的吸收強度。於另一替代實施例中,感測膜16可被提供為一無孔的實質上連續層(圖中並未顯示)。於此實施例中,水分子僅吸收在感測膜16的表面上,用以提供額外的導體路徑。 In an alternate embodiment, the materials for the dielectric and the sensing film can be provided such that the absorbent portion of the void 22 and the absorbent portion of the strip 24 have equal absorption strength. In another alternative embodiment, the sensing film 16 can be provided as a substantially continuous layer that is non-porous (not shown). In this embodiment, water molecules are only absorbed on the surface of the sensing film 16 to provide additional conductor paths.

黏接墊18被連接至控制電路系統20,用以監視該黏接墊18之間的感測膜16的電阻(或阻抗)。控制電路系統20可以被配置成以任何合宜的方式來測量電阻(或阻抗)。舉例來說,於其中一實施例中,控制電路系統20被配置成用以透過該黏接墊18傳導一已知的電流脈衝通過該感測膜16並且測量跨越該感測膜16的電壓降。控制電路系統20可以被配置成用以產生各種電流位準及各種時間持續長度的電流脈衝來測量感測膜16的電阻。於其中一實施例中,該控制電路系統被配置成用以輸出一表示感測膜16之電阻的訊號。控制電路系統20可以被配置成用以處理該已測得的電阻值,以便決定對應的濕度。或者,來自控制電路系統20的輸出訊號可以藉由一外部電路來和濕度值產生關聯。 The bond pads 18 are connected to the control circuitry 20 for monitoring the resistance (or impedance) of the sensing film 16 between the bond pads 18. Control circuitry 20 can be configured to measure the resistance (or impedance) in any convenient manner. For example, in one embodiment, control circuitry 20 is configured to conduct a known current pulse through the bond pad 18 through the sensing film 16 and measure the voltage drop across the sensing film 16. . Control circuitry 20 can be configured to generate various current levels and current pulses of various durations to measure the resistance of sensing film 16. In one embodiment, the control circuitry is configured to output a signal indicative of the resistance of the sensing film 16. Control circuitry 20 can be configured to process the measured resistance value to determine a corresponding humidity. Alternatively, the output signal from control circuitry 20 can be correlated to the humidity value by an external circuit.

使用如上述的薄感測膜16得以在感測器中施行重置協定,用以縮短感測器10回應濕度變化所需要的時間數額。舉例來說,該薄感測膜16能夠藉由傳導一具有合宜高位準電流的電流脈衝通過感測膜16讓該感測膜16加熱而重置。當該感測膜16加熱至足夠的程度時,被吸收在該感測膜16之中與之上的水分子會有效且迅速地被釋出。使用此重置脈衝能夠減 少漂移效應,舉例來說,因粒子或離子污染所造成。此加熱脈衝能夠被程式化成用以在規律安排的時間間隔處被實施、在預設的條件下被實施或是於需要時被實施。該加熱脈衝亦能夠作為一重置脈衝,用以決定該電流感測器的基線。此重置脈衝可被配置成經由感測器裝置10的一使用者介面來手動啟動。就使用該加熱脈衝來重置感測膜16的替代例來說,感測器10可以在該感測膜16下方具備一加熱結構(圖中並未顯示),例如,電阻膜,其被配置成用以加熱該感測膜16並且從膜16處將水釋出。 The use of a thin sensing film 16 as described above enables a reset protocol to be implemented in the sensor to reduce the amount of time required for the sensor 10 to respond to changes in humidity. For example, the thin sensing film 16 can be reset by heating a sensing film 16 through the sensing film 16 by conducting a current pulse having a suitable high level current. When the sensing film 16 is heated to a sufficient extent, water molecules absorbed in and above the sensing film 16 are effectively and rapidly released. Use this reset pulse to reduce Less drift effects, for example, caused by particle or ionic contamination. This heating pulse can be programmed to be implemented at regularly scheduled time intervals, implemented under predetermined conditions, or implemented as needed. The heating pulse can also act as a reset pulse to determine the baseline of the current sensor. This reset pulse can be configured to be manually activated via a user interface of the sensor device 10. In an alternative to using the heating pulse to reset the sensing film 16, the sensor 10 may have a heating structure (not shown) below the sensing film 16, for example, a resistive film, which is configured The heating film 16 is heated and the water is released from the film 16.

於一替代實施例中,膜16,例如圖3中所示,能夠於原處被形成一多孔層。舉例來說,參考圖4,一利用ALD所沉積的薄鉑(Pt)膜在特定類型的表面材料中會呈現高多孔性。圖4(a)所示的係被沉積在一具有厚度300nm之熱二氧化矽(SiO2)上的鉑(Pt)膜的示範性實施例。該Pt膜藉由ALD在270℃處以150個循環被沉積在該熱SiO2上。在圖4(a)中,SiO2充當該Pt沉積的晶種層。為採用電漿強化ALD(Plasma Enhanced ALD,PE-ALD),其會使用另一種類型的晶種層;因為SiO2通常無法在PE-ALD中作為Pt的晶種。舉例來說,圖4(b)所示的係利用PE-ALD製程被沉積在氧化鋁(Al2O3)上的Pt膜,氧化鋁(Al2O3)在PE-ALD期間充當Pt的晶種層。在圖4(b)中,該Pt膜藉由PE-ALD在270℃處以125個循環被沉積在該Al2O3上。 In an alternate embodiment, film 16, such as shown in Figure 3, can be formed into a porous layer in situ. For example, referring to Figure 4, a thin platinum (Pt) film deposited using ALD exhibits high porosity in a particular type of surface material. An exemplary embodiment of a platinum (Pt) film deposited on a thermal ceria (SiO 2 ) having a thickness of 300 nm is shown in Fig. 4(a). The Pt film was deposited on the hot SiO 2 by ALD at 270 ° C for 150 cycles. In Figure 4(a), SiO 2 acts as a seed layer for the Pt deposition. In order to use Plasma Enhanced ALD (PE-ALD), another type of seed layer is used; since SiO 2 is generally not available as a seed crystal of Pt in PE-ALD. For example, Figure 4(b) shows a Pt film deposited on alumina (Al 2 O 3 ) using a PE-ALD process, and alumina (Al 2 O 3 ) acts as Pt during PE-ALD. Seed layer. In Fig. 4(b), the Pt film was deposited on the Al 2 O 3 by PE-ALD at 270 ° C for 125 cycles.

於其它替代實施例中,膜16可以具備用以實現不同類型電阻器結構與電路的各種配置。舉例來說,於其中一實施例中(圖中並未顯示),膜16可以半惠斯登橋電路(half Wheatstone-bridge circuit)的形式來提供,用以幫助進行該感測膜的讀出與估算。於某些實施例中,除了膜16之外,電阻器結構亦可被併入在感測器10之中,用以施行額外的感測器元件。舉 例來說,於其中一實施例中,配至雷同於膜16的一額外電阻器結構(圖中並未顯示)可以被提供在感測器10之中,其具有一保護性塗層來降低或消弭對濕度效應的靈敏度,以便充當該感測器的一參考元件。於另一實施例中,一額外的電阻器結構可以被併入在感測器10之中,用以施行一用於溫度測量的熱阻器。 In other alternative embodiments, film 16 may be provided with various configurations to implement different types of resistor structures and circuits. For example, in one embodiment (not shown), the membrane 16 may be provided in the form of a half wheatstone-bridge circuit to aid in the readout of the sensing membrane. And estimation. In some embodiments, in addition to the membrane 16, a resistor structure can also be incorporated into the sensor 10 for performing additional sensor elements. Lift For example, in one embodiment, an additional resistor structure (not shown) that is coupled to the film 16 can be provided in the sensor 10 with a protective coating to reduce Or the sensitivity to the humidity effect is eliminated to serve as a reference component for the sensor. In another embodiment, an additional resistor structure can be incorporated into the sensor 10 for performing a thermal resistor for temperature measurement.

於又一實施例中(圖中並未顯示),一包括Pt奈米晶體的多孔金屬(例如鉑)會被提供在兩個固體金屬電極之間,用以形成一交錯式電極配置(舉例來說,雷同於緊握的兩隻手互扣的手指)。於此實施例中,水分子會被該多孔金屬吸收,從而導致該兩個電極之間的有效電阻或電容改變。濕度測量能夠藉由偵測該兩個電極之間的絕緣電阻/電容的變化來進行。 In yet another embodiment (not shown), a porous metal (eg, platinum) comprising Pt nanocrystals is provided between the two solid metal electrodes to form an interleaved electrode configuration (for example Said, the same as the fingers clasped by the two hands clasped). In this embodiment, water molecules are absorbed by the porous metal, resulting in a change in effective resistance or capacitance between the two electrodes. Humidity measurement can be performed by detecting a change in insulation resistance/capacitance between the two electrodes.

本揭示內容雖然已經在圖式及前面的說明中詳細地圖解與說明過;但是,它們應該被視為解釋性而沒有限制的特性。應該瞭解的係,本發明僅提出較佳的實施例並且希望保護落在本揭示內容之精神內的所有改變、修正以及進一步的應用。 The present disclosure has been described and illustrated in detail in the drawings and the foregoing description; however, they should be construed as illustrative and not limiting. It is to be understood that the present invention is intended to be limited only by the preferred embodiments of the invention.

10‧‧‧電阻式MEMS濕度感測器 10‧‧‧Resistive MEMS Humidity Sensor

12‧‧‧基板 12‧‧‧Substrate

14‧‧‧絕緣膜 14‧‧‧Insulation film

16‧‧‧感測膜 16‧‧‧Sensing film

18‧‧‧黏接墊或連接終端 18‧‧‧bonding pad or connection terminal

20‧‧‧控制電路系統 20‧‧‧Control circuit system

Claims (20)

一種半導體裝置,其包括:一基板;一絕緣膜,其係由一介電材料所形成並且被提供在該基板的一表面上;一感測膜,其係由被沉積在該絕緣膜的頂端的一導體材料所形成,該感測膜定義在該絕緣膜上的一第一位置與一第二位置之間的至少一導體路徑;一第一電路連接線,其在該絕緣層上的該第一位置處被電連接至該感測膜;一第二電路連接線,其在該第二位置處被電連接至該感測膜;以及一控制電路,其在操作上被連接至該第一電路連接線與該第二電路連接線並且被配置成用以測量該感測膜的電阻,其中,該感測膜的厚度使得該感測膜的電阻係數以相依於環境濕氣內含物的方式而可預測地改變。 A semiconductor device comprising: a substrate; an insulating film formed of a dielectric material and provided on a surface of the substrate; and a sensing film deposited on the top of the insulating film Forming a conductive material, the sensing film defining at least one conductor path between a first location and a second location on the insulating film; a first circuit connection line on the insulating layer a first location electrically coupled to the sensing film; a second circuit connection line electrically coupled to the sensing film at the second location; and a control circuit operatively coupled to the first a circuit connection line and the second circuit connection line are configured to measure a resistance of the sensing film, wherein a thickness of the sensing film is such that a resistivity of the sensing film is dependent on ambient moisture content The way it changes predictably. 根據申請專利範圍第1項的裝置,其中,該感測膜具有約1至10nm的厚度。 The device of claim 1, wherein the sensing film has a thickness of about 1 to 10 nm. 根據申請專利範圍第2項的裝置,其中,該感測膜包括鉑、鋁、鈦、氮化鈦或是氮化鉭。 The device of claim 2, wherein the sensing film comprises platinum, aluminum, titanium, titanium nitride or tantalum nitride. 根據申請專利範圍第2項的裝置,其中,該感測膜係利用原子層沉積(ALD)製程來沉積。 The device of claim 2, wherein the sensing film is deposited using an atomic layer deposition (ALD) process. 根據申請專利範圍第2項的裝置,其中,該絕緣膜的厚度落在從小於10nm至約5mm的範圍中。 The device according to claim 2, wherein the thickness of the insulating film falls within a range from less than 10 nm to about 5 mm. 根據申請專利範圍第2項的裝置,其中,該感測膜被圖案化成在該第一位置與該第二位置之間包含複數個空隙,向下延伸至該絕緣層,其會降低該感測膜的導電係數。 The device of claim 2, wherein the sensing film is patterned to include a plurality of voids between the first location and the second location, extending downwardly to the insulating layer, which reduces the sensing The conductivity of the film. 根據申請專利範圍第6項的裝置,其中,該複數個空隙讓該感測膜具有蜿蜒的形狀。 The device of claim 6, wherein the plurality of voids allow the sensing film to have a meandering shape. 根據申請專利範圍第6項的裝置,其中,該複數個空隙讓該感測膜成為具有多孔。 The device of claim 6, wherein the plurality of voids make the sensing film porous. 根據申請專利範圍第6項的裝置,其中,該空隙被配置成用以吸收水分子,以及其中,被吸收在該空隙中的水分子會改變該感測膜的電阻係數。 The device of claim 6, wherein the void is configured to absorb water molecules, and wherein water molecules absorbed in the void change the resistivity of the sensing film. 根據申請專利範圍第9項的裝置,其中,在該空隙下方的該絕緣層的介電材料包括厭水材料與親水材料中的其中一種。 The device of claim 9, wherein the dielectric material of the insulating layer under the void comprises one of a hydrophobic material and a hydrophilic material. 根據申請專利範圍第1項的裝置,其中,該控制電路被配置成用以將該感測膜之經測得的電阻和一濕度值產生關聯。 The device of claim 1, wherein the control circuit is configured to correlate the measured resistance of the sensing film with a humidity value. 根據申請專利範圍第1項的裝置,其中,該控制電路被配置成用以透過該第一電路連接線與第二電路連接線傳導一重置脈衝通過該感測膜,該重置脈衝被配置成用以加熱該感測膜至讓水分子從該感測膜處被釋出的程度。 The device of claim 1, wherein the control circuit is configured to conduct a reset pulse through the sensing circuit through the first circuit connection line and the second circuit connection line, the reset pulse being configured The extent to which the sensing film is heated to allow water molecules to be released from the sensing film. 一種製作半導體裝置的方法,該方法包括:沉積一介電材料於一基板的一表面上,用以形成一絕緣膜;沉積一導體感測膜在該絕緣膜的頂端,用以在該絕緣膜上形成介於一第一位置與一第二位置之間的一導體路徑,該感測膜的厚度被沉積至使得 該感測膜的電阻係數以相依於環境濕氣內含物的方式而改變;形成一第一電路連接線在該第一位置處;以及形成一第二電路連接線在該第二位置處。 A method of fabricating a semiconductor device, the method comprising: depositing a dielectric material on a surface of a substrate to form an insulating film; depositing a conductor sensing film at a top end of the insulating film for the insulating film Forming a conductor path between a first position and a second position, the thickness of the sensing film being deposited such that The resistivity of the sensing film changes in a manner dependent on ambient moisture content; forming a first circuit connection line at the first location; and forming a second circuit connection line at the second location. 根據申請專利範圍第13項的方法,其進一步包括:連接一控制電路至該第一電路連接線與該第二電路連接線,該控制電路被配置成用以測量該感測膜的電阻。 The method of claim 13, further comprising: connecting a control circuit to the first circuit connection line and the second circuit connection line, the control circuit being configured to measure a resistance of the sensing film. 根據申請專利範圍第13項的方法,其中,該感測膜被沉積至具有約1至10nm的厚度。 The method of claim 13, wherein the sensing film is deposited to have a thickness of about 1 to 10 nm. 根據申請專利範圍第15項的方法,其中,該感測膜係利用原子層沉積(ALD)製程來沉積。 The method of claim 15, wherein the sensing film is deposited using an atomic layer deposition (ALD) process. 根據申請專利範圍第16項的方法,其進一步包括:圖案化該感測膜用以在該第一位置與該第二位置之間包含複數個空隙,向下延伸至該絕緣層,其會降低該感測膜的導電係數。 The method of claim 16, further comprising: patterning the sensing film to include a plurality of voids between the first location and the second location, extending down to the insulating layer, which may decrease The conductivity of the sensing film. 根據申請專利範圍第17項的方法,其中,該空隙被配置成用以吸收水分子,以及其中,被吸收在該空隙中的水分子會改變該感測膜的電阻係數。 The method of claim 17, wherein the void is configured to absorb water molecules, and wherein water molecules absorbed in the void change the resistivity of the sensing film. 一種操作濕度感測器的方法,該方法包括:傳導一測量電流通過該濕度感測器的一導體感測膜,該感測膜被沉積在提供於一基板上的一介電絕緣膜的頂端並且具有約1至10nm的厚度,俾使得該感測膜的電阻係數以相依於環境濕氣內含物的方式而改變;估算該測量電流,用以決定該感測膜的電阻;以及將經決定的該電阻和一濕度值產生關聯。 A method of operating a humidity sensor, the method comprising: conducting a measurement current through a conductor sensing film of the humidity sensor, the sensing film being deposited on a top end of a dielectric insulating film provided on a substrate And having a thickness of about 1 to 10 nm, such that the resistivity of the sensing film changes in a manner dependent on the ambient moisture content; estimating the measured current to determine the resistance of the sensing film; The determined resistance is associated with a humidity value. 根據申請專利範圍第19項的方法,其進一步包括:傳導一重置脈衝通過該感測膜用以加熱該感測膜至讓水分子從該感測膜處被釋出的程度。 The method of claim 19, further comprising: conducting a reset pulse through the sensing film to heat the sensing film to a extent that water molecules are released from the sensing film.
TW102147072A 2012-12-19 2013-12-19 Resistive mems humidity sensor TWI598583B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261739633P 2012-12-19 2012-12-19

Publications (2)

Publication Number Publication Date
TW201432256A true TW201432256A (en) 2014-08-16
TWI598583B TWI598583B (en) 2017-09-11

Family

ID=49958668

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102147072A TWI598583B (en) 2012-12-19 2013-12-19 Resistive mems humidity sensor

Country Status (4)

Country Link
US (1) US9588073B2 (en)
EP (1) EP2984474B1 (en)
TW (1) TWI598583B (en)
WO (1) WO2014099915A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI788671B (en) * 2020-06-02 2023-01-01 晶極光電科技股份有限公司 Manufacturing method and device of porous pressure sensor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3172582A4 (en) 2014-07-22 2018-02-28 Brewer Science, Inc. Thin-film resistive-based sensor
EP3241018B1 (en) 2014-12-29 2021-04-21 Robert Bosch GmbH Nanostructured gas sensor
WO2016109434A1 (en) * 2014-12-29 2016-07-07 Robert Bosch Gmbh Nanostructured lanthanum oxide humidity sensor
US9685201B2 (en) * 2015-07-10 2017-06-20 International Business Machines Corporation Corrosion and/or oxidation damage protection for tunnel junctions
DE102016207260B3 (en) * 2016-04-28 2017-01-12 Robert Bosch Gmbh Micromechanical humidity sensor device and corresponding manufacturing method
DE102018005010A1 (en) * 2017-07-13 2019-01-17 Wika Alexander Wiegand Se & Co. Kg Transfer and melting of layers
US10921300B2 (en) * 2018-10-15 2021-02-16 Microsoft Technology Licensing, Llc Internal server air quality station
JP7096635B2 (en) * 2019-03-22 2022-07-06 株式会社日立製作所 Moisture detection element, breath gas detection device, breath test system and manufacturing method of moisture detection element
EP4012393A1 (en) * 2020-12-09 2022-06-15 Vaisala Oyj Fast humidity sensor and a method for calibrating the fast humidity sensor
WO2022169953A1 (en) * 2021-02-05 2022-08-11 Massachusetts Institute Of Technology Humidity initiated gas sensors for volatile organic compounds sensing

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156268A (en) 1977-08-29 1979-05-22 Longwood Machine Works, Inc. Humidity sensing element and method of manufacture thereof
US4263576A (en) * 1978-07-10 1981-04-21 Murata Manufacturing Co., Ltd. Humidity sensitive device
US4928513A (en) * 1986-07-29 1990-05-29 Sharp Kabushiki Kaisha Sensor
US5036704A (en) 1990-03-23 1991-08-06 Gas Research Institute Moisture sensor
DE10134938A1 (en) 2001-07-18 2003-02-06 Bosch Gmbh Robert Semiconductor component and a method for producing the semiconductor component
US7426067B1 (en) 2001-12-17 2008-09-16 Regents Of The University Of Colorado Atomic layer deposition on micro-mechanical devices
US7948041B2 (en) * 2005-05-19 2011-05-24 Nanomix, Inc. Sensor having a thin-film inhibition layer
US8003513B2 (en) * 2002-09-27 2011-08-23 Medtronic Minimed, Inc. Multilayer circuit devices and manufacturing methods using electroplated sacrificial structures
US8132457B2 (en) 2007-08-09 2012-03-13 Northern Illinois University Nano-porous alumina sensor
DE102007047156A1 (en) 2007-10-02 2009-04-23 Siemens Ag Humidity sensor for detecting amount of water in e.g. liquid, has physical transducer coupled with sensor layer in such manner that characteristic of transducer depends on water amount absorbed by sensor layer
CA2705653A1 (en) 2009-06-05 2010-12-05 The Governors Of The University Of Alberta Humidity sensor and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI788671B (en) * 2020-06-02 2023-01-01 晶極光電科技股份有限公司 Manufacturing method and device of porous pressure sensor

Also Published As

Publication number Publication date
WO2014099915A1 (en) 2014-06-26
TWI598583B (en) 2017-09-11
US9588073B2 (en) 2017-03-07
US20140167791A1 (en) 2014-06-19
EP2984474A1 (en) 2016-02-17
EP2984474B1 (en) 2023-04-19

Similar Documents

Publication Publication Date Title
TWI598583B (en) Resistive mems humidity sensor
JP5425214B2 (en) Capacitive humidity sensor and manufacturing method thereof
US7861575B2 (en) Micro gas sensor and manufacturing method thereof
EP3069130B1 (en) Integrated gas sensor and related manufacturing process
JP2017523436A (en) Sensor chip used for multi-physical quantity measurement and manufacturing method thereof
US20160077028A1 (en) Humidity sensor
JPH01109250A (en) Gas sensor
US10180406B2 (en) Semiconductor gas sensor device and manufacturing method thereof
WO2014007603A2 (en) A method of fabricating a gas sensor
KR100529233B1 (en) Sensor and method for manufacturing the same
US10520457B2 (en) Sensor of volatile substances with integrated heater and process for manufacturing a sensor of volatile substances
NL2011845C2 (en) A capacitive sensor for humidity and/or ammonia sensing.
KR102361250B1 (en) Micro gas sensor array and method for manufacturing the same
JP6739360B2 (en) Carbon dioxide sensor
US20030056584A1 (en) Mass flow sensor and measuring apparatus
JP2016017926A (en) Gas sensor
TWI622757B (en) Bolometer having absorber with pillar structure for thermal shorting
KR101992022B1 (en) Semiconductor gas sensor
KR20160124384A (en) Sensor element for sensing particle concentration
JP2016219365A (en) Micro heater and sensor
JP2007139669A (en) Gas sensor
KR101848764B1 (en) Micro temperature sensor and fabrication method of the same
KR100486497B1 (en) Humidity sensor equipped with heater and manufacturing method thereof
JP4603001B2 (en) Gas sensor element
JP2013050314A (en) Infrared temperature sensor